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Abstract. The workshop focussed on the mathematical modeling and anal-
ysis of the mutual interaction among living cells, their interaction with the
environment, and the resulting morphogenetic processes. The interplay of
bio-mechanical processes and molecular signaling and their combined effect
on the emergence of shape and function in cell clusters, tissues, and organs
was addressed. Classical methods of continuum mechanics and necessary ex-
tensions were discussed at a formal and a rigorous mathematical level. Several
introductory talks were given by experimentalists.
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Introduction by the Organisers

In the last decade there is an emerging experimental evidence that cells do not only
communicate on the basis of bio-chemical signals, but also respond to mechanical
stimuli, possibly produced by the cells themselves. A large number of morphogens
and soluble factors diffuse and are degraded in living matter. Cells determine their
migration, proliferation rate and possibly their fate on the basis of such patterns.
In the same vein, mechanical solicitations, stress and variation of the physical
properties affect and possibly determine developmental processes, physiology and
disease states in cells and tissue.

Mathematical Biology has intensively dealt with the modeling and analysis of
diffusive signaling and its interplay with cell proliferation and motion, e.g. via
reaction-drift-diffusion-models and transport-type equations. So far, much less
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focus has been on the mathematics of models which take into account mechanical
forces and more localized signaling processes.

Major questions that are currently debated are how chemical signals and molec-
ular information is translated into a controlled mechanical response of cells and
tissues and vice versa, i.e. what are the functional mechanism of mechanotrans-
duction. In higher organisms every living cell is embedded into a complex and
dynamic environment which consists of molecular bound and soluble factors, of
the extracellular matrix (ECM) and other cells. Cell function and morphology are
strongly regulated by these factors. The microenvironment of a single cell does
trigger responses like cell proliferation, differentiation and migration and thus, on
the large scale, drives processes like morphogenesis and development. Mechani-
cal and chemical information from the outside of a cell not only translates into
chemical and mechanical information inside the cell, but also vice versa.

Active single cell mechanics changes the structure of the cell’s surrounding envi-
ronment, produces contact interactions with neighboring cells and with the ECM.
Such signals, the mechanical compliance of the ECM and that of adjacent cells
then feed back into single cell tension, adhesion, gene and protein expression, the
enzymatic modification of proteins after biosynthesis, cell viability, and cytoskele-
tal organization - one of the main intracellular structural components.

How living cells exactly sense their environment and react with defined re-
sponses in terms of morphology, migration, proliferation, cell death, or cell differ-
entiation are questions of actual and major importance in cell biology.

The mechanobiology of living soft matter is a research field where the formula-
tion and analysis of suitable mathematical models is still in its infancy. Therefore
this workshop gathered promising young researchers and senior specialists from
biomathematics, biophysics, mathematical modeling, partial differential equations,
calculus of variations, mathematical material sciences and engineering.

A few central talks were given by biologists at the beginning of the workshop.
Their contributions covered experimental results on tissue flows in chicken em-
bryos, self-organization in mouse development, mechanotransduction by ECMs,
and adhesion-independent migration of cells. A further interest was, how to best
characterize plasma membrane cholesterol. Finally, the particular challenges of
mathematical modeling of life science applications were addressed.

From the modeling and computational point of view models for organogene-
sis were introduced, models for cell migration and proliferation with mechanical
and biochemical interactions, as well as models for ion transport. On the level
of tissues important topics for mathematical modeling and analysis were the pe-
culiarities of the brain in comparison to other tissues, glioma growth, and tumor
invasion through the basal membranes. Further, the mathematical description of
early stages of atherosclerosis was presented, and models for T-cell signaling. After
an overview of forces in biosysems, bio-mechanical models and their analysis was
covered by presentations on multiphase models for tissues, tissue self-organization
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through mechanical feedback, multiscale modeling of biomechanics and signal-
ing in plants, force generation and contraction in the cellular cytoskeleton, and
cell crawling without adhesion. Mathematical methods of importance in these
contexts were discussed in talks about indentation of spherical shells, pattern gen-
erating mechanisms, and pattern formation through growth, as well as in talks
about unbalanced optimal transport and on a Hamilton-Jacobi approach for the
evolution of phenotypically structured (cell) types in time-varying environments.
The dynamics of fluidic two-phase biomembranes was analyzed and the wrinkling
in a bidomain model, which is relevant for the electrical properties of intra- and
extracellular media, separated by a cellular membrane. The homoenergetic solu-
tions presented for the Boltzmann equation are relevant for the dynamics of open
systems, which exchange matter, energy or momentum with an ”outside” environ-
ment.

