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Abstract. Statistics for data with geometric structure is an active and di-
verse topic of research. Applications include manifold spaces in directional
data or symmetric positive definite matrices and some shape representations.
But in some cases, more involved metric spaces like stratified spaces play a
crucial role in different ways. On the one hand, phylogenetic trees are rep-
resented as points in a stratified data space, whereas branching trees, for
example of veins, are data objects, whose stratified structure is of essential
importance. For the latter case, one important tool is persistent homology,
which is currently a very active area of research. As data sets become not
only larger but also more complex, the need for theoretical and methodolog-
ical progress in dealing with data on non-Euclidean spaces or data objects
with nontrivial geometric structure is growing. A number of fundamental
results have been achieved recently and the development of new methods for
refined, more informative data representation is ongoing. Two complimen-
tary approaches are pursued: on the one hand developing sophisticated new
parameters to describe the data, like persistent homology, and on the other
hand achieving simpler representations in terms of given parameters, like di-
mension reduction. Some foundational works in stochastic process theory on
manifolds open the doors to this field and stochastic analysis on manifolds,
thus enabling a well-founded treatment of non-Euclidean dynamic data. The
results presented in the workshop by leading experts in the field are great
accomplishments of collaboration between mathematicians from statistics,
geometry and topology and the open problems which were discussed show
the need for an expansion of this interdisciplinary effort, which could also tie
in more closely with computer science.
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Introduction by the Organisers

The workshop Statistics for Data with Geometric Structure, organized by Aasa
Feragen (Copenhagen), Thomas Hotz (Ilmenau), Stephan Huckemann (Göttingen)
and Ezra Miller (Durham) had 48 participants from many countries around the
world. In particular, 14 of the 17 participants in the mini-workshop Asymptotic
Statistics on Stratified Spaces held in 2014 at the MFO took part in this workshop.
The interdisciplinary nature of the subject matter was reflected in the very diverse
mathematical backgrounds of the speakers.

In the past years, data with geometric structure play an increasingly important
role in statistics and lead to a surge in the application of geometric and topological
concepts in statistical data analysis. Two major classes of approaches are pursued
in this field. The first approach seeks to represent geometric objects as points in
a non-Euclidean data space, while the second approach seeks to extract the major
features of the geometric object to achieve a refined representation, not necessarily
in a non-Euclidean space.

In the first approach, the spaces need not even be manifolds, but can be strati-
fied spaces, in which case means can have non-standard properties, called stickiness
[2] and repulsiveness. These are especially relevant for phylogenetic tree spaces
which are used in population genetics. Calculation of geodesics [4] and analogues
to principal components [3] is very challenging in these spaces.

On the other hand, measures on spaces with positive curvature can exhibit
lower rates of asymptotic convergence of the sample mean, called smeariness [5, 6].
Such spaces of positive curvature are the principal object of concern in directional
statistics and many shape representations.

For many spaces, refined methods have been developed, for example for dimen-
sion reduction and also some generic asymptotic results were achieved, see e.g.
[7, 8, 9]. Furthermore, many specific difficulties for various data representations
have been described and partly solved [12, 13].

A very important field, which is currently emerging, is the theory of stochastic
processes and stochastic analysis on manifolds. Recent important foundational
work has been done by Sommer and Joshi [11], whose collaboration was fostered
by the mini-workshop Asymptotic Statistics on Stratified Spaces. The development
of new models, the underlying computational theory, as well as computational tools
are a milestone towards an effective treatment of stochastic processes on manifolds.

The second approach to data with geometric structure seeks to extract the
major features of the geometric object to achieve a refined representation. A
major technique to this effect is persistent homology (for an introduction and
historical overview, see [1]), which is increasingly used in image and shape analysis.
In this class of methods, scale-space-like transformations are used to represent
complicated geometric objects in terms of topological properties. For example,
separation of clusters and sizes of holes in a data set can be quantified in terms of
persistence diagrams.

For every data set, the construction scheme of the persistence diagram must be
reconsidered. In many applications, level sets of (possibly multivariate) functions
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are considered; in some cases, objects are sliced in different angles to create a
whole ensemble of persistence diagrams [14] and also several independent param-
eters, leading to higher dimensional persistence diagrams are considered (see the
contribution by E. Miller).

Furthermore, the parameters of interest to extract from the persistence diagram
must be determined for every application specifically. This can range from a
reduction to simple scalar summary statistics, over curves [15] to sophisticated
analysis applying tropical geometry [16].

The workshop provided an overview over the very diverse subject of statistics
for data with geometric structure and a number of different ways to approach the
subject. It initiated lively discussions concerning several topics, which were further
discussed in five focus groups.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
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Abstracts

Object Oriented Data Analysis: Principal Nested Submanifolds

J. Steve Marron

Object Oriented Data Analysis is the statistical analysis of populations of com-
plex objects.This is seen to be particularly relevant in the Big Data era, where it
is argued that an even larger scale challenge is Complex Data.Data objects with
a geometric structure constitute a particularly active current research area.This is
illustrated using a number of examples where data objects naturally lie in man-
ifolds and spaces with a manifold stratification.An overview of the area is given,
with careful attention to vectors of angles, i.e. data objects that naturally lie on
torus spaces. Prinicpal Nested Submanifolds, which are generalizations of flags,
are proposed to provide new analogues of Principal Component Analysis for data
visualization.Open problems as to how to weight components in a simultaneous
fitting procedure are discussed.

Introduction to Manifold Statistics

Sarang Joshi

(joint work with P. Thomas Fletcher)

1. Introduction

Over the last decade there has been intense interest in developing statistical meth-
ods for the analysis of manifold valued data. In this talk I will give a brief overview
of some the methods we have developed [4, 3, 5]. One of the first application of
Manifold Statistics as been the analysis of directional data [10]. In the analy-
sis of two dimensional directional data the natural model space for the data is
the unit circle. For three dimensional directional data analysis the natural data
space is the unit sphere in three space. Both of these data spaces are examples of
smooth Riemannian Manifolds. Another important application of Manifold Statis-
tics has been the analysis of shape [1], in particular the configuration of N labeled
landmark configurations modulo orientation and scale. This was first studied by
Kendall [9] and is referred to as Kendall Shape Space. In this talk I will not go in
to details of any particular application but rather outline the general concepts of
methods for statistical analysis of manifold valued data.

2. Basic Statistics on Manifolds

2.1. Point Estimation. Two fundamental statistical concepts of characterizing
the spread of set of data points are the sample variance andmean absolute de-

viation. Both concepts have a natural definition for a collection of points in an ab-
stract metric space. The sample variance around the mean is the sum of normalized
square distances: σ2 = 1

N

∑
i d

2(µ, xi) . The mean absolute deviation is similarly
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defined as the average of the distances to the median m: Dmed = 1
N

∑
i d(m,xi) .

Point Estimation of the Mean. Given a collection of data objects that are
elements of an abstract Riemannian manifold, a natural statistical question is
the point estimation of the mean. The concept of Fréchet mean is to define the
”average” as the point on the Riemannian manifold as the minimizer of the sum
of squared geodesic distances from the mean to all the data points, or the mini-
mum variance estimate. The existence and uniqueness of the Fréchet mean is not
guaranteed in general and depends on the completeness and sectional curvature
properties of the metric [8]. By using weighted squared geodesic distances, one can
use this concept to define the notion of interpolation and filtering of an abstract
manifold valued data set. We have used this effectively on the space of positive
definite matrices to define filtering of DTI data sets [3].

A stable gradient descent algorithm for computing the Fréchet mean consists
of 1) initializing the estimate as one of the data points; 2) computing the geodesic
distances between the current estimate and all the data points, i.e., solve the
geodesic boundary value problem; and 3) updating the estimate of the mean by
shooting in the direction of the average of the initial velocities of the geodesics
computed previously, i.e., solving the geodesic initial value problem.
Point Estimation of the Median. Similar to the Fréchet mean, the Fréchet
median is defined as the minimizer of the sum of absolute geodesic distance or the
mean absolute deviation and is also the generalization of the Fermat-Weber prob-
lem. In [5] we used this to define a robust statistical estimation of the anatomical
atlas and extended the notion of median filtering. Analogous to the gradient de-
scent algorithm above, one can use the Weiszfeld’s algorithm, which also requires
completeness properties of the Riemannian metric.

2.2. Regression Analysis. Regression analysis is the study of the relationship
between measured data and descriptive variables. As with most statistical tech-
niques, regression analyses can be broadly divided into two classes: parametric and
nonparametric. The most widely used parametric regression methods for data hav-
ing a linear vector space structure are linear and polynomial regression, wherein
a linear or polynomial function is fit in a least-squares fashion to observed data.
Such methods are the staple of modern data analysis. The most common non-
parametric regression approaches are kernel-based methods and spline-smoothing
approaches, which provide great flexibility in the class of regression functions.
Geodesic Regression and Polynomial Regression. Recently, [2, 7] have
each independently developed a form of geodesic regression that generalizes the
notion of linear regression to Riemannian manifolds. In Hinkle-Fletcher-Joshi [6]
geodesic regression was further generalized to polynomial regression for manifold
valued data. The basic construction is to model manifold-valued random variable
Y as

Y = exp(γ(t), ǫ) ,

where γ(t) is a Riemannian polynomial of integer order k and exp is the Riemann-
ian exponential map. Analogous to polynomials in a vector space, Riemannian
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polynomials are defined as curves having the zero kth order covariant derivative,
i.e., (

∇γ̇(t)

)k
γ̇(t) = 0 ,

where γ̇(t) = d
dtγ(t). As with regular polynomials Riemannian polynomials are

fully determined by initial conditions at t = 0. Given observed data xi ∈ M at
times ti, the minimum variance kth− order polynomial regression is defined the
minimization of the objective function

E (γ(0), v1(0), · · · , vk(0)) =
1

N

N∑

i=1

d2 (γ(ti), xi) ,

where γ(0) is the initial point and vj(0), j = 1, · · · , k are the initial conditions and
parameters of the model. The energy function defined above is minimized using
adjoint optimization.

References

[1] I. L. Dryden and K. Mardia. Statistical Shape Analysis. John Wiley & Son, 1998.
[2] P. T. Fletcher. Geodesic regression and the theory of least squares on riemannian manifolds.

International journal of computer vision, 105(2):171–185, 2013.
[3] P. T. Fletcher and S. Joshi. Riemannian geometry for the statistical analysis of diffusion

tensor data. Signal Processing, 87(2):250–262, 2007.
[4] P. T. Fletcher, C. Lu, S. M. Pizer, and S. Joshi. Principal geodesic analysis for the study of

nonlinear statistics of shape. IEEE transactions on medical imaging, 23(8):995–1005, 2004.
[5] P. T. Fletcher, S. Venkatasubramanian, and S. Joshi. The geometric median on riemannian

manifolds with application to robust atlas estimation. NeuroImage, 45(1):S143–S152, 2009.
[6] J. Hinkle, P. T. Fletcher, and S. Joshi. Intrinsic polynomials for regression on riemannian

manifolds. Journal of Mathematical Imaging and Vision, 50(1-2):32–52, 2014.
[7] Y. Hong, N. Singh, R. Kwitt, and M. Niethammer. Time-warped geodesic regression. In In-

ternational Conference on Medical Image Computing and Computer-Assisted Intervention,
pages 105–112. Springer International Publishing, 2014.

[8] H. Karcher. Riemannian center of mass and mollifier smoothing. Communications on pure
and applied mathematics, 30(5):509–541, 1977.

[9] D. G. Kendall. Shape manifolds, procrustean metrics and complex projective spaces. Bulletin
of London Mathematical Society, 16:81–121, 1984.

[10] K. V. Mardia and P. E. Jupp. Directional statistics, volume 494. John Wiley &amp; Sons,
2009.

Statistics with data on stratified spaces

Tom M. W. Nye

Conventional statistical methods typically rely on the data lying in a vector space.
This assumption is fundamental in standard methods such as linear regression and
principal component analysis, but also underlies results such as the central limit
theorem. If the data instead lie in a smooth Riemannian manifold, much statisti-
cal methodology can be transferred to the new setting. However, some important
applications give rise to data lying in so-called manifold-stratified spaces. Infor-
mally, a manifold-stratified space consists of a set of manifolds with boundaryMi,
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i = 1, 2, . . ., each equipped with a metric, together with a set of rules for gluing
the manifolds together isometrically at their boundaries. Examples include sim-
plicial complexes, cubical complexes (in which every cell is a unit Euclidean cube),
orthant spaces (in which every cell is a copy of Rd

≥0), and certain quotient spaces.

Example: A k-spider consists of k copies of R≥0, each equipped with the standard
metric and glued together at the shared origin. An open book is the product of Rd

with a k-spider. The 3-spider parametrizes the set of rooted leaf-labelled trees with
three leaves, in which the single internal edge in each tree has a positive weight:
given leaf labels {A,B,C}, there are three bifurcating labelled shapes ((A,B), C),
((C,A), B), ((B,C), A), together with the tree with no internal edges (A,B,C)
corresponding to the origin of the spider. Each leg of the 3-spider corresponds to a
different bifurcating shape, and the position along each leg determines the weight
assigned to the internal edge on each tree.

Estimators on spiders and open books have unexpected properties which con-
trast to the usual properties on Euclidean vector spaces. The Fréchet mean (or
barycenter) of a sample from a distribution on a 3-spider has a tendancy to ‘stick’
to the origin, with the estimate remaining at the origin despite small perturbations
to the data. This stickiness phenomenon is due to the underlying non-positive cur-
vature of the space, and a central limit theorem incorporating stickiness has been
proved on the open book [2].

The 3-spider is a special case of a more general space trees, known as Billera-
Holmes-Vogtmann (BHV) tree space [1]. The Billera-Holmes-Vogtmann tree space
TN is an orthant space which parametrizes of edge-weighted rooted trees for which
the leaves are bijectively labelled {1, . . . , N}. The Euclidean metric on each or-
thant extends globally and BHV tree space is non-positively curved. Owen and
Provan [4] established a O(N4) algorithm for computing geodesics in TN . These
ingredients enable practical statistics to be carried out, such as computation of
Fréchet means and construction of principal geodesics. Recent work concerns con-
struction of principal surfaces as barycentric subspaces of TN [3].

