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Abstract. Computability and computable enumerability are two of the fun-
damental notions of mathematics. Interest in effectiveness is already apparent
in the famous Hilbert problems, in particular the second and tenth, and in
early 20th century work of Dehn, initiating the study of word problems in
group theory. The last decade has seen both completely new subareas de-
velop as well as remarkable growth in two-way interactions between classical
computability theory and areas of applications. There is also a great deal of
work on algorithmic randomness, reverse mathematics, computable analysis,
and in computable structure theory/computable model theory.

The goal of this workshop is to bring together researchers representing
different aspects of computability theory to discuss recent advances, and to
stimulate future work.
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Introduction by the Organisers

Computability theory is one of the main branches of mathematical logic. It ex-
plores the computational limitations of mathematics. At the center of this area
are notions of relative computation and various induced hierarchies. Classical con-
cepts include the degrees of unsolvability, the arithmetical and analytic hierarchies,
and many other methods of calibrating relative complexity. Principal applications
have been to algorithmic randomness (e.g., Kolmogorov complexity), mathemati-
cal logic, algebra, analysis, and proof theory (such as reverse mathematics).

A number of deep tools have been developed in the area. These include priority
methods, effective forcing methods, and sophisticated coding techniques. While
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there have been some memorable recent results clarifying the pure theory, much of
current research is devoted to using these techniques to distill the effective content
of and give insight into applications. This activity has given rise to several new
international conferences: Computability and Complexity in Analysis (CCA) since
1995, Computability, Complexity and Randomness (CCR) since 2004, and Com-
putability in Europe (CiE) since 2005, which all emphasize particular applications;
the CiE meetings also include physicists, biologists, and linguists.

Moreover, there have been several recent major advances, such as the solution
of a 50 year-old question on the definability of the total degrees (M. Cai, Ganchev,
Lempp, J. Miller, M. Soskova), solutions to longstanding questions on tilings and
entropy (Hochman, Meyerovich, 2010), and proofs that torsion-free abelian groups
cannot have useful invariants (Downey, Montalbán, 2008).

Here are some of the strands we seek to draw together at this meeting:
Fundamentals. The basic notion of the area is that of a “reduction”: A ≤ B

means that A “is computable” from B. The traditional notion is Turing reducibil-
ity, introduced by Turing in 1939. Turing reducibility yields the Turing degrees,
used to measure the complexity of unsolvable problems. There has been a great
deal of work on the structure of the Turing degrees and its restriction to the com-
putably enumerable degrees. Post had asked whether all noncomputable c.e sets
have the same Turing degree. The negative solution by Friedberg and Muchnik
in the late 1950’s introduced the “priority method”, a signature method in the
subject. A great deal is known about the Turing degrees and the c.e. degrees,
but some fundamental problems remain open, in particular whether there is a
nontrivial automorphism, and the related “Bi-Interpretability Conjecture”.

There are other degree structures, for example, the enumeration degrees. The
past few years have seen a great deal of progress in understanding the enumeration
degrees and their connection with the Turing degrees. Much of the progress is due
to M. Soskova and her collaborators. This work culminated in a result stating
that the Turing degrees sit inside the enumeration degrees as a definable subset
(M. Cai, Ganchev, Lempp, J. Miller, M. Soskova, 2016).

From these fundamentals we derive various hierarchies which align themselves
with logical definability. For example, Σ0

1 means that a problem is essentially
some kind of countable computable unbounded search, like the famous Halting
Problem; and being Σ0

1-hard means being as complicated as any other Σ0
1-problem

and corresponds to classical problems like Hilbert’s 10th problem. Similarly, Σ1
1

correlates to a search through all 2ℵ0 many functions from N to N, so being Σ1
1-

hard means that this search cannot be simplified. Isomorphism between countable
structures is naturally Σ1

1, and hence, when it is shown that an isomorphism
problem for a class of structures is Σ1

1-hard, then there cannot be any simplifying
invariants, like dimension. Downey and Montalbán used this method to prove that
torsion-free abelian groups cannot have any useful classifying invariants.

Inspired by related work in algorithmic randomness, significant portions of re-
cent work have focused on computable approximations of noncomputable objects
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via “tracing” and limit approximations. For example, the sets that can only com-
pute functions f where we can give a computable set of possibilities as the value
for f(n) turn out to be precisely the sets that cannot derandomize a certain class
of random reals. A major recent unifying program for approximations was set out
by Cholak, Downey and Greenberg.

Algorithmic Randomness. A natural arena for computability theory is the
area of algorithmic randomness. This area tries to give meaning to randomness
for individual sequences and strings. Typical questions are: When is a real more
random than another, what is the computational power of a random real, or sets of
random strings, how can we understand “almost everywhere” behavior in math-
ematics? The hierarchies associated with algorithmic randomness and those of
computability theory interrelate. A remarkable example of this stems from work
on “K-trivial” sets. This analysis has led to new results on the structure of the c.e.
sets, “natural” solutions to Post’s problem, new randomness notions (Bienvenu,
Greenberg, Kučera, Nies, Turetsky, 2016) and entirely new algorithmic methods.

Analysis and randomness. The early interactions between computability
and randomness have developed into widespread applications in computable anal-
ysis, ergodic theory, subshifts of finite type, tiling problems and even number the-
ory. Randomness and genericity align themselves to differentiability of effective
functions (Brattka, J. Miller, Nies).

Randomness is tied to effective dimension ergodic theory starting with V’yugin’s
proof (1997) that Martin-Löf randomness suffices for the effective Birkhoff theo-
rem. Work in symbolic dynamics shows close relationships between entropy, ef-
fective and classical Hausdorff dimension, and Kolmogorov complexity (Simpson,
2015). A standard notion in randomness is the halting probability, and this has
been found to be quite natural and to turn up in places apparently removed from
such considerations, e.g., in the classification of dimensions of subshifts of finite
type (Hochman, Meyerovich, 2010), and the complexity of Julia Sets (Braverman,
Yampolsky, 2006). Classical computable analysis remains a very active field of
research, and these new interactions with randomness are invigorating both areas.

Computable model theory. In computable model theory, we consider struc-
tures with effective presentations. Typically, we look at the interplay of definability
and algorithmic behavior. For example, a sufficiently decidable structure is com-
putably categorical iff it can be “named” by an infinitary computable formula.
Many of the original limitations were established by unnatural “pathological” ex-
amples, and much recent work seeks to answer what “tame”, or “natural”, behavior
is. The degree spectrum of a relation R on a structure A is the set of Turing de-
grees of images of R in computable copies of A. There are examples of computable
structures with a relation whose degree spectrum is strange. Harrison-Trainor has
investigated spectra of relations “on a cone” and showed a number of dichotomies
on spectra. Csima and Harrison-Trainor considered degrees of categoricity on a
cone. Again, there are examples with strange degrees of categoricity, but on a
cone, there is tame behavior, the degree of categoricity is ∆0

α for some α.
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A recurrent idea is that nice model-theoretic properties of the theory should
make it easier to understand the complexity of the models. There has been major
progress recently, bounding the complexity of countable models of strongly mini-
mal theories (Andrews, Knight), and bounding the possibilities on which countable
models of strongly minimal theories are computable (Andrews, Lempp).

