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Abstract. This mini-workshop focused on chromatic phenomena and dual-
ity as unifying themes in algebra, geometry, and topology. The overarching
goal was to establish a fruitful exchange of ideas between experts from various
areas, fostering the study of the local and global structure of the fundamental
categories appearing in algebraic geometry, homotopy theory, and representa-
tion theory. The workshop started with introductory talks to bring researches
from different backgrounds to the same page, and later highlighted recent
progress in these areas with an emphasis on the interdisciplinary nature of
the results and structures found. Moreover, new directions were explored in
focused group work throughout the week, as well as in an evening discussion
identifying promising long-term goals in the subject. Topics included sup-
port theories and their applications to the classification of localizing ideals
in triangulated categories, equivariant and homotopical enhancements of im-
portant structural results, descent and Galois theory, numerous notions of
duality, Picard and Brauer groups, as well as computational techniques.
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Introduction by the Organisers

A spur of flourishing interactions between algebra, geometry, and homotopy the-
ory was initiated by the seminal work of Devinatz, Hopkins, and Smith classifying
the thick subcategories of the homotopy category of finite spectra. It was an
unprecedented structural result that in particular organized and vastly general-
ized previous computational advancements in chromatic homotopy theory, and
inspired analogous classifications in other settings, which aid the understanding of
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localizations. Neeman after Hopkins, for example, related the thick and localiz-
ing subcategories of the derived category of a ring to certain subsets of the prime
spectrum of the ring. These classical results and their various analogues have been
streamlined into tensor-triangulated geometry as developed by Balmer in the last
decade. Balmer’s formalization of the theory has been crucial in the expansion of
chromatic techniques to new areas, most notably modular representation theory.

The aim of this mini-workshop was to gather researchers from homotopy the-
ory, algebraic and triangulated geometry, and modular representation theory, in
order to showcase recent advancements, as for example the development of strati-
fications of triangulated categories, new classification results in modular represen-
tation theory and stable equivariant homotopy theory, as well as advances in our
understanding of various duality phenomena. A second goal was to facilitate new
collaborations among the researches; discussions about the interactions among
these fields also led to the coining of a new term to encompass them, prismatic
algebra.

The main activities during the first two days of the workshop were the intro-
ductory lectures by Dell’Ambrogio (on tensor-triangulated geometry), Pevtsova
(on modular representation theory), Schlank (on chromatic homotopy theory),
and Neeman (on Grothendieck duality’s latest conceptualization). The aim was
to bring the researchers from various backgrounds to a common ground, so that
deeper exchanges can happen as the week progresses.

At the same time, four work groups were formed to explore open questions in
depth and detail, and as the week progressed, more and more time was spent on
group work. At the end of most days, we convened for a report on progress by each
group. In addition to all this, we had five talks showcasing the latest developments
in the area, and on Thursday evening we had an informal discussion about the
past and future of this interactive field, sharing open problems and questions.

Introductory talks. Dell’Ambrogio’s lectures introduced the machinery of
tensor-triangulated (tt-)geometry, which starts with the Balmer spectrum, a space
associated to a tt-category and is built from thick ideals. The geometry of this
space is related to localizations of the category in question, as is made precise
by a theory of supports. Pevtsova’s and Schlank’s lectures were, in a sense, case
studies of the general theory from Dell’Ambrogio’s talk, although historically they
came first and were the motivation behind the development of the general the-
ory. Pevtsova talked about the stable module category of a finite group scheme in
positive characteristic, where the thick subcategories are related to the prime spec-
trum of the cohomology ring of the group scheme in question. Schlank discussed
chromatic homotopy theory, whereby the thick subcategories in stable homotopy
theory are related to points on the moduli stack of formal groups.

Neeman’s talk addressed the question of Grothendieck duality; while parts of the
foundational theory are classically formal, other parts have been accepted as messy.
Neeman presented the classical formal sides of the theory, and supplemented this
with his recent results streamlining the sticky points.
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Research talks. Even though the case of the stable homotopy category was
the original example of a determination of a Balmer spectrum, through the thick
subcategory theorem of Devinatz, Hopkins, and Smith, classifying the thick tensor
ideals of the equivariant stable homotopy category of a finite group is very recent
work. Noel spoke about the latest advances in this problem, building on previous
work by Balmer, Sanders, and Strickland.

The talks of Greenlees and Castellana both discussed recent progress in duality
in homotopy-theoretic settings. Greenlees explored various duality patterns ap-
pearing in the local cohomology spectral sequences for topological modular forms
and A(2), an important subalgebra of the dual Steenrod algebra. Castellana pre-
sented a stratification result for homotopical (p-local compact) groups, general-
izing a theorem of Benson, Iyengar, and Krause for finite groups. In a nutshell,
the analogous structural results hold, but the proofs require additional tools from
homotopy theory.

Grodal gave a cohomological classification of endotrivial modules for arbitrary
finite groups, obtained by homotopical methods. This amounts to computing the
Picard group of the stable module category, and the results tied together extensive
previous work of Alperin, Carlson, Dade, Thevenaz, and others.