Two discussion sessions were spontaneously organized. On the second day of
the workshop a lively discussion with the experimentalists took place. This allowed
for detailed questions, especially of young mathematicians, about important ex-
perimental insights which have to be taken into account for reliable mathematical
modeling. Later, there was a discussion session about promising recent mathemat-
ical techniques, especially from mathematical material sciences. These methods
may be relevant for the further development of a sound continuum mechanics for
soft tissues.

It was a great pleasure for us to organize this workshop, and we would like to
express our sincere thanks to the Oberwolfach team for the professional and very
kind support before and during our stay at MFO.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Thomas Hillen in the “Simons Visiting Professors”
program at the MFO.





The Mathematics of Mechanobiology and Cell Signaling 437

Workshop: The Mathematics of Mechanobiology and Cell Signal-
ing

Table of Contents

Cornelis J. Weijer
Cellular mechanism driving the tissue flows during the formation of the
primitive streak in the chick embryo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441

Alain Goriely
How to model brain tissue? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443

Dani Bodor
Mechanisms of adhesion-independent migration . . . . . . . . . . . . . . . . . . . . . 446

John King
Multiphase modelling of biological tissue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

Dagmar Iber (joint with the Computational Biology Group (CoBi), ETH
Zurich)
How to shape an Organ? - Computational Models of Organogenesis . . . . 449

Matteo Taffetani (joint with Dominic Vella)
Indentation of spherical shells: Bistability and Buckling . . . . . . . . . . . . . . 452

Reinhard Lipowsky
Forces in Biosystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

Britta Trappmann
Mechanotransduction by engineered extracellular matrices . . . . . . . . . . . . . 456

Takashi Hiiragi (joint with Dimitri Fabrèges)
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Abstracts

Cellular mechanism driving the tissue flows during the formation of
the primitive streak in the chick embryo

Cornelis J. Weijer

Gastrulation is a key process during the early embryonic development of all higher
organisms. During gastrulation the three germlayers, the ectoderm, mesoderm
and endoderm take up their correct topological positions in the embryo, with the
ectoderm on the outside, the mesoderm in the middle, surrounding a central layer
the endoderm. The ectoderm will give rise to the skin and nervous system, the
mesoderm will give rise to the muscles and skeleton as well contribute to many
critical organs such as the heart, lungs, kidneys the digestive system and the blood
vessels and organs of the immune system. The endoderm will form the lining of
the digestive tracks and many associated organs. In amniotes including humans
the mesendoderm precursors ingress through a structure known as the primitive
streak [1]. The formation of primitive streak is studied extensively in chick em-
bryos as a model for early human embryonic development. Formation of the streak
involves millimetre scale tissue flows. We investigate the cellular mechanisms that
drive these tissue flows and the mechanisms that integrate these cell behaviours
during streak formation. At the time of egg laying the chick embryo consist of a
single epithelial layer of cells, the epiblast. The epiblast contains already around
50000 cells and is also known as the Area Opaca. The embryo is surrounded by
a ring of extraembryonic tissue, known as the Area Pellucida. During the early
stages of development some scattered epiblast cells ingress into the embryo to
form the hypoblast, a transient layer that fulfils an important signalling function
during development. During gastrulation in the chick embryo the epiblast reor-
ganises to form two additional layers of cells: the mesoderm and the endoderm.
Precursors of these cells so called mesendoderm cells are induced in the epiblast
by signals originating in the posterior extraembryonic region. These precursor
cells are arranged in a sickle shaped region in the posterior side of the embryo.
During the early stages of gastrulation these mesendoderm cells move in two large
scale vortex flows towards the midline of the embryo forming the primitive streak
[2]. The primitive streak is the structure where the mesendoderm cells undergo
an epithelial to mesenchymal transition and ingress into the embryo to form the
mesoderm and endoderm. We investigate the cellular mechanisms that drive these
large scale movements in the epiblast. We take advantage of a novel transgenic
chick strain in which all cell membranes are labelled with GFP. To visualise the
behaviour of the cells in the epiblast we have developed a dedicated lightsheet mi-
croscope that allows us to visualize detailed behaviours such as cell division, cell
shape change and relative cell movements such as cell-cell intercalations. Quan-
titative analysis of the tissue flow patterns show that the mesendoderm region is
characterised by a large strain rate. We have furthermore developed algorithms to
segment and to track over 200.000 cells in the epiblast, which allows us to monitor