Of course, this work is related to computable algebra, where we deal with con-
crete algebraic structures like groups, rings and fields. Hirschfeldt, Khoussainov,
Slinko, and Shore in 2002 gave general conditions on a class of structures that
permit effective coding and decoding of graphs. Among the original examples
of classes that satisfy the conditions are partial orderings, lattices, rings, inte-
gral domains, commutative semigroups and 2-step nilpotent groups. Now, fields
have been added fields to this list (R. Miller, Schoutens, 2012; R. Miller, Poonen,
Schoutens, Shlapentokh). For the fine structure of particular algebraic objects,
new methods and complex computability techniques seem to be needed. Recent
results include an analysis of the complexity of radicals in rings by Conidis, and
the isomorphism problem for completely decomposable groups by Downey and
Melnikov. A new line of research is to work in uncountable structures.

Reverse mathematics and proof theory. Reverse mathematics seeks to
classify mathematical results according to the proof-theoretical resources needed
for them. The techniques of this area and computability theory are close, and
there is much cross-fertilization. Initially, the program of reverse mathematics
found many important mathematical theorems equivalent to just one of five sys-
tems, linearly ordered. More recent work, especially on principles related to com-
binatorics, has produced a large number of new systems. A new result in this area
was announced at the 2012 Oberwolfach meeting by Chong, Slaman and Y. Yang,
who gave an amazing proof separating certain variations of Ramsey’s Theorem
using non-standard models. This technique is certain to yield further results.

Related to this are pre-orderings suggested by Kolmogorov on “problems”;
Medvedev and Muchnik, respectively, made this intuition precise as strong and
weak reducibilities on “mass problems”, i.e., subsets of Baire space or Cantor
space. Among the mass problems, we may consider those asking for a copy of
a given structure, or certain collections of random sets. In recent years a num-
ber of new reducibilities, e.g. Weihrauch reducibility and computable reducibility,
emerged that generalize the Medvedev and Muchnik reducibilities in the sense
that parameterized “problems” are considered. These reducibilities allow a more
resource sensitive and uniform version of reverse mathematics that can be directly
approached with computability-theoretic techniques. So far, problems from com-
putable analysis (Brattka, Gherardi, 2011) and combinatorial problems (Dorais,
Dzhafarov, Hirst, Mileti, Shafer, 2016) have been classified in this approach.

The workshop is organized by Vasco Brattka, Rodney G. Downey, Julia F.
Knight, and Steffen Lempp, and includes 28 talks and two open problem ses-
sions. Some of the open problems discussed are listed in the last section of
this report. The slides for the talks can be found on Steffen Lempp’s website
at http://www.math.wisc.edu/~lempp/conf/OW18/OW18slides.htm.

http://www.math.wisc.edu/~lempp/conf/OW18/OW18slides.htm
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Abstracts

Pigeons do not jump high

Ludovic Patey

(joint work with Benoit Monin)

The infinite pigeonhole principle asserts that every set of integers admits an infi-
nite subset in it or its complement. This seemingly trivial principle surprisingly
admits highly non-trivial computability-theoretic features, when considering non-
computable instances. In particular, one may wonder whether there is an instance
of the pigeonhole principle whose solutions are all high. The answer to this ques-
tion will be given during this talk, although the careful reader might find a subtle
clue in the title. This is a joint work with Benoit Monin.

Uniformly multiply permitting c.e. sets and lattice embeddings into

the c.e. degrees

Klaus Ambos-Spies

(joint work with Nadine Losert)

We introduce a new permitting property of computably enumerable (c.e.) sets
called uniform multiple permitting. This notion is wtt-invariant and the c.e. wtt-
degrees which do not contain any sets with this property form an ideal. The
Turing degrees of the sets with the uniform multiple property are the not totally
ω-c.a. c.e. degrees. So this new property gives an alternative characterization of
the permitting power of those degrees. We apply our permitting notion in order
to obtain some new results on the not totally ω-c.a. degrees. For instance we show
that there are some finite lattices such that a c.e. degree bounds an embedding of
such a lattice in the c.e. degrees if and only if the degree is not totally ω-c.a. An
example of such a lattice is the 7-element lattice S7 which is meet-semidistributive
but not join-semidistributive.

Computability and incomputability of projection functions in

Euclidean space

Alberto Marcone

(joint work with Guido Gherardi)

Projecting a point over a non-empty closed subset of the Euclidean space is deeply
grounded in our geometrical intuition of the spatial continuum and has many
important applications in several areas of mathematics. We study the complexity
of this projection operator (and of a natural approximate version of it) in the
Weihrauch lattice. The answer does depend on the way the closed set is given
and, in some cases, on the dimension of the Euclidean space.
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Let n ≥ 1 and consider the computable metric space Rn. The (exact) negative,
positive and total projection operators on Rn are the partial multi-valued functions
Proj−

Rn , Proj
+

Rn and ProjRn which associate to every x ∈ Rn (with Cauchy repre-
sentation) and every nonempty closed A ⊆ Rn (with negative, positive and total
representation, respectively) the set

{y ∈ A | d(x, y) = d(x,A)}.

Fix ε > 0. The ε-approximate negative, positive and total projection operators on
Rn are the partial multi-valued functions ε-Proj−

Rn , ε-Proj
+

Rn and ε-Proj
Rn which

associate to every x ∈ Rn (with Cauchy representation) and every nonempty closed
A ⊆ Rn (with negative, positive and total representation, respectively) the set

{y ∈ A | d(x, y) ≤ (1 + ε)d(x,A)}.

Our main results are summarized in the following table:

projection representation dimension Weihrauch degree

Exact

negative
n = 1 >W lim, >W BWT2, <W BWTR

n ≥ 2 >W lim, >W BWT2, ≤W BWTR

positive
n = 1 >W lim, >W BWT2, <W BWTR

n ≥ 2 ≡W BWTR

total
n = 1 ≡W C2

n ≥ 2 ≡W C2N

Approximate
negative n ≥ 1 ≡W CR

positive n ≥ 1 ≡W Sort

total n ≥ 1 computable

Here Sort : 2N → 2N maps p to 0n1ω if |{i | p(i) = 0}| = n and to 0ω if p has
infinitely many 0’s.

Computable paths intersect in a computable point

Klaus Weihrauch

Consider two paths f, g : [0; 1] → [0; 1]2 on the unit square such that f(0) = (0, 0),
f(1) = (1, 1), g(0) = (0, 1), and g(1) = (1, 0). By continuity of f and g there is a
point of intersection. We prove that there is a computable point of intersection if
the paths are computable.
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Almost-total enumeration degrees, graph-cototal enumeration degrees

and a theorem by Sierpiński

Arno Pauly

(joint work with Steffen Lempp, Takayuki Kihara, and Keng Meng Ng)

Generalizing an earlier definition by Miller [4], Kihara and Pauly extended the
notion of Turing reducibility to points in represented spaces. The collection of
degrees realized in a space is called its spectrum, and can be seen as a topo-
logical invariant. Many classes of degrees studied in computability theory are
precisely the spectrum of certain topological spaces. In particular, there is a tight
connection between the study of substructures of the enumeration degrees and
second-countable topological spaces. Here, we illustrate this by a particular open
question.

Definition. An enumeration degree A is called almost total, if for all total e �e A
we find that e⊕A is total.

Definition. An enumeration degree A is called graph-cototal, if it has a repre-
sentative of the form Graph(f)C for a total function f : N → N.

Question 1. Is every almost-total degree graph-cototal?

Theorem (AIMS [1]). The almost total degrees are the spectrum of the Hilbert
cube [0, 1]ω.

Theorem. Let Ncof denote the integers with the cofinite topology. Then the graph-
cototal degrees are the spectrum of (Ncof)

ω.

