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Introduction by the Organisers

The workshop Strongly Correlated Random Interacting Processes, organised by
Ron Peled (Tel Aviv), Vladas Sidoravicius (NYU Shanghai), and Alexandre Stauf-
fer (Bath) was held from January 28th – February 3rd 2018. The meeting was
extremely well attended, with 53 participants from Brazil, Canada, China, Israel,
the USA, and several European countries. The program consisted of 24 talks, with
each of the first three days having three talks in the morning and three talks in
the afternoon. In the last two days, there were talks only in the morning, with
the afternoon being reserved for discussion between the participants. The goal of
the talks were twofold: to present recent breakthrough results in a wide array of
topics, and to unveil important challenges to be addressed in the near future in
the area of strongly correlated random processes. Below we survey the program
of the workshop.
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The first day started with Daniel Kious, who showed a characterization for
recurrence and transience of once-reinforced random walks on trees in terms of
a quantity called the branching-ruin number, establishing for the first time the
presence of a phase transition for this challenging model of self-interacting ran-
dom walk. Then Yinon Spinka presented a condition for a general class of discrete
spin systems to exhibit long-range order, resolving fundamental open questions for
the anti-ferromagnetic Potts, Widom-Rowlinson and other models. The morning
session ended with a talk by Elisabetta Candellero on first-passage percolation in a
hostile environment, a fascinating model that not only plays a very important role
in the understanding of multi-particle diffusion limited aggregation but also under-
goes important phase transitions. She showed, for the first time in this model, the
occurrence of coexistence when the underlying graph is non-amenable and hyper-
bolic, even if one type spreads much faster than the other. In the afternoon session,
Fabio Martinelli discussed universality results for kinetically-constrained models,
which are tightly connected to beautiful universality results on bootstrap perco-
lation. Then Tom Hutchcroft analyzed the fundamental model of self-avoiding
random walks on nonunimodular transitive graphs, showing convergence of the
bubble diagram at criticality and ballisticity of the walker. The last talk of the
first day was given by Dmitry Ioffe, who discussed a surprising phenomenon of
uphill diffusions in which particles move from regions of low density to regions of
high density.

In the second day, Pietro Caputo discussed a detailed analysis of the mixing
time, including a proof of the cutoff phenomenon, for sparse non-reversible Markov
chains, a quite challenging case since no explicit form for the stationary distribu-
tion is available. Alessandra Cipriani discussed the scaling limit and further recent
developments in the study of the membrane model and Vincent Tassion presented
exciting progress in the understanding of three-dimensional percolation, showing
that there are no exceptional words when p is between pc and 1−pc. The afternoon
session started with Senya Shlosman who explained how a continuum of extremal
Gibbs states arises for the Ising model on a tree, utilizing free boundary condi-
tions, and on the half-plane endowed with Dobrushin boundary conditions. This
was followed by Daniel Ueltschi who presented detailed results for the random
interchange model on the complete graph tilted by a factor θ to the number of
cycles, with θ ≥ 2 integer. The second day ended with Titus Lupu who discussed
recent results on vertex-reinforced jump processes.

The third day started with Hugo Duminil-Copin who reviewed the random walk
and percolation interpretation of the Ising spin-spin correlations and outlined how
these can be applied to prove triviality of the scaling limit in four dimensions.
Yvan Velenik presented precise asymptotics of Ornstein-Zernike type in the Ising
model, for the covariance between two products of an even number of spins. Alain-
Sol Sznitman discussed the appearance of macroscopic holes in some models of
strongly dependent percolation, such as the vacant set of random interlacements
and the excursion set above a given level of the Gaussian free field. During the
afternoon, Lorenzo Taggi discussed a model of spatial random permutations which
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gives rise to a collection of loops, Antal Jarai presented a series of open problems
and challenges in the study of the Abelian sandpile model, and Alexander Glazman
presented recent work on the existence of macroscopic loops in the loop O(N)
model, rigorously verifying part of the conjectured phase diagram of the model.

The fourth day began with Omer Angel, who discussed a relation between
the Mallows model of random permutations and stable matchings, and used it to
obtain the scaling limit of the evolution of orbits in the Mallows permutation. Then
Peter Gracar presented a general multi-scale framework, based on the Lipschitz
percolation of local events, which is employed to analyze the spread of infection
and other problems on a system of particles moving as independent random walks.
The last talk of the day was by Amanda Turner, who presented new developments
in and around the Hastings-Levitov model of random growth. The afternoon was
free to foster discussions and collaborations among the participants.

The last day of the workshop featured a presentation by Bálint Tóth on the be-
havior of a random walk in a divergence-free random drift field, in which the walker
may exhibit super-diffusive behavior or satisfy a quenched CLT. Then Nick Craw-
ford discussed his recent result on the eigenvector correlations of non-Hermitian
random matrices, and the workshop concluded with a talk by Andrea Collevec-
chio, who discussed a system of correlated random walks, whose step distribution
is given by a cellular automaton.

On behalf of all participants, the organizers would like to thank the staff and
the director of the Mathematisches Forschungsinstitut Oberwolfach for provid-
ing such a stimulating and inspiring atmosphere, and for taking care of all local
arrangements with extreme efficiency.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Ruriko Yoshida in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

The branching-ruin number and the once-reinforced random walk

Daniel Kious

(joint work with Andrea Collevecchio and Vladas Sidoravicius)

In a joint-work with Andrea Collevecchio and Vladas Sidoravicius [3], we study the
phase transition for recurrence/transience of a fairly large class of self-interacting
random walks on trees, which includes the once-reinforced random walk (ORRW).
Our main tool is a quantity, that we call the branching-ruin number of a tree, which
provides a natural way to measure trees with polynomial growth. In particular, we
prove that the branching-ruin number of a tree is equal to the critical parameter
for the recurrence/transience of ORRW on this tree, providing the complete picture
of its phase transition. The last statement is a corollary of a more general study
of a larger class of self-interacting random walks, for which we prove a sharp and
effective (i.e. computable) criterion characterizing their recurrence or transience.
This class of processes includes a generalization of the ORRW, as well as biased
random walks, or random walks in random environment.

The study of self-interacting random walks is challenging, as they are not Mar-
kovian, and proving recurrence or transience is difficult. Our approach provides
the first general technique for the study of ORRW.

The idea of the branching-ruin number stems both from the Hausdorff dimen-
sion of a tree defined by Furstenberg [9] and from the branching number introduced
by Lyons [11] who linked it to biased random walks, percolation and Ising model
on trees. In [12], Lyons and Peres write “the branching number of a tree is a single
number that captures enough of the complexity of a general tree to give the critical
value for a stochastic process on the tree”. The branching-ruin number aims at
fulfilling the same mission, but for a different class of random walks and trees. The
branching number is adapted to the study of trees with exponential growth. The
branching-ruin number is designed for the study of trees with polynomial growth
and is strikingly related to the critical parameter of the ORRW.

The ORRW was introduced in 1990 by Davis [6]. This model can be defined on
any locally finite graph and corresponds to a self-interacting random walk which
jumps through an edge with a probability proportional to its current weight. The
current weight of an edge is initially set to 1, changed to some reinforcement pa-
rameter δ > 0 right after the first time this edge is crossed, and will never be
modified again. Hence, the current weight of an edge is changed at most once.
Despite its simple definition, the ORRW turns out to be difficult to analyze and, so
far, no general tools were available for its study. Sidoravicius conjectured that on
Zd, d ≥ 3, the ORRW undergoes a phase transition recurrence/transience with re-
spect to the reinforcement parameter. This problem is still open on the hypercubic
lattice. In the two-dimensional case, recurrence on Z2 remains unsolved.
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Durrett, Kesten and Limic [8] proved that this conjecture does not hold on
the binary tree and that ORRW is transient for any choice of parameter. This
was extended to supercritical Galton-Watson trees by Collevecchio [2]. Besides,
positivity and monotonicity of the speed on Galton-Watson trees was studied by
Collevecchio, Holmes and Kious [4]. Finally, some partial results on ladders were
proved by Sellke [15] and Vervoort [16].

Recently, Kious and Sidoravicius [10] provided the first example of phase transi-
tion for ORRW on Zd-like trees. It should be noted that these trees were spherically
symmetric with a particular structure, growing polynomially fast.

We should mention that a similar phase transition was conjectured for linearly
edge-reinforced random walks (ERRW) on Zd in the eighties by Coppersmith and
Diaconis [5], and was first proved on regular trees by Pemantle [13]. Only recently,
the phase transition recurrence/transience on Zd , d ≥ 3, was established in a series
of paper by Angel, Crawford and Kozma [1], Sabot and Tarrès [14], and Disertori,
Sabot and Tarrès [7]. However, techniques developed for ERRW do not apply to
ORRW, in particular because exchangeability does not hold.

Here, we treat the case of general trees. In particular, we recover and generalize
any known result about ORRW by computing the branching-ruin number of the
trees in these contexts. Besides, we state a sharp criterion which is stronger
than existing results in the sense that it allows inhomogeneous initial weights and
inhomogeneous reinforcement.
Finally, while recurrence is easily obtained via a first moment method, the main
idea of our proof of transience relies on the presence of an infinite cluster for a
particular correlated percolation.
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A condition for long-range order in discrete spin systems

Yinon Spinka

(joint work with Ron Peled)

We consider discrete spin systems on the lattice Z
d. The configurations of the

system are functions f from a bounded region Λ ⊂ Zd to some finite set of spins S.
The spin system is described by a collection (λi)i∈S of positive numbers, called
the single-site activities, and a collection (γi,j)i,j∈S of non-negative numbers (not
all of which are zero) with γi,j = γj,i for all i and j, called the pair interactions.
Each configuration f has an associated weight given by

ωf :=
∏

v

λf(v)
∏

u∼v

γf(u),f(v),

where the first product is over sites v ∈ Λ and the second product is over nearest-
neighbors u, v ∈ Λ. One then samples a random configuration according to these
weights, i.e., the probability of choosing a particular f is proportional to ωf . One
may obtain infinite-volume Gibbs measures in the usual manner, by taking limits
as Λ increases to Zd, possible placing suitable boundary conditions.

We show that for a large class of such spin systems, when the dimension d is
sufficiently high, the random configuration exhibits a type of long-range order.
The class of spin systems for which our results apply includes numerous well-
known models, amongst which are: the anti-ferromagnetic Potts model (including
proper colorings, its zero-temperature version), the hard-core model, the Widom-
Rowlinson model and others. New results are obtained in many cases.

In order to formulate our results, we require some definitions. A pattern is a
pair (A,B) of subsets of S such that

γa,b = γmax for all a ∈ A and b ∈ B, where γmax := max
i,j∈S

γi,j .

The weight of a pattern (A,B) is λAλB , where λI :=
∑

i∈I λi for I ⊂ S. Let ωmax

denote the maximum weight of a pattern and call a pattern dominant if its weight
is ωmax. We say that two patterns (A,B) and (A′, B′) are equivalent if there is a
bijection ϕ : S → S such that

{ϕ(A), ϕ(B)} = {A′, B′}, λϕ(i) = λi, γϕ(i),ϕ(j) = γi,j , i, j ∈ S.



196 Oberwolfach Report 4/2018

We emphasize that if (A,B) is a dominant pattern with A 6= B, then (A,B) and
(B,A) are two equivalent, albeit distinct, dominant patterns. Our results apply
to discrete spin systems in which all dominant patterns are equivalent.

We also require a quantitative condition on the weights (λi) and (γi,j). Define
the activity, interaction and pattern ratios, ρa, ρi and ρp := max{ρ1p, ρ2p}, by

ρa :=
mini λi
maxi λi

, ρ1p := max
(A,B) non-dom
max pattern

λAλB

wmax
,

ρi := max
i,j

γi,j<γmax

γi,j

γmax
, ρ2p := max

(A,B) dom pattern
(A′,B′) max pattern

A′(A

λA′

λA
,

where a pattern (A,B) is maximal if no other pattern (A′, B′) satisfies A ⊂ A′

and B ⊂ B′. Our condition is

(1) log

[
1

1− (1− ρp)(1 − ρ
c0/q
i )

]
≥
C0q

3 log2 d+ log 1
ρa

d1/4
,

where C0, c0 > 0 are universal constants. It is worth noting that any (λi) and
(γi,j) satisfy (1) in sufficiently high dimensions.

We say that a vertex of Zd is even or odd according to the parity of the sum
of its coordinates. Given a configuration f , we say that a vertex v follows the
(A,B)-pattern if either, v is even and f(v) ∈ A, or, v is odd and f(v) ∈ B. A set
of vertices is an (A,B)-cluster if it is a maximal connected set of vertices following
the (A,B)-pattern.

Theorem 1. There exist C0, c0 > 0 such that the following holds. Suppose d ≥ 2,
the spin system satisfies (1) and all dominant patterns are equivalent. Then for
any dominant pattern (A,B), the system exhibits an ordered state characterized
by having, almost surely, a unique infinite (A,B)-cluster and having no infinite
(A′, B′)-cluster for any other dominant pattern (A′, B′). These states are extreme
equilibrium states (i.e., maximum-pressure Gibbs measures), invariant to auto-
morphisms preserving the two sublattices, and the system has no other extreme,
periodic, equilibrium states.

The theorem characterizes all the possible periodic orderings which arise in
such a spin system. Namely, each dominant pattern gives rise to an ordering in
which most sites follow this pattern, and every periodic ordering is obtained in
this manner from some dominant pattern. In particular, the extreme periodic
equilibrium states are in bijection with the dominant patterns, and hence there
exist multiple Gibbs measures whenever (A,A) is not the unique dominant pattern.

The proof of Theorem 1 reveals that the global structure of the Zd lattice is not
essential to the result. The proof adapts to other lattices of coordination number
at least d and dimension at least 2 which have some of the local features of Zd,
such as the lattice Z2 × {0, 1}d−2 (in a sense, the ‘global dimension’ of this graph
is 2 and its ‘local dimension’ is d). A result with similar features on the hypercube
graph {0, 1}d was proved earlier by Engbers–Galvin [5].
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A presentation of the above theorem and its proof which is geared towards a
physics audience is available in [17]. Full details will appear in a forthcoming pa-
per [18]. The proof technique is an elaborate form of the classical Peierls argument
whose main ingredients are: (i) vertices are classified, by considering the values
their neighbors take, into being in zero, one or more dominant patterns, (2) the
probability of given interfaces separating regions associated with dominant pat-
terns is estimated using an information-theoretic inequality of Shearer [2, 12, 11, 8]
and (3) the possible interfaces are coarse-grained according to their rough shape.
This uses the fact that the interfaces arising in the model respect the bipartite
structure of the Zd lattice (so called “odd cutsets”) by having all their boundary
vertices in the same bipartite class [19, 9, 15, 10, 6, 7].

Let us briefly describe the result in the context of some well-known models.