There are many remaining challenges in this area. Analysis in BHV tree space
relies critically on the non-positive curvature property, and there is a lack of re-
sults for spaces for which this property does not hold: for example much less is
known about spaces of unlabelled trees, or spaces of trees with different num-
bers of leaves. General results about the effect of curvature on the asymptotics
of estimators are beginning to be established. To date, most estimators studied
are non-parametric and based on least-squares constructions. Recent work has
started to consider parametric distributions constructed as the transition kernels
of stochastic processes on tree space. This opens up an alternative approach to
developing statistical methodology on these non-standard spaces.
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Persistent Topology and Stochastic Geometry

Herbert Edelsbrunner

(joint work with many, mentioned as coauthors of listed papers)

Historical remarks. The idea of persistent homology was motivated by look-
ing at protein structures, each represented by the family of alpha shapes we get
by letting the radius of the atom balls go from zero to infinity. With the tool
implemented by Ernst Mücke [4] and enhanced with Betti numbers by Jose Del-
finado [2], we computed the number of tunnels in a cell membrane protein and
noticed that it is not equal to one, as it should be, for any value of the radius.
This prompted the question whether there is enough information in the sequence
of homology groups to identify the visually important one tunnel from the mess
of many. The answer was given a few years later in [3] with the introduction of
persistent homology.

Definition of persistent homology. In a nutshell, persistent homology maps a
sequence of spaces connected by inclusions (a filtration) to a sequence of homol-
ogy groups connected by homomorphisms. For example, we may have a function
on a topological space, f : X → R, and we consider the filtration of its sublevel
sets: f−1(−∞, r]. Using a field for the coefficients, the corresponding sequence of
homology groups are vector spaces connected by linear maps. Homology classes
are born in this sequence and die in this sequence, so we can record the classes by
intervals or, equivalently, by points in two dimensions, where we record the birth
on the horizontal coordinate axis and the death on the vertical coordinate axis.
The resulting multi-set of point is commonly referred to as the persistence diagram
of the filtration.

Stability. An important property of persistence is its stability. More precisely,
consider two functions on a topological space, f, g : X → R, and their respective
persistence diagrams. We define the bottleneck distance between these diagrams
as the length of the longest edge in a perfect matching, in which we choose the
matching that minimizes this length and we are free to add points from the diag-
onal (where birth equals death) to either diagram if wish. The theorem, originally
proved in [1], states that the bottleneck distance between the two diagrams is
bounded from above by the L∞-norm of f − g. Importantly, there are almost no
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assumptions necessary, except that f and g be tame, which means that they both
have only finitely many homological critical values and the homology groups of
the sublevel sets have finite ranks.

Stochastic geometry. The use of persistence diagrams in statistical analyses of
data begs the question of the expected diagram of noise, which we formalize as a
stationary Poisson point process, X ⊆ R

d. We are not able to answer this question
in mathematical detail, but we have been able to shed light on the expected number
of critical and non-critical simplices in the Delaunay mosaic of X . To define these
notions, let f : D(X) → R map every simplex of the Delaunay mosaic to the
radius of the smallest ball whose bounding sphere passes through the vertices of
the simplex, and whose interior does not contain any of the points of X . Assuming
X is in general position, which happens with probability 1, the difference between
two contiguous sublevel sets of f is an interval in the face lattice of D(X). If
this interval consists of a single simplex, then we call this a critical simplex ; all
simplices in intervals of size two or larger are called non-critical simplices. For
example, in R

2 every acute triangle is critical, and every obtuse triangle is non-
critical (it occurs together with its longest edge). Incidentally, half the triangles
are expected to be acute and half to be obtuse. The stochastic analysis in [5]
gives precise statements about the expected number of critical and non-critical
simplices of any type and of radius at most some given threshold. For infinite
radius, this gives the expected number of simplices in the Delaunay mosaic, which
were studied in [6].
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[4] H. Edelsbrunner and E.P. Mücke, Three-dimensional alpha shapes, ACM Trans. Graphics
13 (1994), 43–72.

[5] H. Edelsbrunner, A. Nikitenko and M. Reitzner, Expected sizes of Poisson–Delaunay mosaics
and their discrete Morse functions, Adv. Appl. Probab. 49 (2017), to appear.

[6] R.E. Miles, On the homogeneous planar Poisson point process, Math. Biosci. 6 (1970),

85–127.

Workflows for data science with geometric structure

Franz J. Király

Data and models with inherent geometric structure - for example directions, rota-
tions, trees, graphs arising as observations or model parameters - are some of the
most frequently found non-standard features in practical data analysis problems.

Despite this high practical relevance and ever-increasing demand on the data
science market, the field is suffering from a usability crisis caused by the lack of
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available toolsets and coding environments flexible enough to specify analyses and
modelling primitives in a simple, user-accessible language.

The disconnection from end-users and high market pressures even appear to
be have caused a “backspill” from commercial providers of geometric data science
solutions into the community, exploiting the community’s theory-oriented mindset
to acquire academic credibility for unvalidated data science solutions.

While the talk was intended to provide solutions for the first issue, in conse-
quence it led to quite heated discussions about the second, and the philosophical
foundations of the scientific method in general - hence this extended abstract will
discuss both.

1. Part I: a data science problem

Working with geometric data is inextricably linked to real world applications in
which these occur. From a scientific perspective, a central question of method
development is which methods or modelling strategies work. As there is no one
approach that is valid or useful for all questions and all datasets, this is always in
relation to the modelling task and the data at hand. One frequently heard claim
made at the workshop was “method X is a great idea” - but to be able to make
this claim, good scientific practice necessitates the following:

• A well-defined, testable scientific question, including clear statement of
task, endpoint, and hypothesis assessed. A frequent mistake is stating a
method, but not what problem it is supposed to solve - but without doing
so, no testable claims are made.
• A state-of-art study design, including necessary comparisons against base-
lines and the gold standard for the task. A frequent mistake is a study on
irrelevant data or a comparison which is unsound, or unfair, e.g., not to
baselines but to worse methods.
• A clean quantitative evaluation, optimally including a significance and
effect size for the main conclusions. A frequent mistake is providing effect
size but not significance or vice versa.

The reader may also find helpful to keep in mind the parallel field of evidence
based medicine, where questions such as “does homeopathy provide an effective
treatment of (a certain type of) bowel cancer”, or “are CT-scans a useful diagnostic
procedure for chest infections?” arise, in parallel to questions such as “are topo-
logical persistence diagrams useful in predictive modelling of (a certain type of)
tabular data?”, or “is manifold-based PCA an useful exploratory tool for genomic
data?”.

One type of method discussed at particular length was methods that summarize
geometric data - in a number of cases, it was unclear which problem they should
solve: exploratory visualization? Extracting features? Supervised prediction? Or
something else? - lacking a testable hypothesis. In medicine, for example, this
would be similar to not stating which disease the treatment is supposed to cure.
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Also in line with the evidence based medicine parallel, it was also interesting
to observe how a number of phenomena known in the context of pseudo-medicine
were emerging in a context of (pseudo-)data science:

• Denying the epistemiological basis of the scientific method: “one cannot
prove anything anyway since everything can be falsified” - ignoring that
it is testability and strength of evidence, rather than (mathematical?)
“proof” which is at the scientific method’s heart.
• Attempts to leave the burden of proof with the critic rather than with the
proponent: “but can you show that it does not work?”
• Vague claims about application studies that may not exist: “This is being
used widely, for example by hospitals, physicists, and government agencies
such as the NSA!” (Which? Many! But where exactly? Let’s take the
discussion off-line!)
• Conflicts of interest where scientists are directly or indirectly benefitting
from a company marketing and selling a potentially problematic method-
ology, but fail to declare this as a conflict of interest when claiming mirac-
ulous properties.

Like many data scientific areas in the times of the data science revolution, the
field of statistics for geometric data is currently going through a crisis of scientific
transparency and reproducibility - answers need to be found quickly, and much
can be learnt from the transition of medicine to evidence based medicine - not
only regarding technical content, but also regarding social and political dynamics,
as well as effective implementation of community standards.

2. Part II: a reproducibility problem

Part of good data science practice is ensuring reproducibility and transparency.
On the technical side, a general requirement for this are open dissemination and
quality code design - which, as secondary beneficial effects, enables end users with
geometric data problems to easily make use of relevant methodology, and facilitates
the setting up of validatory studies.

While “open science” is largely consensus in the geometric data science com-
munity, a solid codebase that would allow easy use of the most popular methods
does not exist. The talk suggested to jointly design a workflow interface which
implements a workflow API for:

(i) Representing and storing data which may include structured and geomet-
ric data types such as shape, direction, trees. For example, a tabular
dataset of patients where for each patient, demographics, an image, and a
collection of shapes is recorded.

(ii) The most important modelling tasks involving geometry. These fall in
two broad categories: (A) models for geometric data, including: (A.1)
feature transformation and feature extraction for geometric data; (A.2)
exploratory data analysis, unsupervised learning, and visualization for
geometric data; (A.3) supervised prediction where target or features are
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geometric; (A.4) hypothesis testing, including association testing, involv-
ing geometric data types. (B) model structure inference where the model
is of geometric nature, i.e., model inference produces a geometric object
such as a tree on data which is not necessarily of a geometric type.

(iii) Meta-modelling tasks such as composite modelling, pipelining, hyper-para-
meter tuning and ensembling.

It was argued that the most natural way for building a comprehensive modelling
interface was through the formalism of higher-order and composite types, such as
in the object oriented programming paradigm. Widely used state-of-art modelling
toolboxes such as mlr [1] and sklearn [2] already formalize non-geometric aspects of
this. A possible approach may include abstraction and encapsulation at different
levels, as first- and higher-order objects:

(i) Geometric data types, possibly with intrinsic/extrinsic geometric methods.
This abstraction coincides with J.S. Marron’s idea of “object oriented data
analysis”.

(ii) Data containers for abstract data types, including geometric ones. This is
provided by packages such as xpandas [4].

(iii) Modelling strategies, including transformers and predictors. As in mlr [1]
and sklearn [2], this could follow the fit/predict/parameter interface de-
sign, with an added “inference” interface for models where model structure
inference has a geometric output. Object and interface typing may be nat-
ural in the geometric setting.

(iv) Meta-modelling as first-order modelling object. Reduction and model type
mutation may occur here, e.g., through transformation of a geometric to
a primitive data type.

(v) For probabilistic modelling, abstraction of a first-order types “distribution-
of-[geometric-type]” probablity distribution interface, such as for example
in skpro [3].

(vi) Metrics, losses and utility functions involving geometric objects or geom-
etry related predictions - such measures would be of first-order or para-
metric types, and will likely have to refer to intrinsic/extrinsic geometry
of the data or inference objects.

Object orientation on all abstraction levels would allow quick specification of
a modelling workflow, benefitting both scientific clarity and easy access by end
users.

A number of interesting scientific questions around the workflow interface design
and a potential higher-order modelling type language specific to geometric objects
remain open, though one would hope that answers emerge in a collaborative effort
which mirrors the integrative nature of this undertaking.
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Machine Learning with Topological Signatures

Roland Kwitt

(joint work with C. Hofer, S. Huber, U. Bauer, J. Reininghaus and
M. Niethammer)

Over the past decade, developments from the field of algebraic topology have
evolved into computationally practical methods to analyze data from a topologi-
cal perspective. Arguably, the most prevalent method used in practice is persistent
homology [6, 10] which offers a concise summary representation of topological fea-
tures in data in the form of barcodes / persistence diagrams. Persistent homology
not only presents a versatile approach to analyze a wide variety of data objects, but
it also opens up novel pathways to address learning problems based on topological
information. Methods from this field have found a broad range of applications in
different areas of science, including biology, computer vision, or medicine and are
now more succinctly summarized as topological data analysis (TDA) [4].

Despite the advantages of TDA for capturing topological invariants of data and
its potential benefits for learning purposes, TDA is still somewhat disconnected
from developments in machine learning. With respect to persistent homology, this
can be largely attributed to the unusual structure of the resulting topological sum-
maries (as multi-sets) and the associated, computationally expensive, metrics in
that space (e.g., p-Wasserstein). In fact, barcodes or persistence diagrams cannot
be used directly as input to conventional learning techniques, e.g., SVMs, without
potentially sacrificing desirable theoretical properties such as stability. Recently,
however, several works (e.g., [9, 8, 5, 2]) have shown advances towards bridging the
gap between machine learning and TDA, predominantly in the context of kernel-
based learning techniques [11]. This works, as kernel-methods allow to work with
non-standard (i.e., non-Euclidean) input data, upon the definition of a suitable
kernel function that 1) captures some notion of similarity between input objects
and 2) satisfies certain required conditions. However, this typically comes at the
cost of computational complexity, as kernel-methods do not scale well with sample
size [1]. Furthermore, kernels are either constructed explicitly by mapping data
into an inner-product space, or a predefined kernel function implicitly induces the
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mapping. In both cases, however, the mapping is fixed a-priori which immediately
raises the question if this is an appropriate strategy for a particular learning task.

The immanent success of deep neural networks in vision or natural language
processing (e.g., [3]) has, in fact, shown that it is highly beneficial to learn task-
specific representations of data, instead of hand-crafting a suitable representation.
While this already works remarkably well for many types of input, handling data
with strong geometric structure, such as graphs or manifold-valued objects poses
considerable algorithmic and theoretical challenges. The aforementioned topolog-
ical summaries fall exactly into this category because of their unusual structure
as multi-sets together with the associated metric(s). So far, this has largely pre-
vented principled approaches to use the output of a TDA pipeline as input to
neural networks.

Nevertheless, our initial work [7] on designing a neural network module that can
directly handle topological summaries has shown promising results on various (su-
pervised) learning tasks already (e.g., classification of graphs, or 2D object shape).
The idea essentially is to construct a mapping of persistence diagrams in such a
way that points in the diagram are projected onto a collection of (parametrized)
structure elements and the projections are finally summed up. On the one hand,
this facilitates to learn task-specific representations of these diagrams via via deep
neural networks, that 1) preserve certain theoretical properties (e.g., stability to
some extent) and 2) allow us to handle diagrams for homology groups of different
dimension jointly. On the other hand, it also presents new, interesting questions
from a theoretical point of view. Further developments along these lines bear
great potential to improve predictive performance on various kinds of learning
problems, as TDA can offer information complementary to existing approaches.
Hence, developing principled ways of bridging the gap between learning with neural
networks and TDA, both in terms of a well-founded theory and practical applica-
bility, presents a promising research direction in this field.
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Statistics on quotient spaces

Nina Miolane

(joint work with Xavier Pennec, Susan Holmes)

Statistics on quotient spaces arise when one wants to analyze data that have some
invariance properties. For example, analyzing shape data involve analyzing the
attributes of an object that are invariant with respect to rotations and translations,
or more generally with respect to a Lie group of transformations. One looks at the
equivalence class of the object in order to analyze its shape. In this talk, we show
that statistics on quotient spaces are asymptotically biased. We take the running
example of shape spaces and more particularly of the template shape estimation.