Now Question 1 is equivalent to asking whether there exists a countable decom-
position of [0, 1]ω such that each piece embeds into (Ncof)

ω . A classical theorem by
Sierpiński implies that no non-trivial compact connected Polish space embeds into
(Ncof)

ω . Metric spaces not admitting any compact connected subspaces are called
punctiform, and we thus arrive at the question whether [0, 1]ω admits a countable
decomposition into punctiform spaces. While [0, 1]ω does not admit a countable
decomposition into zero-dimensional spaces, there actually are punctiform infinite
dimensional spaces.

References

[1] U. Andrews, G. Igusa, J. S. Miller & M. I. Soskova, Characterizing the continuous degrees,
(2017), https://www.math.wisc.edu/~jmiller/Papers/codable.pdf.
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topology, (forthcoming)
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https://arxiv.org/abs/1405.6866.

[4] J. S. Miller, Degrees of Unsolvability of Continuous Functions, Journal of Symbolic Logic
69-2 (2004), 555 – 584.
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Characterizing the continuous degrees

Joseph S. Miller

(joint work with Uri Andrews, Greg Igusa, and Mariya Soskova.)

The continuous degrees measure the computability-theoretic content of elements of
computable metric spaces. They properly extend the Turing degrees and naturally
embed into the enumeration degrees [4]. Although nontotal (i.e., non-Turing)
continuous degrees exist, they are all very close to total: joining a continuous
degree with a total degree that is not below it always results in a total degree. We
call this curious property almost totality.

We prove that the almost total degrees coincide with the continuous degrees.
Since the total degrees are definable in the partial order of enumeration degrees
[1], we see that the continuous degrees are also definable. Applying earlier work
on the continuous degrees [4], this shows that the relation “PA above” on the total
degrees is definable in the enumeration degrees.

In order to prove that every almost total degree is continuous, we pass through
another characterization of the continuous degrees that slightly simplifies one of
Kihara and Pauly [3]. Like them, we identify our almost total degree as the degree
of a point in a computably regular space with a computable dense sequence, and
then we apply the effective version of Urysohn’s metrization theorem [5, 2] to
reveal our space as a computable metric space.

References
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Defining totality in the enumeration degrees. J. Amer. Math. Soc., 29(4):1051–1067, 2016.
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Randomness and uniform distribution modulo one

Verónica Becher

(joint work with Serge Grigorieff and Theodore Slaman)

How is algorithmic randomness related to the classical theory of uniform distri-
bution of number theory? In this talk we consider the definition of Martin-Löf
randomness for real numbers in terms of uniform distribution of sequences. First,
we present a necessary condition for a real number to be Martin-Löf random, in
terms of classical uniform distribution. Then, we introduce a notion of uniform
distribution relative to the computable enumerable open subsets of [0, 1]. Based
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on this notion we give a sufficient condition for a real number to be Martin-Löf
random.

Intuitively, a real number is random if it has the propeties of almost all real
numbers, that is, if it belongs to no set of probability zero. The intuition can not
be taken literally because every real number belongs to the singleton set containing
it, which has probability zero. To prevent the property being void one can restrict
to computably defined sets, as done by Martin-Löf in [7]: A Martin-Löf test is a
computable sequence (Vn)n≥1 of computably enumerable open subsets Vn of real
numbers with Lebesgue measure less than 2−n. A real x passes the test (Vn)n≥1 if
x is not in the measure zero set given by

⋂

n≥1
Vn. A real x is Martin-Löf random

if it passes all Martin-Löf tests. Since there are only countably many of these tests,
there are also only countably of these measure zero sets, which implies that almost
all real numbers, with respect to Lebesgue measure, are Martin-Löf random. The
definition entails that the fractional expansions of Martin-Löf real numbers obey
all the usual probability laws. It follows that all the computable real numbers,
such as the irrational algebraic numbers and the usual mathematical constants
including π and e, are not Martin-Löf random. For a presentation of the theory
of randomness see [3].

An infinite sequence (xn)n≥1 of real numbers is uniformly distributed modulo
1, abbreviated u.d. mod 1, if the sequence formed by the fractional parts of each
term is equidistributed in the unit interval. This means that for each subinterval
of the unit interval, asymptotically, the proportion of terms falling within that
subinterval is equal to its length. For a real number x, we write ⌊x⌋ to denote
its integer part and {x} = x − ⌊x⌋ for its fractional expansion. Thus, a sequence
(xn)n≥1 of real numbers is u.d. mod 1 if for every half open interval [a, b) in [0, 1],

lim
N→∞

1

N

{

n : 1 ≤ n ≤ N and {xn} ∈ [a, b)
}

= b− a.

A presentation of the theory of uniform distribution can be read from [6, 4, 2].
In the years 1909 and 1910 Bohl, Sierpiński and Weyl independently established

that a number x is irrational exactly when the sequence (nx)n≥1 is u.d. mod 1.
The subset of the irrational numbers that Borel called absolutely normal [1] also
has a characterization in terms of uniform distribution: A real number is absolutely
normal exactly when, for every integer b greater than 1, the sequence (bnx)n≥1 is
u.d. mod 1, see [6, 2]. The Martin-Löf random real numbers are a proper subset of
the irrational numbers and also of the absolutely normal numbers, so one can ex-
pect to characterize the Martin-Löf random real numbers with a class of sequences
that includes (nx)n≥1 and (bnx)n≥1, for every integer b greater than 1. We found
that the class to be considered is that in Koksma’s General Metric theorem [5]
but restricted to a suitable computability condition. We call the effective Koksma
class K to the class of computable sequences (un)n≥1 of computable functions
from an interval [a, b] on the real numbers satisfying the conditions determined in
Koksma’s General Metric Theorem. In Theorem 1 we give a necessary condition
for Martin-Löf randomness: we show that if a real number x is Martin-Löf random
then for every (un)n≥1 in K the sequence (un(x))n≥1 is u.d. mod 1.
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To capture when uniform distribution entails Martin-Löf randomness we need
to strengthen the classic definition of uniform distribution. It is possible to re-
place intervals by Jordan-measurable subsets of the unit interval (see [6, Notes in
Chapter 1, Section 1]) but one cannot replace intervals by all Lebesgue measurable
subsets. To see why consider any given sequence and consider the set determined
by the range of the sequence itself: since the range is a countable set, it has
Lebesgue measure zero, but for the first N elements sequence the proportion of
elements in the set is equal to 1, for every N . We can prevent the notion to be void
if we consider Lebesgue measurable subsets with a computability constraint. With
this aim we define a notion of uniform distribution relative to the computably enu-
merable open subsets of the unit interval. We call the notion Σ0

1-u.d. Theorem 2
is the main result of this talk and it gives a sufficient condition in terms of Σ0

1-u.d.
for a real number to be Martin-Löf random.
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[1] É. Borel. Les probabilités dénombrables et leurs applications arithmétiques. Supplemento
Rendiconti del Circolo Matematico di Palermo, 27:247–271, 1909.

[2] Y. Bugeaud. Distribution modulo one and Diophantine approximation, volume 193 of Cam-
bridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2012.

[3] R. Downey and D. Hirschfeldt. Algorithmic randomness and complexity. Springer, New York,
2010.

[4] M. Drmota and R. Tichy. Sequences, discrepancies and applications. Lecture Notes in Math-
ematics. 1651. Springer, Berlin, 1997.

