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Abstract. This workshop continued to foster the collaboration between re-
searchers working in analysis and probability, respectively. Some core areas,
in which this happens with high success, belong to the objectives of this
meeting: stochastic homogenization of various quantities in random media
and random operators, metastability in several particle models with stochas-
tic input that are triggered by physics reasonings, emergence of macroscopic
effects in large random structures like graphs or permutations. A main fea-
ture present was the exploration of the benefit of a high-level combination of
methods from both fields: analysis and probability.
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Introduction by the Organisers

Analysis and probability are fundamental parts of mathematics and have been in
contact since ever. In the 20th century, in both areas more and more specialised
methods and concepts have been developed in great depth. It was not easy for
either of the two to keep track with the developments in the other, or even to see
how they could influence and help each other and even push forward the other’s
evolution. Since a few decades, there is a desire to again increase the contact
between the two areas on the highest level. This workshop stands in a series of
several MFO workshops by now that do precisely that: it brings together people
from both fields, including those that cannot be clearly assigned to any of the two
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areas. The goal is to put together modern methods and ideas from both and use
them to create knowledge that is out of reach for each area alone. We think that
the preceding workshops have been increasingly instrumental in this sense, and
the current one was even more successful.

For achieving this high goal, one has to identify suitable research subjects. One
of the most fruitful ones is the area of stochastic homogenisation in the broadest
sense. Indeed, this is about random spatial structures (random media, random
equations, random operators, random processes in random media, ...) on a large
scale and the identification of their macroscopic behaviour in terms of a few char-
acteristic quantities. One of the most popular models is the random conductance
model and here random processes in this kind of medium, for which a number
of refined results were presented, like a quantification of the velocity in the cen-
tral limit theorem (Andres), local limit theorems in time-dependent variants of
the random conductance model (Slowik), Harnack inequalities and variants of
the central limit theorem (e.g., superdiffusive Lévy flight-type processes Bianchi)
and anomalies for less standard medium distributions (Deuschel, Kumagai,

Boukhadra), and the dichotomy between localised and homogenised behaviour
(Flegel). Furthermore, instead of a random proces in the random conductance
model (respectively in a space-continuous variant of it), also other fundamental ob-
jects were considered like the Poisson equation (Flegel, Piatnitski), or Laplace-
operator-driven energies in such medium (Neukamm), or random perturbations
of the ergodic theorem in random Hamilton-Jacobi equations (Cardaliaguet).
But also different approaches and aspects of geometric fine properties of random
media and also different types of random media have been studied, like fluctua-
tions of various scales in the Gaussian behaviour of more general observables in
large boxes for a general elliptic random field (Otto), or a random grid defined
by Voronoi tesselations of a random point cloud (Heida).

Another very fruitful research area that falls into our goals is the area of stochas-
tic particle systems that are inspired by physics reasoning. Here one of the main
tasks is to identify and to prove macroscopic effects emerging from microscopic
random input quantities and their interaction in various ways. Particular interest
receive models in which a positive percentage of the particles exhibit a very un-
usual behaviour like condensation or clumping (in static models), or a discrepancy
between long and short time-stretches in which drastically different behaviours
occur (in dynamic models). The first type falls into phenomena like phase tran-
sitions, and the second may be summarized by the term metastability. Here we
had a few inspiring presentations, for example by Dereich on condensation in
certain types of random graphs, and by Mörters on a kind of metastability in
a version of the contact process on a particular type of a random time-dependent
graph. Grosskinsky presented a macroscopic description of particle systems
with mutual repellence and attraction in terms of mean-field equations that ex-
hibit interesting phase transitions of condensation type. More classical, but very
deep and sophisticated to prove, metastability phenomena in particle dynamics of
Langevin-type were derived by Lelièvre, whose expansions employ a deep saddle
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point analysis. Giuliani reported on emergence of striped ground states in Ising
models with long range interactions, presenting work in which for the first time the
emergence of mesoscopic structures (stripes) in those models is proved rigorously.
Macroscopic shape results for a dynamic microscopic model, the Hastings-Levitov
model, were presented by Norris. Another dynamic model, the linear Boltzmann
equation, was analysed using gradient flows by Bertini.

A third area where probability and analysis naturally come together are models
coming from continuum and quantum physics. Often, the focus here is similar to
the one of the previous paragraph, namely to connect microscopic fundamental
models with macroscopic, observable phenomena. Sometimes, however, it is also
very useful and fruitful to analyse the macroscopic models directly. In quantum
mechanical models, a currently active research area is the stochastic representation
of quantum many body systems at positive temperature by probabilistic models.
Lees gave an introduction into several different loop models and presented some
results on phase transitions on trees. Adams presented the bosonic loop measure,
which is intimately connected to Bose-Einstein condensation. In many of these
measures, a prominent role is played by random permutations, whose probability
weight is a complicated function of the cycle structure and the geometry. While
treatment of such models is currently out of reach, some simpler models can be
analysed and yield interesting phenomena. Zeindler presented such a model
of permutations without macroscopic cycles. Mailler studied another combi-
natorial model, namely measure-valued Polya urns, and presented limit laws for
the colour distributions in such urns. Direct investigation of macroscopic models
was carried out by Souganidis on the long time behaviour of rough Hamilton-
Jacobi equations, by Schlichting who investigated a non-local equation related
to coarsening and nucleation, by Faggionato, who presented studies on peri-
odically driven Markov processes inspired by molecular motors in cells, and by
Patterson, who studied large deviations for reaction fluxes.

The workshop was visited by a well-picked mixture of about 50 probabilists and
analysts of various academic ages, from those finishing soon their PhD, via more
advanced postdocs, till well-known long-standing experts. The organisers chose to
give many of the participants the opportunity to present their results, and most
of the talks were for 45 minutes. In this way, a lot of current streamings could be
communicated, discussed and compared.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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André Schlichting (joint with Joseph G. Conlon)
A non-local Fokker-Planck equation related to nucleation and coarsening 370

Martin Slowik (joint with Alberto Chiarini)
Local limit theorem for random walks among time-dependent ergodic
degenerate weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373

Panagiotis E. Souganidis (joint with Pierre-Louis Lions)
Intermittent regularization and long-time behavior of Hamilton-Jacobi
equations with rough multiplicative time dependence and convex
Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376

Dirk Zeindler (joint with Volker Betz and Helge Schäfer)
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Abstracts

Loop measures for space-time random walks

Stefan Adams

(joint work with Quirin Vogel)

Recently ([1, 7]) Markovian Loop measures have become an active field in prob-
ability theory with its origin going back to Symanzik [9]. In this work [2] we
are going to investigate a novel setting of these loop measures, namely we con-
sider first loop soups with varying intensity µ ≤ 0 (chemical potential in physics
terms) and secondly we study Markovian loop measures on graphs with an addi-
tional “time” dimension, that is space-time random walks, their loop measures,
and Poisson loop processes. Interesting phenomena appear when the additional
coordinate of the space-time process is on a discrete torus with non-symmetric
jumping rates. The projection of these space-time random walk loop measures
onto the spacial dimensions are loop measures on the underlying graph, and in
the limiting regime of unbounded torus size these loop measures converge to the
so-called Bosonic loop measures. Via this space-time setting we provide a natural
probabilistic definition of Bosonic loop measures. These novel loop measures have
similarities with the Markovian loop measures only that they give weights to loops
of certain lengths, namely any length which is multiple of a given time horizon
β > 0 which serves as an additional parameter. The Bosonic loop measures not
only have the probabilistic motivation as outlined, a second major interest in these
objects stems from the fact that the total weight of the Bosonic loop measure for
a finite graph is exactly the logarithm of the grand-canonical partition function of
a non-interacting Bose gase on the finite graph in thermodynamic equilibrium at
inverse temperature β > 0 and chemical potential µ ≤ 0. The study on Markovian
loop measures has been outlined in the lecture notes [7] and [8] with more recent
developments in [6].
Setting We define loop measures for random walks on finite graphs. Let Λ ⊂
Zd be a finite set. We consider a random walk on Λ with killing, and we de-
note Q = (q(x, y))x,y∈Λ the generator matrix given by Q = λ(P − I), where

P = (p(x, y))x,y∈Λ is the transition matrix defined by p(x, y) = w(x,y)
λ(x) with

(w(x, y))x,y∈Λ being an irreducible matrix with non-negative symmetric entries
and normalising λ(x) = κ(x) +

∑

y∼xw(x, y), x ∈ Λ, with killing vector (κx)x∈Λ.
The space of loops is defined as the uncountable union

Γ :=
⋃

t>0

Γt .

For each ω ∈ Γ we denote the time horizon or the length of the loop ω by ℓ(ω) being
the unique t > 0 such that ω ∈ Γt. We study the following new loop measures
which are related to the well-known Markovian loop measures (see e.g. [7] for an
overview on Markovian loop measures).
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Let C ⊂ Γ be measurable, µ ≤ 0, and β > 0. The Markovian loop measure
MΛ,µ on Λ with chemical potential µ is defined as

(1) MΛ,µ[C] =
∑

x∈Λ

∫ ∞

0

etµ

t
P
t
x,x (C) dt =

∑

x∈Λ

∫ ∞

0

etβµ

t
P
βt
x,x (C) dt,

where P
t
x,y denotes the random walk bridge measure going from x to y with time

horizon [0, t]. The Bosonic loop measure MB
Λ,µ,β on Λ with chemical potential µ

and time horizon β is defined as

(2) MB
Λ,µ,β[C] =

∑

x∈Λ

∞
∑

j=1

eβjµ

j
P
jβ
x,x (C) .

The main focus in this work is the Bosonic loop measure MB
Λ,µ,β which is defined

in similar way to the Markovian loop measure ([7]) but differs in having support
only on loops with time horizons being a multiples of the given parameter β. The
Bosonic loop measures for simple random walks are linked to equilibrium quantum
statistical mechanics. The main idea and novelty of our study is to view these
measures as natural Markovian loop measures in a space-time structure where we
add an additional “time” torus to the given graph, i.e., the graph is Λ× TN with
a discrete torus TN of size N . The torus process is considered to be independent
from the spatial process on Λ, that is, the weights are

wN (x, τ ; y, σ) =











Nβ−1 if σ = τ + 1 mod N, x = y ,

w(x, y) if τ = σ,

0 otherwise,

x, y ∈ Λ, τ, σ ∈ TN . We first show that in the torus limit N → ∞ the spatial
projection of the space-time Markovian loop measure converges to the Bosonic loop
measure. Our main results then concern isomorphism theorems and generalised
Symanzik’s type formulae for moments of the occupation time fields. The major
challenges are the missing symmetry of the space-time random walk ruling out real
Gaussian discription of the occupation field. Taking the so-called torus limit, the
limiting procedure allows to represent quantum correlation functions as space-time
Green functions of the corresponding complex Gaussian measure. Thus we deliver
a purely probabilistic derivation of Bosonic loop measures and quantum correlation
functions. Interestingly, the occupation time distributions are given by complex
Gaussian measures which we apply only to functionals of the moduli of any field
component, henceforth not considering the inherent phase factors. However, we
think to analyse these complex measures in greater detail in the future to study
Bose-Einstein condensation phenomena and their possible connection to random
interlacements ([8]) and to general permanental processes ([6]). The Bosonic loop
measure and its Poisson loop process is a natural extension of random walk loop
soups, and it seems feasible to define Bosonic loop measures and soups also over
the continuum space Rd. In [2] we briefly outline which of our results would hold
in the so-called thermodynamic limit Λ ↑ Zd.
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Berry-Esseen Theorem for the Random Conductance Model

Sebastian Andres

(joint work with Stefan Neukamm)

Stochastic homogenization of elliptic equations in divergence form with random
coefficients started from the pioneering works of Kozlov [10] and Papanicolaou-
Varadhan [13]. They established a qualitative homogenization result, which (ad-
justed to a discrete setting) can be rephrased as follows. The unique bounded
solution uε to the elliptic finite difference equation

∇∗ω∇uε = ε2f(ε ·) on Z
d(1)

with ω describing stationary and ergodic, uniformly elliptic, random coefficients,
and f an appropriate right-hand side, e.g. f ∈ Cc(R

d) with zero mean, converges
after a rescaling to the solution u0 of the deterministic, elliptic equation

−∇ · ωhom∇u0 = f on R
d,

where ωhom denotes a deterministic coefficient matrix, the so-called homogenized
coefficients. Quantitative stochastic homogenization is concerned with finding the
rate of convergence of uε towards u0. Recently, in [6, 7, 5, 3] optimal error bounds
have been obtained in the uniformly elliptic case under strong mixing assumptions.

In probability theory, the model for the random walk in random environment
generated by the operator in (1) is known as the random conductance model. More
precisely, consider the Euclidean lattice Zd with d ≥ 2 and let Ed be the set of non
oriented nearest neighbour bonds, i.e. Ed = {e = {x, y} : x, y ∈ Zd, |x − y| = 1}.
The random environment is given by non-negative, stationary ergodic random
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variables (ωe, e ∈ Ed), defined on (Ω,P). We write ωxy = ω{x,y} = ωyx. Let

(Xt, t ≥ 0, Pω
x , x ∈ Zd) be the continuous time random walk on Zd, which jumps

according to the transitions P (x, y) = ωxy/
∑

y ωxy associated with the generator

Lωf(x) =
∑

y∼x

ωxy(f(y)− f(x)) = −∇∗ω∇f(x).

A key feature of this random walk is its reversibility with respect to the counting
measure. Since the law of the waiting times does depend on the location, X is
also called the variable speed random walk (VSRW). In the study of the random
conductance model the question whether an invariance principle holds has been
object of very active research, see the surveys [4, 11] and references therein. One
recent result for general ergodic environments is the following.

Theorem 1 (Quenched invariance principle [1]). Suppose d ≥ 2. Let (ωe)e∈Ed

be stationary ergodic and p, q ∈ (1,∞] be such that 1/p+ 1/q < 2/d and assume
that E

[

(ωe)
p
]

< ∞ and E
[

(ωe)
−q
]

< ∞ for any e ∈ Ed. Then, for P-a.e. ω,

the rescaled process X
(n)
t := 1

nXn2t converges (under Pω
0 ) in law to a Brownian

motion on Rd with a deterministic non-degenerate covariance matrix Σ2.

The invariance principle for X is closely related to homogenization of the asso-
ciated generator Lω ; in particular, the covariance matrix of the limiting process
and the homogenized coefficients are related by the identity Σ2 = 2ωhom. In view
of the quantified results in stochastic homogenization mentioned in the beginning,
our goal is to established a quantified version of the invariance principle in form
of a Berry Esseen theorem. For this purpose, following [6, 7, 5], we assume that P
satisfies a certain spectral gap estimate.

Assumption (Spectral Gap). Suppose P is stationary, and assume that there
exists ρ > 0 such that

E
[

(u− E[u])2
]

≤ 1

ρ

∑

e∈Ed

E

[

(

∂eu
)2
]

,(SG)

for any random field u ∈ L2(Ω). Here, the vertical derivative ∂eu is defined as

∂eu(ω) := lim sup
h→0

u(ω + hδe)− u(ω)

h
,

where δe : Ed → {0, 1} stands for the Dirac function satisfying δe(e) = 1 and
δe(e

′) = 0 if e′ 6= e.

Any stationary environment satisfying (SG) is ergodic. In a sense (SG) can be
interpreted as a quantified version of ergodicity.

Let now ξ ∈ Rd be fixed and set σ2
ξ := ξ · Σ2ξ. Then, the invariance principle

in Theorem 1 yields for P-a.e. ω,

lim
t→∞

Pω
0

[

ξ ·Xt ≤ σξx
√
t
]

= Φ(x),(2)
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where Φ(x) := (2π)−1/2
∫ x

−∞ e−u2/2 du denotes the distribution function of the
standard normal distribution. In our main result we quantify the speed of conver-
gence in (2). We write P0[·] =

∫

Ω P
ω
0 [·] dP(ω) for the annealed measure.

Theorem 2 (Berry-Esseen theorem [2]). Let d ≥ 3 and suppose that (SG) holds.
For any ε > 0 there exist exponents p, q ∈ (1,∞) such that, if E

[

(ωe)
p
]

< ∞ and

E
[

(ωe)
−q
]

<∞ for any e ∈ Ed, the following hold.

(i) There exists a constant c > 0 such that for all t ≥ 0,

sup
x∈R

∣

∣

∣P0

[

ξ ·Xt ≤ σξx
√
t
]

− Φ(x)
∣

∣

∣ ≤
{

c t−
1
10+ε if d = 3,

c t−
1
5+ε if d ≥ 4.

(ii) There exists a random variable X ∈ L1(P) such that if d = 3 for P-a.e. ω,
∫ ∞

0

(

sup
x∈R

∣

∣

∣Pω
0

[

ξ ·Xt ≤ σξx
√
t
]

− Φ(x)
∣

∣

∣

)5

(t+ 1)−
1
2−ε dt ≤ X (ω) < ∞

and if d ≥ 4 for P-a.e. ω,
∫ ∞

0

(

sup
x∈R

∣

∣

∣Pω
0

[

ξ ·Xt ≤ σξx
√
t
]

− Φ(x)
∣

∣

∣

)5

(t+ 1)−ε dt ≤ X (ω) < ∞.

In the case of uniformly elliptic i.i.d. conductances an annealed Berry-Esseen
theorem as in (i) has been proven in [12] for arbitrary dimension d ≥ 1 with rate
t−1/5 in d ≥ 3. Theorem 2 extends this result to unbounded and correlated random
conductances. To our knowledge (ii) is the first quenched Berry-Essen-type result
for the random conductance model.