Balmer explored the notion of residue fields in tt-geometry, using for a com-
pactly generated tensor triangulated category the embedding (modulo phantom
maps) into a Grothendieck category via the restricted Yoneda functor.

Group work. Inspired by questions from Neeman’s talk, Krause, Neeman,
and Pevtsova formed a group to explore the question of strong generation in tt-
categories using chromatic methods and the theory of supports. Finding an appro-
priate framework for Grothendieck’s local duality in the affine case for Gorenstein
rings was another topic, because one wants to formulate an analogue for finite
dimensional algebras via the action of Hochschild cohomology.

Castellana, Greenlees, and Grodal did some computations of the singularity and
cosingularity categories of the ring of cochains on a classifying space of a group, to
get a feeling for some unexplored structural properties. This was mostly inspired
by a recent preprint by Greenlees and Stevenson.

Balmer, Dell’Ambrogio, Ricka, Sanders, and Stojanoska discussed questions re-
lated to Gorenstein and Anderson duality. One was to formalize Gorenstein duality
in an abstract tensor-triangulated setting, in a way that lends itself to studying
descent for dualizing modules. Another was to use techniques from relative homo-
logical algebra to establish vast generalizations of Anderson duality.

Barthel, Beaudry, Heard, Noel, and Schlank introduced Brauer spectra into
modular representation theory and worked on computations of Brauer groups of
stable module categories using descent-theoretic methods among other techniques.

Finally, in the informal evening discussion on Thursday, the victories as
well as challenges of this interactive field were discussed, including several open
problems of more long-term and open-ended nature than in the group work part
of the workshop.
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Abstracts

An introduction to tensor triangular geometry

Ivo Dell’Ambrogio

Tensor triangular geometry is the geometric study of tensor triangulated cate-
gories. As such, it can be seen as a way of extracting the intrinsic geometry of
prismatic algebra – the stable intersection of topology, geometry, representation
theory, etc. Of the possible ways to approach this subject, in this talk we focus on
the one due to Paul Balmer, based on the notion of the spectrum of a tensor trian-
gulated category. Our main goal is to set up some basic vocabulary and examples
for the mini-workshop.

Tensor triangulated categories tend to arise in two flavors, ‘big’ ones, here de-
noted T , and ‘small’ ones, denoted K. Typically, the small K occur as the subcat-
egory of compact-and-rigid objects, K = T c, in a compactly generated T .

Convention. To be more precise, in the following K will denote an essentially
small tensor triangulated category, that is, a triangulated category equipped with
a symmetric monoidal structure ⊗ : K × K → K with tensor unit object 1. For
convenience here we assume K to be rigid, so that every object x admits a tensor
dual x∨: K(x ⊗ y, z) ∼= K(y, x∨ ⊗ z). By T we will denote a rigidly-compactly
generated category, that is a compactly generated triangulated category which
is tensor triangulated and such that its compact and rigid objects coincide; in
all examples below, K = T c is the full tensor triangulated subcategory of these
objects. Such T were called unital algebraic stable homotopy categories in the
seminal work by Hovey-Palmieri-Strickland [10].

Examples abound in nature. Here are some fundamental ones:

Examples. (1) The ur-example is the stable homotopy category T = SH ,
with K = SHc the category of finite spectra.

(2) Generalising this (which is the case when A = S is the sphere spectrum), we
have the derived category T = D(A) of any (sufficiently structured, that
is E4) commutative ring spectrum. This includes E∞-rings, commutative
dg-algebras, and of course ordinary (disctrete) commutative rings.

(3) Generalizing in the ‘global’ direction, we have the derived category T =
DQcoh(X) of any quasi-compact and quasi-separated scheme X , with K =
Dperf(X) the category of perfect complexes. Some classes of more general
stacks also have similarly nice derived categories.

(4) In modular representation theory, we can take T = StMod(kG) the stable
module category of a finite group (or group scheme) G or the homotopy
category of injective modules T = K(Inj kG). The compact objects are
respectively the stable category stmod(kG) and the bounded derived cat-
egory Db(kG) of finite dimensional representations.

(5) We also have motivic, equivariant, A1-homotopic, etc. variants of the sta-
ble homotopy category.
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Tensor triangular geometry starts with the following definition and theorem:

Definition (Balmer 2005). The spectrum of K, denoted Spc(K), is the set of
tensor-ideal thick subcategories P ⊂ K which are prime, that is proper (P 6= K)
and satisfying x ⊗ y ∈ P ⇔ x ∈ P or y ∈ P . It becomes a nice (‘spectral’)
topological space when endowed with the Zariski topology, which has a basis of
closed subsets given by the supports supp(x) := {P | x 6∈ P} of objects x ∈ K.