Known biases on shape spaces Shapes can first refer to shapes of landmarks
detected on objects. Procrustean analyses study shapes of landmarks by projecting
the objects in the shape space through “alignment” or “registration”. In this
literature, “shape” refers to a quotient by rotations, translations and scalings,
while “form” refers to a quotient by rotations and translations only. Le showed
that the mean “shape” has no asymptotic bias for shapes of landmarks in 2D, but
an asymptotic bias appears when the noise on the objects is non-isotropic as proven
by Kent and Mardia in 2D. In contrast, Lele showed that the mean “form” has an
asymptotic bias even with isotropic noise in 2D. A bias has also been observed by
Du, Dryden and Huang: ordinary Procrustes analysis without taking into account
noise on the landmarks may compromise inference. Kume et al. also observe,
study and correct the difference between the Maximum Likelihood estimate of the
mean shape versus the estimate of the Procrustean analysis.

Shapes can also refer to shapes of curves. Curve data are projected in their
shape space by alignment, in the spirit of a Procrustean analysis. Unbiasedness
was shown for shapes of signals by Kurtek under the assumption of no noise on
the objects. Allassonnière et al provide experiments showing a bias when there is
noise. The bias is proven by Bigot and Charlier for curves estimated from a finite
number of points in the presence of error.

Statistics on quotient spaces are biased We were missing an abstract geo-
metric understanding of the bias. When does it arise? Which variables control its
magnitude? Is it restricted to the mean shape or does it appear for other statistical
analyses? How important is it in practice: do we even need to correct it? If so,
how can we correct it? This talk addresses these questions with the geometry of
the quotient space Q.
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The data Xi’s are generated in the finite-dimensional Riemannian manifold M
by the generative model:

(1) Xi = Exp(gi · Y, ǫi), i = 1...n

where: (i) the parameter Y is the template shape in the shape space Q, (ii) gi ∈ G
is an element of the Lie group G acting isometrically on Y , (iii) ǫi is the noise and
follows a Gaussian of variance σ2, (iv) Exp is the Riemannian exponential on M .

The template shape Y is estimated with the Fréchet mean Ŷ of the data pro-
jected in the quotient space Q:

(2) Ŷ = argmin
Y ∈M

n∑

i=1

min
g∈G

d2M (Y, g ·Xi).

This is the estimator obtained in Procrustean analyses, or with the “max-max”
algorithm used in signals / curves / (medical) images analyses.

Theorem 1. [Asymptotic bias on the template shape estimation [3]]
In the regime of an infinite number of data n→ +∞, the asymptotic bias of the

template’s shape estimator Ŷ , with respect to the parameter Y , has the following
Taylor expansion around the noise level σ = 0:

(3) Bias(Ŷ , Y ) ≡ LogY Ŷ = −σ
2

2
H(Y ) +O(σ4) + ǫ(σ)

where (i) LogY is the Riemannian logarithm on Q at Y , hence a tangent vector at
Y (ii) H is the mean curvature vector of the template shape’s orbit which represents
the external curvature of the orbit inM , and (iii) ǫ is a function of σ that decreases
exponentially for σ → 0.

Figure 1. The external curvature of the template shape orbit,
at the scale of σ creates the bias. The presence of the singularity
of the quotient space creates the bias and has a repulsive effect of
the template shape estimate.
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Formulated in the Procrustean terminology, the result of Theorem 1 is: the
Generalized Procrustes Analysis estimator of mean “form” is asymptotically bi-
ased. We don’t consider the scalings as we assume an isometric Lie group action.
This result also provides a geometric interpretation for the bias on signals and
curves.

The variables controlling the bias are: (i) the distance in shape space from
the template Y to a singular shape (the external curvature of orbits generally
increases when Y is closer to a singularity) and (ii) the noise’s scale σ. This helps
determining when the bias is important and needs correction.

This bias goes beyond the template shape estimation. The next theorem shows
that any Gaussian noise on the objects in M induces a non-centered skewed noise
on the shapes in Q. A statistical learning that relies on a centered noise model in
Q is biased. This decreases for example the performance of K-mean algorithms on
shapes: clusters are less separated because of each centroid’s bias.

Theorem 2. [Noise on shapes induced by noise on objects [3]]
The probability distribution function f induced by the generative model 1 on the

shapes of the Xi’s, i = 1...n, in the asymptotic regime on an infinite number of
data n→ +∞, has the following Taylor expansion around the noise level σ = 0:

f(Z) =
1

(
√
2πσ)q

exp

(
−d

2
M (Y, Z)

2σ2

)(
F0(Z) + σ2F2(Z) +O(σ4) + ǫ(σ)

)

where (i) Z denotes a point in the shape space Q, (ii) F0 and F2 are functions
of Z involving the derivatives of the Riemannian tensor at Z and the derivatives
of the graph G describing the orbit OZ at Z, and (iii) ǫ is a function of σ that
decreases exponentially for σ → 0.

The exponential in the expression of f belongs to a Gaussian distribution cen-
tered at Z and of isotropic variance σ2

I. However the whole distribution f differs
from the Gaussian because of the Z-dependent term in the right parenthesis. This
induces a skew of the distribution away from the singularity.

We then propose an extension of the bootstrap, an iterative bootstrap on man-
ifolds, that quantifies the bias and corrects it if needed [3]. Our results are exem-
plified on simulated and real data [3] and for example on the brain template shape
estimation [4]. This analysis applies to finite dimensional manifolds quotiented by
an isometric Lie group action. For insights on infinite dimensional Hilbert spaces,
and possibly non isometric actions, we refer to the work of [1, 2].
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Small versus Large Scale Features: Comparing the Appropriate Data

Analysis Methods

Katharine Turner

Persistent homology captures geometrical and topological features at all differ-
ent length scales. We can use persistent homology as a preprocessing step where
the original data is replaced with a topological summary computed via persis-
tent homology. Heuristically each persistent homology class corresponds to some
geometric or topological feature in the data. In this talk I will compare some ex-
amples, discussing which topological summary is appropriate and what statistical
methods are applicable

When comparing the persistent homology of two different samples we may be
interested in using the persistent homology classes as proxies for individual “large
scale” features. In this case it is well-motivated to use a bottleneck or Wasser-
stein distance between the persistence diagrams as these distances match up the
persistent homology classes and compare the differences within each pair. As an
example we can consider the persistent homology transform applied to morphology
data sets such as a collection of calcanei (heel bones) of various primates. Here
we have a persistence diagram for each vector in the sphere where we filter by
the height function in that direction. Biological shape features will create persis-
tent homology classes. Using the 1-Wasserstein distance we can integrate over the
sphere of directions and add up the differences over a pair of bones as to when the
biological shape features begin and end.

In contrast, there are also applications where we care about the distributions
of the number of persistent homology classes of “short” lifetimes (such as in the
analysis of point patterns). Here the features heuristically correspond to differ-
ent types of local configurations. By analysing the distributions of the number
of persistent homology classes with particular birth and death values we are in-
directly analysing these distributions of local features. The persistent homology
rank function is useful in these types of applications. For example, it can distin-
guish the phase type of 2D particle systems (fluid, hexatic vs crystalised) and is
highly correlated to volume packing fraction in experimental sphere packing.
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Smeariness in Higher Dimension – The Beast is Real!

Benjamin Eltzner

(joint work with Stephan F. Huckemann)

The central limit theorem (CLT) is among the foundations of statistics. The use of
quantiles of an asymptotic distribution crucially relies on the fact, that the distri-
bution of the difference between sample mean µ̂n and population mean µ converges
to a Gaussian distribution with a rate of 1/

√
n. On a manifoldM with dimension

p, such as a circle, the usual definition of the mean of a distribution or sample does
not work. Instead, the mean is defined as the solution to a minimization problem,
using some metric d

µ := argmin
λ∈M

E[d(λ,X)2] µ̂n := argmin
λ∈M

1

n

n∑

j=1

d(λ,Xj)
2 ,

where, for simplicity, we assume uniqueness (a.s.). On the circle it was found by
[2] that there are probability distributions, where a CLT holds with an asymptotic
rate n−τ where τ < 1/2. The mean of such a distribution is called “smeary”.

Definition 1 (Smeariness). Let µ be the population mean, µ̂n the sample mean.
A probability measure P is called smeary, if

∃τ < 1/2 : nτ logµ(µ̂n) = OP (1)

where log denotes the inverse of the differential geometric exponential map.

We explore necessary conditions for smeariness in higher dimension, prove a CLT
and provide an example along with simulations.

1. Necessary Conditions for Smeariness

We refer to two theorems of [1] to point out necessary conditions for smeariness
to occur. For some q ∈M define the cut locus

C(q) := {p ∈M, more than one shortest geodesic connect q and p}
and let Bε(q) be a geodesic ball of radius ε around q. Then we can formulate the
theorem
Theorem 1 (Corollary 2.3 from [1]).
If supp(P) ⊆M\{q ∈M : ∃x ∈ Bε(µ) : q ∈ C(x)}, then the CLT holds for µ.

Conversely, this means that a non-empty C(µ) and a nonzero probability density
at C(µ) are necessary for smeariness. This theorem is not restricted to a specific
class of manifolds but holds generally and thus determines an important necessary
condition for smeariness to occur.

The next question that arises is, what a probability measure at the cut locus has
to satisfy to cause smeariness. Approaching this question, it is helpful to consider
the following theorem
Theorem 2 (Theorem 3.3 from [1]).
Let U ⊂ R

p be an open neighborhood of 0. If the following conditions hold
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(1) E[gradyd(expµ(y), X)2] <∞ and E[Hess yd(expµ(y), X)2] <∞ for y ∈ U ;

(2) P(C(Bε(µ))) = O(εp−c) for ε→ 0, 0 ≤ c < p;
(3) for the Fréchet function F (y) := E[d(expµ(y), X)2], HessF (0) is positive

definite;

then the standard central limit theorem holds if p > 2 + c.

In other words: For dimension p > 2 even probability densities which diverge
not to quickly at the cut locus allow for a normal, non-smeary CLT.

It is clear that smeariness can only occur, if an assumption of the theorem is
violated. Assumptions (1) and (2) are compelling regularity assumptions and a
probability measure violating either assumption could be considered rather patho-
logical. However, assumption (3) is a very refined technical assumption, which
does not follow in a simple way from more natural assumption. Therefore, we
focus on probability measures violating this assumption.

2. Smeariness on Spheres of Arbitrary dimension

First, we present an asymptotic result which is also valid for the case that condition
(3) from theorem 2 does not hold. We suppress some technical assumptions for
brevity.

Theorem 3 (Theorem 11 in [4], generalization of Theorem 5.23 in [3]). Assume
that the Fréchet function admits a power series expansion of the following form,
where Tj > 0 and R ∈ SO(m)

F (x) = F (0) +

m∑

j=1

Tj|(Rx)j |r + o(‖x‖r) where 2 ≤ r ∈ R

Then, any random measurable selection of sample means µ̂n satisfies

n1/2(RT logµ(µ̂n))
r−1 =WG + oP (1)

with a symmetric positive definite matrix W and a multivariate normal vector G.
The expression (RT logµ(µ̂n))

r−1 denotes taking the product of the power of the
absolute value multiplied with the original sign in each component separately.

As an example, assume a point mass of magnitude 1 − α ∈ (0, 1) at the north
pole and a uniform distribution with total mass α on the southern hemisphere,
illustrated in Figure 1. Then there is a critical value αcrit of the uniform density
for every p, such that the Hessian of the Fréchet function vanishes and the first
non-vanishing term is of order r = 4 at the mean. Thus, the mean is smeary with
asymptotic rate τ = 1/6.

Although all measures with smeary means known so far are very carefully con-
structed, the concept is more general than it appears at first sight. At finite sample
size, samples from probability measures close to a smeary measure can be affected
by slow convergence rates, which will render hypothesis tests unreliable. As an
illustration, we perform simulations of the sample variance from the measures de-
scribed above with α = αcrit + β, on S

p. For every sample size, we draw 1000
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Figure 1. Illustration of a probability mea-
sure on the sphere with smeary mean.

samples, determine the spherical mean for each sample and then determine the
sum of squared distances of these means from the north pole. For β ≤ 0 we have
a unique minimum, where for the smeary case β = 0 we expect a slow decay of

the empirical variance denoted by V with rate approaching n− 1
3 , and for β < 0

we expect the rate to approach n−1.

Figure 2. Simulated variances V times n for different values of
β for dimensions p = 2, 10 and 100 from left to right. Black lines
V ∝ n−1 (solid) and V ∝ n− 1

3 (dashed) for reference.

However, Figure 2 clearly shows that the asymptotic rates follow the smeary
case until fairly large sample sizes, before settling into the standard CLT behavior.
This effect becomes more pronounced with increasing dimension, leading to a high
dimension low sample size problem.
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Probabilistic Inference on Manifolds

Stefan Sommer

(joint work with Sarang Joshi)

Statistical analysis of manifold valued data is often performed by generalizing least
squares criterions and constructing data representations that mimic similar Eu-
clidean constructions. This is for example the case for several generalizations of
the Euclidean principal component analysis (PCA) procedure. PCA can be for-
mulated as minimizing residual errors after approximating with low-dimensional
linear subspaces. Procedures such as principal nested spheres (PNS/CPNS, [5]),
horizontal component analysis (HCA, [8]) torus PCA (TPCA, [3]) geodesic PCA
(GPCA, [4]) and barycentric subspace analysis (BSA, [7]) generalize this formula-
tion to the nonlinear manifold setting.

In Euclidean space, fitting low-dimensional subspaces to data can equivalently
be viewed as fitting Gaussian normal distributions by maximum likelihood. In
essence, the log-density of the Gaussian distribution is a function of the negative
square norm, and maximizing this is equivalent to minimizing squared distances.
Inspired by this fact, probablistic PGA [15] and the later generalizations [9, 12]
defined versions of the probabilistic PCA [14] procedure on manifolds by fitting
parametric families of distributions to data.