AF Potts model. The q-state AF Potts model at inverse temperature β > 0 is
obtained when

S = {1, . . . , q}, λi = 1, γi,j = 1{i6=j} + e−β1{i=j},

where 1E equals 1 when E holds and equals 0 otherwise. In this case, the dominant
patterns are all equipartitions of [q] := {1, . . . , q} into two sets, i.e., pairs (A,B)
of disjoint subsets of [q] such that A ∪ B = [q] and |A|, |B| ≥ ⌊q/2⌋. Theorem 1

shows that when q ≤ c d1/20 log−2/5 d and β ≥ Cq6d−1/4 log2 d, there are
(

q
q/2

)
or

2
(

q
⌊q/2⌋

)
extreme periodic equilibrium states according to whether q is even or odd.

This (and much more) is well-known for q = 2 (which corresponds to the Ising
model). This was previously known also for q = 3 and large β, with the β = ∞
case (proper colorings) due, independently, to Peled [15] and to Galvin–Kahn–
Randall–Sorkin [10], and the finite β case due to Feldheim–Spinka [6] who proved
the Kotecký conjecture [13]. The result here is novel for q ≥ 4. We remark that
the Dobrushin uniqueness condition [3] implies that when q is large or β is small
as a function of the dimension (q > 4d or β < cq/d suffices), the model ceases to
exhibit long-range order.

Hard-core model. The hard-core lattice-gas model at fugacity λ > 0 is obtained
when

S = {0, 1}, λ0 = 1, λ1 = λ, γi,j = 1{ij 6=1}.

The configurations here may be identified with independent sets. In this case,
there are two dominant patterns, ({0}, {0, 1}) and ({0, 1}, {0}), and Theorem 1

shows that when λ ≥ Cd−1/4 log2 d, there are two extreme periodic Gibbs states,
one in which the independent set consists mostly of even vertices and one in which
it consists mostly of odd vertices. The fact that this is the case for very large

fugacity (λ > Cd) goes back to Dobrushin [4]. The condition λ ≥ Cd−1/4 log3/4 d
was first proven by Galvin–Kahn [9]. Currently, the best known condition, due to

Peled-Samotij [16], is λ ≥ Cd−1/3 log2 d. As in the case of the AF Potts model,
Dobrushin’s uniqueness condition implies that when λ is sufficiently small as a
function of the dimension (λ ≤ 1/2d suffices), the model ceases to exhibit long-
range order.
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Widom-Rowlinson model. The lattice Widom-Rowlinson model at activity λ
is given by

S = {−1, 0, 1}, λi = λ|i|, γi,j = 1{ij 6=−1}.

The dominant patterns are ({0, 1}, {0, 1}) and ({0,−1}, {0,−1}), and Theorem 1
shows that when λ ≥ Cd−1/8 log d, there are two extreme periodic Gibbs states,
characterized by an unequal density of ±1. This was previously known only for
very large fugacity (λ ≥ Cd) [14, 1]. In particular, we obtain the first proof that
the critical fugacity tends to 0 with the dimension.

Clock model. The Zq-clock model with ‘hammock’ potential of width m is ob-
tained when

S = Zq = Z/qZ, λi = 1, γi,j = 1{distZq (i,j)≤m}.

When m < q
4 , the dominant patterns are (i+A, i+A), i ∈ S, A := {0, 1, . . . ,m}.

Theorem 1 then shows that when m2q3 ≤ cd1/4 log−2 d, each extremal maximal-
entropy Gibbs measure is characterized by an interval of size m+1 in which most
spins take values. This was previously known only when m = 1 [15].
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First passage percolation in hostile environment (on hyperbolic
graphs)

Elisabetta Candellero

(joint work with Alexandre Stauffer)

We consider two types of first passage percolation (FPP) processes evolving on a
bounded-degree graph G = (V (G), E(G)). We will distinguish the two processes
by considering black and red particles.

Start by choosing a reference vertex o ∈ V (G) and placing there a black particle.
Subsequently, fix a parameter µ ∈ (0, 1) and for all vertices x ∈ V (G) \ {o} place
a red particle at x with probability µ and no particle with probability 1− µ.

After this procedure, the black particle at o gives rise to a FPP process having
passage times exponentially distributed with parameter 1. We call this process
F1; in the meanwhile, red particles are left inactive. For all times T > 0 a FPP
cluster consists of all vertices that are, in the induced FPP random metric, within
distance T from the vertex where FPP originated. Inductively, whenever a red
particle is at a vertex that is about to become part of an existing FPP cluster,
such particle is activated, giving rise to a FPP process having passage times ex-
ponentially distributed with parameter λ > 0. Each FPP process started at a red
particle follows the same law and is denoted by Fλ. Note that whenever a vertex
is part of either the F1 or a Fλ cluster, it will remain so forever.

We are interested in the long-time behavior of the process. More precisely,
when can we observe that there is an infinite F1 cluster? What about an infinite
(connected) Fλ cluster? Is it possible that the two processes coexist, i.e., can there
be an infinite F1 cluster and an infinite (connected) Fλ cluster at the same time?

This model was originally introduced in [2] with the name of First passage per-
colation in hostile environment (FPPHE). This was an auxiliary tool to investigate
the long-time behavior of MDLA (Multi-particle Diffusion Limited Aggregation),
known to be an extremely complicated and challenging model to analyze. In [2],
the authors show that on Zd (d ≥ 2) whenever λ ∈ (0, 1) if the initial density µ
is small enough, then with positive probability there will be an infinite F1 cluster,
but all Fλ clusters will be finite. They also conjecture that whenever λ ∈ (0, 1) it
is possible to find a range of values for µ that would guarantee coexistence, but
this is still an open problem.
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In [1], we analyze this model on non-amenable and hyperbolic graphs, show-
ing that in this setting the asymptotic behavior of the process is fundamentally
different from the one on Zd. More precisely, we show that for all values λ > 0,
whenever the density µ is small enough, with positive probability F1 and Fλ will
coexist forever.
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On the infection time of kinetically constrained models: universality
in two dimensions

Fabio Martinelli

(joint work with Rob Morris and Cristina Toninelli)

Kinetically constrained models (KCM) are interacting particle systems on the
integer lattice Zd, which were introduced in the 80s in order to model the liquid-
glass transition, a major open problem in condensed matter physics. KCM feature
some of the main signatures of a super-cooled liquid near the glass transition point:
anomalously long mixing times [3, 8, 16], aging and dynamical heterogeneities [12],
and ergodicity breaking transitions corresponding to percolation of blocked struc-
tures [13]. A generic KCM is a continuous time Markov process of Glauber type
defined as follows. A configuration ω is defined by assigning to each site x ∈ Zd

an occupation variable ωx ∈ {0, 1}, corresponding to an empty or occupied site
respectively. Each site waits an independent, mean one, exponential time and
then, iff a certain local constraint is satisfied by the current configuration ω, its
occupation variable is updated to be occupied with rate p and to empty with rate
q = 1 − p. All the constraints that have been considered in the physics literature
belong to the following general class [8]. Fix an update family U = {X1, . . . , Xm},
that is, a finite collection of finite subsets of Zd \ {0}. Then ω satisfies the con-
straint at site x if there exists X ∈ U such that ωy = 0 for all y ∈ X + x. As a
consequence, the product Bernoulli(p) measure µ is a reversible invariant measure.

KCM can be also viewed as a natural non-monotone and stochastic counterpart
of U-bootstrap percolation, a well known class of discrete cellular automata [7]. For
U-bootstrap on Zd, given a configuration of “infected” sites At at time t, infected
sites remain infected, and a site v becomes infected at time t + 1 if the translate
by v of one of the sets in U belongs to At. One then defines the final infection set
[A]U :=

⋃∞
t=1At and the critical probability of the U-bootstrap process on Zd to

be

(1) qc
(
Z
d,U

)
:= inf

{
q : Pq

(
[A]U = Z

d
)
= 1
}
,
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where Pq denotes the product probability measure on Z
d with density q of infected

sites. It was proved in [8] that the relaxation time Trel(q;U) and the mean infection
time Eµ(τ0) are finite for q > qc

(
Zd,U

)
and infinite for q < qc

(
Zd,U

)
.

Question. Is it possible to group all possible update families U into distinct
classes, in such a way that all members of the same class induce the same di-
vergence of the mean infection time as q approaches from above the critical value
qc(Z

d,U)?
The universality question stated above has being addressed and successfully

solved for two-dimensional U-bootstrap percolation (see [7, 5, 6], or [17] for a recent
review). The update families U were classified in [7] into three universality classes:
supercritical, critical and subcritical, according to a simple geometric criterion.
Then it was proved in [7] that qc

(
Z2,U

)
= 0 if U is supercritical or critical, and

that qc
(
Z2,U

)
> 0 if U is subcritical [5]. For critical update families U , the scaling

(as q ↓ 0) of the typical infection time of the origin starting from Pq was determined
very precisely in [6].

In this talk we will report paper on a first important step towards establishing a
similar universality picture for two-dimensional KCM with supercritical or critical
update family U . Using a geometric criterion, we classify a supercritical update
family U as being supercritical unrooted or supercritical rooted and a critical U as
being α-rooted or β-unrooted, where α ∈ N and α ≤ β ∈ N ∪ {∞} are called the
difficulty and the bilateral difficulty of U respectively (see [15]). We then prove
the following two main universality results.
Supercritical KCM. Let U be a supercritical two-dimensional update family.

Then, as q → 0,

(a) if U is unrooted

Eµ(τ0) ≤ q−O(1);

(b) if U is rooted,

Eµ(τ0) ≤ exp
(
O
(
log q−1

)2)
.

Critical KCM. Let U be a critical two-dimensional update family with difficulty

α and bilateral difficulty β. Then, as q → 0,

(a) if U is α-rooted

Eµ(τ0) ≤ exp
(
q−2α

(
log q−1

)O(1)
)
;

(b) if U is β-unrooted

Eµ(τ0) ≤ exp
(
q−β

(
log q−1

)O(1)
)
.

Even though the theorems above only establish universal upper bounds on
Eµ(τ0), we conjecture that our bounds provide the correct scaling up to loga-
rithmic corrections. This has recently been proved for supercritical models in [15].
For critical update families, the bound Eµ(τ0) = Ω(TU ) (see Lemma 4.3 in [16]),
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where TU denotes the median infection time of the origin for the U-bootstrap
process, together with the results of [6] on TU , provide a matching lower bound
for all β-unrooted models with α = β. In particular, these recent advances com-
bined with the above theorems prove two conjectures that we put forward in [17].
Among the α-rooted models, those which have been considered most extensively
in the literature are the Duarte and modified Duarte model (see [1, 2, 11]), for
which α = 1 and β = ∞. In [15] a lower bound on Eµ(τ0) was recently obtained for
both models that matches our upper bound, including the logarithmic corrections,
yielding Eµ(τ0) = exp

(
Θ
(
q−2(log 1/q)4

))
.
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Self-Avoiding Walk on T × Z

Thomas Hutchcroft

We show that Self-Avoiding Walk (SAW) on the product T × Z of a k-regular
tree with the integers has mean-field behaviour when k ≥ 3. This means that the
number Zn of SAWs of length n grows exactly exponentially

Zn ≍ µn
c

for some µc, with no subexponential correction. The proof applies more generally
to any graph such that the automorphism group Aut(G) has a transitive nonuni-
modular subgroup, e.g. T ×H for arbitrary transitive H .

A toy model for uphill diffusion

Dmitry Ioffe

Uphill diffusion is an umbrella name for a non-equilibrium phenomena when, in
the absence of exterior forces, the current goes from a low density reservoir to
the high density one. I am grateful to Anna De Masi and Errico Presutti for an
introduction to this area, and I refer to the very recent [1, 2, 3, 4] for an extensive
discussion, examples, simulations and few rigorous results. In the talk I shall
focus on a particularly simple example - two Curie-Weiss systems below critical
temperature, which are in contact with infinite reservoirs.

Consider two mean-field systems A and B of sizes N ∈ N each. The spin

variables are σA, σB ∈ {±1}N and For σ ∈ {±1}N define the average magnetization
mN = mN(σ) and the Hamiltonian HN = HN (σ) via

(1) mN (σ) =
1

N

N∑

i=1

σ(i) and HN (σ) = −N
2
(mN (σ))

2
.

For σ ∈ {±1}N define flips:

(2) σi(j) =

{
−σ(i), if j = i

σ(j), if j 6= i.

Fix r ∈ (0, 1). We assume that the system B is in a contact with an infinite
reservoir R+ of mean magnetization r, and that the system A is in a contact with
an infinite reservoir R− of mean magnetization −r. For the given value β of inverse
temperature define flip rates as follows:
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1. Exchanges between A and B systems: For i, j ∈ {1, . . . , N} the flip (σA, σB) 7→
(σi

A
, σB)

j occurs with rate

1

N
e−2β/Ne−

β
2 (HN (σi

A
)+HN (σj

B
)−HN (σA)−HN (σB))1{σA(i)σB(j)=−1}

=
1

N
e−β(σA(i)mN (σA) +σB(j)mN (σB))1{σA(i)σB(j)=−1}.

(3)

2. Exchanges with infinite reservoirs: Flips (σA, σB) 7→ (σi
A
, σB) and (σA, σB) 7→

(σA, σ
j
B
) occur with rates

(4)
1 + σA(i)r

2
and

1− σB(j)r

2
,

respectively.

The induced two-dimensional mean-filed dynamics of (mN (σA(t),mN (σB(t)) is

Markovian and ergodic. Let νβN is its invariant measure. The phenomenon of the
uphill diffusion could be described as follows: Let β > βCW

c = 1, and assume
that r ∈ (0,mCW

β ), where mCW
β is the Curie-Weiss spontaneous magnetization.

Then there exists ∆ ∈ (r,mCW
β ) such that νN is, as N → ∞, concentrated around

(−∆,∆). That is, for any ǫ > 0,

lim
N→∞

νN (|m(σA) + ∆|+ |m(σB)−∆|) = 0.

In particular, there is a (limiting) current j = ∆−r
2 > 0 from R

− to R
+.
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Cutoff at the “entropic time” for sparse Markov chains

Pietro Caputo

(joint work with Charles Bordenave and Justin Salez)

We consider the problem of estimating the time to reach equilibrium for a large
class of Markov chains in random environment. The chains are sparse in the sense
that in every row of the transition matrix P the mass is essentially concentrated
on few entries. Moreover, within each row the entries of P are exchangeable
random variables, and the rows are assumed to be independent. The associated
Markov chains are generally non reversible and the equilibrium distribution π is
itself unknown.
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The model can be described as follows. Let (qi,j)1≤i,j≤n denote a deterministic
n × n stochastic matrix, and let (σi)1≤i≤n denote independent, uniform random
permutations of {1, . . . , n}. Consider the random stochastic matrix:

P (i, j) := qi,σ−1
i (j), 1 ≤ i, j ≤ n.