Theorem (Balmer [1], Buan-Krause-Solberg [8]). The lattice of thick tensor ideals
of K is Hochster dual to the lattice of open subsets of the Balmer spectrum. Con-
cretely, the maps J 7→

⋃
x∈J

supp(x) and S 7→ {x | supp(x) ⊆ S} induce an
inclusion-preserving bijection

{
thick ⊗-ideals J ⊆ K

} ∼
↔

{
dual-open subsets S ⊆ Spc(K)

}

where a subset S ⊆ Spc(K) is dual-open (or Thomason) if it is a union of closed
subsets, each of which has a quasi-compact open complement.

By the above theorem, the Balmer spectrum always encodes a geometric clas-
sification of thick tensor-ideals.

The converse is also true: any (nice) space allowing such a classification must
be homeomorphic to the spectrum. Thus we may convert known classification
theorems into computations of the spectrum. For instance, it follows from the
celebrated Thick Subcategory Theorem of Devinatz-Hopkins-Smith [9] that the
space Spc(SHc) has a beautiful description as the union of the chromatic towers
for all prime numbers.

Subsequent work of Hopkins, Neeman [11] and Thomason [12] transposed the
classification to commutative algebra and algebraic geometry. It follows that if
A is a (discrete) commutative ring, the spectrum Spc(D(A)c) is just the Zariski
spectrum of A, and if X is a scheme Spc(Dperf(X)) ∼= X recovers the scheme.

One long-standing goal of axiomatic tensor triangular geometry was to invert
the flow: to compute new spectra by tensor-triangular methods and to derive
from this some new, non-obvious classification theorems. This has recently been
achieved, in spectacular fashion, in the case of the (genuine) G-equivariant stable
homotopy category T = SH(G):

Example. Balmer-Sanders [3] determined the spectrum Spc(SH(G)c), as a set
for all finite groups G, and as a space if the order is square-free. Then Barthel-
Hausmann-Naumann-Nikolaus-Noel-Stapleton [4] computed the topology for all
abelian G. This yields a very interesting new family of classification theorems.

Generally speaking, there are two strategies for approaching the computation
of the spectrum in examples: one can try to approach this space from the left or
from the right.

Approximation from the left. The assignment x 7→ supp(x) from objects
to closed subsets of Spc(K) is completely compatible with the tensor-triangular
structure of K and is the universal such: given any other support data (T, σ)
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consisting of a (spectral) space and such a compatible assignment σ, there is a
unique continuous map

λ : T −→ Spc(K)

such that σ(x) = λ−1supp(x) for all objects. If one is particularly lucky, it may
even be possible to extend σ to a support theory σ̃ for all objects of T , not just
the compact ones. It is easy to construct some σ̃ satisfying basic compatibilities,
and if one works hard it may even satisfy the following special properties:

• Tensor formula: σ̃(x⊗ y) = σ̃(x) ∩ σ̃(y) at least if one of x, y is compact.
• Realization: U ⊆ T is quasi-compact open⇔ T \U = σ̃(x) for a compact x.
• Detection of objects: σ̃(x) = ∅ implies that x = 0.

In this case, the left approximation λ must be a homeomorphism. Moreover, with
extra work, this may lead to stratification (Benson-Iyengar-Krause [6]), that is a
geometric classification of all localizing tensor ideals in T .

This strategy was originally employed by Benson-Carlson-Rickard [5] on the
stable module category of a finite group, yielding the remarkable computation

Spc(stmod kG) ∼= Proj(H∗(G; k))

and the result was generalized to all finite group schemes by Benson-Iyengar-
Krause-Pevtsova [7]. The first stratification theorem was obtained by Neeman [11]
for the derived category of a commutative noetherian ring.

Approximation from the right. In complete generality, there is also a contin-
uous map

ρ : Spc(K) −→ SpecZar(RK)

where RK = EndK(1) is the endomorphism ring of the unit, which is automatically
commutative and thus has a Zariski spectrum. This map has graded versions and
other variants, and they all localize well with respect to the action of RK (or its
graded version, etc.) on K induced by the tensor product. As a result one can
reduce the computation of the spectrum to the – usually simpler – local case, with
respect to localization over SpecZar(RK). This is part of the strategy for the above
topological examples and several others.

We have barely scratched the surface here. In particular we have not mentioned
what one can do with the spectrum (other than obtaining classification results).
For this we refer to the early but extensive survey Balmer [2], and for more recent
developments we refer to the mini-workshop’s other talks.
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Tensor triangular geometry for finite group schemes

Julia Pevtsova

The purpose of this extended abstract is to give a snapshot of what was covered
in a two lecture survey given at the beginning of the mini-workshop on “Chromatic
phenomena and duality in homotopy theory and representation theory”. My task
was to focus on the (modular) representation part of the story. I narrowly in-
terpreted the “chromatic phenomena in representation theory” as the description
of the structure of thick and localizing subcategories in the stable module - and
related - categories of a finite group scheme. Using the language introduced by
Paul Balmer, one can reformulate this as a question about the spectra of the cor-
responding categories, or more generally, about their properties with respect to
tensor triangular geometry.