442 Oberwolfach Report 8/2018

in vivo cell shape changes, cell division and cell movement. Analysis of the cell
behaviours show that streak formation is mainly driven by two cellular processes:
apical contraction and ingression of mesendoderm cells and myosin dependent di-
rectional contractions of cell junctions resulting in directional cell-cell intercalation
contributing to expansion along the primitive streak (fig 1).

Figure 1. Model of the forces and cell behaviours controlling
streak formation. a-) Diagrams depicting forces generating the
tissue flows during streak formation. The active pulling forces -
yellow arrows, the passive pushing forces - red arrows, the direc-
tion of tissue flows - green arrows. The sickle region is indicated
in black, the Area Pellucida outline in blue. Light blue squares in-
dicate scattered events of junctional contraction, while dark blue
shapes indicate regions of ingression. b-) Schematic of sequential
junctional contraction (in a region marked by the blue squares in
A). The sequentially contracting junctions are indicated with dif-
ferent (red grey, green, magenta) colours. c-) Schematic of cells
showing apical contraction (blue arrows), coupled to elongation
(red arrows) along the apical axis followed by ingression (green
arrow).

Inhibitor studies show that junctional contraction is mediated by non-muscle
myosin II in a myosin I dependent manner [3]. We are using various mathematical
and modelling techniques to analyse and understand the data. To estimate the
forces driving the cell flows we consider the epiblast flows to be analogous to a
Stokes flow in a viscous fluid. By solving an inverse problem and assuming a tissue
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viscosity we can estimate the distribution and magnitude of the forces driving the
tissue flows from the observed velocity fields. We also try to model the individual
cell behaviours using a modified active vertex model [4]. Specifically we try to test
the hypothesis that junctional myosin accumulation resulting contraction and cell
intercalation is a tension sensitive process and that this process can contribute to
tissue wide integration of cell behaviours during primitive streak formation.
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How to model brain tissue?

Alain Goriely

A key problem in the study of the brain is to have reliable models for the response
of brain tissues under various stimuli such as mechanical loading, varying pressure,
or osmotic variations [5, 6]. In particular, the study of the mechanical response of
biological systems within a continuum framework relies on constitutive equations
relating stresses to strains [1]. In the absence of a method to derive these constitu-
tive equations from first principles, phenomenological models are routinely used.
In particular, when a system behaves in the elastic regime, classes of hyperelastic
models have been proposed for many tissues and organs. Ideally, these models
are systematically calibrated and validated on multiaxial loading data. Rather
than using brute force and fit data to arbitrary strain-energy functions, it is well
understood that a key element of constitutive modeling is to consider families of
models with desirable properties [9]. For instance, collagen-rich soft tissues are
known to be mostly incompressible and display strong strain-stiffening response.
Therefore, most of the current models for these tissues start with a functional form
that both enforces these particular properties and is general enough to be adapted
for specific systems.

However, brain tissue is strikingly different from most soft biological tissues:
its microstructure is not governed by collagen and elastin fibers, which implies
that brain typically lacks the characteristic strain-stiffening behavior of arteries,
skeletal and cardiac muscle, or skin [3, 2]. The typical behavior of these tissues,
captured by models such as Fung’s or Gent’s [4], is that a strong stiffening is
obtained at finite extension leading either to a singular limit (in the case of the
Gent model) or exponential behavior (for the Fung model). While it is tempting
to use such models data analyses shows that these models are not suitable for
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brain tissue [8]. Indeed brain tissue is characterized by the following macroscopic
properties not found in soft tissues

(i) The shear modulus increases sharply as compression in the direction or-
thogonal to the shear direction increases;

(ii) The shear modulus remains almost constant or may decrease as tension in
the direction orthogonal to the shear direction increases;

(iii) The elastic modulus increases or remains almost constant when compres-
sion increases.

