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Abstract. The focus of the meeting was on the mathematical analysis of
complex networks, both on how networks emerge through microscopic inter-
action rules as well as on dynamic processes and optimization problems on
networks, including random walks, interacting particle systems and search
algorithms. Topics that were addressed included: percolation on graphs and
critical regimes for the emergence of a giant component; graph limits and
graphons; epidemics, propagation and competition; trees and forests; dy-
namic random graphs; local versus global algorithms; statistical learning on
networks.
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probability and stochastic geometry, 60K35 Interacting random processes; statistical mechan-

ics type models; percolation theory, 60K37 Processes in random environments, 82B20 Lattice

systems (Ising, dimer, Potts, etc.) and systems on graphs, 82B26 Phase transitions (general),

82B27 Critical phenomena, 82B41 Random walks, random surfaces, lattice animals, etc., 82C22

Interacting particle systems.

Introduction by the Organisers

Scientific scope of the meeting

The explosion of empirical network data – ranging from information and trans-
portation networks (Internet, train and road traffic) via biochemical networks
(gene expression and regulation) to social networks (Facebook and Twitter) – has
had a profound impact on science and society. A variety of mathematical mod-
els have been proposed in past years to understand the growth and the evolution
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of real-world networks, as well as their robustness against disturbances and at-
tacks. These models, in turn, have been used to analyse dynamical processes on
networks, such as algorithms that drive search engines like Google, epidemics for
infectious diseases, spread of information in social networks, and distribution of
energy and goods. Of particular interest is the interplay between the “structure”
of networks, such as degree distribution, connectivity and community structure,
and their “function”, such as the evolution of processes living on them.

In mathematics, real-world networks are modelled as random graphs, and their
performance is modelled by stochastic processes on these graphs. Mathematics has
a lot to offer. Practitioners in the applied network sciences are looking for more
guidance on current methodologies. Insight comes from a combination of differ-
ent disciplines, including probability theory, statistics, combinatorics, statistical
physics, information theory and algorithmic computer science. Fascinating lim-
iting structures such as continuum random trees, graphons, and graphexes, have
been uncovered; these provide unifying perspectives on the study of properties of
very large graphs. An open problem session contributed to the open en positive
atmosphere in the meeting.

Topics

The lectures focussed on the following research topics:

1. Percolation on graphs.
2. Phase transitions and critical phenomena in networks.
3. Epidemics and propagation on graphs.
4. Exploration of graphs and efficiency of algorithms.
5. Dynamics of graphs and on graphs.
6. Graph limits.
7. Statistical learning.

1. The presentations by Nicolas Broutin, Laura Eslava, Lorenzo Federico, Tim
Hulshof and Lutz Warnke all revolved around near-critical percolation on graphs,
including the hypercube, the Hamming graph, random regular graphs, inhomoge-
neous random graphs and dynamical Achlioptas processes on graphs. A detailed
description of the largest clusters was obtained, with the aim to unveil universality.
Augusto Teixeira spoke about percolation of words. He gave an overview of the
history of the problem and settled conjectures about which words are easiest to
percolate. David Aldous presented a universality result regarding the percolation
threshold of arbitrary large finite graphs. The result states that if a sequence of
graphs is such that a giant component emerges at a random time of order 1, then
the “incipient” time at which the giant component starts to emerge is determin-
istic to first order. He then presented a fascinating conjecture which, informally
speaking, states that the same phenomenon should occur for epidemic processes
with recovery on arbitrary graphs.

2. Markus Heydenreich presented recent results for scale-free percolation on net-
works. This model combines aspects of the inhomogeneous random graph and
long-range percolation on the Euclidean lattice. Scale freeness introduces new
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critical exponents. The focus of his talk was on the dichotomy of transience vs
recurrence of random walk on such spatial scale-free networks. Clara Stegehuis
spoke about graphlets in scale-free random graphs, showing that certain graphlets
prevail over others and identifying how their densities scale as well as their typical
structure, which can be described in terms of a variational formula characterized
by the degree structure of the vertices involved.

3. Mia Deijfen and Julia Komjathy spoke about epidemics on random graphs gen-
erated according to the configuration model with heavy-tailed degrees. Deijfen
focussed on competing epidemics, showing that depending on the rate at which
different types of infections spread along the graph, either one of the types dom-
inates or both types coexist. Komjathy discussed the shortest-weight properties
of first passage percolation on such graphs and the role of the explosive nature
of its branching-process approximation. Sarah Penington told the audience about
Branching Brownian Motion with competitions, and the link with a non-local
version of the FKPP-equation. The main goal was to locate the front between
high-mass and low-mass regions.

4. David Gamarnik and Ilias Zadik discussed the performance of certain graph
algorithms, in particular, the occurrence of a gap between what is theoretically
possible and what can be achieved in practice. The gap is linked to a certain
geometric non-overlap property of random sets, and describes how well the global
maximum can be approximated by local algorithms. Amin Coja-Oghlan described
the theory of constraint satisfaction problems on graphs. He showed how to derive
sharp satisfiability thresholds, and along the way simplified earlier proofs. Aman-
dine Veber presented a fluid limit theorem for resource allocation algorithms for
communication networks; the model she presented has the feature that different
clients may evolve on different temporal scales and have very different orders of
magnitude.

5. Hakan Guldas presented results for the mixing time of a random walk on a
dynamic random graph, initially generated according to the configuration models
and subsequently submitted to a random rewiring of the edges. In a regime of
fast enough rewiring, the mixing time was computed to leading order. Alexander
Fribergh looked at the “ant in the labyrinth”: random walks on random high-
dimensional percolation clusters. His focus was on universality in the scaling
behaviour. Luca Avena spoke about random rooted forests on graphs and showed
that they can be used to coarse-grain large networks and improve wavelet algo-
rithms. Justin Salez presented his recent advances in understanding cutoff, mixing
time and stationary distributions for random walks on random directed graphs.

6. Christian Borgs and Jennifer Chayes spoke about graph limits, in particular
about graphons and graphexes. Both are tools to deal with graphs having large
degree, either in the dense regime or in sparser regime. Various applications were
discussed. Christina Goldschmidt focussed on scaling properties of the configura-
tion model where the degree distribution has a heavy tail. Gregory Miermont gave



3430 Oberwolfach Report 57/2017

an overview of random triangulations. Svante Janson spoke about exchangeable
random graphs and highlighted some of their key properties.

7. Elchanan Mossel described recent joint work with Anuran Makur and Yury
Polyanskiy, regarding reconstruction thresholds for information flow on directed
acyclic graphs (DAGs). They established that for random 3-regular DAGs, there
is a natural phase transition in the width required to remember an input bit, as
the noisiness of the system varies. He additionally described an idealized model
of deep nets, and presented a result which shows that for certain models of data
representation, if the data is sampled in a generative hierarchical way, then it
is in fact necessary to use something like deep nets/deep learning in order to
build a good classifier. Andrea Montanari presented a collection of results on
semidefinite programming on random graphs, including the recovery program for
group synchronization on Euclidean lattices and the quality of SDP relaxations
for max cut-type problems on regular graphs.

Program of the workshop

Monday 11th December
08:55-09:00 Opening
09:00-10:00 Mia Deijfen
10:15-11:15 David Gamarnik
11:30-12:00 Lorenzo Federico
12:00-12:30 Alexander Fribergh
12:30-13:30 Lunch
13.30-16.30 Work and discussion
16.30-17:00 Julia Komjathy
17.00-17.30 David Aldous
17.30-18:30 Open problem session
18:30-20:00 Dinner

Tuesday 12th December
09:00-10:00 Christina Goldschmidt
10:15-11:15 Svante Janson
11:30-12:30 Gregory Miermont
12:30-13:30 Lunch
13.30-16.30 Hike
18:30-20:00 Dinner

Wednesday 13th December
09:00-10:00 Jennifer Chayes
10:15-11:15 Christian Borgs
11:30-12:00 Hakan Guldas
12:00-12:30 Tim Hulshof
12:30-13:30 Lunch
13.30-16.30 Work and discussion
16.30-17:00 Markus Heydenreich
17.15-17.45 Lutz Warnke
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18:00-18:30 Sarah Penington
18:30-20:00 Dinner

Thursday 14th December
09:00-10:00 Amin Coja-Oghlan
10:15-11:15 Nicolas Broutin
11:30-12:00 Laura Eslava
12:00-12:30 Luca Avena
12:30-13:30 Lunch
13:30-16:30 Work and discussion
16:30-17:00 Clara Stegehuis
17:15-17:45 Ilias Zadik
18:00-18:30 Augusto Teixeira
18:30-20:00 Dinner

Friday 15th December
09:00-10:00 Elchanan Mossel
10:15-11:15 Andrea Montanari
11:30-12:00 Amandine Veber
12:00-12:30 Justin Salez
12:30-13:30 Lunch