We start with some terminology. A finite group scheme G defined over a field
k is a representable functor:

G : {comm k-algebras} → {groups}

such that the representing algebra k[G] is finite dimensional as a vector space over
k. For what follows, we assume that k has positive characteristic p. Dualizing
the coordinate algebra, we get the group algebra kG which is a finite dimensional
cocommutative Hopf algebra. This correspondence gives an equivalence of cate-
gories

{
finite group
schemes

}
∼

{
finite dimensional co-

commutative Hopf algebras

}

Examples of these structures include finite groups, restricted Lie algebras and
Frobenius kernels of algebraic groups. Representations of a finite group scheme
G are equivalent to representations of its group algebra kG. Since the latter is
Frobenius, one can construct the stable module categories StmodG and stmodG
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of all and finite dimensional representations of G which are tensor triangulated
categories. Hence, one can study tensor triangular geometry, or tt-geometry, in
this context.

Following the fundamental principles of tt-geometry, we seek to construct a
support map

supp : StmodG→ X

for a topological space X which captures the basic structure of our category. This
is where cohomology enters into the picture as we set

X = ProjH∗(G, k).

By a theorem of Friedlander and Suslin, the (graded commutative) cohomology
ring H∗(G, k) is a finitely generated k-algebra; hence, X is a projective variety of
finite type.

It is known, for example by the work of I. Dell’Ambrogio, that for the support
map to classify the tensor ideals in stmodG, which is the category of compact ob-
jects in StmodG, it suffices to show that it satisfies the following list of properties.

(1) supp k = X , supp(0) = ∅;
(2) “2 out of 3”. If M1 → M2 → M3 → is a triangle in StmodG, then

suppM2 ⊂ suppM1 ∪ suppM3;
(3) ⊕. suppM ⊕N = suppM ∪ suppN for any M,N ∈ StmodG;
(4) Shift. suppM = suppΩ−1M for M ∈ StmodG, and Ω−1 the Heller shift;
(5) Realization. For any closed subset Y ⊂ X , ∃ M ∈ stmodG such that

suppM = Y ;
(6) Detection. suppM = ∅ ⇔ M ∼= 0 in StModG;
(7) Tensor product property. suppM⊗N = suppM ∩suppN for any M,N ∈

StmodG.

In Balmer’s terminology, this would say that this support theory is universal for
stmodG.

To achieve the explicit construction of the universal support theory for StmodG
one constructs not one, but two support theories. The first one is the theory of π-
supports of Friedlander and Pevtsova which relies on the notion of a π-point. This
construction is inspired by Carlson’s rank variety for elementary abelian p-groups.
The other approach, which takes its roots in the classical cohomological support
variety, is the Benson-Iyengar-Krause theory of supports via local cohomology
functors

Γp : StmodG→ StmodG

for p ∈ ProjH∗(G, k).
In a joint work with Benson, Iyengar and Krause we show that these two theories

coincide for finite group schemes, thereby producing a universal support theory
in that context. As an application, we classify localizing (and colocalizing) tensor
ideals in StmodG in the usual way: namely, we prove that there is one-to-one
correspondence

{
Localizing ⊗-ideals

subcategories of StModG

}
∼

{
subsets of

ProjH∗(G, k)

}
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given by support.
For this result we need to develop one other new technique, that of a “re-

duction to a closed point”, relating the functors Γp and Γm for a point p in
X = ProjH∗(G, k) with a residue field K = k(p) and a closed point m in XK

lying over p. This relationship, coming from commutative algebra, led to another
application which was the last topic of my two lectures: namely, Gorenstein duality
for stmodG.

Categorical introduction to chromatic homotopy theory

Tomer Schlank

I gave two introductory talks on chromatic homotopy. The talks were given us-
ing the Balmer spectrum of the symmetric monoidal ∞-category of spectra as a
starting point. We use this starting point to discuss types of finite complexes, and
the notion of K(n)-local spectra. I then defined Morava E-theory as the Galois
closure (in sense of Rognes) of the K(n)-local sphere. This way it is possible to
present the main ingredients of chromatic homotopy theory from a purely cate-
gorical point of view (rather than using the Landweber exact functor theorem and
the theory of formal groups). These ingredients include:

(1) The En-local category and En-localisation.
(2) The Morava stabiliser group and its action on Morava E(n)-theory.
(3) The chromatic fracture square.
(4) The chromatic convergence theorem.
(5) Telescopic localisation.
(6) The telescope conjecture.
(7) vn-self maps and the K(n)-local sphere.
(8) Ambidexterity of the K(n)-local category.

Finally, using ambidexterity (more specifically the dualisability of the K(n)-local-
isation of the suspension spectra of classifying spaces of finite groups) I connected
the theory back to the notion of a formal group law.

Grothendieck duality made simple—a brief survey

Amnon Neeman

There are two classical paths to the foundations of Grothendieck duality: one due
to Grothendieck and Hartshorne [3] and (much later) Conrad [1], and a second
due to Deligne [2] and Verdier [8] and (much later) Lipman [5]. The consensus has
been that both are unsatisfactory. Until the recent past no one knew a clean way
to set up the theory.

