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Abstract. The mathematical theory of aperiodic order grew out of vari-
ous predecessors in discrete geometry, harmonic analysis and mathematical
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the development of this field. In this meeting, the goal was to bring leading
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Introduction by the Organisers

The systematic study of mathematical quasicrystals, otherwise known as the the-
ory of aperiodic order in a wider mathematical setting, has several roots, but was
undoubtedly much inspired by the discovery of real world quasicrystals in the
1980s and the need to understand this form of matter from a structural perspec-
tive. It became clear rather quickly that any substantial progress needed results
from many different mathematical disciplines such as discrete geometry, harmonic
analysis and mathematical physics, but also from dynamical systems, topology
and number theory.

Within the last 20 years, the field has matured, and has opened into many
new directions, thus offering lots of opportunities for fruitful interactions among
different mathematical fields. This meeting focused on spectral structures and



2782 Oberwolfach Report 46/2017

topological methods, and their interactions. Here, the word “spectral” refers to
three different (but connected) topics, namely to diffraction theory of unbounded
measures, to spectral measures of dynamical systems, or to the spectra of (ape-
riodic) Schrödinger operators. One of the important questions in the field, and
one agenda on this workshop, is how strongly these three notions of spectrum
are connected. Likewise, “topological” refers to the peculiar topology of aperiodic
systems which crosses the topology of the space in which the systems lie with the
physical concept of locality, and leads to interesting spaces and dynamical systems.

Since we had participants from different directions, and a large number of young
researchers including some newcomers to the field, we opted for a start with some
review talks, given by Anton Gorodetski (Schrödinger operators), Nicolae Strun-
garu (weakly almost periodic measures), John Hunton (topological invariants of
tiling spaces) and Alejandro Maass (symbolic dynamical systems), which intro-
duced central “spines” for the rest of the meeting.

Diffraction theory and Fourier analysis form an active part of the field. Be-
yond Strungaru’s introductory lecture, this was demonstrated in talks by Nir Lev
on transformable measures with discrete spectrum, by Neil Mañibo on the con-
nection between exact renormalization schemes for substitutions, Fourier matrices
and logarithmic Mahler measures, and by the extensions to non-Abelian settings
to be mentioned later. Subhro Ghosh gave an introduction to stealthy hyperuni-
form processes, thus liking diffraction to recent progress on the structure of point
processes.

On Schrödinger operators, Siegfried Beckus presented spectral continuity re-
sults for studying the structure of the spectrum via suitable approximants. Com-
plementing this, Mark Embree took up the quantitative nature of these results
for a plethora of numerical calculations of spectra for approximants to prominent
aperiodic tilings, including Penrose’s. Jake Fillman explored the more difficult
continuum case, where the appearance of pseudo-bands correspond to zeros of the
Fricke–Vogt invariant, which result in local thickening of the spectrum. Darren
Ong discussed quantum walks, which are an important object in quantum infor-
mation theory, and how aperiodic order can result in anomalous spreading rates.
Yanhui Qu and Qinghui Liu presented their recent work on the Thue–Morse Hamil-
tonian (non-vanishing dimension of the spectrum at infinite coupling and critical
nature of eigenfunctions via trace maps). Qinghui Liu also talked about the struc-
ture of the union of Sturmian spectra over all irrational frequencies. This result
addresses a seemingly unrelated question from quasi-periodic SL(2,R)-cocycle dy-
namics raised by Bassam Fayad.

With Emil Prodan and Eric Akkermans, it was our intention to include speakers
who have contacts to the recent experiments on mesoscopic aperiodic wave guides
and even mechanical devices that show the topological phenomena of aperiodic
systems. Prodan gave an overview on experiments and the theory of topological
boundary resonances in physical systems. Akkermans’ talk on the diffraction and
the gap labelling for structures built on the Fibonacci chain reported observations
of a striking relation between the diffraction spectrum and the spectrum of wave
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operators of the same medium. As the very active discussion after this talk showed,
there are many open questions that ask for a thorough mathematical investigation
in the future.

Topological methods are key to many developments in the field of aperiodic
order, let it be for the purpose of classification, for the description of topologi-
cal effects in physics, or for the understanding of symmetries in tiling and shift
systems. How can one understand tilings as limits of growing coronae? (Shigeki
Akiyama). What are the possible homeomorphisms between tiling spaces and
how many are there? (Antoine Julien). What are the possible (extended) symme-
tries of subshifts? (Samuel Petite, Reem Yassawi). Topological invariants include
cohomology and K-theory of tiling spaces. In particular, their ordered versions
(dimension groups) have played an important role in the contributions of Maŕıa Is-
abel Cortez and Fabien Durand on the dynamical spectrum of symbolic sequences.
Recently, more sophisticated invariants like the homology core or representation
varieties have been considered (John Hunton) and proven useful to at least partly
classify substitutions (Franz Gähler).

Topological dynamics offers many tools to capture order. Most prominent
among them are variants of pure point spectrum and zero entropy. Eli Glasner
presented a survey of corresponding general notions and results, mostly centred
around the Ellis semigroup, culminating in his recent structure theorem for gen-
eral minimal systems. Felipe Garćıa-Ramos discussed characterizations of various
strengthenings of pure point spectrum via notions of mean equicontinuity. In
terms of specific examples for aperiodic order, the cut and project formalism has
been a prominent framework for generating models of aperiodic order. It was
originally developed by Yves Meyer in the 1970s in the general context of locally
compact Abelian groups, and later (independently) rediscovered by several groups
in physics. It is still of central importance today.

A particularly relevant feature in our context is the pure point spectrum with
continuous eigenfunctions for model sets with regular windows. Past years have
seen developments in various directions: A general introduction into the topic
along with recent characterizations of fine combinatorial properties in special Eu-
clidean situations was given by Alan Haynes. Tobias Jäger discussed how model
sets with non-regular windows in both Euclidean and non-Euclidean settings give
rise to a wealth of (counter)examples. Using special non-regular windows, it is
also possible to reformulate questions of number theory and B-free systems via
this formalism, as discussed by Mariusz Lemańczyk. A whole new field opens up
when setting up this formalism in a non-Abelian context, as shown in a talk given
jointly by Tobias Hartnik and Felix Pogorzelski.

OnWednesday evening, an “open session” began with questions and suggestions
by the participants. After a short general discussion, they split into three groups
of roughly equal size. Under the topic “Eigenfunctions and the Bombieri–Taylor
conjecture”, various aspects of continuous versus measurable eigenfunctions were
discussed, and how eigenfunctions (when viewed as Fourier–Bohr coefficients of
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translation bounded measures) are connected with the Bragg peaks from diffrac-
tion theory. Short contributions by Lorenzo Sadun, Daniel Lenz and Fabien Du-
rand were the starting points of more detailed discussions.

Another group met to discuss “Cantor spectra of aperiodic Schrödinger oper-
ators”, where Anton Gorodetski set the scene with a quick summary of what is
known about sums of Cantor sets in general, and how this leads to conjectures
about the spectra of separable Schrödinger operators in dimension two or higher.
This led to a discussion of several multi-dimensional models and the structure of
their spectra. Some of these initial thoughts are worthy of further exploration, as
they promise to give insight into the spectra associated with products of Toeplitz or
quasi-periodic sequences. Also, Mark Embree’s numerical results indicate various
directions and raise interesting new questions to consider.

Finally, the third group concentrated on “Computational aspects of substi-
tution systems and their topological invariants”. Franz Gähler reported on his
efforts towards a classification of one-dimensional inflation tilings up to mutual
local derivability (MLD), which is analogous to equivalence via sliding block maps
in symbolic dynamics. Using invariants like the structure of asymptotic com-
posants and representation varieties, a complete classification of a class of ternary,
unimodular Pisot inflations (i.e., substitutions with prototiles of natural length)
could be obtained. Dan Rust discussed his work with Timo Spindeler on random
substitution systems, in particular its connection to subshifts of finite type.

From the very beginning, the workshop developed the desired interactive flavour,
with many questions and intense discussions, all driven by curiosity. The talks were
coherent and achieved the goal to unfold the present state of affairs in the field of
aperiodic order, as least as far as the topics of the workshop title were concerned.
Out of the manifold discussions, various new cooperations were started, and sev-
eral new results were already obtained during the meeting (some being mentioned
in the abstracts) or immediately afterwards. Once again, the magic atmosphere of
the MFO added to the success of the workshop and of the stay at the institute for
most, if not all, participants, many of whom were MFO newcomers or returning
after many years.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Anton Gorodetski and Nicolae Strungaru in the “Si-
mons Visiting Professors” program at the MFO.
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Abstracts

On corona limits

Shigeki Akiyama

(joint work with Katsunobu Imai, Hajime Kaneko, Jonathan Caalim)

This talk is based on the preprint [1]. Inspired by the growth rate of crystals, we
introduce an axiomatic approach to define a corona limit as a limit shape of the
successive coronas of a given tiling by suitable normalization.

Assuming its existence, we find that the shape of the corona limit does not
depend on the initial patch, and forms a star shape. In the case that directional
speeds are uniform, the shape becomes convex and centrally symmetric. Further,
if the underlining tiling is periodic, the limit shape is a convex, centrally symmetric
polyhedron. (This last result is a rediscovery of a result by V.G. Zhuravlev.)

Many interesting open problems remain around non-periodic tilings. See [2] as
well.

References

[1] S Akiyama, J. Caalim, K. Imai, H. Kaneko, On corona limits: periodic case, preprint,
arXiv:1707.02373.

[2] S. Akiyama, K. Imai, The corona limit of Penrose tilings is a regular decagon, in Cellu-
lar Automata and Discrete Complex Systems, eds. M. Cook, T. Neary, Lecture Notes in
Computer Science, vol. 9664, Springer, Cham (2016), pp. 35–48.

Topological properties of some quasi-periodic tilings — From
structure to spectrum

Eric Akkermans

(joint work with Yaroslav Don, Eli Levy, Dor Gitelman)

The problem addressed is motivated by studies relevant to physical properties
of some one-dimensional quasi-periodic tilings and quasicrystals. The meaning
of structural and spectral properties is defined below. For the case of periodic
tilings (crystals), these two types of properties are related. This constitutes the
basis of the Bloch theorem (whose d = 1 version is sometimes referred to as
Floquet theory). For quasi-periodic tilings, no such relation between structural
and spectral data exists as yet. Our purpose is to present some preliminary results
which may prove relevant towards such a relation.

We consider a two-letter alphabet {a, b}. An aperiodic tiling can be obtained
from different building rules. The first we consider is the substitution rule de-
fined by its action σ on a word w = l1l2 . . . lk by the concatenation σ(w) =

σ(l1)σ(l2) . . . σ(lk). An occurrence primitive matrix, M =
(

α β
γ δ

)
so that σ(a) =

aαbβ and σ(b) = aγbδ, is associated to σ. It allows to define a sequence of numbers
FN from the recurrence FN+1 = tFN − pFN−1 where t = TrM , p = detM and
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F0,1 = 0, 1. The largest eigenvalue λ1 of M is larger than 1 (Perron–Frobenius)
and we consider substitutions whose second eigenvalue |λ2| < 1 (Pisot property).
For the Fibonacci substitution Mf = ( 1 1

1 0 ) which we shall use as a generic exam-

ple, λ1 = τ = 1+
√
5

2 and FN are the Fibonacci numbers. Another building rule, the
Cut & Project method (hereafter C&P), is equivalent to defining a characteristic
function,

(1) χ(n, φ) = sign
[
cos
(
2π nλ−11 + φ

)
− cos

(
π λ−11

)]
.

The phason parameter φ ∈ [0, 2π] is an extra gauge degree of freedom which fixes
the origin of a given finite word. We consider first the more restrictive case of
quasi-periodic tilings which can be described either by a substitution or by the
characteristic function (C&P). Endowed with this description of a quasi-periodic
tiling, we consider a distribution of identical atoms placed at the vertices xk be-
tween consecutive letters. This defines the atomic density ρ(x) =

∑
k δ(x − xk).

The distances δk = xk+1− xk differ depending on the letters a and b. The diffrac-
tion spectrum associated to this atomic density is obtained from the structure fac-
tor S(ξ) = |g(ξ)|2 where we have defined the Fourier transform g(ξ) =

∑
k e

iξxk .
For C&P tilings, the diffraction spectrum consists of a dense set of Bragg peaks.

We now consider words of finite size FN for large N . Using (1), we obtain
an expression of the atomic density Fourier transform (shifted by a non-relevant
constant term),

(2) g(ξ, φ) =

FN−1∑

n=0

ω−ξnχ(n, φ)

with ω ≡ e
2iπ
FN . For C&P tilings, the corresponding structure factor S(ξ, φ) =

|g(ξ, φ)|2 is φ-independent. This result expresses that the positions of the discrete
diffraction spectrum is independent of the choice of the origin. To prove this
result we consider s0(n) = χ(n, 0) and apply the translation operator T [s0(n)] =
s0(n+1). We then define the FN ×FN matrix Σ0 whose matrix element Σ0(n, l) =
T l[s0(n)] and, more generally, the set of matrices Σr(n, l) = T m(l,r)[s0(n)]. We
then have Σ1(n, l) = χ(n, φl) with m(l, 1) ≡ lF−1N−1 (modFN ). There, φ takes the

discrete set of values φl =
2π
FN
l. This proves the announced result.1

By contrast, the phase Θ(ξ, l) ≡ arg g(ξ, φ) = argωm(l,1)ξ depends on the pha-
son φ. For each discrete diffraction peak ξq = qFN−1 obtained from the structure
factor S(ξq) = |g(ξq, φ)|2, the winding number associated to Θ(ξq, l) is Wξq = q.
This indicates that topological features of C&P quasi-periodic tilings are encoded
in the phase of the Fourier transform of the finite size atomic density.

We then consider Schrödinger operators defined on C&P tilings as defined pre-
viously. Different approaches have been taken, e.g. tight-binding discrete Hamil-
tonians [3, 4, 5]. Here, since we are interested in properties of finite size tilings, we
propose to obtain spectral properties such as density of states or counting function

1A more thorough study of the group structure of the set of FN matrices Σr will be presented
in Ref. [8].
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(integrated density of states) from the scattering operator. To that purpose, we
consider embedding a tiling of finite size FN between two semi-infinite identical
and periodic tilings built out of either the letter a or b with appropriate boundary
conditions. These semi-infinite leads support incoming and outgoing plane wave
solutions (see [1] for details). In this setup, the unitary scattering operator which
relates incoming to outgoing waves is a 2× 2 matrix,

(
oL
oR

)
=

(−→r t
t ←−r

)(
iL
iR

)
≡ SFN

(φ)

(
iL
iR

)
(3)

where the transmission and reflection complex amplitudes are given by t≡|t|ei θt ,
−→r ≡rei

−→
θ and←−r ≡rei

←−
θ with the arrow convention indicating incoming waves from

left or right. SFN
(φ) is diagonalizable under the form diag(eiΦ1(k,φ), eiΦ2(k,φ)). We

define δ(k)≡(Φ1+Φ2)/2 known as the total phase shift. It allows to obtain a simple
and useful relation for the density of states ρ(k), known as the Krein–Schwinger
formula, namely

(4) ρ(k)− ρ0(k) =
1

2π
Im

∂

∂k
ln detS(k) = 1

π

dδ(k)

dk
,

where ρ0(k) is the density of states of the free system, i.e. without the scattering
structure [1]. Using the unitarity condition, −→r ∗ t + ←−r t∗ = 0, we obtain the
additional expressions detS = e2iδ = −t/t∗ = ←−r/−→r ∗ and δ(k) = θt(k)+π/2 =
1
2

(−→
θ +

←−
θ
)
. The notations −→r and ←−r represent the two possible transmission

channels which are identical except for the phases of the reflected amplitudes.
Therefore, δ(k) may be expressed using either the transmitted phase shift or the
sum of the two possible reflected phase shifts.