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Mélot)
Data sets on networks: some probabilistic tools . . . . . . . . . . . . . . . . . . . . . . 3436

Christian Borgs, Jennifer Chayes
Graphons and Graphexes as Limits of Sparse Graphs: Parts I and II . . . 3436

Nicolas Broutin (joint with Thomas Duquesne and Minmin Wang)
Scaling limits of inhomogeneous random graphs . . . . . . . . . . . . . . . . . . . . . 3437

Amin Coja-Oghlan (joint with Peter Ayre, Pu Gao, Noela Muller)
Random linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3440

Mia Deijfen (joint with Daniel Ahlberg, Remco van der Hofstad, Svante
Janson)
Competing first passage percolation on the configuration model . . . . . . . . 3442

Laura Eslava (joint with Lutz Warnke)
The size of the giant component in the random d-process . . . . . . . . . . . . . 3443

Lorenzo Federico (joint with Remco van der Hofstad, Frank den Hollander,
Tim Hulshof)
Critical Percolation on the Hamming graph . . . . . . . . . . . . . . . . . . . . . . . . . 3444

Alexander Fribergh (joint with Gérard Ben Arous, Manuel Cabezas)
The ant in high-dimensional labyrinths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3445

David Gamarnik
(Arguably) Hard on Average Constraint Satisfaction Problems . . . . . . . . . 3446

Christina Goldschmidt (joint with Guillaume Conchon-Kerjan)
The scaling limit of critical random graphs having i.i.d. power-law
degrees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3448
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Abstracts

Epidemics on general networks: a conjecture

David Aldous

The result in [1], stated there in terms of bond percolation, can be reformulated in
terms of the final size of the SI epidemic on a general finite weighted n-vertex graph
with initially o(n) infectives. It shows (informally) that in terms of a “virulence”
parameter θ, there is always a phase transition between subcriticality (epidemic
size o(n) w.h.p.) and supercriticality (epidemic size Ω(n) w.h.p.). The point is
that (essentially) no assumptions about the weighted graph are needed.

We conjecture that analogous “phase transitions occur in completely general
networks” results hold for other epidemic-type models where phase transitions are
known in the usual specific network models. Here is an explicit conjecture.

An SIS model [contact process]: Given a network (finite connected graph
with edge-weights we) and a rate function µv on vertices v. Introduce a parameter
0 < θ < ∞ and a (small) parameter ε > 0.

• Each v is in state S (susceptible) or I (infected); transition rates at v as
follows.

• I → S at rate µv.
• S → I at rate ε+ θ

∑{wvy : y infected } .

Conceptually, you get infected by your contacts with “virulence” parameter θ, or
from outside with low probability. Mathematically this is a finite state Markov
chain and so has a stationary distribution; we study Xθ,ε = number of infected
vertices, at stationarity.

Now consider a sequence of such networks/rate functions, indexed by n = num-
ber of vertices. The basic assumption we will make is: there exist 0 < θ∗ < θ∗ < ∞
such that, for every sequence εn ↓ 0 sufficiently slowly,

X
(n)
θ∗,εn

= o(n) in probability; X
(n)
θ∗,εn

= Ω(n) in probability.

Conjecture 1. Under the above assumption (and perhaps further but weak as-
sumptions), there exist θn ∈ [θ∗, θ

∗] such that, for all εn ↓ 0 sufficiently slowly,

X
(n)
θn−δ,εn

= o(n) in probability; X
(n)
θn+δ,εn

= Ω(n) in probability ∀δ > 0.

References

[1] D. Aldous, The Incipient Giant Component in Bond Percolation on General Finite
Weighted Graphs, Electron. Commun. Probab 21 (2016), paper no. 68.
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Data sets on networks: some probabilistic tools

Luca Avena

(joint work with Alexandre Gaudillière, Fabienne Castell, Clothilde Mélot)

Inspired by combinatorial problems from statistical physics, in the recent paper [1]
we characterized properties and efficient sampling algorithms of certain random
spanning forests on arbitrary weighted finite graphs. These objects are related to
fundamental algebraic and probabilistic structures of a given weighted graph (or
of the corresponding adjacency matrix). These studies branched into questions of
a different nature and led to a number of applications within the analysis of real-
world networks. This talk is on three main such applications recently obtained:
1) a downsampling procedure for “well-distributed” nodes in a network [1, 4]; 2)
coarse-graining or reduction schemes for graphs and associated processes [2, 4]; 3)
pyramidal wavelets-like algorithms for processing arbitrary signals on graphs [2, 4].
These applications are based on random forests together with other probabilistic
tools, including the so-called Wilson’s algorithm, coupling techniques and Markov
chain intertwining dualities.

References

[1] L. Avena and A. Gaudillière, Two applications of random spanning forests, Journal of
Theoretical Probability, DOI: 10.1007/s10959-017-0771-3 (2017).

[2] L. Avena, F. Castell, A. Gaudillière and C. Mélot, Approximate and exact solutions of
intertwining equations through random spanning forests, PREPRINT, arXiv.org:1702.05992
(2017).

[3] L. Avena, F. Castell, A. Gaudillière and C. Mélot, Intertwining wavelets or Multiresolution
analysis on graphs through random forests, PREPRINT, arXiv.org:1707.04616 (2017).

[4] L. Avena, F. Castell, A. Gaudillière and C. Mélot, Random Forests and Networks Analysis,
arXiv:1711.01635 (2017).

Graphons and Graphexes as Limits of Sparse Graphs: Parts I and II

Christian Borgs, Jennifer Chayes

(joint work with Henry Cohn, Shirshendu Ganguly, Nina Holden, Christina Lee,
Laci Lovasz, Devavrat Shah, Adam Smith, Victor Veitch, Yufei Zhao)

Graphons and graphexes are limits of graphs which allow us to model and estimate
properties of large-scale networks. In this pair of talks, we review the theory of
dense graph limits, and give two alternative theories for limits of sparse graphs,
one leading to unbounded graphons over probability spaces, and the other leading
to bounded graphons (and graphexes) over σ-finite measure spaces. Talk I, given
by Jennifer, will review the general theory, highlight the unbounded graphons,
and show how they can be used to consistently estimate properties of large sparse
networks. This talk will also give an application of these sparse graphons to
collaborative filtering on sparse bipartite networks. Talk II, given by Christian,
will recast limits of dense graphs in terms of exchangeability and the Aldous Hoover
Theorem, and generalize this to obtain sparse graphons and graphexes as limits of
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subgraph sampled from sparse graph sequences. This will provide a dual view of
sparse graph limits as processes and random measures, an approach which allows
a generalization of many of the well-known results and techniques for dense graph
sequences.
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Scaling limits of inhomogeneous random graphs

Nicolas Broutin

(joint work with Thomas Duquesne and Minmin Wang)

1. Poisson inhomogeneous random graphs

We consider the following rank-1 inhomogeneous random graph model. For an
integer n ≥ 1, let w = (w1, w2, . . . , wn) where w1 ≥ w2 ≥ · · · ≥ wn ≥ 0, be
a weight sequence and define σ1 = σ1(w) =

∑

iwi. Given w, one constructs a

random graph G(w) = (V,E) on V = {1, 2, . . . , n} where each of the
(

n
2

)

edges
is present in E independently of the others, and the edge {i, j} is included with
probability 1−exp(wiwj/σ1). The model has a long history. It was first considered
by Aldous [4] as an inhomogeneous version of the classical Erdős–Rényi random
graph, and then further studied by Aldous and Limic [5]. It also appears in the
works of Norros and Reittu [7]. In general, one could actually think of a graph
process Gt(w) where edges are included with probability 1 − exp(twiwj/σ1). As
t increases in [0,∞), one observes a sudden change in structure at some tc: for
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t > tc, the graph contains with high probability a ‘giant’ connected component
containing a linear proportion of the vertices. We are interested in the behaviour at
the critical point tc, and more specifically in the scaling limit of the graph seen as
a measured metric space where the metric is the graph distance, and the measure
is the counting measure on the vertices. The topologies of interest include the
Gromov–Prokhorov (GP) or the Gromov–Hausdorff–Prokhorov (GHP) topologies,
which somewhat correspond to convergence of the finite dimensional distribution
and uniform convergence for the graphs, respectively. In the following, we assume
that w is scaled so that tc = 1, and drop all reference to t altogether.

2. The critical regime and scaling limits

Weight of connected components. Aldous [4] and then Aldous and Limic [5]
considered the model in relation to the multiplicative coalescent, and were mostly
interested in the w-mass (sum of the weights) of the connected components. Let
(Wt) be a standard Brownian motion, c = (c1, c2, . . . ) ∈ ℓ3 and α ∈ R, β, κ ≥ 0.
Then define

(1) Yt = −αt− 1

2
κβt2 +

√

βWt +
∑

i

ci(1ξi≤tcitκ − ciκt),

where (ξi) are i.i.d. exponential r.v. with mean one. Then the Aldous–Limic limits
are given in terms of the durations of the excursions of Yt − inf{Ys : s ≤ t} away
from zero.