Based on these ideas, we argue for a general probabilistic approach to statis-
tical analysis of manifold valued data: Consider independently distributed data
y1, . . . , yN on the manifoldM . Let µθ be a family of probability distributions µθ ∈
Prob(M) parametrized by a parameter θ. Assume nowM is equipped with a fixed
measure µ0 and that µθ has a density. We can then let pθ : M → R be a density

such that pθµ0 = µθ. From pθ, we get a likelihood L(θ; y1, . . . , yN) =
∏N

i=1 pθ(yi),
and we can search for a maximum likelihood estimate

θ̂ML = argmaxθL(θ; y1, . . . , yN )

or, if we have a prior p on θ, a maximum a posteriori estimate

θ̂MAP = argmaxθL(θ; y1, . . . , yN)p(θ) .

This construction is of course natural from a probabilistic viewpoint, however,
such formulations have not yet been widely explored in the manifold statistics
literature. Probabilistic formulations essentially transfer the complexities of least
squares constructions - projections to subspaces, existence of minimizers, recurrent
geodesics, construction of linear-like subspaces - to constructions of parametric
families of probability distributions. Such distributions can be defined in forms
that are natural both from geometric and probabilistic viewpoints. In particular,
distributions arising from stochastic processes can exploit that the infinitesimal
definition of integral equations and SDEs are often naturally compatible with the
differential structure of manifolds.

One example of such constructions are the anisotropic normal distributions [10,
13, 11] constructed as Brownian flows in the frame bundle of the manifold where
the frames encode covariance structure. A similar example of using Brownian
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Figure 1. A sample from a S
2 valued Brownian bridge from the

north pole (red) to the target (black) simulated from a guided
bridge scheme similar to the process (1).

motion to define a probability distribution on non-smooth spaces can be found in
[6]. Both constructions use the parameter θ to encode a mean x ∈M , and in the
frame bundle construction additionally the covariance Σ. Fitting these parameters
to data gives a maximum likelihood interpretation of the mean, or mean and
covariance. See also [1] for a similar example of using stochastic processes to
construct probability distributions in shape analysis. We are currently exploring
similar constructions on Lie groups and orbit spaces.

The likelihood function can for stochastic processes be approximated by Monte
Carlo sampling of bridge processes. One approach is to generalize the guided
bridge simulation approach of Delyon and Hu [2] to manifolds. We explored well-
posedness and existence of the guided SDE

(1) dyt = b(t, yt)dt+
Logyt

(v)

T − t dt+ σ(t, yt)dWt

that uses the Riemannian Log-map to ensure the target v ∈ M is hit a.s. under
reasonable assumptions on the drift and coefficient terms b and σ. Even though
Log is not continuous at the cut locus of v, the process can be shown to exist and
the likelihood of v can be sought approximated from sampling yt.

One important question arising from these considerations is properties and nat-
urality of the probabilistic estimators, e.g. the ML mean. The Frechét mean and
its corresponding manifold central limit theorem are influenced by curvature of
M . In the non-smooth category, the Frechét mean exhibit stickiness or smeary-
ness effects. It remains as an open question if the ML mean does or does not carry
similar properties.
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Curvature effects in empirical means, PCA and flags of subspaces

Xavier Pennec

Because we have in practice a limited number of samples, a problem in geometric
statistics is to determine the properties of the empirical Fréchet mean of n IID
samples in a Riemannian manifold. In sufficiently concentrated conditions, the
empirical Fréchet mean exists and is unique for each sample, so that we can define
its expected moments for a fixed number of samples. Using a Taylor expansion of
the Riemannian metric, we can compute the Taylor expansion of the moments of a
(sufficiently concentrated) distribution. This is used in turn to practically compute
the first and second order moments of empirical means of an IID n-sample.
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The expected empirical mean (or more precisely its expected log at the mean
of the underlying distribution) turns out to have an unexpected non vanishing
term (a bias) of order 4 in the distribution extension and in 1/n with respect to
the number of samples. This bias term is a double contraction of the covariant
derivative of the Riemannian curvature with the covariance matrix, and vanishes
for symmetric spaces:

E [ logx̄(x̄n)
a ] =

1

24n
(2∇bR

a
dce +∇aRcebd)(M

n
2 )

bc(Mn
2 )

de +O(ǫ5).

Likewise, the covariance of the empirical mean has a correction term in 1/n con-
tracting twice the Riemannian curvature with the covariance:
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This term can be interpreted as an extended Ricci curvature: in positively curved
spaces, the convergence with the number of samples is slower than in Euclidean
spaces while it is accelerated in negatively curved spaces. We conjecture that these
effects might be the prelude to the stickiness of the mean in limit cases where the
curvature becomes singular.

The second part of the talk focuses on flags (sequences of properly nested) of
affine spans for generalizing PCA to manifolds. Barycentric subspaces and affine
spans are defined as the (completion of the) locus of weighted means to a number of
reference points. They can be naturally nested by defining an ordering of the refer-
ence points, which allows the construction of forward or backward nested sequence
of subspaces. However, forward or backward methods optimize one subspace at a
time and cannot optimize the unexplained variance simultaneously for all the sub-
spaces of the flag. In order to obtain a global criterion, PCA in Euclidean spaces
is rephrased as an optimization on the flags of linear subspaces and we propose an
extension of the unexplained variance criterion that generalizes nicely to flags of
affine spans in Riemannian manifolds. This results into a particularly appealing
generalization of PCA on manifolds, that we call Barycentric Subspaces Analysis
(BSA). More details are available in [1]
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Tropical Sufficient Statistics for Persistent Homology

Anthea Monod

(joint work with Sara Kalǐsnik, Juan Ángel Patiño-Galindo, and Lorin Crawford)

We show that an embedding in Euclidean space based on tropical geometry gen-
erates stable sufficient statistics for barcodes. Conventionally, barcodes are mul-
tiscale summaries of topological characteristics that capture the “shape” of data;
however, in practice, they have complex structures which make them difficult to

https://arxiv.org/abs/1607.02833v2
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use in statistical settings. The sufficiency result presented in this work allows for
classical probability distributions to be assumed on the tropicalized representa-
tions of barcodes. This makes a variety of parametric statistical inference meth-
ods amenable to barcodes, all while maintaining their initial interpretations. More
specifically, we show that exponential family distributions may be constructed.

We conceptually demonstrate sufficiency and illustrate its utility in persistent
homology dimensions 0 and 1 with concrete parametric applications to HIV and
avian influenza data.
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Covariance Tensors on Riemannian Manifolds

Washington Mio

(joint work with Haibin Hang and Facundo Mémoli)

The mean and covariance tensor are widely used summaries of data in Euclidean
space that allow for simple visualization and inference with techniques such as
principal component analysis. The mean generalizes to data on metric spaces as
minimizers of the Fréchet function; however, a principled formulation of covariance
tensors still is lacking. Here, we discuss an approach to covariance tensors for
random variables taking values on a Riemannian manifold.

To motivate our formulation, we begin with a reinterpretation of the classical
covariance tensor associated with a random variable y ∈ R

d (with finite second
moment) distributed according to a probability measure α. Instead of considering
covariation of y only with respect to the mean, we approach covariance as a tensor
field Σα : R

d → R
d ⊗ R

d given by

(1) Σα(x) =

∫

Rd

(y − x)⊗ (y − x) dα(y) .

Σα encodes covariation with respect to any reference point x ∈ R
d and clearly

depends only on the underlying distribution α. The term (y−x) on the integrand
uses the vector space structure on R

d, so (1) does not directly extend to distribu-
tions on manifolds. To circumvent the problem, we rewrite covariance as follows.
Consider the kernel function u(x, y) = ‖x− y‖2/2, which we may interpret as the
potential energy of x relative to y. For a random y ∈ R

d, the gradient field of
u(·, y) is given by ∇xu(x, y) = x− y. Thus, we may write

(2) Σα(x) =

∫

Rd

∇xu(x, y)⊗∇xu(x, y) dα(y) ,

an expression that only invokes local linearization and more easily generalizes to
the manifold setting.



154 Oberwolfach Report 3/2018

Let (M, g) be a Riemannian manifold, y ∈M a random variable distributed ac-
cording to a Borel probability measure α, and u : M×M → R

+ a smooth, symmet-
ric kernel function. (We assume that there is A > 0 such that ‖∇xu(x, y)‖x ≤ A,
∀x, y ∈ M , but this assumption may be relaxed.) For k ≥ 1, we define the
k-tensor field Σk

α,u at x ∈ M , as the expected value of the random variable

⊗k∇xu(x, y) ∈ ⊗kTxM . More formally, Σk
α,u is the section of the k-fold tensor

product of the tangent bundle of M given by

(3) Σk
α,u(x) =

∫

M

⊗k∇xu(x, y) dα(y) .

The Fréchet function of α with respect to the kernel u is defined as

(4) Vα,u(x) =

∫

Rd

u(x, y) dα(y) .

Note that the 1-tensor Σ1
α,u is the gradient field of Vα,u, that is, ∇Vα,u = Σ1

α,u.
To state a stability result for covariance tensors, we introduce some notation.

For each x ∈ M , the Riemannian structure on M induces an inner product on
⊗kTxM given on pure tensors by

〈
⊗k

i=1vi,⊗k
i=1wi

〉
x
= Πk

i=1 〈vi, wi〉x. We write
‖ · ‖x for the associated norm, omitting k from the notation. We denote the
geodesic distance on (M, g) by dg and write P1(M,dg) for the 1-Wasserstein space
associated with (M,dg) and w1 for the 1-Wasserstein distance on P1(M,dg).

Theorem 1. Let (M, g) be a complete Riemannian manifold and α, β ∈ P1(M,dg).
Suppose that u : M ×M → R

+ is a smooth, symmetric function that satisfies (i)
‖∇xu(x, y)‖x ≤ A, ∀x, y ∈ M and (ii) ‖∇xu(x, y1) − ∇x(x, y2)‖x ≤ Ldg(y1, y2),
∀x, y1, y2 ∈M , where A > 0 and L > 0. Then, for any k ≥ 1,

sup
x∈M
‖Σk

α,u(x)− Σk
β,u(x)‖x ≤ kAk−1Lw1(α, β) .

Remark. A consistency result for covariance fields follows as a corollary of this sta-
bility result via well-known facts about convergence of empirical measures (cf. [2]).

The covariance fields derived from potential energies associated with diffusion
distances on a Riemannian manifold lead to scale spaces of covariance tensors
that provide rich, informative multi-scale data summaries. Here, we only discuss
the Euclidean case (cf. [1]), starting with the definition of diffusion distance. Let
K : Rd × R

d × (0,∞)→ R
+ be the heat kernel that is given by

(5) K(x, y, t) =
1

(4πt)d/2
exp

(
−‖x− y‖

2

4t

)
.

For each t > 0, consider the embedding κt : R
d → L2(R

d) defined by x 7→ K(x, ·, t),
which maps x to the isotropic Gaussian centered at x with variance σ2

t = 2t.
The diffusion distance dt is the metric on R

d induced by this embedding, up to
a multiplicative factor that we introduce to simplify a few expressions. More
explicitly, for any x1, x2 ∈ R

d,

(6) dt(x1, x2) =
1√
2
‖κt(x1)− κt(x2)‖2 .



Statistics for Data with Geometric Structure 155

Figure 1. Covariance field for 1000 equally spaced points on a
circle (illustration courtesy of Diego H. Dı́az Mart́ınez).

A calculation shows that diam(Rd, dt) = 1/(8πt)d/4. For each t > 0, let ut : R
d ×

R
d → R

+ be the kernel ut(x, y) = d2t/2(x, y)/2. The k-covariance tensor and

the Fréchet function of a probability measure α on R
d with respect to ut will

be denoted Σk
α,t and Vα,t, respectively. This yields a one-parameter family of

covariance tensor fields (and Fréchet functions), indexed by t > 0, a multi-scale
summary of α. (Related 2-tensor fields have been proposed in [2].) Fig. 1 depicts
the 2-tensor field at a fixed scale for a dataset comprising 1000 equally spaced
points on a circle. The symmetric tensors are plotted as ellipses obtained from
their eigen-decompositions. Let αt be the solution of the heat equation ∂tv = ∆v
with initial condition α, which mollifies α to a smooth density function. Then,
one can show that

(7) Vα,t =
1

(4πt)d/2
− αt = diam2(Rd, dt/2)− αt .

If y1, . . . , yn ∈ R
d are data points and α =

∑n
i=1 δi/n is the associated empirical

measure, then αt is the corresponding Gaussian kernel density estimator. Thus,
(7) gives an interpretation of such density estimators as Fréchet functions (cf. [1]),
integrating density estimators into a hierarchy of “tensorized” moments of α.

Remarks:

(1) The construction of covariance tensors does not directly apply to the kernel
u(x, y) = d2g(x, y)/2 because it is not necessarily smooth. Nonetheless, it
is possible to define covariance tensors if α is absolutely continuous with
respect to the Riemannian measure since the singularities of u only occur
at y ∈ Cx, the cut locus of x, which has measure zero.

(2) Persistent homology using Fréchet functions or scalar reductions of tensor
fields as filtering functions may be used for extracting information about
geometric organization of data in a computable manner.

(3) One may define discrete forms of covariance tensors for distributions on
the vertex set of a weighted network.

(4) If Σt = Σ2
α,t is everywhere non-singular, then the tensor field Σ−1

t defines
a new Riemannian structure on M that may be viewed as the shape of
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(M, g, α) at scale t > 0. The condition is satisfied, for example, if α is
given by a positive density function.
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Optimal matching between curves in a manifold

Marc Arnaudon

(joint work with Alice Le Brigant, Marc Arnaudon and Frédéric Barbaresco)

This talk is concerned with the computation of an optimal matching between two
manifold-valued curves. Curves are seen as elements of an infinite-dimensional
manifold and compared using a Riemannian metric that is invariant under the ac-
tion of the reparameterization group. This group induces a quotient structure clas-
sically interpreted as the ”shape space”. We introduce a simple algorithm allowing
to compute geodesics of the quotient shape space using a canonical decomposition
of a path in the associated principal bundle. We consider the particular case of
elastic metrics and show simulations for open curves in the plane, the hyperbolic
plane and the sphere.

