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methods on the transmission of infectious diseases. Building on epidemio-
logic models which were the subject of earlier workshops, this workshop con-
centrated on disentangling who infected whom by analysing high-resolution
genomic data of pathogens which were routinely collected during disease out-
breaks. Following the trail of the small mutations which continuously occur
in different places of the pathogens’ genomes, mathematical tools and compu-
tational algorithms were used to reconstruct transmission trees and contact
networks.
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Introduction by the Organisers

The workshop Design and Analysis of Infectious Disease Studies, organized by
Martin Eichner (Tübingen), M. Elizabeth Halloran (Seattle, USA) and Philip
O’Neill (Nottingham, UK), was well attended with 50 participants with broad
geographic representation. The participants came from Australia, New Zealand,
Singapore, USA, Brazil, and several countries in Europe, including the UK, Ger-
many, Sweden, Denmark, Finland, Italy, Belgium, and the Netherlands. Fourteen
of the 50 participants were women. Over 20 of the participants were at MFO
for the first time. Professor Klaus Dietz of Tübingen also attended the meeting
on Thursday. Professor Dietz was the original organizer of the precursor of this
meeting. One of the planned participants, Professor John Edmunds of the London
School of Hygiene and Tropical Medicine, was invited to Buckingham Palace to
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receive a prize in the name of the school from Queen Elizabeth II for work done
during the Ebola outbreak in West Africa. Thus, he did not attend the MFO
workshop this time with great regret.

The focus of the workshop was on integrating genomic data on pathogens with
dynamic epidemiological analysis of infectious disease data either in the endemic
or outbreak setting. This is a particularly exciting and challenging area for the
analysis of infectious disease data. Now that sequencing the RNA or DNA of
viruses, bacteria and other pathogens has become very inexpensive, such data are
being obtained from most field studies of infectious diseases. This type of data and
evolutionary analysis can contribute a lot to determining who infected whom. Such
insight can contribute greatly to public health interventions. The analysis of such
data poses statistical, mathematical, theoretical, and computational challenges all
at the same time.

There were 21 talks of about one hour length, including discussion. There were
five talks by the OWLG recipients in one session, each of 12 minutes length. Some
of the talks spoke more about the statistical models that were being developed to
do such analyses. Other talks dealt with details of computational algorithms. In
one talk, the speaker said that once they had set up the analysis, the computation
ran for two months. In a final talk during the last discussion, a young colleague
who is trained as a pure mathematician presented a chalk talk on her newest
results on a new metric on distance of transmission trees that she has proposed.
All talks on these related subjects produced active discussions during and after
the talks. Other topics included the relevance of social contact patterns for spread
of infectious diseases, survival analysis of observational data, and disease burden
in transient situations.

There was much discussion in the breaks and in the free periods. A few of
the important exchanges are reported here. In one talk, the speaker said that he
was using a greedy algorithm to solve the problem of the graph among contacts
where a disease was spreading. Two of the participants recognized that this was
an example of arborescence in graph theory. Thus, there is a theory allowing for a
more general solution to the problem. One of the colleagues has been heading up a
method to combine genomic data with transmission analysis. She has developed a
software to do this analysis. One of the participants was able to convince her that
his method using survival analysis to formulate the problem was a more princi-
pled approach. She is now looking into integrating his approach into her software.
Other topics that elicited considerable debate were forward versus backward sim-
ulation, whether multi-scale approximations are needed, and to what extent graph
theory is applicable to the current problems.

A sign of the excitement and growth in this field is that many speakers an-
nounced a number of available postdoctoral positions. The number ranged from
one to five. Some participants who were not giving talks also announced available
postdoctoral positions. Thus the field is growing enormously. There was some
discussion on the side about how to increase the pipeline of students entering the
field.
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One initiative to come out of the meeting is a plan to write a paper on challenges
of infectious disease modeling. A one hour discussion of interested parties included
about half of the workshop participants. The opportunity to participate in this
paper is open to all participants. A dropbox has been set up to coordinate the
writing of the paper. The role of the workshop at MFO will be credited in the
paper.

Of potential interest was the participation of Dr. Michelle Kendall, a young
mathematician who has just moved from Imperial College to Oxford University.
She is married to Dr. Ed Kendall, who is the son of Wilfrid Kendall, and grandson
of David Kendall, both of whom are (were) well-known mathematicians, who also
had been at MFO. Dr. Michelle Kendall attended the workshop with her husband
and her 15-month old daughter Sophia. Thus, this was a fourth-generation pres-
ence at MFO for the Kendalls. Professor David Kendall was also the PhD advisor
of Denis Mollison, one of the other participants of this workshop, who is also the
workshop photographer.

Due to a storm in January that had knocked down a number of trees in the
forest, we were discouraged by the MFO administration to take the usual Wednes-
day afternoon hike to St. Roman. Instead the official hike went to the Museum
für Mineralien and Mathematik, an hour’s walk from MFO. A guided tour of the
museum was provided by Prof. Dr. Stephan Klaus, Scientific Administrator of
MFO. Those who went also had Schwarzwälderkirschtorte nearby. About half the
participants took the unofficial hike through the forest to St. Roman.

On Thursday evening, we had our usual musical talent show and cultural event
in the lovely music room available at MFO. Dr. Lorenzo Pellis organized the pro-
gram. The evening’s program is presented below.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Mick Roberts in the “Simons Visiting Professors” pro-
gram at the MFO.
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MFO Talent show, February 22, 2018, 8:00 pm

Kari Auranen (piano) Einojuhani Rautavaara
Two excerpts from:
Fiddlers (op. 1)

Denis Mollison (voice) W. H. Auden September 1, 1939

Lorenzo Pellis (flute)
Michiel van Boven (piano)

Carlo Gounod

Johann Sebastian Bach
Celebre Ave Maria

Lorenzo Pellis (flute)
Michiel van Boven (piano)

Johann Sebastian Bach
Preludio I from:
Das Wohltemperierte Klavier

Mick Roberts (voice) Tim Upperton
The truth about Palmerston
North

Denis Mollison (voice)
Lorenzo Pellis (flute)
Kari Auranen (piano)

Antonio Vivaldi
Sol da te mio dolce amore
from: Orlando Furioso

Lorenzo Pellis (flute)
Jason Xu (piano)

Antonio Vivaldi
Largo from:
The four seasons: Winter

Mick Roberts (voice) Margaret Mahy Down the back of the chair

Lorenzo Pellis (flute)
Caroline Colijn (piano)

Telemann
Cantabile
from: Essercizii Musici

Caroline Colijn (voice & piano) Kilgore Trout Bitter Sea

Kari Auranen
Betz Halloran
(4-handed piano)

Igor Strawinsky

Berceuse
Finale
from: Firebird

Interval

Lorenzo Pellis (flute)
Kari Auranen (piano)

Gaetano Donizetti Sonata for flute and piano

Markus Schwehm
(video equipment)

Markus Schwehm Migration: III

Chris Wymant (voice)
Gavin Gibson (guitar)

Renan Luce La lettre

Ira Longini (voice)
Mirjam Kretzschmar (voice)
Gavin Gibson (guitar)

Lowell George

Carlos Puebla

Willin’
Hasta Siempre Comandante

Blowin’ In The Wind Ensemble
(bottles)
and the audience (voice)

Leonard Lipton

Peter Yarrow
Puff the Magic Dragon

Swedish Midsummer Night Ensemble
and everybody else

Traditional
Swedish contribution
to international music
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Abstracts

Defining clusters, predicting missing cases, estimating and comparing

transmission trees with genomic data

Caroline Colijn

(joint work with Yuanwei Xu and James Stimson)

There has been much promise that sequencing pathogens in short-term outbreak
situations will lead to great improvements in our understanding of transmission.
Knowing who is transmitting, what variants are transmitted, when and where they
are transmitting and covariates associated with transmission can inform improved
control policies. When pathogens accrue genetic variation as they spread from
host to host, this information can be used to infer transmission events. However,
the relationship between who infected whom and the pathogen sequences is not
straightforward. Variation in the case timing, complexities in the pathogen muta-
tion process, our ability to detect genetic variation, pathogen populations inside
hosts and other factors mean that it is not possible to directly obtain transmission
events from either pathogen sequences or phylogenetic trees.

One first step in this domain of genetic epidemiology is to group sequences into
sets (called clusters) of sequences that are thought to have originated from the
same individual (the source of the outbreak). Currently, many researchers use a
cutoff: if two sequences si and sj differ at fewer than K sites, an edge is made
between i and j; the clusters are the connected components of the resulting graph.
In tuberculosis, the cutoff value K has ranged from 2-3 to 50-100. This approach
is simplistic, and does not account for the mutation process of the pathogen, the
generation time between infections, selection (eg drug resistance), in-host diversity
and variation in bioinformatics pipelines.

We propose an alternative which builds some of these into account. We proceed
as follows: given sequences si and sj (from hosts i and j), we estimate the likeli-
hood of the height h of a two-tip tree (in units of time) under a sequence evolution
process λ. We then estimate the probability that m transmissions occurred in the
total evolutionary time separating i and j. For this we use a transmission process
β; the simplest approach is for λ and β to be Poisson processes with constant
rates. We then connect si and sj if the probability that there were more than m
transmissions between i and j is smaller than a stated threshold p. We extend
the process λ to model loci under selection evolving at a higher rate than loci not
under selection.

Given a cluster c, we can construct a phylogenetic tree Tc using its sequences.
The next question is how these can be analysed to estimate who infected whom
and when. There are a number of statistical tools for this problem, including our
previous method TransPhylo [1]. TransPhylo uses an MCMC approach, starting
with a timed phylogenetic tree T reconstructed from the sequences, and augment-
ing this tree with each host’s infection time. It handles in-host diversity and
unsampled cases. Here we extend TransPhylo to proceed simultaneously on a set
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of clusters, sharing parameters across them all. This allows us to compare clusters
and highlight those with high posterior numbers of unsampled cases.