The proof is based on the classical corrector approach by Kipnis-Varadhan, i.e.
the random walk is decomposed into a martingale part and a remainder term, and
we need to quantify both, the speed of convergence of the martingale part and the
smallness of the remainder. For the martingale part we use a general Berry-Esseen
bound for martingales established in [8] (cf. also [9]). This requires a result on
the speed of convergence of the opérateur carré du champ associated with Lω ,
for which we need to extend a variance decay estimate for the semigroup of the
process of the environment as seen from the particle into our degenerate setting.
Such a variance estimate, which plays a central role in quantitative stochastic
homogenization, has been established in [5] for uniformly elliptic conductances
satisfying (SG).

References

[1] S. Andres, J.-D. Deuschel, and M. Slowik. Invariance principle for the random conductance

model in a degenerate ergodic environment. Ann. Probab. 43, no. 4, 1866–1891 (2015).
[2] S. Andres, S. Neukamm. Berry-Esseen theorem and quantitative homogenization for

the random conductance model with degenerate conductances. Preprint, available at
arXiv:1706.09493.

[3] S. Armstrong, T. Kuusi, and J.-C. Mourrat. The additive structure of elliptic homogeniza-
tion. Invent. Math. 208, no. 3, 999–1154 (2017).

[4] M. Biskup. Recent progress on the random conductance model. Probab. Surv. 8, 294–373
(2011).



322 Oberwolfach Report 6/2018

[5] A. Gloria, S. Neukamm, and F. Otto. Quantification of ergodicity in stochastic homoge-
nization: optimal bounds via spectral gap on Glauber dynamics. Invent. Math., 199, no. 2,
455–515 (2015).

[6] A. Gloria and F. Otto. An optimal variance estimate in stochastic homogenization of discrete
elliptic equations. Ann. Probab. 39, no. 3, 779–856 (2011).

[7] A. Gloria and F. Otto. An optimal error estimate in stochastic homogenization of discrete
elliptic equations. Ann. Appl. Probab. 22, no. 1, 1–28 (2012).

[8] E. Haeusler. On the rate of convergence in the central limit theorem for martingales with
discrete and continuous time. Ann. Probab. 16, no. 1, 275–299 (1988).

[9] C. C. Heyde and B. M. Brown. On the departure from normality of a certain class of
martingales. Ann. Math. Statist. 41, 2161–2165 (1970).

[10] S. M. Kozlov. The averaging of random operators. Mat. Sb. (N.S.) 109 (151), no. 2, 188–202,
327, (1979).

[11] T. Kumagai. Random walks on disordered media and their scaling limits, volume 2101 of
Lecture Notes in Mathematics. Springer, Cham, 2014.

[12] J.-C. Mourrat. A quantitative central limit theorem for the random walk among random
conductances. Electron. J. Probab., 17:no. 97, 17, 2012.

[13] G. C. Papanicolaou and S. R. S. Varadhan. Boundary value problems with rapidly oscillating
random coefficients. In Random fields, Vol. I, II (Esztergom, 1979), volume 27 of Colloq.
Math. Soc. János Bolyai, pages 835–873. North-Holland, Amsterdam-New York, 1981.

A gradient flow approach to linear Boltzmann equations

Lorenzo Bertini

(joint work with Giada Basile, Dario Benedetto)

We consider linear Boltzmann equations of the form

(1) (∂t + b(v) · ∇x)f(t, x, v) =

∫

π(dv′)σ(v, v′)
[

f(t, x, v′)− f(t, x, v)
]

where x ∈ Td, the d-dimensional torus, π(dv) is a reference probability measure on
the velocity space V , b : V → Rd is the drift, σ(v, v′)π(dv′) is the scattering kernel
and f is the density of the one-particle distribution with respect to dxπ(dv). We
assume the detailed balance condition, i.e., σ(v, v′) = σ(v′, v). Examples of linear
Boltzmann equations of this form are the Lorentz gas [5], the evolution of a tagged
particle in a Newtonian system in thermal equilibrium [6], and the propagation of
lattice vibrations in insulating crystals [2].

Using the shorthand notation f = f(t, x, v), f ′ = f(t, x, v′), we set

ηf = ηf (t, x, v, v′) := σ(f − f ′) = σ(v, v′)
[

f(t, x, v)− f(t, x, v′)
]

and rewrite the linear Boltzmann equation (1) in the form
{

(

∂t + b(v) · ∇x

)

f(t, x, v) +
∫

π(dv′) η(t, x, v, v′) = 0

η = ηf

where η : [0, T ]× Td × V × V → R is antisymmetric with respect to the exchange
of velocities.
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Referring to [1] for the details, given a time interval [0, T ], we rewrite the identity
η = ηf as the following inequality that expresses the decay of the entropy along
the solutions to (1),

(2) H(f(T )) +

∫ T

0

dt E(f(t)) +R(f, η) ≤ H(f(0)).

Here H is the relative entropy with respect to dxπ(dv), i,e.,

H(f) :=

∫∫

dxπ(dv) f log f,

E is the Dirichlet form of the square root of f , i.e.,

E(f) :=
∫

dx

∫∫

π(dv)π(dv′)σ(v, v′)
[
√

f ′ −
√

f
]2
,

and the kinematic term R is defined by

R(f, η) :=

∫ T

0

dt

∫

dx

∫∫

π(dv)π(dv′)Ψσ(f, f
′; η)

in which σ = σ(v, v′) and

Ψκ(p, q; ξ) = ξarcsinh
ξ

2κ
√
pq

−
[

√

ξ2 + 4κ2pq − 2κ
√
pq
]

.

Both E and R can be expressed by variational formulae that imply their lower
semi-continuity and convexity on the set of density f satisfying the entropy bound
supt∈[0,T ]H(f(t)) ≤ ℓ, ℓ > 0. It is then straightforward to prove existence and

stability of the formulation (2). Uniqueness follows from the argument in [4].

The entropy dissipation formulation (2) of (1) allows to discuss the diffusive
limit of linear Boltzmann equation, see e.g., [3], in the framework of the gradi-
ent flow formulation of the heat equation; in particular by assuming only equi-
boundedness of the entropy at the initial time.

Let ǫ > 0 be the scaling parameter and denote by (f ǫ, ηǫ) the diffusively rescaled
solution of the linear Boltzmann equation. According to the gradient flow formu-
lation, the pair (f ǫ, ηǫ) satisfies

∂tf
ǫ(t, x, v) +

1

ǫ
b(v) · ∇xf

ǫ(t, x, v) +
1

ǫ2

∫

π(dv′)ηǫ(t, x, v, v′) = 0(3)

H(f ǫ(T )) +
1

ǫ2

∫ T

0

dt E(f ǫ(t)) +
1

ǫ2
R(f ǫ, ηǫ) ≤ H(f ǫ(0)).(4)

We set

ρǫ(t, x) :=

∫

π(dv)f ǫ(t, x, v)

jǫ(t, x) :=
1

ǫ

∫

π(dv)f ǫ(t, x, v)b(v).
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Since ηǫ(t, x, v, v′) is antisymmetric with respect to the exchange of v and v′, by
integrating (3) with respect to π(dv) we deduce the continuity equation

(5) ∂tρ
ǫ +∇ · jǫ = 0.

Let H(ρ) :=
∫

dx ρ log ρ the entropy of the probability density ρ. Assuming
ρǫ(0) → ρ(0) and H(f ǫ(0)) → H(ρ(0)) we would like to take the inferior limit in
the inequality (4) deducing

(6) H(ρ(T )) +

∫ T

0

dtE(ρ(t)) +R(ρ, j) ≤ H(ρ(0)),

that corresponds to the gradient flow formulation of the heat equation for the pair
(ρ, j) satisfying the continuity equation. Here E is the Fisher information, i.e.,

E(ρ) = 2

∫

dx∇√
ρ ·D∇√

ρ

and

R(ρ, j) =
1

2

∫ T

0

dt

∫

dx
1

ρ(t)
j(t) ·D−1j(t),

where the positive definite d× d matrix D is diffusion coefficient.
This step is accomplished in [1] under suitable conditions on the scattering

kernel σ and the drift b implying homogenization of the velocity on the diffusive
scale.
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Random walk in a non-integrable random scenery time

Alessandra Bianchi

(joint work with Marco Lenci, Françoise Pène)

Anomalous diffusions are stochastic processes X(t), t ∈ R+, having an asymptotic
variance which does not grow linearly in time, that is E(X2(t)) ∼ tδ with δ 6= 1.
This phenomenon is quite common in applications and it is especially related to
the transport in inhomogeneous material, e.g., the motion of a light particle in
an optical lattice [6, 7]. The basic mathematical models for anomalous diffusions
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are Lévy flights, which are random walks with step length provided by an i.i.d.
sequence of Lévy α-stable random variables with α ∈ (0, 2) (see [10, 5]). In this
simple case, the motion is indeed provided by an asymptotic super-diffusive be-
havior with δ = 2, for α ∈ (0, 1], and δ = 3 − α, for α ∈ (1, 2) ( Lévy scheme).
To model the motion in inhomogeneous material, one would like to take also into
account that steps are mutually correlated by their positions, which we may iden-
tify with the presence of scatterers in the media. To this aim, in [4] the so-called
Lévy-Lorentz gas were introduced. This is linear interpolation of a one-dimensional
random walk in a Lévy-type random environment, where scatterers are placed as
a renewal point process with inter-distances having a Lévy-type distribution, and
jump probabilities depend on whether the position of the walker is on a scatterer
or not.

We are then interested in providing a characterization of this process under the
quenched and annealed laws ( LLN, scaling limits, large deviation of the empirical
speed), and in determining whether (and under which law) the asymptotic behav-
ior is super-diffusive. The theory of random walks in random environments have
been intensively studied in the last forty years and many important results have
been achieved, especially for one-dimensional systems that are generally quite well
understood. Even so, classical results do not apply to this setting, mainly because
of the non-ellipticity of the environment, and a different analysis is required.

The range of α ∈ (1, 2), when inter-distances between scatterers having finite
mean but infinite variance, was first studied in [1, 8] in the annealed setting,
and then extended in the quenched setting in a recent work in collaboration with
Cristadoro, Lenci and Ligabò (see [3]), where we proved that the quenched law of
the process satisfies a classical CLT and has moments converging to the moments of
a diffusion. While the annealed CLT follows trivially from these results, there are
not sharp results on the asymptotical behavior of the annealed second moment
which is then still under debate, as the results in [1, 8] are not completely in
agreement and may lead to different conclusions.

In the present work we investigate the annealed behavior of the process for
α ∈ (0, 1), when inter-distances between scatterers having infinite mean. Under
this hypothesis, some previous works where suggesting the super-diffusivity of
the process, and in particular the results in [4] and in [1, 8] where some annealed
quantities related to the second moment were estimated and numerically simulated.
Here we confirm and extend these predictions, proving, for the first time to our
knowledge, that Lévy-Lorentz gas is super-diffusive for α ∈ (0, 1). In particular
we establish the convergence of the finite-dimensional distributions of the process
under a super-diffusive scaling with exponent 1/1 + α > 1/2, and we characterize
the scaling limit. This is explicitely given by the composition of three processes:
The α stable process obtained as the scaling limit of the Lévy environment, the
Brownian motion obtained as the scaling limit of an underlying random walk, and
the inverse of the Kesten-Spitzer process. This last process, that was introduced
in [9] as the scaling limit of random walks in random scenery, appears in this
context as the scaling limit of the sequence of time-lengths between to consecutive
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collisions, or in other words, the sequence of jump-lengths of the random walk on
the environment that is coupled to the continuous time process. This is indeed
the key observation and tool in the proof of our main result.

The open problems we are interested in, are the following:

1. Study of the regime of α ∈ (0, 1): tightness under a suitable topology,
moments convergence w.r.t. the quenched and annealed law.

2. Construction and characterization of an analogous two-dimensional model,
also following the physical analysis of Lévy glasses given in [6, 2].
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Anomalies in the random conductance model

Omar Boukhadra

This talk concerns the anomalies of the heat-kernel in the random conductance
model (RCM). In the first place, we give ourselves a family of non negative ran-
dom variables associated with the non oriented edges of the grid Zd: (ωe)e =
(ωxy), e ∈ Ed = {e = {x, y} : x, y ∈ Zd, |x− y| = 1} . These random variables are
called random conductances. The realization of these gives a random environment
ω in which one defines a (quenched) discrete-time random walk with transition
probabilities

(1) Pω(x, y) =
ωxy

π(x)
, π(x) =

∑

y:|x−y|=1

ωxy
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The n-th power of the transition kernel Pω is

(2) P
n
ω(x, y) = P x

ω (Xn = y).

Let o ∈ Zd denote the origin and define the conditional measure

(3) Po(·) := P(· | o ∈ C ).

where C is the unique infinite connected cluster along edges with positive con-
ductances, which exists a.s. when we suppose that P(ωe > 0) is larger than the
critical threshold pc(d) for bond percolation on Zd.

The result available on arXiv that I would like to talk about is the following
which basically reconsiders and improves the result and techniques in [2].

Theorem 1. Let d ≥ 2 and α ∈ (0, 1/2). Suppose that the environment is gov-
erned by bounded i.i.d. random conductances such that P(ωe ∈ [0, 1]) = 1 and

(C) (4d− 2) lim
u→0

logP
(

ωb ∈ [u, 2u]
)

log u
< α,

Then, there exists c > 0, such that Po-a.s. for any n large enough, we have

(4) P
2n
ω (o, o) ≥ c π(o)n−(2+α(d−1))

Remarks. (i) The lower bound (4) is to be compared with general upper bounds
from [1, Theorem 2.1], and the general louwer bound P

2n
ω (o, o) ≥ c n−d/2 (see for

example [2, Remark 1.3]). Then we observe that we always have a normal decay in
d = 2, 3 and our lower bound (4) is interesting for d ≥ 5 and 2α < (d− 4)/(d− 1).

(ii) In the special case with i.i.d. polynomial lower tail conductances, i.e.

(LP) P(ωe < u) = uγ(1 + o(1)), u→ 0,

one can easily see that the condition (C) becomes γ < α/(4d− 2). This last con-
dition on γ and the estimate (4) yield

(5) lim inf
n

logP2n
ω (o, o)

logn
≥ −2− (d− 1)(4d− 2)γ

(iii) I believe that we can delete the term (d − 1) in (4)–(5) by improving a little
more the techniques used for the proof of this result, which gives for the polynomial
model the critical value

γAHK =
1

8

d− 2

d− 1/2

This is not far from the critical value for the local CLT found in [3], that is

γLCLT =
1

8

d

d− 1/2

I dare not conjuncture but I like to believe that for γ < γAHK , we have

(6)
logP2n

ω (o, o)

logn
= −2− (4d− 2)γ

For the proof of the upper bound in (6), I think that Flegel’s spectral analysis [4]
of the RCM Laplacian could be very useful.
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Sketch of the Proof of Theorem 1. Let α ∈ (0, 1/2). Set r = nα and partition
Br = [−r, r]d ∩ Zd into annuli of diameter 3, Ak = B3(k+1) \B3k, k = 0, . . . , [r/3].

Let Tn be the event in the environment defined as follows: an edge e = {y, z}
with conductance ωe ≥ c > 0, which we call the strong edge, is such that for any
e′ 6= e incident with either y or z, ωe′ ∈ [1/n, 2/n]. The configuration Tn, called
trap, is then made up of a strong edge and of 4d−2 weak edges with conductances
of order 1/n. Let Tn(x) be the event on the space of environments that x is a
vertex neighboring a trap edge, which trap is situated outside the hypercubic box
Bmaxxi , where the xi, i = 1, . . . , d are the associated coordinates of x.

First we prove with an argument which improves that in [2] that the random
walk will meet a.s. a trap Tn before getting outside Br when it hits one of the
annuli Ak, k = 0, . . . , r−3. At this time, one can oblige the random walk to get into
the trap, which costs a probability of order 1/n, and then spend a time of order n in
it. In fact, as a kee step, we prove the following. Set Hr = inf{k ≥ 0 : Xk ∈ ∂Br}
and define K as the first rank such that Tn(XH3k

) happens, i.e.

K = inf{k ∈ {0, . . . , r/3− 1} : Tn(XH3k
)}; with inf ∅ = ∞.

Then, we have

(7) P o
ω(Xn ∈ AK) ≥ c n−1

Now observe that by the Markov property and reversibility, we have

(8) P
2n
ω (o, o) ≥

r/3−1
∑

k=0

∑

x∈Ak

P
n
ω(o, x)P

n
ω(x, o) ≥

r/3−1
∑

k=0

∑

x∈Ak

P
n
ω(o, x)

2 π(o)

π(x)

Bounding π(x) ≤ 2d and using Cauchy–Schwarz, we get

(9) P
2n
ω (o, o) ≥ π(o)

2d

r/3−1
∑

k=0

|Ak|−1P o
ω

(

Xn ∈ Ak

)2
.

Since for all k ∈ {0, . . . , r/3− 1}, |Ak| ≤ cnα(d−1), and using K, we obtain that

(10) the r.h.s. of (9) ≥ c π(o)n−α(d−1) P o
ω

(

Xn ∈ AK

)2
.

The estimate (7) yields the result. �
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Stochastic perturbation of the ergodic constant in homogenization of
Hamilton-Jacobi equations

Pierre Cardaliaguet

(joint work with Claude Le Bris and Panagiotis E. Souganidis)

We study the behavior of the ergodic constant associated with convex and super-
linear Hamilton-Jacobi (HJ for short) equations in a periodic environment which
is perturbed either by medium with increasing period which is a multiple of the
original one or by a random Bernoulli perturbation with small parameter. The
result is a first-order Taylor’s expansion for the ergodic constant which depends
on the dimension d. Our results are the first of this kind for nonlinear problems.
The arguments, which rely on viscosity solutions and the weak KAM theory, also
raise several new and challenging questions.