A natural problem is then to understand the defining characteristics of brain tissue
and to identify a suitable family of hyperelastic models with these characteristics.
Moreover, a model for brain tissue needs to be suitable for small to moderate
strain as experienced in vivo.

Figure 1. Soft-tissue models fail to capture brain tissue stiffen-
ing under compression (left) but new phenomenological models
(right) capture this behavior [8].

The main mathematical challenge is to build a family of isotropic hyperelastic
strain-energy functions, with a small number of parameters, that exhibit this char-
acteristic behavior under combined shear and compression or tension. To achieve
this, we have devised a systematic strategy to derive a family of hyperelastic mod-
els with a small number of parameters that predict the elastic behavior of brain
tissue under combined shear and axial loading and are suitable for finite-element
analyses.and demonstrate their performance on experimental data for human brain
tissue from [7]. Our algorithmic approach is generic and, as such, applicable to
other biological tissues with similar properties, including adipose tissue. The un-
suitability of classic soft-tissue models is shown in Fig. 1 together with the new
family of models [8].

Yet another fascinating mathematical modeling issue is that biological and syn-
thetic materials often exhibit intrinsic variability in their elastic responses under
large strains, owing to microstructural inhomogeneity or when elastic data are
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extracted from viscoelastic mechanical tests. For these materials, although hy-
perelastic models calibrated to mean data are useful, stochastic representations
accounting also for data dispersion carry extra information about the variability
of material properties found in practical applications. We have combined finite
elasticity and information theories to construct homogeneous isotropic hyperelas-
tic models with random field parameters calibrated to discrete mean values and
standard deviations of either the stress-strain function or the nonlinear shear mod-
ulus, which is a function of the deformation, estimated from experimental tests.
These quantities can take on different values, corresponding to possible outcomes
of the experiments. As multiple models can be derived that adequately represent
the observed phenomena, we have applied Occam’s razor by providing an explicit
criterion for model selection based on Bayesian statistics. We then employed this
criterion to select a model among competing models calibrated to experimental
data for brain tissue under single or multiaxial loads [10].
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Mechanisms of adhesion-independent migration

Dani Bodor

Cell migration is key for many physiological and pathological phenomena, includ-
ing immune response, wound healing, development and metastasis. Traditionally,
cell migration is studied on cultured cells adhering to coverslips, where forces are
transmitted onto the surface through integrin-based anchors. However, it has been
clearly demonstrated that adhesion is dispensable for efficient migration in vivo
and for confined cells. I discuss an alternative migration mode, where confined
cells use friction between the actomyosin cortex and the extracellular environment
in order to generate traction forces in the absence of any form of adhesion.

Using advanced microfluidics, we could measure the cellular friction coefficient,
which allows us to show that friction generates 100-1000-fold lower stresses for effi-
cient migration. By measuring the distance between the cell and the substrate we
could show that lubricated friction is insufficient to generate the required force and
propose that non-adhesive molecular interactions are required. I also present on-
going efforts to determine which molecules are involved, by combining cell surface
mass-spec data with knowledge of extracellular domain size and cortex interac-
tions and testing candidates in microfluidic chips. Ultimately, this will lead to
an in depth molecular understanding of a wide-spread yet understudied migration
mode.

Multiphase modelling of biological tissue

John King

Multiphase approaches are well suited to the macroscale modelling of a wide va-
riety of biological systems (including tumour growth, tissue engineering, embryo
development and bacterial biofilms) due to their capacity to capture multiple cell
types, ECM, water, tissue-engineering scaffolds and so on. Here we exemplify
how such approaches may play a role in understanding processes such as the con-
tact inhibition of cell division and cell sorting. We limit ourselves to two-phase
formulations, though the frameworks readily extend to more.