This changed dramatically about three years ago. However: even though the
main articles have already appeared in print, only a few experts have been aware of
the developments—the papers presenting the results have all focused not so much
on the simple proofs of the old theorems, but rather on the technical advances
made possible by the new insights. In the talk I took the opposite tack: the
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theorems presented were relatively small technical improvements on what may be
found in Hartshorne [3], the emphasis was on the clean, modern approach to the
proofs.

What is perhaps more remarkable is that, with one exception, the modern
avenue to the foundations of Grothendieck duality was paved and ready for use al-
ready in the mid-1990s. The key new ingredient, which removed the last remaining
obstacles, may well appear to be a small, minor step—especially when presented
as part of the whole picture. In fact: in a talk I gave at Macquarie University in
September 2017, presenting the results to a seminar of category theorists, Steve
Lack reacted by asking why it took us so long to see our way through.

In the Oberwolfach talk I tried to explain this. The new insight might seem
small in hindsight, but required quite a leap of imagination. It hinged on studying
a certain map using the chromatic tools that formed the core subject of the work-
shop, and applying these tools to a morphism which—on the face of it—seems
totally worthless.

To make this more concrete: the morphism—which proved to be key to the
recent progress—has been around for 50 years now, and was dismissed as useless
by some of the most eminent mathematicians of the era.

The reader is referred to [7] for a more extensive survey, and to [4, 6] for the
published accounts [written for the experts] of recent progress.
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My current favourite duality pictures (the local cohomology theorems
for tmf and H

∗,∗(A(2)))

J.P.C. Greenlees

(joint work with R.R.Bruner, J.Rognes)

The aim of the talk was to consider duality properties related to tmf at the prime 2
and especially to make explicit and pictorial the duality this implies for coefficient
rings.
The local cohomology theorem for tmf∗

Gorenstein duality for tmf gives a local cohomology spectral sequence for tmf∗.
This takes the form

H∗
J(tmf∗)⇒ Σ−22π∗(Z

tmf).

Here Z
tmf denotes the Anderson dual of tmf and J = (β1, β2) is an ideal of tmf∗

with radical the ideal tmf>0 of positive degree elements, where β1 (of degree 8) is
essentially the Bott element and β2 (of degree 192) is a periodicity element.

A picture was displayed showing explicitly what this means for the coefficient
ring.

The local cohomology theorem for H∗,∗(A(2)).
The coefficient ring tmf∗ can be calculated by an Adams spectral sequence,

and the bigraded Ext group at the E2-term (i.e., the cohomology H∗,∗(A(2)) of
the algebra A(2) = 〈Sq1, Sq2, Sq4〉) enjoys a precisely analogous duality. The
consequence of this duality is a Local Cohomology Spectral Sequence of bigraded
algebras

H∗
Jh(H

∗,∗(A(2))⇒ Σ−(23,0)H∗,∗(A(2))∨,

where Jh = (h0, g, w1, w2) is a bihomogeneous ideal whose radical is the augmen-
tation ideal of H∗,∗(A(2)), and where (23, 0) refers to the Adams grading.

A picture was displayed showing the striking duality this implies for the bi-
graded algebra H∗,∗(A(2)).
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Stratification and duality for homotopical groups

Natàlia Castellana

(joint work with Tobias Barthel, Drew Heard, Gabriel Valenzuela)

Let G be a finite group or a connected Lie group, and k a field of characteris-
tic p. Benson–Iyengar–Krause (see [4]) developed the notion of stratification of a
triangulated category by a Notherian commutative ring, using support theoretic
techniques, which captures both the classification of thick and localizing subcat-
egories. For G finite, this machinery was used to prove stratification results for
StMod(kG), K(InjkG) and D(C∗(BG, k)). For G a connected compact Lie group,
Benson and Greenlees [3] proved that D(C∗(BG, k)) is stratified by the canonical
action of H∗(BG, k).

In this talk, new examples of stratification results will be presented coming
from homotopical generalizations of classifying spaces of compact Lie groups at a
prime p called p-local compact groups, introduced by Broto-Levi-Oliver [6]. They
generalize previous results showing the statement only depends on the p-local
information (in a group theoretic sense) of G.

For a commutative ring spectrum R we write ModR for the category of R-
modules. For M,N ∈ ModR we write M ⊗R N for the monoidal product of R,
and HomR(M,N) for the spectrum of R-module morphisms between M and N .

Given a space X we write X+ for the suspension spectrum Σ∞
+ X and C∗(X,R)

for F (X+, R), the spectrum of R-valued cochains on X+. If R is a commutative
ring spectrum, then so is C∗(X,R). Often R = Hk will be the Eilenberg–MacLane
spectrum of a discrete commutative ring k; we simply write C∗(X, k).