At this stage, we have many posterior transmission trees for each cluster. It
is challenging to check whether this posterior is unimodal and to summarise it.
We present a metric on transmission trees [2]. The metric d(T1, T2) is the usual
Euclidean distance between two vectors v1 and v2. These vectors contain the
number of steps between the source of the outbreak and the most recent common
infector of cases k and n, for all pairs k, n in a cluster. We illustrate how the
metric allows visualisation of posterior sets of transmission trees, and allows us to
select geometric median trees.

References

[1] X. Didelot, C. Fraser, J. Gardy, C. Colijn, Genomic Infectious Disease Epidemiology in
Partially Sampled and Ongoing Outbreaks, Molecular Biology and Evolution, 34 (2017),
997-1007.

[2] M. Kendall, D. Ayabina, Y. Xu, J. Stimson, C. Colijn. Estimating Transmission from
Genetic and Epidemiological Data: A Metric to Compare Transmission Trees, Statistical
Science, 33 (2018), 70-85.

Fitting stochastic epidemic models to incidence time series and gene

genealogies

Vladimir N. Minin

(joint work with Jon Fintzi, Jon Wakefield, Kari Auranen, Mingwei Tang, Trevor
Bedford and Gytis Dudas)

Introduction

Stochastic epidemic models describe how infectious diseases spread through a pop-
ulation of interest. These models are constructed by first assigning individuals to
compartments (e.g., susceptible, infectious, and recovered) and then defining a sto-
chastic process that governs the evolution of sizes of these compartments through
time. Here, we propose a new strategy for fitting these models to data, which turns
out to be a challenging task. The main difficulty is that even the most vigilant
infectious disease surveillance programs offer only noisy snapshots of the number
of infected individuals in the population. We present a Bayesian data augmen-
tation strategy that makes statistical inference with stochastic epidemic models
computationally tractable. Besides standard incidence data, our approach can
also handle more exotic data types, such as genealogies/phylogenies of infectious
disease agent genetic sequences collected during outbreak monitoring. We present
results of using our new approach to fit stochastic epidemic models to data from
outbreaks of influenza and Ebola viruses.
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Hidden stochastic epidemic models

Let Y represent data collected during or after an infectious disease outbreak.
In this work, we will assume that Y contains either underreported incidence
data or a genealogy of infectious disease molecular sequences collected from a
sample of infectious hosts. We assume a Markov stochastic model that divides
the population into finite number compartments (e.g., susceptible, infectious, re-
moved) and governed by parameters θ (e.g., infectivity and recovery rates). Let
X = (Xt0 , . . . , Xtn) be the compartment sizes recorded at times t0, . . . , tn, where
these times can be times at which incidence data are collected or a suitable regular
grid of time points when we use a pathogen genealogy as data. We are interested
in the posterior distribution

Pr(θ | Y) ∝ Pr(Y | θ)Pr(θ),

where

Pr(Y | θ) =
∑

X

(

Pr(Y | X, θ)

[

Pr(Xt0 | θ)
n
∏

l=1

p(Xtl | Xtl−1
, θ)

])

is the observed data likelihood and Pr(θ) is the prior density of model parameters.
The likelihood above is computationally intractable, because the state space of Xt

is too large even for moderately high population size N .

Linear noise approximation

To overcome the likelihood intractability, we first use standard Bayesian data aug-
mentation and develop a Markov chain Monte Carlo (MCMC) algorithm targeting
the augmented posterior

Pr(θ,X | Y) ∝ Pr(Y,X | θ)Pr(θ),

where

Pr(Y,X | θ) = Pr(Y | X, θ)

[

Pr(Xt0 | θ)

n
∏

l=1

p(Xtl | Xti−1
, θ)

]

.

Data augmentation itself does not solve the likelihood intractability problem, be-
cause transition densities p(Xtl | Xtl−1

, θ) are computationally intractable for
most stochastic epidemic models. We use linear noise approximation (LNA) to
replace p(Xtl | Xtl−1

, θ) with a suitable Gaussian density [2]. As a result, we are
left with a latent Gaussian model with a non-Gaussian conditional density of the
observed data. We extend the LNA approach to fitting stochastic epidemic models
to incidence and genealogical data and equip it with a modern MCMC sampler —
elliptical slice sampling algorithm.

Swine flu in Finland: inference from underreported incidence data

We use our LNA approach to fit an SEIR-type model to weekly incidence of mild flu
cases from a national surveillance system from April 2009–2010 and weekly vacci-
nation counts from a national campaign initiated in mid-October 2009. These data
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Figure 1. Results of fitting flu stochastic epidemic model to data.
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Figure 2. Results of fitting an SIR stochastic epidemic model to
Ebola genealogy.

were originally analyzed in [4] using a discrete-time stochastic epidemic model.
One of the main parameters of interest is the vaccine efficacy for susceptibility
(VE), which we estimate by the posterior median of 0.48 with 95% credible in-
terval (0.20, 0.78). According to our estimates, the vaccination campaign started
when the population-level incidence was already high, so the effect of the campaign
on the total number of infected individuals was minimal.

Ebola outbreak in West Africa: inference from inferred genealogy

Using the study of Ebola phylodynamics in [1] as a starting point, we reconstruct
a genealogy of Ebola virus sequences sampled from Sierra Lione, where sequence
data strongly indicate a single introduction of the virus into the country during the
outbreak. We fit an SIR model with a time-varying effective reproduction number
R0(t), which we estimate nonparametrically, and a constant recovery period. Our
main finding is that the R0 dropped below 1.0 by November 2014, probably due
to interventions and change of behavior of individuals in the population.
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Statistical inference of epidemiological parameters: what is the value

of virus phylogenies?

Tom Britton

(joint work with Federica Giardina)

In the current project we are concerned with making inference for infectious disease
outbreaks. Having HIV in mind, our focus lies in estimating the reproduction
number (under current preventive measures) Rcurr, the population size of the
risk group N , and the fraction pdiag of cases that are diagnosed. We study several
related epidemic models: SIR-closed with treatment, SI-open with treatment, SIR-
open with treatment and SIS-open with treatment, where these models depend on
if considering a short outbreak in a closed community, or over a longer period
allowing for demography. For all models, a fraction pdiag of the infected cases are
diagnosed and treated. We make the strong assumption of having a community
of homogeneously mixing individuals that are also similar in terms of infectivity
and susceptibility. The underlying reason for making this simplifying assumption
is that more realistic assumptions will make the analysis even harder, and that
when new HIV outbreaks are observed, the underlying structure of the community
within which the virus has spread, is usually not well studied.

We study two different sources of data: either that we ”only” observe the times
of diagnosis, or that this information is available and that diagnosed individuals
are sequenced (to be used for reconstructing the underlying virus phylogeny).
For the latter case, we make the simplifying idealistic assumption that the virus
phylogeny is reconstructed without any uncertainty, and that it coincides exactly
with the transmission tree except that the direction of infection is lost. Clearly
this is unrealistic, but will give us an upper bound on the precision of parameter
estimates as compared to reality. We denote the two data sets considered by d-data
and d&G-data respectively, where G stands for geneaology or genetic data.
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The inference is performed using MCMC and making use of the recursive
method of Tanja Stadler for computing the likelihood of a partially sampled phy-
logeny.

The main conclusions of our analysis, obtained through simulation studies are:
– The precision of parameter estimates are more or less the same for the d-data

and d&G-data as well as for the different epidemic models. As a consequence,
taking sequences and inferring the phylogeny is of little use (recall that we are
assuming there are no heterogeneities).

– If the population at risk has known size N , then estimation of Rcurr and pdiag
is consistent, meaning that uncertainty decreases to 0 as N gets large. The same
result holds true if instead pdiag is known and N is estimated.

– Estimation of both N and pdiag (as well as Rcurr) is not feasible, meaning
that a range of combinations of N and pdiag are consistent with both data sets.
The two parameters are hence not separately identifiable.

A consequence of the results is that, if the population size N as well as the
sampling fraction pdiag are unknown (as is common in e.g. HIV local outbreak
situations), then traditional epi-data (d-data) or even epi-data together with the
the virus phylogeny (d&G-data) is not sufficient for disentangling the two.

If the population is heterogeneous in one or several ways (as is highly likely),
we believe that some such heterogeneities may very well be inferred with higher
precision for the d&G-data as compared to the d-data. However, we do not believe
this data will give consistent estimation of pdiag and N separately for this situation
either.

This is work in progress.

R0 for SIR epidemics in structured populations

Pieter Trapman

(joint work with Frank Ball, Lorenzo Pellis and Carolina Fransson)

For the analysis of SIR (Susceptible → Infectious → Recovered) epidemics in
homogeneously mixing populations, the basic reproduction number R0 is a key
quantity for interpreting the potential for the disease to spread. R0 is often defined
as the expected number of infections caused by a typically infected individual, in
a mostly susceptible population. R0 may be interpreted as the offspring mean
of an approximating branching process and because of that R0 is a threshold
parameter, in the sense that introduction of the infection leads to a large outbreak
with positive probability if and only if R0 > 1.

For epidemics in structured populations, such as a population partitioned in
“households”, in which individuals contact each other a higher intensity, it is
often possible to find an approximating branching process at another level than
that of individuals. E.g. for a household epidemic, one may see the first infected
cases in households as the particles of a branching process. The offspring mean of
this branching process is still a threshold parameter for the epidemic, but it can
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no longer be interpreted as the expected number of individuals a typical infected
individual infects.

In this talk we consider ways of defining an approximating branching process
for epidemics in two types of structured populations, from which we can find the
expected number of individuals infected by a typically infected individuals.

For “household epidemics” we still consider only initial cases within a house-
hold as the particles in the approximating branching process. But now we keep
track of the number of person to person transmissions that are needed to infect
individuals represented by particles, by saying that the age of a mother particle
at the birth of a child particle is this number of person to person transmissions
needed to go from the initial infection in one household to the initial infection in
a second household. For this branching process it is straightforward to compute
the Malthusian parameter α and then to show that R0 = eα.

A second model that we consider is a configuration model random graph with
clustering. In this model individuals are represented by vertices and contacts are
only possible along the edges of the graph. We say that each vertex has a random
number (distributed as S) of “single stubs” assigned to it, and of a random number
(distributed as T ) of pairs of “triangle stubs”. The random numbers assigned to
different vertices are independent. We then create the edges by pairing the single
stubs uniformly at random and create the triangles by uniformly grouping the
pairs of triangle stubs into groups of three pairs of stubs.