Firstly, we outline a deriviation of a very simplistic drift-diffusion approach to
tissue growth, eschewing any consideration of biomechanics beyond incompress-
ibility of the individual phases. The two phases here are cells (volume fraction n)
and water (volume fraction w), with mass conservation implying

(1)
∂n

∂t
+∇.(nvn) = S(n,w),

∂w

∂t
+∇.(wvw) = −S(n,w),

(2) n+ w = 1,

where S represents cell division or death. We introduce a free energy ℑ, with
density F , that may depend on n,w and on any of their spatial derivatives, say,
with

(3) ℑ =

∫
(
F [n,w] + p(n+ w − 1)

)
dx,
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where p is a Lagrange multiplier enforcing the no voids condition (2). Hence,
ignoring any boundary contributions,

dℑ
dt

=

∫ (

µn
∂n

∂t
+ µw

∂w

∂t

)

dx

=

∫
(
nvn.∇µn + wvw .∇µn + (µn − µw)S

)
dx

where

µn =
δℑ
δn

, µw =
δℑ
δw

are the relevant chemical potentials and (1) has been used. Next we introduce a
Rayleighian dissipation ℜ defined by

ℜ =

∫
1

2

(
n

Mn
|vn|2 +

w

Mw
|vw|2

)

dx+
dℑ
dt

,

where Mn and Mw are the respective mobilities, and take the evolution to be
governed by the variational derivatives of ℜ with respect to vn and vw, treating
n and w as if known. We thereby obtain

(4) vn = −Mn∇µn, vw = −Mw∇µw,

which could alternatively be prescribed as constitutive assumptions. The energy
equation follows from

vn.
δℜ
δvn

+ vw.
δℜ
δvw

= 0,

whereby

δℑ
δn

δµ

δt
+

δℑ
δw

δℑ
δt

−∇. (nµnvn + wµwvw) = − n

Mn
|vn|2 −

w

Mw
|vw |2 + (µn − µw)S,

wherein the left-hand side is conservative, comprising by Noether’s first theorem
(associated with invariance under translations of t) ∂F/∂t and a spatial divergence,
and the right-hand side represents the local dissipation, though (unconventionally)
S need not be chosen to make the phase change contribution (µn −µw)S negative
since such models do not attempt to incorporate cellular metabolism (and the
process of cell divisions is not reversible). With the standard entropic expression

(5) F = kT (n lnn− n+ w lnw − w)

the model in its simplest form reads

∂n

∂t
= ∇.(Dn∇n+Mn n∇p) + S(n,w),

∂w

∂t
= ∇.(Dw∇w +Mwn∇p)− S(n,w),

n+ w = 1,

Dn, Dw being given by the Einstein relationship D = kTM . The simplest as-
sumptions on S are typically

S = Kn or S = Knw,

for constant K, the latter explicitly requiring the presence of water in order to
make new cells (and the former should be interpreted as holding only for w > 0,
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with S = 0 for w = 0), thereby capturing in a crude fashion aspects of contact
inhibition. Stretching the analogy with chemical kinetics might suggest a form
such as

(6) S = K exp(µn/kT )

for S; generalising (5) to

F = kT (n lnn− n+ w lnw − w +
1

2
αn2),

the α term being intended to capture cell-cell interactions, gives

(7) µn = kT (lnn+ αn) + p

and contact inhibition could then be mimicked via (6) in two distinct ways: α < 0
would represent a cell-density-driven mechanism, though ∂2F/∂n2 < 0 would then
be possible, leading via (4) to the possibility of backward diffusion (which would
require regularisation), while an assumption such as

K = K0e
pV/kT

for constants K0 and (activation volume) V could represent a cell-pressure-driven
mechanism so long as (given the p contribution in (7)) the inequality V > 1 holds
under the current scalings, the interpretation of which is unclear.

The possible presence of backward diffusion hints at a cell-sorting mechanism
and our second example involves two cell types, of volume fractions n and m, with
(1)-(3) remaining valid with w replaced everywhere by m. In the one-dimensional
case (but not in general) we can adopt

ℜ =

∫
1

2
κ|vn − vm|2dx+

∂ℑ
∂t

as the simplest appropriate choice, yielding momentum equations

(8) 0 = − δℜ
δvn

= −n
∂

∂x
µn − κ(vn − vm),

(9) 0 = − δℜ
δvm

= −m
∂

∂x
µm − κ(vm − vn),

where, because of the two contributions to (3), the derivatives of the chemical
potentials contain both Fick (density gradient) and Darcy (pressure gradient) con-
tributions. Overall momentum conservation then follows from summing (8) and
(9):