The total phase shift allows to characterize the zero measure Cantor set spec-
trum of Schrödinger operators defined on C&P quasi-periodic tilings (e.g., gap
labelling theorem). In addition to numerous theoretical and numerical studies
[3, 4, 5], this Cantor spectrum has also been observed experimentally [6]. It has
been shown that δ(k) is independent of the phason φ just like the structure factor
S(ξ) = |g(ξ, φ)|2 previously discussed.

A second scattering phase Λ(k, φ) ≡ (Φ2 − Φ1)/2, complementary to δ(k) is
available from the diagonal form of SFN

(φ). It carries additional information re-
garding the structure, unavailable through δ(k). A useful rewriting of this second

phase is Θcav(k, φ) = 2δ(k) + α(φ) with α ≡ ←−θ −−→θ which conveniently disen-
tangles the k and φ dependencies [2, 7]. The winding properties of the phase
Θcav(k, φ) for values of k in spectral gaps are identical to those obtained for the
phase Θ(ξ, l) ≡ arg g(ξ, φ) in the diffraction spectrum of the finite size atomic
density [8]. These identical behaviours have been observed experimentally [9, 10].
This relation between topological features in the diffraction and Schrödinger spec-
tra constitutes a step towards a Bloch theorem for C&P and for certain substitution
families of quasi-periodic tilings.
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Spectral stability of Schrödinger operators in the Hausdorff metric

Siegfried Beckus

(joint work with Jean Bellissard, Horia Cornean, Giuseppe de Nittis, Felix
Pogorzelski)

In this talk, recent developments and results are discussed that are based on vari-
ous collaborations [1, 2, 3, 4, 5]. Within this research project, we seek to connect
dynamical and spectral properties of self-adjoint operators. In the centre of our
considerations are Schrödinger operators arising in quantum mechanical models of
non-periodic solids. Up to now, the approach by transfer matrices and trace maps
led to amazing results showing that new phenomena appear in physical systems.
Unfortunately, this techniques do not extend to higher dimensional systems ex-
cept if the operators decompose to one-dimensional systems [7, 8]. Inspired by the
techniques developed so far, an appropriate approximation theory would be help-
ful for numerical and analytic results. Such a theory is established in [1, 2, 3, 4, 5].
During the talk we discuss this approach while a special focus is put on the quanti-
tative estimates achieved in [3]. For simplicity of the talk, we restrict ourselves to
the simpler case of symbolic dynamical systems over Zd while most of the results
hold in much larger generality.
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Given a self-adjoint bounded operatorH , its spectrum σ(H) is a compact subset
of R. The space K(R) of compact subsets of R is naturally equipped with the
Hausdorff metric dH induced by the Euclidean metric. In [2], a family of self-
adjoint bounded operators (Ht)t∈T is studied indexed by a topological (metric)
space T . There the (Hölder-)continuity of the map t 7→ σ(Ht) is characterized
by the (Hölder-)continuity of suitable norms of the operators. This approach is
used to show the convergence of the spectra if the underlying dynamical systems
converge which is described next.

For a finite set A, we restrict our considerations to the symbolic dynamical sys-

tem (AZd

,Zd). Specifically, the configuration space AZd

:=
∏

n∈Zd A is equipped

with the product topology. Furthermore, Zd acts continuously by translation, i.e.,

αn(w) := w(· − n) for n ∈ Zd and w ∈ AZd

. A family of Schrödinger operators

Hw : ℓ2(Zd)→ ℓ2(Zd), w ∈ AZ
d

, is defined by

Hw :=

(∑

h∈R
Mqh,w Uh + U−h Mqh,w

)
+Mp,w

where R ⊆ Zd is finite and for f : AZd → C,

Uhu(n) := u(n− h) , Mf,wu(n) := f
(
α−n(w)

)
u(n) , u ∈ ℓ2(Zd) .

If R generates Zd, the sum over R is the Laplacian on the Cayley graph of Zd with
generatorsR. The corresponding involved multiplication operators are interpreted
as weights on the edges. The multiplication operator Mp,w by the real valued
function p ◦ α−•(w) : Zd → R is called the potential term. The multiplication
operators by qh ◦α−•(w) : Zd → C and p◦α−•(w) : Zd → R should reflect the local
structure of the configuration w at the corresponding position in Zd. In light of

this, the functions qh : AZd → C and p : AZd → R are assumed to be continuous.
Motivated by the elaborations for one-dimensional systems, periodic approxi-

mations are the most promising so far in order to deal with Schrödinger operators
Hw where w represents a quasicrystal. This is based on the fact that the spectral
properties can be analyzed by the Floquet–Bloch theory and, from experience,
periodic approximations admit the best convergence rates. Hence, we address the
question which notion of convergence of periodic systems (wn) to w implies the
convergence of suitably many spectral properties of the associated Schrödinger
operators. The elaborations [1, 2, 3, 4, 5] show that the Chabauty–Fell topology
[6, 9] on dynamical subsystems encodes several spectral properties. More precisely,
the compact metrizable space of dynamical subsystems

I :=
{
Ω ⊆ AZd

closed, invariant
}
⊆ K

(
AZd)

equipped with the Chabauty–Fell topology is studied. A metric on I is given by
the Hausdorff metric dAH induced by the metric

d : AZd ×AZd → [0, 1] , d(w,w′) :=
1

sup
{
r ∈ N0 : w|Br

= w′|Br

}
+ 1

on AZ
d

where Br ⊆ Rd is the closed ball with radius r centred at 0.
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In [1, 4], a special focus is put on the convergence of the spectra of the Schrö-
dinger operators. More precisely, the following equivalence is shown

Orb(wn)→ Orb(w) in I ⇐⇒ σ(Hwn
)→ σ(Hw) in K(R) for all R ⊆ Zd

finite and all continuous p and q

where Orb(w) := {αn(w) : n ∈ Zd} is the orbit closure in the product topology.
The hard direction “⇒” relies on the construction of a continuous field of C∗-
algebras by gluing together the dynamical systems. The fruitful outcome of this
project is based on the embedding of the dynamics in the Chabauty–Fell topology
defined on I. This strategy works out in the generality of topological groupoids
as shown in [4]. Hence, an analogous result holds for R infinite with suitable
decay assumptions on the off-diagonal terms, general dynamical systems (X,G)
and Schrödinger operators associated with Delone sets. The only restriction is a
suitable amenable assumption on the underlying structure. Thus, our approach
opens the possibility to handle very interesting examples such as the Penrose tiling.

As discussed before, we focus on the existence and construction of periodic
approximations for quasicrystals. The existence and construction of periodic ap-
proximations is solved for 1-dimensional systems [1, 4]. In higher dimensions, local
symmetries of substitutional systems lead to a specific construction of periodic ap-
proximations covering known results such as for the Fibonacci sequence but also
for higher dimensional systems like the Table tiling [1]. Furthermore, first elabo-
rations [5] show that cut-and-project sets in the Euclidean setting admit suitable
periodic approximations for measured quantities.

In a recent project [5], we analyze the behaviour of measures associated with
Delone dynamical systems in the Chabauty–Fell topology within I. This approach
is valid for Delone dynamical systems in general locally compact second countable
Hausdorff groups. It turns out that the measures converge if the underlying De-
lone dynamical systems converge in I and the limit object is uniquely ergodic.
More precisely, the density of states measure and the autocorrelation measure is
considered. As application, cut-and-project sets are studied by approximating
the corresponding lattice and the window function by continuous window func-
tions. It is worth mentioning that small changes on the lattice provide periodic
approximations in the Euclidean setting which makes this approach very interest-
ing. Continuous window functions need to be considered as the cutting process
is highly non-continuous. It is left for further studies if the approximation of the
window function also leads to the convergence of the related spectra.

As discussed before, a C∗-algebraic approach is used in [1, 4] to show the conver-
gence of the spectra. In the recent work [3], a different proof is provided without
this machinery for Schrödinger operators on lattices in Rd admitting strongly pat-
tern equivariant potentials qh and p. More precisely, the existence of a constant
C > 0 (depending on the dimension) is proven such that

dH
(
σ(Hw), σ(Hw′)

)
≤ C · ‖H‖α · dAH

(
Orb(w),Orb(w′)

)α
, w, w′ ∈ AZ

d

.

Here ‖H‖α denotes the Schur α-norm where α ∈ [0, 1] is chosen such that ‖H‖α is
finite. The Schur α-norm measures the polynomial decay of the off-diagonal terms
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of the Schrödinger operator. Thus, ‖H‖1 is finite wheneverR is finite implying the
Lipschitz continuity of the spectra. The proof is based on a suitable localization
of the operator via a quadratic partition of Rd. With this at hand, the main task
is to estimate the commutators with such a localization which is discussed during
the talk.
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Orbit equivalence, dimension groups and eigenvalues

Maŕıa Isabel Cortez, Fabien Durand

(joint work with Samuel Petite)

In a series of papers [3, 1, 2, 6, 5] with X. Bressaud, A. Frank, B. Host, A. Maass
and S. Petite we studied continuous and non-continuous eigenvalues of minimal
Cantor systems. Among other questions, we were looking for (computable) neces-
sary and sufficient conditions for eigenvalues to be continuous or non-continuous.
This was achieved for the continuous eigenvalues in [5].

With S. Petite we investigated the restrictions induced on the groups of eigen-
values that can be realized within a given strong orbit equivalence class. For a
minimal Cantor system (X,T ), let E(X,T ) be the set of real numbers α such that
λ = exp(2iπα) is a continuous eigenvalue (that is, having a continuous eigenfunc-
tion f : f ◦ T = λf).

We know from [9] that strong orbit equivalent minimal Cantor systems share
the same subgroup of continuous eigenvalues that are roots of unity. It is no longer
true for the orbit equivalence as shown again in [9]. Indeed, Ormes proved that in
a prescribed orbit equivalence class it is possible to realize any countable subgroup
of the circle as a group of measurable eigenvalues.
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It happens that a first restriction has been shown in [8]: the additive group
of eigenvalues, E(X,T ), of a minimal Cantor system (X,T ), is a subgroup of the
intersection of all the images of the dimension group by its traces. Dynamically
speaking, it is a subgroup of I(X,T ) = ∩µ∈M(X,T )

{∫
fdµ|f ∈ C(X,Z)

}
, where

M(X,T ) is the set of T -invariant probability measures of (X,T ) and C(X,Z) is
the set of continuous functions from X to Z. A different proof of this observation
can be found in [3] but it was not pointed out.

In [4] we obtained the following additional constraint.

Theorem. Suppose that (X,T ) is a minimal Cantor system such that the infin-
itesimal subgroup of the dimension group K0(X,T ) is trivial. Then the quotient
group I(X,T )/E(X,T ) is torsion free.

In [7] the hypotheses were relaxed removing the one on the infinitesimal sub-
group.

To illustrate this result, take K0(X,T ) = Z+ αZ = I(X,T ), with α irrational.
This is the case for a Sturmian subshift. Then within the strong orbit equivalence
class of (X,T ) the only groups of continuous eigenvalues that can be realized are
Z, which will provide topologically weakly mixing minimal Cantor systems, and
Z + αZ. Moreover, both can be realized, in the first case using results in [9] and
in the second case it is realized by a Sturmian subshift.

Apart from such particular examples no general realization results have been
obtained so far.
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Spectral calculations for two-dimensional quasicrystals

Mark Embree

(joint work with David Damanik, Jake Fillman, Anton Gorodetski, May Mei,
Charles Puelz)

Mathematical models of one-dimensional quasicrystals, most notably the Fibonacci
Hamiltonian, have reached an advanced state of refinement [2]. In contrast, our
understanding of two dimensional quasicrystal models remains at a nascent stage.
This talk described some analytical and computational results related to two-
dimensional models.

Fast spectral computation for 1d periodic models

The simplest two-dimensional models are constructed by combining one-dimen-
sional quasiperiodic models on a square lattice. The spectrum of such a square
model then equals the set sum of the corresponding one-dimensional spectra.
While these one-dimensional spectra are Cantor sets, the same need not be true for
the square model. We presented numerical calculations from [1] that estimate the
structure of this spectrum as a function of the coupling constant (i.e., the weight
of the potential) for the Fibonacci, Thue–Morse, and period doubling models.

In numerous circumstances, periodic approximations of one-dimensional quasi-
periodic potentials lead to covers (upper bounds) on the spectrum of the quasiperi-
odic model; long periods yield more accurate estimates. Floquet–Bloch theory
shows that the spectrum of a one-dimensional model of period p comprises the
union of p real intervals that are traced out by the eigenvalues of a parameterized
p× p matrix Jp(θ); for p = 7,

Jp(θ) =




v1 1 e−iθ

1 v2 1
1 v3 1

1 v4 1
1 v5 1

1 v6 1
eiθ 1 v7




,

and the spectrum of the one dimensional model is ∪θ∈[0,π]σ(Jp(θ)). (The vj values
specify the potential; unspecified entries are zero.) The ends of these intervals are
given by σ(Jp(0)) and σ(Jp(π)), so one can determine the spectrum of a periodic
approximation by computing all the eigenvalues of two p× p symmetric matrices.
When p is large, the corner entries e±iθ cause the conventional QR eigenvalue
algorithm to use O(p2) storage and O(p3) computation time. We describe a simple
trick from [6] that relabels the p sites in the periodic potential using a breadth-first
ordering, effectively performing an orthogonal similarity transformation (gauge
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transformation) to obtain the pentadiagonal matrix (illustrated for p = 7)

PJp(θ)P
∗ =




v1 e−iθ 1
eiθ v7 0 1
1 0 v2 0 1

1 0 v6 0 1
1 0 v3 0 1

1 0 v5 0
1 0 v4




.

This transformed matrix has fixed bandwidth independent of p, so standard algo-
rithms from numerical linear algebra deliver all the eigenvalues of this matrix with
O(p) storage and O(p2) computation. This improvement becomes particularly
crucial because large p values often lead to numerically inaccurate eigenvalues (we
are seeking good covers of Cantor sets, after all), necessitating the use of expensive
extended precision arithmetic. We illustrated this algorithm with results from [6]
showing the accuracy of double and quadruple precision computations, along with
estimates of the Hausdorff dimension of the Fibonacci model and gap scaling for
the Thue–Morse potential.