[5] J. F. Koksma. Ein mengentheoretischer satz über die gleichverteilung modulo eins. Compositio
Math, 2:250–258, 1935.

[6] L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Dover, 2006.
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Rogers Semilattices of Generalized computable numberings

S. S. Goncharov

A comprehensive and extensive study of generalized computable numberings was
initiated at the end of the past century, through a unifying approach towards a
notion of a computable numbering for a family of sets of constructive objects,
suggested in the paper of S.Goncharov and A.Sorbi [1]. A program of such a
study was outlined in the authors’ paper [2]. The study of ershov hierarchy was
started by S.Goncharov and S.Lempp [3] and for analytical hierarchy by Owing
[4]. One of interesting question in analytical hierarchy is connected with Friedberg
computable numbering. Owing [4] proved that the family of all Σ1

1 - sets has not
Σ1

1-computable Friedberg numbering but M. Dorzhieva (in print) proved the Owing
result without metarecursion and proved that the family of all Σ1

2 - sets has not
Σ1

2-computable Friedberg numbering. Nevertheless the questions for n > 2 are
open.
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The question for Rogers semilatticas R0
n of arithmetical Σ0

n-computable sets
and Σ0

n-computable numberings was solved in [5] and [6], but it is open about
non-isomorphism for R0

n R0
n+1 if n ≥ 3.

It is interesting questions about computable numberings relative to classes of
Ershov Hierarchy.

Together with A.Sorbi and S. Badaev was proved the next result.
Theorem There exist the infinite family S of Σ−1

n , n ≥ 2 sets with Rogers
semilattes R−1

n (S) of all Σ−1
n (-numberings of the family S with exactly two dif-

ferent elements α and β such that the Σ−1
n -computable numbering α is Friedberg

numbering and for any Σ−1
n -computable numbering γ of this femily if α is not

equivalent to γ then β ≤ γ.
The question is open about finite family with these properties. Some another

open question is about the existence of family.
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Who asked us? How the theory of computing answers questions that

weren’t about computing

Jack H. Lutz

It is rare for the theory of computing to be used to answer open mathematical
questions whose statements do not involve computation or related aspects of logic.
This talk discusses recent developments that do exactly this. After a brief review
of algorithmic information and dimension, we describe the point-to-set principle
(with N. Lutz [1]) and its application to two new results in geometric measure
theory. These are N. Lutz and D. Stull’s strengthened lower bounds on the Haus-
dorff dimensions of generalized Furstenberg sets [2] and N. Lutz’s extension of the
fractal intersection formulas for Hausdorff dimensions in Euclidean spaces from
Borel sets to arbitrary sets [3].
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On building models of Solovay theories

Uri Andrews

If M is a recursive structure, then the ∃n-fragment of the theory of M is uniformly
Σ0

n. In general, we call a theory with this property a Solovay theory. Knight (with
some shared credit to Solovay) gave a characterization of precisely the degrees
that compute some model of every Solovay theory. It is the same as the degrees
that compute a nonstandard model of true arithmetic. One can ask how hard it
is to compute every model of a Solovay theory. Of course, no degree does this
for every Solovay theory, as some Solovay theories have continuum many models
(true arithmetic for example). When we restrict to a nice class C of theories which
do not have continuum many countable models, this question becomes meaningful
and important again. I think of this as asking what understanding we need to
have of a theory in C, beyond the obvious, to know how to build its models. I will
discuss results giving the answer for the class of countably categorical theories (due
to Knight ’94 improving a result of Lerman and Schmerl ’79) and recent results
about the class of strongly minimal theories.

Topologizing the degree theory

Takayuki Kihara

(joint work with Steffen Lempp, Keng Meng Ng, and Arno Pauly)

I will survey my recent works with collaborators on the topological generalization
of the degree theory. My first motivation for topologizing the Turing degree theory
came from my attempt to solve the generalized Jayne-Rogers conjecture, one of
the most attractive open problems in descriptive set theory. After a few years of
work, the topologized Turing degree theory has turned out to have many other
applications. This theory has clarified the relationship between the Turing degree
theory and infinite dimensional topology (joint with Arno Pauly). This theory
has enabled us to utilize nonmetrizable topology to explore the structure of the
enumeration degrees (joint with Steffen Lempp, Keng Meng Ng, and Arno Pauly).

In the latter part of this talk, I will focus on a generalization of the truth-table
degrees in computable metric spaces, which is recently introduced by McNicholl-
Rute. We apply the Jayne-Rogers theorem to characterize the notion of the gen-
eralized tt-degree in the context of the first-level Borel isomorphism. This charac-
terization is the guidepost which indicates the right way to go. First-level Borel
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isomorphisms have appeared in several literatures in topological dimension theory.
Thus the theory of effective topological dimension naturally emerges. For instance,
by the topological method called ”condensation of singularities,” we show that, for
any positive integer n, every weakly 1-generic Turing degree contains a tt-degree
which is (n+ 1)-dimensional, but not n-dimensional.

Strong jump traceability and superlow preservation

Keng Meng Ng

Strong jump traceability is a combinatorial notion introduced to understand the
relationship between algorithmic randomness and computability. It has shown
to be an extremely robust class with many different equivalent definitions from
randomness. We show that it can also be characterised from the point of view
of classical computability. The related degree theoretic notions come from the
ideals generated by considering all ∆0

2 degrees x such that x ∪ z ∈ C for every
z ∈ C, where C is a class of Turing degrees closed downwards under the Turing
reducibility.

References

[1] K.M. Ng and M. McInerney Degree theoretic characterisations of strong jump traceability,
in preparation.

[2] D. Diamondstone, N. Greenberg and D. Turetsky, Inherent enumerability of strong jump-
traceability, Transactions of the American Mathematical Society 367 (2015), 1771–1796.

[3] N. Greenberg and D. Turetsky, Strong jump-traceability and Demuth randomness, Proceed-
ings of the London Mathematical Society 108 (2014), 738–779.

[4] D. Hirschfeldt, N. Greenberg and A. Nies, Characterising the strongly jump-traceable sets
via randomness, Advances in Mathematics 231 (2012), 2252-2293.

When is a property expressed in infinitary logic also

pseudo-elementary?

Matthew Harrison-Trainor

(joint work with Barbara Csima and Nancy Day)

It is well-known that many properties, such as the well-foundedness of a linear
order or the connectedness of a graph, cannot be expressed in elementary first-
order logic. Two natural ways of extending first-order logic are to allow second-
order quantifiers and to allow conjunctions and disjunctions over infinite sets.
More particularly, a property is pseudo-elementary if it can be expressed using
an existential second-order quantifier, and definable in the infinitary logic Lω1ω

if it can be expressed using conjunctions and disjunctions over countable sets of
formulas. We ask: what is the intersection of these two extensions of first-order
logic? This is joint work with Barbara Csima and Nancy Day.

Some non-elementary properties, such as reachability in a graph, are express-
ible both in infinitary logic and in a pseudo-elementary (or co-pseudo-elementary)
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way. On the other hand, some properties, such as well-foundedness, are express-
ible in only one of these ways. Our main result is that the properties which are
expressible both in a pseudo-elementary way and using infinitary logic are exactly
the properties expressible in infinitary logic using countable conjunctions but only
finite disjunctions (after putting the formula in normal form). The proof in one
direction passes through a version of Craig’s Interpolation Theorem for infinitary
logic, and in the other direction by expanding a structure by adding a (possible
non-standard) model of arithmetic which can talk about computable infinitary
sentences.