Naive branching process approximations in the same spirit as for household-
epidemics do not work for this model, because possibly random infectious periods
create dependencies in the offspring of siblings and parents in the approximat-
ing process. However, by considering three-types of vertices: (i) vertices infected
through single edges and through a triangle edge either (ii) with or (iii) not with
the third vertex in the triangle still susceptible, we obtain a proper multi-type
branching process. For this branching process we can compute the largest eigen-
value of the mean-offspring matrix, which corresponds to the expected number of
infections caused by a typically infected individual.
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phyloscanner: Automated phylogenetics with NGS reads from

multiple hosts reveals transmission, multiple infection, recombination

and contamination

Chris Wymant

(joint work with Matthew Hall, Oliver Ratmann, David Bonsall, Tanya
Golubchik, Mariateresa de Cesare, Astrid Gall, Marion Cornelissen, Christophe
Fraser, the STOP-HCV Consortium, the Maela Pneumococcal Collaboration and

the BEEHIVE Collaboration)

Phylogenetics allows us to learn more about the spread of infectious disease by
identifying individuals whose pathogens are closely related, from which we infer
that the individuals are close in a chain of transmission. This identification of
closely related pathogens requires pathogen sequences to be be determined ac-
curately, so that small differences can be meaningfully interpreted. For human
immunodeficiency virus (HIV), reconstructing whole genome sequences from the
‘reads’ (short fragments of sequence) produced by next-generation sequencing has
been technically challenging. In particular, mapping (aligning) reads to a reference
sequence leads to biased loss of information; this bias can distort epidemiological
and evolutionary conclusions. De novo assembly avoids this bias by effectively
aligning the reads to themselves, producing a set of sequences called contigs. How-
ever contigs provide only a partial summary of the reads, misassembly may result
in their having an incorrect structure, and no information is available at parts of
the genome where contigs could not be assembled.

We developed the tool shiver [2] to address these problems: pre-processing the
reads for quality and contamination, then mapping them to a reference tailored to
the sample using corrected contigs supplemented with the user’s choice of existing
reference sequences. On a test data set of 65 existing publicly available samples
and 50 new samples from the BEEHIVE project (Bridging the Evolution and Epi-

demiology of HIV in Europe), the consensus sequence called using shiver was
systematically superior to that derived by mapping the same reads to the closest
of 3249 real references from the comprehensive Los Alamos National Laboratory
database online (http://www.hiv.lanl.gov/). A median of 43 bases were called
differently and more accurately (supported by higher coverage), at the cost of 1
base called differently and less accurately.

Having accurately reconstructed our HIV genomes, we turned our attention
towards inference of transmission in our data and more generally. Most molecular
epidemiological analyses have used only one pathogen sequence from each sampled
infected host. Phylogenies of these sequences only show whose pathogens are
closely related, not who has infected whom. It is possible to infer transmission
direction from such a phylogeny, if a transmission model can be fitted to the
phylogeny together with additional epidemiological data, such as estimated times
of infection. This relies on the availability and accuracy of both the epidemiological
data and the transmission model.
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In reference [1] it was demonstrated that using phylogenies of multiple geno-
types from each host infected with HIV-1, and ancestral reconstruction of the
virus’s host state, it is possible to infer the direction of transmission without ad-
ditional epidemiological data. Our public software tool phyloscanner automates
inference of phylogenies showing within- and between-host evolution at once. For
next-generation sequencing data, phylogenies can constructed using reads in slid-
ing windows along the whole genome. phyloscanner identifies and removes likely
contaminant sequences, quantifies within-host diversity, identifies individuals in-
fected by multiple strains, and finds signals of strains recombining. It performs
ancestral reconstruction of the pathogen’s host state, providing unprecedented
resolution into the transmission process, allowing inference of the direction of
transmission from sequence data alone. We illustrate phyloscanner on small il-
lustrative datasets of HIV sequenced on Illumina and Roche 454 platforms, HCV
sequenced with the Oxford Nanopore MinION platform, and Streptococcus pneu-

moniae with sequences from multiple colonies per individual.
The listener (reader) is referred to Oliver Ratmann’s talk (abstract) for an

application of phyloscanner to large-scale population data, and the resulting
lessons learned about transmission patterns.
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Combining transmission and evolutionary models to reconstruct trees

with genomic data

Don Klinkenberg

(joint work with Xavier Didelot, Caroline Colijn, Jantien Backer and Jacco
Wallinga)

Reconstructed outbreaks (who infected whom) help to understand transmission
and guide future outbreak control. Pathogen sequence data can improve recon-
struction, but within-host strain diversity can make it a challenge to take all uncer-
tainty into account. We have developed a model for (neutral) pathogen evolution
during infectious disease outbreaks, and developed an mcmc sampling scheme to
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do outbreak analysis using sampling times and sequences, i.e. to infer who in-
fected whom, and when. The method is available as an R-package, phybreak [1].
In the package we implemented a variety of mcmc moves to traverse the tree space.
The presentation in this workshop focused on the development and design of these
moves.

The model in phybreak is a description of a transmission tree and associated
phylogenetic tree. The current state of the tree is described by the observed sam-
pling times S and the unobserved infection times I, infectors M, and phylogenetic
tree P , which can be subdivided into minitrees Pi within each host i. The sampling
times are associated with the observed sequences G. The likelihood is a product
of four terms, for the generation interval distribution, the sampling interval distri-
bution, the within-host minitrees, and the mutation process on the phylogenetic
tree.

The original design to propose alternative trees is based on the idea of picking
one host, the focal host, removing its infector and infection time and proposing a
new infection time and infector based on the sampling time of the focal host and
current state of infection times of the other hosts. This is the active part of the
move. Because this active part disrupts the minitrees in the focal host and the old
and new infectors, it is followed by a reactive part of resimulating these minitrees.

This proposal was designed to focus on the transmission tree rewiring, so that
it will be possible to accommodate additional epidemiological information in the
proposal. That information could be censoring of infection times due to negative
test results or hospital admission dates, or censoring of possible infectors because
of information on location of patients, e.g. wards in a hospital.

It turned out that in some circumstances, this procedure resulted in poor mixing
of the mcmc chain. Poor mixing is caused by frequent rejection of proposals, and
rejection was in this case caused by proposing phylogenetic minitrees that resulting
in a higher parsimony score of the complete phylogenetic tree, i.e. a larger number
of mutations needed to explain the tree topology. Frequent rejection occurred if
the data contained many SNPs (single nucleotide polymorphisms, i.e. differences
between samples), or if the minitrees underwent too many changes. The latter
especially occurred if hosts were sampled multiple times, or if the transmission
bottleneck was allowed to be wide, leading to multiple parallel lineages moving
between the hosts.

The first problem (many SNPs) was solved by designing proposals with changes
to only a single minitree whilst keeping the transmission tree intact, or changes to
the transmission tree keeping the phylogenetic tree intact. The latter starts with
proposing a new infection time for the focal host, moving it on the phylogenetic
tree, and checking if that results in a consistent new transmission tree. If not, it
is tried to resolve the inconsistency by proposing a new infection time for another
host. Because of the possibility of inconsistencies which have to be resolved, this
procedure is less elegant than the initial design, but it did significantly improve
mcmc mixing.
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The second problem (too many topological changes in a single proposal) was
tackled by redesigning the reactive part of the original proposal design: the res-
imulation of minitrees. First, in the old infector it appeared possible to only
remove the lineages coming from the focal host, but keep the rest of the minitree
intact. Second, in the new infector it appeared possible to keep the old minitree,
and attach the new lineages coming from the focal host to that minitree through
simulation. Thus, the only changes in the minitrees in the old and new infec-
tors concerned the lineages coming from the focal host. Third, we redesigned the
proposal for the minitree of the focal host itself, by keeping the topology of the
minitree intact and only resimulating the coalescent times.

With the current suite of proposals for the transmission and phylogenetic trees,
most mixing problems have been resolved. There is one exception, when all prob-
lems come together: if hosts have multiple samples and there is indication of a
wide bottleneck, the proposal keeping the phylogenetic tree intact does not work.
If in that case the data contain many SNPs, mixing remains less efficient. Apart
from further work on improving mcmc mixing, future directions will cover the
possibility to use additional epidemiological data, and to carry out analyses with
host covariates, aiming at better understanding of infectivity and transmission and
guide outbreak control.
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Assessment and refinement of epidemic and phylogenetic models

Gavin Gibson

(joint work with Max Lau, George Streftaris, Glenn Marion and Colin Worby)

A major challenge in modelling the dynamics of epidemics as they spread in space
and time is that of fitting models to partial observations of the process and assess-
ing the validity of the modelling assumptions in the light of the data. For example,
in the case of the SEIR spatio-temporal models typically used to model the spread
of arboreal pathogens such as citrus canker, it is of particular importance to un-
derstand the nature of the spatial kernel function K(d;κ) which characterises the
dependence of the infectious challenge presented by an infected individual to a
susceptible on the distance d between the two. Beliefs about K(d;κ) heavily influ-
ence the design of control strategies, for example based on removal of hosts within
some specified radius of a newly discovered infection. Similar questions arise when
these models are applied to human or veterinary pathogens such as FMD.

This talk explores the question of how knowledge of K(d;κ) might be enhanced
by the availability of genetic information on pathogen strains, in the form of se-
quence data, in addition to information on the location of infections. By including
sequences of strains passed during transmission events, the unobserved transition
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times, and unobserved transmission graph as additional parameters within a data-
augmented Bayesian analysis, it is possible to integrate the genetic and epidemic
data. Using simulated spatio-temporal epidemics we show that the information
in the posterior on the spatial kernel function and the transmission graph may
be considerably enhanced by genetic information when the majority of infections
are sampled. It should of course be noted that such enhancements are depen-
dent on there being sufficient evolution of the pathogen for the genetic data to be
informative. Results on this topic presented in the talk appear in [1].