A subcategory T ⊆ C of a stable ∞-category is called thick if it is closed under
finite colimits, retracts, and desuspensions, and T is called localizing (respectively
colocalizing) if it is closed under all filtered colimits (respectively all filtered limits).

Definition 1. A commutative ring spectrum R is called Noetherian if π∗R is Noe-
therian.

A morphism f : R→ S of commutative ring spectra induces a triple of adjoints
(Ind,Res,Coind) between ModR and ModS , where Ind: ModR → ModS is induc-
tion − ⊗R S, Res: ModS → ModR is restriction along f , and Coind: ModR →
ModS is coinduction, given by HomR(S,−). We denote by res the induced mor-
phism between the homogeneous prime ideal spectra
Spech(π∗(S))→ Spech(π∗(R)).

A functor F : C → D is said to be conservative if it reflects equivalences.

Definition 2. A morphism of Noetherian commutative ring spectra f : R → S is
said to satisfy Quillen lifting if for any two modules M,N ∈ModR such that there
is p ∈ res suppS(IndM)∩res cosuppS(CoindN), there exists a homogeneous prime
ideal q ∈ res−1({p}) with q ∈ suppS(IndM)∩cosuppS(CoindN).

The motivating example of a morphism of ring spectra satisfying Quillen lifting
is the following one.
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Example 3. Let G be a compact Lie group, k a field of characteristic p, and let E(G)
be a set of representatives of conjugacy classes of elementary abelian p-subgroups
of G. It is a consequence of the strong form of Quillen stratification for group
cohomology that the following morphism satisfies Quillen lifting,

C∗(BG, k)→
∏

E∈E(G)

C∗(BE, k).

We isolate sufficient conditions for descent of stratification and costratification
along a morphism f : R→ S in the next theorem.

Theorem 4. Suppose that f : R → S is a morphism of Noetherian ring spectra
satisfying Quillen lifting and such that induction and coinduction along f are
conservative. If ModS is canonically stratified, then so is ModR. If f additionally
admits an R-module retract, then canonical costratification descends along f as
well.

In [6], Broto, Levi, and Oliver introduced the powerful concept of p-local com-
pact groups as a common generalization of the notions of p-compact group [7] as
well as fusion systems F on a finite group [5]. A p-local compact group G = (S,F)
consists of a saturated fusion system on a discrete p-toral group S. This definition
provides a combinatorial model of the p-local structure of a compact Lie group
(S,F). In order to recover the p-completion of the classifying space, extra struc-
ture is needed. But, the latter is uniquely determined (see [8]) which makes it
possible to construct a (p-completed) classifying space BG associated to G, thus
making saturated fusion systems amenable to homotopical techniques. Broto, Levi
and Oliver provide examples given by compact Lie groups with no restriction on
the group of components as well as p-completions of finite loop spaces.

Checking that the conditions of Theorem 4 are satisfied for the morphism
φG : C

∗(BG,Fp) → C∗(BS,Fp) crucially relies on the construction of a transfer
morphism to prove that Ind and Coind are conservative functors.

Theorem 5. Any p-local compact group G = (S,F) admits a stable transfer
C∗(BS,Fp)→ C∗(BG,Fp) of C

∗(BG,Fp)-modules.

One consequence of this theorem is that the cohomology ring H∗(BG,Fp) is
Noetherian for any p-local compact group, extending the classical result for finite
groups and compact Lie groups, and for p-compact groups (see [7]).

We then use Rector’s general formalism [9] to generalize the F -isomorphism to
p-local compact groups. This allows us to deduce a strong form of Quillen strati-
fication from the F -isomorphism theorem, following Quillen’s original argument.

Theorem 6. For any p-local compact group G, there is an F -isomorphism

H∗(BG,Fp)→ lim
←−
Fe

H∗(BE,Fp),
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where Fe is the full subcategory of F on the elementary abelian subgroups of S.
Moreover, the variety of G admits a strong form of Quillen stratification:

VG ∼=
∐

E∈E(G)

V+
E,G,

where E(G) denotes a set of representatives of F -isomorphism classes of elementary
abelian subgroups of S.

Our main result is then a combination of the previous three theorems.

Theorem 7. If G is a p-local compact group, then ModC∗(BG,Fp) is canonically
stratified and costratified. In particular, there are bijections

{
Localizing subcat.
of ModC∗(BG,Fp)

}
∼
↔

{
Subsets of

Spech(H∗(BG,Fp))

}
∼
↔

{
Colocalizing subcat.
of ModC∗(BG,Fp)

}

as well as{
Thick subcategories

of Modcompact
C∗(BG,Fp)

}
∼
↔

{
Specialization closed subsets of

Spech(H∗(BG,Fp))

}
.

Finally, Benson and Greenlees [2] show that C∗(BG,Fp) is an absolute Goren-
stein ring spectrum for any finite group G. Using methods from [1], we extend
this result to p-compact groups. As an immediate consequence this implies the
existence of a local cohomology spectral sequence for p-compact groups.