Gap openings in 2d periodic models

In the period-p models described above, one can always construct a potential,
arbitrarily small in norm, that has a spectrum with p − 1 distinct gaps. Is the
same true of (p, q)-periodic models on a square lattice?

We described a recent result from [3] that shows that this is not the case,
extending earlier work of Krüger [5]. Specifically, if both p and q are even, an
arbitrarily small (p, q)-periodic model can open a gap at E = 0; with this exception,
arbitrarily small (p, q)-periodic potentials cannot open any gaps. The proof of this
fact follows from eigenvalue perturbation theory for symmetric matrices.

Eigenvalues of the graph Laplacian for the Penrose tiling

Arguably the most intriguing two-dimensional quasicrystal model comes from the
Laplacian on a graph generated from the Penrose tiling. We closed the talk by
presenting numerical results (with Fillman and Mei) based on Robinson’s stone
inflation rule using triangular tiles. We illustrated modes with local support oc-
curring at E = 2 and E = 4 (as observed by Kohmoto and Sutherland [4]), which
lead to a jump in the integrated density of states at those energies; we showed
other intriguing modal structures for this model that merit further investigation.
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Spectral properties of continuum quasicrystal models

Jake Fillman

(joint work with David Damanik, Mark Embree, Anton Gorodetski, May Mei,
Yuki Takahashi, William Yessen)

We consider continuum Schrödinger operators acting in L2(R) via

LV u = −u′′ + V u,

where the potential V : R→ R models a quasicrystal; for an archetypal example,
let

(1) Vω(x) =
∑

n∈Z

(
(1− ωn)f0(x− n) + ωnf1(x− n)

)
,

where f0, f1 ∈ L2[0, 1) and ω denotes the Fibonacci sequence

(2) ωn = χ[1−α)(nα mod 1), n ∈ Z, α =

√
5− 1

2
.

These operators are interesting because their spectra are globally zero-measure
Cantor sets [4]; see also [12] for the case of measure-valued potentials. In fact, this
holds true for any aperiodic potential of the type (1), as long as the sequence ω is
generated by a minimal subshift satisfying Boshernitzan’s criterion (cf. [1, 2, 3]). It
is then of interest to assess more delicate fractal properties, such as the Hausdorff
dimension. For general potentials, this is currently out of reach, but these questions
can be studied in the Fibonacci case using the trace map and tools from hyperbolic
dynamics. In particular, for Vω and ω as in Eqs. (1)–(2), one has

lim
K→∞

inf
E∈σ(LVω )∩[K,∞)

dimloc
H

(
σ(LVω

);E
)
= 1;

that is, the local Hausdorff dimension of the spectrum tends to one in the high-
energy region [4, 7]. This holds for any choice of f0 and f1 and hence this property
is independent of the shape of the bump functions one uses to pattern the Fibonacci
potential.

Turning to higher dimensions, one may study separable Schrödinger operators,
i.e., operators of the form

[
L
(2)
V1,V2

u
]
(x, y) = −∇2u(x, y) + V1(x)u(x, y) + V2(y)u(x, y),
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where the potential is the sum of two pieces: one piece depends only on x, and the
other depends only on y. The spectra of such operators are amenable to analysis,
as they are simply the Minkowski sum of the 1D spectra, that is,

σ
(
L
(2)
V1,V2

)
= σ(LV1

) + σ(LV2
) =

{
a1 + a2 : aj ∈ σ(LVj

)
}
.

However, even these ostensibly simple models touch on deep questions in geometric
measure theory. In particular, the Minkowski sum of two zero-measure Cantor
sets can be a Cantor set, an interval, a finite union of intervals, or something

even more exotic. There are parameter ranges for which σ
(
L
(2)
λ1Vω,λ2Vω

)
contains

both intervals and Cantor sets [8], where Vω is defined by Eqs. (1)–(2). However,
there is reason to suspect more is true. Motivated in part by the results of [5]
for separable discrete models built around the Fibonacci sequence, we pose the
following question:

Question. If Vω is defined by Eqs. (1)– (2), is it true that σ
(
L
(2)
λ1Vω ,λ2Vω

)
contains

a half-line for every choice of λ1, λ2 > 0?

This question is also motivated by and connected with the Bethe–Sommerfeld
conjecture for periodic Schrödinger operators, which inspired substantial contri-
butions from many authors, including (but certainly not limited to) [10, 11, 14,
15, 16, 17, 18], and culminating in the paper of Parnovskii [13]. On that note, we
conclude with a discussion of the discrete Bethe–Sommerfeld conjecture, proved in
dimension 2 by Embree–Fillman [6] and in higher dimensions by Han–Jitomirskaya
[9]. The spectrum of a 2D periodic discrete Schrödinger operator with a suffi-
ciently small potential consists of either one or two intervals, and is guaranteed
to be a single interval as long as at least one period is odd. Using the simple ℓ∞

perturbation theory, this immediately implies that a large class of limit-periodic
Schrödinger operators in Z2 have spectra with one or two connected components.
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Weak forms of equicontinuity

Felipe Garćıa-Ramos

In this report we will discuss the relationship between the regularity of minimal
topological dynamical systems, in terms of forms of equicontinuity, and the regu-
larity of topological and measure theoretic factors to equicontinuous sytems. This
will provide a hierarchy of non-chaotic dynamical systems.

We say (X,T ) is topological dynamical system (TDS), if X is a compact metric
space (with metric d) and T : X → X is continuous. We say (X,T, µ) is a measure
preserving topological dynamical system (MP-TDS), if (X,T ) is a TDS and µ is a
T -invariant probability measure. We say (X,T ) and (X ′, T ′) are conjugate if there
exists a continuous bijective function f : X → X ′ such that T ′ ◦f = T ◦f . We say
(X,T, µ) and (X ′, T ′, µ′) are isomorphic if there exists a bi-measurable invertible
function f : X → X ′ such that f and f−1 push the measures and T ′ ◦ f = T ◦ f .

There are some non-symmetric notions of similarity that use both the topology
and the measure.

We say (X,T, µ) is an isomorphic extension of (X ′, T ′, µ′) if they are isomorphic
but we also require f to be continuous and surjective.

We say (X,T, µ) is a regular isomorphic extension of (X ′, T ′, µ′) if there exists
a surjective continuous function f : X → X ′ such that T ′ ◦ f = T ◦ f and
µ

′{
x

′ ∈ X ′ : {f−1(x′)} is a singleton
}
= 1.

Note that for a pair of MP-TDSs, conjugacy ⇒ regular isomorphic extension
⇒ isomorphic extension ⇒ isomorphism.

A TDS is equicontinuous if the family {T i}i∈N is equicontinuous or, equivalently,
if for every ε > 0 there exists δ > 0 such that for every open set with diam(U) ≤ ε
then diam(T iU) ≤ δ for all i ∈ N (where diam(U) denotes the diameter of the
set).
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Classical equicontinuity is a very strong property and it is not very useful for
studying subshifts or Delone systems. Every equicontinuous subshift or Delone
system is periodic [2].

A weaker form of equicontinuity was introduced by Fomin [4].

Definition 1. We say a TDS is mean equicontinuous if for every ε > 0 there
exists δ > 0 such that if d(x, y) ≤ δ then

lim sup
N→∞

1

N

N∑

i=1

d(T ix, T iy) ≤ ε.

Every equicontinuous TDS is mean equicontinuous.
Given the average nature of the definition one might expect that this topological

property is strongly related to ergodic properties. Oxtoby showed that every
minimal mean equicontinuous system is uniquely ergodic [14, 1]. It was conjectured
that this measure must have discrete spectrum [15] (see definition below). This
question was answered independently in [13] and in [5].

Theorem 1 ([3, 13]). A minimal TDS (X,T ) is mean equicontinuous if and only
if there exists an equicontinuous TDS (X ′, T ′) such that (X,T, µ) is an isomorphic
extension of (X ′, T ′, µ′) (where µ and µ′ are the respective invariant measures).

We say a TDS is BD-mean equicontinuous if for every ε > 0 there exists δ > 0
such that for every open set with diam(U) ≤ δ

lim sup
N−M→∞

1

N −M

N∑

i=M+1

diam(T iU) ≤ ε.

Theorem 2 ([5, 6]). A minimal TDS (X,T ) is BD-mean equicontinuous if and
only if there exists an equicontinuous TDS (X ′, T ′) such that (X,T, µ) is a regular
isomorphic extension of (X ′, T ′, µ′) (where µ and µ′ are the respective invariant
measures).

It is not hard to show that a TDS is BD-mean equicontinuous if and only if for
every ε > 0 and x ∈ X there exists δ > 0 such that

BD
{
i ∈ N : diam(T iBδ(x)) > ε

}
< ε,

where Bδ(x) is the δ-neighbourhood of x, and BD denotes the upper Banach
density.

Another form of order is zero topological sequence entropy, also known as null
systems. For definition and properties see [12, 10].

Theorem 3 ([5, 6]). Every minimal null TDS is BD-mean equicontinuous.

Definition 2. Let (X,T ) be a TDS and µ an invariant Borel probability measure.
We say (X,T ) is µ-mean equicontinuous if for every τ > 0 there exists a compact
set M ⊂ X with µ(M) ≥ 1− τ , such that for every ε > 0 there exists δ > 0 such
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that whenever x, y ∈M and d(x, y) ≤ δ then

lim sup
N→∞

1

N

N∑

i=1

d(T ix, T iy) ≤ ε.

Halmos and von Neumann showed that an ergodic dynamical system has dis-
crete spectrum if and only if it is isomorphic to a minimal equicontinuous TDS
(respective to its invariant measure) [11].

Theorem 4. Let (X,T ) be a TDS and µ an invariant ergodic probability measure.
Then (X,T, µ) is isomorphic to a minimal equicontinuous TDS if and only if
(X,T ) is µ-mean equicontinuous.

Note that uniquely ergodic topologically weak mixing systems may have discrete
spectrum. These systems are never mean equicontinuous [7].

Let (X,T ) be a TDS µ a Borel probability measure and f ∈ L2(X,µ). We say
(X,T ) is µ-f -mean equicontinuous if for every τ > 0 there exists a compact set
M ⊂ X with µ(M) ≥ 1− τ such that for every ε > 0 there exists δ > 0 such that
whenever x, y ∈M and d(x, y) ≤ δ then

lim sup
N→∞

1

N

N∑

i=1

∣∣f(T ix)− f(T iy)
∣∣ ≤ ε.

Theorem 5 ([8]). Let (X,T ) be a TDS, µ an invariant ergodic probability measure
and f ∈ L2(X,µ). Then f is almost periodic if and only if (X,T ) is µ-f -mean
equicontinuous.

We have the following hierarchy for minimal uniquely ergodic systems (each
implication is strict): equicontinuous⇒ null⇒ BD-mean equicontinuous⇒ mean
equicontinuous ⇒ µ-mean equicontinuous ⇒ µ-f -mean equicontinuous (for some
but not every f ∈ L2).
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Stealthy hyperuniform processes

Subhro Ghosh

(joint work with Joel L. Lebowitz)

In recent years, a special class of hyperuniform particle systems, known as stealthy
hyperuniform (henceforth abbreviated as SH) systems, have attracted considerable
attention [14, 15, 16, 17, 18]. These systems are characterized by the structure
function S(k) vanishing in a neighbourhood of k = 0. The quantity S(k) is also
referred to as the Bartlett spectrum. A natural generalization of SH point processes
is to consider point processes, or random fields, with a gap in the spectrum on an
open set U which may not include the origin. We shall denote these processes as
Generalized Stealthy (henceforth abbreviated as GS) processes.

The nomenclature “stealthy”, as well as the physical interest in SH particle sys-
tems, stems from the fact that such systems are optically transparent (invisible)
for wave vectors k in the gap U . Numerical and experimental investigations have
been carried out regarding how to construct SH particle systems. These systems
cannot be equilibrium systems, with tempered potentials, at finite temperatures.
They may, however, be ground states of such systems, e.g. the periodic (disor-
dered?) zero temperature states of classical systems, or they can be generated
as non-equilibrium states. SH systems are an extension of hyperuniform (super-
homogeneous) particle systems. Hyperuniform systems, which have been studied
extensively both in the physics and the mathematics literature, have reduced fluc-
tuations: the variance of the particle number in a domain D in Rd or Zd grows
slower than the volume of D. The significance of hyperuniform materials, and in
particular SH systems, lies in the fact that they embody properties of both crys-
talline and disordered or random systems (see [9, 10] and the references therein).
For translation invariant systems, an equivalent characterization of hyperunifor-
mity can be obtained by looking at their structure functions. Hyperuniformity
then boils down to the vanishing of the structure function S(k) at k = 0. SH sys-
tems, therefore, involve a specific manner in which this vanishing of the structure
function takes place.
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In the article [18], Zhang, Stillinger and Torquato provide numerical evidence
in support of some remarkable conjectural properties of stealthy hyperuniform
processes, in particular that the hole sizes for stealthy hyperuniform processes
are uniformly bounded. In [10], we carry out a rigorous mathematical analysis of
stealthy hyperuniform processes, and establish the veracity of this conjecture. In
particular, we prove that

Theorem 1. Let Ξ be a stealthy hyperuniform point process. Let B(x; r) be the
ball with centre x and radius r. Then there exists a positive number r0 such that
P
[
|Ξ ∩ B(x; r0)| = 0

]
= 0. Further, the quantity r0, can be chosen to be Cb−1,

where b is the radius of the maximal ball (centred at the origin) that is contained
in the gap of the structure function S, and C is a universal constant.

We also establish an anti-concentration property for particle numbers of stealthy
hyperuniform processes:

Theorem 2. Let Ξ be a stealthy hyperuniform point process on Rd or Zd with
one point intensity ρ and b the radius of the largest ball around the origin (in the
wave space) on which the structure function of Ξ vanishes. There exists numbers
C, c > 0 (independent of all parameters of Ξ) such that, the number of points of
Ξ in any given d-dimensional cube of side-length Cb−1 is a.s. bounded above by
cρb−d.

The fact that holes in SH processes cannot be bigger than a deterministic size
is suggestive of a high degree of crystalline behaviour in these processes. In our
work, we go further, and establish a remarkable maximal rigidity property of these
ensembles. We can, in fact, do this in the setting of GS processes. For a point
process (more generally, a random field or a random measure) Ξ on Rd and a
bounded domain D ⊂ Rd, statistic Ψ defined on Ξ restricted to D is said to be
rigid if Ψ is completely determined by (that is, a deterministic function of) the

process Ξ restricted to D∁. To put things in perspective, a point process having
rigidity is in notable contrast to the Poisson process, where the process inside and
outside ofD are statistically independent. Rigidity phenomena for particle systems
have been investigated quite intensively in the last few years, and have been shown
to appear in many natural models which are, nonetheless, far removed from being
crystalline. Key examples include the Ginibre ensemble, Gaussian zeros, the Dyson
log gas, Coulomb systems and various determinantal processes related to random
matrix theory (see, e.g., [11, 6, 7, 8, 5, 12, 9]).