A second topic described is that of assessing modelling assumptions. In par-
ticular, we have used a very simple model for pathogen molecular evolution that
assumes that, at any time, there is a single dominant strain in the pathogen pop-
ulation. Within-host diversity of the pathogen population is therefore ignored.
In ongoing work (with Max Lau and Colin Worby (Princeton U)) we adapt the
latent-residual approach, previously used for example in [2], [3], [4]. Specifically
we define a latent process of U(0, 1) i.i.d. random variables that can be imputed
in the data-augmented MCMC and to which a classical test (here the Anderson-
Darling test) of fit to the U(0, 1) can be applied. By appropriate construction
of the residual process, a test that is sensitive to mis-specification of the genetic
model can be tailored. Some preliminary results using simulated data (with cor-
rectly specified and mis-specified models for molecular evolution) are presented
to illustrate the potential value of the approach. In a further enhancement, we
suggest how ‘marks’ can be allocated to the imputed residuals such that selecting
residuals with high values of the marks may further increase the sensitivity of the
resulting tests.
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Reconstructing transmission trees for communicable diseases using

densely sampled genetic data

Theodore Kypraios

(joint work with Colin Worby, Rosanna Cassidy, Ben Cooper and Philip O’Neill)

A fundamental aim in the analysis of infectious disease epidemics is to identify who
infected whom, however, achieving this is challenging, since transmission dynam-
ics are generally unobserved. A probabilistic estimation of the transmission tree
based on all available data offers many potential benefits. In particular, this can
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lead to improved understanding of transmission dynamics, provide a mechanism to
quantify factors associated with heightened transmissibility and susceptibility to
carriage and infection, and help identify effective interventions to reduce transmis-
sion. Pathogen typing can be used to cluster genetically similar isolate samples,
which can rule out potential transmission routes. Whole genome sequence (WGS)
data offers maximal discriminatory power through the identification of individual
point mutations, or single nucleotide polymorphisms (SNPs), potentially leading
to more accurate transmission tree reconstructions than hitherto possible. How-
ever, the joint analysis of genetic and surveillance data poses several challenges,
as the relationship between epidemic and evolutionary dynamics is complex.

We focus on individual-level transmission, using high-frequency genomic sam-
ples from a subpopulation (eg. hospital, school, jail, farm, community), with the
aim of reconstructing transmission routes. We describe a generalized approach
to transmission tree reconstruction that overcomes these limitations and makes
use of both molecular typing information and known exposure data. A key nov-
elty of our approach is that we model the genetic distances between sequences
rather than the microevolution of the sequences themselves. This offers a flexi-
ble framework in which multiple independent introductions of the pathogen and
within-host diversity may be considered, as well as the transmission process itself.
This approach avoids the need to make any assumptions about the within-host
pathogen population dynamics, which in general, are poorly understood. Further-
more, our proposed framework allows data to be simulated forward in time, a
feature lacking in the majority of existing methods (with reverse time simulation
typically required in phylogenetic methods, and only an incomplete set of genetic
distances simulated from other approaches), which is of fundamental importance
in predictive modelling and model evaluation.

A data augmented Markov chain Monte Carlo algorithmwas used to sample over
the transmission trees, providing a posterior probability for any given transmission
route. We illustrate the predictive performance of our methodology using simu-
lated data, demonstrating high sensitivity and specificity, particularly for rapidly
mutating pathogens with low transmissibility. We present an analysis on data
collected during an outbreak of methicillin-resistant Staphylococcus aureus in a
hospital, identifying probable transmission routes and estimating epidemiological
parameters. Our approach overcomes limitations of previous methods, providing
a framework with the flexibility to allow for unobserved infection times, multiple
independent introductions of the pathogen, and within-host genetic diversity, as
well as allowing forward simulation.
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Likelihood-based inference for dynamic systems, with phylodynamic

applications

Edward L. Ionides

Sequential Monte Carlo (SMC) algorithms enable computation of the likelihood
function for general partially observed Markov process (POMP) models. A POMP
model consists of a latent Markov process observed via a collection of noisy mea-
surements. A collection of independent POMP models with some shared parame-
ters is called a PanelPOMP model. A POMP model for which the Markov process
has a tree-valued structure appropriate for disease transmission modeling, and
the measurements include genetic sequence data, we call a GenPOMP. We dis-
cuss advances in the theory and practice of inference for POMP, PanelPOMP and
GenPOMP models. From a data analysis perspective, we demonstrate the pomp
and panelPomp R packages and the genPomp C++ program. From a theoretical
perspective, we discuss four theorems and one conjecture relevant to likelihood-
based statistical inference via SMC for nonlinear POMP models in general, and
PanelPOMP or GenPOMP models in particular.
Theorem 1. Convergence of the IF1 algorithm [2]
[4]. An iterated filtering algorithm perturbs the parameter vector of a POMP
model, carries out a filtering operation via SMC, uses this SMC filtering to update
the parameter vector, and then repeats with diminishing perturbations. The IF1
algorithm updates using a weighted average of filtered perturbed parameters.
Theorem 2. Convergence of the IF2 algorithm [5]. The IF2 algorithm has a
similar structure to IF1, but rather than updating via a weighted average it uses the
filtered perturbed parameter vector at the end of one filtering iteration as the start
of the next. The convergence of IF2 is proved using entirely different theoretical
techniques to IF1. In practice, the IF2 algorithm is found to be superior.
Theorem 3. Convergence of the PIF algorithm [1]. An extension of the IF2
algorithm to PanelPOMP models is called the PIF algorithm. PIF inherits its
convergence theory from that of IF2.
Theorem 4. Convergence of the GenSMC algorithm [8]. Various computational
techniues were developed to obtain a computationally tractable variant of SMC for
GenPOMP models, which we call GenSMC. We show that asymptotic guaranteed
for GenSMC are provided by the general theory of SMC.
Conjecture 1. Monte Carlo adjusted profile confidence intervals [3]. For large and
complex models, such as PanelPOMPs and GenPOMPs, iterated filtering maxi-
mization and SMC evaluation of the likelihood function has considerable Monte
Carlo error. We present methodology to obtain proper confidence intervals despite
this Monte Carlo uncertainty. The methodology is derived heuristically, and shown
to work by a simulation study. We therefore conjecture that it enjoys asymptotic
theoretical guarantees.
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[2] E.L. Ionides, C. Bretó, A.A. King, Inference for nonlinear dynamical systems, Proceedings
of the National Academy of Sciences of the USA, 103 (2006), 18438–18443.

[3] E.L. Ionides, C. Breto, J. Park, R.A. Smith, A.A. King, Monte Carlo profile confidence
intervals for dynamic systems, Journal of the Royal Society Interface, 14 (2017), 1–10.
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Reconstructing HIV-1 Transmission Networks from deep sequence

data in an African setting: Are fishing communities the predominant

source of new HIV infections in Rakai, Uganda?

Oliver Ratmann

(joint work with Kate Grabowski, Matthew Hall, Tanya Golubchik, Chris
Wymant, Joseph Kagaayi, Godfrey Kigozi, Thomas Quinn, Maria Wawer, Oliver
Laeyendecker, David Serwadda, Ronald Gray, Christophe Fraser on behalf of the

PANGEA consortium and the Rakai Health Sciences Program)

BACKGROUND and METHODS

Targeting combination HIV prevention (CHP) to areas of high HIV prevalence
is considered a cost-efficient and essential strategy for reducing HIV incidence in
sub-Saharan Africa. Since 2014, the Ugandan National Antiretroviral Therapy
Guidelines recommend targeted CHP to fishing communities on Lake Victoria,
with an estimated HIV prevalence 25%-40%, partly based on the assumption that
fishing sites are a major source of HIV transmissions to the inland populations;
however the validity of this assumption has not been empirically evaluated.

Between August 2011 and Oct 2014, individuals aged 15-49 years in 40 com-
munities in Rakai District, Uganda, were tested for HIV and interviewed (sociode-
mographic, behavioral and health information). Households were geocoded, and
communities were classified as Lake Victoria fishing (n=4), agrarian (n=27), or
main road trading (n=9) communities. Viral RNA from newly diagnosed partici-
pants was deep sequenced via Illumina instruments.

Here, we present and validate the phyloscanner software package for viral phylo-
genetic analysis from deep sequencing output in African settings [1]. The method
is available at https://github.com/BDI-pathogens/phyloscanner. The input for
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the software package are viral read fragments that were mapped across the HIV
genome for each individual, and are typically relatively short, 250bp. Owing to
the deeper resolution of this approach into HIV-1 quasi-species within individuals,
we hypothesised that deep sequencing data could improve phylogenetic inference
of transmission events and the direction of transmission at the population level.
We tested this hypothesis on individuals from Rakai District Uganda that could
be deep sequenced. After validation, the software was then used to reconstruct
HIV transmission networks, and to infer the direction of HIV transmission from
deep sequence data. Finally, transmission flows between fishing sites and agra-
grian/trading communities were estimated with Bayesian multi-level models.

RESULTS

Of 23,719 individuals surveyed, 6205 were HIV-positive, 4309 (69%) were an-
tiretroviral naive, of whom 2,803 (65%) were sequenced. 359 phylogenetically
likely transmission events involving 676 individuals were reconstructed, with an
estimated, expected 16% [11%-23%] of false reconstructions. Direction of trans-
mission could be inferred in 241 likely transmission events, with an estimated, ex-
pected 14% [7%-26%] of false directions. Only 3/241 transmission events occurred
from fishing sites to agrarian/trading communities. Adjusting for differences in
participation and sequence sampling by age and community, an estimated 34.3%
[28.6%-40.5%] of transmissions occurred within fishing sites, 58.0% [51.2%-64.6%]
within agrarian/trading communities, 3.4% [1.7%-6%] from fishing sites to agrar-
ian/trading communities, and 4.0% [2%-7.2%] from agrarian/trading communities
to fishing sites.