Mass of connected component. Bhamidi, van der Hofstad and van Leeuwaar-
den [11, 14] proved that the scaling limit for the number of nodes in the largest
connected components are actually the same as the w-weight considered by Aldous
and Limic when ci = 0 for all i, or when ci are regularly varying and β = 0.

Metric of the connected components. The first results concerning the met-
ric were proved by Addario-Berry, B. and Goldschmidt [1, 2] for the special case
where all the weights are identical (which corresponds to the classical Erdős–Rényi
random graph model). They proved in particular that the scaling limit consists of
a sequence of compact measured metric space that one can construct from (Yt), in
the special case when ci = 0 for all i ≥ 1, and an additional independent Poisson
point process. The limit is thus purely ‘Brownian’. The connected components are
described as random real trees encoded by the excursions of the reflected process,
in which one identifies a finite number of pairs of points given by the Poisson point
process to create the graph. The law of the spanning trees may also be described
as a change of measure of the Aldous’ continuum random tree [3].

Bhamidi, Sen and X. Wang [12] then considered the regime where the inhomo-
geneity is weak enough that it does modify the nature of the limit (that is c = 0),
and the weights only affect the result via deterministic multiplicative constants.
The proof relies on a description of the spanning tree in terms of birthday trees
(a weighted version of uniform trees) [6]. The strongly inhomogeneous regime
has been considered by Bhamidi, van der Hofstad and Sen [13], and also relies on
birthday trees and their scaling limits, inhomogeneous continuum random trees [6].
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While the previous results already give a pretty good picture of the limits of
G(wn) for sequences of weights of increasing lengths, many aspects are still poorly
understood. The first one is the set of possible limits: One also expects that all
the limits obtained by Aldous and Limic in terms of (Yt) defined in (1) should lift
to limit metric spaces, but the previous results only concern specific cases. Fur-
thermore, the proofs for the metric limits are regime specific (either ‘weakly’ or
‘strongly’ inhomogeneous), while the Aldous-Limic results treat the amount of in-
homogeneity transparently. Even for the limits that have been constructed, many
properties remain intriguing such as compactness of the connected components,
the fractal dimensions, and the extend of the basin of attraction.

3. Results and proof ideas

From every process (Yt) as in (1) we construct a sequence of measured metric
spaces. The metric is given by the process of local times

Ht = lim
ǫ→0

1

ǫ

∫ t

0

1(Ys ≤ inf
s≤u≤t

Yu + ǫ)ds .

The very fact that the limit above exist is non-trivial. The excursion of the process
(Ht) away from zero each encode a tree, the tree is then modified by creating
finitely many “short-cuts” whose location are given by the marks of a Poisson point
process with rate κ under the excursions of Yt above its infimum process (which
are in one-to-one correpondence with the excursions of Ht). The compactness
and fractal dimensions of the metric space are determined in terms of a Laplace
exponent associated to (Yt).

We also obtain limit theorems: for any limit object above, there exists a se-
quence of (wn) such that the corresponding graphs G(wn), suitably rescaled con-
verge to it; and there are also sequences for which the convergence takes place for
GP but not for the stronger GHP topology, and this even if the limit is compact.

The central idea consists in a novel representation of the discrete inhomogeneous
random graphs as embedded inside a Galton–Watson forest. Intuitively, we build
an infinite graph on N, and then prune it in such a way to (a) keep only one copy
of each of the weights, and (b) make sure that the metric inside the remaining part
is just the retriction of the metric on N. The limit graphs are then constructed on
a subforest of a Levy forest. This makes it possible to leverage the results on the
scaling limits of Galton–Watson forests by Le Gall & Le Jan [10] and Duquesne
& Le Gall [8] and avoid the need to deal frontally with the law of the graph. In
particular, this allows to deduce transparently a condition for the compactness
of the connected components, as well as their fractal dimension (Hausdorff and
packing) from the corresponding results for Levy trees (and the Laplace exponent
mentioned above is that of the Levy process in which (Yt) is embedded).
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Random linear equations

Amin Coja-Oghlan

(joint work with Peter Ayre, Pu Gao, Noela Muller)

Suppose that A is a random m × n matrix over the field Fq for a prime power
q with precisely k ≥ 3 non-zero entries per row. Choose y ∈ Fm

q uniformly at
random. The main result of this talk provides the precise threshold value m/n up
to which the random linear system Ax = y possesses a solution.

Theorem 1. Let k ≥ 3, let q > 1 be a prime power and let P be a permutation-
invariant distribution on F

∗ k
q . Set

ρk,d = sup
{

x ∈ [0, 1] : x = 1− exp(−dxk−1)
}

for d > 0,(1)

and define

dk = inf
{

d > 0 : ρk,d − dρk−1
k,d + (1− 1/k)dρkk,d < 0

}

.(2)
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Suppose that m = m(n) is a sequence such that km/n ∼ d. Then

lim
n→∞

P
[

∃x ∈ F
n
q : Ax = y

]

=

{

1 if d < dk,

0 if d > dk,

and thus for d < dk

lim
n→∞

P [rank(A) = m] = 1.(3)

As a corollary we obtain a formula for the random of the random matrix A.

Corollary 1. Let k ≥ 3, let q > 1 be a prime power and let P be a permutation-
invariant distribution on F

∗ k
q . Then for any d > dk, as n → ∞ we have

rank(A)

m
−→ 1 +

k

d
ρk,d − kρk−1

k,d + (k − 1)ρkk,d in probabiliy.

These results extend and generalise prior work on special cases. Particularly
the case q = 2, known as the random k-XORSAT problem, received considerable
attention [1, 5, 6, 8, 9]. More precisely, in the case q = 2 and k = 3 the satisfiability
threshold was determined by Dubois and Mandler [6] via the second moment
method. This argument was subsequently extended to k > 3 [5, 9], although this
extension required rather technical calculations. Extensions to the cases q = 3, 4
were obtained via a technically even more intricate second moment argument as
well [7].

By contrast, the present proof is based on a different technique inspired by
ideas from mathematical physics, particularly the so-called Aizenman-Sims-Starr
scheme [2] and its adaptation to statistical inference problems [4]. The full details
of the proof can be found in [3].
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Competing first passage percolation on the configuration model

Mia Deijfen

(joint work with Daniel Ahlberg, Remco van der Hofstad, Svante Janson)

Competing first passage percolation describes the growth of two competing infec-
tions on an underlying graph structure. We study the model on a graph generated
by the configuration model, that is, each vertex i ∈ {1, . . . , n} is equipped with
Di half-edges, where {Di} are independent and identically distributed, and the
half-edges are then paired uniformly at random to create edges. Starting from
two vertices chosen uniformly at random, the infections spread via the edges in
the graph in that an uninfected vertex becomes type 1 (2) infected at rate λ1 (λ2)
times the number of nearest neighbors of type 1 (2).

Our assumptions on the degree distribution ensure that the graph contains a
giant component occupying all but a vanishing fraction of the vertices as n → ∞,
and hence that almost all vertices will with high probability be infected when the
process terminates. The question that we will be interested in is the outcome of
this competition. Specifically, will both types occupy a strictly positive fraction
of the vertices in the limit as n → ∞?

When E[D2] < ∞, we show that the answer is yes if λ1 = λ2. Specifically,
the fraction of vertices that are ultimately infected by type 1 then converges to a
continuous random variable V ∈ (0, 1) as n → ∞. If λ1 6= λ2, on the other hand,
then the type with the larger intensity occupies all but a vanishing fraction of the
vertices. When the degrees obey a power law with exponent τ ∈ (2, 3) – so that
the mean is finite but the variance infinite – then with high probability one of the
infection types will occupy all but a finite number of vertices. Furthermore, which
one of the infections wins is random and both infections have a positive probability
of winning regardless of the values of λ1 and λ2.

In both cases, the initial growth of the infections can be approximated by con-
tinuous time branching processes and it turns out that the type that is in the lead
after this phase will win the competition. When the degree distribution has infi-
nite variance, the approximating branching processes will have infinite mean (due
to size biasing). This means that they explodes in finite time and both types will
then have a positive probability of exploding first. When the degrees have finite
variance, the branching processes will have finite mean and the relation between
the growth rates will then determine the outcome.