In [10], we show that GS random measures on Rd or Zd exhibit maximal rigidity:
namely, for any domainD ⊂ Rd, the randommeasure [Ξ]|D∁ determines completely

the measure [Ξ]|D (that is, the latter is a deterministic measurable function of the
former). Stated in formal terms, we prove:

Theorem 3. Let Ξ be a generalized stealthy random measure on Rd or Zd. Then
for any bounded domain D, the random measure [Ξ]|D is almost surely determined
by (i.e., is a measurable function of) the random measure [Ξ]|D∁ .
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We further show that, to have maximal rigidity in the sense discussed above, it
suffices that the structure function vanishes faster than any polynomial at some
point in the wave space. In the 1D discrete setting (i.e. Z-valued processes on Z),
this can also be seen as a consequence of a recent theorem of Borichev, Sodin and
Weiss [4]; in higher dimensions or in the continuum, such a phenomenon seems
novel. The question of inference about a stochastic process from its diffraction
spectrum has a long history in diffraction theory, and we believe the results in the
present article would be of interest to that body of literature. We refer the reader
who is interested in further exploration of this direction to [1, 2, 3]. Note that the
central Bragg peak ρ2δk=0 is not included in S(k).
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The structure of tame minimal dynamical systems for general groups

Eli Glasner

A dynamical version of the Bourgain–Fremlin–Talagrand dichotomy [1] shows that
the enveloping semigroup of a dynamical system is either very large and contains
a topological copy of βN, or it is a “tame” topological space whose topology is de-
termined by the convergence of sequences. In the latter case the dynamical system
is called tame [8, 2]. WAP (weakly almost periodic) as well as HNS (hereditarily
non-sensitive) systems are tame, and among the typical examples of tame systems
one can find many cut and project systems like the classical Sturmian and some
Toeplitz flows, [5].

Minimal tame dynamical systems (X,G) with an Abelian acting group G were
studied by several authors, and it was shown that such systems are almost au-
tomorphic and uniquely ergodic, and that the canonical continuous map from X
onto its largest Kronecker factor is a measure theoretical isomorphism, [6, 7, 3].

What happens when the acting group is not assumed to be commutative, or
even not amenable? Here, one discover completely new phenomena and a wealth
of new examples. The most prominent among them are boundaries of Gromov
hyperbolic groups and linear actions on spheres and projective spaces.

In a recent work [4] I use the structure theory of minimal dynamical systems
to show that, for a general group G, a tame, metric, minimal dynamical system
(X,G) has the following structure:

X̃

π

��

η

��⑦⑦
⑦
⑦
⑦
⑦
⑦
⑦

X∗
θ∗

oo

ι

��

π∗

��

X Z

σ

��

Y Y ∗
θ

oo

Here (i) X̃ is a metric minimal and tame system (ii) η is a strongly proximal
extension, (iii) Y is a strongly proximal system, (iv) π is a point distal and RIM
extension with unique section, (v) θ, θ∗ and ι are almost one-to-one extensions,
and (vi) σ is an isometric extension.

When the map π is also open this diagram reduces to

X̃
η

��⑦⑦
⑦
⑦
⑦
⑦
⑦
⑦

ι

��
π

~~

X Z

σ

��

Y
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In general the presence of the strongly proximal extension η is unavoidable. If
the system (X,G) admits an invariant measure µ then Y is trivial and X = X̃

is an almost automorphic system; i.e. X
ι→ Z, where ι is an almost one-to-one

extension and Z is equicontinuous. Moreover, µ is unique and ι is a measure
theoretical isomorphism ι : (X,µ,G)→ (Z, λ,G), with λ the Haar measure on Z.
Thus, this is always the case when G is amenable.
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[8] A. Köhler, Enveloping semigroups for flows, Proc. Roy. Irish Acad. 95A (1995), 179–191.

Aperiodic Schrödinger operators

Anton Gorodetski

Most of the questions on spectral properties of higher dimensional aperiodic oper-
ators (such as Laplacian on Penrose tilings) are completely open; the only known
results are related to existence of a well defined density of states measure and some
of its properties [10, 11, 12]. On a one dimensional lattice reasonable models of
quasicrystals are substitution sequences (such as Fibonacci, Thue–Morse, period
doubling), and Sturmian sequences. In all these cases the spectrum is known to
be a Cantor set of zero measure for all non-zero values of the coupling constant
[1, 2, 3, 14]. At the same time other characteristics of the spectrum can be very
different. For example, gap sizes asymptotics for small coupling is known for Fi-
bonacci Hamiltonian [6], Thue–Morse [1], and period doubling potentials [2], and
turn out to be model-dependent. As another example, exact large coupling asymp-
totics of the Hausdorff dimension of the spectrum of Fibonacci Hamiltonian are
known [5] — it tends to zero as an inverse of a logarithm of the coupling; at the
same time the Hausdorff dimension of the spectrum in the case of Thue–Morse
potential is uniformly bounded away from zero [13]. The Fibonacci Hamilton-
ian is the most heavily studied since it belongs to both classes — operators with
Sturmian potentials, and those with potential given by a substitution sequence.
The Trace Map approach allowed to provide a very detailed and almost complete
description of the properties of the spectrum, density of states measure, transport
properties etc., see [9] and references therein.
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One of the ways to use the obtained one-dimensional results to gain some in-
tuition on the spectral properties of the higher dimensional aperiodic operators
is via separable potentials. In this case the potential on two (or higher) dimen-
sional lattice is given by the sum of two potentials, each of them depends only
on one of the coordinates. The spectrum of the discrete Schrödinger operator in
this case turns out to be the Minkowski sum of the spectra of the corresponding
one dimensional operators, and the density of states measure is given by convolu-
tion of the corresponding density of states measures. In the case of the Fibonacci
Hamiltonian the spectrum is a dynamically defined Cantor set [9]. Questions on
the structure of sums of dynamically defined Cantor sets appeared before in dy-
namical systems and number theory. Applying some of the existing methods and
using the known results on the spectrum of the Fibonacci Hamiltonian one can
show that the spectrum of the square Fibonacci Hamiltonian is an interval for
small values of the coupling constant, and is a Cantor set of zero measure for the
large coupling [6]. Moreover, typically the density of states is a.c. with respect to
the Lebesgue measure for small couplings [8]. Also, interestingly enough, there is
a regime (open set in the space of couplings) where typically the spectrum of the
square Fibonacci Hamiltonian has positive Lebesgue measure while the density of
states measure is singular [7].

For a detailed recent survey of these and many other results on spectral prop-
erties of aperiodic Schrödinger operators see [4].
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Dynamical encodings of patterns in cut and project sets

Alan Haynes

(joint work with Antoine Julien, Henna Koivusalo, Jens Marklof, Lorenzo Sadun,
James Walton)

The purpose of this talk was to demonstrate how problems about patterns in
cut and project sets can be reformulated in terms of questions about higher rank
linear actions on tori. One goal of the talk was to emphasize the strong connections
between these types of questions and problems in Diophantine approximation.

First we first reviewed classical results of Morse and Hedlund about Sturmian
sequences [7, 8], in which patterns of a given size correspond to regions in the
circle determined by an irrational rotation α (the slope defining the Sturmian
sequence). This point of view leads quickly to detailed knowledge about three
quantities associated to patterns in Sturmian sequences: complexity, frequencies,
and the repetitivity function. Understanding the complexity is a geometric prob-
lem, which corresponds precisely to counting the number of connected components
of the circle, with a finite sub-orbit of 0 under the rotation by α removed. Ques-
tions about frequencies of patterns are answered by understanding volumes of
connected components, which is a simple example of a gaps problem in Diophan-
tine approximation. Questions about repetitivity of patterns are answered by a
detailed analysis of the continued fraction expansion of α.

Sturmian sequences are examples of one-dimensional cut and project sets ob-
tained by projecting from a two-dimensional total space. For more general cut
and project sets, with windows satisfying appropriate regularity conditions (which
was a standing assumption in our talk), we can ask analogous questions about
complexity, frequencies, and repetitivity of patterns. It is not difficult to see that,
as in the case of Sturmian sequences, for k to d cut and project sets there is a
correspondence between patterns of a given size and connected components of the
window, after a sub-orbit of the boundary under the natural Zd-action determined
by the physical space is removed. This idea was used in [6] to satisfactorily un-
derstand complexity of patterns in cut and project sets, as well as how the growth
of the complexity function is related to the cohomology of associated topological
spaces.

Problems about the number of distinct frequencies of patterns of a given size
in cut and project sets are related to higher dimensional gaps problems in Dio-
phantine approximation. Such problems are in general much more difficult than
their one-dimensional counterparts. In [2] we proved that, for any k and d, there
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is a full Hausdorff dimension set of cut and project sets for which, for any r ≥ 1,
the number of distinct frequencies of patterns of size r remains bounded. We
also showed that, for almost every k to d cut and project set (with respect to
Lebesgue measure), for any ǫ > 0, and for all sufficiently large r, the number of
distinct frequencies of patterns of size r is bounded above by (log r)(1+ǫ)(d+1)(k−d).
Furthermore, recent work on higher dimensional Steinhaus problems [5] now also
implies a previously elusive result, that for almost every cut and project set, the
number of distinct frequencies of patterns of size r is not bounded.

Finally, problems about repetitivity of patterns in cut and project sets involve
a careful study of the volumes and shapes of connected components of the regions
in the corresponding dynamical encodings. This type of study has recently been
undertaken in [3], where we gave an explicit characterization of the collection of
all linearly repetitive cut and project sets with cubical windows. Further work
on this problem, including a development of the connections with Diophantine
approximation, discrepancy theory, and the Littlewood conjecture, can be found
in [1] and [4].
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Quasicrystals beyond amenable groups

Tobias Hartnick, Felix Pogorzelski

(joint work with Michael Björklund)

In this talk, we sketched the diffraction theory of model sets in homogeneous spaces
associated with Gelfand pairs (commutative spaces), as developed in [3, 4].

1. Model sets in homogeneous spaces

By a cut-and-project scheme we shall mean a triple (G,H,Γ), where G and H are
locally compact second countable (lcsc) groups and Γ < G×H is a lattice which
projects injectively to G and densely to H . Given such a triple (G,H,Γ) and a
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compact subset W ⊂ H with non-empty interior, we define the associated model
set P0 = P0(G,H,Γ,W ) as

P0 := prG
(
(G×W ) ∩ Γ

)
,

where prG denotes the projection onto the factorG ofG×H . IfK < G is a compact
subgroup, we also refer to the image P of P0 in the homogeneous space X = G/K
as a model set. For G and H Abelian and K trivial, this is the classical cut-
and-project construction as used by Meyer and others. In the talk, we discussed
non-classical examples in Riemannian symmetric spaces, Bruhat–Tits buildings
and nilmanifolds, including both arithmetic and non-arithmetic examples.

In the sequel, we reserve the letter P0 to denote a model set in an lcsc group
G; we will always assume that the corresponding windowW satisfies the following
regularity conditions,

(1) W =W o, |∂W | = 0, StabH(W ) = {e}, ∂W ∩ prH(Γ) = ∅.

On the other hand, we will (at least initially) not assume that Γ is uniform. We
also fix a compact subgroup K < G and denote by P ⊂ X := G/K the image of
P0 under the canonical projection p : G→ X .

Both P0 and P are Delone sets with respect to natural classes of metrics on
G and X , respectively, and both have G-finite local complexity, that is, finitely
many patches up to G-translation. Moreover, P−10 P0 is uniformly discrete, which
can be seen as a long-range order property.

2. The hull of a model set

Given a homogeneous space Z of an lcsc group G, we will denote by C(Z) the
collection of all closed subsets of Z, considered as a compact metrizable space
with respect to the Chabauty–Fell topology, and given a subset Q ⊂ Z, we denote
by

ΩQ :=
{
g.Q : g ∈ G

}
⊆ C(Z)

its hull. Our model sets P0 and P then give rise to topological dynamical systems
G y ΩP0

⊂ C(G) and G y ΩP ⊂ C(X), respectively. If the underlying lattice is
non-uniform, these hulls contain the empty set as a non-trivial fixpoint. We will
thus also consider the punctured hulls Ω×Q := ΩQ \ {∅} for Q ∈ {P0, P}.

A priori, it is not clear whether Ω×P0
or Ω×P admit any G-invariant probabil-

ity measures. To settle this issue, we establish the following generalization of
Schlottmann’s torus periodization map [7]; here, Y := (G×H)/Γ is a parameter
space, which generalizes the classic torus parametrization [1, 7].

Theorem 2.1 (Parametrization map, [3]). Let P0 ⊂ G be a model set as above.

(1) There exists a unique surjective Borel G-map β : Ω×P0
→ Y with closed

graph which maps P0 to the basepoint (e, e)Γ of Y . If Γ is uniform, then
β is continuous.

(2) There exists a subset Y ns ⊂ Y of full Haar measure such that β is one-
to-one over Y ns.



Mathematical Quasicrystals 2811

Explicitly, the set Y ns of non-singular parameters is given by

Y ns :=
{
(g, h)Γ : h−1∂W ∩ πH(Γ) = ∅

}
.

From Theorem 2.1, one deduces the following consequences.

Corollary 2.2 (Unique ergodicity and minimality of the hull, [3]). Let P0 ⊂ G
and P ⊂ X be model sets as above.

(1) The spaces Ω×P0
and Ω×P each admit a unique G-invariant probability mea-

sure.
(2) If Γ is uniform, the dynamical systems G y ΩP0

and G y ΩP are
minimal.

In fact, to establish unique ergodicity of Ω×P , one needs to establish a stronger

property of Ω×P0
called unique stationarity. It then follows that also Ω×P is uniquely

stationary, hence uniquely ergodic.

3. Autocorrelation of model sets

We explained how to associate with our model set P ⊂ X an autocorrelation
measure, which is a Radon measure on the double coset space K\G/K, following
the general approach of Bartlett from the theory of point processes; compare [5].
The main steps of this construction were as follows:

(1) Construct a periodization map

P : Cc(X)→ Cc(Ω
×
P ), Pf(Q) =

∑

x∈Q
f(x).

(2) Form the second correlation measure η
(2)
ν ∈ R(X×X)G of the G-invariant

measure ν on Ω×P by

η(2)ν (f ⊗ g) =
∫

Ω×

P

Pf(Q)Pg(Q) dν(Q)
(
f, g ∈ Cc(X)

)
.

(3) Define the autocorrelation measure ηP ∈ R(K\G/K) as the image of η
(2)
ν

under the canonical isomorphism

R(X ×X)G ∼= R
(
G\(G/K ×G/K)

) ∼= R(K\G/K).

For the so-defined autocorrelation measure, we obtain the following formula.