CONCLUSIONS

Deep sequencing data provides unprecedented opportunities for characterising
HIV-1 transmission at the population-level, though cannot prove transmission
at the individual-level. HIV is infrequently transmitted from 4 high-prevalence
fishing sites to the population in 36 agrarian/trading communities further inland,
based on population-level NGS viral phylogenetic analysis. Our results suggest
that targeted CHP to Lake Victoria fishing sites would not mitigate the broader
HIV epidemic. Further studies in sub-Saharan Africa are needed to assess the
strategy of targeting CHP to various high prevalence hotspots.
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Distinguishing introductions from local transmission

Simon Frost

Infectious diseases know no borders. While in principle, we could model the entire
at-risk population, this presents problems due to potentially high heterogeneity,
limitations on computational resources to simulate or fit the model, and limited
data on which to base large-scale models. Consequently, we tend to consider
smaller subpopulations, which necessitates considering the relative roles of intro-
ductions of infections from outside the study population versus local transmission.
Introductions may occur either by movement of infected individuals (so-called
‘distributed infectives’) or by infection of individuals in the study population by
individuals outside the study population (‘distributed contacts’). Distinguishing
introductions from local transmission is vital for obtaining accurate estimates of
the basic reproductive number R0, and critically affects the choice of intervention
strategies.

Multiple data sources can be harnessed in order to tease apart introductions
from local transmission. In some scenarios, case onset data can be used, especially
when the infection is maintained by introductions. One such example is influenza
A H7N9, which has a reservoir in poultry but is poorly adapted to transmisesion
in humans. Kucharski et al. [5] employed a discrete-time model that estimated
the rate of introductions. To test robustness of the results to model choice, I fit-
ted a continuous time immigration-birth-death process using a partially observed
Markov process (POMP, [4]) to three datasets of H7N9 from Shanghai, Jiangsu,
and Zhejiang. In two out of three datasets, the methods were largely concordant;
however, the inferred number of jumps was significantly higher using POMP than
using the discrete-time model. A distinct advantage of the POMP approach is
that more complex mechanistic models can be used. When applied to time series
of measles cases from an epidemic that occurred in Wales in 2012/2013, there was
strong evidence of continued introductions into schools, necessitating the develop-
ment of models that couple the dynamics in different schools and in the general
community.

Genetic data are particularly informative in endemic situations. In some cases,
näıve approaches may suffice to count the number of introductions. For example,
in a large scale analysis of influenza A H1N1 sequences from birds and swine, we
found that there were three cross-species transmissions from birds to swine, with
only one transmission leading to a substantial number of subsequent infections in
swine [1].

In general, cross-species transmissions are harder to resolve using simple meth-
ods. Two widely used approaches, parsimony and the Mk model, that consider
subpopulations as discrete traits that ‘evolve’ independently along branches of the
phylogeny, are extremely sensitive to sampling bias. Such bias is extreme in many
zoonotic infections, including MERS Coronavirus (in camels and humans), SARS
Coronavirus (in civet cats and humans), and Lassa Fever Virus (in multimam-
mate rats and humans). In these examples, humans are sampled earlier in time
and more intensively than the reservoir species. Applying trait-based models to
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these data mistakenly infers a substantial rate of introductions from humans to

the reservoir. If the direction of introductions is known a priori, it is possible
to improve the performance of these methods, although a substantial number of
samples from the reservoir may be needed in order to avoid dramatically underes-
timating the number of introductions. One such case where this may be satisfied is
for HIV, where there are large number of publicly available sequences taken from
many countries around the world, which can be treated as a source of introduction
into a small subpopulation of interest. When applied to a dataset of nearly 3000
sequences from middle Tennessee from the United States, we infer almost 1000
separate introductions. Rarely, however, we find large clusters of cases that may
represent ongoing chains of local transmission that have gone unnoticed against
the backdrop of a fairly constant rate of new HIV infections.

In most cases, however, we will not know the direction of transmission before-
hand. Structured coalescent models, in which the topology and branch lengths of
the tree may be dependent on the subpopulation, are known to be more robust
to sampling biases [2], but their widespread use has been limited to due dramat-
ically increased computational demands compared to trait-based methods. We
re-analyse a dataset of MERS Coronavirus, which transmits from camels and hu-
mans, that had previously been fitted using a standard structured coalescent model
[3]. Using an approximate (pseudo)likelhood for an ‘island‘ model, we correctly
infer the direction of transmission for zoonotic infections without making a priori

assumptions, with the analysis taking seconds as opposed to months. However,
the inferred ancestral states in the phylogeny are sensitive to the assumption of
distributed infectives versus distributed contacts.
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Theoretical tactics to help sequence and serology data transform

infection modeling

James S. Koopman

(joint work with Xinyu Zhang and Carl Simon)

We have shown that risk fluctuation at a frequency of months to years strongly
alters the potential of universal test and treat strategies (T&T) or and/or pre-
exposure prophylaxis (PrEP) and especially combined T&T and PrEP to eliminate
HIV transmission. But there is little population level data that measures risk
fluctuation. Therefore, using simulations, we show that HIV genome sequences
from population samples of infected individuals contain information about how
fluctuating risk behavior is generating high infection rates in men who have sex
with men (MSM). Our analysis illustrates how methods that help develop theory
about sequence pattern generation will be useful for addressing this and other
dynamic process issues. New methods developed by Smith et al. allow direct
fitting of models to sequence data [1]. These methods overcome pitfalls in making
epidemiologic inferences from phylogenies. But to be fully informative, fitting
models to sequence data should help understand the processes in the model that
affect both the model behavior and the generation of sequence patterns. That is
needed because validating any inference made from fitting a model to data requires
that realistically relaxing simplifying assumptions does not change the inference.
Since the ways to realistically relax simplifying assumptions are nearly limitless, a
key step in validating model-based inferences is to develop theory that elucidates
aspects of a model to which inferences may be most sensitive. It takes more than
just following the fitting steps in Smith et al. to do this [1].

We illustrate an approach to opening up the black box of fitting procedures.
First, we show that risk fluctuation affects the shapes of phylogenies in a unique
manner not reproduced by varying other model parameters. To understand how
this occurs, we postulate two mechanisms through which risk fluctuation generates
effects on the basic reproduction number (R0), on endemic prevalence, and on
phylogeny shapes. Mechanism 1 brings susceptible individuals into contact with
acutely infected individuals. Mechanism 2 reduces the high contact rates that
led MSM to get infected so that they become less likely to transmit to others.
Mechanism 1 raises prevalence but does not affect R0. It has unique effects on
tree shapes that reduce Sackin’s index, raise cherry counts, and cause tree branches
to form fewer but larger clusters from the tree root to the tree leaves. Mechanism
2, in contrast, raises Sackin’s index, reduces cherry counts and reduces the chances
that large clusters grow near the tree root while increasing the chances that small
clusters grow further from the tree root. These two mechanisms vary differently
across the possible ranges of risk fluctuation. This gives them a unique effect that
cannot be reproduced by other sets of parameters. Thus, this work illustrates
that sequences have the potential to reflect risk fluctuation effects and indicate
the expected effects of T&T and PrEP. As models get more realistically complex,
additional mechanisms will be needed. And finding distinct mechanisms generating
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dynamics and tree shapes will be more challenging. But doing so will add great
value to fitting models to sequences.
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The role of host and pathogen population structure in the dynamics of

multi-drug resistance

Sonja Lehtinen

(joint work with Francois Blanquart, Marc Lipsitch, Christophe Fraser and the
Maela Pneumococcal Collaboration)

Understanding the short- and long-term dynamics of drug and multi-drug resis-
tance is important for public health. Yet, there are pervasive trends in resistance
dynamics that have not been fully explained. Firstly, antibiotic sensitive and resis-
tant strains coexist robustly, despite prolonged selection pressure from antibiotics.
Secondly, resistance to different antibiotics tends to co-occur on the same strains,
leading to high frequencies of multi-drug resistance (MDR).

First, we present a model in which coexistence is maintained by variation in
duration of carriage within the pathogen population (e.g. pneumococcal serotypes
differing in duration of carriage) because the fitness effect of resistance depends
on duration of carriage. Second, we show that this model is structurally similar
to other plausible models of coexistence where the coexistence-maintaining mech-
anism is based on variation in the fitness benefit of resistance. Models with this
structure also give rise to high MDR frequencies, because resistance against all an-
tibiotics is concentrated in the sub-populations where the fitness advantage gained
from resistance is high.

We find that predictions from this model are qualitatively consistent with trends
observed in multiple Streptococcus pneumoniae datasets. This model provides
a parsimonious explanation for the pervasiveness of high MDR frequencies and
allows us to reconcile this trend with observed long-term stability in the prevalence
of resistance.

Is your family pet a source of antibiotic resistance?

Mick Roberts

Antibiotics are used extensively to control infections in domestic pets, either as a
course of oral tablets or a single injection. There are several methods by which
bacteria can develop resistant strains, including mutation during reproduction and
horizontal gene transfer [1]. We present a model for the development of antibiotic
resistance within a single host animal.

Let X = Xw + Xm + Xr represent the total bacteria in a single host animal,
where Xw are the wild-type bacteria, Xm are the bacteria that are resistant to
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infection due to a mutation, and Xr are the bacteria that are resistant to infection
due to the presence of a plasmid. The dynamics are described by the equations

dXw

dt
=νwF (X)Xw − γwXw + σXr − ηXwXr(1)

dXm

dt
=ǫF (X)Xw + νmF (X)Xm − γmXm

dXr

dt
=νrF (X)Xr − γrXr − σXr + ηXwXr

where F (X) accounts for saturation: F (0) = 1 and F ′(X) ≤ 0. For our analysis
we define three reproduction numbers: Rw = νw/γw; Rm = νm/γm; and Rr =
νr/ (γr + σ). When only one mechanism for resistance operates, equations 1 reduce
to a two-dimensional system, solutions are then confined to a bounded region of
the positive quadrant and no periodic solutions are possible.