Under mild sparsity and non-degeneracy assumptions on the matrix (qi,j) we
find that with high probability the Markov chain associated to P has a unique
invariant measure π and the convergence to the equilibrium displays the cutoff
phenomenon at the “entropic time”

TENT =
logn

H
, H = − 1

n

n∑

i,j=1

qi,j log qi,j

This includes various models of random walk on random directed graphs. For
instance, an example is the random walk on the d-out regular random digraph,
for some integer d ≥ 2. This corresponds to having exactly d elements equal
to 1/d in each row of the matrix P , that is for all i: qi,1 = · · · = qi,d = 1/d,
and qi,d+1 = · · · = qi,n = 0. Other interesting examples are obtained by letting
the input matrix q be sampled from some sparse, non-degenerate distribution.
For instance, an important example concerns the case where the rows of P are
i.i.d. random vectors in the domain of attraction of a Poisson-Dirichlet law: qi,j =
ω(i, j)/

∑
ℓ ω(i, ℓ), where ω(i, j), 1 ≤ i, j ≤ n, are a realization of i.i.d. nonnegative

random variables with regularly varying tail of index α ∈ (0, 1). We refer to [1, 2]
for more details.
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The scaling limit of the membrane model

Alessandra Cipriani

(joint work with Biltu Dan and Rajat Subhra Hazra)

The main object of study in this work is the membrane model (MM), also known
as discrete bilaplacian model. The membrane model is a special instance of a more
general class of interface models in which the interaction of the system is governed

by the exponential of an Hamiltonian functionH : RZd → [0,∞). More specifically,
random interfaces are fields ϕ = (ϕx)x∈Zd , whose distribution is determined by the

probability measure on RZd

, d ≥ 1, with density

PN (dϕ) :=
e−H(ϕ)

ZN

∏

x∈VN

dϕx

∏

x∈Zd\VN

δ0(dϕx),
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where VN := [−N, N ]d ∩ Z
d, dϕx is the 1-dimensional Lebesgue measure on R,

δ0 is the Dirac measure at 0, and ZN is a normalising constant. We are imposing
zero boundary conditions, but the definition holds for more general boundary
conditions. A relevant example is where the Hamiltonian is driven by a convex
function of the gradient, that is, H(ϕ) =

∑
x∼y V (ϕy − ϕx), V : R → R convex,

and the sum being over nearest neighbours. The most well-known among these
interfaces is the discrete Gaussian free field (DGFF) when V (x) ∝ x2/2.

The membrane model is the Gaussian interface for which

(1) H(ϕ) :=
1

2

∑

x∈Zd

|∆1ϕx|2 =
1

2
〈ϕ,∆2

1ϕ〉ℓ2(Zd)

and ∆1 is the discrete Laplacian defined by

∆1f(x) =
1

2d

∑

y∼x

(f(y)− f(x)), f : Zd → R, x ∈ Z
d.

Introduced by [Sakagawa(2003)] in the probabilistic literature, the MM looks for
certain aspects very similar to the DGFF: it is log-correlated in d = 4, has a super-
critical regime in d ≥ 5 and is subcritical in d ≤ 3. In particular in d = 2, 3, 4 there
is no thermodynamic limit of the measures PN as N ↑ ∞. We present our work
which aims at determining the scaling limit of the bilaplacian model. The answer
in d = 1 was given by [Caravenna and Deuschel(2009), Hryniv and Velenik(2009)]
using an integrated random walk representation. We can summarize our results
as follows.

• In d = 2, 3 we consider the discrete membrane model on a box of side-
length 2N and interpolate it in a continuous way. We show that the pro-
cess converges in the space of continuous functions to a Hölder-continuous
Gaussian process. This also yields the scaling limit of the discrete max-
imum exploiting the continuous mapping theorem. While the limiting
maximum of the MM was derived by [Chiarini et al.(2016)] in d ≥ 5, in
d = 4 the problem remains open as far as the authors know (tightness can
be derived from [Ding et al.(2017)]).

The proof of the above facts is based on two basic steps: tightness
and finite dimensional convergence. Tightness depends on the gradient
estimates of the discrete Green’s functions which were very recently de-
rived in [Müller and Schweiger(2017)]; finite dimensional convergence fol-
lows from the convergence of the Green’s function.

• In d = 4 the limiting process on a sufficiently nice domain D will be a
fractional Gaussian field with Hurst parameter H := 0, represented via
a Wiener series in terms of the eigenvalues of the biharmonic operator in
the continuum.

The proof is again split into two steps: finite dimensional convergence
and tightness. Both steps crucially require an approximation result of
PDEs given by [Thomée(1964)]: there he gives quantitative estimates on
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the approximation of solutions of PDEs involving “nice” elliptic operators
by their discrete counterparts.

• In d ≥ 5 we consider the infinite volume membrane model on Zd. We
show that the limit is the fractional Gaussian field of Hurst parameter
H := 2 − d/2 < 0 on Rd proving convergence with the help of charac-
teristic functionals. Technical tools useful for this scope are the explicit
Fourier transform of the infinite volume Green’s function and the Poisson
summation formula.
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No exceptional word in Bernoulli percolation

Vincent Tassion

(joint work with Pierre Nolin and Augusto Teixeira)

Consider Bernoulli percolation on the sites of Zd, d ≥ 3.

(w(x))x∈Zd iid, w(x) =

∣∣∣∣
0 with probability 1

2 ,
1 with probability 1

2 .

We prove that a.s. every word (arbitrary infinite sequence of 0 and 1) can be read
somewhere in the graph.
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x

Figure 1. The word 1110110 . . . is read from x.

The free Ising state on the tree: continual decomposition into
extremals

Senya Shlosman

I consider the Ising model on the Cayley tree and I investigate the decomposition
of the free state into extreme states below the spin glass temperature. The number
of the extremal Gibbs distributions that appear in that decomposition equals to
ℵ1, i.e. continuum. This exposition follows the manuscript by Daniel Gandolfo,
Christian Maes, Jean Ruiz, Senya Shlosman: Glassy states: the free Ising model
on a tree, arXiv:1709.00543.

Let τk = (V,E) be the Cayley tree with branching ratio k. We consider the
nearest neighbor Ising model, where spins σx = ±1 have a Gibbs distribution at
temperature T = 1/β with boundary conditions η in a finite volume Λ given by

(1) µ(σ) = Z−1 exp



β

∑

〈x,y〉
Jxyσxσy + β

∑

〈x,y〉
Jxyσxηy





It is known that there is a critical temperature Tcr = 1/ arctanh(1/k) for the
ferromagnetic case. For T > Tcr there is a unique infinite volume Gibbs distri-
bution and below that critical temperature, there is spontaneous magnetization
in the sense that, always for the ferromagnetic model, plus and minus boundary
conditions give opposite non-zero magnetizations:

〈σ0〉T± = ±m∗(T ), m∗(T ) > 0 when T < Tcr

There is yet another special temperature, TSG = 1/ arctanh
(
1/

√
k
)
, called the

spin–glass temperature. For the ferromagnetic model it is known that the free
state, the infinite volume Gibbs distribution obtained by putting η ≡ 0 in (1) is
extreme for T > TSG while it is not for T < TSG ([1],[2]). The question is to find
the extremal decomposition of the free state 〈·〉T∅ .
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To find it, let D be a subset of bonds of the tree τk, and consider the two Ising
spin configurations σD,± on τk defined as:

(2) σD,+
0 = +1, σ

D,−
0 = −1

and

σD,±
x = −σD,±

y for (x, y) ∈ D

σD,±
x = +σD,±

y for (x, y) /∈ D

That is, fix the value of the spin of the root say 0 to be +1 or −1, then the nearest
neighbours sites of both configurations alternate when they belong to the set D.

By 〈·〉TσD,ω we denote the Gibbs state of the ferromagnetic Ising model at inverse

temperature T with the boundary condition σD,ω where ω = ±1 corresponds to
the way the spin at the origin is chosen

Let p ∈ (0, 1). Take the set D to be random: every bond decides to be in D
with probability p independently of the other bonds. Denote by Ep the expectation
with respect to that process.

Proposition 1. The following decomposition of the free state for the ferromagnetic
Ising model on the tree holds for all temperatures T ,

(3) 〈·〉T∅ =
1

2
Ep(T )

[
〈·〉TσD,+ + 〈·〉TσD,−

]

where

p(T ) =
1

2
[1− tanh 1/T ]

This decomposition holds for any temperature. But at high temperature all the
states in the rhs are the same. The important point is that at low temperatures
they are all different extremal states, with 〈·〉T∅ - probability 1. That follows from
the results of [3].

I think that the same behavior one encounters on the Lobachevsky plane, com-
pare with [4].
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Random interchange model and Poisson-Dirichlet distribution

Daniel Ueltschi

The random interchange model is closely related to the quantum Heisenberg model
[9]. Given a graph G = (V,E), and t ∈ N, consider a random sequence (e1, . . . , et)
of edges in E, and the corresponding random permutation

σt = τet ◦ · · · ◦ τe1 .
Here, τei denotes the transposition of the endpoints of the edge ei. The main
question deals with the cycle structure of σt. All cycles are short when t is small,
but a phase transition may take place when t increases, where some cycles have
lengths of order |V |.

The cycles are always shorter than the percolation clusters that are formed by
the edges that have been selected at least once. Schramm studied this model on the
complete graph [7]. With t = cn with c large enough so that a percolation cluster of
macroscopic size is present, Schramm proved that the cycle structure of σt follows
an effective split-merge process, and displays Poisson-Dirichlet distribution PD(1)
(this was suggested by Aldous).

It turns out that this heuristics can be extended to general loop soup models
[5, 10]. Besides, Tóth’s interchange model involves the weight 2#cycles(σt), which
suggests that the relevant distribution is PD(2). With Jakob Björnberg and Jürg
Fröhlich, we have studied the model on the complete graph with weight θ#cycles(σt),
where the parameter θ takes values 2,3,4... We essentially prove that the cycle
structure is given by the PD(θ) distribution [4]. The precise statement involves
the function

f(s) = 1
θ

(
e−

θ−1
2 s + e−

θ+1
2 s + · · ·+ e

θ−1
2 s
)
.

Notice that f(s) = cosh s
2 when θ = 2.

Theorem 1. Consider the complete graph of n vertices and let t = βn. The
parameter θ must be an integer greater or equal to 2. Then there existsm = m(β, θ)
such that for all h ∈ C, we have

(1) lim
n→∞

En

[∏

i≥1

f
(hℓi
n

)]
= EPD(θ)

[∏

i≥1

f(hmXi)
]
.

Further, m > 0 when β > βc, where

βc =

{
2 if θ = 2,

2 θ−1
θ−2 log(θ − 1) if θ = 3, 4, . . .

The first product in Eq. (1) is over the cycles of σt; ℓi denotes the length of
the ith cycle. The second product is over the elements Xi of the random partition
with distribution PD(θ).

The critical parameter βc is equal to the one of the random cluster model on
the complete graph with q = θ and p = 1− e−β/n .

The proof for θ = 2 is not hard. It is based on a conjecture of Tom Spencer for
the quantum Heisenberg model, and calculations using additions of spins. This is
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actually similar to Penrose’s article [6], which was motivated by [8]. The case θ =
3, 4, . . . is considerably more complex. We use the theory of symmetric polynomials
and certain identities obtained by Alon and Kozma [1], Berestycki and Kozma [2],
and Björnberg [3].

We would like to claim that Theorem 1 establishes the presence of Poisson-
Dirichlet in the random interchange model on the complete graph. It involves
specific classes of characteristic functions. It remains to clarify whether this char-
acterisation is sufficient.
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Fine mesh limit of 1D VRJP, inversion of Ray-Knight and
Bass-Burdzy flows

Titus Lupu

(joint work with Christoph Sabot and Pierre Tarres)

The Vertex Reinforced Jump Process (VRJP) is a model of reinforced walk on an
electrical network. The jump rate from x to a neighbour y at time t is given by
C(x, y)Lt(y), where C(x, y) is a fixed conductance and Lt(y) is the reinforcement
factor:

Lt(y) = 1 + time spent in y before t.

Sabot and Tarres [2] showed that a VRJP is a mixture of time-changed Markov
jump process. Together with Sabot and Tarres [5], we considered the rescaled
VRJP on 2−nZ and showed that there is a regime for the reinforcement such that
the process converges in law to a continuous reinforced diffusion on R, which we
called Linearly Reinforced Motion (LRM). We have two constructions of it. One
as a time-changed diffusion in random potential

V(x) =
√
2B(x) + |x|,
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where (B(x))x∈R is an R-parametrized Brownian motion. The second construction
uses a convergent Bass-Burdzy flow [1], the flow of solutions to

dYu
du

=

{
−1 if Yu > Wu,
1 if Yu < Wu,

where (Wu)u≥0 is a Brownian motion. We also considered a divergent Bass-Burdzy
flow

dYu
du

=

{
1 if Yu > Wu,
−1 if Yu < Wu,

and showed that out of it one can construct a dereinforced diffusion, which a.s.
exhausts the initial local time at some location. The dereinforced version is related
to the inversion of the second Ray-Knight theorem. This completes the results
obtained previously on inversion of Ray-Knight by Sabot and Tarres [3] and Lupu,
Sabot and Tarres [4].
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Emerging planarity of Pfaffian structures of the long-range Ising model

Hugo Duminil-Copin

(joint work with M. Aizenman, V. Tassion and S. Warzel)

In this talk, the known Pfaffian structure of the boundary spin correlations, and
more generally order-disorder correlation functions, is given a new explanation
through simple topological considerations within the model’s random current rep-
resentation. This perspective is then employed in the proof that the Pfaffian
structure of boundary correlations emerges asymptotically at criticality in Ising
models on Z2 with finite-range interactions. The analysis is enabled by new re-
sults on the stochastic geometry of the corresponding random currents [4, 1]. The
proven statement establishes an aspect of universality, seen here in the emergence
of fermionic structures in two dimensions beyond the solvable cases.

The Ising model is perhaps the most studied example of a system undergoing
a phase transition. In the following discussion, the symbol G = (V (G), E(G))
denotes a finite graph with vertex-set V (G) and edge-set E(G). A planar graph
is a graph embedded in the plane R2 in such a way that its edges, depicted by
bounded simple arcs, intersect only at their endpoints.
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A configuration of Ising spin variables on a graph G is a binary valued function
σ : V (G) 7→ {−1, 1}. The Hamiltonian of the model is the function, defined on
the configurations σ ∈ {±1}V (G), given by

HG(σ) := −
∑

{x,y}∈E(G)

Jx,yσxσy.