1. Introduction

A popular way to compare shapes of curves is through a Riemannian framework.
The set of curves is seen as an infinite-dimensional manifold on which acts the
group of reparameterizations, and is equipped with a Riemannian metric G that
is invariant with respect to the action of that group. Here we consider the set of
open oriented curves in a Riemannian manifold (M, 〈·, ·〉) with velocity that never
vanishes, i.e. smooth immersions,

M = Imm([0, 1],M) = {c ∈ C∞([0, 1],M) : c′(t) 6= 0 ∀t ∈ [0, 1]}.
It is an open submanifold of the Fréchet manifold C∞([0, 1],M) and its tangent
space at a point c is the set of infinitesimal vector fields along the curve c in M ,

TcM = {w ∈ C∞([0, 1], TM) : w(t) ∈ Tc(t)M ∀t ∈ [0, 1]}.
A curve c can be reparametrized by right composition c ◦ ϕ with an increasing
diffeomorphism ϕ : [0, 1]→ [0, 1], the set of which is denoted by Diff+([0, 1]). We
consider the quotient space S = M/Diff+([0, 1],M), interpreted as the space of
”shapes” or ”unparameterized curves”. If we restrict ourselves to elements ofM
on which the diffeomorphism group acts freely, then we obtain a principal bundle
π : M → S, the fibers of which are the sets of all the curves that are identical
modulo reparameterization, i.e. that project on the same ”shape”. We denote by
c̄ := π(c) ∈ S the shape of a curve c ∈ M. Any tangent vector w ∈ TcM can
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then be decomposed as the sum of a vertical part wver ∈ Verc, that has an action
of reparameterizing the curve without changing its shape, and a horizontal part

whor ∈ Horc = (Verc)
⊥G , G-orthogonal to the fiber,

TcM ∋ w = wver + whor ∈ Verc ⊕Horc,

Verc = kerTcπ = {mv := mc′/|c′| : m ∈ C∞([0, 1],R),m(0) = m(1) = 0} ,
Horc = {h ∈ TcM : Gc(h,mv) = 0, ∀m ∈ C∞([0, 1],R),m(0) = m(1) = 0} .

If we equipM with a Riemannian metric Gc : TcM× TcM→ R, c ∈ M, that is
constant along the fibers, i.e. such that

(1) Gc◦ϕ(w ◦ ϕ, z ◦ ϕ) = Gc(w, z), ∀ϕ ∈ Diff+([0, 1]),

then there exists a Riemannian metric Ḡ on the shape space S such that π is a
Riemannian submersion from (M, G) to (S, Ḡ), i.e.

Gc(w
hor, zhor) = Ḡπ(c) (Tcπ(w), Tcπ(z)) , ∀w, z ∈ TcM.

This expression defines Ḡ in the sense that it does not depend on the choice of the
representatives c, w and z ([4], §29.21). If a geodesic for G has a horizontal initial
speed, then its speed vector stays horizontal at all times - we say it is a horizontal
geodesic - and projects on a geodesic of the shape space for Ḡ ([4], §26.12). The
distance between two shapes for Ḡ is given by

d̄ (c0, c1) = inf
{
d (c0, c1 ◦ ϕ) | ϕ ∈ Diff+([0, 1])

}
.

Solving the boundary value problem in the shape space can therefore be achieved
either through the construction of horizontal geodesics e.g. by minimizing the
horizontal path energy [1],[7], or by incorporating the optimal reparameterization
of one of the boundary curves as a parameter in the optimization problem [2],[6],[8].
Here we introduce a simple algorithm that computes the horizontal geodesic linking
an initial curve with fixed parameterization c0 to the closest reparameterization
c1 ◦ ϕ of the target curve c1. The optimal reparameterization ϕ yields what we
will call an optimal matching between the curves c0 and c1.

2. The optimal matching algorithm

We want to compute the geodesic path s 7→ c̄(s) between the shapes of two curves
c0 and c1, that is the projection c̄ = π(ch) of the horizontal geodesic s 7→ ch(s)
- if it exists - linking c0 to the fiber of c1 in M. This horizontal path verifies
ch(0) = c0, ch(1) ∈ π−1(c1) and ∂ch/∂s(s) ∈ Horch(s) for all s ∈ [0, 1]. Its end
point gives the optimal reparameterization c1◦ϕ of the target curve c1 with respect
to the initial curve c0, i.e. such that

d̄(c0, c1) = d(c0, c1 ◦ ϕ) = d(c0, ch(1)).

In all that follows we identify a path of curves [0, 1] ∋ s 7→ c(s) ∈ M with
the function of two variables [0, 1] × [0, 1] ∋ (s, t) 7→ c(s, t) ∈ M and denote
by cs := ∂c/∂s and ct := ∂c/∂t its partial derivatives with respect to s and
t. We decompose any path of curves s 7→ c(s) in M into a horizontal path
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reparameterized by a path of diffeomorphisms, i.e. c(s) = chor(s) ◦ ϕ(s) where
chors (s) ∈ Horchor(s) and ϕ(s) ∈ Diff+([0, 1]) for all s ∈ [0, 1]. That is,

(2) c(s, t) = chor(s, ϕ(s, t)) ∀s, t ∈ [0, 1].

The horizontal and vertical parts of the speed vector of c can be expressed in terms
of this decomposition. Indeed, by taking the derivative of (2) with respect to s
and t we obtain

cs(s) = chors (s) ◦ ϕ(s) + ϕs(s) · chort (s) ◦ ϕ(s),(3a)

ct(s) = ϕt(s) · chort (s) ◦ ϕ(s),(3b)

and so if vhor(s, t) := chort (s, t)/|chort (s, t)| denotes the normalized speed vector
of chor, (3b) gives since ϕt > 0, v(s) = vhor(s) ◦ ϕ(s). We can see that the
first term on the right-hand side of Equation (3a) is horizontal. Indeed, for any
m : [0, 1] → C∞([0, 1],R) such that m(s, 0) = m(s, 1) = 0 for all s, since G is
reparameterization invariant we have

G
(
chors (s) ◦ ϕ(s), m(s) · v(s)

)
= G

(
chors (s) ◦ ϕ(s), m(s) · vhor(s) ◦ ϕ(s)

)

= G
(
chors (s), m(s) ◦ ϕ(s)−1 · vhor(s)

)

= G
(
chors (s), m̃(s) · vhor(s)

)
,

with m̃(s) = m(s) ◦ ϕ(s)−1. Since m̃(s, 0) = m̃(s, 1) = 0 for all s, the vector
m̃(s) · vhor(s) is vertical and its scalar product with the horizontal vector chors (s)
vanishes. On the other hand, the second term on the right hand-side of Equation
(3a) is vertical, since it can be written

ϕs(s) · chort ◦ ϕ(s) = m(s) · v(s),
with m(s) = |ct(s)|ϕs(s)/ϕt(s) verifying m(s, 0) = m(s, 1) = 0 for all s. Finally,
the vertical and horizontal parts of the speed vector cs(s) are given by

cs(s)
ver = m(s) · v(s) = |ct(s)|ϕs(s)/ϕt(s) · v(s),(4a)

cs(s)
hor = cs(s)−m(s) · v(s) = chors (s) ◦ ϕ(s).(4b)

We call chor the horizontal part of the path c with respect to G.

Proposition 1. The horizontal part of a path of curves c is at most the same
length as c

LG(c
hor) ≤ LG(c).

Now we will see how the horizontal part of a path of curves can be computed.

Proposition 2 (Horizontal part of a path). Let s 7→ c(s) be a path in M. Then
its horizontal part is given by chor(s, t) = c(s, ϕ(s)−1(t)), where the path of diffeo-
morphisms s 7→ ϕ(s) is solution of the PDE

(5) ϕs(s, t) = m(s, t)/|ct(s, t)| · ϕt(s, t),

with initial condition ϕ(0, ·) = Id, and where m(s) : [0, 1] → R, t 7→ m(s, t) :=
|cvers (s, t)| is the vertical component of cs(s).



Statistics for Data with Geometric Structure 159

If we take the horizontal part of the geodesic linking two curves c0 and c1, we
will obtain a horizontal path linking c0 to the fiber of c1 which will no longer
be a geodesic path. However this path reduces the distance between c0 and the
fiber of c1, and gives a ”better” representative c̃1 = c1 ◦ ϕ(1) of the target curve.
By computing the geodesic between c0 and this new representative c̃1, we are
guaranteed to reduce once more the distance to the fiber. The algorithm that we
propose simply iterates these two steps.

Data: c0, c1 ∈ M
Result: c̃1
Set c̃1 ← c1 and Gap← 2× Threshold;

while Gap > Threshold do

construct the geodesic s 7→ c(s) between c0 and c̃1;

compute the horizontal part s 7→ chor(s) of c;

set Gap← distL2

(
chor(1), c̃1

)
and c̃1 ← chor(1);

end

Algorithm 1: Optimal matching.

3. Example : elastic metrics

In this section we consider the particular case of the two-parameter family of
elastic metrics, introduced for plane curves by Mio et al. in [5]. We denote by ∇
the Levi-Civita connection of the Riemannian manifold M , and by ∇tw := ∇ctw,
∇2

tw := ∇ct∇ctw the first and second order covariant derivatives of a vector field
w along a curve c of parameter t. For manifold-valued curves, elastic metrics can
be defined for any c ∈ TcM and w, z ∈ TcM by

(6) Ga,b
c (w, z) = 〈w(0), z(0)〉 +

∫ 1

0

(
a2〈∇ℓw

N ,∇ℓz
N〉+ b2〈∇ℓw

T ,∇ℓz
T 〉

)
dℓ,

where dℓ = |c′(t)|dt and ∇ℓ = 1
|c′(t)|∇t respectively denote integration and co-

variant derivation according to arc length. For th choice of coefficients a = 1 and
b = 1/2, the geodesic equations are easily numerically solved [3] if we adopt the so-
called square root velocity representation [6], in which each curve is represented by
the pair formed by its starting point and speed vector renormalized by the square
root of its norm. Let us characterize the horizontal subspace for Ga,b, and give
the decomposition of a tangent vector.

Proposition 3 (Horizontal part of a vector for an elastic metric). Let c ∈M be a
smooth immersion. A tangent vector h ∈ TcM is horizontal for the elastic metric
(6) if and only if it verifies the ordinary differential equation

(7)
(
(a/b)2 − 1

)
〈∇th,∇tv〉 − 〈∇2

th, v〉+ |c′|−1〈∇tc
′, v〉〈∇th, v〉 = 0.

The vertical and horizontal parts of a tangent vector w ∈ TcM are given by

wver = mv, whor = w −mv,
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where the real function m ∈ C∞([0, 1],R) verifies m(0) = m(1) = 0 and

(8)
m′′ − 〈∇tc

′/|c′|, v〉m′ − (a/b)2|∇tv|2m
= 〈∇t∇tw, v〉 −

(
(a/b)2 − 1

)
〈∇tw,∇tv〉 − 〈∇tc

′/|c′|, v〉〈∇tw, v〉.
This allows us to characterize the horizontal part of a path of curves for Ga,b.

Proposition 4 (Horizontal part of a path for an elastic metric). Let s 7→ c(s)
be a path in M. Then its horizontal part is given by chor(s, t) = c(s, ϕ(s)−1(t)),
where the path of diffeomorphisms s 7→ ϕ(s) is solution of the PDE

(9) ϕs(s, t) = m(s, t)/|ct(s, t)| · ϕt(s, t),

with initial condition ϕ(0, ·) = Id, and where m(s) : [0, 1] → R, t 7→ m(s, t) is
solution for all s of the ODE

(10)
mtt − 〈∇tct/|ct|, v〉mt − (a/b)2|∇tv|2m

= 〈∇t∇tcs, v〉 −
(
(a/b)2 − 1

)
〈∇tcs,∇tv〉 − 〈∇tct/|ct|, v〉〈∇tcs, v〉.

We numerically solve the PDE of the Proposition using the following Algorithm.

Data: path of curves s 7→ c(s)
Result: path of diffeomorphisms s 7→ ϕ(s)
for k = 1 To n do

estimate the derivative ϕt(
k
n , ·);

solve ODE (10) using a finite difference method to obtain m( kn , ·);
set ϕs(

k
n , t)← m( kn , t)/|ct( kn , t)| · ϕt(

k
n , t) for all t;

propagate ϕ(k+1
n , t)← ϕ( kn , t) +

1
nϕs(

k
n , t) for all t;

end

Algorithm 2: Decomposition of a path of curves.
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Procrustes Metrics on Covariance Operators and

Optimal Coupling of Gaussian Processes

Victor M. Panaretos

(joint work with Valentina Masarotto and Yoav Zemel)

Covariance operators are a key object of study in functional data analysis : non-
parametric statistics for stochastic processes, where sample paths are viewed as re-
alisations of random elements of some infinite-dimensional separable Hilbert space
H. The spectral decomposition of a covariance operator provides the canonical
means to quantify the random variation of a process X taking values in H, and to
regularise associated inference problems which are typically ill-posed.

In modern applications, it may happen that covariance operators may them-
selves subject to random variation, usually in situations where several different
“populations” of functional data are considered, and there is strong reason to sus-
pect that each population may present different structural characteristics. Each
of the K populations will then represent the law of a random element Xk of H,
with mean function µk ∈ H and covariance operator Σk : H × H → H. And,
for the purposes of inference, one will observe observe Nk realisations from each
population: {X i

k : i = 1, . . . , Nk; k = 1, . . . ,K}. Early contributions in this area
were motivated through financial and biophysical applications and led to a surge
of methods and theory on second-order variation of functional populations. Many
of these approaches, though, are intrinsically linear : they embed covariance oper-
ators in the space of Hilbert-Schmidt operators, and statistical inference is carried
out with respect to the corresponding metric. However, covariance operators are
fundamentally constrained to obey nonlinear constraints, as they are characterised
as the “squares” of Hilbert-Schmidt class operators.

In the multivariate (finite dimensional) literature this problem has been long
known, and well-studied, primarily due to its natural connections with important
applications such diffusion tensor imaging and shape theory. Consequently, infer-
ence for populations of covariance operators has been investigated under a wide
variety of possible geometries for the space of covariance matrices. Many of these
metrics, however, do not easily generalise to infinite dimensional spaces, since they
involve quantities such as determinants, logarithms and inverses.