Cardinal characteristics, highness classes, Weihrauch reducibility, and

forcing

Noam Greenberg

(joint work with Rutger Kuyper and Dan Turetsky)

Vojtaš showed that many cardinal characteristics of the continuum, including all
those appearing in the Cichon diagram, arise from binary relations considered as
problems, with the cardinal being the smallest size of a set which includes solutions
for all instances. ZFC-provable cardinal inequalities arise from morphisms between
these binary relations.

In his thesis, Rupprecht introduced highness classes in computability which cor-
respond to these cardinals by considering the very same binary relations (see also
Brendle, Brooke-Taylor, Nies and Ng). He showed that computable morphisms
prove implications between these highness classes. The morphisms are (not nec-
essarily uniform) strong Weihrauch reductions.

Some implications in both set theory and computability require not only mor-
phisms but manipulations of problems, operations which have been studies in both
the Weihrauch lattice and in set theory. We discuss this correspondence, how it
relates to several results in algorithmic randomness, and how to calibrate compu-
tational strength by working over ideals.

Effective Classification and Measure for Countable Structures

Russell Miller

(joint work with Johanna Franklin)

Following work in model theory and descriptive set theory, we consider the class
of all atomic diagrams of structures with domain ω belonging to a given class C of
structures. The primary example is the class Alg∗ of atomic diagrams of algebraic
fields of characteristic 0 (equivalently, subfields of the algebraic closure Q). As a
subset of Cantor space, this class has the subspace topology. We can then mod out
by the relation of isomorphism, yielding the quotient topological space Alg∗/∼=.
This space, and similar spaces built the same way from other classes of countable
structures, are the focus of this talk.
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The asterisk in Alg∗ denotes that we have expanded the language of fields before
executing the above steps. If we had used the usual signature (+, ·, 0, 1) for fields,
the resulting space Alg/∼= is distinctly unfamiliar to most mathematicians: it is
not Hausdorff, and in fact it has one single element which lies in every nonempty
open set, and another which lies in no open set except the entire space. In contrast,
we add d-ary root predicates Rd to the signature, for all d > 1, defined by:

Rx(a0, . . . , ad−1) ⇐⇒ (∃x)xd + ad−1x
d−1 + · · ·+ a1x+ a0 = 0.

In this signature, the space Alg∗/∼= turns out to be computably homeomorphic
to Cantor space 2ω, with the bits of an element of 2ω corresponding to the choices
made by the field about which polynomials have roots in the field. The signature
with these root predicates is the “sweet spot” for this classification: if one expands
the signature further, the topology changes further, and the space of indices for
algebraic fields becomes a refinement of Cantor space, once again not nearly as
recognizable or familiar as 2ω itself.

The computable homeomorphism allows us to transfer the usual Lebesgue mea-
sure from Cantor space onto the space Alg∗/ ∼=. However, the resulting measure
on Alg∗/ ∼= does depend on the choice of the computable sequence of polynomials
used to describe the homeomorphism. An alternative measure, Haar-compatible
measure, has a similar definition, but refined in such a way that, for each Galois
extension K of Q of (finite) degree d, the class of those fields containing K has
Haar-compatible measure 1

d
. (For finite non-normal fields K, the measure of this

class remains dependent on the choice of the sequence of polynomials.) Since 1

d
is

exactly the Haar measure of the pointwise stabilizer (within Aut(Q)) of a Galois
extension K of degree d, we view this measure as being compatible with the Haar
measure on the compact group Aut(Q), justifying its name.

These new measures allow us to pose questions about the prevalence of specific
properties of algebraic fields. It is readily seen that the property of being normal
has measure 0, as does the property of having relatively intrinsically computable
root set (in the signature without the root predicates). A more involved proof
shows that the property of uniform computable categoricity has measure 1. When
the root predicates are included in the language, this is not so surprising, and
indeed in this situation a single Turing functional Φ shows measure-1-many of
these fields to be uniformly computably categorical. It is still true, but more
surprising, that even in the original language of fields, the property of uniform
computable categoricity still has full measure. The result is not quite as strong
here, though, as no single functional suffices for that many fields. One proves the
theorem by fixing a rational ǫ > 0 in advance and giving a functional under which
all but ǫ-many fields are uniformly computably categorical.

In joint work with Franklin, we have investigated notions of randomness for
algebraic fields, using the computable homeomorphism given above and consid-
ering a field to be random just if the corresponding real is random. Using this
notion, the proof for computable categoricity shows that all Schnorr-random fields
are uniformly computably categorical, but we can produce a Kurtz-random field
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which is not uniformly computably categorical. The notion of randomness defined
here appears to be compatible with Khoussainov’s concept of a random structure,
as in [2], and merits further investigation along these lines.

Finally, we have investigated other classes of structures along these same lines.
Of course, non-smooth classes such as graphs will not yield to our methods, as
the isomorphism problem for graphs is Σ1

1-complete; the same holds for other
classes of structures complete in this sense, as found in [1, 4]. Therefore, we
have restricted ourselves to classes for which the isomorphism problem is relatively
simple. For finite-branching (infinite) trees, it is natural to adjoin unary branching
predicates stating the number of immediate successors of a given node in the tree.
In this signature, the class is computably homeomorphic to Baire space ωω. (If we
restricted binary-branching trees, then in this signature it would be homeomorphic
to 2ω instead.) This offers several possibilities for measures to be placed on the
class, and Franklin and Miller have investigated some of these possibilities. The
question of computable categoricity for trees is more involved, but Franklin and
Miller conjecture that (in the original signature, without branching predicates)
measure-0-many of these trees are uniformly computably categorical; however, if
one uses instead the class of finite-branching trees with no terminal nodes, then
measure-1-many of the trees are uniformly computably categorical.

The class of all subrings of Q is a natural and simple example of this process:
it becomes homeomorphic to 2ω in the signature including a unary predicate for
invertibility. Some further work is under way on torsion-free abelian groups of
finite rank, and on archimedean real closed fields; parts of this work are joint with
Fokina, Friedman, Rossegger, and San Mauro. In some cases, the classification
may be not by Cantor space or Baire space themselves, but by a quotient of one of
those spaces, using standard Borel equivalence relations. Questions of measure and
randomness are then likely to turn on whether the individual equivalence classes
all have measure 0, and on whether these equivalence relations respect the notion
of randomness involved.
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Exponents of irrationality and transcendence and effective Hausdorff

dimension

Theodore A. Slaman

(joint work with Verónica Becher, Jan Reimann)

We discuss the similarities between measuring the describability of a real number
in terms of Diophantine Approximation or in terms of Kolmogorov Complexity.

For a real number ξ, the irrationality exponent of ξ is the least upper bound of
the set of real numbers z such that

0 <

∣

∣

∣

∣

ξ −
p

q

∣

∣

∣

∣

<
1

qz

is satisfied by an infinite number of integer pairs (p, q) with q > 0. It provides a
quantitative measure of how well ξ can be approximated by rational numbers.

To motivate our discussion, we may define the incomputability exponent of ξ is
the least upper bound of the set of real numbers z such that

0 < |ξ −Re| <
1

ez

is satisfied by an infinite number of integers e, where Re is the real number com-
puted by the eth program (in a universal computable enumeration of such.) We
show that for a real number ξ, the effective Hausdorff dimension of ξ is equal to the
reciprocal of its incomputability exponent, where effective Hausdorff dimension is
meant in the sense introduced by Lutz in the context of algorithmic information
theory and effective randomness.