The methods controlling the growth after the branching process phase are spe-
cific for exponentially distributed passage times. A natural extension would be to
study more general passage time distributions, possibly different for the two types.
Another extension would be to study more general initial conditions, where the
initial number of one or both types may grow with n or where the vertices are
chosen based on degree. Is it for instance possible for a weaker type in the finite
variance case to capture a positive fraction of the vertices if it can start from one
or more high degree vertices, while the stronger type starts from a vertex with
small degree?
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The size of the giant component in the random d-process

Laura Eslava

(joint work with Lutz Warnke)

Graph processes (G(i), i ≥ 0) are usually defined as follows. Starting from the
empty graph on n vertices, at each step i a random edge is added from a set of
available edges. For the d-process, edges are chosen uniformly at random among
all edges joining vertices of current degree at most d− 1.

The fact that, during the process, vertices become saturated when reaching
degree d makes the process depend heavily on its history. However, it shares
several qualitative properties with the classical Erdos-Rényi graph process. For
example, there exists a critical time tc at which a giant component emerges, whp
(that is, the largest component in G(tn) goes from logarithmic to linear order).

In this talk we consider d ≥ 3 fixed and describe the growth of the size of
the giant component. In particular, we show that whp the largest component in
G((tc + ε)n) has asymptotic size cn, where c ∼ cdε is a function of time ε as
ε → 0+.

The growth, linear in ε, is a new common qualitative feature shared with the
Erdos-Rényi graph process and can be generalized to hypergraph processes with
different max-allowed degree sequences. This is work in process jointly with Lutz
Warnke.
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Critical Percolation on the Hamming graph

Lorenzo Federico

(joint work with Remco van der Hofstad, Frank den Hollander, Tim Hulshof)

Hamming graph percolation

The d-dimensional Hamming graph H(d, n) is defined as the cartesian product of d
complete graphs on n vertices each. Note that for specific choices of the parameters
we obtain two very famous models: percolation on H(1, n) is an Erdős-Rényi
random graph (ERRG), while percolation on H(d, 2) is hypercube percolation.
We study the asymptotic behaviour for d fixed and n → ∞. The main goal of this
project is to compare the critical phase of percolation to critical ERRG.

The critical point. The first result obtained is the determination of the critical
point, done in [2]. We proved that the critical point for percolation on H(d, n),
has an expansion in negative powers of the degree m, similar to the one derived
by van der Hofstad and Slade in [4] for percolation on the hypercube or on Z

d.
We obtain the following formula for the critical window

p(d)c =
1

m
+

2d2 − 1

2(d− 1)2
1

m2
+O(m−3) +O(m−1V −1/3),

which is asymptotically exact for d ≤ 6. This is the first known exact determi-
nation of the critical window for percolation on finite graphs. The lower bound

on p
(d)
c is obtained with a branching process domination of the cluster exploration

that explicitly exploits the geometric structure of H(d, n), in particular the fact
that all lines are complete graphs and thus in the percolation model they are
equivalent to ERRG, while the upper bound is obtained via lace expansion.

The critical scaling limit. The other important result is the determination of
the scaling limit for component sizes and surplus edges at criticality. Aldous in [1]
derived it for the ERRG and since then it has been extended to a wide variety of
non-geometric models, yet this is the first extension to a random graph model with
non-trivial underlying geometry. The difficulty lays in the fact that the exploration
algorithms typically used to derive these limits fail in presence of geometry, due
to the lack of independence in the positions of vertices of a cluster. We solve
this problem using a coupling between percolation and Branching Random Walks
(which is defined for general regular graphs), exploiting the very fast mixing time
of a RW on H(d, n). We thus derive the following scaling limit for the sizes and
surplus edges of the largest critical components, as d = 2, 3, 4 and n → ∞

(

(

n−2d/3|Cλ
(j)|, n1−2d/3Sp(Cλ

(j))
)

)

j≥1

d−→
(

(

Cλ
j ,

1

2(d− 1)2
Cλ

j

)

)

j≥1
.

The scaling limit for component sizes is identical to the one of the ERRG (even
with the same limiting variables), while the number of surplus edges, instead of
converging in distribution to a tight random variable, is diverging and is concen-
trated conditioned on component size. This is due to the fact that the lines of the
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Hamming graph are complete graphs, and thus after percolation form some denser
subgraphs, which contain a lot more short cycles than the average over the entire
graph. This is coherent with the general idea that geometry increases clustering
in random graphs.

We also have strong evidence that if we only consider the surplus created by
long cycles this has a similar scaling to the surplus of the ERRG.
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The ant in high-dimensional labyrinths

Alexander Fribergh

(joint work with Gérard Ben Arous, Manuel Cabezas)

One of the most famous open problem in random walks in random environments
is to understand the behaviour of a simple random walk on a critical percolation
cluster, a model known as the ant in the labyrinth. We will present new results
on the scaling limit for the simple random walk on the critical branching random
walk in high dimension which converges, after scaling, to the brownian motion on
the integrated super-brownian motion. In the light of lace expansion, we believe
that the limiting behaviour of this model should be universal for simple random
walks on critical structures in high dimension. In particular, recent progress show
that similar results hold for lattice trees.
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(Arguably) Hard on Average Constraint Satisfaction Problems

David Gamarnik

Many combinatorial optimization problems defined on random instances such as
random graphs, exhibit an apparent gap between the optimal value, which can
be estimated by non-constructive means, and the best values achievable by fast
(polynomial time) algorithms. As a canonical example consider the problem of
finding a largest clique in the random graph G(n, p). It is known that the largest
clique has an asymptotic size 2 log1/p n, while the best (Greedy) algorithm can

only construct a clique with size log1/p(n). The multiplicative factor 2 gap remains

open since Karp posed this as a challenge in 1976 [8]. Similarly, for sparse random
graphs G(n, d/n) with edge probability d/n, a largest independent set has size
2(log d/d)n asymptotically as n → ∞, and then d → ∞, in this order, while the
best (again Greedy) algorithm finds an independent set with size only (log d/d)n,
namely factor 2 smaller than the optimum.

As a third example, consider a random instance of the K-SAT problem. The
K-SAT problem is the canonical NP-complete problem on n boolean variables,
x1, . . . , xn defined by constructing a conjuction C1∧· · ·∧Cm of m clauses Cj , each
of which is a disjuction of the form Cj = aj1∨· · ·∨ajK , and each aij is one of the n
variables x1, . . . , xn or one of their n negations x̄1, . . . , x̄n. Suppose an instance of
a K-SAT problem is constructed uniformly at random (in some appropriate sense).
It is known that when the clause densitym/n = d is approximately 2K log 2−O(1),
the instance admits a satisfying assignment [1],[4]. However, the best algorithmic
result can only construct a satisfying assignment when d ≤ (2K/K) logK, namely
factor K/ logK smaller that the best possible [3].

Similar gaps abound in many modern models of high dimensional statistics
and machine learning. For example, consider the regression model of the form
Y = Xβ∗ + W , where X is n × p has i.i.d. standard Gaussian entries, W has
i.i.d. N(0, σ) Gaussian entries, and β∗ is some unknown regression vector to be
recovered from observed X and Y . It is known that if β∗ is k-sparse, namely it
has at most k non-zero entries and every non-zero entry is of constant order, then,
provided that n is roughly at least 2k log p, the vector β∗ can be reconstructed by
means of convex relaxation techniques such as LASSO or Dantzig Selector (under
some additional assumptions on k, n, p and σ), while these techniques provably
fail when n ≤ 2k log p. At the same time, the brute force search can reproduce β∗

when n ≥ 2k log p/ log(1+k/σ2). Below this threshold, however, reconstructing β∗

is impossible information theoretically. In particular, when σ is of constant order,
the gap between the best algorithmically tractable technique and the best result
achievable information theoretically is of the logarithmic (log(1 + k/σ2)) order.

Through a combined effort of mathematicians, computer scientists and statis-
tical physicists, it became apparent that a potential and in some cases a provable
obstruction for designing algorithms bridging the algorithmic gap illustrated by
several examples above, is an intricate geometry of nearly optimal solutions, in
particular the presence of a certain Overlap Gap Property (OGP). This property
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can be defined roughly as follows. Most of the models above can be described in
general as the problem of minimizing some cost function F (σ, Z) over some deci-
sion variables σ where Z is a random ”disturbance” creating the random objective
function F . In the case of cliques in G(n, p), for example, σ ∈ {0, 1}n is an en-

coding of a clique, and Z ∈ {0, 1}(n2) encodes the status of each edge (open/close).
In the case of the regression problem W = (X,Y ) and F (β,W ) = ‖Y − Xβ‖2,
and the minimization minβ ‖Y − Xβ‖2 is over all k-sparse vectors β ∈ Rp. We
note that in this example, the disturbance W depends on some hidden signal β∗

through Y = Xβ∗ +W .
Roughly speaking, the model exhibits the OGP if for every two nearly optimal

solutions σ1, σ2, namely solutions satisfying σj ≈ minσ F (σ,W ), j = 1, 2, either
〈σ1, σ2〉 ≈ 0 or 〈σ1, σ2〉 ≈ ‖σ1‖2 ≈ ‖σ2‖2. Namely, every two nearly optimal
solutions are either nearly orthogonal or nearly identical. The precise form of the
OGP varies from problem to problem.