Theorem 3.1 (Autocorrelation formula, [3]). Let P ⊂ X be a model set as above;
denote by p : G → X the canonical projection and by PΓ : Cc(G ×H) → Cc(Y )
the periodization map along Γ. Then, ηP is uniquely determined by the fact that

ηP (f
∗ ∗ f) =

∥∥PΓ(p
∗f ⊗ χW )

∥∥2
L2(Y )K

(
f ∈ Cc(K\G/K)

)
.

Let us compare our definition of the autocorrelation measure to the more clas-
sical definition of Hof [6], the latter being a mathematical formulation of the
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well-known Patterson function. Given a family of subsets Ft ⊂ X , let us define a
family of Radon measures on K\G/K by

σt(f) :=
1

|Ft|
∑

x∈P∩Ft

∑

y∈P
f(x−1y)

(
f ∈ Cc(K\G/K)

)
.

In the classical Abelian setting, if (Ft) is a van Hove sequence, then it can be
shown (see e.g. [2]) that the autocorrelation measure is given by the formula

(2) ηP (f) = lim
t→∞

σt(f)
(
f ∈ Cc(K\G/K)

)
,

and the classical argument extends to van Hove sequences in arbitrary amenable
groups G. Remarkably, formula (2) holds also in many non-amenable situations,
where Følner sequences, let alone van Hove sequences, do not exist. For example,
if X is a Riemannian symmetric space, then (2) holds for Riemannian balls Ft.
However, the situation is far from simple in general. For example, if X is a tree,
then (2) holds along balls of even radius, but in general not along arbitrary balls.
Thus, while the dynamical approach to autocorrelation always works in a uniform
way, the approach through Hof approximation depends very much on the geometry
of the spaces in question.

4. Towards diffraction

While autocorrelation can be defined for Delone sets of finite local complexity in
arbitrary homogeneous spaces of the form X = G/K, the definition of diffraction
requires a Fourier transform on the double coset space K\G/K, hence we need to
make additional assumptions on the pair (G,K) from now on.

Definition 4.1. We say that (G,K) is a Gelfand pair and that X = G/K is a
commutative space if the Hecke (convolution) algebra H(G,K) = Cc(K\G/K) is
commutative.

This assumption is satisfied in all examples considered above, in particular
hyperbolic spaces, Riemannian symmetric spaces, and for nilmanifold pairs. If
(G,K) is a Gelfand pair, the Banach algebra L1(K \G/K) is commutative and
its Gelfand spectrum can be identified with the space Sb(G,K) of all bounded
spherical functions; here, a continuous function ω : G → C is called spherical if
the associated measure mω ∈ R(G) as given by

mω(f) :=

∫

G

f(x)ω(x−1) dx
(
f ∈ Cc(G)

)

is bi-K-invariant.
The spherical Fourier transform of the pair (G,K) is the restriction of the

Gelfand transform of L1(K \ G/K) to the subspace S+(G,K) ⊆ Sb(G,K) of
positive-definite spherical functions, i.e. for f ∈ H(G,K) and ω ∈ S+(G,K) we
define

f̂(ω) := mω(f).
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Similarly, if η is a positive-definite Radon measure onK\G/K, its spherical Fourier
transform η̂ is determined by the fact that

η
(
f∗ ∗ f

)
= η̂

(
|f̂ |2

)
,

(
f ∈ H(G,K)

)
.

Since the autocorrelation measure ηP is positive-definite, we may thus define the
spherical diffraction measure of P as

η̂P ∈ R
(
S+(G,K)

)
.

Theorem 4.2 (Pure point diffraction, [4]). If the lattice Γ is uniform, the spherical
diffraction measure η̂P is pure point, i.e., there is a countable set S ⊂ S+(G,K)
and a function c : S → R>0 such that

η̂P =
∑

ω∈S
c(ω) δω.

In fact, in the situation of the theorem, we can determine S and the function c
explicitly. Indeed, the set S is given by the spherical automorphic spectrum of Γ,
that is, by the collection of all ω ∈ S+(G,K) for which the eigenspace

L2(Y )Kω :=
{
g ∈ L2(Y )K : ∀ f ∈ H(G,K) : f ∗ g = f̂(ω) g

}

is non-zero. The coefficient function c can be computed as the squared L2-norm
of a certain integral transform of the characteristic function χW . In the Abelian
case, this transform is simply a normalized Fourier transform on H . In the general
case, the desired integral transform is obtained as a shadow of the spherical Fourier
transform of the pair (G,K) (in the spirit of a Hecke correspondence) and hence
is referred to as the shadow transform; see [4] for details.
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Topological invariants for tilings

John Hunton

This talk gave a brief — and personal — overview of some of the main themes
in the recent and current study of aperiodic tilings by methods from topology. It
was clearly not possible to cover everything, and similarly it is not possible to give
a comprehensive bibliography in the space available here, even for the subjects
touched upon. The interested reader should explore the topics further through
the selected papers mentioned below and the further work they cite.

We restrict ourselves mainly to tilings of d-dimensional Euclidean space which
are repetitive, aperiodic and of translationally finite local complexity (FLC). For
such a tiling T ⊂ Rd, the key to the topological approach is the space Ω = ΩT ,
variously known as the tiling space, or continuous hull of T , the completion of the
set of translates of T under the tiling metric. Under the assumptions above Ω
naturally carries a minimal action of the translation group Rd, and in many of the
most popular classes of tilings, a unique ergodic probability measure.

The structure of Ω is fundamental to this work. Most lines of approach start
from one or other of the observations that Ω can be (a) described (up to shape
equivalence – see later) as an inverse limit of convenient finite CW complexes
(approximants), or (b) given (up to homeomorphism) the structure of a fibre
bundle over a d-torus with fibre a Cantor set [24]. The space may also be described
as the classifying space of the holonomy groupoid associated with Ω.

For description (a), there are a number of useful models. For primitive substi-
tution tilings, the first constructions were those of [1, 14]. The desire to produce
smaller models for the approximants led to a number of developments, including
[2, 3] which implicitly involved working in the shape category, a notion formally
explored in [6]. Recent work has explored further the use of minimal homotopy
models for the approximants. For general tilings, inverse limit descriptions exist
via various models [1, 3, 10], but without specific structure these are principally of
theoretical use. Similarly, the Cantor bundle structure is computationally practi-
cal only in the case of a tangible description of the holonomy action of Zd on the
Cantor fibre; this can be given explicitly in the case of cut and project tilings [9].

Various results have been established exploring the relationships between the
spaces ΩT and ΩS and the possible relationships of the underlying tilings T and
S. Notable work in this thread includes [8] on deformations of tilings, and most
recently [12] characterising homeomorphisms of tiling spaces.

Topological invariants for tilings typically study ΩT , with or without additional
structure, through the application of methods from algebraic topology. Typical
applications to date have included characterization results, identification of geo-
metric properties of T , issues related to questions about pure point diffraction (for
example work related to the Pisot substitution conjecture, see [16, Ch. 2] for an
overview), labelling of gaps in the spectrum of the Schrödinger operator associated
to T [4, 5, 13], and results on the complexity of T , [11].
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What algebro-topological tools should be employed? Homotopy groups are rich
but hard to compute. For tiling spaces, the relevant variant of these are the shape
groups πsh

∗ (−). The case of d = 1 was studied in [6] where the fundamental
shape group πsh

1 (Ω) was shown to collect information relevant to embedding one-
dimensional tiling spaces in surfaces: the non-Abelian nature of π1 registered
aspects not picked up by commutative invariants such as cohomology or K-theory.
This is taken further in recent work of Gähler who uses the representation variety of
πsh
1 (Ω) (more readily computable than πsh

1 (Ω) itself) in his classification of certain
classes of one-dimensional substitutions.

Cohomology is a long standing tool used for tiling spaces, but there are several
variants in common use; we mention just three. Čech cohomology was the first,
and perhaps most natural choice from its behaviour on inverse limits (in which it
differs from singular or simplicial cohomology). The models [1, 2] for substitutions
mentioned above make this is a computable and well understood invariant for such
tilings, at least in low dimensions [23]. Recent work has explored more general
situations, such as mixed substitutions [19, 21]. Cohomology gives some clear
characterizations: for example, H∗(Ω;Q) is finite rank for an FLC substitution,
but infinite for a generic cut and project tiling; the first cohomology H1(ΩT ,R

d)
counts degrees of freedom for deformations of T , and so on.

Pattern equivariant cohomology [15, 22] has proved a useful alternative ap-
proach, yielding the same algebraic invariant as the Čech theory, but in a way
that elements can be realized in terms of geometric patches of T . A homological
variant [25] shows that tiling spaces satisfy a Poincaré duality property analogous
to that of manifolds, and has offered computational advantage, for example in the
study of spaces remembering the symmetries of T [26].

The third variant can be thought of as the cohomology of the tiling groupoid,
but in the case of an explicit Cantor bundle structure over a d-torus Td, this is
equivalent to the group cohomology of Zd = π1(T

d) with coefficients the continuous
Z-valued functions on the fibre. This too has its strengths, especially in the case
of an explicit description of the bundle, such as for many of the cut and project
tilings. See [16, Ch. 4] for a general introduction. Similar methods become natural
to apply when studying tilings with rotations, as explored in recent work of the
author with Walton.

Cohomology may be enriched with various additional structures, producing
finer invariants. Included here are the Ruelle–Sullivan map of [18], the ordered
cohomology of [20] and the homology core of [7]. The reader should consult those
papers for statements of the advantages gained.

Aperiodic tilings are a fruitful source of examples for non-commutative geom-
etry. Several C∗-algebras AT have been constructed to model ΩT and its para-
phenalia, and their K-groups reflect the space and Rd action; in the case of a
unique ergodic measure, there is also a trace map K∗(AT ) → R. See [17] for a
discussion. Connes’ Thom isomorphism identifies K∗(AT ) with the topological
K-theory K∗(Ω), and an Atiyah–Hirzebruch spectral sequence gives a method of
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calculating K∗(Ω) from the Čech cohomology H∗(Ω). Through these the non-
commutative invariants can frequently be computed. A key object of study here
has been the image of the tracial state, which is related to Bellissard’s gap labelling
[4, 5, 13].
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Irregular model sets

Tobias Jäger

(joint work with Michael Baake, Gabriel Fuhrmann, Daniel Lenz, Christian
Oertel)

Cut and project schemes. A cut and project scheme (CPS) is a triple (G,H,L)
consisting of two locally compact Abelian groups G and H and a co-compact dis-
crete subgroup L ⊆ G×H (called lattice) that projects injectively to G and densely

to H . Given a compact set W ⊆ that satisfies int(W ) = W and is called window
in this context, a CPS defines a model set or cut and project set by

Λ(W ) = πG(L ∩ (G×W )) ,

where πG : G × H → G denotes the projection to the first coordinate. Under
the above assumptions, the resulting model set Λ(W ) is always Delone (relatively
dense and uniformly discrete) [10]. CPS were introduced by Meyer in 1972 [9]
and have emerged as one of the main constructions to obtain aperiodic structures.
In particular, paradigmatic examples such as the Fibonacci quasicrystal or the
Penrose tiling can be represented as model sets.

Hull dynamics and torus parametrization. Given a suitable topology on the
space of Delone sets, a model set Λ(W ) defines a topological dynamical system,
which is given by the action of G on the dynamical hull

Ω(Λ(W )) = ({Λ(W )− t | t ∈ Γ}) .
An important fact for the analysis of this system is the existence of a torus
parametrization (see [13, 2]), that is, a flow morphism β : Ω(Λ(W )) → T =
(G×H)/L from the action on the hull, (Ω(Λ(W )), G), to the canonical G-action
on the ‘torus’ G given by

G× T→ T , (t, (g, h) + L) 7→ (g + t, h) + L .
Thereby, the map β is uniquely defined by the condition

β(Γ) = (g, h) + L ⇔ Λ(int(W ) + h)− g ⊆ Γ ⊆ Λ(W + h)− g .
Regular model sets. One case which is quite well-understood is that of regular
model sets, by which we mean model sets Λ(W ) for which |∂W | = 0, where | . |
denotes the Haar measure on H . The reason is the fact that in this situation the
flow morphism β is almost surely 1-1, that is, β−1((g, h) + L)) is a singleton for
µ-almost every (g, h) + L ∈ T with respect to the Haar measure µ on T. This
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further entails that the system (Ω(Λ(W )), G) is uniquely ergodic and isomorphic
to its factor (T, G) and has pure point dynamical spectrum and zero topological
entropy [13, 2]. Moreover, it can be shown that the diffraction spectrum of Λ(W )
(which we will not define in detail here) is pure point as well [8]. The latter gives a
motivation to consider regular model sets as appropriate models for quasicrystals.

Irregular model sets. In contrast to this, a situation that is much less un-
derstood is that of irregular model sets, that is, of windows with |∂W | > 0. In
this case, one expects that ‘typically‘ the dynamics of Ω(Λ(W )) should be more
complex, and a number of questions have been raised in the literature in this di-
rection. In particular, we want to point out the following two problems, which are
attributed to Moody (see [11, 12]) and Schlottmann [13], respectively.

• Does |∂W | > 0 imply positive topological entropy (see [11, 12])?

• Does |∂W | > 0 imply unique ergodicity [13]?

In order to address these questions, we consider two different settings.

Toeplitz flows. The first is that of so-called Toeplitz flows. A sequence ξ =
(ξn)n∈Z ∈ Σ = {0, 1}Z is called a Toeplitz sequence if it is aperiodic1 and for all
n ∈ Z there exists a period p ∈ N such that ξn+kp = ξn for all k ∈ Z. In other
words, every symbol in a Toeplitz sequence is repeated periodically, but the period
depends on the position n of the symbol. If we let Per(ξ, p) = {n ∈ Z | ξn+kp =
ξn for all k ∈ Z}, then ξ is Toeplitz if and only if

⋃
p∈N Per(ξ, p) = Z.

For any Toeplitz sequence ξ, one can choose a period structure (pℓ)ℓ∈N of integers
such that pℓ divides pℓ+1 and

⋃
ℓ∈N Per(ξ, pℓ) = Z. Let qℓ = pℓ+1/pℓ and denote

by Ω =
∏∞

ℓ=1 Z/qℓZ the corresponding odometer with minimal group rotation R.
Then there exists a flow morphism π from subshift given by the orbit closure of ξ
to the odometer (Ω, R). Note that different period structures for a given Toeplitz
sequence always define the same odometers up to isomorphism (see [3]).

An important distinction between two basic types of Toeplitz flows is the fol-
lowing. For any p ∈ N, we denote by D(ξ, p) = #(Per(ξ, p) ∩ [0, p − 1])/p the
density of the p-periodic positions. If limℓ→∞D(ξ, pℓ) = 1, then ξ is called a reg-
ular Toeplitz sequence. Otherwise limℓ→∞D(ξ, pℓ) < 1 and the Toeplitz sequence
ξ is called irregular. In the regular case, the above flow morphism π is ν-almost
surely one-to-one, where ν is the Haar measure on Ω. Hence, similar to the situa-
tion for model sets, regular Toeplitz flows are uniquely ergodic and isomorphic to
the corresponding odometer and consequently have zero topological entropy and
purely discrete dynamical spectrum. These analogies are no coincidence.