The motivation for this work came from the recent studies by Anantharaman
and Le Bris [1, 2] and Duerinckx and Gloria [3], who considered similar ques-
tions for linear uniformly elliptic operators (and systems in [3]). The former paper
considered Bernoulli perturbations of a periodic environment, while the latter
reference, which complemented and generalized the work of the former, consid-
ered Bernoulli perturbations of a stationary ergodic medium and provided, taking
strong advantage of the linearity of the equation, a full expansion.

We now describe in a somewhat informal way the results of the paper. Let
H := H(p, x) be a Hamiltonian which is coercive in p and Zd−periodic in x. It
was shown by Lions, Papanicolaou and Varadhan [4] that there exists a unique H ,
often referred to as the effective Hamiltonian or the ergodic constant, such that
the cell problem

(1) H(Dχ, x) = H in R
d,

has a continuous, Zd−periodic (viscosity) solution χ known as a corrector.

The randomly perturbed Hamiltonian Hη is given by

Hη(p, x) := H(p, x)− ζη(x)

where

ζη(x) :=
∑

k∈Zd

ζ(x− k)Xk,

with ζ : Rd → R nonnegative, Lipschitz continuous and compactly supported and
(Xk)k∈Zd is a family of i.i.d. Bernoulli random variables of parameter η.

Contrary to the periodic setting, in random media the effective Hamiltonian is
not characterized by the cell-problem. The reason is that to guarantee its unique-
ness, it is necessary to have correctors which are strictly sub-linear at infinity. As
shown in Lions and Souganidis [5], in general, this is not possible.

The effective constant Hη is defined, for instance, through the discounted prob-
lem

δvη,δ +Hη(Dv
η,δ, x) = 0 in R

d
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which has unique bounded solution vη,δ, as the almost sure limit (see [6])

Hη := lim
δ→0

−δvη,δ(0)

Note that, as η → 0, the probability that there is a bump in a fixed ball becomes
smaller and smaller. So it is natural to expect that Hη converges to H as η → 0
and we want to understand at which rate this convergence holds.

We establish two types of results. The first is an estimate of the difference
between Hη and H . We prove that, if H = H(p, x) is convex and coercive in p
and Z

d−periodic in x, then there exists C > 0 depending only on ζ such that

(2) 0 ≤ H −Hη ≤ Cη for all η ∈ (0, 1),

and, in particular, limη→0Hη = H .
The result is unusual in the homogenization of Hamilton-Jacobi equations be-

cause the perturbations do not vanish in the L∞ norm and relies strongly on the
fact that the bumps are nonnegative. In general the convergence does not hold
otherwise.

In view of the above discussion, it is natural, and this is the second type of
results in this paper, to identify the limit

(3) lim
η→0

η−1(Hη −H).

It turns out that is much more complicated than proving (2) and we only have a
complete answer under some additional assumptions. These assumptions, which
will not be discussed here, require H to be in a neighborhood of an integrable
hamiltonian.

Our main result says that, in dimension d ≥ 2, the limit in (3) vanishes. This
conclusion is in stark contrast with what is happening for uniformly elliptic di-
vergence form operators where the first term in the expansion is nonzero. The
heuristic explanation for this difference is that in the Hamilton-Jacobi setting in-
formation is propagated along curves which are lower dimensional objects when
d ≥ 2, while for the elliptic problem the information is obtained by averaging. At
a very intuitive level, the proof of the result consist in showing that the character-
istics of the perturbed problem stay close to those of (1) on large time intervals
but eventually manage to avoid the bumps.

The general behavior of the perturbed ergodic constant in more general contexts
remains an open question. If the estimate (2) easily generalizes (to second order
Hamilton-Jacobi equations for instance, and probably to other perturbations), we
do not really know what to expect for the more subtle limit (3).
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The shape of the emerging condensate in effective models of
condensation

Steffen Dereich

(joint work with Volker Betz, Peter Mörters)

We consider effective models of condensation where the condensation occurs as
time t goes to infinity. We provide natural conditions under which the build-up
of the condensate occurs on a spatial scale of 1/t and has the universal form of a
Gamma density. The exponential parameter of this density is determined only by
the equation and the total mass of the condensate, while the power law parameter
may in addition depend on the decay properties of the initial condition near the
condensation point.

More explicitly, we consider solutions (pt)t≥0 of equations of the form

∂tpt(dx) = B[pt] pt(dx) + xα C[pt] dx.

Here, α > 0 is fixed, each pt takes values in the space

M0 := {ρ δ0 + p dx : ρ ≥ 0, p ∈ L1([0,∞))}
and B : M0 → C([0,∞) and C : M0 → C([0,∞)) are operators.

In what follows the solution (pt)t≥0 will have no atom at 0 and with slight misuse
of notation we refer to the respective Lebesgue density by the same identifier pt
and represent the equation in the form

∂tpt(x) = B[pt] pt(x) + xα C[pt].(1)

For the statement of our main result we rely on the following definition.



332 Oberwolfach Report 6/2018

Definition. (1) A solution (pt)t≥0 of (1) converges regularly to an element
p∞ ∈ M0 if

(i): pt → p∞ weakly as t→ ∞ as measures;

(ii): the following two equations hold for a δ > 0:

lim
t→∞

‖B[pt]−B[p∞]‖C1([0,δ]) = 0,

lim
t→∞

‖C[pt]−C[p∞]‖C([0,δ]) = 0,

where for f ∈ L1([0,∞))

‖f‖C1([0,δ]) = sup{|f(x)|+ |f ′(x)| : 0 ≤ x ≤ δ}
and

‖f‖C([0,δ]) = sup{|f(x)| : 0 ≤ x ≤ δ}
with the convention that the norm is infinite in the case that the functoin
is not in C1 or C respectively.

(2) An element q ∈ M0 is called stationary if

B[q](x) q(dx) + xα C[q](x) dx = 0.

The main theorem is as follows.

Theorem. Assume that (pt)t≥0 is a solution to equation (1) that converges regu-
larly to a stationary limit p∞ = ρδ0 + q(x) dx ∈ M0 with

• ρ > 0,
• c1 := C[p∞](0) > 0,

• c2 := limx→0
xα−1

q(x) > 0 exists for a α > 0.

Suppose further that p0(x) = xαη(x) ∈ M0 (no atom) with η being continuous
with η(0) = 0 (p0 is of lower order).

Then we have, uniformly on compact intervals of R+
0 , that

(2) lim
t→∞

1
t pt(

x
t ) = Ce−γxxα.

where γ := c1c2, and C = ργα/Γ(α), where Γ is the Gamma function.

Note that in our main theorem the constant C is such that the right hand side
of (2) integrates to ρ so that the full mass of the condensate is covered. The
condensation always acts on the scale 1/t and has a Gamma-distributed shape.

Selection mutation equations. A natural example for our theory is Kingman’s
model of selection and mutation which was originally introduced in [7] in discrete
time. We introduce a continuous version.

Given

• a mutation rate β ∈ (0, 1),
• an initial fitness density p0, which corresponds to a probability measure
on (0, 1), and

• a mutant fitness density u , which corresponds to a probability measure
on (0, 1) with essential supremum one
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we consider the equation

∂tpt(dx) =
(

(1− β)
x

w[pt]
− 1
)

pt(dx) + βu(dx),(3)

where w[pt] =
∫ 1

0 xpt(x) dx. This models a population where at rate β sponta-
neous mutations destroy the individuals’ biochemical ‘house of cards’ so that the
mutant fitness distribution u does not depend on their previous fitness. Further
the remaining offspring is generated with a selective advantage proportional to the
fitness.

An application of a substitution y = 1 − x leads to an equation covered by
the theorem. For sake of simplicity we give the results in terms of the original
variable x. In the case where

β

∫ 1

0

u(dx)

1− x
< 1,

we have pt → p∞ weakly for the stationary solution p∞ given by

p∞(dx) =
(

1− β

∫ 1

0

u(x)

1− x
dx
)

δ1 + β
u(x)

1− x
dx..

Under the appropriate decay assumptions on p0 and u in the upper tale one one
can easily verify the other assumptions and gets validity of an analogues version
of (2) around one.

Further examples. Two further examples are treated in [1]. The main theorem
can also be applied for an effective model for Bosons in contact with a bath of
Fermions in thermal equilibrium introduced and analysed by Escobedo and Mis-
chler [4, 5, 6]. A third example is a simple model for the emergence of a condensate
in a Bose gas in contact with a heat bath, which was developed by Buffet, de Smedt
and Pulé in [2, 3].
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[3] E. Buffet, P. de Smedt, P. and J.V. Pulé, The dynamics of the open Bose gas, Ann. Physics
155 (1984), 269–304.

[4] M. Escobedo and S. Mischler, Equation de Boltzmann quantique homogene: existence et
comportement asymptotique, C. R. Acad. Sci. Paris 329 Serie I (1999), 593–598.

[5] M. Escobedo and S. Mischler, On a quantum Boltzmann equation for a gas of photons, J.
Math. Pures Appl. 80 (2001), 471–515.

[6] M. Escobedo, S. Mischler and J.J.L. Velazquez, Asymptotic description of Dirac mass for-
mation in kinetic equations for quantum particles, Journal of Differential Equations 202
(2004), 208–230.

[7] Kingman, J.F.C., A simple model for the balance between selection and mutation, J. Appl.
Prob. 15 (1978), 1–12.



334 Oberwolfach Report 6/2018

Harnack inequality in degenerated i.i.d. balanced environments

Jean-Dominique Deuschel

(joint work with Noam Berger, Moran Cohen and Xiaoqin Guo)

We consider random walks in an i.i.d. balanced environment that is not necessarily
elliptic but d-dimensional. We will prove an elliptic Harnack inequality at large
scale.

To be specific, let M be the set of probability measures on {e ∈ Zd : |e| = 1},
d ≥ 2. A balanced environment is an element ω ∈ Ω := MZ

d

with

ω = {ω(x)}x∈Zd = {ω(x, e) : |e| = 1}x∈Zd

and

ω(x, e) = ω(x,−e).
Let P be a probability measure on Ω which is i.i.d. and genuinely d-dimensional.
That is, P[ω(0, ei) > 0] > 0 for all i = 1, . . . , d. For a given environment ω, the
random walk (Xn)n≥0 is the Markov chain with law

Pω [Xn+1 = x+ e | Xn = e] = ω(x, e).

Recently Berger and Deuschel [1] proved the quenched invariance principle. Name-
ly, for P-almost every ω, the law of the rescaled process

(X⌊tn⌋/
√
n)t≥0

converges weakly to a Brownian motion with a deterministic nondegenerate dif-
fusion matrix Σ. This invariance principle generalizes previous results in the non
degenerate cases, cf. [3], [2] and, for diffusions in non-divergence form, in [4].

Our main result shows an elliptic Harnack inequality for this model. More
precisely, a function u : BR → R is called ω-harmonic on the ball BR = {z ∈ Z

d :
|z| ≤ R} when

∑

|e|=1

ω(x, e)(u(x+ e)− u(x)) = 0, x ∈ BR.

Then, there exists a constant C depending on Σ only, such that every non-negative
ω-harmonic u in a large ball BR with R ≥ R0(ω) satisfies

max
BR/2

u ≤ C min
BR/2

u.

Moreover, the (random) R0(ω) has stretched exponential tails:

P [R0 > L] ≤ e−Lα

for some α ∈ (0, 1).
Our proof relies on a detailed analysis of the corresponding infinite directed

percolation cluster, a quantitative estimate for the invariance principle and an
oscillation inequality. The later follows from a coupling argument within a multi-
scale structure.
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Linear response, current fluctuations and uncertainty relations in
periodically driven Markov processes

Alessandra Faggionato

(joint work with A.C. Barato, L. Bertini, R. Chetrite, D. Gabrielli, P. Mathieu)

Periodically driven Markov processes have many applications. We focus here on
the statistical physics of small systems, including molecular motors. Molecular
motors are proteins, working as machines inside the cell. Their size is of order
1 nm=10−9 m. They are essential for cell division, cellular transport, muscle
contraction, genetic transcription... Simply, they are at the basis of our life. They
use chemical energies from ATP hydrolysis to produce mechanical work and are
very efficient machines despite the very noisy environment in which they operate.
Unlike their biological counterparts, artificial molecular machines are generally
non-autonomous: they are manipulated by varying the external parameters or
stimuli such as temperature, the chemical environment, or laser light. Often,
the external parameters/stimuli vary in a time-periodic way, hence periodically
driven Markov processes have received much attentions in the last years also inside
stochastic thermodynamics, which is a statistical physics theory developed for the
analysis of small systems [6].

In the first part of the talk we concentrate on continuous–time Markov chains
with time-periodic jump rates. For these models we derive large deviations prin-
ciples for the empirical measure, flow and current [1]. These results extend in
part the analysis already performed for time–homogenous continuous–time Markov
chains [2, 3, 4]. As an application we derive Gallavotti-Cohen duality relations for
the fluctuating entropy flux and we also derive lower bounds on the variance of
antisymmetric functionals in terms of entropy production (the so called “uncer-
tainty relations”). We then investigate the probabilistic structure behind linear
response w.r.t. the oscillatory steady state, enlarging the discussion also to diffu-
sions on a torus (or a generic compact manifold) with time-periodic coefficients.
We show that the linear response of the system can be formulated in terms of
suitable covariances. Moreover, we analyze the complex mobility matrix and give
a probabilistic representation [5].

(Joint works with A.C. Barato, L. Bertini, R. Chetrite, D. Gabrielli for LDP’s
and uncertainty relations, and with P. Mathieu for linear response)
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Homogenization vs. localization in the random conductance model

Franziska Flegel

(joint work with M. Heida and M. Slowik)

Our aim is to understand the asymptotic behavior of the top eigenvectors and
eigenvalues of the random conductance Laplacian in a large domain of Zd (d ≥ 2)
with zero Dirichlet conditions. That is, we consider the spectral problem

−Lwψ = λψ on (−n, n)d ∩ Z
d ,

ψ = 0 else,

where

(Lwu) (x) =
∑

y

wxy (u(y)− u(x)) , x ∈ Z
d, u ∈ ℓ2

(

Z
d
)

,

is the random conductance Laplacian and the w’s are the random conductances,
which are symmetric in the sense that wxy = wyx. We fix a realization of conduc-
tances on the whole lattice (i.e., we fix a realization of the environment) and then
we let the box size n tend to infinity.

In the special case where only nearest-neighbor conductances are positive and
the conductances are independent and identically distributed, there is a dichotomy
between a parameter regime where the first k eigenvectors strongly localize and a
regime where the first k eigenvectors homogenize. Then we show that the spectrum
of the Laplacian displays a sharp transition between a completely localized and a
completely homogenized phase. A simple moment condition distinguishes between
the two phases. To be more precise: If γ = sup{q ≥ 0: E[w−q] < ∞} < 1/4 and
certain regularity assumptions apply, then we show that for almost every environ-

ment the kth Dirichlet eigenvector ψ
(n)
k asymptotically concentrates in a sequence

of single site (z(k,n))n∈N and the corresponding eigenvalue λ
(n)
k is asymptotically

equivalent to the local speed measure πz =
∑

x : x∼z wxz in the site z(k,n) [4, 5].
In fact, the site z(k,n) is the location of the kth minimum of πz over the box Bn.
The proof for this result is based on a spatial extreme value analysis of the local
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speed measure, Borel-Cantelli arguments, the Rayleigh-Ritz formula, results from
percolation theory, and path arguments à la [2] and the Bauer-Fike theorem.

In the homogenized phase we can even generalize our results to stationary and
ergodic conductances with additional jumps of arbitrary length. This part is joint
work with M. Slowik and M. Heida [3]. In order to prove spectral homogenization,
we first prove homogenization of the discrete Poisson equation and then infer the
spectral result by [6]. For the homogenized phase we assume the following.
Assumption.
(i) The law P is stationary and ergodic with respect to spatial translations in Z

d.
(ii) E

[
∑

z∈Zd w0,z |z|2
]

<∞.
(iii) For P–a.e. w, the set of open edges contains the set of nearest-neighbor edges

of Zd.
(iv) There exists q > d/2 such that for any nearest-neighbor edge e we have

E [w(e)−q] <∞.

In case of i.i.d. nearest-neighbor conductances the last condition can be im-
proved to the condition that there exists γ > 1/4 such that E [w(e)−γ ] < ∞.
Together with the localization result, this gives the dichotomy.

To obtain the homogenization result, we introduce the rescaled operator Lǫ
w by

(Lǫ
wu)(x) = ǫ−2

∑

z∈ǫZd

wx
ǫ
, z
ǫ
[f (z)− f (x)] ,

(

x ∈ ǫZd
)

, u ∈ ℓ2
(

ǫZd
)

and the operator R∗
ǫ that translates between the discrete functions living on ǫZd

and functions living on the entire Rd by a simple extension into the ǫ-unit cells.
Then we prove that if

−Lǫ
wu

ǫ = f ǫ on (−1, 1)d ∩ ǫZd

uǫ = 0 else,

and the sequence R∗
ǫf

ǫ converges weakly to some f in L2, then P–a.s. the sequence
R∗

ǫu
ǫ of solutions converges to strongly to the solution of the homogenized equation

−∇·(Ahom∇u) = 2f almost everywhere with Ahom the usual homogenized matrix,
see e.g. [3, (5.11)]. Spectral homogenization then follows by [6, Chapter 11.1].