In this talk several theorems were presented which demonstrated that the onset
of the OGP nearly coincides with the (apparent) onset of algorithmic hardness,
and furthermore, the presence of the OGP implies a provable failure of a certain
class of so-called local algorithms. Specific results concerned the problem of finding
a largest cut of a random sparse hypergraph (joint work with Chen, Panchenko
and Rahman [2]), the problem of finding a largest submatrix of a random matrix
(joint work with Li [5]), and the sparse regression problem discussed above (joint
work with Zadik [6],[7]).
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The scaling limit of critical random graphs having i.i.d. power-law
degrees

Christina Goldschmidt

(joint work with Guillaume Conchon-Kerjan)

This abstract is based on the paper in preparation [4]. Let n ≥ 1 and fix a degree
sequence d = (d1, d2, . . . , dn) such that d1, d2, . . . , dn ≥ 1 and

∑n
i=1 di is even.

Assume that the set G(d) of graphs with vertex-set [n] := {1, 2, . . . , n} and such
that vertex i has degree di is non-empty. Let Gn be an element of G(d) chosen
uniformly at random. The standard method of generating such a graph is via
the configuration model (see van der Hofstad [9] for a detailed description and
precise references for the general results quoted below). Assign vertex i a number
di of half-edges and then pair the half-edges uniformly at random. In general, this
generates a multigraph Mn (i.e. a graph with self-loops and multiple edges), but
if we condition it to be simple, it has the same law as Gn. An important feature
of the configuration model is that we may generate the pairing edge-by-edge in an
order that is convenient for analysis.

We study this model in the setting where the degrees are random variables
D1, D2, . . . , Dn which are independent and identically distributed and such that

(1) E[D2
1] = 2E[D1];

(2) kα+2P(D1 = k) → c as k → ∞, for some constant c > 0 and α ∈ (1, 2).

If
∑n

i=1 Di is odd, simply throw away the last half-edge when we do the pairing. We
observe that in this setting P(G(D) 6= ∅) converges to a strictly positive constant
as n → ∞ so that, for sufficiently large n, conditioning the multigraph to be
simple makes sense. Condition (1) says that the graph is critical. Condition (2)
entails that the degrees have finite variance but infinite third moment. The finite
third moment setting has been extensively studied, in particular by Joseph [10]
and Riordan [11] (for the component sizes) and Dhara, van der Hofstad, van
Leeuwaarden and Sen [5] (for the metric structure). There the scaling limit is (up
to constants) the same as that obtained for the critical Erdős–Rényi model in [1]
(building on work of Aldous [2], who showed that the component sizes may be
encoded as the lengths of excursions above the running minimum of a Brownian
motion with parabolic drift).

Let us assume conditions (1) and (2). Write Cn
1 , C

n
2 , . . . for the connected

components of Gn listed in decreasing order of size, and |Cn
1 |, |Cn

2 |, . . . for those
sizes. Let (Lt, t ≥ 0) be a spectrally positive α-stable Lévy process with Laplace
transform

E[exp(−λLt)] = exp(cαtλ
α), λ ≥ 0, t ≥ 0,

where cα = cΓ(2−α)
µα(α−1) . Define a new process (L̃t, t ≥ 0) via the following martingale

change of measure: for any t ≥ 0 and any bounded measurable test function f ,

E[f(L̃s, 0 ≤ s ≤ t)]

= E

[

exp

(

1

µ

∫ t

0

(Ls − Lt)ds−
cαt

α+1

(α+ 1)µα+1

)

f(Ls, 0 ≤ s ≤ t)

]

.
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Then the following result is an extension (from Mn to Gn) and reformulation of a
theorem due to Joseph [10].

Theorem 1. As n → ∞,

n−α/(α+1)(|Cn
1 |, |Cn

2 |, . . .)
d→ (γ1, γ2, . . .)

in ℓ2, where γ1, γ2, . . . are the ordered lengths of the excursions of L̃ above its
running minimum.

Our main result describes the metric space scaling limits of the components
themselves. Consider the components Cn

1 , C
n
2 , . . . ofGn as measured metric spaces,

by endowing each with the graph distance and by assigning mass n−α/(α+1) to
each vertex. The limit spaces have an explicit description. First, observe that
excursions of the stable Lévy process L may be used to encode a forest of stable
trees, via the so-called height process H (see Duquesne and Le Gall [7]). We may

use the absolute continuity relation between L̃ and L to define a height process H̃
corresponding to L̃: for any t ≥ 0 and any bounded measurable test function g,

E[g(L̃s, H̃s, 0 ≤ s ≤ t)]

= E

[

exp

(

1

µ

∫ t

0

(Ls − Lt)ds−
cαt

α+1

(α+ 1)µα+1

)

g(Ls, Hs, 0 ≤ s ≤ t)

]

.

Let us write
Rt = L̃t − inf

0≤s≤t
L̃s, t ≥ 0.

Write ε1, ε2, . . . for the excursions of R above 0, in decreasing order of length, and
note that these are in one-to-one correspondence with the excursions h1, h2, . . . of
H̃ above 0 (again listed in decreasing order of length). In particular, both εi and
hi have length γi, for i ≥ 1. Let (Ti, di, µi) be the measured R-tree encoded in the
standard way by hi, with canonical projection pi : [0, γi] → Ti.

Conditionally on R, consider now a Poisson point process on R+×R+ of inten-
sity 1

µ1{0≤x≤Rt}dtdx. (Equivalently, this is a rate 1 Poisson point process in the

region under the graph of the process R and above the horizontal axis.) Suppose
that for i ≥ 1, a number mi of points fall under the excursion εi. If mi ≥ 1, let

(s
(i)
1 , x

(i)
1 ), . . . , (s(i)mi

, x(i)
mi

)

be the points themselves. Then for 1 ≤ k ≤ mi, let

t
(i)
k = inf

{

t ≥ s
(i)
k : εi(t) = x

(i)
k

}

.

Finally, for i ≥ 1, if mi = 0, let Ci = (Ti, di, µi); if mi ≥ 1, let Ci be the measured
metric space obtained from (Ti, di, µi) by identifying the pairs of points

(

pi(s
(i)
1 ), pi(t

(i)
1 )

)

, . . . ,
(

pi(s
(i)
mi

), pi(t
(i)
mi

)
)

.

For a measured metric space (M,d, µ), write aM as a shorthand for (M,ad, µ).
Let M be the set of sequences of measure-preserving isometry classes of compact
measured metric spaces, endowed with the product Gromov–Hausdorff–Prokhorov
topology. Then we have the following scaling limit.
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Theorem 2. As n → ∞,

n−(α−1)/(α+1)(Cn
1 , C

n
2 , . . .)

d→ (C1, C2, . . .)
in M.

Closely related results have recently been proved by Dhara, van der Hofstad,
van Leeuwaarden and Sen [6] (for component sizes) and by Bhamidi, Dhara, van
der Hofstad and Sen [3] (for metric structure). See also the abstract of the talk
by Nicolas Broutin in this volume, concerning his forthcoming work with Thomas
Duquesne and Minmin Wang.

We observe that the spanning trees (Ti, di, µi), i ≥ 1 are measure-changed stable
trees. Indeed, if ẽ is an excursion of R conditioned to have length x and e is an
excursion of (Lt − inf0≤s≤t Ls, t ≥ 0) conditioned to have length x (and thus
encoding a stable tree of size x), we have

E[f(ẽ(t), 0 ≤ t ≤ x)] =
E

[

exp
(

1
µ

∫ x

0 e(u)du
)

f(e(t), 0 ≤ t ≤ x)
]

E

[

exp
(

1
µ

∫ x

0
e(u)du

)] .

This relation together with detailed knowledge of the stable trees from the lit-
erature entail that the distributional properties of the limit spaces C1, C2, . . . are
particularly tractable; these properties will be further explored in the paper [8] in
preparation.
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Mixing times of random walks on dynamic configuration models

Hakan Güldaş

(joint work with Luca Avena, Remco van der Hofstad, Frank den Hollander)

The mixing time of a random walk, with or without backtracking, on a random
graph generated according to the configuration model on n vertices, is known to
be of order logn. In this talk we investigate what happens when the random graph
becomes dynamic, namely, at each unit of time a fraction αn of the edges is ran-
domly rewired. Under mild conditions on the degree sequence, guaranteeing that
the graph is locally tree-like, we show that for every ε ∈ (0, 1) the ε-mixing time

of random walk without backtracking grows like
√

2 log(1/ε)/ log(1/(1− αn)) as
n → ∞, provided that limn→∞ αn(log n)

2 = ∞. The latter condition corresponds
to a regime of fast enough graph dynamics. Our proof is based on a randomised
stopping time argument, in combination with coupling techniques and combinato-
rial estimates. The stopping time of interest is the first time that the walk moves
along an edge that was rewired before, which turns out to be close to a strong
stationary time.