Theorem 8. Let G be a p-compact group of dimension w, then G is absolute
Gorenstein, i.e., for each p ∈ Spech(H∗(BG,Fp)) of dimension d, the local coho-
mology at p is given by

H∗
pC

∗(BG,Fp) ∼= Ip[w + d],

where Ip denotes the injective hull Ip of (H∗(BG,Fp))/p.

References

[1] T. Barthel, D. Heard, G. Valenzuela,Local duality for structured ring spectra, Journal of
Pure and Applied Algebra 222 2018, 433–463.

[2] D. Benson, J. Greenlees, Localization and duality in topology and modular representation
theory, J. Pure Appl. Algebra 212 (2008), 1716–1743.

[3] D. Benson, J. Greenlees, Stratifying the derived category of cochains on BG for G a compact
Lie group, J. Pure Appl. Algebra 218 (2014), 642–650.

[4] D. Benson, S. Iyengar, H. Krause, Stratifying triangulated categories, J. Topol. 4 (2011),
641–666.

[5] C. Broto, R. Levi, B. Oliver,The homotopy theory of fusion systems, J. Amer. Math. Soc.
16 (2003), 779–856.

[6] C. Broto, R. Levi, B. Oliver, Discrete models for the p-local homotopy theory of compact
Lie groups and p-compact groups, Geom. Topol. 11 (2007), 315–427.

[7] W.G. Dwyer, C. Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop
spaces, Annals of Math. Second Series 139 (1994), 395–442.

[8] R. Levi, A. Libman, Existence and uniqueness of classifying spaces for fusion systems over
discrete p-toral groups, L. London. Math. Soc. 91 (2015), 47–70-

[9] D.L. Rector, Noetherian cohomology rings and finite loop spaces with torsion, J. Pure Appl.
Algebra 32 (1984), 191–217



524 Oberwolfach Report 9/2018

The classification of thick tensor ideals in genuine A-spectra

Justin Noel

(joint work with Tobias Barthel, Markus Hausmann, Niko Naumann, Thomas
Nikolaus, Nat Stapleton)

In this joint project [BHNNNS], we classify the tt-ideals in genuine A-spectra
[LMS86] when A is a finite abelian group. The original result of this type was
the case when A is the trivial group, which is the celebrated thick subcategory
theorem of Hopkins and Smith [HS98] (see also [Hop87, Rav92]). The primary
prerequisites for the new classification result are:

(1) The general classification of tt-ideals in a rigid tensor triangulated category
C, in terms of the Thomason subsets of the Balmer spectrum Spc(C) of
prime tensor ideals [Bal05, Bal10b].

(2) The identification of the underlying set of the Balmer spectrum Spc(SHG)
for genuine G-spectra from [BS17].

To complete the classification of the tt-ideals for (compact) genuine G-spectra,
it suffices to identify the standard basic opens of Spc(SHG). Namely, the basic
opens can be enumerated by the compact G-spectra. For such a G-spectrum
X , the corresponding open is identified by determining, for each prime p and each
conjugacy class H ⊆ G of subgroup, the smallest n ≥ 0, such that K(n)∗(Φ

HX) 6=
0 (if no such finite n exists, we will let this value be ∞). This last number, which
we will denote tp(Φ

HX), is called the type of ΦHX .
Balmer and Sanders show that one can always reduce to the case when G is

a p-group. Moreover, when G is an abelian p-group, which we will henceforth
assume, they show that it suffices to just determine how the type of X can vary
from the type of ΦGX . So we first establish an inequality which bounds how the
type can vary. To show the inequality is sharp we need to find suitable examples.

In more detail, we show that

tp(Φ
GX) + dim(H1(BG;Fp)) ≥ tp(X).

This ends up being a consequence of a generalization of Kuhn’s blue shift theorem
for Tate cohomology [Kuh04]. This generalization identifies the acyclics for the
geometric fixed points of Borel equivariant Lubin-Tate theories. This refines the
results of [MNN15], which showed that if the group was not an abelian p-group
generated by n or fewer elements, then the geometric fixed points of a height n
Borel equivariant Lubin-Tate theory E would be contractible. This new general-
ization builds on the moduli-theoretic description of E0(BG) from [HKR00].

To show that this inequality is sharp and complete the classification, we need to
find an X for which the inequality is an equality. We observe that such complexes
have already been constructed in the work of [Aro98, ADL16, AL17].
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Endotrivial modules via homotopy theory

Jesper Grodal

For G a finite group and k a field of characteristic p, an endotrivial module is
a kG-module M such that M ⊗M∗ ∼= k ⊕ (proj) as kG-modules. Isomorphism
classes of indecomposable endotrivial modules form a group Tk(G), and identify
with the Picard group of the stable module category Pic(stmod(kG)). They occur
in many parts of representation theory as “almost 1-dimensional modules”.