Without the long-range connections, the integrability condition on the lower
tail is optimal for spectral homogenization apart from logarithmic corrections, see
e.g. the counter example constructed for the proof of [1, Theorem 5.4], which can
easily be adapted to our specific choice of Laplace operator. It coincides with a
necessary condition for the validity of a local central limit theorem for the random
walk among random conductances [1]. Our proofs are based on a compactness
result for the Laplacian’s Dirichlet energy, Poincaré inequalities, Moser iteration
and two-scale convergence à la [7].
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Periodic striped ground states in Ising models with competing
interactions

Alessandro Giuliani

(joint work with J. Lebowitz, E. Lieb, R. Seiringer)

In this talk, I will review some selected results obtained in the last few years on
the existence of periodic minimizers in two- and three-dimensional spin systems
with competing interactions. The model that we consider is an Ising model in
dimension d (the most interesting cases being d = 2 and d = 3), with short range
ferromagnetic and long range, power-law decaying, anti-ferromagnetic interactions.
The Hamiltonian describing the energy of the system is

(1) H = −J
∑

〈x,y〉
(σxσy − 1) +

∑

{x,y}: x 6=y

(σxσy − 1)

|x− y|p ,

where J > 0 is the ratio between the strengths of the ferromagnetic and of the
anti-ferromagnetic interaction, and p > d is the decay exponent of the long-range
interaction. The first sum ranges over pairs of nearest-neighbor sites in the discrete
torus Td

L := Z
d/LZd, while the second over pairs of distinct sites in T

d
L. The spins

σx, x ∈ Td
L, take values in {±1}, and the constant −1 appearing in the two terms is

chosen in such a way that the energy of the homogeneous configuration σx ≡ +1,
is equal to zero. A physically relevant case is d = 2 and p = 3, in which case
(1) models the low-temperature equilibrium properties of thin magnetic films,
embedded in the three-dimensional space, with the easy-axis of magnetization
coinciding with the axis orthogonal to the film; in this case, the long range term
models the dipolar interaction among the localized magnetic moments, while the
short-range term models a ferromagnetic exchange interaction.



Interplay of Analysis and Probability in Applied Mathematics 339

The goal is to characterize the structure of the ground states of the system, for
any (even, sufficiently large) L ∈ N. Ideally, one would also like to characterize
the low-temperature infinite volume Gibbs states, but this is beyond our current
abilities. Note that the short-range interaction favors a homogeneous state, that
is σx ≡ +1 or σx ≡ −1, while the long-range term favors an anti-ferromagnetic
‘Nèel’ state, that is σx = (−1)x1+···+xd or σx = (−1)x1+···+xd+1. The fact that
the long-range contribution to the energy is minimized by the Nèel state is not
obvious, and was proved in [2] by Reflection Positivity (RP) methods.

In the presence of both terms, the competition between the short-range ferro-
magnetic and the long-range anti-ferromagnetic interaction induces the system to
form domains of minus spins in a background of plus spins, or vice versa. This
happens in an intermediate range of values of J : in fact, if J is sufficiently small,
the ground state is the same as for J = 0, that is, it is the Nèel state [2]; if J is
sufficiently large and p > d + 11, the ground state is the same as for J = +∞,
that is, it is the homogeneous state. For intermediate values of J the ground state
is characterized by non-trivial structures, whose typical length scale diverges as
J → Jc(p) from the left; here Jc(p) is the critical value of J , beyond which the
ground state is homogeneous. It coincides with the value of J at which the surface
tension of an infinite straight domain wall, separating a half space of minuses from
a half space of pluses, vanishes [5]. It is expected that, for values of J close to Jc(p)
and slightly smaller than it, all the ground states are quasi-one-dimensional (i.e.,
they are translationally invariant in d − 1 directions), and periodic, provided the
box size L is an integer multiple of an ‘optimal period’ 2h∗, which can be explicitly
computed. We shall refer to these expected ground states as the ‘optimal periodic
striped states’: they consist of ‘stripes’ (in d = 2, or ‘slabs’, in d = 3) of spins
all of the same sign, arranged in an alternating way (that is, neighbouring stripes
have opposite magnetization), and all of the same width h∗.

The conjecture that optimal periodic striped states are ground states of (1)
has been first proved in [3, 4], via a generalization of the standard RP technique,
which we named ‘block reflection positivity’, because the reflections are performed
across the bonds that separate a block of plus spins from a block of minus spins.
The same proof shows that in any dimension, optimal periodic striped states are
the states of minimal energy, among all the possible quasi-one-dimensional states.

More recently, in a work in collaboration with R. Seiringer, we succeeded in
proving this conjecture [6], for all dimensions d ≥ 1 and sufficiently large decay
exponents, namely p > 2d. The result has been recently extended to the continuum
setting and p > d+ 2 [1]. The proof is based on the following main steps:

1for p ≤ d + 1, the homogeneous state is not the ground state, for any finite value of J . In
these cases, which include the case d = 2, p = 3 mentioned above, it would be interesting to
characterize the ground states for J sufficiently large; unfortunately, we do not have rigorous
results to report on this case yet, with the only exception of the one-dimensional case d = 1.
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(1) We re-express the energy of the spin configuration as the energy of an
equivalent droplet configuration. Here the droplets are the connected re-
gions of minus spins, in a background of plus spins. The energy, if ex-
pressed in terms of droplets, consists of (i) a sum of droplet self-energies,
which include the ferromagnetic contribution to the surface tension, plus
the long range interaction of the minus spins in each droplet δ with a ‘sea’
of plus spins in the complement of the droplet δc = Td

L \ δ, and (ii) a
droplet-droplet pair interaction, which is repulsive. Remarkably, the long
range contribution to the self-energy of a droplet δ behaves (for the pur-
pose of a lower bound) as −2Jc(p)|∂δ|, where |∂δ| is the length (if d = 2,
or area, if d = 3) of the boundary of the droplet, plus a positive con-
stant times the number of corners, that is, the points where the domain
walls bend by 90o. In this respect, the corners look like the elementary
excitations of the system.

(2) We localize the droplet energy in bad boxes, characterized by a local ‘a-
typical’ configuration (which either has corners, or too large uniformly
magnetized regions – called ‘holes’), and good regions, which are the con-
nected components of the complement of the union of the bad boxes. By
‘localizing’, we mean here that the original energy is bounded from be-
low in terms of a sum of local energy functionals, each depending only
on the local droplet configuration (supported either in a bad box or in a
good region). By construction, the configuration in a good region is quasi-
one-dimensional, and consists of stripes all in the same direction, but not
necessarily all of the same width.

(3) We use our lower bound on the self-energy of the droplets, to infer that the
localized energy in a bad box is much larger than the energy of an optimal
striped configuration in the same box. The energy difference scales like
the number of corners contained in the bad box, plus the volume of the
holes. We shall refer to this energy difference as the energy gain associated
with each bad box.

(4) We use a slicing procedure, combined with block RP and an optimal con-
trol of the boundary errors, to derive an optimal lower bound on the lo-
calized energy in a good region. Such a lower bound scales like the energy
of the optimal striped configuration in the same region, minus a boundary
error, which is so small that it can be over- compensated by the energy
gains of the bad boxes at the boundary of the good region (note that every
boundary portion of a good region borders on a bad box).

Our result provides the first rigorous proof of the formation of mesoscopic peri-
odic structures in d ≥ 2 systems with competing interactions. It leaves a number
of important problems open:

(1) Extend the result of [6] to smaller decay exponents. In particular, prove
that the ground states of (1) with d = 2 and p = 3 are periodic and
striped, for all sufficiently large J .
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(2) Prove that there are at least d infinite volume Gibbs states at low temper-
atures, which are translationally invariant in d − 1 coordinate directions.
Depending on the dimension, prove the existence of Long-Range Striped
Order (LRSO), or of quasi-LRSO a’la Kosterlitz-Thouless, in the last co-
ordinate direction.

(3) Extend these results to the continuum setting, for an effective free energy
functional that is rotationally invariant. In particular, prove the onset
of continuous symmetry breaking, both in the ground state and in the
low-temperature Gibbs states.
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Mean-field equations for stochastic particle systems

Stefan Grosskinsky

(joint work with Watthanan Jatuviriyapornchai)

The derivation of effective single-particle dynamics from interacting many-particle
systems has a long history in the context of kinetic theory, and can pose challenging
mathematical problems with the Boltzmann equation as a classical example. In
the physics literature, stochastic particle systems in a limit of large system size are
often described by a mean-field master equation for the time evolution of a single
lattice site [1, 2, 3]. For conservative systems, these equations are very similar to
mean-field rate or kinetic equations in the study of cluster growth models. We
focus on systems where only one particle jumps at a time, which corresponds to
monomer exchange in cluster growth models as studied in [4], and also in the well-
known Becker-Döring model [5, 6]. While these mean-field equations often provide
the starting point for the analysis and have an intuitive form, to our knowledge
their connection to underlying microscopic particle systems has not been rigorously
established so far. Details of the following can be found in [7].

We consider a stochastic particle system (η(t) : t > 0) on a complete graph Λ of
size |Λ| = L. Configurations are denoted by η = (ηx : x ∈ Λ) where ηx ∈ N0 is the
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number of particles on site x, and a particle jumps from site x to any y 6= x with
rate c(ηx, ηy)/(L− 1). The dynamics of the process is defined by the generator

(1) (Lg)(η) =
∑

x,y 6=x∈Λ

1

L− 1
c(ηx, ηy)(g(η

x→y)− g(η)) ,

with the usual notation ηx→y for a configuration where one particle has moved
from site x to y, i.e. ηx→y

z = ηz − δz,x + δz,y. To ensure that the process is non-
degenerate, the jump rates are strictly positive, except for c(0, l) = 0, l ≥ 0. Our
main assumption on the dynamics is that the rates grow sublinearly, such that

(2) c(k, l) ≤ C1k(l + C2) for constants C1, C2 > 0 .

We study the empirical processes t 7→ FL
k (η(t)) defined by the test functions

(3) FL
k (η) :=

1

L

∑

x∈Λ

δηx,k ∈ [0, 1],

counting the fraction of lattice sites for each occupation number k ≥ 0.
In the following, we consider initial conditions η(0) whose distribution converges

as L → ∞ to a probability distribution f(0) on N0 with finite first and second
moments, such that we have a weak law of large numbers

(4) FL
k (η(0)) → fk(0) in distribution for all k ≥ 0 .

A further technical assumption concerns a bound on first and second moments
uniformly in η(0) and L, which could be replaced by a less restrictive tail condition
on f(0). Simple choices that fulfill all conditions are for example product measures
with a finite maximal occupation number per site.

Our main result is a weak law of large numbers for the empirical processes
t 7→ FL

k (η(t)) which holds pointwise in k or, equivalently, in a weak sense, where
we use the notation

(5) 〈FL(η), h〉 =
∑

k≥0

hkF
L
k (η) ,

for all bounded functions h : N0 → R.

Theorem. Consider a process with generator (1) on the complete graph with
sublinear rates (2) and initial conditions satisfying the above assumpations. Then
we have a weak law of large numbers, i.e. for all bounded h : N0 → R,

(6)
(

〈FL(η(t)), h〉
)

t≥0
→
(

〈f(t), h〉
)

t≥0
weakly on path space as L→ ∞ ,

where t 7→ (fk(t) : k ∈ N0) is the unique solution of the mean-field equation

dfk(t)

dt
=
∑

l≥0

c(k + 1, l)fl(t)fk+1(t) +
∑

l≥0

c(l, k − 1)fl(t)fk−1(t)(7)

−
(

∑

l≥0

c(k, l)fl(t) +
∑

l≥0

c(l, k)fl(t)

)

fk(t) for all k ≥ 0,
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with initial condition f(0) given by (4). Here we use the convention f−1(t) ≡ 0
for all t ≥ 0 and recall that c(0, l) = 0 for all l ≥ 0.

Note that this result implies in particular existence and uniqueness of the solu-
tion to (7) for all t ≥ 0, which has been shown independently in a recent preprint
[8]. Existence of limits follows from standard tightness arguments, and the deter-
ministic limit arises from a vanishing martingale part for the empirical processes.

Suppose a further symmetry assumption on the initial conditions,

(8) {ηx(0) : x ∈ Λ} is permutation invariant for all L ≥ 1 .

Then by symmetry of the dynamics, this holds also for the full process (η(t) : t ≥ 0)
and in particular at all fixed times t ≥ 0. Then the weak law of large numbers for
the empirical measures implies that for all m ≥ 1, and t ≥ 0 as L→ ∞

(η1(t), η2(t), . . . , ηm(t)) converge weakly to iidrv’s with distribution f(t) .

This is a standard result in propagation of chaos and a recent exposition of a
proof can be found in [9]. Since the law of large numbers holds not only for time
marginals but for the full process, we can lift it on path space and also establish
propagation of chaos on the level of processes.

Corollary. Consider the process with generator (1) and conditions as in the Theo-
rem together with (8). Propagation of chaos holds, i.e. for all m ≥ 1, and T ≥ 0
as L → ∞ the finite dimensional processes

(

(η1(t), η2(t), . . . , ηm(t)) : t ∈ [0, T ]
)

converge weakly on path space to independent, identical birth death chains on N0

with distribution f(t) and master equation given by (7).

The limit equation (7) therefore describes the dynamics of the fraction fk(t) ∈
[0, 1] of lattice sites with a given occupation number k, and also provides the
master equation of a birth death chain for the limiting single site dynamics

(9) (ηx(t) : t ≥ 0) for any fixed x ∈ Λ (with Λ big enough)

under additional assumptions on the initial condition. Note that the chain and
its master equation are non-linear since the birth rates

∑

l≥0 c(l, k)fl(t) and death

rates
∑

l≥0 c(k, l)fl(t) depend on the distribution f(t). Even though the limiting
birth death dynamics is irreducible under any non-degenerate initial conditions,
the non-linearity leads to conservation of the first moment, resulting in a contin-
uous family of stationary distributions and interesting ergodic behaviour. This
includes e.g. the coarsening dynamics of condensing particle systems [10, 7], such
as zero-range processes of the type introduced in [11], inclusion processes with a
rescaled system parameter [12, 13] and explosive condensation models [14, 15].
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Convergence of the squareroot approximation sceme to the
Fokker–Planck equation

Martin Heida

Let Q be a bounded domain with a family of points (Pm,i)i=1,...m. From these

points we construct a Voronoi tessellation of cells Gm,i that correspond to Pm,i for
every i. We write i ∼ j if the cells Gm,i and Gm,j are neighbored. Thus, the finite
volume space for the discretization (Gm,i)i=1,...m is isomorphic to Rm. Given

a potential V ∈ C2(Q) and writing vmi := exp
(

− 1
2βV (Pm,i)

)

, the squareroot
approximation operator on Pm,i is then defined as

(1) (Fmu)i := Cm

∑

i∼j

(

uj
vmi
vmj

− ui
vmj
vmi

)

,

where Cm is a normalizing constant.
The discretization scheme (1) proposed by Lie, Fackeldey and Weber [2] is

implemented and applied to alanine dipeptide (Ac–A–NHMe) in a recent work
[1]. The operator Fm has precisely one eigenvector u0 to the eigenvalue 0, namely
ui = v2i . Hence, writing π

m
i := exp (−βV (Pm,i)) = v2i , we obtain

(Fmu)i := Cm

∑

i∼j

(

uj

√

πm
i

√

πm
j

− ui

√

πm
j

√

πm
i

)

, Fmπ
m = 0.



Interplay of Analysis and Probability in Applied Mathematics 345

Hence, the coefficients can be written in terms of the square roots of the stationary
solution, which is the reason the method is called squareroot approximation. As
boundary conditions one usually uses Dirichlet conditions in space variables on
periodic boundary conditions for angles.

It turns out that this normalizing constant can be estimated from the case
V ≡ 0, i.e. from the discrete Laplace operator Lm which is given as

(2) (Lmu)i := Cm

∑

j∼i

(uj − ui) .

More precisely, the main Theorem states that the convergence behavior of Fm

is mostly characterized by the convergence behavior of Lm: If Lm is G-convergent
(in the discrete sense) to Lu = ∇ · (Ahom∇u), the solutions um of the equation
Fmum = fm converge to solutions Fu := ∇ · (Ahom∇u) + ∇ · (uAhom∇V ) = f ,
provided fm → f in a weak sense. Note that the opposite direction is trivial: If
the SQRA converges for all V ∈ C2(Q) then Lm  ∇ · Ahom∇.

As a further contribution, we show that the class of admissible discretization,
i.e. discretizations such that Lm is G-convergent, is not empty. For this purpose,
we study periodizations of stationary ergodic Voronoi-Tessellations.
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Rigorous derivation of density functionals for classical systems

Sabine Jansen

(joint work with Tobias Kuna, Dimitrios Tsagkarogiannis)

1. Motivation: Onsager functional for liquid crystals

Consider a system of N thin rods with centers x1, . . . , xN ∈ Λ, Λ := [0, L]d ⊂ Rd

and orientations n1, . . . , nN ∈ S, interacting via some pair potential v(qi, qj) where
qi = (xi, ni). In the theory of liquid crystals it is of interest to systematically derive
a free energy functional F which assigns to a density profile ρ : Λ× S → R+ with
∫

Λ×S
ρ(q)dq = N a free energy F [ρ]. A commonly employed functional is

(1) F [ρ] =

∫

Λ×S

ρ(q) log(ρ(q)− 1)dq +
1

2

∫

(Λ×S2

ρ(q)ρ(q′)f(q, q′)dqdq′,

where f(q, q′) = exp(−v(q, q′)) − 1 may capture, for example, excluded volume
between rods. Onsager [4] gave a microscopic derivation starting from statistical
mechanics, building on the theory of cluster expansions and virial inversions and
with the “artifice... of viewing rods of different orientations as different types
of particles”. A corollary of our main result is a fully rigorous derivation, in
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the following sense: Consider density profiles of the form ρ(x, n) = ρL(x, n) =
ρ0(x/L, n) with ρ0 : [0, 1]d × S → R+ and

∫

[0,1]d×S
ρ0(x

′, n)dx′dn = N/Ld. Then,

under suitable conditions on the profile ρ0, we have

1

N !