Scale-free percolation

Markus Heydenreich

(joint work with Tim Hulshof, Joost Jorritsma)

Many real-world networks, such as WWW, social, financial, neural, or biological
networks, exhibit a number of fairly general patterns:

• the length of a smallest path between two vertices is small w.r.t. the system
size (small world),

• the degrees of vertices exhibit a power law (a scale-free network),
• vertices that are geographically close are likely to be connected (geometric
clustering),

• vertices with high degree are likely to be connected even if far away from
each other (hierarchies).

It is a challenge to find good mathematical network models that are rich enough
to capture these properties but sufficiently simple to be amenable to a rigorous
analysis.

Scale-free percolation, as introduced by Deijfen, van der Hofstad, and Hoog-
hiemstra (2013), is an excellent candidate that meets all of the above criteria. It
denotes a percolation model on Zd, where two lattice points x and y are connected
by an edge with probability

px,y = 1− exp

{

−λ
WxWy

|x− y|α
}
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where λ > 0 is a percolation parameter, Wx and Wy are i.i.d. edge weights with
power law distribution

P (Wx > w) ≈ w−(τ−1), w > 0,

and α > 0 denotes the exponent for the long-range connections. It arises as a
marriage of the (non-spatial) Norros-Reittu model and the (non scale-free) long-
range percolation, as illustrated in Figure 1.

(A) Norros-Reittu random graph,
where px,y = 1− exp{−λWxWy/n}
with τ = 1.95.

(B) Long-range percolation,
where px,y = 1− exp{−λ/|x− y|α}
with α = 3.9, λ = 0.9.

(C) Scale-free percolation where px,y as in Eq. () with α = 3.9, τ = 1.95, λ = 0.1.

Figure 1. Simulations of the Norros-Reittu random graph (A),
long-range percolation (B), and scale-free percolation (C). The
size of the vertices is drawn proportionally to their weights.
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Bringmann, Keusch, and Lengler (2016) consider a variant of this model in finite
domain and continuous space. Indeed, they prove that, for a certain parameter
range, the main results from the model on infinite lattice carry over. Further
properties have been obtained by Deprez, Hazra, and Wüthrich (2015).

We study structural properties in the regime when there is an infinite connected
component. Interestingly, the various parameters introduced above can be con-
densed into a new parameter γ = α(τ − 1)/d, which governs the behaviour of the
model. The first result concerns random walk properties on infinite clusters.

Theorem 1. The following is true for scale-free percolation whenever the param-
eter λ is chosen such that a (unique) infinite cluster exists.

(i) If τ ≤ 2 and γ ∈ (1, 2) or τ > 2 and α ∈ (d, 2d), then the infinite cluster
of scale-free percolation is transient.

(ii) In dimension d = 1, 2, if γ > 2 and α > 2d, then the infinite cluster of
scale-free percolation is recurrent.

For γ < 1 or α < d, every vertex has a.s. infinite degree, hence the notion
transience vs. recurrence is not applicable to these cases. It is an open problem to
investigate transience vs. recurrence in the regime (ii) of the theorem in dimension
d ≥ 3; this appears to be unresolved even for long-range percolation.

Furthermore, we formalise the notion of “hierarchies” by introducing a new
object called hierarchically clustered tree, and prove that such trees exist whenever
γ ∈ (1, 2) and λ > 0. For details we refer to Definition 2.5 and Theorem 2.6 in
Heydenreich, Hulshof, and Jorritsma (2017).
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Slightly Subcritical Hypercube Percolation

Tim Hulshof

(joint work with Asaf Nachmias)

We study bond percolation on the hypercube {0, 1}m in the slightly subcritical
regime where p = pc(1−εm) and εm = o(1) but εm ≫ 2−m/3 and study the clusters
of largest volume and diameter. We establish that with high probability the largest
component has cardinality Θ

(

ε−2
m log(ε3m2m)

)

, that the maximal diameter of all
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clusters is (1+o(1))ε−1
m log(ε3m2m), and that the maximal mixing time of all clusters

is Θ
(

ε−3
m log2(ε3m2m)

)

.
These results hold in different levels of generality, and in particular, some of

the estimates hold for various classes of graphs such as high-dimensional tori,
expanders of high degree and girth, products of complete graphs, and infinite
lattices in high dimensions.

Edge exchangeable random graphs

Svante Janson

Edge exchangeable random (multi)graphs were introduced by Crane and Dempsey
[6, 7]. An equivalent model, using somewhat different formulations, was given by
Broderick and Cai [4] and Campbell, Cai and Broderick [5].

The idea is that we have a fixed (labelled) vertex set, and add a sequence
of edges (regarded as pairs of vertices). Repetions are allowed, so we construct
a multigraph. The sequence of edges is supposed to be exchangeable. By De
Finetti’s theorem, this is equivalent to the following:

Let V be a finite or infinite set, and let µ be a deterministic or random proba-
bility measure on the edges of the complete graph on V .

(1) Given µ, take N i.i.d. edges with distribution µ.
(2) Delete all isolated vertices.

There are some similarities with the (in my opinion more important) vertex
exchangeable random graphs (see e.g. [2, 3, 9, 1, 11]) with a discrete type space
N, but the two models are quite different. For example, the edge exchangeable
graphs have at most one vertex of each type.

Example 1. Let (qi) be a probability distribution on N. For each edge, just pick
its two endpoints independently with this distribution. Thus µ(ij) = qiqj . Cf.
similar “rank 1” cases of vertex exchangeable graphs, with W (x, y) = φ(x)φ(y).

Example 2. Pittel [10] considered a random multigraph process with a fixed
vertex set [n] andN edges added one by one, with an edge ij added with probability
proportional to (di + α)(dj + α), where di is the current degree of i. (Slightly
modified for loops.) Here α > 0 is a fixed parameter. Equivalently: choose
vertices with probability proportional to di+α. Then join the first two vertices to
an edge, then the next two, and so on. Thus, the vertices are chosen according to
a Pólya urn process, starting with α balls of each colour (= vertex). The sequence
of vertices is exchangeable, and thus so is the sequence of edges. Hence, this is an
edge exchangeable random multigraph.

Remarks:

(1) Exchangeability implies that conditioned on the final degree of each vertex,
all possible edge sequences have the same probability. Hence, conditioned
on the degree sequence, the random multigraph is the multigraph given
by the configuration model.
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(2) A standard result for Pólya urn processes shows that the vector (di/2N)
converges to a Dirichlet(α, . . . , α) distribution as N → ∞.

(3) The random sequence of vertices in the construction can be seen as a
two-parameter Chinese restaurant process with parameters (−α, nα). A
Chinese restaurant process with other parameters yields a similar edge
exchangeable random multigraph (on a number of vertices growing to ∞).

Simple graph version. We can merge multiple edges and ignore loops, and thus
obtain a random simple graph. This gives an increasing sequence of simple graphs.

Let Gm be the resulting simple graph with m edges.

Example 3. If P (ij) ∼ ((i ∨ j)!)−4, then a.s. Gm = Kn when m =
(

n
2

)

, for all
large n. Thus Gn → the graphon 1 a.s. as n → ∞.

Example 4. There exists a distribution µ of edges on V = N such that a.s.
the sequence Gn is dense in the space of graph limits, i.e., for every graph limit
(graphon), there exists a subsequence Gmi

converging to it. An example of every-
thing? Or of nothing?

See further [8].

References

[1] Christian Borgs, Jennifer T. Chayes, Henry Cohn & Nina Holden. Sparse exchangeable
graphs and their limits via graphon processes. Preprint, 2016. arXiv:1601.07134v1

[2] Christian Borgs, Jennifer T. Chayes, László Lovász, Vera T. Sós & Katalin Vesztergombi.
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Weighted distances in the configuration model

Júlia Komjáthy

(joint work with E. Adriaans, E. Baroni, R. van der Hofstad)

In this talk we study weighted distances in the configuration model with empirical
degree distribution that follows a power-law with exponent τ ∈ (2, 3). We assign
independent and identically distributed (i.i.d.) weights to the edges of the graph.
We investigate the weighted distance (the length of the shortest weighted path)
between two uniformly chosen vertices, called typical distances.

Let us denote the edge-weight distribution by σ and let dσ(un, vn) denote the
weighted distance between two uniformly chosen vertices un, vn in the graph on

n vertices with respect to i.i.d. σ-distributed edge-weights. Let F
(−1)
σ denote the

generalised inverse of the distribution function of σ. The underlying age-dependent
branching process approximating the local neighborhoods of vertices is found to
produce infinitely many individuals in finite time – called explosive branching
process – for all τ ∈ (2, 3), precisely when

∞
∑

k=1

2F (−1)
σ (exp(−ek)) < ∞.