Its parameters J := {Jx,y}{x,y}∈E(G) are referred to as the coupling coefficients.
The corresponding Gibbs equilibrium state at inverse temperature β ≥ 0 is the
probability measure such that

〈f〉G,β :=

∑
σ∈{±1}V (G) f(σ) exp(−βHG(σ))

2|V (G)| Z(G, β)

for any f : {±1}V (G) −→ C, where Z(G, β) is the normalizing factor.
Groeneveld-Boel-Kasteleyn [3] first pointed out that for planar Ising systems,

the correlation functions for spins located along the boundaries are given at any
temperature by Pfaffians of the corresponding two point function, i.e. satisfy a
fermionic version of Wick rule.

For a more explicit statement, let us recall that the Pfaffian of an upper trian-
gular array A = [Ai,j ]1≤i<j≤2n is defined as

Pfaffn(A) :=
∑

π∈Πn

sign(π)Aπ(1),π(2) · · ·Aπ(2n−1),π(2n) ,

where Πn is the collection of pairings of {1, . . . , 2n} and sign(π) the pairing’s
signature. A pairing of {1, . . . , 2n} is a permutation π such that π(2j− 1) < π(2j)
for any j ∈ {1, . . . , n} and π(2j − 1) < π(2j + 1) for any j ∈ {1, . . . , n− 1}.

The above quoted result of Groeneveld-Boel-Kasteleyn [3] reads as follows. Fix
a planar graph G, arbitrary nearest-neighbor couplings J , and β ≥ 0. Then, for
any cyclically ordered 2n-tuple (x1, . . . , x2n) of sites located along the boundary
of a fixed face of G, we have

(1) 〈σx1 · · ·σx2n〉G,β = Pfaffn

([
〈σxi

σxj
〉G,β

]
1≤i<j≤2n

)
.

The previous relation can be viewed as the fermionic counterpart of the Wick rule
of the (bosonic) correlations of Gaussian fields. The fermionic denomination comes
from the fact that Pfaffians are a familiar feature of the vacuum expectation values
of products of Majorana spinors, and of the thermal equilibrium states of systems
of non-interacting fermions.

The main result presented in this talk is the following extension of (1) to finite-
range models on the half space H := Z× Z+. In the non-planar case the Pfaffian
relations no longer hold in the strict sense. However, we prove in [2] that the
Pfaffian structure of correlations re-emerges at the critical points, as an asymptotic
relation at large spin separations. Let J be a set of coupling constants for an Ising
model over the upper half-plane H which are:

(i) ferromagnetic, i.e. that Jx,y ≥ 0 for every x, y ∈ H,
(ii) finite-range and such that the associated graph is connected,
(iii) translation invariant, i.e. that Jx,y = J(x− y), and
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(iv) reflection invariant: J0,(a,b) = J0,(−a,b) = J0,(a,−b) = J0,(b,a) for every
a, b ∈ Z.
Then, for any collection of boundary points x1 = (k1, 0), . . . , x2n = (k2n, 0) satis-
fying k1 < k2 < · · · < k2n, we have

〈σx1 · · ·σx2n〉H,βc
= Pfaffn

([
〈σxi

σxj
〉H,βc

]
1≤i<j≤2n

)[
1 + o(1)

]
,

where βc is the critical inverse-temperature of the model, and o(1) is a function
of the points x1, . . . , x2n which tends to zero for configuration sequences with
min1≤i<j≤2n{|xi − xj |} → ∞.
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Asymptotics of even-even correlations in the Ising model

Yvan Velenik

(joint work with Sébastien Ott)

Consider the Ising model on Zd, d ≥ 2, with formal Hamiltonian

H = −β
∑

{i,j}⊂Zd:
‖i−j‖=1

σiσj ,

where, as usual, σi denotes the random variable corresponding to the spin at
i ∈ Zd. (Note that the results below actually apply to a general class of finite-
range ferromagnetic 2-body interactions.)

It is well known that there exists a critical value βc = βc(d) ∈ (0,∞) of the
parameter β such that there is a unique (infinite-volume) Gibbs measure when
β < βc, but not when β > βc. (A pedagogical introduction to this model can be
found in [9].)

From now on, assume that β < βc and denote by µβ the unique infinite-volume
Gibbs measure. In this regime, spin-spin correlations decay exponentially fast: it
was proved in [2] that, for any unit vector u in Rd,

ξβ(u) = − lim
n→∞

1

n
logCovβ(σ0, σ[nu])

exists and is positive. In the latter expression, the covariance is computed with
respect to µβ , and [y] ∈ Zd denotes the component-wise integer part of y ∈ Rd.
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Given C ⋐ Z
d (that is, C ⊂ Z

d with a cardinality |C| < ∞), denote by
σC =

∏
i∈C σi. It is easy to check that any local function can written as a finite

linear combination of such functions.
The main question in this work is: how do the covariances

Covβ(σA, σB+[nu]),

with A,B ⋐ Zd, behave as n→ ∞. Observe that, by symmetry, Covβ(σA, σB) = 0
whenever |A| and |B| have different parities. We can therefore assume, without
loss of generality, that |A| and |B| are either both odd, or both even: one then
says that one considers odd-odd, resp. even-even, correlations.

Odd-odd correlations. In this case, the best nonperturbative result to date is the
following:

Theorem 1 ([7]). Let A,B ⋐ Zd be two sets of odd cardinality. Then, for any
d ≥ 2, any β < βc and any unit vector u in Rd, there exists a constant 0 < C <∞
(depending on A,B,u, β) such that

Covβ(σA, σB+[nu]) =
C

n(d−1)/2
e−ξβ(u)n(1 + o(1)),

as n→ ∞.

This result has a long history, starting with the celebrated work by Ornstein
and Zernike in 1914 [11, 15], in which the corresponding claim is established (non-
rigorously) when |A| = |B| = 1. (Obviously they did not consider the Ising model,
which Lenz invented only in 1920, but their approach does apply to this model.)

The first rigorous derivations in the case |A| = |B| = 1, valid in any dimension
but only for sufficiently small β, were obtained in [1] and [13]. The first version
valid for arbitrary β < βc was given in [6] (see also [8]).

Extensions to general odd-odd correlations were first obtained in [3, 4] and [16,
10], again for sufficiently small values of β, and then in [7] for all β < βc.

Even-even correlations. This case is more delicate. The first case analyzed was
that of energy-energy correlations, that is, when A and B are both composed of
a pair of nearest-neighbor vertices. Although it was quickly clear that the rate
of exponential decay is given in this case by 2ξβ(u), the determination of the
prefactor led to some controversy: Camp and Fisher [5] predicted a prefactor of
order n−d for all d ≥ 2, while Polyakov [14] predicted a prefactor of order n−2

when d = 2, (n logn)−2 when d = 3 and n−(d−1) when d ≥ 4. It turned out
that Polyakov’s predictions were correct. This was first proved, for small enough
values of β, in [3, 4] for dimensions d ≥ 4, and in [16, 10] for dimensions 2 and
3. Extensions to general even-even correlations, at small values of β, were proved
in [16, 10].

Our main result is the following non-perturbative derivation.

Theorem 2. Let A,B ⋐ Zd be two sets of even cardinality. Then, for any d ≥ 2,
any β < βc and any unit vector u in Rd, there exist constants 0 < C− ≤ C+ <∞
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(depending on A,B,u, β) such that, for all n large enough,

C−
Ξ(n)

e−2ξβ(u)n ≤ Covβ(σA, σB+[nu]) ≤
C+

Ξ(n)
e−2ξβ(u)n,

with

Ξ(n) =





n2 when d = 2,

(n logn)2 when d = 3,

nd−1 when d ≥ 4.

Open problems. A number of interesting problems remain open at this stage.

• In contrast to the result for odd-odd correlations, the theorem above only
provides bounds, not sharp asymptotics. It would be desirable to remove
this limitation. One possible approach may be to build a version of the
Ornstein–Zernike theory, as developed in [6, 8, 12] directly in the random-
current representation.

• An extension to more general models, in particular with a richer symme-
try group, would be highly desirable. This seems delicate even for Potts
models.
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On macroscopic holes in some dependent percolation models

Alain-Sol Sznitman

We consider on Zd, d ≥ 3, the vacant set of random interlacements in the strongly
percolative regime, the vacant set of the simple random walk, and the excursion set
of the Gaussian free field in the strongly percolative regime. We present asymptotic
upper and lower exponential bounds for the large deviation probability that the
adequately thickened component of the boundary of a large box centered at the
origin in the respective vacant sets or excursion set leaves in the box a macroscopic
volume in its complement. We also present geometric controls on the shape of the
left-out volume. The results heavily rely on a recent article in collaboration with
Maximilian Nitzschner.
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Ensembles of self-avoiding polygons

Lorenzo Taggi

(joint work with V. Betz)

Self-avoiding random walks are by now a classical topic of modern probability
theory, although many questions still remain to be answered; we refer to the classic
book [28] and the more recent survey [32]. A variant of self-avoiding walks are
self-avoiding polygons (see e.g. [23]), where the last step of the self-avoiding walk
has to come back to the point of origin. In most of the literature, a single random
walk or polygon is the object of study. In the present paper, we instead investigate
properties of random polygons interacting with an environment consisting of other
random polygons. As we will detail below, a natural way to view these systems is
as random permutations on a graph.

Specifically, we are interested in the behavior of step-weighted self-avoiding
directed polygon ensembles. In the context of the single step-weighted self-avoiding
walk, the following interesting and rather complete picture is known: fix a sequence
of growing subsets Λn of Zd, for example the cubes of side length n. Fix in addition,
for each n, two points a and z at opposite ends of Λn, and consider the set of all
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self-avoiding walks starting in a and ending in z. Let α ∈ R, and assign to each
such self-avoiding walk X the weight exp(−α|X |), where |X | is the number of
steps that X takes. Write µ for the connective constant of the d-dimensional
cubic lattice. When α > logµ, it is known that the shape of X converges to a
straight line as n→ ∞, when scaled by 1/n. Actually, when scaled by 1/n in the
direction of a − z and by n−1/2 in the directions perpendicular to this vector, X
converges to a Brownian Bridge. These results are implicit in the works [10, 12]
and have been worked out by Y. Kovchegov in his thesis [26].

For α < logµ, on the other hand, the results are entirely different. As Dominil-
Copin, Kozma and Yadin have recently shown [15], in this case the rescaled self-
avoiding walk becomes weakly space filling, meaning that it will only leave holes
of logarithmic size in the graph [15]. Their results also hold for the self-avoiding
loop, i.e. in the case where a and z are chosen to be the same site. Note that for
α > logµ, the self-avoiding loop will converge to a point in the scaling limit.

Let us now present our model of interacting, self-avoiding directed loops, and
outline our main results. Some of our results work for general graphs, so we
formulate our model in that language. Let V be a finite set and E ⊂ {{x, y} :
x, y ∈ V, x 6= y}, so that G = (V,E) is a finite, simple, undirected graph. We
consider the set SG of permutations π : V → V such that for all z ∈ V , either
π(z) = z or {z, π(z)} ∈ E. The energy HG of a permutation π is just the total
number of edges used by that permutation, i.e.

(1) HG(π) =
∑

z∈V

1{ π(z) 6= z }.

For α > 0, the relevant probability measure then is

(2) PG(π) =
e−αHG(π)

Z(G)
,

where the partition function Z(G) normalizes the Boltzmann weights e−αHG(π)

to a probability measure.
Clearly, an element of SG under PG can be interpreted as an ensemble of edge-

weighted, oriented, self-avoiding polygons in G: the polygons are now just the
cycles of the permutation π. In the other direction, the single self-avoiding polygon
containing a point a can be interpreted as the measure PG conditioned on the
non-existence of any cycle besides the one starting in a. A different interesting
interpretation of (2), which we will not pursue any further here, would be to see
π as a random directed subgraph of G with the condition that the indegree and
outdegree of each vertex must be either both equal to one or both equal to zero.

We can now ask the same questions as discussed above: if we make α small, will
the cycle starting from the point a be weakly space filling with positive probability?
Will a cycle connecting a to z collapse to a straight line in the scaling limit when
α is large? Where is the boundary α0 between these two behaviours, assuming
there is one? In this paper, we can only give partial answers to these questions.
We have no result about the existence of a space filling cycle, which is unfortunate
since this is by far the most interesting question; see below why this is so. Instead,
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z

a

(a) (b)

Figure 1. (a): Representation of a bijection with a forced open
cycle between a and z, when Λ ⊂ Z2 is a box with cylinder bound-
ary conditions. If π(x) = x, then a circle is drawn at x, while if
π(x) is a neighbour of x, then an arrow is directed from x to
π(x). (b): Regeneration interfaces intersect the forced open cy-
cle at regeneration points, which are represented by small black
circles.

we show that if there is a regime of space filling cycles, it must start at lower α
than for the case of the self-avoiding polygon. More precisely, in the case where
G is a subgraph of a vertex transitive graph, and when µ is the cyclic connective
constant of that graph, then we identify in [8][Theorem 1] an α0 < logµ so that
for all α > α0, and uniformly in the size of G, the length of a cycle through a given
point has exponential tails. Thus in the interval (α0, logµ) the single self-avoiding
loop is weakly space filling while the self-avoiding loop embedded into an ensemble
of other such loops is very short.

Our second main result, which requires most of the work, is [8][Theorem 2]. The
model here is again the one where a self-avoiding path originating in a point a and
ending in a point z (on the opposite side of the graph) is forced through the system.
Figure 1(a) shows a typical configuration. We give a positive answer to the question
about collapse to a straight line for large α. Unlike in the case of the single self-
avoiding loop, we do not have a good quantitative estimate on the threshold above
which this behavior holds, and we cannot quite control the scaling well enough to
prove the convergence to a Brownian bridge. The reason for these shortcomings
is that we have to fight much more serious correlations than are present in the
self-avoiding walk case. We will try to give a short account of these difficulties and
our way to overcome them toward the end of this introduction. Before we do this,
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let us briefly comment on the original reason why we are interested in the model,
and on the reason why a regime of space-filling cycles would be most interesting.

The original interest in random permutations on a graph, or more generally
spatial random permutation, comes from connections to quantum physics and
specifically to Bose-Einstein condensation. Consider a finite subset X of a finite
box Λn ⊂ Rd of side length n. The number of points of X should scale with the
volume of that box. We consider the complete graph on X , but with edge weights
d(x, y) = |x− y|2, the set SX of permutations of X , and the measure (2) but with
energy

(3) HG =
∑

x∈X

d(x, π(x)).

Here, we set d(x, x) = 0 for all x. On the one hand, the relation of this model
to (2) should be apparent. On the other hand, (3) is precisely a spatial random
permutation as introduced in [5]. In that paper it is also explained that the
partition function of the annealed version of (3) (i.e. where we average over the
positions of the points X ⊂ Λn) precisely corresponds to the partition function of
the free Bose gas, and it is shown that for dimensions 3 and higher, there is indeed
a critical value α0 > 0 so that for α < α0, the cycle starting from a given point
x0 contains a fraction of all the available sites with positive probability, uniformly
in the size of the system n. For this model, we even know the precise asymptotic
distribution of long cycles [4, 6].