∫

(Λ×S)N
e−

∑
1≤i<j≤N v(qi,qj)1{ 1

Ld

∑
N
i=1 δ(xi/L,ni)

≈ρ0(x′,n)dx′}d
N
q

≈ exp
(

−LdF0[ρ0]
)

≈ exp
(

−FL[ρL]
)

in the sense of large deviations as N,L → ∞ at fixed N/Ld, where F0[ρ0] =
limL→∞ L−dFL[ρL] and

FL[ρL] =

∫

Λ×S

ρL(q) log(ρL(q)−1)dq+

∞
∑

k=2

1

k!

∫

(Λ×S)k
Dk(q1, . . . , qk)

n
∏

i=1

ρL(qi)d
k
q,

with explicitly known kernels Dn and absolute convergence of the series. Keeping
only the quadratic term in the series we recover the functional (1).

2. Cluster expansion

More generally, let (X,X ) be some measurable space, λ a reference measure, v :
X × X → R ∪ {∞} a pair interaction, and z : X → R+ an activity profile. For
simplicity we assume that the pair potential is non-negative. For XL ⊂ X with
∫

XL
zdλ <∞, let

ΞL(z) := 1 +

∞
∑

N=1

1

N !

∫

XN
L

e−
∑

1≤i<j≤N v(xi,xj)
N
∏

i=1

z(xi)dλ
N (x),

ρL(q; z) := z(q)
δ

δz(q)
log ΞL(z)

with δ
δz(q) a variational derivative. The profile XL ∋ q 7→ ρL(q; z) is the density

of the grand-canonical Gibbs measure at activity z; in probabilistic terms, the
measure ρL(q; z)dλ(q) is the intensity measure of the Gibbs point process and zdλ
is the intensity measure of an a priori Poisson point process. Cluster expansions [5]
guarantee that if for some function a : X → R+ and all x ∈ X we have

∫

X2

|e−v(x,y) − 1| |z(y)|ea(y)dλ(y) ≤ a(x),

then

(2) ρL(q; z) = z(q) exp
(

−
∞
∑

n=1

1

n!

∫

Xn
L

An(q;x1, . . . , xn)

n
∏

i=1

z(xi)dλ
n(x)

)

with
∞
∑

n=1

1

n!

∫

Xn

∣

∣An(q;x1, . . . , xn)
∣

∣

n
∏

i=1

|z(xi)|dλn(x) ≤ a(q) <∞

and explicitly known kernels An that depend on the pair interaction only. The
bounds allow us to exchange summation and the limit XL ր X; henceforth we
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drop the index L from (2), thus obtaining a functional mapping activity profiles
z : X → R+ to density profiles ρ : X → R+.

Our task is to invert this functional, expressing the activity z as a function of the
density ρ. For homogeneous, single-species systems, z and ρ become numbers and
the inversion is a classical result [3]. For countably many variables, the required
inversion can be performed with contour integrals and Lagrange-Good inversion
[2]. The principal challenge is that for the natural Banach spaces at hand, the
functional mapping z to ρ is not necessarily Fréchet-differentiable.

3. An inversion theorem

To avoid confusion between maps and variables, let us write ρ̃ and z̃ for functionals
and ρ and z for the variables of the functionals. Thus ρ(q; z) becomes ρ̃[z](q).

Theorem. There exists a uniquely defined family of kernels tn(q;x1, . . . , xn), de-
pending only on the kernels An, such that the following holds:

(a) If ρ(·) is such that for some b : X → R+ and all q ∈ X, we have
∞
∑

n=1

∫

Xn

n
∏

i=1

|An(q;x1, . . . , xn)|
n
∏

i=1

|ρ(xi)|eb(xi)dλn(x) ≤ b(q),

then we also have

1 +
∞
∑

n=1

1

n!

∫

Xn

∣

∣tn(q;x1, . . . , xn)
∣

∣

n
∏

i=1

|ρ(xi)|dn(x) ≤ eb(q) <∞

and may define

z̃[ρ](q) := ρ(q)
(

1 +

∞
∑

n=1

1

n!

∫

Xn

tn(q;x1, . . . , xn)

n
∏

i=1

ρ(xi)dλ
n(x)

)

.

(b) If ρ is as in (a), then ρ̃[z̃[ρ]] = ρ.

The theorem works for general kernels An that need not arise from statistical
mechanics. In the concrete context of Section 2, a sufficient condition for the
convergence condition from part (a) of the theorem to hold true is that

∫

X

|e−v(x,y) − 1||ρ(y)|ea(y)+b(y)dλ(y) ≤ a(y)

for all q ∈ X and some a, b : X → R+ with a ≤ b. As a corollary, we obtain a
condition for the homogeneous gas of hard spheres of radius R in Rd: if ρ > 0
satisfies

ρ|B(0, 2R)| ≤ sup{ae−a−b | 0 ≤ a ≤ b} =
1

2e
≃ 0.1839

then the virial series converges. This bound improves available bounds.
For the proof we generalize results on Lagrange-Good inversion and combina-

torics of trees [1] to a setting with uncountably many variables, i.e., uncountable
color or type space for vertices of trees.

The results generalize to attractive interactions v, classical formulas for the
coefficients as sums of doubly connected graphs are rigorously proven.
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Quenched invariance principle for random walks among random
conductances with stable-like jumps

Takashi Kumagai

(joint work with Xin Chen, Jian Wang)

Consider random conductances that allow long range jumps. In particular we
consider conductances Cxy = wxy|x− y|−d−α for distinct x, y ∈ Zd and 0 < α < 2,
where {wxy = wyx : x, y ∈ Zd} are positive random variables. We prove that
under some ‘mixing conditions’ for w, suitably rescaled Markov chains among
the random conductances converge to a rotationally symmetric α-stable process
almost surely w.r.t. the randomness of the environments. Our results hold for a
class of ‘nice’ graphs with polynomial volume growth.

To clarify our results, we present a statement about the quenched invariance
principle on a half/quarter space F := R

d1
+ × Rd2 where d1, d2 ∈ N ∪ {0}. Let

L := Z
d1
+ × Zd2 and let µ be a measure on L such that µx := µ({x}) satisfies for

some constant c1 ≥ 1 and all x ∈ L that c−1
1 ≤ µx ≤ c1. Consider a Markov

generator

(1) Lω
Lf(x) =

∑

y∈L

(f(y)− f(x))
wx,y(ω)

|x − y|d+α
µy, x ∈ L,

where α ∈ (0, 2) and {wx,y(ω) : x, y ∈ L} is a sequence of random variables such
that wx,y(ω) = wy,x(ω) > 0 for all x 6= y. We write wx,x(ω) = w−1

x,x(ω) = 0 for all
x ∈ L. Let {Xω

t }t≥0 be the corresponding Markov process. For every n ≥ 1 and

ω ∈ Ω, we define a process X
(n),ω
· on Vn = n−1L by X

(n),ω
t := n−1Xω

nαt for any

t > 0. Let P
(n),ω
x be the law of X

(n),ω
· with initial point x ∈ Vn.

Theorem. Let d := d1 + d2 > 4− 2α. Suppose that {wx,y : x, y ∈ L} is a positive
sequence of independent random variables such that Ewx,y = 1 for all x, y ∈ L,

(2) sup
x,y∈L

E[w2p
x,y] <∞, sup

x,y∈L

E[w−2q
x,y ] <∞

for p, q ∈ Z+ with

(3) p > max
{

(d+ 2)/d, (d+ 1)/(2(2− α))
}

, q > (d+ 2)/d.
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Then the quenched invariance principle holds for Xω
· with the limit process be-

ing a symmetric α-stable Lévy process Y on F with jumping measure |z|−d−α dz.
Namely, for any {xn ∈ Vn : n ≥ 1} such that limn→∞ xn = x for some x ∈ F , it

holds that for P-a.s. ω ∈ Ω and every T > 0, P
(n),ω
xn converges weakly to P

Y
x on the

space of all probability measures on D([0, T ];F ), the collection of càdlàg F -valued
functions on [0, T ] equipped with the Skorohod topology.

Remark. When α ∈ (0, 1), the conclusion still holds true for d > 2 − 2α, if
p > max

{

(d+ 1)/(2(1− α)), (d+ 2)/d
}

and q > (d+ 2)/d.

Open Problem. The integrability condition (3) is far from optimal. What is the
optimal integrability condition?

Example. The following example satisfies (2): for each distinct x, y ∈ Z
d,

P(wx,y = |x− y|ε) = (3|x− y|2pε)−1, P(wx,y = |x− y|−δ) = (3|x− y|2qδ)−1,

P(wx,y = g(x, y)) = 1− (3|x− y|2pε)−1 − (3|x− y|2qδ)−1,

where ε, δ > 0 and g(x, y) is chosen so that Ewx,y = 1. (It is easy to see that
c−1 ≤ g(x, y) ≤ c for some c > 1.)

While detailed heat kernel estimates and Harnack inequalities (de Giorgi-Nash-
Moser theory) are recently established for uniformly elliptic α-stable-like processes
(see [1, 2, 3] etc.), the arguments rely on pointwise estimates of the jumping density
(conductance in this setting), which cannot hold in our setting unless we assume
uniform ellipticity of wx,y(ω) in (1). Furthermore, Harnack inequalities do not
hold (even for large enough balls) in general on long range random conductance
models. By these reasons, it requires hard work to obtain the results in our random
conductance setting. There are two essential ingredients in the proof, namely the
tightness estimates and the Hölder regularity of parabolic functions for non-elliptic
α-stable-like processes on graphs.
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Loop models related to quantum spin systems

Benjamin Lees

(joint work with Volker Betz and Johannes Ehlert)

We consider a class of probability models on graphs where Poisson point processes
(PPP) on edges produce random geometric objects (loops) according to a set of
rules. Similar models find their origin in the work of Tóth [4] and Aizenman and
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Nachtergaele [1] who used these representations to study the quantum Heisenberg
ferromagnet and antiferromagnet, respectively. These representations were com-
bined and extended by Ueltschi [5] in order to study various quantum spin systems
for spins S ∈ 1

2N. This model involved objects, called links, on edges that were
either crosses or bars. Loops are constructed by attaching an interval [0, β) to
each edge and placing the links according to a PPP, we then follow the crosses
and bars as in the example figure 1. Realisations are given a weighting of θ#loops

for θ ≥ 1. It is shown that, in the thermodynamic limit, macroscopic loops will
occur at sufficiently low temperature if we take our graph to be a d-dimensional
box (d ≥ 3) [5]. This result corresponds to the famous result of Dyson, Lieb and
Simon [3] in the case S = 1

2 . Both these results rely on the methods of reflection
positivity and infrared bounds.

Our current work in progress with Volker Betz and Johannes Ehlert considers
these loop models on d-regular trees for θ > 1. The case of θ = 1 was previously
studied by Björnberg and Ueltschi [2] where it was shown that there is a critical
inverse temperature βc such that, above this inverse temperature the loop from the
root of the tree will reach infinitely far down the tree with positive probability and
below this inverse temperature all loops will be finite. To first order in d−1 βc is
precisely the percolation threshold however the behaviour in order d−2 is different
and depends on the relative intensity of the bars and crosses. We extend this result
to the case θ > 1 to first order in d−1 using some relatively simple estimates.
The proof is remarkably simple given the a priori difficult problem of dealing
with quantum spin systems and phase transitions. Perhaps more interestingly, we
are also able to obtain results in the case of a supercritical Galton-Watson tree,
provided the offspring distribution satisfies certain conditions. These conditions
are satisfied by several common distributions.

Figure 1. A simple example of a realisation, ω, with three loops.
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Metastability: a journey from probability to semi-classical analysis

Tony Lelièvre

(joint work with G. Di Gesù, D. Le Peutrec and B. Nectoux)

We present recent results [1] concerning the precise description of the exit event
from a metastable state D ⊂ Rd for the overdamped Langevin dynamics:

(1) dXt = −∇f(Xt) dt+
√
h dWt,

where f : Rd → R is a smooth function, and Wt is a d-dimensional Brownian
motion. The objective is to show that, in the small temperature regime h → 0,
one can use a simple jump Markov model parameterized by the Eyring-Kramers
formulas to describe the exit event (τ,Xτ ) from D, where τ = inf{t > 0, Xt 6∈ D}.

In a jump Markov model, the exit event from a state is modeled as follows:
(i) the residence time T is exponentially distributed: T ∼ E(∑n

i=1 ki) ; (ii) the next
visited state I is independent of T and (iii) the law of I is given by: ∀i ∈ {1, . . . , n},
P(I = i) = ki∑

n
j=1 kj

. Here (ki)i=1,...,n denote the rates associated with exits through

one of the n possible exit events. In the framework of the harmonic transition state
theory, these rates are parameterized as follows. One considers the local minima
(z1, . . . , zn) of f on ∂D and the rates are defined by:

(2) ki = Aie
− 2

h (f(zi)−f(x0))

where x0 is the unique global minimum of f in D and Ai is a prefactor which
depends on the underlying dynamics. For example, for the overdamped Langevin
dynamics (1), if zi is a saddle point of f (which is indeed the case if D is the basin
of attraction of x0 for the gradient dynamics ẋ = −∇f(x)), then

(3) Ai =
|λ(zi)|
2π

√

detHessf(x0)
√

detHessf(zi)
.

Such jump Markov models to describe exit events from metastable states are used
to simulate metastable dynamics over very long times, and to accelerate the sim-
ulations of molecular dynamics trajectories, see for example [2, 3].

The question we would like to address is the following: is it possible to make
a link between the law of the exit event (τ,Xτ ) for the overdamped Langevin
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dynamics (1) and the exit event (T, I) for the jump Markov model described
above? The cornerstone of our analysis is the quasi-stationary distribution (QSD,
denoted by ν in the following) which can be defined as the law of Xt conditioned to
{t < τ}, in the limit t→ ∞. The QSD thus describes the law of the process when
it remains for a very long time in D before exiting: this is in essence the meaning
of a metastable state. From a partial differential equation (PDE) viewpoint, the
QSD writes

ν = Z−1u(x)e−
2
h f(x) dx,

where Z =
∫

D
u(x)e−

2
hf(x) dx is the normalizing constant and u is the principal

eigenfunction of the infinitesimal generator L = −∇f · ∇ + h
2∆ with Dirichlet

boundary conditions on ∂D:

(4)

{

Lu = −λu in D,

u = 0 on ∂D.

The domain D is assumed to be smooth and bounded. The operator −L with
Dirichlet boundary conditions on ∂D is positive and has compact resolvent: (λ, u)
is its first eigenvalue-eigenfunction pair. An important property of the QSD which
shows its interest with respect to our aim is the following: if X0 is distributed
according to the QSD ν in D, then (i) τ is exponentially distributed: τ ∼ E(λ);
(ii) Xτ is independent of τ and (iii) the law of Xτ is given by: for any bounded
measurable test function ϕ : ∂D → R,

E(ϕ(Xτ )) =

∫

∂D

ϕu e−
2
h fdσ

∫

∂D

u e−
2
h fdσ

where σ is the Lebesgue measure on ∂D. To make the connection with the jump
Markov model above complete, it remains to show that the parameter λ and the
law of Xτ can be related to the rates (ki)i=1,...,n. In [1], we prove the following
result:

Theorem 1. Let us assume that:

• The functions f : D → R and f |∂D : ∂D → R are Morse functions.
Moreover, |∇f |(x) 6= 0 for all x ∈ ∂D.

• The function f has a unique global minimum x0 in D and min∂D f >
f(x0). Moreover, x0 is the unique critical point of f in D. The func-
tion f |∂D has exactly n local minima (zi)i=1,...,n which are assumed to be
numbered such that

f(z1) ≤ f(z2) ≤ . . . ≤ f(zn).

• For all x ∈ ∂D, ∂nf(x) > 0 (where ∂n denotes the outward normal deriv-
ative to D).

• f(z1)− f(x0) > f(zn)− f(z1) and for all i ∈ {1, . . . , n},
(5) da(zi, B

c
zi) > max(f(zn)− f(zi), f(zi)− f(z1))
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where da denotes the Agmon distance defined by

da(x, y) = inf
γ:[0,1]→D Lipschitz

and s.t. γ(0)=x, γ(1)=y

∫ 1

0

g(γ(t))|γ′(t)| dt

with g(x) = |∇f |(x)1D(x) + |∇T f |(x)1∂D(x), and Bzi ⊂ ∂D is the basin
of attraction of zi for the dynamics ẋ = −∇T f(x), where ∇T f denotes
the tangential gradient of f on ∂D.

Then, if X0 ∼ ν, in the limit h→ 0,

τ ∼ E





n
∑

j=1

k̃j





and for all i ∈ {1, . . . , n}, for all Σi ⊂ ∂D such that zi ∈ Σi and Σi ⊂ Bzi ,

P(Xτ ∈ Σi) =
k̃i

∑n
j=1 k̃j

where for i ∈ {1, . . . , n},

(6) k̃i =
∂nf(zi)√

πh

√

detHessf(x0)
√

detHessf |∂D(zi)
e−

2
h (f(zi)−f(x0))(1 +O(h)).