I started my talk by briefly explaining the classification of these modules for S
a finite p-group, due to seminal work of Dade [Dad78a, Dad78b], Alperin [Alp01]
and Carlson–Thevenaz [CT04, CT05]. I then went on to explain how to calculate
this group for G an arbitrary finite group, based on my preprint [Gro16].

The image of the restriction map Tk(G)→ Tk(S), for S a p-Sylow subgroup ofG,
is known, at least as an abstract group, by an elaboration of the above-mentioned
calculation of Tk(S). So the main question in describing Tk(G) for an arbitrary
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finite group G lies in understanding the kernel Tk(G,S) = ker(Tk(G) → Tk(S)).
This subgroup consists of finitely generated kG–modules M , whose restriction to
S have the form M |S ∼= k ⊕ (free), i.e., “Sylow-trivial” modules. The following
theorem describes this group:

Theorem 1. [Gro16, Thm. A] Fix a finite group G and k a field of characteristic
p dividing the order of G, and let O

∗
p (G) denote the orbit category on non-trivial

p–subgroups. The group Tk(G,S) is described via the following isomorphism of
abelian groups

Φ : Tk(G,S)
∼
−→ H1(O∗

p (G); k×).

The inverse map, which to a 1–cocycle constructs an endotrivial module, is
very explicit, in terms of the so-called twisted Steinberg complex, and can also be
viewed as a “derived induction” map.

I then went on to describe a number of explicit results about Tk(G,S) that
can be obtained with Theorem 1 as starting point, also taken from [Gro16]; they
transform the calculation Tk(G,S) to standard calculations in local group theory:
I presented a positive solution to the so-called Carlson–Thevenaz conjecture, pro-
viding an explicit algorithm for computing Tk(G,S) purely in terms of normalizers
of p–subgroups and their intersections, that can easily be put on a computer. I
also deduced other consequences such as that if the p–subgroup complex Sp(G)
is simply connected, then Tk(G,S) equals the one-dimensional characters of G,
providing vanishing results for many classes of groups. The Carlson–Thevenaz
conjecture comes out as a special case of more general “centralizer” and “normal-
izer” decompositions for Tk(G,S), that express Tk(G,S) in terms of p–local group
theory packaged in different ways. E.g., the “centralizer decomposition” breaks
Tk(G,S) up in two parts, one only depending on the p–fusion in G, and one de-
pending on the 1–dimensional characters on the centralizers of elementary abelian
p–subgroups of rank one and two.

Finally, I described a number of explicit computations, both showing how exist-
ing results in the literature can be easily recovered by these methods, and comput-
ing Tk(G,S) for a range of new groups, e.g, as a test case, the Monster sporadic
simple group for all primes p.
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Homological residue fields

Paul Balmer

In Prismatic Algebra, one encounters a broad variety of tensor-triangulated cate-
gories T . The chromatic analysis of their compact-rigid objects T c amounts to the
determination of their triangular spectrum Spc(T c), whose points are triangular
primes P ⊂ T c.

We presented another approach to primes, by means of maximal Serre ⊗-ideal
subcategories B of the module category mod − T c (the Freyd envelope of T c).
We proved with Krause and Stevenson [2] that every triangular prime P is the
preimage under Yoneda

h : T c → mod− T c

of one of those new homological primes B. It is an open question whether this B
is unique. Remarkably, one can prove that B is unique (for a given P ) in the stan-
dard examples from stable homoopy theory (including the equivariant versions),
algebraic geometry (without noetherianity assumption), modular representation
theory (including finite group schemes), etc. However, the proof is specific to each
example and we do not know an abstract proof.

The associated homological spectrum Spch(T ) consisting of all homological
primes (all maximal Serre ⊗-ideals) of mod − T c, can be used to define supports
for big objects, unconditionally (i.e. without supposing noetherianity of the trian-
gular spectrum Spc(T c)) as was done in the joint work with Favi [1]. To do this,
one considers the big category Mod− T c of modules over T c, of which the above
mod− T c is the finitely presented part. There is a restricted Yoneda functor

h : T →Mod− T c

which is not faithful or full anymore (it kills phantom maps) but which remains
a ⊗-functor. For every (big) object X ∈ T , one can then define its support
Supph(X) ⊆ Spch(T ) as the set of homological primes B such that X does not
vanish in the Gabriel quotient of Mod − T c by 〈B〉. This ‘big support’ lacks the
fundamental properties needed of a good theory of support, notably the general
tensor formula, but it is a good theory for ring objects (even for weak ring objects:
objects equipped with a possibly non-associative, non-commutative multiplication
admitting a one-sided unit).

It is work-in-progress to develop the properties of this big support and its rele-
vance for the telescope property, i.e. for understanding the smashing subcategories
of T .
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Universitätsstrasse 31
93053 Regensburg
GERMANY



Mini-Workshop: Chromatic Phenomena and Duality 529

Prof. Dr. Julia Pevtsova

Department of Mathematics
University of Washington
Padelford Hall
Box 354350
Seattle, WA 98195-4350
UNITED STATES

Prof. Dr. Nicolas Ricka
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