IfXr ≡ 0 selection is by mutation only. The trivial steady stateXw = Xm = 0 is
stable if Rw < 1 and Rm < 1. The semi-trivial steady state (Xw, Xm) =

(

0, X#
m

)

,

where RmF (X#
m) = 1 exists if Rm > 1; and is stable if Rm > Rw. The non-trivial

steady state where RwF (X∗) = 1 exists and is stable if Rw > 1 and Rw > Rm.
Here

X∗
w =

Rw −Rm

Rw −Rm + ǫ/γm
X∗ X∗

m =
ǫ/γm

Rw −Rm + ǫ/γm
X∗

The dynamics are summarised in Figure 1A. It can be seen in the figure that if
Rm < 1 and Rw is reduced (lower horizontal broken line), then while Rw > 1
a non-trivial steady state with both types present exists and is stable, but for
Rw < 1 the trivial state with no bacteria present is stable. If Rm > 1 and Rw

is reduced (upper horizontal broken line), then the realised steady state changes
from the non-trivial to the semi-trivial, with only the mutant Xm present.
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Figure 1. A: Regions in the (Rw, Rm) plane where the possible
steady states of the model with resistance due to mutation only
exist and are stable. B: Regions in the (Rw, Rr) plane where
the possible steady states of the model with resistance due to a
plasmid only exist and are stable.
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If Xm ≡ 0 selection is by horizontal gene transfer only. The trivial steady state
Xw = Xr = 0 is stable if Rw < 1 and Rr < 1. Define

X†
w =

νr
η

(

1

Rr
−

1

Rw

)

The semi-trivial steady state (Xw, Xr) =
(

X#
w , 0

)

, where RwF (X#
w ) = 1 exists

when Rw > 1; and is stable if X#
w < X†

w. A non-trivial steady state (Xw, Xr) =
(X∗

w, X
∗
r ) exists and is stable when Rw < 1 and Rr > 1; and when Rw > 1 and

X#
w > X†

w. The dynamics are summarised in Figure 1B. It can be seen in the
figure that if Rw is reduced along the horizontal broken line, then the realised
steady state changes from the semi-trivial, with only the wild-type Xw present to
the non-trivial with both types present.
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Figure 2. Summary of the dynamics of Equations 1 when Rm =
2.5. A: Regions in the (Rw, Rr) plane where steady states of the
model exist and are stable. B-D: Bifurcation diagram showing
steady states as a function of Rw when B: Rr = 2.1; C: Rr = 2.7;
and D: Rr = 2.4. Parameter values are based on those in [2]-[5].

When both mechanisms for resistance are present then the dynamics are more
complicated. The trivial steady state is stable if Rw < 1, Rm < 1 and Rr < 1.
The 2

3 -trivial steady state (Xw, Xm, Xr) =
(

0, X#
m, 0

)

, where RmF (X#
m) = 1 exists
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when Rm > 1; and is stable if Rw < Rm and Rr < Rm. The 1
3 -trivial steady state

(Xw, Xm, Xr) =
(

X♭
w, X

♭
m, 0

)

, where RwF (X♭) = 1 and X♭
w + X♭

m = X♭, exists

when Rw > 1 and Rw > Rm; and is stable if X♭
w < X†

w. Non-trivial steady states
have been found numerically.

As an illustration Figure 2 summarises the results when Rm = 2.5. In particular,
in Figure 2A not only are there regions in the (Rw, Rr) plane where each steady
state (apart from the trivial) exists and is stable, but there is a region where
bistability has been shown to exist. Figure 2B shows a bifurcation diagram with
Rr ≪ Rm. As Rw is reduced, then the realised steady state changes from the
2
3 -trivial with the wild-type Xw and the mutant Xm present, to the 1

3 -trivial with
only Xm present. Figure 2C shows a bifurcation diagram with Rr > Rm. As Rw

is reduced, then the realised steady state changes from the 2
3 -trivial, to the non-

trivial with all three types present. For the bifurcation diagram in Figure 2D, Rr

is less than but close to Rm. The figure shows a region of bistability for Rw < Rm.
For large values of Rw the 2

3 -trivial state is present and stable. As Rw is reduced
the non-trivial steady state with all three types emerges. However, reducing Rw

even further the non-trivial state disappears in a saddle node bifurcation, and the
only steady state is the 1

3 -trivial with only Xm present.
We have presented and analysed a within-host model for the dynamics of an-

tibiotic resistance. We have shown that if resistance arises due to mutation, then
control measures that reduce Rw, the reproduction number for the wild-type bac-
teria, either drive the bacterial population to extinction or select for the mutant.
If resistance arises due to the presence of a plasmid, then control measures ei-
ther drive the bacterial population to extinction or result in both the wild-type
and resistant bacteria being present. Finally, if both mechanisms are present, the
dynamics are more complicated and control measures could result in hysteresis
effects and selection for resistance.

Acknowledgements. The author wishes to thank Jackie Benschop, Sara Burgess,
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The TransMID project: social contact patterns relevant for the spread

of infectious diseases: past, present and future

Niel Hens

(joint work with the SIMID consortium (www.simid.be) and its collaborators)

Social contact data are increasingly being used to improve our understanding on
how close contact infectious diseases spread from person to person, and to help
guide effective policies on disease prevention and control. It is - to a large extent
- within this context that the TransMID project, an ERC consolidator grant, was
born. Here, I first describe the TransMID project after which I summarise the
results of a systematic review of social contact surveys. I also describe a social
contact data sharing initiative and I end with describing the fist household-based
contact survey focussing on testing the often-made random mixing assumption in
households.

TransMID focuses on the development of novel methods to estimate key epi-
demiological parameters from both serological and social contact data, with the
aim to significantly expand the range of public health questions that can be ade-
quately addressed using such data. Using new statistical and mathematical theory
and newly collected as well as readily available serological and social contact data,
fundamental mathematical and epidemiological challenges are addressed: (a) fre-
quency and density dependent mass action relating potential effective contacts
to transmission dynamics in (sub)populations of different sizes with an empiri-
cal assessment using readily available contact data, (b) behavioural and temporal
variations in contact patterns and their impact on the dynamics of infectious dis-
eases, (c) close contact household networks and the assumption of homogeneous
mixing within households, (d) estimating parameters from multivariate and serial
cross-sectional serological data taking temporal effects and heterogeneity in ac-
quisition into account in combination with the use of social contact data, and (e)
finally the design of sero- and social contact surveys with specific focus on serial
cross-sectional surveys.

Based on a systematic review of the study design, statistical analyses and out-
comes of the many social contact surveys that have been published, we found
that surveys for collecting empirical contact data in a population have been con-
ducted widely in many countries, but mostly in high-income countries. The surveys
present a wide range of study designs. Throughout, we found that the overall con-
tact patterns were remarkable robust to the study details. By taking the most
common approach in each aspect of design (e.g. sampling schemes, data collec-
tion, definition of contact), we could identify a ‘common practice’ approach that
can be used to facilitate comparison between studies and for benchmarking future
studies.

Within TransMID, we are making social contact data available via
http://www.socialcontactdata.org which links to data repositories in which
the data are structured according to a relational database structure. These data
can then be analysed using different methods (Van de Kassteele et al. 2017;

http://www.socialcontactdata.org
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Camarda and Hens, 2003) made available in the R-package ‘socialmixr? first de-
veloped by Sebastian Funk (London School of Hygiene and Tropical Medicine,
London, UK).

Finally, I present results on the first social contact survey specifically designed
to study contact networks within households (Goeyvaerts et al., 2017). We found
a high degree of clustering and, specifically on weekdays, decreasing connectedness
with increasing household size. Epidemic simulation results suggest that within-
household contact density is the main driver of differences in epidemic spread
between complete and empirical-based household contact networks. The homo-
geneous mixing assumption may therefore be an adequate characterisation of the
within-household contact structure for the purpose of epidemic simulation. How-
ever, ignoring the contact density when inferring from an epidemic model will result
in biased estimates of within-household transmission rates. Further research on
the implementation of within-household contact networks in epidemic models is
necessary.
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Survival biases lead to flawed conclusions in observational treatment

studies of influenza patients

Martin Wolkewitz

(joint work with Martin Schumacher)

Background and Objective

Several observational studies reported that Oseltamivir (Tamiflu) reduced mortal-
ity in infected and hospitalized patients. Because of the restriction of observation
to hospital stay and time-dependent treatment assignment, such findings were
prone to common types of survival bias (length, time-dependent and competing
risk bias).

Methods

British hospital data from the Influenza Clinical Information Network (FLU-CIN)
study group were used which included 1,391 patients with confirmed pandemic
influenza A/H1N1 2009 infection. We used a multistate model approach with
following states: hospital admission, Oseltamivir treatment, discharge, and death.
Time origin is influenza onset. We displayed individual data, risk sets, hazards, and
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probabilities from multistate models to study the impact of these three common
survival biases.

Results

The correct hazard ratio of Oseltamivir for death was 1.03 (95% confidence in-
terval [CI]: 0.64-1.66) and for discharge 1.89 (95% CI: 1.65-2.16). Length bias in-
creased both hazard ratios (HRs): HR (death)=1.82 (95% CI: 1.12-2.98) and HR
(discharge)=4.44 (95% CI: 3.90-5.05), whereas the time-dependent bias reduced
them: HR (death)=0.62 (95% CI: 0.39-1.00) and HR (discharge)=0.85 (95% CI:
0.75-0.97). Length and time-dependent bias were less pronounced in terms of
probabilities. Ignoring discharge as a competing event for hospital death led to a
remarkable overestimation of hospital mortality and failed to detect the reducing
effect of Oseltamivir on hospital stay.