The connection between the two notions is as follows. For every a ≥ 2 and
every b in [0, 2/a], there is a real number ξ such that ξ has irrationality exponent
a and effective Hausdorff dimension b.

We explore further connections between transcendental number theory and com-
putability theory, such as investigating the Fourier dimension of sets that arise in
the two fields and investigating the properties of a random real in a set of positive
Fourier dimension.
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Randomness relative to an enumeration oracle

Mariya Soskova

(joint work with Joe Miller)

We initiate the study of algorithmic randomness relative to an enumeration oracle.
The enumeration degrees can be viewed as an extension of the Turing degrees: the
substructure of the total enumeration degrees is an isomorphic copy of the Tur-
ing degrees within the wider context of the enumeration degrees. In this sense,
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the notion of randomness for total enumeration oracles can be inferred from the
corresponding notion for Turing oracles. There are two distinct approaches to
extending this notion to non-total enumeration degrees. The first one is to de-
fine randomness relative to a non-total enumeration oracle in terms of the total
enumeration oracles that are comparable with it.

On the other hand, most of the notions in algorithmic randomness, and all of
those most closely related to Martin-Löf randomness, can be expressed in terms
of c.e. sets. So when we relativize these notions to an oracle X , we are usually
interested in the X-c.e. sets. The second approach to generalizing from Turing
degrees to enumeration degrees is straightforward: to relativize a randomness
notion to the enumeration degree of a set A we simply replace X-c.e. with c.e. in
every enumeration ofA (i.e., enumeration reducible to A). The resulting definitions
are easily seen to be unchanged for the total degrees, demonstrating that this
notion of randomness does lead to an extension of the original one. We show
that there are oracles for which this notion does not coincide with the notions
obtained via our first approach. Thus moving to the context of the enumeration
degrees gives rise to a notion of relative randomness that does not reduce to one
expressible in the Turing world by relativizing to sets of oracles. For non-total
degrees, we find that some familiar theorems are preserved, perhaps with more
subtle proofs, while other theorems may fail. For example, there need not be a
universal Martin-Löf test relative to the enumeration degree of A, and there are
continuum many enumeration degrees that are low for randomness. This is joint
work with Joe Miller.

On low for speed sets

Laurent Bienvenu

(joint work with Rod Downey)

Relativizing computations of Turing machines to an oracle is a central concept
in the theory of computation, both in complexity theory and in computability
theory(!). Inspired by lowness notions from computability theory, Allender in-
troduced the concept of “low for speed” oracles. An oracle A is low for speed if
relativizing to A has essentially no effect on computational complexity, meaning
that if a decidable language can be decided in time f(n) with access to oracle A,
then it can be decided in time poly(f(n)) without any oracle. The existence of
non-computable such A’s was later proven by Bayer and Slaman, who even con-
structed a computably enumerable one, and exhibited a number of properties of
these oracles as well as interesting connections with computability theory. In this
paper, we pursue this line of research, answering the questions left by Bayer and
Slaman and give further evidence that the structure of the class of low for speed
oracles is a very rich one.
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Partial results on the complexity of roots of polynomials over Hahn

fields and Puiseux fields

Reed Solomon

(joint work with Julia Knight and Karen Lange)

Let K be an algebraically closed field of characteristic zero and G be a divisible
ordered abelian group. The associated Hahn field K((G)) and the field of Puiseux
series K{{t}} are both algebraically closed. We consider the complexity of finding
roots in these fields when K and G are countable. In [1], Knight and Lange
provided bounds on the length of a root for a polynomial over K((G)) in terms
of the length of the coefficients of the polynomial. For the field of Puiseux series,
we give preliminary results on the complexity of finding roots in computability
theoretic terms. For the Hahn field, we give an upper bound for the complexity of
computing initial segments of a root and show that in some low level cases, this
bound is sharp. We end with some open questions including whether these bounds
are sharp for all initial segments.
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A point-to-set principle for separable metric spaces

Elvira Mayordomo

J. Lutz and N. Lutz (2017) have recently proven a point-to-set principle for Eu-
clidean and Cantor spaces. This result is a characterization of classical Hausdorff
dimension in terms of relativized effective dimension. This implies that geometric
measure results regarding Hausdorff dimension can be shown using only effective
methods. Several interesting classical results have already been proven using this
principle (N. Lutz and Stull 2017, N. Lutz 2017).

We present here a point-to-set principle for any separable metric space. We will
first introduce an effectivization of dimension in terms of Kolmogorov complexity
that is valid for any separable space, and then show that the classical Hausdorff
dimension of any set is the minimum on all oracles of the relativized effective
dimension. We expect that better Hausdorff dimension bounds will be proven as
consequences of this theorem.



28 Oberwolfach Report 1/2018

References

[1] J. H. Lutz and N. Lutz. Algorithmic information, plane Kakeya sets, and conditional di-
mension. ACM Transactions on Computation Theory. To appear.

[2] N. Lutz. Fractal intersections and products via algorithmic dimension. In International
Symposium on Mathematical Foundations of Computer Science (MFCS), 2017.

[3] N. Lutz and D. M. Stull. Bounding the dimension of points on a line. In Theory and Appli-
cations of Models of Computation (TAMC), 2017.

Algorithmic learning of probability distributions from random data in

the limit

George Barmpalias

(joint work with Frank Stephan and Nan Fang)

We study the problem of identifying a probability distribution for some given ran-
domly sampled data in the limit, in the context of algorithmic learning theory
as proposed recently by Vinanyi and Chater [5]. We show that there exists a
computable partial learner for the computable probability measures, while by Bi-
envenu, Monin and Shen [4] it is known that there is no computable learner for
the computable probability measures. We characterize of the oracles that compute
explanatory learners for the computable (continuous) probability measures as the
high oracles. This provides an analogue of a well-known result of Adleman and
Blum [1] in the context of learning computable probability distributions. We prove
that for certain families of probability measures that are nicely parametrized by
reals, learnability of a subclass of probability measures is equivalent to learnabil-
ity of the class of the corresponding real parameters. This equivalence allows to
transfer results from classical algorithmic theory to learning theory of probabil-
ity measures. We present a number of such applications, providing new results
regarding EX and BC learnability of classes of measures.

This is joint work with Frank Stephan [2] and Nan Fang [3].
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Finite final segments of the d.c.e. degrees

Steffen Lempp

(joint work with Yiqun Liu, Yong Liu, Selwyn Ng, Cheng Peng, Guohua Wu, and
Yue Yang)

Ever since the existence of a maximal incomplete d.c.e. degree (i.e., a Turing
degree containing the difference of two c.e. sets) was established [1, 2], the question
of exactly which finite final segments exist in the d.c.e. degrees has been an
interesting open question.

In this talk, I will report on progress toward establishing that all finite dis-
tributive lattices are final segments. some partial results have been established,
but challenges lie ahead for the full result, and there is a larger class, the so-
called finite interval dismantlable lattices, which may be realized using the same
techniques. More specifically, we know that the finite Boolean algebras and the 3-
element chain can be realized, and we have ideas how to generalize our techniques
toward all finite distributive lattices.

This is joint work with Yiqun Liu, Yong Liu, Selwyn Ng, Cheng Peng, Guohua
Wu and Yue Yang, all from Singapore.
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Martingales and Restricted Ratio Betting

Satyadev Nandakumar

(joint work with Sumedh Masulkar and Keng-Meng Ng)

Let A and B be two finite sets of computable real numbers which denote the allow-
able wagers that martingales can make. Following the terminology in Chalcraft
et. al., an A-martingale is a martingale whose wagers are limited to elements in
A, and a B-martingale has wagers limited to elements in B. In Chalcraft et. al.,
the authors establish necessary and sufficient conditions for some A-martingale to
succeed betting on sequences that B-martingales can succeed betting on.