In [34] it is shown how for the interacting Bose gas, off-diagonal long range
order (a well known criterion for the occurrence of Bose-Einstein condensation
due to Penrose and Onsager [30]) occurs precisely when the ratio of two specific
partition functions stays strictly positive as n→ ∞. The partition function in the
denominator is the one corresponding to the annealed version of (3), but with a
complicated additional interaction potential originating from the interactions of
the Bosons. The partition function in the numerator is the same except that for
two points a and z at the boundary of Λn, a cycle is started in a and forced to end
in z. Apart from the annealing of the points different from a and z, this is precisely
the situation of the forced cycle that we will treat in [8][Theorem 2]. It is believed
(but there is no rigorous proof) that the ratio of these two partition functions
will remain positive if an only if the probabilistic model without the forced open
cycle develops cycles with volume order length; or, if the forced open cycle does
not collapse to a straight line in the scaling limit, but is space weakly filling in
some sense. Thus it would be very desirable to have a proof of the existence
of long (volume order) cycles in any model of the type (2), but unfortunately
existing results [4, 5, 6] are restricted to cases where the model has an explicit,
tractable representation in Fourier space. Any attempt to get away from this very
restrictive situation has so far failed. In [7] a non-rigorous argument is made that
the study of models of non-spatial permutations with cycle weights may be useful,
and such models have received some attention recently [3, 9, 11]. Also, there is
very clear numerical evidence [20, 21, 2] for the existence of a regime with long
cycles. Nevertheless, the question remains unsolved.
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Further relations of spatial random permutations to quantum physics and other
interesting problems of mathematical physics exist. Here is not the place to de-
scribe them all in detail, but we should at least mention the important work of
Balint Toth on the ferromagnetic Heisenberg model and ensembles of mutually
self-avoiding walks [33], the random stirring models introduced by Harris [24] and
further analysed in [1, 31, 25], and some (speculative) connections to the theory of
Schramm-Löwner evolutions in two dimensions [2]. The latter work is interesting
in relation to the present paper because in it, the geometry of the forced cycle
between a and z was studied numerically. From the numerical evidence it was
not entirely clear whether for large α, the fractal dimension of the rescaled, forced
cycle would be strictly larger than one for all α > 0, or would be equal to one
above a critical value of α. The results of the present paper answer this question
at least for large enough α: the second option is true.

Another important connection is to the loop O(n) model, which has been in-
troduced in [17]. In this model a loop configuration ω is an undirected spanning
subgraph of a graph G such that every vertex of this subgraph has degree zero or
two. The weight of a loop configuration is proportional to e−αo(ω) nL(ω), where
o(ω) is the number of edges in ω, L(ω) is the number of loops and n is a positive
real. The case n = 0 corresponds formally to self-avoiding walk if one forces a
path in the system in addition to the loops. The case n = 1 corresponds to the
low-temperature representation of the Ising model. If viewed as an ensemble of
cycles, spatial random permutations are intimately related to the loop O(n) model
with n = 2, since each cycle of the permutation admits two possible orientations.
The two models would be equivalent if in spatial random permutations cycles of
length two were forbidden. On the hexagonal lattice, the loop O(n) model has
been conjectured to undergo a Kosterlitz-Thouless phase transition at the criti-

cal threshold log
(√

2 +
√
2− n

)
when n ≤ 2 [27]. This is compatible with our

general finding that on every vertex-transitive graph the critical threshold of spa-
tial random permutations, which corresponds more or less to the n = 2 case, is
strictly less than the critical threshold for the self-avoiding walk, corresponding
to the n = 0 case. Furthermore, it has been conjectured that only short cycles
are observed at all values of α when n > 2. This has been rigorously proved only
for n large enough in the article of Duminil-Copin, Peled, Samotij, and Spinka in
[16], who also provide details on the structure of the typical configurations and
provide evidence for the occurrence of a phase transition. Exploring the properties
of the model at low values of n is of great interest and entirely open. Most of the
proofs that we present in this paper, can be reproduced for the loop O(n) model
for all values of n and α large enough, without the restriction of considering the
hexagonal lattice.

Let us close this introduction by discussing the specific difficulties of the model
of spatial permutations, and the methods that we use to overcome them. The main
obstacle in the study of spatial random permutations is that we have no good es-
timates about the decay of correlations in the model. Put differently, whenever
we condition on having a certain cycle configuration within some even very small
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set of sites, we have no good tools to estimate how the law of cycles outside that
set is affected by such conditioning. This problem is most pronounced for small α,
where (alleged) long cycles carry correlations through the system. Such a difficulty
is not present in statistical mechanics models where independence between sites is
assumed, as for example in Bernoulli percolation, and it is overcome in Ising-type
models in the high-temperature regime by introducing a coupling that makes a
comparison with a subcritical percolation model (FK-percolation), implying ex-
ponential decay of correlations (Edward-Sokal coupling [19]). This coupling is not
available in our model. The main technical novelty of our paper is the method
of iterative sampling which can be used to prove exponential decay of correlations
for α large enough. In a nutshell, iterative sampling describes a way of sampling
a spatial random permutation essentially cycle by cycle. This allows to devise
coupling arguments: start sampling two random permutations from two different
configurations, in each step compare the space occupied by the cycles sampled up
to now, and decide based on that information where to sample next. Stop when
the shape of the occupied space is equal in both instances, and fill the remaining
space with the same randomly sampled permutation in both models. If this hap-
pens before a region A is reached, then everything in A is independent of the initial
conditions. The probability that this happens is dominated by the probability of
a certain Galton-Watson process to die out. The offspring distribution of that
Galton-Watson-process is in turn dominated by the cycle length distribution of
the random permutation. By using [8][Theorem 1], we infer that for large enough
α the method will work.

The proof of [8][Theorem 1] itself is rather short and does not use iterative
sampling. An intuition as to why the theorem is true is the following: in self-
avoiding walks the probability of a given walk is just proportional to a Boltzmann
weight with parameter α and energy proportional to its length. Instead, in ran-
dom permutations the energy of the walk under investigation is the same as in
the self-avoiding walk case, but there is an additional entropy cost that comes by
forcing all other cycles to be not connected to the vertices visited by such a given
walk. Having a good estimate of this entropy cost is not easy, as this depends not
only on the length of the walk, but also on its shape; we thus have to estimate
partition functions for different subgraphs of G, which is a task of high combina-
torial complexity. The estimates we do get are rather crude, but are uniform over
the shape of the cycle and good enough to prove the shift in the critical value,
α0 < log(µ).

For the proof of [8][Theorem 2], we extend the very general approach of Ornstein-
Zernike theory to the case of spatial random permutations on a cubic lattice. The
Ornstein-Zernike theory [29] gives a sharp asymptotic description of density corre-
lation functions in classical fluids away from the critical point. Although Ornstein
and Zernike examined only the classical fluid, it has since then been realized that
their conclusions should apply also to the two-point functions of many lattice
spin systems, as the Ising model [13], Bernoulli Percolation [14] and Self-Avoiding
Walks [10, 12]. In our case, we do not deal with a two-point function, but with the
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decay of the probability that the open cycle connecting the two opposite sides of
the box will ever leave a cylinder of radius f(n) = c

√
n(log n)

5
2 whose axis is the

straight line connecting the starting point to the other opposite box side. Although
the setting is a bit different, the approach of Ornstein-Zernike theory applies also
to our case, proving decay of this probability with n if α is large enough and c is
large enough depending on α.

We now describe the method for self-avoiding walks and then explain which
difficulties have to be overcome in order to extend it to spatial random permuta-
tions. Even though the self-avoiding walk has no Markov property, we can recover
some amount of independence by identifying so-called regeneration points, which
are points where the hyperplane perpendicular to z − a is crossed only once. One
can then show that these regeneration points are distributed like the steps of a
random walk which is biased in the direction of z − a. Then the central limit the-
orem leads us to the conclusion that these points are all contained in the cylinder
of radius

√
n with high probability. After that, one needs to prove that not only

these selected points, but the whole path is entirely contained in the cylinder with
high probability. This requires showing that long excursions between consecutive
regeneration points are too expensive in terms of energy. In order the entire ar-
gument to work, it is necessary to prove that the distance between regeneration
points is of much smaller order than the size of the box, giving that the whole path
presents many regeneration points with high probability. In self-avoiding walks,
this is proved by showing that the directed correlation function of walks with no
regeneration points has a strictly larger decay rate than the correlation function
with no such restriction. This property is referred to as mass-gap condition.

In random permutations, the existence of regeneration points is much more
difficult to prove. One reason is that, while the energy of the forced cycle is of
the order of its length, even for very large α the total energy of all the other
cycles combined is always of the order of the volume. So an argument along the
lines that a cycle with few regeneration points must be longer and thus unlikely
needs to isolate a sub-dominant contribution from the total energy of the system.
A second reason is that, if we do have a regeneration point for the open cycle,
independence of the future from the past is compromised by the existence of small
cycles that connect both of them. The first difficulty is overcome by using iterative
sampling and thus obtaining exponential decay of correlations. In a sense, one can
“ignore” what happens to the permutation far from the open cycle and consider
only the contribution from the sites which are not too far from the open cycle.
More specifically, in the fundamental lemma (see [8] we prove that with high
probability as n is large, the length of the open cycle till its last intersection with
the hyperplane having a distance L(n) from its starting point is not larger than
(1+δ)L(n) for a given δ > 0. In order this to hold true, L(n) must be taken larger
than K logn for a certain K > 0 large enough, which is necessary to compensate
the polynomial growth of the cardinality of the boundary, recovering independence
from the boundary.
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The second difficulty is overcome by introducing the notion of regeneration
interfaces. These are sets of sites which intersect the forced open cycle at the
regeneration point and split the lattice into disjoint regions whose boundaries are
not crossed by any cycle (see also Figure 1(b)). Using the domain Markov prop-
erty of spatial random permutations we then achieve the desired independence.
A regeneration point intersecting a regeneration interface is called regeneration
centre, and we want to show that all regeneration centres lie approximately on a
straight line with high probability, as n is large. While in the self-avoiding walks
regeneration points are distributed as the steps of a Markovian random walk, in
spatial permutations the situation is more complicated: while regeneration inter-
faces form a (set-valued) Markov chain, the sequence regeneration centres itself
does not have the Markov property. The argument that worked in the case of the
self-avoiding walks can however be saved when one requires the existence of regen-
eration interfaces with certain symmetry properties; this existence is guaranteed
by yet another (slightly different) variant of iterative sampling. For such symmet-
ric regeneration interfaces, the sequence of regeneration centres is a martingale,
and the result ultimately follows from Azuma’s inequality.

While the distance between regeneration points in self-avoiding walks is O(1),
the best we can prove is that in random permutations, the distance between re-
generation centres is at most of order O((log n)2). This is still good enough for
proving collapse to a straight line, but no longer good enough for convergence to a
Brownian Bridge in the appropriate scaling. Showing the O((log n)2)-statement is
done by comparing the partition functions of permutations with no regeneration
centres in a given set with the partition function of all permutations. We show
that the ratio between the two partition functions decays fast with the size of the
set, uniformly on the size of the box. In a sense, this property is equivalent to the
mass-gap condition for self-avoiding walks. We call this property mass-gap condi-
tion for spatial random permutations and we elaborate more on its connection to
self-avoiding walks in [8].
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Open problems about Abelian sandpiles

Antal A. Járai

1. Abelian sandpile model

Let G = (V ∪ {s}, E) be a finite connected graph, where the special vertex s is
called the sink. A sandpile is a collection of indistinguishable particles on the
non-sink vertices, usually denoted η : V → {0, 1, 2, . . .}. A sandpile is stable,
if η(x) < degG(x) for all x ∈ V . A toppling is the following operation: if
η(x) ≥ degG(x), then x can ‘fire’ (topple), and send one particle along each edge
of G incident with x. Any particles reaching the sink are lost. If more than
one toppling is possible, their order does not matter: given any sandpile η, if one
carries out topplings until no more topplings are possible, the same stable sandpile
η◦ is obtained, regardless of the order.

A Markov chain on the set of stable sandpiles is obtained in the following way:
at each step, pick a random vertex in V , add a particle there, and stabilize via
topplings. The set of topplings carried out in one step is called an ‘avalanche’.
We denote by νG the invariant distribution. See the surveys [3, 15, 5] for a lot of
further background.

2. Sandpile measures.

The ‘infinite volume limit’ of νG is well-understood. Let V1 ⊂ V2 ⊂ . . . be an
exhaustion of a locally finite, infinite graph G = (V,E). Consider Gn = (Vn ∪
{s}, En), where s is V \ Vn collapsed to a single vertex. It was shown in [8] that
if all components of the wired uniform spanning forest of G are one-ended, then
νGn

⇒ ν, where ν is called the sandpile measure on G. Let us pick a sample η
from ν. Let o ∈ V be a fixed vertex, and define the avalanche cluster as:

Av = Av(η) = {x ∈ V : x topples when a particle is added to η at o}.
Let us further assume now that G is vertex-transitive. The following is known
via a combination of results of [11, 6]. If G is transient, then avalanches are ν-
a.s. finite, that is: ν[|Av| < ∞] = 1. In fact, the total number of topplings in the
avalanche (counted with multiplicity) is also finite: ν[#topplings <∞] = 1.

Open Problem 1. Are avalanches ν-a.s. finite on Z2?

Background. The following identity is known as Dhar’s formula [2]:

(1) Eνn [#topplings at x if we add at o] = GVn
(o, x),

where GVn
is the Dirichlet Green’s function for the continuous-time simple random

walk in Vn (killed when it hits s). On transient graphs this remains finite as Vn ↑ V ,
but diverges on Z2 [1]. If one could show that on Z2 we have ν[#topplings at o <
∞] = 1, then Open Problem 1 would follow [1]. The main difficulty seems to be
to control multiple topplings. In contrast with (1), we have no convenient formula
for:

Eνn [(#topplings at x) (#topplings at y)]



Strongly Correlated Random Interacting Processes 227

or
Eνn [#topplings at x |x topples].

3. Toppling probability exponent

By analogy with other statistical physics models, it is natural to conjecture that

ν[x ∈ Av] ≈ 1

|x|d−2+η
, with η = η(d) ≥ 0.

It is known from [7] that η = 0 when d ≥ 5, and one expects a logarithmic
correction to this exponent in d = 4. There is numerical work in progress (joint
with M. Sun) that suggests η(2) ≈ 0.42 and η(3) ≈ 0.06. The following problem
concerns the scaling limit of the toppling probability.