This result thus gives a first answer to the question raised above. The proof
crucially relies on previous works by B. Helffer, F. Nier and J. Sjöstrand, see in
particular [4]. Let us make a few remarks to conclude. First, the prefactor in

the rates k̃i differ from the prefactors (3) since the local minima zi are not saddle
points of f in the geometric setting of Theorem 1. We are currently working on
generalizations to deal with saddle points of f on ∂D. Second, we have checked
numerically that the assumption (5) indeed seems necessary to get the correct
prefactors, see [1]. Third, similar results have been obtained starting from a point
x ∈ D rather than from the QSD ν if f(x) is sufficiently small, and also for more
general subsets Σ of ∂D, see [1]. Fourth, our approach based on the QSD provides
more precise results than those obtained using strandard techniques from large
deviations [5] (in particular prefactors and error estimates).

Currently, we are working in three directions to extend these results: (i) con-
sidering saddle points of f on ∂D; (ii) working with the Langevin dynamics rather
than the overdamped Langevin dynamics; (iii) studying the exit event for non
reversible dynamics.
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Measure-valued Pólya processes

Cécile Mailler

(joint work with Jean-François Marckert)

A Pólya urn is a Markov process describing the contents of an urn containing balls
of different colours. In the d-colour case, the process (U(n))n≥1 takes values in
Nd

0, and the i-th coordinate of U(n) is the number of balls of colour i in the urn at
time n. The process is defined by two parameters: the initial composition vector
U(0) ∈ Nd

0, and the d×d replacement matrix R with coefficients in N0. We denote
by R1, . . . , Rd the lines of R. Given these two parameters, the process evolves as
follows: given U(n), we set U(n + 1) = U(n) + Rξn+1 , where ξn+1 is a random
variable of distribution

Pn(ξn+1 = i) =
Ui(n)

∑d
j=1 Uj(n)

.

In other words, at every discrete time step, we draw a ball uniformly at random in
the urn (denote its colour by i), and replace it in the urn together with Ri,j balls
of colour j, for all 1 ≤ j ≤ d.

A vast literature is dedicated to understanding the asymptotic behaviour of
these urn processes; this talk focuses on the following law of large numbers proved
by Athreya and Karlin in 1968:

Theorem 1 (Athreya and Karlin [1]). Assume that
∑d

j=1 Ui(0) > 0, and that the
replacement matrix R is irreducible, then, almost surely when n→ ∞, we have

U(n)

n
→ v,

where v is a left eigenvector of the replacement matrix R associated to its Perron-
Frobenius eigenvalue.

This law of large numbers actually holds under weaker assumptions on R, and
if the replacement matrix is re-sampled at every time step in an i.i.d. fashion (see
Janson [7]). One can also prove convergence results about the fluctuations around
this almost sure limit: the fluctuations can be Gaussian or not, depending on the
spectral gap of R (also see Janson [7]).

In this talk, I present a very recent extension of the Pólya urn model to infinitely-
many colours that we call “measure-valued Pólya processes” (MVPPs); this work
was inspired by a series of papers by Bandyopatyay and Thacker [2, 3, 4] where
a similar model is defined and studied. I show how MVPPs can be coupled with
branching Markov chains (BMCs) on the random recursive tree (RRT), and how
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we can use the ergodicity of the underlying Markov chain and the typical shape
of the RRT to prove a (weak) law of large numbers for a wide class of MVPPs.

1. Model and main result

A measure-valued Pólya process is a Markov chain (Mn)n≥0 taking values in the
set of measures on a Polish space P (the set of colours). It is defined by two
parameters: the initial composition measure M0, and the replacement measures
(Rx)x∈P , being a family of measures on P . Given Mn, we set Mn+1 = Mn +
Rξn+1 , where ξn+1 is a random variable of distribution Mn/Mn(P). One can
think of ξn+1 as the colour of the ball drawn at random in the urn at time n+ 1,
although we allow the balls to be infinitesimal in this model.

The following definition of ergodicity is needed for our main result:

Definition. A Markov chain (Wn)n≥0 on P is (an, bn)-ergodic if

Wn − bn
an

⇒ γ, in distribution when n→ ∞,

and if the limit distribution γ does not depend on the distribution of W0.

Theorem 2 ([8]). Assume that

(a) 0 <M0(P) <∞,
(b) the family of measures (Rx)x∈P is a probability Kernel on P,
(c) the Markov chain W of Kernel (Rx)x∈P is (an, bn)-ergodic for some sequences

(an)n≥0 and (bn)n≥0, and
(d) for any sequence (εn)n≥0 such that εn = o(

√
n) when n → ∞, for all w ∈ R,

we have

lim
n→∞

bn+w
√
n+εn − bn

an
=: g(w) and lim

n→∞

an+w
√
n+εn

an
=: f(w)

both exist. Then, in probability when n → ∞, the MVPP M of replacement
Kernel R satisfies

n−1Mn(alogn · +blogn) → ν,

for the weak topology on the set of measures on P, where ν is the distribution
of f(Λ)Γ + g(Λ), where Λ ∼ N (0, 1) and Γ ∼ γ are two independent random
variables.

Remark. Our model is indeed a generalisation of the d-colour case of Athreya
and Karlin, and one can check that our result applies and gives that U(n)/n→ v
in probability (and not almost surely as proved by Athreya and Karlin).

Remark. The take-home message is that any ergodic Markov chain gives an ex-
ample of a convergent MVPP. For example, the MVPP on N0 of replacement
Kernel given by

Rx =
λ

λ+ xµ
δx+1 +

xµ

λ+ xµ
δx−1,
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for all x ≥ 1 and R0 = δ1 corresponds to the discrete-time M/M/∞ queue. There-
fore, our main result applies as soon as λ < µ and the MVPP converges in proba-
bility as follows: n−1Mn → γ, where

γ(x) =
(λ/µ)xe−λ/µ

x!
.

2. An almost surely convergent case

Theorem 3 ([8]). Let (Mn)n≥0 be the MVPP on P = R of replacement Kernel
given by Rx = x +∆ for all x ∈ R, where ∆ is a random variable of finite mean
m and variance σ2. Assume that there exists δ > 0 such that Eeδ∆ < ∞, then,
almost surely when n→ ∞,

n−1Mn(
√

logn · +m logn) → N (0,m2 + σ2),

for the weak topology on the set of measures on Rd.

Remark. Note that Theorem 2 implies a weaker version of Theorem 3 where the
stated convergence is in probability and not almost surely. The proof of Theo-
rem 2 relies on a coupling with a branching Markov chain on the random recursive
tree whereas the almost sure convergence of Theorem 3 is proved using martingale
techniques. Such martingale techniques are standard on the literature; they are
used to prove almost sure convergence of the profile of different random trees (see,
e.g. [5]), and of the occupation measure of branching random walks on different
random trees (see, e.g. [6]).

Remark. On a private communication, S. Janson informed us that the exponen-
tial moment condition is superfluous in Theorem 3 and that the result would hold
just with the second moment assumption.

3. Some open problems

I believe that the most urgent open problem about this model is to remove the
“balance assumption”, namely (b) in Theorem 2. Another interesting problem is
to understand better which MVPPs converge almost surely, and which don’t. In
an ongoing work with D. Villemonais, we prove almost sure convergence for a large
class of MVPPs, although our approach seems to be restricted to the case when
the underlying Markov chain is (1, 0)-ergodic.
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Metastability of the contact process on evolving scale-free networks

Peter Mörters

(joint work with Emmanuel Jacob and Amitai Linker)

The aim of this research project is to investigate the possible influence of time-
variability of a network on transport or spreading processes taking place on the
network. We present a particular example, namely the contact process acting on
scale-free networks evolving by stationary vertex updating.

In our context an evolving network is a (random) family (GN
t : t ≥ 0, N ∈ N) of

graphs with fixed vertex set {1, . . . , N}. Given the network, the contact process
on (GN

t : t ≥ 0) is a time-inhomogeneous Markov process that can be defined as
follows: Every vertex may be healthy or infected. Infected vertices infect healthy
neighbours at rate λ and recover at rate one. When vertices recover they are again
susceptible to infection.

We start the process with every vertex infected and ask for the size of the
extinction time T , the first time of entry in the absorbing state when every vertex is
healthy. We say that the system experiences fast extinction if, for some sufficiently
small infection rate λ > 0, the expected extinction time is bounded by a power
of the network size. We say that we have slow extinction if, for every infection
rate λ > 0, the expected extinction time is at least exponential in the network size
with high probability.

Slow extinction is a phenomenon of metastability, a physical system reaching
its equilibrium very slowly because it spends a lot of time in states which are
local energy minima, the so-called metastable states. Metastability in our model
suggests, informally, that starting from all vertices infected the density of infected
vertices is likely to decrease rapidly to a metastable density, and stay close to this
density up to the exponential survival time of the infection. When the metastable
density decays like λξ+o(1) we call ξ the metastability exponent. Our interest in
metastability exponents stems from the fact that they reflect which is the optimal
survival strategy for the infection.

Assume now that GN
0 is an inhomogeneous random graph, i.e. edges exist in-

dependently with the probability of an edge {i, j} given as 1
N p(i/N, j/N) ∧ 1 for

a suitable kernel p : (0, 1] × (0, 1] → (0,∞). We focus on two universal types of
kernel which produce scale-free networks, the factor kernel given by

p(x, y) = βx−γy−γ ,
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and the preferential attachment kernel given by

p(x, y) = β(x ∧ y)−γ(x ∨ y)γ−1,

for some β > 0 and 0 < γ < 1. It is easy to see that the inhomogeneous networks
with kernel p are scale free with power-law exponent τ = 1 + 1

γ .

For both kernels we have slow extinction of the contact process on the static
network GN

0 . This changes when the networks undergo a stationary dynamics.
Each vertex i updates independently with rate

κi = κ0

(

N

i

)γη

for i ∈ {1, . . . , N},

where η ∈ R and κ0 > 0 are fixed constants. When vertex i updates, every
unordered pair {i, j}, for j 6= i forms an edge with probability pi,j , independently
of its previous state and of all other edges. The remaining edges {k, l} with k, l 6= i
remain unchanged.

The parameter η ∈ R regulates the speed of the network dynamics. When
η → −∞ we slow it down and approach the static case, for η = 0 we have network
and process dynamics on the same scale and for η → ∞ we approach a mean-field
scenario where edges are independently resampled whenever the infection wants
to use them. Our main theorem describes the phases of the system in the case of
fast network evolution, i.e. for η ≥ 0.

Theorem. (a) Suppose p is the factor kernel.
(i) If 0 ≤ η < 1

2 and γ < 1
3−2η , or if η ≥ 1

2 and γ < 1
2 , there is fast

extinction.
(ii) If 0 ≤ η < 1

2 and γ > 1
3−2η , or if η ≥ 1

2 and γ > 1
2 , there is slow

extinction and the metastability exponent is

ξ =







2−2γη
3γ−2γη−1 if γ < 2

3+2η ,

γ
2γ−1 if γ > 2

3+2η .

(b) Suppose p is the preferential attachment kernel.
(i) If η ≥ 1

2 and γ < 1
2 , there is fast extinction.

(ii) If 0 ≤ η < 1
2 , or if η ≥ 1

2 and γ > 1
2 , there is slow extinction and the

metastability exponent is

ξ =



















3−2γ−2γη
γ−2γη if η < 1

2 and 0 < γ < 3
5+2η ,

3−γ−2γη
3γ−2γη−1 if η < 1

2 and 3
5+2η < γ < 1

1+2η ,

1
2γ−1 if 1

1+2η < γ.

The figure below shows the different phases in a diagram. Each phase of slow
extinction corresponds to a different survival strategy for the contact process.
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Figure 1. The figures summarise the theorem in the form of
phase diagrams for the factor kernel (top) and the preferential
attachment kernel (bottom).

The analogous problems for slow dynamics, i.e. the case η < 0, are not yet fully
understood and subject of our ongoing research.
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Stochastic homogenization of discrete energies with degenerate growth

Stefan Neukamm

(joint work with Mathias Schäffner, Anja Schlömerkemper)

Let (L, E) denote a Zd-periodic, locally finite, connected graph with vertices L ⊂
Rd and oriented edges E ⊂

(

L × L
)

\ {e = [x, x] : x ∈ L} – for simplicity, set

L := Zd and E := {e = [x, x+ ei] : x ∈ Zd} where e1, . . . , ed denotes the canonical
basis of Rd. For a scaling parameter 0 < ε ≪ 1 and a (macroscopic) domain
A ⊂ Rd we consider the energy functional

Hε(u) := εd
∑

e∈εE∩A

V ( eε ,∇u(e)),

where u : εL → R
n denotes a possibly vector-valued state variable and ∇u(e) :=

u(ye)−u(xe)
|ye−xe| denotes the discrete gradient of u at the edge e = [xe, ye] ∈ εE . Above,

V : E × Rn → (0,∞) denotes a random interaction potential which we assume to
be stationary and ergodic w.r.t. the action of Zd on E by shifting.

Different discrete models of mechanics and physics can be phrased in this form,
in particular:

• In the scalar case, i.e. co-dimension n = 1, and for the quadratic poten-
tial V (e, ξ) := ω(e)|ξ|2 we recover the random conductance model with
stationary and ergodic conductances {ω(e) ∈ (0,∞)}e∈E .

• In the vectorial case with d = n ≥ 2, and non-convex potential V (e, ξ) :=
k(e)(|ξ|−|e|)2 we recover a nonlinear elasticity model describing a network
of harmonic springs with random spring constants {k(e) ∈ (0,∞)}e∈E .

We are interested in the homogenization limit ε ↓ 0 (in the sense of a discrete-to-
continuum Γ-limit) in the case when the interaction potentials satisfy the degen-
erate growth condition

∀e ∈ E , ξ ∈ R
n : λ(e)(1c |ξ|p − c) ≤ V (e, ξ) ≤ c(λ(e)|ξ|p + 1),

where 1 < p < ∞ and c ∈ R are deterministic constants and λ : E → (0,∞) is a
random, stationary & ergodic weight satisfying the moment condition

∀e ∈ E : E[λα(e)] + E[λ−β(e)] <∞,

with exponents α, β satisfying as a minimal assumption the condition

(1) 1 ≤ α ≤ ∞,
1

p− 1
≤ β ≤ ∞.

The continuum limit invokes the deterministic energy density Whom : Rn×d →
[0,∞) defined by the multi-cell homogenization formula

Whom(F ) := lim
k→∞

E

[

inf
φ:L→Rn

φ is kZd-periodic

1

kd

∑

e∈E∩[0,k)d

V (e,∇(F + φ)(e))
]

,

where (F + φ) stands short for the function L ∋ x 7→ Fx+ φ(x) ∈ Rn.
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The problem of deriving continuum models from discrete models has a long
tradition in rational mechanics and the calculus of variations, e.g. see [2, 1] for
models describing elastic solids. In a similar spirit, in [4] we study the impact of
degenerate growth. We make the following observations:
(a). The moment condition (1) is the minimal assumption required to ensure that
Whom satisfies a non-degenerate p-growth condition of the form

∀F ∈ R
n×d :

1

c′
|F |p − c′ ≤Whom(F ) ≤ c′(|F |p + 1),

see [4, Lemma 11,Remark 5].
(b). In the scalar case, i.e. for co-dimension n = 1, and under the assumption of
a “convexity at ∞” assumption for V , we prove that the functional Hε (almost
surely) Γ-converges in the L1-topology to the continuum, deterministic energy
functional

(2) Hhom(u) :=

∫

A

Whom(∇u),

see [4, Theorem 4]. Moreover, if the potential V is convex, the formula for Whom

simplifies to a single-cell homogenization formula

Whom(F ) := E

[

inf
φ:L→Rn

φ is Zd-periodic

∑

e∈E∩[0,1)d

V (e,∇(F + φ)(e))
]

.

For given F , the minimization problem for φ can be rephrased with help of the
associated Euler-Lagrange equations. In particular, in the case of the random
conductance model (i.e. if V is quadratic and convex) we recover the corrector
problem of stochastic homogenization, see [4, Remark 4].
(c). In the vectorial, non-convex case, we need to replace (1) by the stronger
moment condition

(3) α > 1,
1

α
+

1

β
≤ p

d
,

and prove Γ-convergence (in L1) to the functional Hhom defined in (2), see [4,
Theorem 4].
(d). The convergence statements of (b) and (c) can be combined with the following
compactness statement (for sequences of functions uε : εL → Rn):

If uε ⇀ u0 weakly in L1 and lim sup
ε↓0

Hε(uε) <∞,

then uε → u0 strongly in Lq,
(4)

for all 1 ≤ q <∞ satisfying

(5)















1

q
≥ β + 1

β

1

p
− 1

d
if β <∞,

1

q
>

1

p
− 1

d
if β = ∞,
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see [4, Lemma 6]. This observation allows to lift the convergence statements of (b)
and (c) to Γ-convergence in Lq. Thus, a standard argument of Γ-convergence im-
plies that Γ-convergence of Hε is stable under (additive) perturbation by function-
als that are continuous w.r.t. strong convergence in Lq, e.g. we may conclude that
*almost) minimizers to the energy Hε(u) + εd

∑

x∈εL∩A fε(x) · u(x) with fε ⇀ f

weakly in Lq′(A), q′ = q
q−1 converge in Lq to minimizers of Hhom(u)+

∫

A f ·u, see
[4, Corollary 7].
(e). In the case of the random conductance model — i.e. V is quadratic & convex,
n = 1, and p = 2 — it is especially interesting to recover compactness in the sense
of (d) for q = 2. In view of (5) this leads to the moment condition

1 ≤ α ≤ β,
d

2
≤ β ≤ ∞.