Conclusions

The impact of each of the three survival biases was remarkable, and it can make
neuraminidase inhibitors appear more effective or even harmful. Incorrect and
misclassified risk sets were the primary sources of biased hazard rates.
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Coalescent methods for integrating genomics and epidemiology

Daniel J. Wilson

Exploiting pathogen genomes to reconstruct transmission between populations and
within outbreaks represents a powerful tool in the fight against infectious disease.
However, the statistical models and inference methods that allow the exploitation
of pathogen genomes are complex, so simplifying assumptions and approximations
highly appealing. Sometimes these short-cuts are indispensable for practical pur-
poses, but other times they can ignore important complexities of real outbreaks,
such as within-host evolution and non-sampled patients, or they can be biased,
overly confident, inefficient and downright misleading. In this talk I describe how
my group has used coalescent-based models from population genetics to moti-
vate the development of new methods for phylogeographic and outbreak inference.
Using examples from real outbreaks of Ebola virus, avian influenza virus, foot
and mouth disease virus and Klebsiella pneumoniae, together with detailed sim-
ulations, I compare existing methods to the new tools we have developed, and
show how different methods can lead to very different epidemiological interpre-
tations concerning transmission. Notably, we have found that phylogeographic
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inference of transmission based on the popular discrete trait analysis (DTA, also
known as mugration) is extremely unreliable and sensitive to biased sampling.
We have developed BASTA (BAyesian STructured coalescent Approximation), a
phylogeography approach implemented in BEAST2 that combines the accuracy
of methods based on the structured coalescent with the computational efficiency
required to handle more than just few populations, and SCOTTI (Structured CO-
alescent Transmission Tree Inference), a method for outbreak inference that takes
forward the BASTA approach by modelling individual cases as separate subpopula-
tions. BASTA overcomes the limitations of the DTA approach to phylogeography
while SCOTTI outperforms the popular Outbreaker software while incorporating
complexities not previously handled by existing tools. As genomics takes on an
increasingly prominent role informing the control and prevention of infectious dis-
eases, it will be vital to balance model robustness with statistical power to deliver
statistical methods that provide reliable insights into transmission history.
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Linking geostatistical and transmission models for neglected tropical

diseases in Africa

Simon Spencer

(joint work with Panayiota Touloupou and Déirdre Hollingsworth)

In 2012, pharmaceutical companies, donors, endemic countries and non-govern-
mental organisations committed to control, eliminate or eradicate 10 neglected
tropical diseases by 2020. As 2020 approaches we aim to use geostatistical mod-
elling coupled with mathematical models for the spread of infection to make pro-
jections about whether these ambitious goals can be met. We have focussed on 3
diseases: lymphatic filariasis (which leads to elephantiasis), onchocerciasis (which
leads to river blindness) and Gambian human African Trypanosomiasis (HAT,
which leads to sleeping sickness).

The key to our methodology lies in producing a large batch of simulations that
cover all of the prevalence levels estimated in the geostatistical mapping, which
was fitted to pre-control prevalence survey data. At each stage of the analysis we
attempt to account for the uncertainties present. We begin by drawing simulations
from the prior distribution of the model parameters, including the population
size. For each set of parameters, the transmission model was then simulated to
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endemic equilibrium to obtain the pre-control prevalence according to the model.
For each pixel in the map, we reweighted the simulations (via the empirical Radon-
Nikadym derivative) to obtain the posterior prevalence distribution estimated from
the geostatistical mapping. Finally we ran the simulations forward in time under
different intervention strategies producing a weighted distribution of outcomes for
each pixel in the map.

We illustrated our approach with results for lymphatic filariasis in Ethiopia, us-
ing 3 different transmission models from the Neglected Tropical Diseases Modeling
Consortium. For each model we consider 4 intervention strategies: no intervention,
annual Mass Drug Administration (MDA) with 65% coverage, annual MDA with
80% coverage and biannual MDA with 65% coverage. We find that most, but not
all, implementation units can have greater than 90% probability of meeting the
2020 goal of having prevalence less than 1%, however in many regions the intensity
of the intervention strategy must be increased to achieve this.

In future, we plan to extend our approach to a whole Africa analysis for both
lymphatic filariasis and onchocerciasis. For HAT, our simulation-based approach
is not appropriate due to the dependence between the emerging data and the
trajectory of the epidemic. This occurs because infected individuals identified by
large-scale surveys are treated, reducing the infection pressure and so any model
simulations must be specific to each location. We are working on adaptive and
computationally scalable Markov chain Monte Carlo techniques to fit models to
individual health areas across Africa.

Population Genomics, Price Decomposition, Proximate and Ultimate

Causes of Vector Competence

Claudio Struchiner

(joint work with Jose MC Ribeiro and Bruno Arca)

The completion of a set of reference genome assemblies for 16 species of Anopheles
mosquitoes allows for the exploration of the capacity exhibited by some of these
mosquito species to serve as vectors for malaria parasites. Vectorial capacity is
a highly variable trait determined by differences in mosquito physiology, molecu-
lar biology, and behavior. By taking advantage of this genome-wide comparative
framework, we explore the distinct evolutionary patterns that emerge when con-
trasting classes of genes implicated in the ability of mosquitoes to transmit malaria
parasites to humans, as well as their chromosomal locations that might indicate
closely related species intermixing.

Genes evolve by the accumulation of neutral mutations by random drift, and the
fixation of adaptive mutations by selection. Tools proposed to detect these mech-
anisms develop around the idea of comparing the number of amino-acid replace-
ment (non-synonymous) substitutions to synonymous substitutions in orthologous
coding sequences, a notable example being the McDonald and Kreitman (MK) ap-
proach. The MK framework has been recently expanded to address genome-wide
patterns of molecular variation using thousands of genes simultaneously. By fitting
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the latter models to genomic data from a Cameroonian An. gambiae population
having An. stephensi as an outgroup, we are able to estimate key parameters, for
about ten thousand genes, that drive the evolutionary history of the phenotypic
properties of these mosquitoes, in particular, their competence as vectors.

The massive amount of data generated in the steps above may lead to the
exploration of the proximate causes (developmental, physiological, or chemical
mechanism) that triggers the competence to transmit diseases and the ultimate
causes (why) that drive the fixation of this phenotypic trait in certain mosquito
species. Still a work in progress, our exploration of the evolutionary significance of
proximate and ultimate causal factors of vector competence among mosquitoes re-
lies on the proximate causal decomposition provided by the Price equation and the
unified language of causation provided by graph theory. In the previous two-step
process, Price’s framework is used to decompose the change in the mean phenotypic
value from one generation to another into a set of underlying causal factors that
includes selection and reproduction. The parameters estimated from the genome-
wide analysis enter as input empirical data in this decomposition. Causal graph
theory provides a bridge between causal statements and probability, and formal-
izes the interpretation of causal models involving the concepts of proximate and
ultimate causes. This work is an attempt to add an explicit evolutionary genetic
layer to the components that enter the concept of vectorial capacity, a summary
measure of the relative importance of the parameters involved in vector-borne
transmission dynamics.
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Pairwise survival analysis: Contact intervals, regression, and

phylogenetics

Eben Kenah

When integrating epidemiologic data with pathogen phylogenetics, the likelihood
for the transmission model is often a branching-process likelihood based on a
generation interval distribution. We show that a misspecified likelihood can lead
to severely biased estimates with or without a pathogen phylogeny. Writing the
likelihood as a survival likelihood with failure times in pairs – a process we call
pairwise survival analysis – accounts for time spent at risk of infection and leads
to more accurate estimation and source attribution than approaches based on
branching processes and generation intervals.

In the ordered pair ij, the contact interval τij from i to j is the time from the
onset of infectiousness in i until infectious contact from i to j, where infectious
contact is defined as a contact sufficient to infect j if j is susceptible. The contact
interval distribution provides a useful summary of infectious disease transmission.
The probability of infectious contact from i to j is Sij(ιi where Sij(τ) = Pr(τij > τ)
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is the survival function of the contact interval and ιi is the infectious period of i.
The probability that j receives infectious contact from i in the infectiousness age
interval (τ, τ + dτ ] is hij(τ)dτ , where hij(τ) is the hazard function of the contact
interval distribution. Thus, hij(τ) gives us the instantaneous infectiousness of
i as a function of infectiousness age. These properties of the contact interval
distribution make it a useful tool for understanding stochastic epidemic models.
In a homogeneous epidemic models on a configuration-model network, the basic
reproduction number is

(1) R0 = E

[

D(D − 1)

E[D]
S(ι)

]

where the expectation is taken over the joint distribution of the degree D and the
infectious period ι. In a mass-action model where the hazard of infectious contact
in a given pair is inversely proportional to the population size, we get

(2) R0 = E
[

H(ι)
]

where H(τ) = − lnS(τ) is the cumulative hazard function of the contact inter-
val distribution. In the stochastic Kermack-McKendrick model where S′(t) =
−βS(t)I(t), the contact interval distribution is exponential(β) and R0 = βE[ι].
When I ′(t) = −γI(t), the infectious period is exponential(γ) so R0 = βγ−1.

Consider a simple example where individuals A, B, and C are infected at times
tA < tB < tC such that A and B are both possible infectors of C. For simplicity,
assume there is no latent period. In a branching process model, the likelihood for
the data is the sum of the likelihood contributions of the two possible transmission
trees:

(3) gABgAC + gABgBC = gAB(gAC + gBC)

where gXY = g(tY − tX) and g is the probability density function (PDF) of the
contact interval distribution. The pairwise survival likelihood is

(4) hAB(hAC + hBC)SABSACSBC

where hXY = h(tY − tX) and SXY = S(tY − tX). This is also a sum over the
two possible transmission trees. The survival terms account for person-time spent
at risk of infection prior to infection. To calculate the probability that person
X infected person C, we take a likelihood ratio with all likelihood contributions
for transmission trees where X infected C on top and the total likelihood on the
bottom. For generation interval pdfs, this gives us

(5)
gXC

gAB + gBC
.

The pairwise survival likelihood gives us

(6)
hXC

hAB + hBC
.

In a model with a constant hazard of infectious contact, we get the pAC < pBC

using generation intervals and pAC = pBC using pairwise survival analysis. The
latter result is known to be correct for this model.



Design and Analysis of Infectious Disease Studies 421

One common motivation for using the branching process approach is to obtain
a likelihood that does not depend on observations of uninfected individuals. Un-
der current epidemiological practice, such data is often not available during an
outbreak. In a mass-action model in a population of size n, we get an asymptotic
log likelihood of the form

(7) lnhAB + ln(hAB + hBC)−
(

H(ιA) +H(ιB) +H(ιC)
)

where ιX is the infectious period in individual X . This likelihood does not depend
on any data about uninfected individuals. In order for inference using generation
intervals to work, the cumulative hazard terms must be near zero. However, this
requires R0 ≈ 0. The pairwise survival likelihood works under the much weaker
assumption of mass-action and negligible depletion of susceptibles.