Open Problem 2. Show that when d ≥ 5, there exists a function fd : (−1, 1)d →
(0,∞) such that for the sandpile on VL = [−L,L]d ∩ Zd we have

νL[x ∈ Av] ∼ |x|2−dfd(x/L), as L→ ∞,

uniformly in x, at least as long as x is bounded away from 0. Is there an analogue
in low dimensions?

4. Avalanche size

Several further questions about critical exponents are open in low dimensions.
Open Problem 3. What is the tail behaviour of ν[|Av| > t] on Zd, d ≥ 2? 1

5. Scaling limit of height correlations

Correlations between sites with no particles can be computed. It is shown in [12]
that on Z

d, d ≥ 2 one has

Covν
(
η(o) = 0; η(x) = 0

)
∼ −c(d) |x|−2d, as |x| → ∞.

In 2D [4] shows the following: let D ⊂ C be a bounded, smooth domain, and
consider the sandpile on D ∩ (εZ2) with invariant distribution νε. Consider the
‘height 0 field’, centred: hε(z) = 1η(z)=0 − νε[η(z) = 0], z ∈ D ∩ (εZ2). Then for
any distinct points z1, . . . , zk ∈ D we have

ε−2k
Eνε [h

ε(z1) · · ·hε(zk)] ε↓0−→ ΦD(z1, . . . , zk),

where the limiting correlation function ΦD is conformally covariant: if ϕ : D → D′

is conformal, then

ΦD′

(
ϕ(z1), . . . , ϕ(zk)

)
=

k∏

i=1

|ϕ′(zi)|2 ΦD(z1, . . . , zk).

When k = 2, one has the explicit formula:

ΦD(z1, z2) = (∂x1∂x2GD)
2
+ (∂x1∂y2GD)

2
+ (∂y1∂x2GD)

2
+ (∂y1∂y2GD)

2
,

1During the workshop, T. Hutchcroft informed us of a proof that when d ≥ 5, this probability
is of order t−1/2.
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where zj = xj + iyj and GD = GD(z1, z2) is the Dirichlet Green’s function for
Brownian motion. The function ΦD(z1, z2) formally equals the covariance of the

generalized field : |∇h|2 : where h is the Gaussian free field in D.
Open Problem 4. Does hε converge to : |∇h|2 : in a suitable space?
Regarding other heigh variables, [9] shows that on Z2 we have

(2) Covν
(
η(o) = 0; η(x) = i

)
∼ ai (log |x|) |x|−4, as |x| → ∞, i = 1, 2, 3.

They conjecture:

(3) Covν
(
η(o) = i; η(x) = j

)
∼ ai,j (log

2 |x|) |x|−4, as |x| → ∞, i, j = 1, 2, 3.

Open Problem 5. Prove the conjecture (3).
The following is some background for the above conjecture. Let p(i) = ν[η(o) =

i], i = 0, 1, 2, 3 (where d = 2). The value of p(0) is known from [12]. The work [14]
gave explicit expressions for p(i), i = 1, 2, 3 in terms of some singular integrals.
The result (2) is obtained by an extension of Priezzhev’s method. More recently,
[10] found a method to compute connection probabilities in groves, and this enables
to compute the p(i)’s as well as other finite dimensional marginals of ν. This is
based on a bijection between recurrent sandpiles and spanning trees [13].
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Phase transition in the loop O(n) model

Alexander Glazman

(joint work with Nick Crawford, Hugo Duminil-Copin, Ioan Manolescu, Ron
Peled, and Yinon Spinka)

The loop O(n) model is a model for a random collection of non-intersecting loops
on the hexagonal lattice, which is believed to be in the same universality class
as the spin O(n) model. It has been predicted by Nienhuis that for 0 ≤ n ≤ 2,
the loop O(n) model exhibits a phase transition at a critical parameter xc(n) =

1/
√
2 +

√
2− n. For 0 < n ≤ 2, the transition line has been further conjectured to

separate a regime with short loops when x < xc(n) from a regime with macroscopic
loops when x ≥ xc(n). Prior known results deal with either with the Ising model
(n = 1) [1, 11, 12] or with large enough n [6]; see [7] for a survey. In this talk we
state several new results partially confirming the Nienhuis’ conjecture.

In [5], we prove that for n ∈ [1, 2] and x = xc(n), the loop O(n) model exhibits
macroscopic loops. This is the first instance in which a loopO(n) model with n 6= 1
is shown to exhibit such behavior. Prior known results see [6] A main tool in the
proof is a new positive association (FKG) property shown to hold when n ≥ 1 and
0 < x ≤ 1√

n
. More precisely, we assign to each hexagon spin ±1 in such a way

that neighbouring hexagons get different signs if and only if they are separated
by an edge of the loop configuration. Then the FKG property states that any
two increasing (in terms of spins) events are positively correlated. This property
implies, using techniques recently developed for the random-cluster model, the
following dichotomy: either long loops are exponentially unlikely or the origin is
surrounded by loops at any scale (box-crossing property). We develop a ‘domain
gluing’ technique which allows us to employ Smirnov’s parafermionic observable
to rule out the first alternative when n ∈ [1, 2] and x = xc(n).

In [4], we consider the case n = 2 and x = 1. This model is in direct corre-
spondence with the uniform distribution on Lipschitz functions on the triangular
lattice, i.e. all integer-valued functions which differ by 0 or 1 on any two adjacent
vertices. We show that the loop O(2) model at x = 1 exhibits infinitely many loops
going around the origin. In particular, this implies that the variance of a uniformly
distributed random Lipschitz function on the triangular lattice is infinite. Prior
known results establish flat behaviour in higher dimension [8], on trees [9], and
on expanders [10]. Thus, we provide the first instance in which a uniformly dis-
tributed Lipschitz function was shown to exhibit a rough behaviour. A main tool
in the proof is an FKG property that is different from the one stated above. First
one needs to colour loops in red and blue independently with equal probability.
The colouring of loops allows to view the loop O(2) model with x = 1 as coupling
of two percolation configurations, and it turns out that marginal measure on each
of them is positively associated. Studying each of these percolation configurations
independently and using the XOR operation we establish existence of macroscopic
loops, i.e. level lines in the original setting.
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In [3], we show that the loop O(n) model in the regime of exponential decay
when n > 1 and x < 1√

3
, and exhibits loops of macroscopic length when n = 1

and x ∈ (1,
√
3]. The proof of the exponential decay is based on developing in n

and comparing the loop O(n) model with n > 1 to the loop O(1) model, i.e. Ising
model, where this statement is known. The proof of the existence of long loops in
the Ising model (n = 1) when x ∈ (1,

√
3] is based on the Edwards-Sokal coupling

and the XOR argument. Note that independentaly it was shown [2] that the anti-
ferromagnetic Ising model (n = 1, x > 1) exhibits macroscopic domain walls, i.e.
loops in the loop O(1) representation, when x ∈ (1, 1 + ǫ) for ε small enough.
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Mallows permutations: stable matchings and scaling

Omer Angel

(joint work with Alexander Holroyd, Thomas Hutchcroft, Avi Levy)

Mallows permutations. The Mallows measure defined in [7], denoted Malnq on
permutations of {1, . . . , n} with parameter q ∈ [0, 1] is the probability measure
that assigns to each permutation σ ∈ Sn a probability proportional to qinv(σ),
where inv(σ) is the inversion number of σ, given by

inv(σ) = #
{
(i, j) : i < j and σ(i) > σ(j)

}
.

More generally, define the Mallows measure MalIq on permutations of a general
finite interval I ⊆ Z by shifting the indices. The Mallows measure was extended to
permutations of infinite intervals by Gnedin and Olshanski [5, 6], who showed that
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for q ∈ [0, 1), the measures Mal[−n,n]
q converge weakly (pointwise) to a probability

measure MalZq on permutations of Z. We call this limit the Mallows measure on
permutations of Z with parameter q. They Mallows permutation of Z, together
with its compositions with shifts, are the only Gibbs measures on permutations
of Z with respect to the Hamiltonian H(σ) = inv(σ) and inverse temperature
β = − log q, and are also the stationary measures of the multi-type asymmetric
simple exclusion process.
Mallows as stable matchings. In [1], we show that the Mallows measure on per-
mutations of a finite I ⊂ Z arises as the law of the unique Gale-Shapley stable
matching (see [3]) of the random bipartite graph conditioned to be perfect, where
preferences arise from a total ordering of the vertices but are restricted to the
(random) edges of the graph. We extend this correspondence to infinite inter-
vals, for which the situation is more intricate. We prove that almost surely every
stable matching of the random bipartite graph obtained by performing Bernoulli
percolation on the complete bipartite graph KZ,Z falls into one of two classes: a
countable family (σn)n∈Z of tame stable matchings, in which the length of the
longest edge crossing k is O(log |k|) as k → ±∞, and an uncountable family of
wild stable matchings, in which this length is expΩ(k) as k → +∞. The tame
stable matching σn has the law of the Mallows permutation of Z composed with
the shift k 7→ k + n. The permutation σn+1 dominates σn pointwise, and the two
permutations are related by a shift along a random strictly increasing sequence.
Scaling of Mallows cycles. In a future paper, we study the scaling limit of the
cycles of the Mallows permutation of Z, as q → 1. Let q = 1 − ε. It was shown
by Gladkich and Peled [4] that the cycle of 0 typically has length and diameter of
order ε2. Associate to each cycle C a measure on R defined by

µC := ε2
∑

n∈C

δε2n,

so that the sum of the measures over all cycles converge to Lebesgue measure.
We prove that the measure of the cycle containing 0 (or any other n) converges
in law to some random measure with continuous Radon-Nikodym derivative with
respect to Lebesgue. Moreover, for each t ∈ R, the densities of the measures at t
give a partition Xt of unity with Poisson-Dirichelet law. Finally, we characterize
the evolution of the partitions Xt as a special case of the Ethier-Kurtz diffusion
arizing in population dynamics [2]. Our arguments extend to a number of other
permutation models, suggesting that the same large scale cycle structure appears
in a large universality class of permutations.
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Spread of a rumor via a Lipschitz surface on percolation

Peter Gracar

(joint work with Alexandre Stauffer)

Start with a Poisson point process of particles on the d-dimensional square lattice
Zd. Assume that there is an infected particle at the origin at time 0. The other
particles are initially uninfected, but get infected whenever they occupy the same
site as an infected particle. In [6] Kesten and Sidoravicius showed that although
individual particles have no drift, the spread of the infection experiences a drift.
In order to see this, we track a distinguished particle starting with the initially
infected particle. Then, whenever the distinguished particle shares a site with
other infected particles, with probability larger than 1

2d at least one of the particles
jumps in a given direction, thereby becoming the distinguished particle. In their
proof, they develop an intricate multi-scale argument to show that having more
than one particle at the same site as the distinguished particle happens often
enough over time, hence establishing the positive speed of spread of the infection.

The challenge in this setup comes from the heavily dependent structure of the
model. Though particles move independently of one another, dependencies do
arise over time. For example, if a ball of radius R centered at some vertex x of the
graph turns out to have no particles at time 0, then the ball B(x,R/2) of radius
R/2 centered at x, will continue to be empty of particles up to time R2, with
positive probability. This means that the probability that the (d+1)-dimensional,
space-time cylinder B(x,R/2)× [0, R2] has no particle is at least exp{−cRd} for
some constant c, which is just a stretched exponential in the volume of the cylinder.
On the other hand, one expects that, after time t≫ R2, the set of particles inside
the ball will become “close” to stationarity.

Multi-scale constructions are often used to deal with this kind of dependences,
such as in the case of interlacements [10], activated random walks [8] and other
questions in the above interacting particle system [6, 7, 9]. The main downside
of these approaches is that they are always tailored specifically to the problem at
hand and can’t be easily modified or extended to related problems.

Our research focus has been to develop a general framework that is more appli-
cable and robust than past results, allowing us to show several results with only
minor changes.
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1. Lipschitz surface and multi-scale percolation

Consider again the d-dimensional square lattice Zd with a Poisson point process
of particles at time 0, which move as independent simple random walks. Tesselate
space (the square lattice) into cubes and time into intervals, and index the resulting
pairs of cubes and intervals by (i, τ) ∈ Zd × Z. Then, we show in [3] that, given a
local event E(i, τ) that depends only on the random walks inside the space-time
cell (i, τ) and whose probability of occurrence is close enough to 1, there exists a
two-sided Lipschitz surface (see Figure 1 for an example in 3 dimensions) of space-
time cells where this event holds. Furthermore, we give the tail probability for
the height of this surface at a given point, as well as several geometric properties,
including the fact that the surface separates the origin from infinity and that the
surface gives several percolation properties for the cells in it.

Figure 1. Two-sided Lips-
chitz surface on Z3

For an illustration of the ap-
plicability of this result to the
spread of infection problem, de-
fine E(i, τ) to be the event that
if there is an infected particle in
the cube indexed by i at the be-
ginning of the time interval in-
dexed by τ , this particle first in-
fects a large number of other par-
ticles, which then in term move
to the neighboring cubes by the
end of the time interval τ . Then,
we have that once the infection
reaches the surface (which hap-
pens a.s. in finite time since the
surface separates the origin from infinity), the infection spreads throughout the
cells of the surface. As a consequence, we obtain that the infection spreads with
positive speed through the surface.

This result is robust in the sense that it holds for any d ≥ 2 and it can be easily
modified to show positive speed of infection also for the case of infection with
recovery. Furthermore, we show in [3] that the Lipschitz surface exists also when
the square lattice is equipped with uniformly elliptic conductances (non-negative
weights on the edges) and the particles jump to nearest-neighbors with probability
proportional to these conductances.

2. Mixing of particles on a conductance graph

A key challenge of the framework is to control the dependences that arise over time.
We do this via a local mixing argument, which is the main result of [4]. Consider
a cube QK of side-length K and a time interval of length ∆. If the particles are
spread around the cube in a sufficiently nice manner, one can quickly recover a
stationary Poisson point process in the core of the cube. More precisely, let µx,y be
the conductance over the edge (x, y), and let µx =

∑
y∼x µx,y be the intensity of
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the Poisson point process of particles at x. Fix ǫ ∈ (0, 1) and tessellate the cubeQK

into subcubes (Ti)i of side length ℓ < K. Then, if each subcube Ti contains at least
λ0
∑

y∈Ti
µy particles for some constant λ0, and if ∆ ≥ cℓ2ǫ−c, the particles inside

QK that are at least cℓ away from the boundary of QK stochastically dominate a
Poisson point process of intensity measure λ0(1−ǫ)µx. This occurs with probability
at least

1−
∑

y∈QK

exp{−Cλ0µyǫ
2∆d/2}.