In that case we recover that Hε Γ-converges to Hhom in L2, and in the stronger
sense of Mosco convergence. As a consequence, by classical results, we obtain con-
vergence (of finite dimensional distributions) of the associated evolution equation
(L2-gradient flow), and spectral convergence (i.e. convergence of the associated
Eigenspaces).
(f). If we further restrict to the special case of the random conductance model on
the nearest-neighbour lattice with i.i.d. conductances ω(e), e ∈ {[x, x + ei] : x ∈
Zd, i = 1, . . . , d}, then we can relax the condition on β, see [4, Section 3.2]. In
particular, in view of (e) we recover Mosco convergence in L2 (for all dimensions
d ≥ 2) under the moment condition

α = 1, β >
1

4
.

This is optimal in the sense that for β < 1
4 Mosco convergence in L2 breaks down

due to the localization of eigenvalues in the limit ε ↓ 0, see [3].
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Fluid limit analysis for Hastings–Levitov planar growth

James Norris

(joint work with Vittoria Silvestri and Amanda Turner)

Conformal maps provide an effective way to encode subsets of the complex plane
and thus to describe planar growth processes. We have considered in particular
the map

F (z) = ecz exp

{

2

γz − 1

}

defined on {|z| > 1}. Here c > 0 and γ = 1 + c+
√
c2 + 2c. Fix η ∈ R and σ > 0.

Set Φ0(z) = z and define recursively a sequence of random conformal maps on
{|z| > 1} as follows: given Φn, choose a random angle Θn+1 such that

P(Θn+1 ∈ dθ|Fn) ∝ |Φ′
n(e

σ+iθ)|−ηdθ

and set
Φn+1 = Φn ◦ FΘn+1 .

Here

Fθ(z) = eiθF (e−iθz) = ecz exp

{

2

γze−iθ − 1

}

and Fn = σ(Θ1, . . . ,Θn). Write Kn for the complement of the range of Φn.
Then (Kn)n≥0 is a non-decreasing random sequence of compact sets in the plane.
The set Kn+1 may be considered as obtained from Kn as follows: first map the
complementary domain Dn conformally to the reference domain D0, then attach
the particle

Pn+1 = {z ∈ D0 : z 6∈ FΘn+1(D0)}
to K0, then map back to Dn, thereby adding the new particle Φn(Pn+1).

In the case η = 0, the new particle can be thought of as attached at a point
chosen according to harmonic measure. This corresponds to the mechanism used
for diffusion limited aggregation (DLA). The resulting dynamics do not behave
like DLA, however, because the attached particles are distorted by the conformal
map Φn, which has the effect of magnifying particles attached at points where the
density of arc length with respect to harmonic measure is high – that is in the
‘fjords’ of the current cluster. On the other hand, particles attached at the tips
of ‘fingers’, where harmonic measure is large, are scaled down. This introduces
a negative feedback, which keeps the clusters disc-like, in contrast to the fractal
behaviour seen in DLA.

The scaling limit c→ 0 with cn→ t for η = 0 was analysed in [1]. Fluctuations
around this limit were analysed in [2]. In the case η = 0, analysis is maded easier
by the fact that, for all z ∈ D0, the process Xn = Φ−1

n (z) is Markov.
The parametrized family of models described above, for η in the range [0, 1]

allow the negative feedback to be progressively removed, with η = 1 thought to
be the critical value where the scaling limit will cease to be a disc.

We have shown [3] that, for all η ∈ [0, 1], for c small and cn = t, the cluster is
close to a disc of radius et, just as in the case η = 0. The fluctuations around this
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fluid limit remain Gaussian for η ∈ [0, 1) with a covariance structure depending
on η which diverges as η → 1.
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Characterizing fluctuations in stochastic homogenization

Felix Otto

(joint work with Mitia Duerinckx)

Let a be a uniformly elliptic random coefficient field, which is stationary and

ergodic. Given a macroscopic r.h.s. f = f̂( ·
L ), f̂ ∈ C∞

0 (Rd)d deterministic, we
consider the equation

∇ · (a∇u+ f) = 0 in R
d,(1)

and we study macroscopic observables of the form
∫

g · ∇u with g = ĝ( ·
L), ĝ ∈

C∞
0 (Rd)d deterministic. Qualitative homogenization theory states that almost

surely L−d
∫

g ·∇u−L−d
∫

g ·∇ū→ 0 as L ↑ ∞, where ū solves the (deterministic)
homogenized equation

∇ · (ā∇ū+ f) = 0 in R
d,

where the homogenized coefficient ā ∈ Rd×d is given by āei = E [a(ei +∇ϕi)] in
terms of the corrector ϕ, that is, the solution of ∇ · a(ei + ∇ϕi) = 0 in Rd. A
natural concept in homogenization is to compare u to its “two-scale expansion” (1+
ϕi∂i)ū (using Einstein’s summation convention), which captures the oscillations
of u to order O(L−1), in the sense that the difference between the gradients is of
(relative) order O(L−1). Such expansions can be pursued to higher order: while
ϕ is characterized by (1 + ϕi∂i)ℓ̄ being a-harmonic for all affine functions ℓ̄, the
second-order corrector ϕ′ (throughout the talk, a prime denotes a second-order
object) is characterized by the property that (1 + ϕi∂i + ϕ′

ij∂
2
ij)q̄ is a-harmonic

for all ā-harmonic quadratic polynomials q̄. The second-order two-scale expansion
(1 + ϕi∂i + ϕij∂

2
ij)ū

′ then captures the oscillations of u at order O(L−2), where

ū′ := ū + ũ′ with ũ′ given by ∇ · (ā∇ũ′ + ā
′
i∇∂iū) = 0 and where ā

′
i ∈ Rd×d is

the second-order homogenized coefficient, see below for a definition. While these
error estimates are classical in the periodic setting, they also hold in the random
setting for large enough dimension: O(L−1) for d > 2, when ϕ is stationary; and
O(L−2) for d > 4, when ϕ′ is stationary [3]. Here and in the following we assume
that a has integrable correlations.

Periodic homogenization is about understanding the oscillations of u by means
of two-scale expansions, random homogenization means in addition studying the
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random fluctuations of the macroscopic observable
∫

g ·∇u. It was recently shown

that the rescaled observable L−d/2
∫

g · (∇u−E[∇u]) converges in law to a Gauss-
ian. We may naturally look for a finer description of this convergence by means
of a two-scale expansion. As first observed in [2], however, the limiting variance
of L−d/2

∫

g · ∇u generically differs from that of L−d/2
∫

g · ∇(1 +ϕi∂i)ū: when it
comes to fluctuations, the two-scale expansion cannot be applied naively. In [1],
we unravelled the mechanism behind this observation by means of the “homog-
enization commutator”, which led to a new pathwise theory of fluctuations (see
also the pathwise heuristics in [2]). In the present talk we explain how this ap-
proach naturally extends to higher orders, in parallel with the known theory of
oscillations. For simplicity of exposition, we focus on second order, which is the
relevant order for dimension d = 3.

Key is the homogenization commutator, which on first-order level takes the
form

Ξk[u] := ek · (a − ā)∇u.

This expression is natural: H-convergence is equivalent to convergence of L−d
∫

g ·
Ξ[u] to 0. This is made quantitative with help of the flux corrector, a skew-
symmetric matrix field σi with a(ei +∇ϕi) = āei +∇ · σi. Indeed, Leibniz’ rule
yields Ξk[u] = −∇ · ((ϕ∗

ka
∗ + σ∗

k)∇u) for any a-harmonic u, where ϕ∗
k, σ

∗
k are the

correctors for the pointwise transpose field a
∗. As the r. h. s. is in divergence

form and ϕ∗
k, σ

∗
k are stationary for d > 2, it is of order O(L−1) with g. For a

higher-order theory, we need a second-order extension of Ξ:

Ξ′
k[u] := ek · (a− ā)∇u + ā

∗′
k el · ∇∂lu,

which, for a-harmonic u, indeed satisfies the corresponding identity Ξ′
k[u] =

∂l∇
(

(ϕ∗′
kla

∗ + σ∗′
kl)∇u

)

, where the r.h.s. is now of order O(L−2) for dimension
d > 4, when also ϕ∗′, σ∗′ are stationary. The identity follows from the characteriz-
ing property of ϕ′, σ′, and ā′, namely (φia−σj)ej = ā

′
iej −a∇ϕ′

ij +∇·σ′
ij , which

also yields ā
′
iej = E

[

(φia− σj)ej + a∇ϕ′
ij

]

. Next, we define suitable two-scale
expansions of these objects. For the first order, we simply inject the first-order
two-scale expansion of ∇u into Ξ[·] and set

Ξ◦
k[ū] := ek · (a − ā)(ei +∇ϕi)∂iū,

which alternatively is characterized by Ξ◦[ū](x) = Ξ[(1+ϕi∂i)Txū](x), where Txū
denotes the first-order Taylor polynomial of ū at x. For the second order, we
similarly define

Ξ◦′[ū′](x) := Ξ[(1 + ϕi∂i + ϕij∂ij)T
′
xū

′](x),

where T ′
xū

′ is the second-order Taylor polynomial of ū′ at x. The above defined
Ξ[·] and Ξ◦[·] (resp. Ξ′[·] and Ξ◦′[·]) are viewed as a first-order (resp. second-order)
differential operators with (distributional) stationary random coefficients.
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Theorem. It holds

Var

[

L−d
2

∫

g · ∇u − L−d
2

∫

∇v̄′ · Ξ′[u]

]
1
2

+Var

[

L− d
2

∫

g · Ξ′[u]− L− d
2

∫

g · Ξ◦′[ū′]

]
1
2

<∼f̂ ,ĝ











L− 3
2 logL : d = 3;

L−2 logL : d = 4;

L−2 : d > 4;

where v̄′ := v̄ + ṽ′ with ∇ · (ā∗∇v̄ + g) = 0 and ∇ · (ā∗∇ṽ′ + ā
∗′
i ∇∂iv̄) = 0.

The above result splits into two parts: 1) The fluctuations of macroscopic ob-
servables can be recovered from those of Ξ′[·] by a suitable Helmholtz-type pro-

jection with an error of order O(L− d
2 ) up to logarithmic corrections (the stated

estimate saturates at d = 4, starting from d > 4, third-order correctors should be
taken into account and so forth). 2) The second-order two-scale expansion Ξ◦′[·] of
the homogenization commutator Ξ′[·] is accurate in the fluctuation scaling at order

O(L− d
2 ). We focus here on the second part, the first part follows from a direct

computation. Combining the two parts leads to a second-order pathwise theory
of fluctuations: the fluctuations of all macroscopic observables are almost surely

determined up to order O(L− d
2 logL) (here only for d ≤ 4) by the fluctuations of

the new intrinsic quantity Ξ◦′[·]. In dimension d = 3, the above yields a full path-
wise description of the fluctuations of L−d

∫

g · ∇u with accuracy O(L−d logL),
that is, the square of the CLT scaling! In upcoming work we establish this result
in any dimension, and that fluctuations of Ξ◦′[·] are asymptotically Gaussian.

For the proof, we focus on the model setting a(x) := h(G(x)) for some smooth
map h and Gaussian random field G with integrable covariance function, in which
case a Malliavin calculus is available on the probability space and substantially
simplifies the analysis. In particular, for any random variable X , a Poincaré
inequality holds in the form Var [X ] ≤ CE

[∫

|δX/δa|2
]

, where δX/δa denotes the
functional (Malliavin) derivative of X with respect to a. Key is a representation
formula for the infinitesimal variation of the two-scale expansion error Ξ′[u] −
Ξ◦′[ū′]. We start with the infinitesimal variation of Ξ′[u]:

(2) δΞ′
k[u] = (ek +∇ϕ∗

k) · δa∇u− ∂l
(

(ϕ∗
kel +∇ϕ∗′

kl) · δa∇u
)

+ ∂l∇ ·
(

(ϕ∗′
kla+ σ∗′

kl)∇δu
)

+ ∂l∇ · (ϕ∗′
klδa∇u

)

.

We argue that the last two terms lead to a contribution of order O(L−2). First note
that (1) yields ∇· (a∇δu+ δa∇u) = 0, so that ∇δu essentially behaves like δa∇u,
and hence we may focus on the last term in (2). Applying Poincaré’s inequality to
X := L−d/2

∫

g ·Ξ′[u], its contribution is estimated by L−dE
[∫

|∇2g|2|ϕ∗′|2|∇u|2
]

.
Using the stationarity of the corrector ϕ∗′ for d > 4 and the equation for u, this

is essentially estimated by L−d
∫

|∇2g|2|f |2 <∼f̂ ,ĝ (L−2)2 as claimed. The only

important terms in (2) are thus the first two. Next, applying identity (2) to the
two-scale expansions (1+ϕi∂i)ℓ̄ and (1+ϕi∂i+ϕ

′
ij∂ij)q̄ with first- and second-order
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polynomials ℓ̄ and q̄, and suitably arranging the terms, we find

δΞ◦′
k [ū

′] = (ek +∇ϕ∗
k) · δa∇(1 + ϕi∂i + ϕ′

ij∂ij)ū
′

− ∂l
(

(ϕ∗
kel +∇ϕ∗′

kl) · δa∇(1 + ϕi∂i)ū
)

+O(L−2).

Subtracting this identity from (2), and recognizing the two-scale errors∇u−∇(1+
ϕi∂i)ū = O(L−1) and∇u−∇(1+ϕi∂i+ϕ

′
ij∂ij)ū

′ = O(L−2), the conclusion follows

in the form Var
[

L−d/2
∫

g · (Ξ′[u]− Ξ◦′[ū′])
] <∼f̂ ,ĝ (L−2)2.
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Large deviations for reaction fluxes

Robert I. A. Patterson

(joint work with D. R. Michiel Renger)

Mean field particle systems are a common model for chemical reactions in well
mixed containers. Molecules (and ions, . . . ) are modelled as particles and jumps
model reactions in which atoms are reorganised into new molecules. The model is
then a family of Markov processes indexed by V > 0, which may heuristically be
understood as size of the well mixed container. One studies the empirical measure
of the particle system, which should be identified with the concentration vector.
The innovation in the work reported here and presented in more detail in [1] is
to study reaction fluxes and not just concentrations. The reaction fluxes are the
(rescaled) reaction counts and so the initial condition and the fluxes imply the
state of the particle system, but they contain more information since multiple
sequences of reactions may produce the same change in concentrations.

1. The stochastic model

To make ideas precise, let Y be the set of possible molecules, for example Y =
{H2O,H2,O2}. For fixed V the particle system state can be represented by a
concentration vector

c = (cy)y∈Y ∈ l1≥0(Y), cy =
1

V
# {particles of type y} ,

where l1≥0 is the space of non-negative, summable sequences, which can be identi-
fied with the space of finite measures on an underlying space, here Y. Let R be
the reaction set, for example R = {(2H2O → 2H2 +O2) , (2H2 +O2 → 2H2O)}
and let the rate of reaction r be V k̄(r)(c) whenever the system state is c. In fact,
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once should take rates k̄(r,V ) such that 1
V k̄

(r,V ) → k̄(r) locally uniformly, for details
see [1], but this detail is ignored in the interests of brevity.

Like the concentrations, the fluxes can be represented by a vector:

w(t) = (wr(t))r∈R ∈ l1≥0(R), wr(t) =
1

V
# {occurrences of reaction r in (0, t]} .

Finally write γ(r) for the vector of molecules consumed and created by a single
instance of reaction r so that we have Markov jump processes with generators
Q(V ) acting on bounded measurable test functions φ : l1(Y) × l1(R) → R as

(1)
(

Q(V )φ
)

(c, w) = V
∑

r∈R
k̄(r)(c)

[

φ

(

c+
1

V
γ(r), w +

1

V
1r

)

− φ(c, w)

]

,

where 1r is the vector with 1 at position r and 0 elsewhere. Under suitable
assumptions on the k̄(r), which ensure that the processes cannot blow up these
generators define laws P(V ) on càdlàg, bounded variation paths from compact
time intervals [0, T ] into l1(Y)× l1(R).

2. Results

A functional law of large numbers for the concentration process (not the fluxes)
goes back to Kurtz [2]. The present work incidentally extends this to the com-
bined concentration and flux process, showing that, provided the initial conditions
converge weakly the P(V ) converge weakly to the measure concentrated on the
(unique) solution to

(2) ċ(t) = Γẇ(t), ẇ(t) =
(

k(r) (c(t))
)

r∈R

with the limiting initial condition and where Γw :=
∑

r∈R γ
(r)w(r).

The main result of this work is that, provided the initial concentrations satisfy a
sufficiently regular LDP on the scale V with rate function I0, the P(V ) also satisfy
a large deviation principle on the scale V with rate functional J (c, w) given by

(3) I0 (c(0)) + sup
ζ∈C1

c ((0,T );l∞(R))

∫ T

0

(

ζ(t) · ẇ(t)−
∑

r∈R
k(r) (c(t))

[

eζ
(r) − 1

]

)

dt

= I0 (c(0)) +
∫ T

0

∑

r∈R

(

ẇ(r)(t) log

(

ẇ(r)(t)

k(r) (c(t))

)

− ẇ(r)(t) + k(r) (c(t))

)

dt

when (c, w) is absolutely continuous with Γẇ ≡ c and otherwise +∞.
An application of the contraction principle yields as a corollary an LDP for the

concentration process extending the range of validity of LDPs from [3] and [4].

3. Remarks

The initial large deviation is a technical necessity for the current proof and cannot
be trivial, but small fluctuations of the initial condition must be possible for finite
V .
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The proofs are currently presented for Y and R finite, but under modest as-
sumptions an extension to the countable setting, for example for pure coagulation,
is possible.