Theorem 1 ([1]). If ξ is a Toeplitz sequence and Ω is the corresponding odometer,
then the point set Λξ = {n ∈ Z | ξn = 1} can be represented as a model set with
CPS (Z,Ω,L), where L =

{
(n,Rn(0)) | n ∈ Z

}
and the window W satisfies

|∂W | = 1− limℓ→∞D(ξ, pℓ).

1Here ξ ∈ Σ is called aperiodic if σp(ξ) 6= ξ for all p ∈ N, where σ : Σ → Σ denotes the left
shift map.
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Hence, any Toeplitz system can be interpreted and used as an example in the
context of model sets, and the notion of regularity coincides in both settings. As
there exist examples of irregular Toeplitz flows which are uniquely ergodic and
have zero entropy, this allows to give a negative answer to the above questions by
Moody and Schlottmann (and a variety of further questions in the same direction).

Irregular model sets in Euclidean CPS. The Toeplitz examples allow to
answer the above questions in the general setting, where arbitrary locally compact
Abelian groups are allowed in the CPS. However, this still leaves the possibility
that stronger restrictions exist in the Euclidean setting, where both G and H are
Euclidean spaces. In this situation, the following result guarantees that a positive
measure of the window boundary “typically” leads to positive entropy (where
“typical” is understood in a probabilistic sense).

Theorem 2 ([7]). Suppose (RN ,R,L) is a Euclidean CPS, C ⊆ R is a Cantor set
of positive measure, (Gn)n∈N is a numbering of the gaps of C, ω ∈ {0, 1}N and

W (ω) = C ∪
⋃

n∈N:ωn=1

Gn .

Then for P-almost every ω we have int(W ) =W , |∂W | = C and (Ω(Λ(W )),RN )
has positive entropy, where P refers to an arbitrary Bernoulli measure on {0, 1}N.

However, even in the Euclidean case there exist exceptions.

Theorem 3 ([4]). Given any CPS (R,R,L), there exists a window W with
|∂W | > 0 such that (Ω(Λ(W )),R) is uniquely ergodic and has zero topological
entropy.

CPS and symbolic dynamics. Finally, we want to close with an announce-
ment of a result that has been obtained during and shortly after the week in
Oberwolfach and was inspired by discussions with Eli Glasner and Felipe Garćıa-
Ramos during this time. It can therefore be considered a direct outcome of the
workshop.

We say a minimal subshift Σ ⊆ {0, 1}Z is almost automorphic if it has a maximal
equicontinuous factor (Ω, ρ) for which the corresponding factor map π is almost
one-to-one (there exists a point with unique preimage).

Fact 4. Any minimal almost automorphic subshift (Σ,Z) is equivalent (up to
conjugacy) to the system (Ω(Λ(W )), (Z)) obtained from the CPS (Z,Ω,L) with
lattice L = {(n, ρn(ω0) | n ∈ Z}, where

• ω0 ∈ Ω has unique preimage under the factor map π;

• W = π([1]), where [1] = {ξ ∈ {0, 1}Z | ξ0 = 1}.
Moreover, the window W satisfies the topological regularity condition int(W ) =W .

Analogous to the above situation, (Σ,Z) is called regular if π is ν-almost surely
one-to-one, where ν denotes the unique invariant probability measure on Ω, and
irregular otherwise. As the examples discussed above already indicate, a subshift
may be uniquely ergodic and have zero entropy even if it is regular. This prompts
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the obvious question whether irregularity has any dynamical consequences at all.
Here, the CPS formalism can be used as a tool to obtain a positive answer. We
say the subshift (Σ,Z) has an infinite free set, if there exists an infinite set S ⊆ Z

such that for any a ∈ {0, 1}S there exists ξ ∈ Σ such that ξs = as for all s ∈ S.2

Theorem 5. If a minimal almost automorphic subshift is irregular, then it has
an infinite free set. In particular, it has positive topological sequence entropy.

The advantage of the CPS formalism in this context is the fact that it trans-
lates this dynamical problem into a purely topological questions concerning the
structure of the window, which is easier to address. An analogous statement can
be obtained for arbitrary irregular model sets with more general groups G and H .
An important consequence concerns the notion of tame systems. (See [5, 6] for a
definition and discussion of this notion.) Due to work of Glasner and Megrelishvili
[6], it is known that tame subshifts do not allow infinite free sets. Hence, we obtain

Corollary 6. For minimal almost automorphic subshifts, tame implies regular.

The analogous result for Toeplitz flows is due to Downarowicz. An extension
to more general model sets will be the subject of future research.
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Homeomorphisms between tiling spaces

Antoine Julien

(joint work with Lorenzo Sadun)

A common method for studying aperiodic tilings is to study a topological space
associated with a given tiling, rather than the tiling itself. This approach is fruitful
because properties of the space reflect properties of the tiling.

This talk, based on the results of [3], addresses the following two questions:

• Whenever two spaces are equivalent what can be said about the tilings?
• What remains of a tiling space when one forgets about the tiling?

The answer to the first question depends of course of what is meant by equivalent.
Two tiling spaces are equivalent whenever there is a map between them which
preserves some structure. How much structure is given to a space by the virtue of
being a tiling space is the answer to the second question.

Given a tiling T of Rd, its space is Ω := {T − x : x ∈ Rd}, where the closure
in the set of all tilings is taken for an appropriate topology. It is an Rd-dynamical
system. We assume that T is aperiodic, repetitive, with finite local complexity —
FLC (meaning T has finitely many patterns of size r, for all r). This implies that
Ω is compact, minimal and has no periodic orbit.

The tiling space in itself can be given several structures:

(1) it is a topological space;
(2) with an orbit structure (equivalence relation inherited by the Rd-action);
(3) it is a dynamical system (a specific parametrization of the orbits by Rd);
(4) with a certain transverse “rigid” structure.

Let us specify point (4). It is known that a tiling space with finite local complexity
can be given an atlas of charts in which neighbourhoods are all homeomorphic to
B(0, r) ×X where B(0, r) is an Euclidean ball of Rd and X is a Cantor set. The
image in Ω of a set of the form {0} × X is called a vertical transversal. The
translate of a vertical transversal is still a vertical transversal (or a finite union of
such sets), and the property of being a (finite union of) vertical transversals does
not depend on the chart. Spaces having such a transverse structure are sometimes
called tileable laminations in the literature.

We can now categorize maps between tiling spaces according to which structure
they preserve. We will always require our maps to be continuous (or homeomor-
phisms if invertible). Because of the local structure of FLC tiling spaces, such a
map always sends path-connected component to path-connected component hence
orbit to orbit. The weakest notion of equivalence we therefore consider is orbit-
equivalence, i.e., a homeomorphism sending orbit to orbit. Additional structure
can be preserved:

• maps preserving (3) are the topological conjugacies ;
• maps preserving (3) and (4) are the mutual local derivations (MLD), as
introduced in [1];
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• maps preserving (4) are called local maps. The archetypes of local maps
between tiling spaces are given by shape changes (or tiling deformations),
see [2].

For example: consider the Fibonacci sequence given by the substitution a 7→
ab; b 7→ a. We can consider two tiling spaces based on it: one in which the a and
b-tiles have respective length φ and 1 (with φ the golden ratio); one with constant
tile length c. It is known that these two spaces are conjugate for a good choice
of c: they are the same dynamical system. However, their canonical transverse
structures are different, and it is not preserved by the conjugacy.

In essence, our work establishes that any homeomorphism between FLC tiling
spaces is within bounded distance of (and isotopic to) a homeomorphism which
preserves the transverse structure. In the results below, all spaces are aperiodic,
minimal, FLC tiling spaces.

Theorem 1. Let h : Ω→ Ω′ be a homeomorphism between tiling spaces. Assume
Ω is uniquely ergodic. Then there exists α : Ω → Ω′ a homeomorphism, which is
local in the sense above, such that h = α ◦ τs, where τs(T ) = T − s(T ) for some
continuous (hence bounded) function s : Ω→ Rd.

While any homeomorphism between two tiling spaces is isotopic to a homeo-
morphism which preserves (4), there is also a topological invariant measuring how
this map changes the parametrization of the orbits by the action.

Theorem 2. A continuous map h : Ω → Ω′ defines a cohomology class [h] ∈
Ȟ1(Ω;Rd). Furthermore, whenever h1, h2 are homeomorphisms hi : Ω→ Ωi such
that [h1] = [h2], then there exists an MLD map between Ω1 and Ω2.

If Ω is uniquely ergodic, one defines Cµ : Ȟ1(Ω;Rd)→Md(R), a matrix-valued

map (see [4]). A non-singular class in Ȟ1 is a class having a non-singular image
under Cµ. Given a homeomorphism h, the matrix Cµ[h] describes how h maps
orbits to orbits at large scales.

Theorem 3. Given a homeomorphism h : Ω → Ω′ (with Ω uniquely ergodic),
Cµ[h] is a non-singular matrix. Conversely, for any non-singular [α] ∈ Ȟ1(Ω;Rd),
there exists an FLC tiling space Ωα and a homeomorphism hα : Ω→ Ωα such that
[hα] = [α].
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Dynamics of B-free sets

Mariusz Lemańczyk

Given an infinite B ⊂ N \ {1}, the set

FB := {n ∈ Z : no b ∈ B divides n}
is called the set ofB-free numbers. Although such sets need not possess asymptotic
density, they always have logarithmic density (Davenport–Erdös theorem from
1936). Prominent examples of B-free sets are: the set of square-free numbers,
the set of deficient numbers or even the set of prime numbers itself (consider
B = {pq : p, q are primes}). It is not hard to see that A ⊂ Z is B-free, i.e. A = FB

(for some B) if and only if A is closed under taking divisors. By setting η to be the
characteristic function of FB and treating it as a point in the shift space {0, 1}Z,
we obtain the subshift (Xη, S), where S stands for the left shift. B-free subshifts
constitute an important class of examples of dynamical systems arising in the cut-
and-project scheme. Indeed, set G = Z for the physical space, H =

∏
b∈B Z/bZ

for the external space (we assume for simplicity that B is coprime but this is not
essential), L = {(n, n) : n ∈ Z} for the lattice in G × H (here, n = (n, n, . . .))
and W = {h = (hb) ∈ H : hb 6= 0 for all b ∈ B} for the window. However, some
other natural subshifts appear in this context, for example, (XB , S) the subshift
of B-admissible sequences (those sequence whose support taken mod an arbitrary
b ∈ B misses at least one residue class mod b). It is not hard to see that Xη ⊂ XB

and the latter set is hereditary. This yields

Xη ⊂ X̃η ⊂ XB,

where X̃η stands for the hereditary closure of Xη.
The talk, based mainly on two recent papers [2] and [4], focuses on dynamical

properties of subshifts given by B-free sets. Several theorems classifying charac-
teristic properties of such subshifts are usually given as an equivalence between
dynamical, topological and arithmetical viewpoints. For example, the proximality
(dynamics) of (Xη, S) is equivalent to the fact that B contains an infinite coprime
subset (arithmetic) which in turn is equivalent to Int(W ) = ∅ (topology). In this
spirit we go through proximality, minimality (which turns out to be closely related
to the theory of Toeplitz systems), Behrend property and, the most surprising part
concerning the tautness property of B. Tautness is a classical, purely arithmeti-
cal property telling us that, for each b ∈ B, the logarithmic density of FB\{b} is
strictly larger than the logarithmic density of the original B-free set. Surprisingly,
this condition is equivalent to the fact that the restriction of Haar measure to
the window has full (topological) support. Some of these developments have prof-
ited from the recent progress on weak model sets [5, 1], which give an alternative
description of such systems and various generalizations to higher dimensions.

In turn, from the dynamical point of view, tautB-free systems have the property
that their Mirsky measure is supported by the set with the maximal number of
residue classes. Moreover, from the ergodic theory point of view, only taut systems
are interesting. Indeed, for eachB-free system there is a unique tautB′-free system
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such that the locus of all invariant measures of (X̃η, S) is given by X̃η′ . We will
also discuss the entropy problems (the entropies ofB-admissible and the hereditary
closure of Xη turn out to be the same). Finally, as an application, we show a role
of B-free sets in the multiple recurrence problems in dynamics discussed in [3],
which in particular yields a reinforcement of the famous Szemerédi theorem on
arithmetic progressions precising that the difference of such progressions can be
taken from a self-shift of a B-free set whenever B is taut.
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Fourier quasicrystals and Poisson summation formulas

Nir Lev

(joint work with Alexander Olevskii)

By a Fourier quasicrystal one often means an (infinite) pure point measure µ on
Rd whose Fourier transform is also a pure point measure. The classical example
of such a measure is the sum of unit masses over a lattice, and the spectrum is the
dual lattice.

The subject has received a new peak of interest after the experimental discovery
in the middle of the 80’s of non-periodic atomic structures with diffraction patterns
consisting of spots. The “cut-and-project” construction, introduced by Y. Meyer
in the beginning of the 70’s, may serve as a good model for this phenomenon. It
provides many examples of measures with uniformly discrete support and dense
countable spectrum.

On the other hand, we proved with A. Olevskii [1, 2] that if both the support
and the spectrum of a measure on R are uniformly discrete sets, then the measure
has a periodic structure. A similar result was proved for positive measures on
Rd. In our paper [3] with A. Olevskii we establish in a strong sense the sharpness
of the uniform discreteness requirement in this result. Namely, we proved there
the existence of a measure µ on R whose support and spectrum are both discrete
closed sets, but such that the support contains only finitely many elements of
any arithmetic progression. The latter result thus reveals the existence of “non-
classical” Poisson summation formulas.
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In the crystallography community, it seems to be commonly agreed that the
support of the measure µ should be a uniformly discrete set. So it is a natural
problem, to what extent can the spectrum of a non-periodic quasicrystal be dis-
crete, assuming that the support is uniformly discrete? In our paper [4] with A.
Olevskii we address this problem, and consider quasicrystals with non-symmetric
discreteness assumptions on the support and the spectrum. We obtain several
results which show that, under various conditions, if the spectrum is a discrete
closed set, then in fact it must be uniformly discrete. These results thus reduce
the situation to the setting in [2], which in turn allows us to conclude that the
measure has a periodic structure. On the other hand, we present an example of a
non-periodic quasicrystal such that the spectrum S is a nowhere dense countable
set. Finally, we extend our results to the more general situation, where the Fourier
transform of the measure µ has both a pure point component and a continuous
one.
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On the union of spectra for all Sturm potentials

Qinghui Liu

(joint work with Bassam Fayad, Yanhui Qu)

1. Introduction

Taking V > 0, irrational α ∈ (0, 1) and θ ∈ [0, 1), the Schrödinger operator with
Sturm potential HV,α,θ acting on l2(Z) is defined by, for any (φ(n))n∈Z ∈ l2(Z),

(
HV,α,θφ

)
(n) = φ(n+ 1) + φ(n− 1) + vnφ(n),

where vn = V χ[1−α,1[({nα + θ}) and χ[1−α,1[ is the characteristic function, and

V is called coupling, α is called frequency, θ is called phase. Since the spectrum
σ(HV,α,θ) is independent of θ, we take θ = 0 and denote the operator by HV,α.