As an example of the flexibility of pairwise survival analysis, we describe a
pairwise accelerated failure time model that can be used to estimate covariate
effects on infectiousness and susceptibility. In this model, the rate parameter for
infectious contact from i to j has the form

(8) λij = exp
(

β⊤
intXij

)

λ0

where βint is an unknown coefficient vector, Xij is a vector of individual or pair-
wise covariates, and λ0 is a baseline rate parameter. This is called the internal
transmission model. To account for the risk of infectious contact from outside the
observed population, there is also an external transmission model where

(9) λ0j = exp
(

β⊤
extX0j

)

µ0

where βext is an unknown coefficient vector, X0j is a vector of individual-level
covariates, and µ0 is a baseline rate parameter. Covariates in Xij and X0j can be
unique to each model or shared. This model – modified to account for the buildup
of immunity – will be used to estimate the efficacy of the Ebola vaccine based on
the WHO ring vaccination trial in Guinea. This trial collected data on individuals
exposed to infection who escaped as well as Ebola virus genetic sequences.

Finally, we describe a pruning (peeling) algorithm for calculating an approxi-
mate likelihood using both epidemiologic data and a pathogen phylogeny. This
algorithm calculates an unweighted sum of all transmission trees consistent with a
pathogen phylogeny. The true likelihood is a weighted sum, but it cannot be cal-
culated quickly using any known pruning algorithm. One possible application of
this algorithm is to run an Markov chain Monte Carlo (MCMC) algorithm in the
approximate likelihood and use importance weighting to perform Bayesian infer-
ence using the true likelihood. Pathogen genetics can improve statistical efficiency
and reduce bias, but this depends on good epidemiologic study design and a good
likelihood for transmission.
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Disease Burden

Johannes Müller

(joint work with Mirjam Kretzschmar)

1. Introduction

Public health authorities have the difficulty to decide how to distribute resources
to the control of several diseases in parallel. The problem here is that – strictly
spoken – diseases are not comparable.

One way out is a purely economic view. Intervention measures (vaccination,
screening, contact tracing,. . . ) have some costs. By means of intervention mea-
sures, cases can be prevented, and therewith money can be saved (treatment,
sick leaves,. . . ). If we subtract the costs from the savings we obtain an economic
measure that can be used as a basis for decisions.

The economic approach clearly does not cover all relevant aspects. Of course,
we have costs for a control measure. However, the primary aim is not to reduce the
economic impact of a disease but to reduce detrimental effects. Disease burden
is another idea that aims at quantifying these detrimental effects. In the last
consequence, however, this is for sure not possible. Nevertheless, decisions have to
be made, and it is for sure advantageous to have some rational basis for decisions.
The idea of disease burden is to measure the effects of a disease in missed life
years [1, 2].
• A person who dies due to a disease would otherwise life a certain number of
further years. This aspect is captured by the years of life lost due to premature
death (YLL).
• A person who is diseased has some (more or less severe) symptoms. These
symptoms induce the inability to do what he/she would do otherwise. There is a
reduction of the effective life time. This effect is measured in years of life lost due
to disability (YLD).
Therewith we define the disease burden.

Disease Burden := YLL+YLD

The disease burden can be defined via incidence or via prevalence. In equilib-
rium situations (stationary state), the two definitions coincide. In this talk we
focus on the extension of this concept from stationary to more dynamic situa-
tions, that is, to exponentially increasing/decreasing populations. Therewith it is
possible to address the changing age structure in developed countries (population
becomes older).
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Figure 1. Disease burden.

Figure 2. Age
structure (years 350
and 700)

Figure 3. Age
structured disease
burden at year 350

Figure 4. Age
structured disease
burden at year 700



424 Oberwolfach Report 7/2018

2. Definition of disease burden

We consider the age-structured model (ei denotes the i’th unit vector,
e = (1, . . . , 1)T )

(∂t + ∂a)S(a, t) = −ΛS(a, t)− µ(a)S

(∂t + ∂a)X(a, t) = ΛS(a, t) e1 +AX − µ(a)X −D(a)X

Λ(a, t) =

∫ ∞

0

k(a, b)I(b, t)/P (t) db

P (t) =

∫ ∞

0

S(a, t) + eTX(a, t) da

S(0, t) =

∫ ∞

0

b(a)(S(a, t) + eTX(a, t)) da

X(0, t) = 0

where X is a vector that incorporates the infected class and all subsequent classes
(e.g. chronic infecteds, recovereds, etc.). A is an M-Matrix, eTA = 0, and D(a) is
a diagonal matrix indicating the additional mortality.
Let Y (a; a0) denote the fate of an individual infected at age a0,

d

da
Y (a; a0) = AY (a; a0)− µ(a)Y (a; a0)−D(a)Y (a; a0), Y (a0; a0) = e1.

We now introduce the functions yllind(a0, t) and yldind(a0, t) (the expected YLL
resp. YLD for a single person infected at time t at age a0). Therewith we define
the prevalence DBprev and incidence DBinc based disease burden per capita. The
vector W consist of the disability weights that measure the effective reduction of
the live years due to disability.

yllind(a0, t) =

∫ ∞

a0

(

e
−

∫
a

a0
µ(τ) dτ

− eTY (a; a0)
) P (t)

P (t+ a− a0)
da

yldind(a0, t) =

∫ ∞

a0

WTY (a; a0)
P (t)

P (t+ a− a0)
da.

DBinc(t) =

∫ ∞

0

(

(yllind(a, t)) + yldind(a, t)

)

Λ(a)S(a, t)/P (t) da,

DBprev(t) =

∫ ∞

0

(

eT D(a)(X(t, a)/P (t))

∫ ∞

a

e−
∫

a
′

a
µ(τ) dτ P (t)

P (t+ a′ − a0)
da′

+WTX(t, a)/P (t)

)

da.

If the population size is constant, the definition coincides with the classical defini-
tions. Typically, in the long run the age structured model tends to an exponentially
growing (decreasing) solution, (S(a, t) = eλtS(a) etc.). In this case we can prove
the following theorem.

Theorem In the exponentially growing situation, we have

DBinc(t) = DBprev(t).
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3. Hepatitis B

We apply this definition to hepatitis B. We orient ourselves at the model as in [2],
where parameters are chosen not completely realistically to exemplify the effect of
an aging population. The birth rate is decreased at simulated year 350, such that
the growth rate jumps from 0.004/year to the value of −0.0087/year. Before year
350 and eventually the incidence and prevalence based disease burden coincide, in
the transient phase there is some difference (Fig. 1). As in a shrinking population
there are more adults, and infection by hepatitis B is mainly transmitted by sexual
contacts and needle sharing, the disease burden increases in time. Also the age
structured disease burden reflects this fact (Figs. 3 and 4).
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A metric-based method for comparing transmission trees

Michelle Kendall

(joint work with Diepreye Ayabina, Yuanwei Xu, James Stimson and Caroline
Colijn)

In the analysis of infectious disease outbreaks it is often important to be able to
infer “who infected whom”. The inferred links between infectors and infectees in
an outbreak are commonly represented by a directed graph. If each infectee has at
most one infector (in-degree ≤ 1), if there is a unique source case and if the graph
forms a single connected component, then this graph is a tree and it is known as
the transmission tree.

Accurate inference of the transmission tree of an outbreak is important for our
understanding of pathogen dynamics and for public health strategies: determining
whether there are certain individuals or locations causing high numbers of infec-
tions, identifying individuals at higher risk, determining which characteristics are
associated with infectiousness, and analysing the efficacy of interventions.

However, inference of transmission trees is complicated. There are several
choices to be made: the input data (genetic and/or epidemiological); the infer-
ence framework (maximum likelihood, Bayesian, etc.); data-collection assumptions
such as the likely number of unsampled cases; and pathogen-specific assumptions
such as the time between infection and becoming infectious, and the variety in the
pathogen ‘strains’ transferred at the time of infection (size of bottleneck).
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A wide range of methods and software are available for transmission tree infer-
ence. Typically, each methodological combination produces a different transmis-
sion tree; often the differences significantly alter the epidemiological story of the
outbreak, with important implications for downstream analysis and public health
decision making. Often the trees are too numerous and/or too large to compare
simply by plotting them and examining their differences by eye. Although each
tree captures meaningful signals in the data, it is often impractical to retain all
inferred trees for onward analyses. Typically a consensus tree is calculated using
a method like Edmond’s algorithm. However, we demonstrate that this tree can
differ significantly from each of the inferred trees.

To address these difficulties we propose a metric on transmission trees. A met-
ric is a specific type of distance function; here we note that it describes a distance
between two objects, giving a distance of zero if the objects are identical and
larger values for objects which are more dissimilar. Our metric enables quanti-
tative comparison of transmission trees, allowing us to compare and summarise
various hypotheses of “who infected whom”. By capturing differences in source
case attribution, transmission direction between individuals, tree shape (linked to
R0) and numbers of unsampled cases, it enables us to sort the trees in epidemiolog-
ically meaningful ways. It reveals whether multiple analyses (and/or a Bayesian
posterior set of trees) are in broad agreement or whether they are multimodal,
supporting different transmission histories each with comparable likelihoods.

We use multidimensional scaling (MDS) to project pairwise tree distances into
a small number of dimensions for visualisation. We show that natural similari-
ties and symmetries of the tree space are preserved in this projection, enabling
straightforward identification of trends and clustering by eye, as well as through
rigorous statistical techniques.

The metric can also be used to select a single representative median tree (or
a representative median tree for each distinct “cluster” of transmission trees).
Unlike a consensus tree, this tree will by construction be one of the candidate
trees inferred by the analysis, with a corresponding likelihood. Finally, we briefly
discuss some further applications of the method: it can be used to compare inferred
transmission trees to a simulated “true tree”, to test inference accuracy, to test
for convergence in Bayesian posterior tree sets, and potentially to propose MCMC
“moves” in tree space.

Full details are given in [1]. The functions are available in the R package
treespace [2, 3], where there is also a vignette for reproducing each of our illustrative
examples.
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Silcherstrasse 5
72070 Tübingen
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