This appears to be the first use of fluxes in studying LDPs for general models
of chemical reaction systems. For the special case of reactions that only involve
one particle changing its type fluxes were studied by Renger [6] and Kraaij [5].
For further references on the use of fluxes in an LDP setting the reader is referred
to [1] as well as to the abstracts by Bertini and Faggionato in this volume.
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Homogenization of convolution type periodic operators

Andrey Piatnitski

(joint work with Elena Zhizhina, Moscow)

The talk focuses on homogenization problem for the operator

Lεu(x) =
1

εd+2

∫

Rd

λ
(x

ε

)

µ
(y

ε

)

a
(x− y

ε

)(

u(y)− u(x)
)

dx

in L2(Rd), d ≥ 1. Here ε is a small positive parameter, µ(z) and λ(z) are periodic
functions in Rd with period one in each coordinate direction such that

0 < Λ− ≤ λ(z), µ(z) ≤ Λ+.

The function a(z) possesses the following properties:

a(z) = a(−z), a(z) ≥ 0, a ∈ L1(Rd) ∩ L2
loc(R

d),
∫

Rd

a(z) dz = 1,

∫

Rd

|z|2a(z) dz ≤ +∞.

Under these conditions Lε is the generator of a continuous time jump Markov
process in a periodic environment.

Lemma. For any m > 0 and any f ∈ L2(Rd) the equation (m−Lε)uε = f has a
unique solution. Moreover, ‖uε‖L2(Rd) ≤ c

m‖f‖L2(Rd) with a constant c that does
not depend on ε.

We turn to our homogenization result.
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Theorem. There exists a symmetric positive definite matrix Θ such that for any
m > 0 and any f ∈ L2(Rd) the solution uε of equation (m− Lε)uε = f converges

in L2(Rd), as ε→ 0, to the solution u0 of equation
(

m−Θij ∂2

∂xi∂xj

)

u0 = f .

The matrix Θ can be constructed in terms of solutions of auxiliary periodic
problems.

The results presented here can be found in the paper [1].
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A non-local Fokker-Planck equation related to nucleation and
coarsening

André Schlichting

(joint work with Joseph G. Conlon)

We shall be concerned with a non-linear non-local problem associated to the
Fokker-Planck equation on the half line R+ = [0,∞),

(1) ∂tc(x, t) + ∂x
(

a(x)
(

θ(t)W ′(x) − V ′(x)
)

c(x, t)
)

= ∂2x
(

a(x)c(x, t)) .

We shall assume that a is differentiable and strictly positive, V,W ∈ C1 and
θ : [0, T ] → R is continuous. Together with suitable Dirichlet boundary condition
and a conservation law, the evolution (1) may be considered a continuous version
of the discrete Becker-Döring model [2].

At this point, the equation (1) is a Fokker-Planck equation with time and space
dependent coefficients. In particular, if the function θ(·) is constant θ(·) ≡ θ, then
c(x, t) = ceqθ (x) with ceqθ (x) = a(x)−1 exp

(

−V (x) + θW (x)
)

, is a steady state
solution of (1). In the problem we study here θ(·) is non-constant in time and is
determined by the conservation law

(2) θ(t) +

∫ ∞

0

W (x)c(x, t) dx = ρ , where ρ > 0 is constant.

In the application of this model to coarsening, θ models the gaseous phase and c
is the volume cluster density, the constraint (2) corresponds to the conservation
of total mass and makes the Fokker-Planck equation non-local and non-linear.
Additionally, we impose a Dirichlet boundary condition which is consistent with
the requirement that ceqθ (x) is a stationary solution to (1). The Dirichlet condition
is therefore given by

(3) c(0, t) = ceqθ(t)(0) = a(0)−1 exp
(

−V (0) + θ(t)W (0)
)

, t > 0 .

It turns out that the above Dirichlet condition (3) is also thermodynamic consis-
tent, since the system (1), (2), (3) has a free energy functional acting as Lyapunov
function for the evolution.
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To specify the long-time limit, we observe that if W is assumed to be a positive
function such that ρs =

∫∞
0
W (x)a(x)−1 exp[−V (x)] dx < ∞, then W (·)ceqθ (·) is

integrable for θ ≤ 0. Furthermore, the function θ 7→ θ + ‖W (·)ceqθ (·)‖1 is strictly
increasing and maps (−∞, 0] to (−∞, ρs]. We denote by θeq(·) the inverse function
with domain (−∞, ρs]. Evidently θeq(ρs) = 0, and so we may extend θeq(·) in a
continuous way to have domain R by setting θeq(ρ) = 0 for ρ > ρs.

For the specific set of assumptions, we refer to [5, Assumption 1.1] and illustrate
here an admissible set of assumptions on a, V,W in terms of power laws

(4) W (x) = (1 + x)κ a(x) = (1 + x)α and V (x) = (1 + x)γ .

The admissible range of exponents is given by

0 < κ ≤ 2, max{2− 2κ, 0} ≤ α ≤ 2− κ and 0 < γ < min{2− α, κ} .
Under the above set of assumptions, we can state the first main result of the
presented work [5] on the well-posendess and convergence to equilibrium, which
can be seen as the analog of the one of [1] for the Becker-Döring model.

Theorem 1. Let c(x, 0), x > 0, be a non-negative measurable function such that

(5)

∫ ∞

0

W (x)c(x, 0) dx < ∞ .

Then there exists a unique solution c(·, t), t > 0, to the Cauchy problem (1), (2),
(3) with initial condition c(·, 0).
For all t > 0 the function c(·, t) ∈ C1([0,∞)) and θ ∈ C1([0,∞)).

For any L > 0 the solution c(·, t) converges uniformly on the interval [0, L] as
t→ ∞ to the equilibrium ceqθ (·) with θ = θeq(ρ). If ρ ≤ ρs then also

(6) lim
t→∞

∫ ∞

0

W (x)|c(x, t) − ceqθ (x)| dx = 0 .

In addition to the well-posedness, we derive in the subcritical case ρ < ρs a
quantified rate of convergence to equilibrium. The proof relies on the entropy
method and the convergence statement is shown with respect to a free energy,
which is decreasing along the solution and adapts ideas for the proof of convergence
established for the Becker-Döring model [9, 3], but also for gradient-flows with
constraints from [6]. The following energy dissipation estimate is deduced

(7)
d+

dt
G
(

c(·, t), θ(t)
)

≤ −D
(

c(t), θ(t)
)

,

where G is a suitable free energy and D is a dissipation funtional. The free energy G
is proven to be convex with a unique minimizer satisfying the constraint (2) given
by G(ceqθeq , θeq), with θeq = θeq(ρ) as before. This allows to define the normalized

free energy functional

(8) Fρ(c) = G(c, θ)− G(ceqθeq , θeq) with θ = ρ−
∫

W (x)c(x) dx.

Therewith, we can state the second main result of [5] on the rate of convergence.
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Theorem 2. Let ρ < ρs. In addition, assume for some β ∈ (0, 1] and constants
0 < c0 < C0 <∞ holds

(9) c0W
1−β(x) ≤ a(x)W ′(x)2 for x ∈ R+.

Let c be a solution to (1), (2), (3) with initial condition c(·, 0) satisfying (5) and
for some C0 and k > 0 the moment condition

(10)

∫

W (x)1+kβ c(x, 0) dx ≤ C0,

Then there exists λ and C depending on a, V,W, θeq, C0, k such that for all t ≥ 0

Fρ(c(t)) ≤
1

(C + λt)k
.

Moreover, if (9) holds with β = 0, that is c0W (x) ≤ a(x)W ′(x)2 ≤ C0W (x) for
x ∈ R+, then there exists C > 0 and λ > 0 such that

Fρ(c(t)) ≤ Ce−λt.

By a suitable Pinsker inequality, the convergence of Theorem 2 also implies
the quantified version of the statement (6) of Theorem 1 as well as a quantified
convergence statement for θ(t). Let us emphasize, that the rates given in (4)
satisfy the refined assumption (9) with β = 2−α−κ

κ ∈ [0, 1].
In future work the connection of the evolution in the super critical case and

Lifshitz-Slyozov-Wagner model of coarsening [8, 14] will be investigated. This will
continue the studies along the lines of [11, 7, 10, 4]. In the present situation, we
plan to take advantage of the the variational structure based on the gradient flow
formulation similar as it is done in [12] for the Becker-Döring model.
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Local limit theorem for random walks among time-dependent ergodic
degenerate weights

Martin Slowik

(joint work with Alberto Chiarini)

Random walks and their scaling limits provide a simple yet powerful model to
describe transport processes through a medium in a large variety of systems. In
many situations of practical interest the medium is highly irregular, and it is natu-
ral to model such a disordered medium as a realization of a random environment.
A specific model of a symmetric random walk in a random environment is the
random conductance model (RCM) that has been intensively studied in the past
10-15 years, see e.g. the survey [6] and references therein. Of particular interest is
the question under what kind of conditions a quenched invariance principle and a
quenched local limit theorem hold.

The invariance principle is a functional version of the central limit theorem that
has first been proven by Donsker [9] for simple symmetric random walks on the
Euclidean lattice Zd. For any fixed realization of the environment, it describes how
to rescale a random walk in space in time in order to obtain a Brownian motion
in the limit. The local limit theorem however provides a much finer result, namely
that the transition probabilities of the random walk properly rescaled converge to
the Gaussian transition density of the limiting Brownian motion.

We are interested in establishing a quenched local limit theorem for the time-
dependent random conductance model on the d-dimensional Euclidean lattice,
d ≥ 2. This model is a time-inhomogeneous Markov process X ≡ (Xt : t ≥ 0)
on (Zd, Ed) with instantaneous generator, Lω

t , (in the L2 sense) which acts on
bounded functions f : Zd → R as

(

Lω
t f
)

(x) =
∑

y∼x

ωt({x, y})
(

f(y)− f(x)
)

,

where ω ≡ {ωt(e) : t ∈ R, e ∈ Ed} ∈ [0,∞]R×Ed

=: Ω is a family of non-negative
weights (also called conductances). Further, we denote by Pω

s,x the law of X on

the space of Zd-valued càdlàg functions on R when starting at time s in x. For
x, y ∈ Zd and s, t ∈ R with s ≤ t the transition density (or heat kernel) of the
Markov process X is given by

pωs,t(x, y) := P
ω
s,x

[

Xt = y
]
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Note that the counting measure, independent of t, is an invariant measure for X .
Of particular interest is the case when the conductances are itself random vari-

ables with law P.

Assumption. Assume that the law P of the conductances on (Ω,F) satisfies:

(i) P is stationary and ergodic with respect to space-time shifts.
(ii) For every A ∈ F the mapping (ω, t, x) 7→ 1A(τt,xω) is jointly measurable

with respect to the σ-algebra F ⊗ B(R)⊗ P(Zd).

For the static random conductances model with i.i.d. environments, i.e. the
conductances are constant in time and P is a product measure, a local limit the-
orem has first been proven by Barlow and Hambly. They assumed that either
ω(e) ∈ {0, 1} with P[ω(e) > 0] > pc for all e ∈ Ed [5, Theorem 5.2] (supercritical
percolation model) or that the conductances are uniformly elliptic [5, Theorem
5.7], i.e. there exists c ∈ (0,∞) such that c−1 ≤ ω(e) ≤ c for all e ∈ Ed. In case of
i.i.d. conductances that are uniformly bounded from below has later been treated
in [4, Theorem 5.14].

For general ergodic but static conductances, a quenched local limit theorem
has been proven in [12, Theorem 1.19] for supercritical percolation clusters and
in [2, Theorem 1.11] for elliptic conductances, i.e. P[0 < ω(e) < ∞] = 1 for all
e ∈ Ed, under the additional (optimal) integrability condition that E[ω(e)p] < ∞
and E[1/ω(e)q] <∞ for p, q ∈ [1,∞] such that 1/p+ 1/q < 2/d.

For general time-dependent ergodic conductances, a quenched local limit theo-
rem for uniformly elliptic conductances has been proven by Andres, see [1, Theo-
rem 1.6], under the additional assumption that the law P satisfies a certain mixing
condition.

Hence, it is clear that some moment conditions are needed.

Theorem. Suppose that d ≥ 2 and that the above assumptions hold. For any
p, q ∈ [1,∞] satisfying

1

p− 1
· q + 1

q
+

1

q
<

2

d

assume that E[ωt(e)
p] <∞ and E[1/ωt(e)

q] <∞ for all e ∈ Ed and t ∈ R. Then,
for any T1 > 0 and K ∈ (0,∞)

lim
n→∞

sup
|x|≤K

sup
t≥ T1

∣

∣

∣nd pω0,tn2

(

0, ⌊nx⌋
)

− kΣt (0, x)
∣

∣

∣ = 0, P-a.s.

where kΣ is the heat kernel of the limiting Brownian motion with deterministic
non-degenerate covariance matrix ΣT· Σ.

The Method. The proof of the local limit theorem is based on the approach
in [5] and [7]. The two main ingredients are

1. a quenched functional central limit theorem (QFCLT) and
2. a Hölder-continuity estimate on the heat kernel,

which enables us to replace the weak convergence given by the QFCLT by the
pointwise convergence in the theorem. The QFCLT has been established in [3].
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In order to derive the Hölder-continuity estimate, we prove a parabolic maximal
inequality and an oscillation lemma using the de Giorgi iteration scheme. Since
the pioneering works of de Giorgi, Moser and Nash [8, 11, 10] iteration techniques
are by far the best-established tools in order to prove both elliptic and parabolic
maximal inequalities and regularity estimates. The de Giorgi’s iteration is based
on three ideas: (1) a Sobolev-type inequality which allows to control the ℓr-norm
with r = r(d) = d/(d− 2) > 1 in terms of the Dirichlet form, (2) a control of the
Dirichlet energy of the truncation (u − k)+, k ≥ 0, of a given caloric function u,
and (3) an iteration lemma. In our case where the conductances are unbounded
from above and below and time-dependent, we need to work with a dimension
dependent weighted Sobolev inequality, which we obtain from an isoperimetric
inequality of the underlying graph and Hölder’s inequality. Moreover, assuming a
strong local ℓ1-Poincaré inequality, we also show that the parabolic regularity can
be obtained without going through any kind of John-Nirenberg or Bombieri-Giusti
type argument.
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Intermittent regularization and long-time behavior of Hamilton-Jacobi
equations with rough multiplicative time dependence and convex

Hamiltonians

Panagiotis E. Souganidis

(joint work with Pierre-Louis Lions)

We consider Hamilton-Jacobi equations with convex Hamiltonians and rough mul-
tiplicative time dependence. We prove a new and surprising result that shows that
at times when the path does not equal its running maximum and minimum the
solution is actually in C1,1 in space. In the case of Brownian paths, the result
implies that the stochastic viscosity solution is C1,1 off a set of times of Hausdorff
dimensions 1/2. The estimate is new even for the deterministic case. We then use
this intermittent regularization to prove that as time goes to infinity, the solutions
converge to a constant.

Random permutations without macroscopic cycles

Dirk Zeindler

(joint work with Volker Betz and Helge Schäfer)

We consider in this talk uniform random permutations σ ∈ Sn conditioned to
have no cycles of length larger or equal to α(n) with na1 ≤ α(n) ≤ na2 and
a1, a2 ∈ (0, 1). For cycles of length o(α(n)/ log n), we find that they behave just
like those of unconstrained permutations. At the scale α(n)/ logn, the influence of
the restriction starts to manifest itself in the sense that, as n → ∞, the expected
cycle numbers converge to zero more slowly than they would in unrestricted per-
mutations. At the scale cα(n), 0 ≤ c < 1, the restriction starts to become manifest,
and if α(n) diverges more slowly than

√
n, diverging numbers of cycles occur for

lengths corresponding to sufficiently large c. In these cases, a central limit theorem
holds. Finally, we investigate the scale where most of the cycles live. Due to the
length constraint, there must be at least n/α(n) cycles, and we show that almost

all of them live on the scale α(n) +α(n) log t
logn , 0 < t < 1. On that scale, the cumu-

lative cycle numbers satisfy a limit shape theorem, and their fluctuations around
that limit shape satisfy a functional central limit theorem towards a Brownian
bridge. We get immediately from this result that the length the longest cycles are
asymptotically α(n).
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Dr. André Schlichting

Institut für Angewandte Mathematik

Universität Bonn

Postfach 2220

53115 Bonn

GERMANY

Prof. Dr. Bernd Schmidt

Institut für Mathematik

Universität Augsburg

86135 Augsburg

GERMANY

Dr. Martin Slowik

Fachbereich Mathematik

Technische Universität Berlin

Straße des 17. Juni 135

10623 Berlin

GERMANY

Prof. Dr. Panagiotis E. Souganidis

Department of Mathematics

The University of Chicago

1118 E 58th St., University Avenue

Chicago IL 60637

UNITED STATES

Prof. Dr. Ulisse Stefanelli

Fakultät für Mathematik

Universität Wien

Oskar-Morgenstern-Platz 1

1090 Wien

AUSTRIA

Prof. Dr. Florian Theil

Mathematics Institute

Warwick University

Zeeman Building

Coventry CV4 7AL

UNITED KINGDOM

Dr. Daniel Ueltschi

Mathematics Institute

University of Warwick

Gibbet Hill Road

Coventry CV4 7AL

UNITED KINGDOM



Interplay of Analysis and Probability in Applied Mathematics 381

Prof. Dr. Max von Renesse

Mathematisches Institut

Universität Leipzig

Augustusplatz 10

04109 Leipzig

GERMANY

Prof. Dr. Dirk Zeindler

Department of Mathematics and

Statistics

University of Lancaster

Fylde College

Bailrigg

Lancaster LA1 4YF

UNITED KINGDOM

Prof. Dr. Johannes Zimmer

Department of Mathematical Sciences

University of Bath

Bath BA2 7AY

UNITED KINGDOM