In this paper, we investigate the analogous question of comparative betting
power of martingales when the ratios of bets are restricted to a finite set which
excludes 1. This contrasts with the setting of simple martingales and almost
simple martingales as investigated by Ambos-Spies and Mayordomo. Without loss
of generality, we will restrict the ratios to rational numbers, and the general case of
finite sets of computable real ratios is similar. We derive necessary and sufficient
conditions for deciding when a set of ratios allows greater power in betting as
compared to another.
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Determined Borel codes in Reverse Math

Linda Brown Westrick

(joint work with Eric Astor, Damir Dzhafarov, Antonio Montalbán and Reed
Solomon)

The standard definition of a Borel code in reverse math [3] doesn’t require the
model to believe that each real is either in the coded set or in its complement.
In fact, the statement “for every Borel coded set, either it or its complement is
non-empty” already implies ATR0 [1]. We define a determined Borel code to be a
Borel code with the property that every real is contained either in the coded set
or in its complement. Then we consider the following statement.

Definition. Let DPB be the statement “Every determined Borel set has the prop-
erty of Baire.”

How to formalize “having the property of Baire” can be found in [1]. Both DPB

and the statement “every Borel set has the property of Baire” follow from ATR0

over RCA0 [1]. The latter is equivalent to ATR0 due to the technicality mentioned
above [1], but here we show that DPB is a strictly weaker theorem. First we show
that any ω-model of DPB must be closed under hyperarithmetic reduction. This
leads to the question of whether DPB could reverse to ATR0, or perhaps be a
statement of hyperarithmetic analysis (see [2]). Neither is true:

Theorem. DPB does not hold in HY P .

Theorem. There is an ω-model of DPB that does not satisfy ATR0.

The ω-model constructed above is made by adding many hyperarithmetic gener-
ics to HY P . We show it is necessary to include such elements in any ω-model.

Theorem. DPB implies the existence of hyperarithmetic generics in ω-models.
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The theorem can be stated more formally as follows: If I is a HY P ideal which
satisfies DPB, then for every X ∈ I, there is a G ∈ I such that G is ∆1

1-generic
relative to X .

Both Theorem 1 and the stronger Theorem 3 are proved using overflow methods
to construct ill-founded Borel codes which seem well-founded and determined in
a given model.

Many questions remain concerning the exact strength of DPB. One could also
consider determined versions of other theorems about Borel sets.
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All things Diophantine: stability, definability and undecidability

Alexandra Shlapentokh

We discuss the current state of affairs with respect to using elliptic curves (and
abelian varieties in general) to show first-order and Diophantine definability of
Z over subrings of algebraic extensions of Q, proving that thew first-order or
existential theory of these rings is undecidable.

Algorithmic Randomness For Amenable Groups

Adam R. Day

We develop the theory of algorithmic randomness for the space AG where A is
a finite alphabet and G is a computable amenable group. We give an effective
version of the Shannon-McMillan-Breiman theorem in this setting. We also extend
a result of Simpson equating topological entropy and Hausdorff dimension. This
proof makes use of work of Ornstein and Weiss which we also present.

References

[1] Rod G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness and Complexity.

Springer-Verlag, 2010.
[2] Harry Furstenberg. Disjointness in ergodic theory, minimal sets, and a problem in Diophan-

tine approximation. Math. Systems Theory, 1:1–49, 1967.
[3] John M. Hitchcock. Correspondence principles for effective dimensions. Theory Comput.

Syst., 38(5):559–571, 2005.
[4] Mathieu Hoyrup. The dimension of ergodic random sequences. In 29th International Sympo-

sium on Theoretical Aspects of Computer Science, volume 14 of LIPIcs. Leibniz Int. Proc.
Inform., pages 567–576. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2012.



32 Oberwolfach Report 1/2018

[5] Elon Lindenstrauss. Pointwise theorems for amenable groups. Invent. Math., 146(2):259–
295, 2001.

[6] Jack H. Lutz. Gales and the constructive dimension of individual sequences. In Automata,
languages and programming (Geneva, 2000), volume 1853 of Lecture Notes in Comput. Sci.,
pages 902–913. Springer, Berlin, 2000.

[7] Jack H. Lutz. The dimensions of individual strings and sequences. Inform. and Comput.,
187(1):49–79, 2003.

[8] Elvira Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff
dimension. Inform. Process. Lett., 84(1):1–3, 2002.

[9] Nikita Moriakov. Entropy and Kolmogorov complexity. PhD thesis, Technische Universiteit
Delft, 2016.

[10] Nikita Moriakov. On effective Birkhoff’s ergodic theorem for computable actions of amenable
groups. arXiv:1701.06365v1, 2017.

[11] Donald Ornstein and Benjamin Weiss. The Shannon-McMillan-Breiman theorem for a class
of amenable groups. Israel J. Math., 44(1):53–60, 1983.

[12] Stephen G. Simpson. Symbolic dynamics: entropy = dimension = complexity. Theory Com-
put. Syst., 56(3):527–543, 2015.

[13] V. V. V’yugin. Ergodic theorems for individual random sequences. Theoret. Comput. Sci.,
207(2):343–361, 1998.

[14] Benjamin Weiss. Actions of amenable groups. In Topics in dynamics and ergodic theory,
volume 310, pages 226–262. Cambridge Univ. Press Cambridge, 2003.

On finitely presented expansions of semigroups, groups, and algebras

Bakhadyr Khoussainov

Finitely presented structures, such as groups and semigroups, are of foundational
interest in algebra and computation. Finitely presented structures necessarily have
c.e. word equality and these systems are finitely generated. Not all c.e. and finitely
generated structures are finitely presented. This work is concerned with finding
finitely presented expansions of finitely generated structures. Expansions of struc-
tures, such as turning groups into rings or distinguishing subsets in the underlying
structures, is an important method used in algebra, model theory, and various ar-
eas of computer science. Bergstra and Tucker [1] [2] proved that all c.e. algebraic
systems with decidable word problem have finitely presented expansions. Then
they [1] [2] and, independently, [3] asked if every finitely generated c.e. algebraic
system has a finitely presented expansion. We build examples of finitely generated
c.e. semigroups, algebras (rings that are vectors spaces over fields), and groups
that fail to possess finitely presented expansions. We also construct examples of a
residually finite and immune group, answering the question of Miasnikov and Osin
from [4]. Our proofs are based on the interplay between key constructions, con-
cepts, and results from computability theory (simple set constructions), universal
algebra (residually finite structures), and classical algebra (Golod- Shafaverevich
theorem [7]). The work is joint with D. Hirschfeldt [5], and independently with A.
Miyasnikov [6].
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Existence of fixed points for monotone operators

Damir D. Dzhafarov

(joint work with Sean Walsh)

We study the logical strength of the existence of fixed points for monotone opera-
tors. It is easy to see that repeatedly applying such an operator to the empty set
must result in a fixed point, and in fact, this will be the least fixed point under
inclusion. The strength of the existence of least fixed points was analyzed already
by Cenzer and Remmel [1], but the situation for arbitrary fixed points, as op-
posed to least, is quite different. For example, Cenzer and Remmel show that the
existence of least fixed points for computable monotone operators is equivalent
to ACA0, while we show that the existence of fixed points in general is equiva-
lent to WKL0. We study the existence of fixed points for various other classes
of operators. Part of our motivation is understanding the complexity of Kripke’s
construction of a language (in three-valued logic) interpreting its own truth predi-
cate [3], which is obtained as a fixed point for a particular monotone operator. In
particular, we formalize Kripke’s proof in Π1

1-CA0, and also establish preliminary
lower bounds on its strength. Finally, we turn to formal theories of truth, and
the conservation results of Feferman [2] for the theory KF. The original proofs
of these results proceed via ordinal analysis, but we find comparatively simpler
proofs using model-extension methods familiar from the study of subsystems of
second-order arithmetic.
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Open Problems

Veronica Becher, Theodore Slaman, Carl Jockusch, Julia Knight,

Steffen Lempp, Andre Nies, Arno Pauly, Liang Yu

In this section, we list some of the problems discussed during the open problem
sessions.