When this condition holds, we show that typical distances in the weighted config-
uration model converge in distribution to a bounded random variable, that is,

dσ(un, vn)
d−→ V

for some proper random variable V , where
d−→ denotes convergence in distribution

[1]. When the underlying branching process is not explosive, we show that

dσ(un, vn)/

log logn/| log(τ−2)|
∑

k=1

2F (−1)
σ (exp(−(τ − 2)−k))

P−→ 1,

where
P−→ denotes convergence in probability [2]. These results holds for any (not

necessary continuous) edge-weight distributions. This sequence tends to infinity
with the amount of vertices, and, by choosing an appropriate weight distribution,
can be tuned to be any growing function that is O(log logn), where n is the number
of vertices in the graph.

The proof techniques contain degree-dependent percolation on the configuration
model and branching process approximations.
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Percolation on random planar triangulations: a Boltzmann approach

Grégory Miermont

(joint work with Olivier Bernardi, Nicolas Curien)

Various aspects of Bernoulli percolation on random planar maps have been stud-
ied in recent years [1, 2, 11, 7, 12, 6, 8, 9]. Let Tn be a uniformly chosen ran-
dom rooted triangulation of the 2-sphere with n vertices, where triangulations are
considered up to orientation-preserving homeomorphisms that preserve the root.
Angel and Schramm have shown [3] that Tn converges locally in distribution to
a fundamental limiting object, the Uniform Infinite Planar Triangulation (UIPT)
T∞. We consider Bernoulli site (or bond) percolation on T∞, where every vertex
(or edge) is independently declared open with probability p and closed otherwise,
conditionally given the realisation of T∞. Using a Markovian exploration of T∞

coined as the peeling process, Angel [1] showed that the Bernoulli site perco-
lation threshold, above which the probability that the open cluster of the root
of T∞ has a positive probability to be infinite, is psitec (T∞) = 1/2. Angel and
Curien [2] later identified, using similar methods, the bond percolation threshold

as pbondc (H∞) = (2
√
3 − 1)/11, for a related half-planar version H∞ of T∞. As

opposed to the “dynamical” approach of the peeling process, the work [7] uses
a “fixed” combinatorial decomposition (inspired by [4]) and known enumeration
results on triangulations to study the scaling limit of percolation cluster condi-
tioned on having a large boundary. All the above works focused, in a sense, on
the geometry of one percolation interface, hence studied the geometry of the outer
boundary of a large percolation cluster. Here we develop a method that is aimed
at studying the full cluster of the origin in a finite map.

We consider a critical Boltzmann triangulation, that is a random finite planar

triangulation T chosen with probability proportional to z#triangles
0 , where z0 =

432−1/4 is the maximal value for which this definition makes sense. Under this law,
the probability that T has n triangles decays polynomially in n. We then endow
T with a Bernoulli site or bond percolation model with parameter p ∈ [0, 1], and
consider the origin cluster C(p). The cluster C(p) is a random planar map which
also has a Boltzmann distribution, in the sense that there is a sequence (qk)k>0

of non-negative numbers depending on the parameter p, such that the probability
that C(p) is equal to any map m is proportional to the product over all faces f of
m of qdeg(f).

By enumerating triangulations with boundaries according to both the boundary
length and the number of vertices/edges on the boundary, using a generating
function approach in the vein of [13, 5], we find a phase transition at the values

pc = 1/2 for site-percolation, and pc = (2
√
3 − 1)/11 for bond-percolation. This

phase transition manifests itself in at least three ways:

(a) the probability that the cluster C(p) has n vertices decays exponentially in
n for p < pc and polynomially for p ≥ pc, as n

−20/7 for p = pc and n−5/2

for p > pc,
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(b) the probability that the percolation interface surrounding C(p) has length
ℓ decays exponentially in ℓ for p 6= pc and polynomially as n−10/3 for
p = pc,

(c) the asymptotic form of the sequence (qk)k>0 is different for p < pc, p = pc
and p > pc.

By using (a) and comparison techniques between T and the UIPT T∞, we give an
alternative proof of the fact that the values of pc correspond to the percolation
thresholds pc(T∞) of site and bond percolation on T∞ as defined above. We also
prove the exponential decay of the tail distribution for the size of C(p) in the sub-
critical regime. The result (b) indicates that the critical cluster C(pc) conditioned
to have many vertices will have some faces of polynomially large degrees. The
result (c) allows us to show that the critical cluster C(pc) is a non-regular critical
Boltzmann map in the sense of Le Gall and Miermont [10]. It strongly suggests
that the rescaled critical percolation cluster conditioned to have n vertices con-
verges in law toward the so-called stable map of parameter 7

6 . This conjectural
limit leads us to make several additional conjectures on the distribution and ge-
ometry of C(pc), in relation to recent results of Gorny, Maurel-Segala and Singh
[8].
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Semidefinite programs on random graphs

Andrea Montanari

(joint work with Zhou Fan)

Given a graph G = (V,E), |V | = n, the minimum bisection problem requires
to partition its vertex set in two subset of equal cardinality as to minimize the
number of edges across the partition. Up to rescalings, this is equivalent to solving
the following integer programming problem

maximize 〈σ,AGσ〉 ,
subject to σ ∈ {+1,−1}n 〈σ,1〉 = 0 ,

where AG is the adjacency matrix of G. Denote by OPT(G) the value of this
problem. It was proven in [1] that, if G is an Erdös-Renyi random graphs with

average degree d, G ∼ G(n, d/n), then with high probabilityOPT(G)/n = 2P∗

√
d+

on(1) + o(
√
d), where P∗ ≈ 0.763166726566547 is the ground state energy of the

Sherrington-Kirkpatrick model, which can be computed using Parisi’s formula (the
evaluation reported here is due to Manuel J. Schmidt).

What are polynomial-time computable upper bounds on OPT(G)? Namely
would like a quantity UB(G) that can be computed in polynomial time and such
that: (i) OPT(G) ≤ UB(G) for any graph; (ii) OPT(G) ≈ UB(G) for random
graphs. A classical such upper bound is obtained by solving the following semi-
definite program (with A

cen

G = AG − (d/n)11T)

maximize 〈Acen

G ,X〉 ,
subject to X � 0, Xii = 1 ∀i .

In [2, 3], we prove several the value of this program, denoted by SDP(G). In
particular [3], if G ∼ G(n, d/n), then, with high probability, for d ≥ 1,

2
√
d

(

1− 1

d+ 1

)

− on(1) ≤
1

n
SDP(G) ≤ 2

√
d

(

1− 1

2d

)

+ on(1) .
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Information Flow on Networks

Elchanan Mossel

We started by reviewing the process of information flow on trees, see e.g [3, 1],
then we discussed a new variant of information flow on DAGs studied together
with Anuran Makur and Yury Polyanskiy. Interestingly in information flow on
DAGs, it suffices for the network to grow at logarithmic rate to remember the
bit. We discussed various bounds and phase transitions. In the second part of
the talk, based on [2] we introduced information flow processes which model data
that is generated in a hierarchal fashion. For such models we can prove separation
between deep and shallow algorithms appropriately defined.
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Branching Brownian motion with decay of mass and the non-local
Fisher-KPP equation

Sarah Penington

(joint work with Louigi Addario-Berry, Julien Berestycki)

Branching Brownian motion with decay of mass is a model of competition for
resources in a spatially-structured population, introduced in [1]. The model is
based on a one-dimensional branching Brownian motion (BBM). We assign a mass
to each particle in the BBM; the mass of a particle decays at rate proportional to
the total mass of particles in a window of radius µ centred at the location of the
particle, for some fixed µ > 0. More precisely, we let N(t) denote the number of
particles in the BBM at time t and let (Xi(t), i ≤ N(t)) denote the locations of
the particles. For t ≥ 0, x ∈ R, let

ζ(t, x) =
1

2µ

∑

{i:|Xi(t)−x|∈(0,µ)}

Mi(t).