We study the union of spectra of the Schrödinger operator with Sturm potential
of fixed coupling and all frequencies, i.e, for any V > 0, the set

SV =
⋃

α∈Qc∩(0,1)
σ(HV,α).

Theorem 1. [1] L(σ(HV,α)) = 0.
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In this paper, they show that σ(HV,α) ⊂ [−2, 2] ∪ [−2 + V, 2 + V ] = [−2, 2] +
{0, V } := Γ. Notice that [−2, 2] = {2 cos tπ : 0 ≤ t ≤ 1}, we have

Theorem 2 (Fayad, Liu, Qu, preprint). For V > 0, there exists Θ ⊂ Γ at most
countable such that

SV = Γ\Θ,
where

Θ ⊂ {2 cos tπ : 0 ≤ t ≤ 1, rational}+ {0, V }
Θ ⊃ {±2, 0,±2 + V, V } = {2 cos tπ : t = 0, 1/2, 1}+ {0, V }, V > 4

Θ ∩
(
{2 cos tπ : ε < t < 1− ε}+ {0, V }

)
is a finite set.

2. Transfer matrix and trace polynomial

Define the transfer matrices by

Tn(E) =

[
E − vn −1

1 0

]

and by T1→n(E) = Tn(E)Tn−1(E) · · ·T1(E).

For α ∈ [0, 1]\Q, let α = [0; a1, a2, · · · ] be the continued fraction expansion. For
any k ≥ 0, let pk/qk = [0; a1, a2, · · · , ak], which satisfies,

p−1 = 1, p0 = 0, pk+1 = ak+1pk + pk−1, k ≥ 0,

q−1 = 0, q0 = 1, qk+1 = ak+1qk + qk−1, k ≥ 0.

For k ≥ 0, define

Mk(E) := T1→q
k
(E)

xk(E) := trMk(E)

σk :=
{
E ∈ R : |xk(E)| ≤ 2

}
.

Note that xk(E) is a polynomial with degree qk.

Theorem 3. [1] One has

Mk+1(E) =Mk−1(E)M
ak+1

k (E), ∀k ≥ 0,

σ(HV,α) =
⋂

k≥0
(σk−1 ∪ σk),

where

M−1(E) ≡
[

1 −V
0 1

]
, M0(E) =

[
E −1
1 0

]
,

and σk :=
{
E ∈ R :

∣∣trMk(E)
∣∣ ≤ 2

}
for k = 0,−1.

Note that x−1(E) := trM−1(E) ≡ 2, and x0(E) := trM0(E) = E.
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3. Sketch of
{
2 cos tπ : t ∈ [0, 1]\Q

}
⊂ SV

We choose ak step by step. The idea in the proof comes from [4, 3].

Lemma 1. For E ∈ R, k ≥ 0, if
∣∣xk−1(E)

∣∣ < 2,
∣∣xk(E)

∣∣ < 2, then there exists

ak+1 such that
∣∣xk+1(E)

∣∣ < 2.

Corollary 1. For E ∈ R, if there exists k ≥ 0 so that |xk−1(E)| < 2, |xk(E)| < 2,
then E ∈ SV .

Proposition 1. If t ∈ [0, 1] be irrational, then there exists a1 > 0 so that
∣∣x0(2 cos tπ)

∣∣ < 2,
∣∣x1(2 cos tπ)

∣∣ < 2,

i.e., 2 cos tπ ∈ SV .

4. If V > 4, then 2 6∈ SV

Lemma 2. [1] For any V > 0, α irrational and E ∈ R, (xk(E))k≥−1 grow
exponentially if and only if there exists k ≥ 0 such that

∣∣xk−1(E)
∣∣ ≤ 2,

∣∣xk(E)
∣∣ > 2,

∣∣xk+1(E)
∣∣ > 2.

Lemma 3. [2] For any V > 0, α irrational, δ ≥ 0 and E ∈ C, (xk(E))k≥−1 grow
exponentially if and only if there exists k ≥ 0 such that

∣∣xk−1(E)
∣∣ ≤ 2 + δ,

∣∣xk(E)
∣∣ > 2 + δ,

∣∣trMk−1Mk(E)
∣∣ > 2 + δ.

We can modify these results by

Lemma 4. Take any V > 0, α irrational, and E ∈ C. If there exists k ≥ 0 such
that ∣∣xk−1(E)

∣∣ ≤ 2,
∣∣xk(E)

∣∣ ≥ 2,
∣∣trMk−1Mk(E)

∣∣ > 2,

then
(
xk(E)

)
k≥−1 grow exponentially.

Since x−1(2) = 2, x0(2) = 2, trM−1M0(2) = 2− V , we have 2 6∈ SV .
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On continuous and measure-theoretical eigenvalues of minimal Cantor
systems and applications

Alejandro Maass

(joint work with Fabien Durand, Alexander Frank)

The study of eigenvalues of topological dynamical systems, either from a measure-
theoretical or a topological perspective, is a fundamental topic in ergodic theory.
Particularly interesting and rich has been the study of eigenvalues and weakly mix-
ing properties of classical systems like interval exchange transformations or other
systems arising from translations on surfaces. From the symbolic dynamics point
of view most of these systems have representations as minimal Cantor systems of
finite topological rank, i.e., there is a symbolic extension that can be represented
by a Bratteli–Vershik system such that the number of Kakutani–Rohlin towers per
level is globally bounded. To characterize eigenvalues of the original systems it is
enough to consider this class of Cantor systems.

With these examples in mind and extensions to the study of tiling systems,
our main motivation is to provide general necessary and sufficient conditions for a
complex number to be the eigenvalue, either continuous or measure-theoretical, of
a minimal Cantor system of finite topological rank and when possible to get the
same kind of results for any minimal Cantor system.

Some results for different subclasses of minimal Cantor systems of finite topo-
logical rank have been produced since the pioneering work of Dekking [5] and Host
[11]. There, it was stated that measurable eigenvalues of primitive substitution
dynamical systems are always associated to continuous eigenfunctions. Later, nec-
essary and sufficient conditions to characterize continuous and measurable eigen-
values of linearly recurrent minimal Cantor systems were provided in [3] and [1].
These conditions are very effective and rely on the combinatorial data carried by
their Bratteli–Vershik representations. Even if linearly recurrent systems are nat-
ural from the symbolic dynamics point of view (see [6, 7]), this class is “small”,
meaning that in many classical cases, like interval exchange transformations, only
a few maps have a symbolic representation of this kind. In fact, most of them are
of finite topological rank and not linearly recurrent. There are few general results
concerning eigenvalues of minimal Cantor systems of finite topological rank. Some
preliminary results are given in [2] and a detailed study of eigenvalues of Toeplitz
systems of finite topological rank is given in [8].

After reviewing the results described above we provide novel necessary and
sufficient conditions that a complex number should satisfy to be a measurable
eigenvalue of a minimal Cantor system of finite topological rank (we follow [9]).
In addition, we give a necessary and sufficient condition for a complex number
to be a continuous eigenvalue of a minimal Cantor system, that is, we succeeded
in dropping the finite rank hypothesis. In its conception, the conditions are very
similar to those proposed for linearly recurrent systems. They are given in the
form of the convergence of some series or special sequences and only depend on the
combinatorial data provided by the Bratteli–Vershik representations. The main
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difference here is that we need to include in an algebraic way the information of
the local orders carried by these representations.

We illustrate the use of the conditions giving examples and applications. First
we prove that our conditions extend the results in [8] to characterize eigenvalues
of finite rank Toeplitz minimal systems. Then, a first application relates the no-
tions of continuous eigenvalues and strong orbit equivalence. We use our necessary
and sufficient condition in the continuous case to prove that, by doing controlled
modifications of the local orders of a Bratteli–Vershik system, one can alter the
group of continuous eigenvalues. In particular, starting from a minimal Cantor
system without roots of unity as continuous eigenvalues we produce a strong orbit
equivalent system that is topologically weakly mixing and which shares the Kro-
necker factor with the original system for any ergodic measure. In [12] a similar
example is developed in the context of tiling systems. In a second example, the
conditions to be measurable eigenvalues and previous application are used to con-
struct a topologically weakly mixing minimal Cantor system of rank two admitting
all rational numbers as measure theoretical eigenvalues, showing that topological
rank is not an obstruction to have non continuous rational eigenvalues as in the
Toeplitz case. Finally, inspired by questions in [4] and [10], we use our main theo-
rems to produce an expansive minimal Cantor system whose group of continuous
eigenvalues coincides with the intersection of the images of the so-called group of
traces.
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Spectral analysis of primitive inflation rules

Neil Mañibo

(joint work with Michael Baake, Michael Coons, Nathalie P. Frank, Franz
Gähler, Uwe Grimm and E. Arthur Robinson Jr.)

The spectral analysis of inflation rules is explained for a characteristic class of
examples in one dimension. We determine the spectral type of the diffraction
measure γ̂ for the one-parameter family of binary substitutions given by

(1) ̺m : 0 7→ 01m , 1 7→ 0

with corresponding inflation factor λ = λm, where m > 2 (we exclude m = 1 be-
cause this is the well-known Fibonacci inflation). We achieve this by using the geo-
metric realization as an inflation tiling with prototiles (intervals) of natural length
[5] and by examining exact renormalization equations for the corresponding pair
correlations νij(z); see [3], as well as Eq. (6) below for a generalization to arbitrary

dimension. These relations extend to a (measure-valued) renormalization equation
for the measure vector Υ, whose components are given by Υij =

∑
z∈Λ νij(z) δz.

These components determine the autocorrelation γ for general weights ui ∈ C via
a simple quadratic form [2]. All measures Υij are Fourier transformable.

Via Fourier transform, one obtains a measure-valued renormalization equation

for Υ̂; compare [3, 2, 6]. This new equation, which holds for each of the three
spectral types (pp, sc and ac) separately, involves the Fourier matrices B(k),

where Bij(k) = δ̂Tij
(k) with Tij being the set of positions of tiles of type i in level-1

supertiles of type j. In particular, for the absolutely continuous components, when
described by a vector h of Radon–Nikodym densities, this implies an iterative
equation for a.e. k ∈ R,

(2) h(λk) = λ
(
B−1(k)⊗B−1(k)

)
h(k) .

This iteration can be reduced to an equation of lower dimension [2, 4], namely

(3) v(λk) =
√
λB−1(k) v(k) ,

where hij(k) = vi(k) vj(k). Exponential growth of ‖v(k)‖ implies an exponential
growth of the norm of h and hence contradicts the translation-boundedness of the

corresponding measure Υ̂ac if v(k) 6= 0 for a subset of positive measure [2]. To

rule out the existence of a non-trivial component Υ̂ac, it thus suffices to show that,
for any chosen 0 6= v(k) ∈ C2 and a.e. k ∈ R, ‖v(k)‖ grows exponentially under
the iteration (3). One way to analyse this is to obtain bounds for the Lyapunov
exponents of the associated cocycle B(n)(k) = B(k)B(λk) · · ·B(λn−1k); see [14]
for background. This was done rigorously for m = 3 in [2] and extended to the
entire family in [6].

These substitutions give rise to 2-dimensional cocyles, which ensures that there
can be at most two distinct exponents, denoted by χmin and χmax. Whenever λ is
not an integer, i.e., for cases other than m = ℓ(ℓ+ 1) with ℓ ∈ N, the existence of
these exponents and Lyapunov regularity for a.e. k are not guaranteed (Oseledec’s
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theorem does not necessarily apply here [2]). Nevertheless, it can be shown that
the exponents (then defined via a lim sup) add up to log(λm) for all m via some
extension of Sobol’s theorem to almost periodic functions [7]. A useful sufficient
criterion for the positivity of all exponents, i.e., the positivity of the smallest
exponent, is given by

(4) log(λm) > M
(
log ‖B(k)‖2F

)
,

where M denotes the mean of a function and ‖.‖F is the Frobenius norm. It can be
shown [4] that this mean is recoverable as the logarithmic Mahler measure m(qm)
of a polynomial qm ∈ Z[x] given by

(5) qm(x) = 2xm−1 + (1 + x+ x2 + . . .+ xm−1)2.

Furthermore, one finds that this family of Mahler measures is bounded. In partic-
ular, it is dominated by log(λm) for all m > 18; see [6] for a proof. For m < 18,
the smallest exponent has a bound that depends on the mean of a quasiperiodic
function 1

N
M
(
log ‖B(N)(k)‖2F

)
with two incommensurate frequencies, which can-

not be expressed as a one-dimensional Mahler measure. However, this mean is
computable as a finite integral over T2, and hence an appropriate N can be chosen
so that this quantity is surpassed by log(λ). From this, we conclude the desired
positivity by invoking a one-sided inequality due to some version of the subaddi-

tive ergodic theorem; see [2, 12]. This confirms the absence of Υ̂ac for all m, of
which γ̂

ac
= 0 is an immediate consequence.

For all ̺m with non-Pisot inflation multiplier, this means that the diffraction
is singularly continuous (except for the Bragg peak at k = 0, which corresponds
to the constant eigenfunction of the inflation dynamical system). In contrast,
the systems with an integer inflation multiplier (m = ℓ(ℓ + 1) and λm = ℓ + 1
for some ℓ ∈ N) are MLD to constant-length substitutions with a coincidence at
the first column, and hence are automatically pure point due to Dekking’s classic
result [11]. Oseledec’s multiplicative ergodic theorem can be applied to this class,
from which one can obtain a closed form of χmin that is related to the (logarithmic)
Mahler measure of a {−1, 0, 1}-polynomial in one variable [6, 13, 1]. This minimal
exponent can be shown to be strictly positive, which provides an independent
argument of why the diffraction is singular.

Some general results on the absence of γ̂
ac

in the one-dimensional case via this
method have already been written down; in particular, it has been shown for all
binary aperiodic constant-length substitution in [13], for which the exponents are
bounded appropriately by considering relevant polynomials of height 1; compare
[8, 9]. General constant-length substitutions on n letters follow a similar scheme,
and positivity can be proved for some general families (bijective Abelian, some fam-
ilies with coincidences [4]). We comment briefly that the renormalization scheme
in [3] also holds for higher-dimensional analogues (primitive stone inflations of fi-
nite local complexity with a suitably chosen reference point in each prototile [5]).
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The renormalization equations then read

(6) νij(z) =
1

|det(As)|
∑

k,ℓ

∑

u∈Tik

∑

v∈Tjℓ

νkℓ
(
A−1s (z + u− v)

)
,

where z,u,v ∈ Rd, while As is the linear map that expands the system to one
that is MLD with the original one via the stone inflation in question [5, 4]. The
indices run over a set of labels for the finite prototile set. An application to the
higher-dimensional case of block substitutions boils down to finding appropriate
bounds for Mahler measures of polynomials in more than one variable [10, 1].
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Quasicrystalline structures and quantum walks

Darren C. Ong

(joint work with David Damanik, Jake Fillman)

Consider first the following classical random walk problem. A walker is travelling
on the integers, and flips a coin. If the coin lands heads, the walker moves to the
left, and if the coin lands tail, the walker moves right. Furthermore, imagine that
that weighted coins are distributed at each integer, and whenever the walker is at
that integer we use the coin placed there.