Pigoli et al. [2] were the first to make important progress in the direction of
considering inference for second-order variation in appropriate nonlinear spaces,
motivated by the problem of cross-linguistic variation of phonetics in Romance lan-
guages. They focussed on the generalisation of the so-called Procrustes reflection-
size-and-shape metric (henceforth Procrustes metric) and derived some of its basic
properties, with a view towards initiating a programme of non-Euclidean analysis
of covariance operators. In doing so, they (implicitly or explicitly) generated many
further interesting research directions on the geometrical nature of this metric, its
statistical interpretation, and the properties of Fréchet means with respect to this
metric.
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We report on recent work [1] addressing some of these questions, and further-
ing our understanding of the Procrustes metric and the induced statistical models
and procedures, thus placing this new research direction in non-Euclidean statis-
tics on a firm footing. The starting point is a relatively straightforward but quite
consequential observation: that the Procrustes metric between two covariance op-
erators on H coincides with the Wasserstein metric between two centred Gaussian
processes on H endowed with those covariances, respectively. This connection
allows us to exploit the wealth of geometrical and analytical properties of opti-
mal transportation, and contribute in two ways. On the one hand, by reviewing
and collecting some important aspects of Wasserstein spaces, re-interpreted in the
Procrustean context, we elucidate key geometrical (the structure of the tangent
bundle and of geodesics), topological (equivalence with the nuclear topology), and
computational (descent algorithms with convergence guarantees) aspects of the
space of covariances endowed with the Procrustes metric. On the other hand, we
establish new results: we show existence, uniqueness, and (uniform over compacta)
stability of empirical Fréchet means of covariances with respect to the Procrustes
metric, and construct a tangent space principal component analysis via the notion
of Gaussian optimal (multi)coupling. We also determine generative statistical
models compatible with the Procrustes metric and linking with the problem of
warping/registration in functional data analysis. We conclude by formulating a
conjecture on the regularity of the Fréchet mean that could have important conse-
quences on statistical inference: given Σ1, ...,Σk injective covariance operators on
H, we conjecture that their Fréchet mean with respect to the Procrustes metric is
also injective.
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Curvature concepts in probability

Theo Sturm

Various curvature concepts have been extended from Riemannian geometry to
more general spaces – metric spaces or metric measures spaces – and play impor-
tant roles in probability theory. We briefly discuss the three most important of
them.

1. Upper Bounds for the Sectional Curvature

Let us recall the definition of upper curvature bounds in the sense of Alexandrov.
For simplicity, here and in the sequel we restrict ourselves to curvature bound 0.
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Definition 1. A geodesic space (X, d) has globally nonpositive curvature iff tri-
angles are more thin than in Euclidean space (“global NPC-space”, “Hadamard
space”).

Example. For simply connected Riemannian manifolds this is equivalent to non-
positive sectional curvature.

A quite intuitive, characterizing property of these spaces is the Pythagorean
inequality a2 + b2 ≤ c2. Of particular importance is the following quadruple char-
acterization which easily is seen to be stable under convergence and immediately
passes over to spaces of functions with values in such spaces.

Theorem 1 (Sturm 2003, Berg–Nikolaev 2008). (X, d) has globally nonpositive
curvature iff

d2(x1, x3) + d2(x2, x4) ≤
4∑

i=1

d2(xi, xi+1) (∀x1, x2, x3, x4).

Example. The L2-space of maps f : X → Y from some measure space (X,m)

into a NPC space (Y, d) is NPC, too. Here d2(f, g) =
∫
X
d2
(
f(x), g(x)

)
dm(x).

Theorem 2 (Cartan, Fréchet, Karcher,. . . , Sturm).

• ∀µ ∈ P1(X) : ∃! minimizer of z 7→
∫
[d2(z, x) − d2(y, x)] dm(x), indepen-

dent of y, and denoted by b(µ)
• ∀µ, ν ∈ P1(X) : d

(
b(µ), b(ν)

)
≤W1(µ, ν)

This (and straightforward generalizations) allows to define conditional expec-
tations, martingales, etc. Of particular importance is the Law of Large Numbers.

Theorem 3 (Sturm 2003). Assume that (Yi)i are bounded iid with distribution
µ ∈ P1. Then P-a.s. for n→∞

1

n

→∑

i=1,...,n

Yi → b(µ)

Here the ‘inductive mean’ sn = 1
n

∑→
i=1,...,n Yi is defined recursively: s1 = Y1

and sn is the point γ( 1n ) on the geodesic from sn−1 = γ(0) to Yn = γ(1).
The convergence is exponentially fast. The rate can be estimated as in the

Euclidean case, see [Kei Funano, Osaka J Math 2010].

2. Lower Bounds for the Sectional Curvature

Next we recall the definition of lower curvature bounds in the sense of Alexandrov,
again for simplicity assuming that the bound is 0.

Definition 2. A geodesic space (X, d) has nonnegative curvature iff triangles are
more fat than in Euclidean space (“CAT(0) space”).
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Example. For Riemannian manifolds this is equivalent to nonnegative sectional
curvature.

Again, a quite intuitive, characterizing property is the Pythagorean inequality
a2 + b2 ≥ c2; and a quadruple characterization is of particular importance.

Theorem 4 (Sturm 1999, Lebedeva–Petrunin 2010). A geodesic space (X, d) has
nonpositive curvature iff

3∑

i=1

d2(x0, xi) ≥ 1

3

∑

1≤i<j≤3

d2(xi, xj) (∀x0, x1, x2, x3).

Here we will discuss two important examples.

• The Wasserstein space (P2(X),W2) which has nonnegative curvature if
and only if (X, d) has so.
• The ‘Space of spaces’ {(X, d,m) : metric measure space}/ ∼

A metric measure space is a triple (X, d,m) consisting of a space X , a complete
separable metric d on X and a Borel probability measure on it. Two metric mea-
sure spaces are isomorphic if there exists a measure preserving isometry between
their supports.

The L2-distortion distance between two metric measure spaces (X0, d0,m0) and
(X1, d1,m1) is defined as

∆
(
(X0, d0,m0), (X1, d1,m1)

)

= inf
m

(∫

X0×X1

∫

X0×X1

∣∣∣d0(x0, y0)− d1(x1, y1)
∣∣∣
2

dm(x0, x1)dm(y0, y1)

)1/2

where the infimum is taken over all couplings of m0 and m1.

Theorem 5. The metric space (X,∆) of isomorphism classes of metric measure
spaces is a geodesic space with nonnegative curvature.

The metric space (X,∆) is not complete. Its completion X

• is the space of equivalence classes of pseudo metric measure spaces (X, d,m)
with X Polish, m Borel, d symmetric, measurable, triangle inequality;
without restriction: X = [0, 1], m = λ;
• is a convex, closed subset of Y (consisting of triples as above without
triangle inequality), isomorphic to

L2
s([0, 1]

2, λ2)/Inv([0, 1], λ)

with Inv([0, 1], λ) = set of measure preserving maps ψ : [0, 1] → [0, 1]
acting on L2

s(. . .) via ψ
∗g(s, t) = g(ψ(s), ψ(t)).

A dense subset of (X,∆) is given by the set of metric measure spaces consist-
ing of finitely many points, equipped with the uniform measure and a distance
function. These spaces are of independent interest; each of them is completely
characterized by its distance matrix.
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Consider the Hilbert space M(n) of real-valued symmetric (n×n)-matrices van-
ishing on the diagonal, equipped with (re-normalized) l2-norm. The permutation
group Sn defines an equivalence relation by

f ∼ f ′ ⇐⇒ ∃σ ∈ Sn : fij = f ′
σiσj

(∀i, j).

Theorem 6. The quotient space M
n = M(n)/ ∼ equipped with the metric

dMn(f, f ′) = inf{‖f − σ∗f ′‖M(n) : σ ∈ Sn}

is a complete geodesic space of nonnegative curvature. The tangent space at f is

given by TfM
n = R

n(n−1)
2 /Sym(f) where Sym(f) =

{
σ ∈ Sn : σ∗f = f

}
is the

symmetry group of f .

3. Lower Bounds for the Ricci Curvature

Finally, let us briefly mention the powerful concept of synthetic lower Ricci bounds
for metric measure spaces, formulated as semiconvexity of the Boltzmann entropy

Ent(ν|m) =

{ ∫
X
ρ log ρ dm , if ν = ρ ·m

+∞ , if ν 6≪ m
on the Wasserstein space.

Definition 3 (Sturm 2006, Lott–Villani 2009). A triple (X, d,m) has Ricci cur-
vature ≥ K iff ∀µ0, µ1 ∈ P2(X) : ∃ W2-geodesic (µt)t s.t. ∀t ∈ [0, 1]:

Ent(µt|m) ≤ (1 − t)Ent(µ0|m) + tEnt(µ1|m)− K

2
t(1− t)W 2

2 (µ0, µ1).

The success and importance of this synthetic definition arises from the facts
that

• it is equivalent to Ric ≥ K · g for Riemannian manifolds
• it is stable under convergence
• it implies in general context most of the geometric and functional inequal-
ities which are known as consequences of lower Ricci bounds in the Rie-
mannian case (e.g. estimates for diameter, eigenvalues, heat kernels etc.).

If the underlying metric measure space is infinitesimally Hilbertian then the heat
flow is linear and the following assertions are equivalent

• (X, d,m) has Ricci curvature ≥ K
• W2(Ptµ, Ptν) ≤ e−KtW2(µ, ν) for all t > 0 and all µ, ν.
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Dimension Reduction of Tree Data

Huiling Le

The BHV space of phylogenetic trees is a stratified space. In particular, the space
Tm+2 of trees with m + 2 leaves has (2m + 1)!! m-dimensional strata, together

with their bounding strata, selected from among the

(
M
m

)
positive orthants in R

M

whereM = 2m+2−m−4. The dimensionality and structure of the space, together
with the fact that tree data are usually fairly widely spread in the space, make it
difficult to directly apply common Euclidean statistical techniques. Methods for
constructing a principal geodesic in tree space have recently been developed in [3].
The paper [4] proposes using the locus of weighted Fréchet means to generalise to
tree spaces the idea of the kth principal component in Euclidean spaces, while [5]
employs tropical geometry to tackle a similar problem.

As for analysing data on manifolds, another possible way to retain some non-
Euclidean structure of the tree space to a certain extent, while simplifying the
structure of the data, is to use the log map to map data to the tangent cone at
their Fréchet mean.

The tangent cone at a point x ∈ Tm+2 has a topology and stratification imi-
tating that of Tm+2 itself in the neighbourhood of x. In particular, if x lies in a
top-dimensional stratum, the tangent cone at x is the usual tangent space. If x
lies in a stratum of co-dimension one, the tangent cone at x is an open book with
three pages.

The log map, at x, maps any y in the tree space to the initial segment of the
geodesic from x to y rescaled to have length equal to the distance between x and
y (cf. [1] and [2]). In particular, the log map, at x ∈ σ, restricted to the strata
that σ bounds, is the ‘identity’ map. Hence, the image of points in these strata,
under the log map, is not distorted.

After projecting tree data to the tangent cone at their Fréchet mean using
the log map, we can then further analyse the projected data there by adapting
the Euclidean methods appropriately. We use the following simple example to
illustrate this idea. Suppose that the Fréchet mean of a set of data in Tm+2 lies in
a co-dimension one stratum σ. One may consider fitting a principal spider to the
projected data as follows. Assume that the projected data are x0,1, · · · ,x0,k0 ∈
R

m−1, xi,1, · · · ,xi,ki
∈ τi, where 1 6 i 6 3, k0 > 0, ki > 0, Rm−1 is the tangent

space to σ and τi is the ith top-dimension stratum that σ bounds. Then, the
principal spider for the data could be defined as the spider formed by

3⋃

i=1

ℓi(â, b̂i),

where ℓ(a, b) is the intersection of line a+ tb, in R
m, with R

m−1 × R+ and

(â, b̂1, b̂2, b̂3)
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= arg inf
a∈Rm−1,bi∈Rm−1×R

i
+





k0∑

j=1

d(x0j , a)
2 +

3∑

i=1

ki∑

j=1

d(xij , ℓi(a, bi))
2



 .

This procedure can be generalised to higher than two dimensions, for example, 2D
principal open books for projected data when their Fréchet mean lies in a higher
co-dimension stratum.

However, the above methodology is not the only way of tackling the problems
and it raises further issues on how to generalise Euclidean statistical methodology
to deal with data on a simple, but general, Euclidean cone, while taking into
account features of biological data.
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Stratified spaces, fly wings, and multiparameter persistent homology

Ezra Miller

Definition 1. A topologically stratified space is a Hausdorff topological space X
that is a disjoint union

X =M1 ∪ · · · ∪Mℓ

of manifolds ( strata) Mi such that

(1) M1 ∪ · · · ∪Mk is closed in X for all k ≤ ℓ; and
(2) for any points x, y in a stratumMi there is a homeomorphism X

ϕ→ X with
• ϕ stratum-preserving (so ϕ(Mk) =Mk for all k) and
• ϕ(x) = y.

This notion of stratified space is more restrictive than could a priori be given—
one might omit the homeomorphism condition, for example—but this definition
is equivalent to the local structure of the space X being locally trivial along any
fixed stratum. That is, the homeomorphism condition implies that at any point
x ∈Mi the local structure of X looks the same as it does at y ∈Mi.

Examples of topologically stratified spaces include all Whitney stratified spaces
[GM88], in particular all real semi-algebraic varieties (and hence all real and com-
plex algebraic varieties) [Shi97, I.2.10]. Thus polyhedral cell complexes are strati-
fied spaces. Any planar graph embedded in R

2 is also topologically stratified.
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The wings of a fruit fly Drosophila melanogaster (images taken from [Mil15])

are such planar embedded graphs. They are naturally stratified, with strata of
dimension 0 being vertices of the graph of veins and the strata of dimension 1
being the arcs that constitute the veins themselves. (In the presented dataset, the
arcs are encoded as quadratic splines, which are, in particular, algebraic.) The
talk presented an approach from geometric statistics to summarize these wing
vein graphs in a way that respects the stratification, so as to learn from the
stratification, which carries biological meaning.

The motivation for such analysis is that the wings have varying topology, so
landmark-based methods do not apply. Note, for example, that the normal wing
depicted on the left differs from the middle wing (which has an extra cross-vein) as
well as from the wing depicted on the right (one of whose longitudinal veins fails
to reach the wing boundary). The biological hypothesis to be tested posits that
selecting for continuous variation of a specific sort—for the sake of argument, say
selecting for longer wings—results on average in the relevant continuous change
(longer wings) but also higher rates of topological variation “in a similar direction”.
Making this precise requires a summary that incorporates topological as well as
geometric information.