(1) (Veronica Becher and Theodore Slaman) First we recall the classical defi-
nition of discrepancy of a sequence of real numbers. If x is a real number,
we write {x} to denote x− ⌊x⌋.

Definition. For a sequence (xn)n≥1 of real numbers the discrepancy of
its first N elements is

DN ((xn)n≥1) = sup
0≤a<b<1

∣

∣

∣

∣

1

N
#
{

n : 1 ≤ n ≤ N and {xn} ∈ [ab)
}

− (b − a)

∣

∣

∣

∣

.

Question 1. Is there a Martin-Löf random real x such that for every N
large enough DN ((2nx)n≥1) is O((logN)/N)?

An answer to this question will also answer the longstanding open ques-
tion about the existence of a normal number with this low discrepancy,
asked first by Korobov in 1956 [3].

(2) (Carl Jockusch) Let HT=n
k

be Hindman’s Theorem for k colors, restricted
to sums of length exactly n. Thus, HT=n

k
asserts that whenever the natu-

ral numbers are colored with k colors there is an infinite set H such that
all sums of n distinct elements of H have the same color. It follows imme-
diately from my 1972 paper “Ramsey’s Theorem and Recursion Theory”
in the JSL that each computable instance of HT=n

k
has a Π0

n solution.
This is known to be best possible for n = 2, in the sense that there is
a computable instance of HT=2

2 with no Σ0
2 solution, by work of Csima,

Dzhafarov, Hirschfeldt, Solomon, Westrick, and Jockusch (in preparation).
The open question is to determine for what values of n there is a com-
putable instance of HT=n

2 with no Σ0
n solution. This is open even for n = 3.

If a computable instance of HT=n
2 with no Σ0

n solution exists for infinitely
many n, it follows on general grounds that Hindman’s Theorem for two
colors is not provable in ACA0. This would resolve a long-standing open
question of Blass, Hirst, and Simpson in their 1987 paper “Logical analysis
of some theorems in combinatorics and topological dynamics” in the book
Logic and Combinatorics, published by the AMS. For further information,
see the paper “Effectiveness of Hindman’s Theorem for bounded sums”
by Dzhafarov, Solomon, Westrick, and Jockusch, pages 134–142 in the
volume “Computability and Complexity”, LNCS 10010 (the Rod Downey
Festschrift).

(3) (Julia Knight) Is there a computable finitely presented group with no d-Σ2

Scott sentence?
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The complexity of an optimal Scott sentence is a measure of the inter-
nal complexity of a countable structure. For a finitely generated group,
there is always a Scott sentence that is Σ3, and if the group is computable,
then the Scott sentence can be taken to be computable Σ3. Often there
is a simpler Scott sentence. It had been conjectured that every finitely
generated group has a Scott sentence that is d-Σ2, and that every com-
putable finitely generated group has a Scott sentence that is computable
d-Σ2. Harrison-Trainor and Ho disproved both conjectures, constructing
a computable finitely presented group with no d-Σ2 Scott sentence. Their
group is not finitely presented.

(4) (Julia Knight) Gromov introduced an informal notion of “random” group.
Gromov’s idea been made precise in several different ways. Using the
approach of Kapovich and Schupp, we make an off-hand comment of Ben-
jamin Fine, that in the limiting density sense, all groups look free, into a
conjecture. Let G(n, s) be the set of group presentations with n generators
and a single relator of length at most s. For a sentence ϕ in the language
of groups, let P (n, s, ϕ) be the proportion of presentations in G(n, s) such
that the resulting group satisfies ϕ.

Conjecture. Let n ≥ 2. For each sentence ϕ, the limiting density
lims→∞P (n, s, ϕ) exists, always with value 0 or 1. Moreover, the set
T of sentences for which the limiting density is 1 is the theory of the
non-Abelian free groups.

(5) (Steffen Lempp) In the 1970’s, Ershov asked for which finite families P and
Q of c.e. sets, the Rogers semilattices of P and Q are isomorphic. (Recall
that the Rogers semilattice of a family of c.e. sets is simply the collection
of uniformly c.e. enumerations of the family, factored by interreducibility.)

There are essentially only two known theorems about this question:
In 1978, Denisov showed that for any n > 0, the families {∅, {0}} and
{∅, {0}, . . . , {n}} are isomorphic. And in 2003, Ershov showed that if
the Rogers semilattices of P and Q are isomorphic, then P and Q are
isomorphic partial orders under set inclusion once the maximal elements
in each are removed. The conjecture is that the converse of Ershov’s
theorem holds, but this appears to be a very hard question.

(6) (Andre Nies) One says that a K-trivial set A is smart if every ML-random
that computes A computes all the K-trivials. Show that being smart is an
arithmetical property. Reference: Greenberg, Miller, Nies and Turetsky,
Martin-Loef reducibility and cost functions, arxiv.org/abs/1707.00258.

(7) (Andre Nies) For an order function h, let IOE(h) denote the mass problem
of functions that equal infinitely often each computable function bounded
by h. It is not hard to show that IOE(h(n)) is Muchnik equivalent to
IOE(n → h(2n)). Give an example of an h where this cannot be improved
to Medvedev equivalence. Reference: Monin and Nies, Muchnik degrees
and cardinal characteristics, arXiv:1712.00864.
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(8) (Arno Pauly) This is a question about Weihrauch degrees, see [1] for con-
text. Let UCNN denote the task Given a countably branching tree with
exactly one infinite path, find that path. Let List2N denote the task Given
a binary tree with countably many infinite path, produce a list comprising
exactly those. We know that List2N ≤W UCNN .

Question 2. Is the reduction List2N ≤W UCNN strict?

The question was answered in the affirmative during the workshop by
Takayuki Kihara.

(9) (Arno Pauly) It is a classic result in topology that compact Hausdorff
spaces are regular. However, the classic proof does not effectivize directly.
We thus ask:

Question 3. Are computably compact computably Hausdorff spaces also
computably regular?

For countably-based spaces, an easy direct argument establishes that
the answer is yes. For context, see [4] and [2].

(10) (Liang Yu) Wang, Wu, and Yu proved that there exists a model of ZF in
which there exists a cofinal chain of Turing degrees of order type ω1 but
there is no a well ordering of reals. Also ZFC + CH implies that there
exists a cofinal maximal chain of Turing degrees of order type ω1. My
question is:

Does there exist a model of ZF in which there exists a cofinal maximal
chain of Turing degrees of order type ω1 but there is no a well ordering of
reals?
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