We consider now a “quantum mechanical” version of this problem. In this
model, the walker (which we imagine as a quantum particle) possesses a spin
(either ↑ or ↓) as well as an integer location; moreover, the walker may be in a
superposition of pure states, rather than being purely localized at a particular site
with a definite spin. Instead of a weighted coin at each location, we have a unitary
operator (which we call the quantum coin) at each location that interacts with
the particle differently depending on its spin. This model has attracted a lot of
interest in mathematics, computer science, and physics. Please refer to [6, 7] for
some recent surveys on the subject.

We now introduce a second object, the CMV operator. These are operators on
ℓ2(N) or ℓ2(Z) that can be viewed as a unitary analogue to the Jacobi operator.
See [4, 5] for a survey on the spectral theory of the CMV operator. The CMV
operator on ℓ2(Z) looks like

E =




. . .
. . .

. . .
. . .

α0ρ−1 −α0α−1 α1ρ0 ρ1ρ0
ρ0ρ−1 −ρ0α−1 −α1α0 −ρ1α0

α2ρ1 −α2α1 α3ρ2 ρ3ρ2
ρ2ρ1 −ρ2α1 −α3α2 −ρ3α2

. . .
. . .

. . .
. . .




.

Here, the αn are a sequence of complex numbers in the open unit disk, and ρn =√
1− |αn|2.
Cantero, Grünbaum, Moral and Velazquez discovered in [1] that CMV operators

can be used to understand quantum walks. Furthermore, in [3] the authors discover
a connection between the spectral properties of a CMV operator and the spreading
rate of a walker in a quantum walk.

In our paper [2], we discover upper and lower bounds on quantum walk spread-
ing that depend on the growth rates of the transfer matrices of the corresponding
CMV operator. As an application, this enables us to understand quantum walk
problems where the coin distributions are given by an aperiodically ordered se-
quence.

To be more precise, consider two types of coins, each weighted differently. We
arrange these coins on the integers using a Fibonacci binary string, such that the
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0’s correspond to the first type of coin and the 1’s correspond to the second. Using
the upper and lower bounds we developed, we can calculate that it is possible to
obtain anomalous transport this way: that is, the quantum walker leaves the
origin, but at sub-ballistic speeds. To our knowledge, this was the first example
of anomalous transport in quantum walks when the coins do not vary in time.
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Automorphism and extended symmetry groups of shifts

Samuel Petite, Reem Yassawi

A d-dimensional shift is a closed set X of sequences on a finite alphabet, indexed
by Zd, and invariant by the d shift maps σ1, . . . σd defined by the canonical basis
for Zd. Shifts form a rich class of dynamical systems. An automorphism (or
symmetry) of a shift is a homeomorphism Φ : X → X that commutes with the
shift maps σ1, . . . σd. The Curtis–Hedlund–Lyndon theorem tells us that such an
automorphism is defined by a sliding block map; i.e., there exists a local rule,
defined on a set of finite configurations, such that the image of a point x at index
m = m1, . . .md is defined by applying the local rule table to a neighbourhood of
σm1

1 . . . σmd

d x . The set of automorphisms Aut(X) of a shift, endowed with the
composition operation, form a group, which, other than being countable, is in
general hard to describe. We will present in this talk a survey of recent results,
where we give a finer description of the automorphism groups of certain small one-
dimensional shifts. In particular, if the complexity function of a one-dimensional
minimal shift is linear, we show that Aut(X)/〈σ〉 is finite. We also give conditions
on an automorphism Φ, in terms of its radius, so that it has finite order, and
deduce that if such an automorphism Φ exists, then the automorphism group does
not contain a group with an exponentially distorted element. Staying in the zero-
complexity case, we show that for a minimal shift whose complexity function is
o(n5), any finitely generated, torsion-free subgroup of Aut(X) is virtually Abelian.
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We also consider extended symmetry groups of shifts. While the automorphism
group can be recast as the centralizer of the group 〈σ〉 generated by the shift ac-
tion in the group H(X) of homeomorphisms on X , the extended symmetry group
R(X) is defined to be the normalizer of 〈σ〉 in H(X). If (X, σ) is a minimal one-
dimensional shift, then work of Putnam, Giordano and Skau tells us thatR(X)/〈σ〉
is the group of outer autormphisms of the topological full group of a shift, whose
commutator subgroup has recently been shown by Juschenko and Monod to have
interesting algebraic properties. We also define and discuss extended symmetry
groups in higher dimension. We illuminate these concepts by computing the ex-
tended symmetry groups of two celebrated and qualitatively different shifts: the
chair shift and the Ledrappier shift.

This is based on recent and active works [1, 2, 3, 4, 5, 6, 7, 8].
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Topological boundary spectrum in physical systems

Emil Prodan

Let P be a Delone set in Rd, Ω be its discrete hull (transversal) andHΩ = {Hω}ω∈Ω
a family of covariant Hamiltonians on CN ⊗ ℓ2(P). We denote by spec(HΩ) =
∪ω∈Ωspec(Hω). A spectral gap G is defined as a connected component of R \
spec(HΩ). A mobility gap is a connected region ∆ of the real axis where the

direct conductivity tensor d−1
∑d

i=1 σii(EF , T = 0) vanishes, whenever EF ∈ ∆.
We use the terminology (mobility) gapped Hamiltonians for a pair (HΩ, G) with
G a non-empty spectral (mobility) gap.

Given a covariant bulk family HΩ, one can define a family of Hamiltonians

ĤΩ = {Ĥω}ω∈Ω with a boundary, defined on CN ⊗ ℓ2(P ∩ Rd
+), Rd

+ = {x =

(x1, . . . , xd) ∈ Rd, xd ≥ 0}. More precisely, ĤΩ = Ĥ
(D)
Ω + H̃Ω, where Ĥ

(D)
Ω is

obtained from HΩ by imposing the Dirichlet boundary condition and H̃Ω is a
family of covariant Hamiltonians w.r.t. translations parallel to the boundary that
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are localized near the boundary (hence H̃Ω can be seen as defining the boundary

condition). As it turns out, spec(HΩ) ⊆ spec(ĤΩ) and one defines the boundary

spectrum as specb(ĤΩ) = spec(ĤΩ) \ spec(HΩ).

For such data, the physics community propose the following programs.

Bulk.

(1) Classify the gapped Hamiltonians w.r.t. the equivalence relation defined
by (HΩ, G) ∼ (H ′Ω, G

′) iff there exists a homotopy of gapped Hamiltonians
(HΩ(t), G(t))t∈[0,1] such that (HΩ(0), G(0))=(HΩ, G) and (HΩ(1), G(1))=
(H ′Ω, G

′).
(2) Same as above but with spectral gap replaced by mobility gap.

Boundary.

(1) Find all (HΩ, G) such that

specb(ĤΩ) ∩G = G,

regardless of the boundary condition. This type of boundary spectrum is
called topological.

(2) Same as above but with additional requirement that specb(ĤΩ) is not
Anderson localized.

Bulk+Boundary.

(1) Find a relations between the bulk and boundary programs. Whenever
such relations exist, they go by the name of bulk-boundary principle.

The most ambitious programs are Bulk #2, Boundary #2 and, of course, es-
tablishing the bulk-boundary principle which relates the two. In the context of
the electronic degrees of freedom in disordered crystals, the physics community
put forward a conjecture which comes in the form of a classification table of all
possible topological phases displaying delocalized topological boundary spectrum
[13, 7, 12]. The conjecture survived a large number of numerical tests (too many
to be mentioned here). For the phases classified by the Z group, a proof of the
conjecture can be found in the monograph [11]. It is based on the index theorems
discovered in [9, 10], which extended the previous pioneering works [1, 6] on the
integer quantum Hall effect. For the topological phases classified by Z2, progress
with program Bulk #2 has been made in [4], while the program Bulk #1 has been
carried out in [14, 2, 5]. A unifying bulk-boundary principle for the programs Bulk
#1 and Boundary #1 has been carried in [3]. Work on the conjecture contained
in the classification table continues these days.

Recently, the interest of the physics community is rapidly shifting from crys-
tals to meta-materials and from the electronic degrees of freedom to the electro-
magnetic and acoustic degrees of freedom. The search for topological photonic
and acoustic crystals is vigorously underway, on both theoretical and experimental
fronts. Since meta-materials give great control over the structure of the materials,
there is a strong movement among the physics community to move away from the
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simple disordered crystalline patterns and experiment with more interesting pat-
terns. Following this effort, myself and collaborators [8] introduced the concept of
dynamically generated patterns, defined as below.

Proposition. Let (Ω,Zd, τ) be a topological dynamical system. Denote the set
of generators of Zd, taken with both signs, by Gd. Assume the existence of the
continuous maps:

(1) Fe : Ω→ Rα, e ∈ Gd, α ∈ N+,

obeying the consistency relations:

(2) F−e = −Fe ◦ τe, F
e
′ − F

e
′ ◦ τ−e = Fe − Fe ◦ τ−e′ .

Then, for each ω ∈ Ω, the algorithm:

(3) p0 = 0, p
n+e

= p
n
+ (Fe ◦ τn+e)(ω), n ∈ Zd, e ∈ Gd,

generates a point pattern P = {p
n
}
n∈Zd whose points are indexed by Zd.

Under precise conditions, the discrete hull of these patterns coincides with Ω.
While these patterns are algorithmically simple, the patterns themselves can be
very complex and, through various limits, one can explore patterns that are not
from this category. Hence, we think they are very interesting. For many exam-
ples, the bulk-boundary principle for programs Bulk #1 and Boundary #1 can be
carried out completely using tools from K-theory. As a result, we obtained a large
number of new classes of systems displaying topological boundary spectrum.

The goals of my talk given for the workshop “Spectral Structures and Topolog-
ical Methods in Mathematical Quasicrystals”, organized at Oberwolfach Institute,
were: 1) communicate the research programs described in the first part of this
note; 2) exemplify the success stories with physical examples; 3) communicate the
interest of the physics community in patterns that go beyond disordered crystals;
4) introduce the dynamically-generated patterns; 5) establish the bulk-boundary
principle for equivariant Hamiltonians defined over such patterns; 6) exemplify the
physical consequences using laboratory results and numerical simulations.
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The “mixed” spectral nature of the Thue–Morse Hamiltonian

Yanhui Qu

(joint work with Qinghui Liu, Xiao Yao)

We find a subset Σ of the spectrum of Thue–Morse Hamiltonian Hλ, such that for
any E ∈ Σ, the following properties hold:

(i) The related trace orbit {tn(E) : n ≥ 1} is unbounded;
(ii) The norms of the transfer matrices grow as

ec1γ
√
n ≤

∥∥Tn(E)
∥∥ ≤ ec2γ

√
n,

where 0 < c1 < c2 are two absolute constants, γ > 0 is a constant only
depending on E;

(iii) There exists a subordinate solution ψ ofHλψ = Eψ, such that |ψn| is poly-
nomially bounded; |ψ±22n | decreases as e−2

nγ ; (ψ22n+1+1, ψ22n+1) tends to

(±1, 1). We call such a ψ a pseudo-localized state.

It is known that there exists a dense subset Σ̃ of the spectrum such that, for
any E ∈ Σ̃ and any solution φ of Hλφ = Eφ, φ is an extended state [1, 2]. Since
the extended states and pseudo-localized states co-exist, we may say that the
Thue–Morse Hamiltonian exhibits “mixed” spectral nature [3].
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Almost periodic measures and diffraction

Nicolae Strungaru

(joint work with Robert V. Moody)

Almost periodicity plays an important role in the study of mathematical diffrac-
tion. Given a point set Λ ⊂ Rd, representing the positions of atoms in an idealized
solid, Hof [7] defined the diffraction γ̂ of Λ as the Fourier transform of the posi-
tive and positive definite measure γ, the autocorrelation (or 2-point correlation)
measure of Λ; see [2] for a general exposition.

Each positive definite measure γ (or, more generally, each weakly almost peri-
odic measure γ) admits a (unique) Eberlein decomposition

γ = γs + γ0

into a strongly almost periodic measure γs and a null-weakly almost periodic mea-
sure γ0 (see the review [8] or [4, 5, 6] for details).

As proved by Eberlein for finite measures [5] and by Gil de Lamadrid–Argabright
for twice Fourier transformable measures [6], the Eberlein decomposition of the
autocorrelation γ is Fourier dual to the Lebesgue decomposition of the diffrac-
tion measure γ̂. Recently, we proved that this result more generally holds for
translation bounded, Fourier transformable measures as follows.

Theorem 1 ([8]). Let γ be a translation bounded, Fourier transformable measure.
Then, γ is weakly almost periodic, γs and γ0 are Fourier transformable, and

γ̂s = (γ̂)pp , γ̂0 = (γ̂)c .

An immediate consequence of this result is that strong almost periodicity and
pure point diffraction are Fourier dual concepts:

• a Fourier transformable measure µ is strongly almost periodic if and only
if µ̂ is pure point [8];
• a Fourier transformable measure µ is pure point if and only if µ̂ is strongly
almost periodic [6].

These results allow us to study the pure point spectrum (γ̂)pp and the continu-

ous spectrum (γ̂)c of Λ, which are measures in the Fourier dual space R̂d ≃ Rd, by
studying instead the measures γs and γ0, respectively, in the real space Rd. This
approach has led to many general results about the diffraction of Meyer sets (see
[9, 10] for example).

To gain further insight into the absolutely continuous and the singular contin-
uous spectrum, we would like to extend the Eberlein decomposition to another
decomposition step, γ0 = γ0a + γ0s, which is Fourier dual to the spectral decom-
position (γ̂)c = (γ̂)ac + (γ̂)sc.

While the general question about the existence of this decomposition is still
open, recent progress has been made in the case of positive definite measures with
Meyer set support as follows.
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Theorem 2. [11] Let γ be a translation bounded, positive definite measure that
is supported inside a Meyer set. Then, there exist three positive definite measures
γs, γ0s, γ0a supported inside Meyer sets such that γ = γs + γ0s + γ0a and

γ̂s = (γ̂)pp , γ̂0s = (γ̂)sc , γ̂0a = (γ̂)ac .

If Λ is a Meyer set, and γ its autocorrelation, it follows that each of the measures
(γ̂)pp, (γ̂)ac, (γ̂)sc is strongly almost periodic. In particular, each of these measures
is either trivial or has a relatively dense support.

Theorem 2 holds if Rd is replaced by an arbitrary metrizable locally compact
Abelian group G. It follows more generally that, if ω is any translation bounded
measure with Meyer set support in G, and γ is any autocorrelation of ω, then
each of the measures (γ̂)pp, (γ̂)ac, (γ̂)sc is either trivial or has a relatively dense
support.
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