The approach that was discussed applies multiparameter persistent homology.
That method was introduced around a decade ago [CZ09] but mostly developed
since then in the context of discretely varying parameters. The idea for stratified
fly wings is to use two real parameters. One records the radius of balls centered at
the vertices (strata of dimension 0), and the other records the width of a thickening
of the edges (strata of dimension 1):

 

(image taken from [Mil15]). The topological space Xs
r for a given radius r and

thickness s is obtained from the union of the s-thickened edges by removing the
r-expanded vertices. The biparameter persistent homology {Hi(X

s
r ) | r, s ∈ R≥0}

summarizes the stratified fly wing.
To give an idea for what the summary looks like and how it reflects the strat-

ification, a simple toy example was presented [Mil17, Example 1.3]. The zeroth
persistent homology for the toy-model “fly wing” in the left-hand image is depicted
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in the right-hand image, where each pair of parameters (r, s) ∈ R
2 is colored ac-

cording to the dimension of its associated vector space H0(X
s
r ), namely 3, 2, or 1

proceeding up (increasing edge thickness) and to the right (decreasing disk radius):

 

r →

↑
s

(images produced by Ashleigh Thomas). The relations that specify the transi-
tion from vector spaces of dimension 3 to those of dimension 2 or 1 lie along a
real algebraic curve, as do those specifying the transition from dimension 2 to
dimension 1.

The point, in the end, is that the embedded planar wing-vein graph is summa-
rized as an integer-valued function on the plane, regardless of the topology of the
graph. These summaries lend themselves to ordinary linear statistical methods.
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Stable signatures for dynamic metric spaces via persistent homology.

Facundo Mémoli

(joint work with Woojin Kim)

Given data as a static finite metric space (X, dX), hierarchical clustering method
finds a hierarchical family of partitions that captures some multi-scale features
present in the dataset. These hierarchical families of partitions are called dendro-
grams (see figure on the left) and from a graph theoretic perspective, they are
planar, hence their visualization is straightforward.
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We now turn our attention to a problem of clustering of
dynamic data. We model dynamic datasets as time vary-
ing finite metric spaces and study a simple generalization
of the notion of dendrogram which we call formigram (see
figure on the right)– a combination of the words formi-
carium1and diagram. Whereas dendrograms are useful for

modeling situations when data points aggregate along a certain scale parame-
ter, formigrams are better suited for representing phenomena when data points
may also separate or disband and then regroup at different parameter values.
One motivation for considering this scenario comes from the study and character-
ization of flocking/swarming/herding behavior of animals, convoys, moving clus-
ters, or mobile groups (a list of numerous references is in the full paper [13]).

In contrast to dendrograms, formigrams are not always
planar, so more simplification is desirable in order to easily
visualize the information they contain. We do this by as-
sociating zigzag persistent homology barcodes/diagrams [3]
to formigrams. We prove that the resulting signatures turn
out to be (1) stable to perturbations of the input dynamic
metric space and (2) still informative. The so called Single Linkage Hierarchical
Clustering method [10] produces dendrograms from finite metric spaces in a stable
manner: namely, if the input static datasets are close in the Gromov-Hausdorff
sense, then the output dendrograms will also be close [4]. This result is further
generalized for higher dimensional homological features [5]. In this paper we study
to what extent one can export similar results to the case of dynamic datasets.

Overview of our results

In what follows, we omit some definitions due to a limit of length of this paper,
which can be found in the full version [13]. Throughout this paper X and Y
are non-empty finite sets. We denote the set of real numbers and the set of
non-negative real numbers by R and R+, respectively. By a dynamic metric
spaces (DMSs) on a set X , we mean a pair γX = (X, dX(·)) where dX(·) : R ×
X × X → R+ satisfying the following conditions: (1) for each t ∈ R, the map
dX(t) : X × X → R+ is a pseudo-metric on X , (2) for any fixed x, x′ ∈ X, the
map t 7→ dX(t)(x, x′) is continuous, (3) there exists t0 ∈ R such that dX(t0) is a
metric on X (in order not to have redundant points in X).

Recall that by definition a correspondence R ⊂ X × Y is mapped onto X and
Y via the canonical projections to the first and second coordinates, respectively.
We metrize the collection of all DMSs as follows. The structure of this metric is a
hybrid between the Gromov-Hausdorff distance and the interleaving distance [2, 6]
for Reeb graphs [8].

Definition 1 (Interleaving distance between DMSs). Let γX , γY be DMSs on X
and Y respectively, and ε ≥ 0. We say that γX and γY are ε-interleaved if there

1A formicarium is an enclosure for keeping ants under semi-natural conditions [12].
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Figure 1. This illustrates a process through which
a DMS γX (the dynamic point cloud of the first row)
is converted into a barcode summarizing its cluster-
ing information (the last row): For a fixed δ ≥ 0
applying the Rips functor Rδ to γX yields a zigzag
simplicial filtration (the second row). Then we ap-
ply the connected component functor π0 to the zigzag
simplicial filtration, obtaining a formigram (the third
row). Via some algebraic process, one finally obtains
the barcode (the last row). See [13] for details.

exists a correspondence R ⊂ X × Y such that ∀(x, y), (x′, y′) ∈ R, ∀t ∈ R,

min
s∈[t]ε

dY (s)(y, y
′) ≤ dX(t)(x, x′) and min

s∈[t]ε
dX(s)(x, x′) ≤ dY (t)(y, y′).

The interleaving distance ddynI (γX , γY ) between γX and γY is defined by the in-
fimum ε ≥ 0 for which γX and γY are ε-interleaved. If γX and γY are not ε-

interleaved for any ε ≥ 0, declare ddynI (γX , γY ) = +∞.
Given a DMS γX (satisfying a mild tameness condition [13, Definition 2.4]),

for each non-negative integer k and connectivity parameter δ ≥ 0, we associate it
with the zigzag persistent homology Hk(Rδ(γX)), where Rδ(γX) is the Rips zigzag
filtration derived from γX (see Figure 1 and [13, Section D] for details).

The following stability result tells us that the assignment
γX 7→ dgm(Hk(Rδ(γX))) of zigzag persistence diagrams to DMSs when k = 0 is

stable in terms of ddynI and the usual bottleneck distance between barcodes/persis-
tence diagrams [7]:

Theorem 1 (Stability theorem). For any two tame DMSs γX and γY , and any
δ ≥ 0:

dB
(
dgm(H0(Rδ(γX))), dgm(H0(Rδ(γY ))

)
≤ 2 ddynI (γX , γY ).

We remark that the lower bound can be computed in polynomial time [3, 9, 11].
In the way to prove Theorem 1, we introduce (a) the notion of formigrams,

both as a summary (akin to dendrograms) of the dynamic clustering behavior of
a DMS and as an object whose algebraic interpretation (via its zigzag persistence
barcode) is parsimonious (see the last two rows in Figure 1); (b) a notion of dis-

tance dFI between formigrams which mediates between ddynI and the bottleneck
distance between barcodes; and motivated by practical applications (c) a smooth-
ing operation on formigrams. In particular, in order to prove Theorem 1 we make
use of recent stability results for zigzag persistence due to Botnan and Lesnick [1].

Theorem 1 above together with the available results for static finite metric
spaces suggests that such stability might extend beyond 0-dimensional homology.
Interestingly, there is a family of counter-examples indicating that stability, as
expressed by Theorem 1, is a phenomenon which seems to be essentially tied to
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clustering (i.e. H0) information. We refer the reader to [13, Theorem 1.3, Figure
2] for details.
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Scaling-rotation statistics for symmetric positive-definite matrices

Sungkyu Jung

(joint work with Armin Schwartzman, David Groisser and Brian Rooks)

We discussed a geometric structure on Sym+(p), the set of p×p symmetric positive-
definite (SPD) matrices, p ≥ 2. Eigen-decomposition determines both a stratifi-
cation of Sym+(p), defined by eigenvalue multiplicities, and fibers of the eigen-
composition map F : SO(p) × Diag+(p) → Sym+(p), F ((U,D)) = UDU−1 [1].
This leads to the notion of scaling-rotation distance [2], a measure of the mini-
mal amount of scaling and rotation needed to transform an SPD matrix, X , into

http://doi.acm.org/10.1145/1998196.1998229
http://dx.doi.org/10.1145/1998196.1998229
https://en.wikipedia.org/wiki/Formicarium
https://research.math.osu.edu/networks/formigrams
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another, Y , by a smooth curve in Sym+(p). A systematic characterization and
analysis of minimal smooth scaling- rotation (MSSR) curves, images in Sym+(p)
of minimal-length geodesics connecting two fibers in SO(p)×Diag+(p), were given.
The length of such a geodesic connecting the fibers overX and Y is what we define
to be the scaling-rotation distance from X to Y .

This scaling-rotation geometric framework coincides with identifying Sym+(p)
with the quotient space SO(p) × Diag+(p)\ ∼, where the equivalence relation ∼
is given by F ; (U1, D1) ∼ (U2, D2) if and only if F ((U1, D1) = F ((U2, D2)). A lift
of the MSSR curve between X and Y is in fact the minimal-length path between
a lift of X and that of Y among all continuous paths between them, which turns
out to be a geodesic. Allowing for the path in SO(p) × Diag+(p) discontinuity
within fibers results in a minimal-length piecewise-smooth scaling-rotation curve
in Sym+(p). The length of such a curve gives a notion of scaling-rotation metric
ρ, and (Sym+(p), ρ) is a metric space.

In an application area of diffusion tensor imaging, a tensor is defined as a 3× 3
SPD matrix M , and often visualized by the corresponding ellipsoid, whose sur-
face coordinates x ∈ ℜ3 satisfy xTM−1x = 1. The scaling-rotation geometric
framework provides a means of smooth interpolation between two SPD matri-
ces, or tensors, by an MSSR curve between X and Y . When the multiset of
eigenvalues of X coincides with the multiset of eigenvalues of Y , and if the eigen-
values are distinct, and the difference between eigenvalues are sufficiently large,
then the scaling-rotation interpolation is of a pure rotation of constant angular
velocity. This prevents “swelling” of tensor (ellipsoid) when interpolating two
“skinny” tensors. As a comparison, suppose that the interpolation is given by the
shortest geodesic between X and Y , where the geodesic is defined under the affine-
invariant Riemannian inner product on Sym+(p). Such an interpolation is of the
form fAI(t) = X1/2 exp(t log(X−1/2Y X−1/2))X1/2, where exp and log are matrix
exponential and its inverse. If set of the eigenvector matrices of X is disjoint from
the set of eigenvector matrices of Y , then the angular velocity of the eigenvector
matrix of fAI is not constant. Data examples, omitted from this abstract, con-
firm this. Will the advantage of scaling-rotation framework remain true when the
smoothness requirement is relaxed to the piecewise-smoothness? The answer is
yes, if the minimal piecewise-smooth curve is indeed smooth. A formal algebraic
analysis on the conditions on X,Y , for which both MSSR curves is shortest among
all piecewise-smooth curves, is an open problem.

References

[1] David Groisser, Sungkyu Jung, and Armin Schwartzman. Geometric foundations for scaling-
rotation statistics on symmetric positive-definite matrices: minimal smooth scaling-rotation
curves in low dimensions. Electron. J. Stat. 11:1092-1159, 2017.

[2] Sungkyu Jung, Armin Schwartzman, and David Groisser. Scaling-rotation distance and
interpolation of symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 36 1180-
1201.



174 Oberwolfach Report 3/2018

S-reps and Their Statistics

Stephen Pizer

S-reps are a rich geometric representation of anatomic objects that are suited for
statistics of shape analysis. They are skeletal models that are quasi-medial and are
stable so that there is correspondence of the primitives, called spoke vectors, across
objects in an anatomic population. An example of an s-rep for a hippocampus is
shown in Fig. 1 – the spokes are continuous but are shown densely sampled.

Figure 1. An s-rep
for a hippocampus.

Figure 2. An s-rep
as represented in the
computer.

The s-rep captures the important shape property of object boundary direction
U as it varies along the boundary, the relevant shape property of object width r
(actually half-width) as it varies along the object, as well as positional information
along the object. Thereby it provides improved statistical performance, as com-
pared to other object representations, as shown in a variety of empirical studies as
to its application to classification and provision of a prior for segmentation from
3D images.

S-reps can be produced for any amount of essential branching and any topol-
ogy. However, we have focused on objects in 3D with no essential branching and
with either spherical topology and a slabular geometry (the three major axes have
notably different lengths) or a generalized cylinder topology (with curvilinear cen-
ter curve dilated into curved cylinder with an ǫ-radius). Very many objects take
one of these two forms and have been successfully represented using s-reps, for
example, Slabular: the hippocampi, lateral ventricles, putamen, cerebral cortex
(even though the cortex is heavily folded), bladder, prostate, heart, lung, muscles;
Generalized cylinder: various arteries, the rectum.

As illustrated in Fig. 3, the unbranching s-rep skeleton in 2D is a folded curve
with circular topology such that the two sides of the curve are pasted together. In
3D in its slabular form the skeleton can be understood as formed by two sheets of
plastic wrap pasted together and connected along a fold curve. In its generalized
cylinder form the skeleton is formed by a curved cylinder with ǫ-radius

“Spoke” vectors, going from each point on the skeleton to the object boundary
form the s-rep. The s-rep is fit to an object boundary given as data in a way such
that
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Figure 3. An s-rep in 2D. In its mathematical form the spoke
vectors are continuous along the skeleton. The two sides of the
skeleton follow the same positional locus.

(1) the spokes fill the object interior
(2) spokes do not cross each other
(3) spokes from the fold go to crest points on the boundary, where the crest

exists
(4) the spokes from points on the skeleton that are the same in ambient space

are close to equal in length
(5) spokes intersect the boundary nearly orthogonally
(6) the swing of spokes follows a radial shape operator [1] that, in analogy

to the well-known shape operator describing the swing of normal on the
boundary, describes the swing of the spokes on the skeleton.

The approximate nature of the fit of the spoke ends to the boundary and of
conditions 4 and 5 makes it possible for the branching topology to be given as a
precondition and the fit to be stable and rather tight to the boundaries, and this
suits the s-rep for statistics, unlike the medial form of skeletal models in which
its bushy skeleton, highly sensitive to boundary noise, makes statistical analysis
extremely hard to achieve.

For computer representation sampled spokes of the s-rep are used, and a math-
ematically careful means of spoke interpolation [2] using the aforementioned radial
shape operator yields the spokes at any desired density that is used in fitting to
boundary data at all the interpolated spoke ends. The fitting to an input boundary
requires the user only to provide the number of spokes along the long axis of the
object and that number across the 2nd widest axis of the object. Given that, the
regular spacing of the spokes is determined in a way that produces correspondence
across a training sample of s-reps used in statistics.