Then for i ≤ N(t), let

Mi(t) = exp

(

−
∫ t

0

ζ(s,Xi,t(s))ds

)

,

where Xi,t(s) is the location of the ancestor of Xi(t) at time s.
In joint work with Louigi Addario-Berry [1], we showed that in a weak sense,

at large times t, the front location in this model is Θ(t1/3) behind the location
of the rightmost particle in the BBM. For m > 0, we let d(t,m) = inf{x > 0 :
ζ(t, x) < m} and D(t,m) = sup{x : ζ(t, x) > m}. Then using results on consistent
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maximal displacement for branching Brownian motion [3, 4], we showed in [1] that
for m ∈ (0, 1), almost surely,

lim sup
t→∞

√
2t− d(t,m)

t1/3
≥ c∗ and lim inf

t→∞

√
2t−D(t,m)

t1/3
≤ c∗,

where c∗ = 34/3π2/3/27/6.
In recent joint work with Louigi Addario-Berry and Julien Berestycki [2], we

showed that at large times, the local mass density on a bounded time interval is
well approximated by a solution of the non-local Fisher-KPP equation

∂u
∂t = 1

2∆u + u(1− φ ∗ u),

where φ(y) = (2µ)−11|y|≤µ. This allowed us to show that for µ sufficiently small,
the local mass density in the BBM with decay of mass converges to one behind
the front. The behaviour of the local mass density behind the front is an open
question for large µ.
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Annales de l’Institut Henri Poincaré, Probabilités et Statistiques 48(4) (2012), 989–1009.
[4] M. Roberts. Fine asymptotics for the consistent maximal displacement of branching Brow-

nian motion, Electron. J. Probab. 20(28) (2015), 1–26.

Mixing time and cutoff for random walk on random directed graphs

Justin Salez

(joint work with Charles Bordenave, Pietro Caputo)

A finite ergodic Markov chain exhibits cutoff if its distance to equilibrium remains
close to 1 over a certain number of iterations and then abruptly drops to 0 on
a much shorter time scale. Originally discovered in the context of card shuffling
[1], this remarkable phenomenon is now rigorously established for many reversible
chains. In [2] we consider the non-reversible case of random walks on sparse
directed graphs, for which even the equilibrium measure is far from being under-
stood. We work under the configuration model, allowing both the in-degrees and
the out-degrees to be freely specified. We establish the cutoff phenomenon, deter-
mine its precise window and prove that the cutoff profile approaches a universal
shape. We also provide a detailed description of the equilibrium measure.
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Optimal subgraph structures

Clara Stegehuis

(joint work with Remco van der Hofstad and Johan S. H. van Leeuwaarden)

Subgraphs reveal information about the geometry and functionalities of complex
networks. We count the number of times a small connected graph occurs as an
induced subgraph (graphlet counting) in an inhomogeneous random graph or an
erased configuration model with power-law degrees with infinite variance. We
define an optimization problem that finds for any subgraph the most likely degrees
of the nodes that together span the subgraph. We find that every subgraph occurs
typically between vertices with specific degree ranges. Furthermore, these degree
ranges only take on four different orders of magnitude. In this way, we can count
and characterize all subgraphs.
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No exceptional words for Bernoulli percolation

Augusto Teixeira

(joint work with Pierre Nolin, Vincent Tassion)

Benjamini and Kesten in [5] introduced in 1995 the problem of embedding infinite
binary sequences into a Bernoulli percolation configuration, known as percolation
of words. We give a positive answer to their Open Problem 2: almost surely, all
words are seen for site percolation on Z3 with parameter p = 1

2 . We also extend
this result in various directions.
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Resource sharing with logarithmic weights

Amandine Véber

(joint work with Philippe Robert)

We shall consider a communication network in which J clients share a single server.
If client j has x jobs pending, it receives a fraction of the capacity of the server
which is proportional to ln(1+x). In contrast with the case of a linear allocation of
resources (i.e., proportional to x), when the total number of jobs tends to infinity
several timescales interact in a fine way to shape the asymptotic behaviour of the
system. In particular, the numbers of jobs corresponding to each client may then
evolve on different temporal scales and have very different orders of magnitude.

Extending this result to a different graph of interference between the clients
(i.e., star-shaped instead of complete) reveals how dependent on the interaction
network the stability of the global system is.
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The phase transition in bounded-size Achlioptas processes

Lutz Warnke

(joint work with Oliver Riordan)

In this talks we discuss the percolation phase transition in Achlioptas processes,
which have become a key example for random graph processes with dependencies
between the edges (see, e.g., [1, 6, 14, 9, 15]). Starting with an empty graph on n
vertices, in each step two potential edges are chosen uniformly at random. One
of these two edges is then added to the evolving graph according to some rule,
where the choice may only depend on the sizes of the components containing the
four endvertices. For the widely studied class of bounded-size rules (where all
component sizes larger than some constant K are treated the same), the location
and existence of the percolation phase transition is nowadays well-understood.
However, despite many partial results during the last decade (see, e.g., [5, 21, 11,
13, 4, 15, 3, 2, 16, 8, 17, 18]), our understanding of the finer details of the phase
transition has remained incomplete, in particular concerning the size of the largest
component.

Our main results (from arXiv:1704.08714 and arXiv:1706.00283) resolve the
finite-size scaling behaviour of percolation in all bounded-size Achlioptas processes.
We show that for any such rule the phase transition is qualitatively the same as
that of the classical Erdős–Rényi random graph process in a very precise sense:
the width of the ‘critical window’ (or ‘scaling window’) is the same, and so is the
asymptotic behaviour of the size of the largest component above and below this
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window, as well as the tail behaviour of the component size distribution throughout
the phase transition. In particular, when ε = ε(n) → 0 as n → ∞ but ε3n → ∞,
we show that, with probability tending to 1 as n → ∞, the size of the largest
component after i steps satisfies

L1(i) ∼
{

Cε−2 log(ε3n) if i = tcn− εn,

cεn if i = tcn+ εn,

where tc, C, c > 0 are rule-dependent constants (in the Erdős–Rényi case we
have tc = C = 1/2 and c = 4). These and our related results for the compo-
nent size distribution settle a number of conjectures and open problems from [21,
20, 11, 7, 13, 3, 12, 8]. In the language of mathematical physics, they establish
that all bounded-size Achlioptas processes fall in the same ‘universality class’ (we
do not expect this to be true for general Achlioptas processes). Such strong results
(which fully identify the phase transition of the largest component and the critical
window) are known for very few random graph models.

Our proof deals with the edge–dependencies present in bounded-size Achliop-
tas processes via a mixture of combinatorial multi-round exposure arguments, the
differential equation method, PDE theory, and coupling arguments. This eventu-
ally enables us to analyze the phase transition via branching process arguments,
see [19, 10] for the details.
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Phase Transitions in High Dimensional Linear Regression

Ilias Zadik

(joint work with David Gamarnik)

In this talk we consider the sparse high dimensional linear regression problem Y =
Xβ∗+W under the setting where X ∈ Rn×p,W ∈ Rn have independent standard
Gaussian entries and β∗ is known to be k-sparse. The goal is recovering the support
of the vector β∗ ∈ Rp from observed X and Y with high probability (w.h.p.) with
respect to the randomness coming from X,W . Note that n corresponds to the
sample size and p to the number of features.

The vast literature on the topic implies the existence, under certain assump-
tions, of an intriguing asymptotic gap between the best known necessary sample
size n∗ for information-theoretically recovering the support of the vector β∗ and
the best known sufficient sample size nalg for efficiently recovering the vector β∗

(which is for example the sample size that techniques such as LASSO or Orthog-
onal Matching Pursuit need to provably work in this setting). This gap naturally
proposes two questions. Supposing the sample size n satisfies n∗ < n < nalg, does
there exist enough information to recover β∗ and if yes, can we construct also an
efficient algorithm that recovers it?

We will present in this talk several new results studying these questions. Firstly
we will present an all-or-nothing type of result answering completely the first
question. Secondly we will present a result showing that for sample size satisfying
n∗ < n < cnalg, for some c > 0 the problem satisfies a property called Overlap Gap
Property, which originates in statistical physics and is known to provide evidence
of algorithmic difficulty. Finally we will show that if n > Cnalg for some C > 0 the
problem does not satisfy this Overlap Gap Property and furthermore the “local”
structure of the problem is smooth enough so that even a very simple algorithm
based on local search can recover the vector β∗.
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Université Paris Diderot
5, rue Thomas Mann
75205 Paris Cedex 13
FRANCE

Dr. Sanchayan Sen

Department of Mathematics and
Statistics
McGill University
805, Sherbrooke Street West
Montreal QC H3A 2K6
CANADA

Matteo Sfragara

Mathematisch Instituut
Universiteit Leiden
Postbus 9512
2300 RA Leiden
NETHERLANDS

Clara Stegehuis

Department of Mathematics and
Computer Science
Eindhoven University of Technology
Postbus 513
5600 MB Eindhoven
NETHERLANDS

Prof. Augusto Teixeira

Instituto de Matematica Pura e
Aplicada - IMPA
Jardim Botanico
Estrada Dona Castorina, 110
22460 Rio de Janeiro, RJ 320
BRAZIL

Prof. Dr. Remco van der Hofstad

Department of Mathematics and
Computer Science
Eindhoven University of Technology
Postbus 513
5600 MB Eindhoven
NETHERLANDS

Amandine Veber
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