Since particles inside the subcubes Ti can be distributed in an arbitrary fashion,
this allows us to recover independence after letting particles move for large enough
time. We do this by showing that such a local mixing result can be achieved
whenever the conductances allow us to obtain the so-called Parabolic Harnack
Inequality, as derived for example in [1, 2].

3. Further directions and motivation

In [4], we already show that using the local mixing result and the Lipschitz surface
from [3] we can prove a positive speed result also for the case of infection with
recovery. It is also easy to do a similar construction if we replace the graph G
with an environment where a LCLT holds, such as the case of Brownian motions
on Rd.

It is however not clear if the Lipschitz surface construction can be applied to
percolation clusters or other non-uniformly elliptic settings. The main problem is
that there will be regions in space (regardless of time) which are atypically bad
for whatever event one wishes to consider. This causes that region to be bad at
all times, producing a percolation setting with infinite dependences. A specific
example of this was studied in [5] for cylinders’ percolation. Additionally, one
could look at whether the approach works for random environments that change
over time.
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Singular scaling limits in a planar random growth model

Amanda Turner

(joint work with Alan Sola, Fredrik Viklund)

Planar random growth processes occur widely in the physical world. Examples
include diffusion-limited aggregation (DLA) for mineral deposition and the Eden
model for biological cell growth. One of the curious features of these models is
that although the models are constructed in an isotropic way, scaling limits appear
to be anisotropic. In this talk, we construct a family of models in which randomly
growing clusters can be represented as compositions of conformal mappings. We
are able to show rigorously that for certain parameter choices, the scaling limits
are anisotropic and we obtain shape theorems in this case. This contrasts with
earlier work on related growth models in which the scaling limits are shown to be
growing disks [5, 2].

Clusters of particles can be represented using compositions of conformal map-
pings as follows. Let c > 0, and let fc denote the unique conformal map

fc : ∆ = {z ∈ C : |z| > 1} → D1 = ∆ \ (1, 1 + d]

having fc(z) = ecz + O(1) at infinity, and sending the exterior disk ∆ to the
complement of the closed unit disk with a slit of length d = d(c) attached at the
point 1. The capacity increment c and the length d of the slit satisfy

(1) ec = 1 +
d2

4(1 + d)
;

in particular, d ≍ c1/2 as c → 0. In terms of aggregation, the closed unit disk can
be viewed as a seed, while the slit represents an attached particle. Typically, we
think of the particle as being small compared to the seed.

A general two-parameter framework to model random or deterministic aggre-
gation, based on conformal maps, is given by the following construction. Pick
a sequence {θk}∞n=1 in [−π, π), and let {dk}∞k=1, or, equivalently, {ck}∞k=1, be a
sequence of non-negative numbers connected via (1). From the two numerical
sequences {θk} and {ck}, we obtain a sequence {fk}∞k=1 of rotated and rescaled
conformal maps, referred to as building blocks, via

fk(z) = eiθkfck(e
−iθkz).

Finally, we set

(2) Φn(z) = f1 ◦ · · · ◦ fn(z), n = 1, 2, . . . .
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Each Φn is itself a conformal map sending the exterior disk onto the complement
of a compact set Kn ⊂ C, that is,

Φn : ∆ → C \Kn.

The sets {Kn}∞n=1 are called clusters. They satisfy Kn−1 ⊂ Kn, and model a
growing two-dimensional aggregate formed of n particles.

We introduce the Aggregate Loewner evolution model, abbreviated ALE(α, η),
with parameters α ∈ R and η ∈ R. In ALE(α, η), conformal maps Φn are defined
as in (2) as follows. Let θ1 be uniform in [0, 2π), and, for k = 2, 3, . . ., let

θk ∝ |Φ′
k−1(e

σ+iθ)|−ηdθ∫
T
|Φ′

k−1(e
σ+it)|ηdt .

Here, σ > 0 is a regularization parameter, which ensures that the angle distri-
butions are well defined even though Φ′

k−1 has zeros and singularities on T. The
parameter σ is allowed to depend on the basic capacity parameter c.

Next, we define a sequence of capacity increments for k = 2, 3, . . . by taking

ck =
c

|Φ′
k−1(e

σ̃+iθk)|α/2

where σ̃ is another regularization parameter. The ALE(α, 0) model (with σ̃ = 0)
is the same model as the Hastings-Levitov HL(α) model [1], and in particular
ALE(0, 0) coincides with the HL(0) model studied in depth in [5]. When α = 2,
the model coincides with the dielectric breakdown model (DBM) of Mathiesen
and Jensen [4]. When α = 0, the growth process is reminiscent of the Quantum
Loewner Evolution (QLE) of Miller and Sheffield [3] but without quantum gravity,
that is, with γ = 0, and with SLE curves replaced by straight slits.

Clusters that are formed by successively composing slit maps come with a nat-
ural notion of ancestry for their constituent particles. We say that a particle j has
parent 0 if it attaches directly to the unit disk. We say that the particle j has
parent k if the jth particle is directly attached to the kth particle. In the ALE(0, η)
model, each successive particle chooses its attachment point on the cluster accord-
ing to the relative density of harmonic measure (as seen from infinity) raised to
the power η. As the highest concentration of harmonic measure occurs at the tips
of slits, intuitively one would expect that for sufficiently large values of η each
particle is likely to attach near the tip of the previous particle. We show that this
indeed happens, and we identify the values of η for which the above event occurs
with high probability in the limit as c → 0. Figure 1 displays ALE(0, η) clusters
for different values of η.

Define the event

ΩN = {Particle j has parent j − 1 for all j = 1, . . . , N}

in which there is a simple ancestral line whereby each particle is attached to the
previous particle. Set n(t) = ⌊tc−1⌋. Our main result states that if N = n(T ) for
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(a) ALE(−1.0) (b) ALE(0.0)

(c) ALE(1.0) (d) ALE(1.5)

(e) ALE(2.0) (f) ALE(4.0)

Figure 1. ALE clusters with c = 10−4, σ = c2, and n = 10, 000.

some fixed T > 0, then

lim
c→0

P(ΩN ) = 1 if η > 1

lim sup
c→0

P(ΩN ) < 1 if η = 1,
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provided σ is small enough. When η > 1, we characterise how fast one must let
σ → 0 as c → 0 in order for P(ΩN ) → 1. We show that when this happens, the
cluster Kn(t) converges in the Hausdorff topology to a slit of capacity t at position

eiθ1 .
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Quenched CLT for random walk in doubly stochastic random
environment

Bálint Tóth

Let (Ω,F , π, τz : z ∈ Zd) be a probability space with an ergodic Zd-action. Denote
by E := {k ∈ Zd : |k| = 1} the set of possible steps of a nearest-neighbour walk on
Zd, and let pk : Ω → [0, s∗], k ∈ E , be bounded measurable functions. These will
be the jump rates of the RWRE considered (see (2) below) and assume they are
doubly stochastic,

∑

k∈E
pk(ω) =

∑

k∈E
p−k(τkω).(1)

Given these, define the continuous time nearest neighbour random walk t 7→
X(t) ∈ Zd as a Markov process on Zd, with X(0) = 0 and conditional jump
rates

Pω

(
X(t+ dt) = x+ k

∣∣ X(t) = x
)
= pk(τxω)dt,(2)

where the subscript ω denotes that the random walk X(t) is a Markov process on
Zd conditionally, with fixed ω ∈ Ω, sampled according to π. Pω (·), respectively,
P (·) :=

∫
Ω
Pω (·) dπ(ω) will denote quenched, respectively, annealed probability.

Due to double stochasticity (1) the annealed set-up is stationary and ergodic in
time: the process of the environment as seen from the position of the random
walker

η(t) := τX(t)ω(3)

is a stationary and ergodic Markov process on (Ω, π) and, consequently, the random
walk t 7→ X(t) will have stationary and ergodic annealed increments.
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The local quenched drift of the random walk is

Eω

(
dX(t)

∣∣ X(t) = x
)
=
∑

k∈E
kpk(τxω)dt =: ϕ(τxω)dt.(4)

Beside double stochasticity (1) we assume that the jump rates are uniformly
elliptic (5) and the walk doesn’t have an overall drift (6):

sk(ω) ≥ s∗, π-a.s.,(5)
∫

Ω

vk(ω) dπ(ω) = 0.(6)

Note that the bistochasticity condition (1) is equivalent to assuming that the local
drift field (4) is divergence-free. The notorious H−1-condition plays a key role in
diffusive scaling limits. Denote for i, j = 1, . . . , d, x ∈ Zd, p ∈ [−π, π)d,

Cij(x) :=

∫

Ω

ϕi(ω)ϕj(τxω)dπ(ω), Ĉij(p) :=
∑

x∈Zd

e
√−1x·pCij(x).(7)

The H−1-condition is the following:

∫

[−π,π)d




d∑

j=1

(1− cos pj)




−1
d∑

i=1

Ĉii(p) dp <∞.(8)

This is an infrared bound on the correlations of the drift field, x 7→ ϕ(τxω) ∈ Rd.
It implies diffusive upper bound on the annealed variance of the walk and turns
out to be a natural sufficient condition for the diffusive scaling limit (that is, CLT
for the annealed walk).

The main result of [6] is the following central limit theorem for the displace-
ment of the random walker – valid in probability with respect to the environment
distribution.

Theorem 1. Conditions (1), (5), (8) are assumed. The asymptotic annealed
covariance matrix

(σ2)ij := lim
t→∞

t−1E (Xi(t)Xj(t))(9)

exists, and it is finite and non-degenerate. For any bounded and continuous func-
tion f : Rd → R,

lim
T→∞

∫

Ω

∣∣∣∣∣Eω

(
f(T−1/2X(T ))

)
−
∫

Rd

e−
|y|2

2

(2π)
d
2

f(σ−1y)dy

∣∣∣∣∣ dπ(ω) = 0.(10)

Weak convergence in the sense of (10) of all finite dimensional marginal dis-

tributions of t 7→ T− 1
2X(T t), as T → ∞, to those of a d-dimensional Brownian

motion with covariance σ2 is established. The proof is based on a martingale ap-
proximation a la Kipnis-Varadhan. However, the various well-established sector
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conditions do not apply. We rely on the functional-analytic technique, worked out
in [2], proving that the formally defined operator

B := (L+ L∗)−1/2 (L− L∗) (L+ L∗)−1/2 ,(11)

where L is the infinitesimal generator of the environment process (3), does make
sense as a proper, densely defined and closed skew-self-adjoint operator, on the
Hilbert space L2(Ω, π).

The H−1-condition (8) is equivalent to square stationarity and integrability
of the stream tensor which defines – defined terms of Helmholtz’s theorem – by
the divergence-free drift-field. Assuming slightly stronger integrability condition –
L2+ε rather than merely L2 – on the stream tensor, in [9] we prove the following
quenched CLT. See [6], [9], [10] for its precise details.

Theorem 2. Conditions (1), (5), (8), and the stronger integrability condition
hinted at are assumed. For any bounded continuous function f : Rd → R,

lim
T→∞

Eω

(
f(T−1/2X(T ))

)
=

∫

Rd

e−
|y|2

2

(2π)
d
2

f(σ−1y)dy, π-a.s.

with the non-degenerate covariance matrix σ2 given in (9).

As in the case of Theorem 1, the weak convergence of all finite dimensional
distributions follows. The proof consists of three major steps:

(1) Proof of quenched tightness of the scaled displacement t−1/2X(t), as t →
∞. This step relies on an extension of Nash’s celebrated moment bounds
to non-selfadjoint context with unbounded coefficients

(2) Construction of the harmonic coordinates for the walk. This is done by
solving an equation in L2(Ω, π), relying on the functional analytic details
of (11) in [6].

(3) Efficient estimate of the discrepancy between the actual position of the
walker and the approximating harmonic coordinates.

For detailed background and context of these results see the historical comments
in [3] and [10]. Here we only mention that the problem and some of the main ideas
date back to the ground-breaking works (listed in chronological order) [4], [8], [7],
[5]. Various versions of the CLT-s in Theorems 1, 2 under much stronger conditions
have been earlier established: In [1] quenched CLT is proved under the condition
of L∞ stream tensor. In [3] annealed CLT is proved assuming Lmax{2+ε,d} stream
tensor.
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Eigenvector correlations in the complex Ginibre ensemble

Nick Crawford

(joint work with Ron Rosenthal)

For N ∈ N, letMN = (Mij)
N
i,j=1 denote a random N ×N matrix chosen according

to the Ginibre ensemble. That is, MN is an N ×N matrix with complex entries
Mij , where (Mij)i,j≥1 are independent complex Gaussian random variables with
mean 0 and variance 1/N . Let us denote the probability measure of such a complex
Gaussian variable by κN

κN (dz) = π−1 exp(−N |z|2)Nd2z, ∀z ∈ C ,

and by P the joint law of the random variables (Mij)i,j≥1.
With P-probability 1, the matrixMN is diagonalizable and has N distinct eigen-

values, denoted (λi)
N
i=1. The statistical behavior of eigenvalues is well understood

in the more general setting of non-Hermitian random matrices with i.i.d. complex
entries under modest analytic assumptions on the distribution of entries: The
spectrum (and the k-point distribution) of MN converges in P-probability (and
also almost surely), in the limit N → ∞, to the uniform measure on the unit disc
D1 := {z ∈ C : |z| < 1} ⊂ C (resp. Dk

1), see [8, 9, 1, 21, 19, 12].
Since the matrix MN is generically non-Hermitian with respect to the natural

inner product on CN , one can associate to (λi)
N
i=1 two sets of bases of eigenvectors

for CN , a basis of ‘right’ eigenvectors (ri)
n
i=1 and a basis of ‘left’ eigenvectors

(li)
N
i=1. In the natural coordinate system definingMN , the ri’s are column vectors

and MNri = λiri while the li’s are row vectors and liMN = λili. Given the ri’s,
the li’s are defined uniquely by the normalizations

(1) li · rj = δij ,
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Unlike what transpires in the Hermitian setting, the eigenvectors ri are strongly
correlated with the eigenvalues λi. This has a number of interesting consequences.
For example, there is no simple description for the analogue of Dyson’s Brownian
motion of the Ginibre ensemble, since one has to track the evolution of both
eigenvalues and eigenvectors.

In this talk, we report on recent inquiries into the geometry of the eigenbases
(ri)

N
i=1 and (li)

N
i=1. We shall provide further motivation for this below but, for

now, let us simply say that we find related questions intrinsically interesting: What
are the typical angles between distinct eigenvectors? What is the volume of the
parallelepiped determined by the eigenvectors corresponding to eigenvalues near
the deterministic parameters ν1, · · · νℓ for some fixed ℓ ∈ N as N → ∞? How does
the minimal angle between eigenvectors behave as a function of N?