Each spoke in a computer-represented (discrete) s-rep consists of a length r,
a spoke direction U, and a skeletal point p. The (length, direction) form of the
representation yields more direct characterization of the desired object features,
produces more well-behaved geodesics on the abstract manifold on which an s-rep
lives, and empirically has been shown to produce better statistical analysis than
a Euclidean representation of the spokes.
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The lengths of the n spokes of an s-rep live abstractly on R
n (for the logs of the

n spoke lengths), and the directions U of those spokes live on (S2)n. The tuple of
n spoke positions on the skeleton are understood, according to [3], after centering
each skeleton’s n p values on its center of mass, as a spatial scale, computed as the
Euclidean norm γ of the centered points, and a point on S3n-4. This representation
of a tuple of spatial points has been found empirically to yield better statistical
performance than the Euclidean representation. After taking the log of the spatial
scale, the spatial scale lives on R

1. Thus an s-rep is understood to live on the
Cartesian product of a polysphere (S2)n × S3n−4 and R

n.
Probability estimation analysis of s-reps are accomplished by the methods de-

scribed in the abstract by Marron in this Proceedings. Here the method for clas-
sification of s-reps will be sketched. The s-reps in the two training classes are
pooled, and a polar system for principal nested spheres (PNS) is computed from
that pool. Then each training s-rep is transformed into Euclideanized coordi-
nates by compiling the PNS scores for each dimension reduction. The tuples of
these Euclideanized coordinates is therefore analyzed by the Euclidean method,
Distance-Weighted Discrimination (DWD) [5] to produce a separation direction
in Euclidean space. The Euclideanized training cases are then projected onto this
direction to form a histogram for each class. These histograms are then used to
compute the class probabilities for a new s-rep after it has been Euclideanized
using the polar system derived in training. This approach is also suited to other
representations living on the Cartesian product of a polysphere and a Euclidean
space.

Classification into control and diseased classes of a number of brain structures
using this method has yielded superior results over other object representations
and their associated statistical analysis techniques [4]. Likewise, high quality seg-
mentations in 3D of a number of anatomic structures from a number of 3D medical
image types have been produced by a variant on posterior optimization in which
the prior (anatomic shape statistics) is computed based on s-reps [2].

Future work will include analyzing the polysphere statistics using PPCA [6],
doing multiscale analysis of s-reps according to the ideas of Mio (see this Proceed-
ings), producing an s-rep variant that can handle 3D objects with a cusp, such as
the caudate nucleus [4], evaluating a variety of classifications of brain structures
[4], further development of the s-rep for generalized cylinders, and extending the
s-reps to objects with other topologies or with essential branches.
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On the Geometry of Latent Variable Models

Søren Hauberg

Latent variable models (LVMs) describe the distribution of data y ∈ Y = R
D

through a low-dimensional random variable x ∈ X = R
d, (d ≪ D) and a (gen-

erally nonlinear) stochastic mapping f : X → Y. Here we discuss the random
Riemannian geometry induced by this stochastic mapping. The presented results
was first stated in [1, 2].

To make the discussion explicit, we consider a Gaussian Process (GP) LVM [3]
where f has component-wise conditionally independent Gaussian process entries,

fi(x) ∼ GP(mi(x), k(x,x
′)), ∀i = 1, . . . , D.(1)

Here mi and k are the mean and covariance functions of the ith GP. Note that we
assume the same covariance function across all dimensions as this simplify future
calculations. The key presented results holds regardless of this simplification.

Assuming k is sufficiently smooth covariance then the image of a sample from
f is a smooth d-dimensional immersed manifold. Note that this manifold is only
locally diffeomorphic to d-dimensional Euclidean space, and it may globally self-
intersect. It is then natural to consider the pull-back metric M = J⊤J over X ,
where J ∈ R

D×d is the Jacobian of f . This defines a Riemannian metric over X .
Since f is stochastic, M is a stochastic object as well.

Since Gaussian variables are closed under differentiation, then J follows a GP,

J ∼
D∏

j=1

N (µ(j, :),Σ) =

D∏

j=1

N (∂K⊤
x,∗K̃

−1
x,xY:,j, ∂

2K∗,∗ − ∂K⊤
∗,xK

−1
x,x∂K∗,x),(2)

where we use standard notation for GPs [4]. It then follows that M at a given
point is governed by a non-central Wishart distribution [5]

M ∼ Wd(D,Σ,E[J]
⊤
E[J]).(3)

The entire metric by definition follows a generalized Wishart process [6].
Since the metric is a stochastic variable, we cannot apply standard Riemannian

geometry to understand the space X (e.g. curvature is stochastic, geodesics are
solutions to a stochastic differential equation, etc.). We can, however, inspect the
leading moments of the metric

E[M] = E[J⊤J] = E[J]⊤E[J] +D Σ = O(D)(4)

var[Mij ] = D(Σ2
ij +ΣiiΣjj) + µ⊤

j Σµj + µ⊤
i Σµi = O(D)(5)
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which we see both grow linearly with the dimension of Y. This motivate the
question as to how the pull-back metric behaves in high dimensions, D →∞. To
ensure that the inner product of Y converges to the usual L2 inner product in the
limit D →∞ we let

〈a,b〉Y =
1

D

D∑

i=1

aibi −−−−→
D→∞

∫
atbtdt.(6)

Then the natural pull-back becomes M̃ = 1
DJ⊤J, which has moments

E[M̃] = E

[
1

D
J⊤J

]
=

1

D
E[J]⊤E[J] + Σ = O(1)(7)

var[M̃ij ] =
1

D
(Σ2

ij +ΣiiΣjj) +
1

D2
µ⊤
j Σµj +

1

D2
µ⊤
i Σµi = O

(
1

D

)
(8)

In the limit D → ∞ we, thus, see that the variance vanishes and the metric
becomes fully deterministic even if the underlying manifold is a stochastic object.

Implications and Extensions. This simple-to-prove
result is rather surprising: even if we only have stochas-
tic information about the underlying data manifold, its
metric is deterministic. Furthermore, from Eq. 7 we see
that this deterministic metric correspond to the (usual)
pull-back metric of the mean f plus an additional term
capturing the uncertainty of the manifold. This imply
that the metric is large in regions of low data density
(where the manifold is uncertain), and consequently,
that geodesics will tend to avoid such regions. One such example is shown in the
figure. Here human motion capture data y is used to estimate a two-dimensional
manifold [1]. In the figure white points correspond to low-dimensional represen-
tations of the data, the green curve is an example geodesic computed under the
expected metric, and the background color is proportional to the volume measure
induced by the expected metric. We see that the metric is “larger” in regions of
low data density and that geodesics consequently follow the structure of the data.
The latter is a useful property when analyzing real data as distance-based data
distribution will adapt well to the data [2].

From a practical point of view, geodesics can be computed in X by numerically
solving the usual system of ordinary differential equations under the expected
metric. The solution will be a curve in X , which correspond to a GP in Y. As
such, geodesics remain stochastic objects, but they can be determined by solving
a set of deterministic equations.

The presented derivations rely on the dimensions of f(X ) being conditionally
independent, which is a common assumption. It can be eased upon: if the dimen-
sions are (imperfectly) correlated, then the variance will still decrease, albeit at
a slower rate than D−1. Consequently, as a general rule of thumb, the stochastic
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pull-back metric of an uncertain manifold immersed in a high-dimensional space
is well approximated by the (deterministic) expected metric.
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Focus Group Discussions

Do Tran, John Kent, Ruriko Yoshida, Sarang Yoshi, Stefan Anell

There were five discussion groups on topics spanning the whole range of the work-
shop.

1. Dirty CTLs – Reporter: Do Tran

The topic of this group is mostly of a theoretical nature, namely the non-standard
asymptotic theory of smeary and sticky means. The discussion in this group
mostly centered on some concrete questions related to the talk by Xavier Pennec.
In this talk it was pointed out, that the variance of the sample Fréchet mean on a
manifold acquires a curvature dependent term

E
[
logx̄(x̄n)

a logx̄(x̄n)
b
]
=

1

n
M

ab
2 +

1

3n

(
Ra

cedM
be
2 +Rb

cedM
ae
2

)
M

cd
2 +O(ǫ3).

Since these terms of order 1/n can balance out for negative curvature, it was con-
cluded, that the additional term might be an indicator of stickiness. To make
such a conjecture more precise, it was proposed to define a sequence of probability
measures on a sequence of manifolds Mm, such that the curvature at the popu-
lation mean diverges to negative infinity and investigate, under which conditions
the limits n→∞ and m→∞ commute and what the consequences are.

Furthermore, the sample mean acquires a bias term

E [ logx̄(x̄n)
a ] =

1

24n
(2∇bR

a
dce +∇aRcebd)(M

n
2 )

bc(Mn
2 )

de +O(ǫ5).
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However, the interpretation of this bias term is not immediately clear. To achieve
a clearer interpretation of the bias term, simulations in simple toy models and a
reformulation in terms of the sectional curvature tensor were proposed.

Aside, the question was raised, whether asymptotic statistics should be replaced
by considerations towards non-asymptotic confidence sets as presented by Thomas
Hotz. This approach was found appealing from a conceptual point of view and
deserving of more general elaboration.

2. PCA on manifolds: tensor fields, gradient flows, and scale space

– Reporter: John Kent

The topic of this group has a clear methodological focus, bridging the gap
between theory and application. The discussion brought up the notions of principal
flow, which is an integrating vector field of principal components obtained by a
local tangent covariance field:

Σh(x) = (1/
∑

i

wi)
∑

I

wi logx(Yi − I) logx(Yi − I)T

for wi = w(d2(Yi, x)/h) and h a scale function.
Let λ(x)e(x) denote the field of top eigenvectors scaled by corresponding eigen-

value, representing locally the direction of maximal variation and γ(t) the principal
flow. An integral curve starting at some point can be numerically determined by
a greedy algorithm or as a solution to variational problem

max

∫ 1

0

〈γ′(t), λ(γ(t))e(γ(t))〉dt

maximizing accumulated variation along the flow.
A number of questions were raised:

(1) On the principal flow
(a) How far does one follow a principal curve/flow? Until it ”turns on

itself”? Could there be a parameter describing the ”dying out” of the
curve/flow?

(b) Is additional regularization needed in order to avoid self-intersection
or winding?

(c) Can one have curves from different local Fréchet means using the
notion of persistence diagram for the Fréchet potential to discover
means at different scales?

(d) Is it possible to use a single notion of scale for both the starting
point(s) and the local covariance?

(2) On generalization of the principal flow to higher dimensions
(a) A higher dimensional generalization is not clear: Should a second flow

be defined by parallel transport of first flow? Should it be locally
defined by the second eigenvector field?

(b) Is there a canonical definition of a principal submanifold instead of a
flow?

(3) And some wider questions
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(a) Nestedness should play a key role: what is the backwards approach
when using covariance tensor fields? ”Commutative PCA”: when
does going backward give the same results as going forward?

(b) Should PCA or classification be done in case of considerable curva-
ture?

(c) Can one do multi scale analysis on manifolds similar to linear spaces?

3. Tropical geometry on tree spaces – Reporter: Ruriko Yoshida

The topic of this group is theoretical in nature but it is close to the methodol-
ogy on tree spaces as well as persistent homology. This group first reviewed some
background on tropical geometry. To clarify nomenclature, it was pointed out that
tropical algebra is concerned with tropical operations, while tropical geometry en-
compasses the study of solution sets of systems of tropical polynomial equations,
i. e. tropical algebraic varieties. Furthermore, it was discussed how tropical lines
and linear spaces are constructed. After clarifying these basic notions, the con-
nection between tropical Grassmannians and tree spaces was reviewed and finally
a number of open questions were determined.

(1) How sensitive is tropical PCA to outliers? How sensitive is it to pertur-
bation?

(2) When following a tropical line segment on tree space, how do tree topolo-
gies change along the line segment?

(3) Are there any relations between deep learning and tropical geometry?

Implementation of a toy model in R was started, which should serve to compute
a tropical line segment in order to investigate these questions by numerical exper-
iments.

4. Stochastic processes on manifolds – Reporter: Sarang Joshi

The topic of this group is relevant both theoretically and methodologically, as
stochastic process theory is the theoretical foundation for the development of nu-
merous methods. The discussion determined two major applications for stochastic
process theory on manifolds which are of particular interest to the discussants.

(1) Use transition densities of SDE’s on manifolds to build parametric families
of distributions for parametric inference.

(2) Statistics for time-evolving manifold-valued data: Longitudinal Geometric
Statistical Analysis.

Diving into the technical problems of stochastic process
theory on manifold, it was pointed out that, because of cur-
vature, Brownian motion can blow up in finite time, even if
the manifold is geodesically complete. To clarify the meaning
of this statement, blow-up time ξ was defined as

Tn = inf{t > 0, d(x0, xt) > n} ξ = lim
n→∞

Tn

and a blow-up is said to occur when ξ <∞. An example given by Marc Arnaudon
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is the manifold defined by the line element ds2 = dr ⊗ dr + e(1+r)4dθ ⊗ dθ. It
was further noted that adding drift dXt = −LogXt

(y) + dBt cannot stabilize a
stochastic process on this manifold.

To improve on the notion of geodesic completeness, a manifold is called stochas-
tically complete, if and only if ξ = ∞. To achieve this, curvature need not be
absolutely bounded only imposing curvature growth bounds. One such bound
introduce by Marc Arnaudon is expressed as

Theorem 1. If Ric(x) ≥ −c(1 + d2(x0, x)) then M is stochastically complete.

As an example, also Kendall Shape space is stochastically complete as it is
compact.

Open questions that were brought up are

(1) Is the LDDMM landmark manifold stochastically complete?
(2) What about the continuity at the cut locus and using the Log map for

bridge construction? This problem is possibly solved, since the cut locus
always has co-dimension ≥ 1 and therefore it should be possible to use
mollification.

5. Statistics with persistent homology – Reporter: Stefan Anell

The topic of this group is mostly methodological, touching both theoretical and
applied questions. The discussion in this group revolved around two main sub-
jects. The first topic are problems arising for large data sets. Especially from the
computational side large data sets can become difficult to manage and it may be
worthwhile to develop new techniques. In this context, it would be interesting to
understand the behavior of persistent homology features under subsampling.

The second topic that was discussed was a higher dimensional generalization of
persistent homology, when more than one scale can be independently varied. In
this case, features may have higher dimensional persistence regions, which might
be difficult to handle. Instead, it could be beneficial to consider scale dependent
summary features of the homology. In this context, some parts of the later talk
by Ezra Miller were foreshadowed.

Reporter: Benjamin Eltzner
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