For a finite set A ⊂ N denote by SA the permutation group on A, and de-
fine S =

⊎
A⊂N|A|<∞ SA. Here,

⊎
denote the disjoint union of these collections

of permutations. That is, in this definition we do not identify permutations
which have the same fixed points, so the cycle (1, 2, 3) ∈ S[3] is not the same
as (1, 2, 3)(4) ∈ S[4]. For σ ∈ S we denote by V (σ) the set of vertices in its domain
(its length) and by |σ| the number of cyclic permutation it is composed of.

For σ ∈ S, let Iσ = IN
σ be the collection of tuples indexed by V (σ) and taking

values in N. Then for σ ∈ S and u,v ∈ D
V (σ)
1 , set

(2) ρ̂N,ε(σ;u,v) := ε−4|V (σ)|N−|σ| ∑

I,J∈Iσ

φε(‖u− λI‖∞)φε(‖v− λJ‖∞)×
∏

j∈V (σ)

(lJ
σ−1(j)

· l†Ij )(r
†
Ij
· rJj

) ,

For m ∈ N and u,v ∈ Dm
1 define

Dist(u,v) = Dist(u,v; ∂D1)

:= min
α,β∈[m]

{|uα − vβ |} ∧ min
α,β∈[m], α6=β

{|uα − uβ|, |vα − vβ |}

∧ min
α∈[m]

{1− |uα|, 1− |vα|} .

Our first theorem is a factorization of this correlation function over the loops of σ
in the macroscopic scale of separation.

Theorem 1. For every σ ∈ S and every u, v ∈ D
V (σ)
1 such that Dist(u, v) > 0,

the limit ρ(σ;u, v) exists. Moreover, if σ = {Lk}rk=1 where Lk are the cycles of σ,
then

ρ(σ;u, v) =

r∏

k=1

ρ(Lk;u|V (Lk), v|V (Lk)).

The case ℓ = 1 was previously computed by Chalker and Mehlig [4], for which
they obtained the beautiful formula

ρ2(ν1, ν2) = − 1− ν1ν̄2
|ν1 − ν2|4

.



Strongly Correlated Random Interacting Processes 243

Chalker and Mehlig were motivated to compute this formula after considering
the following problem. LetMN andM ′

N be a pair of independent random matrices
distributed according to the Ginibre ensemble and interpolate from one to the other
via MN(θ) = cos(θ)MN + sin(θ)M ′

N . How do the eigenvalues λi(θ) vary with θ?
Note that for any fixed θ, the matrix MN (θ) has the same distribution as MN .
However, examining the velocities of eigenvalues, Chalker and Mehlig found that
E[|∂θλi|2] = 1− E[|λi|2]. Here the the length square of Qi in the Hilbert-Schmidt
norm naturally appears. It turns out that this length is asymptotic to N(1−|λi|2).
By way of comparison, for the (self adjoint) Gaussian Unitary Ensemble with the
same normalization on the matrix entries, it is known that E[∂θλ

2
i ] = O(1/N),

see [26]. This indicates a strong instability in the spectrum of a non-Hermitian
random matrix which cannot be captured by the typical studies of eigenvalues
alone and provides substantial motivation for our work.

Another point of view one might take, which makes the quantities we study
quite natural, is that Chalker and Mehlig computed the two point, or spin-spin,
correlation function of some implicitly defined statistical mechanical system. As is
well known, the eigenvalues of the Ginibre ensemble form a system of free fermions,
or, equivalently, a determinantal point process. In this interpretation, the asso-
ciated eigenvectors should not be forgotten as they provide an additional spin
structure for this system of fermions.

Let us next discuss the asymptotic behavior of cycle correlation functions. For
two cyclic loops σ, τ ∈ S such that V (σ) ⊂ V (τ), we say that σ is a sub-loop of
τ if the map τ ◦ σ−1 has at most one non-fixed point (as a map from V (σ) to
V (τ)). Any permutation τ ∈ S induces an orientation on V (τ). In particular, for
m ≥ 3 and α1, . . . , αm ∈ V (τ) one can check whether (α1, . . . , αm) belong to the
same cycle in τ and appear on it with the prescribed ordering. Given two disjoint
subloops L1 and L2 of a cyclic permutation τ , we say that they are crossing if
there exists α ∈ V (L1) and β ∈ V (L2) such that (α,L1(α), β,L2(β)) is not the
ordering of those vertices in τ . Otherwise we say that L1 and L2 are non-crossing.
There is a natural partial ordering on permutations E in S defined as follows. For
σ, τ ∈ S, say that σ E τ if V (σ) ⊂ V (τ), every loop of σ is a sub-loop of some
loop in τ and all pairs of loops of σ are non-crossing with respect to τ .
Let VA(v) be the Vandermonde determinant

∏
α,β∈A
α<β

(vβ − vα).

Theorem 2. There are two families of polynomials (Rσ,Lσ)σ∈S with Rσ and

Lσ being polynomials in the variables u,w ∈ D
V (σ)
1 such that for every finite set

A ⊂ N

ρ(LA;u,w) = VA(u)
−1

VA(v)
−1

∑

IAEσELA

RσLσ

∏

j∈A

ρ2(uj, vσ−1(j)) ,

where LA is a cylic permutation on A.

Hence as the notation of Theorem 2 suggests, in spite of the factorization stated
in Theorem 1, the two results are deeply intertwined.
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We finish this abstract by describing some structural properties the polynomials
satisfy. To this end let us introduce a matrixN, indexed by the elements of S, which
plays a crucial role in our paper. For σ, τ ∈ S we say that σ ≺ τ if V (σ) ⊂ V (τ),
every loop of σ is a subloop of τ and all but at most one of the loops of τ are also
loops in σ. Notice that σ ≺ τ implies σ E τ but the converse is not necessarily

true. Given σ, τ ∈ S such that σ ≺ τ define V̂nf(τ ◦ σ−1) to be the set of the
non-fixed points of τ ◦ σ−1 union with the set of points in V (τ) \ V (σ).

Then we define the functions n : S2 × C2 → C and h : S× C2 → C by

(3) n(σ, τ ;u,v) =
1

π

∫

D1

∏

α∈V̂nf (τ◦σ−1)

1

(ν − uα)

1

(ν − vσ−1(α))
d2ν

and

(4) h(σ;u,v) =
∑

α∈V (π)

h(uα, vσ−1(α)) ,

where for u, v ∈ D1, we define

h(u, v) =
1

π

∫

D1

1

(ν − u)(ν − v)
d2ν = log

( 1− vū

|u− v|2
)
.

Note that ∂u∂v̄h(u, v) = ρ2(u, v).
The matrix N ≡ N(u,v) is then defined by

(5) Nσ,τ =





hτ (u,v) if σ = τ

n(σ, τ ;u,v) if σ ≺ τ

0 otherwise

.

Note that N is upper triangular since � is a partial order � and therefore its
eigenvalues are the diagonal entries hτ (u,v). The component equations for the
eigenvectors of N can be written recursively. If lπ, respectively rπ, denote the left
(respectively right) eigenvectors, then

[hπ − hτ ]lπ(τ) =
∑

π�σ≺τ

lπ(σ)Nσ,τ , ∀π, τ ∈ S ,(6)

[hτ − hπ]rτ (π) =
∑

π≺σ�τ

Nπ,σrτ (σ), ∀π, τ ∈ S ,(7)

subject to the initial conditions lπ(π) = rπ(π) = 1 for all π ∈ S.
Our final result is then as follows.

Theorem 3. The polynomials R,L appearing in Theorem 2 are respectively

Rσ = VV (σ)(u)VV (σ)(v)rσ(∅), Lσ = VV (σ)(u)VV (σ)(v)lσ(LA) .

Moreover, for all σ E τ , both VV (σ)(u)VV (σ)(v)rτ (σ) and VV (σ)(u)VV (σ)(v)rσ(τ)
are polynomials in u, v which vanish whenever (ui, vi) = (uj , vj) for i 6= j.

Further results exploring the properties of the polynomials (Rσ,Lσ)σ∈S and the
algebraic/repsresentation theoretic significance of them appear in [5, 6].
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General Bootstrap Random Walks

Andrea Collevecchio

(joint work with Kais Hamza, Yunxuan Liu, Meng Shi & Ruth Williams)

Consider a symmetric simple random walkXn =
∑n

k=1 ξk, X0 = 0, where ξ1, ξ2, . . .
are independent and identically distributed random variables with P(ξ1 = ±1) =
1/2. It is easy to see that the sequence ηn =

∏n
k=1 ξk is made up of independent

and identically distributed random variables taking values ±1 with equal proba-
bility, and that Yn =

∑n
k=1 ηk, Y0 = 0, is also a symmetric simple random walk;

that is

(1) (Yn)n≥0
d
= (Xn)n≥0.

We refer to the process of constructing (Yn)n from (Xn)n as bootstrapping.
While (1) is immediately clear, what may be less understood is the behaviour

of the two-dimensional process Wn = (Xn, Yn).
In [2], we show that a suitably normalized processW converges weakly to a two-

dimensional Brownian motion. Two extensions are also discussed: a generalization
to the case of increments in a finite “alphabet” and to a multi-dimensional setting
that highlight a connection with cellular automata. This is further generalized
in [1] to the case of asymmetric simple random walks. Here, a suitably normal-
ized bootstrap random walk converges to correlated multi-dimensional Brownian
motion the covariance structure of which is given in an explicit way.

In this work we generalize this setting by only requiring that the ‘recycling’ be

(1) law-preserving: (ηn)n≥0
d
= (ξn)n≥0;

(2) non-anticipative: ηn is measurable with respect to σ(ξ1, . . . , ξn).

Let Xn(t) =
1√
n
X[nt], Yn(t) =

1√
n
Y[nt] and Wn(t) = (Xn(t),Yn(t)). We seek to

characterize all possible limits of Wn.
We start by observing that the sequence Wn is tight. This follows from the

basic fact that the product of 2 compact sets is compact. It follows that one can
always extract a convergent subsequence. So, even when a limit does not exist,
our objective is to identify all possible accumulation points. At this point in time,
this question remains open. In the following we give partial answers.

1. General bootstrapping

The first step is to identify all law-preserving and non-anticipative recyclings.
Let K(n) = P({1, . . . , n}) be the power set of {1, . . . , n}. For completeness,

we let K(0) = {∅}. We also introduce the following notation for (x1, . . . , xn) ∈
{−1,+1}n:

for K ∈ K(n) \ {∅}, x[K] = max
k∈K

xk and x[∅] = −1.
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Theorem 1. Let ηn = φn(ξ1, . . . , ξn), then (ηn)n
d
= (ξn)n if and only if for each

n and each K ∈ K(n− 1), there exists βn,K ∈ {0, 1} such that

(2) φn(x1, . . . , xn) =




∏

K∈K(n−1)

x
βn,K

[K]


xn.

Furthermore, for such functions

φn(x1, . . . , xn) =


1

2
(−1)|B(n)| − 1

2

∑

H∈P(B(n))

(−2)|H|x[〈H〉]


xn.

where B(n) = {K ∈ K(n− 1) : βn,K = 1} and for H = {K1, . . . ,Kh} ∈ P(B(n)),
〈H〉 = ⋃h

j=1Kj.

While these representations are not unique, they enable us to uncover sufficient
(and in fact close to being necessary) conditions for the limit to be Brownian.

2. Brownian limits

In this section, we focus on cases when Wn converges weakly to a two-dimensional
Brownian motion.

For any set of integers M , we let q(M) = P(ξ[M ] = −1) = 2−|M|.

Theorem 2. Suppose

(A) ρ = lim
n→∞

1

n

n∑

k=1

∑

H∈P(B(k))

(−2)|H|q(〈H〉) exists;

(B) lim
n→∞

1

n2

n∑

ℓ=1

n∑

k=1

∑

K∈P(B(k))

L∈P(B(ℓ))

(−2)|K|+|L|q(〈K〉 ∪ 〈L〉) = ρ2.

Then Wn converges weakly to a two-dimensional Brownian motion (possibly de-
generate) with correlation ρ.

Corollary 3. Suppose ηk =
(∏m

i=1 ξ[M(i)
k

]

)
ξk, where M

(i)
k ∈ K(k − 1), and

(A′) for any K ∈ K(m), γ(K) = limn→∞ q
(⋃

i∈K M
(i)
n

)
exists;

(B′) lim
n→∞

1

n

n∑

k=1

q

((
m⋃

i=1

M
(i)
k

)
∩
(

m⋃

i=1

M
(i)
n+1

))
= 1.

Then Wn converges weakly to a two-dimensional Brownian motion (possibly de-
generate) with correlation

∑
K∈K(m)(−2)|K|γ(K).

Corollary 4. If for each i, supn |M (i)
n | < +∞ and lim supnM

(i)
n = ∅, then (B′)

holds true.

We finish this section with a few examples.
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Example 5. (1) ηn = ξn. Wn converges weakly to a degenerate two-dimen-
sional Brownian motion (ρ = 1).

(2) ηn =
∏n

k=1 ξk. Wn converges weakly to an uncorrelated two-dimensional
Brownian motion (ρ = 0).

(3) ηn = ξn−1ξn. In this case ξn =
∏n

k=1 ηk and the setting is identical to
previous case.

(4) ηn = ξn−m . . . ξn−1ξn, for m fixed. Wn converges weakly to an uncorrelated
two-dimensional Brownian motion (ρ = 0).

(5) ηn = max(ξn−m . . . ξn−1)ξn, for m fixed. Wn converges weakly to a corre-
lated two-dimensional Brownian motion (ρ = 1− 2−m+1).

3. Non-Brownian limits

Are non-Brownian limits possible? The answer is yes and is given by the ’classical’
example ηn = sgn(Xn−1)ξn.

It is well-known that, for any bounded continuous f ,
∫ t

0 f(Xn(s−))dXn(s) con-

verges weakly to
∫ t

0 f(Bs)dBs. Here, we adapt this result to the case f(x) = sgn(x)
and show the following.

Theorem 6. For each t ≥ 0, Wn(t) converges weakly to
(
Bt,
∫ t

0
sgn(Bs)dBs

)
,

where Bt is a standard Brownian motion.

However, the two-dimensional process
(
Bt,
∫ t

0
sgn(Bs)dBs

)
is not a Brownian

motion as can be seen from computing the co-variation

(3)

〈
B,

∫ ·

0

sgn(Bs)dBs

〉

t

=

∫ t

0

sgn(Bs)ds 6= t.

This result is further generalized to the case of a general symmetric function.

Proposition 7. A function ψ : {−1, 1}n −→ {−1, 1} is symmetric if and only if
there exists a function Ψn such that

ψ(x1, . . . , xn) = Ψn(sn),

where sn =
∑n

k=1 xk.

Theorem 8. Suppose, for Ψ : Z −→ {−1, 1}, ηn = Ψ(Xn−1)ξn. For each t ≥ 0,

Wn(t) converges weakly to
(
Bt,
∫ t

0
Ψ(Bs)dBs

)
,
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