(10) 0 = − ∂

∂x

(

n
δℑ
δn

+m
δℑ
δm

)

+
δℑ
δn

∂n

∂x
+

δℑ
δm

∂m

∂x
,

the final two terms being an exact spatial derivative, ∂Φ/∂x say, due to the in-
variance of ℑ under x tranlations. Inferring

nvn +mvm = 0
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from the one-dimensional version of (1), as well as

Φ = nµn +mµm,

from (10) then implies

vn = −nm2

κ

∂

∂x
(µn − µm), vm =

n2m

κ

∂

∂x
(µn − µm)

and hence the formulation reduces to the scalar equation

∂n

∂t
=

∂

∂x

(

n2(1− n)2

κ(n)

∂

∂x
(µn − µm)

)

+ S(n, 1− n),

wherein S ≡ 0 is appropriate in the absence of cell differentiation and, under suit-
able assumptions on F , a Cahn-Hilliard-like model for cell sorting is reproduced,
numerous generalisations thereof being of interest.
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How to shape an Organ? - Computational Models of Organogenesis

Dagmar Iber

(joint work with the Computational Biology Group (CoBi), ETH Zurich)

Animals develop from a single cell. While much is known about the regulatory pro-
grams that control development, it is still an open question how size and shape are
determined in a growing animal. The branched trees of lungs, kidneys and many
glands provide a fascinating example of complex shape formation. Each organ
has its particular shape that enables its function. How is this shape programmed
and how is the program executed during development? We combine mathematical
modelling with 3D imaging of developing organs to define the mechanisms that
guide the branching program in lungs and kidneys.

Here, we consider several distinct aspects: 1) How are branch points defined?
2) How does the epithelium behave? and 3) How is growth terminated?

The emergence of new branches implies a symmetry break. Experiments fur-
ther demonstrate that the branching programs in lungs and kidneys are highly
stereotyped. The Turing mechanism offers an attractive explanation for such reli-
able symmetry breaks. However, the molecular components of Turing mechanisms
are still elusive and the parameter space, for which Turing patterns emerge, is
very small for standard Turing models, making it difficult to explain how Turing
mechanisms could have evolved. We showed that receptor-ligand interactions of a
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specific type can lead to Turing patterns and that the restriction of receptors to
single cells results in a huge parameter spaces [3]. The Turing space can be fur-
ther enlarged by negative feedbacks and by receptor clustering [3]. We showed that
branch point selection during lung branching morphogenesis can be explained by
both the FGF10-FGFR2b and SHH-PTCH1 interaction, while branch point selec-
tion during kidney branching morphogenesis can be explained by the GDNF-RET
and FGF10-FGFR2b interaction [6, 5]. The very different branching patterns in
lungs and kidneys can thus robustly emerge from the same regulatory mechanism
- implemented by very different protein families in the different organs. Using a
3D developmental sequence of lung bud shapes and 2D lung and kidney culture
data, we confirmed that only the Turing mechanism but none of the other pro-
posed patterning mechanism can predict the measured embryonic growth fields [4]
(Menshykau et al, in revision). Turing mechanisms can yield different patterns
for a given parameter set in case of noisy initial conditions. We showed that this
limitation can be addressed by expressing the ligand and its receptor in distinct
domains. Consistent with this model prediction, co-expression of GDNF and RET
in the epithelium results in non-stereotypic branching. Finally, we predicted and
confirmed experimentally that the positive feedback between GDNF/RET and
WNT11 enables a closer apposition of buds in the kidneys (Menshykau et al., in
revision). Ligand-receptor based Turing mechanism are versatile and can there-
fore, in principle, explain symmetry breaks in many patterning systems, including
digit formation in limb development [1].

To simulate signalling on growing cellular domains and to represent the inter-
play with cell mechanics, we developed the open-source C++ software, LBIBCell
[7]. The software uses the Lattice Boltzmann (LB) method in combination with
an immersed boundary (IB) method to simulate the fluid-structure interaction
between fluid and elastic cell boundaries. Signalling can alter the growth rate
and mechanical properties of each cell and the tissue properties can affect the sig-
nalling. The Iber and the Chopard (Uni Geneva) groups have recently obtained
a 4-year SNF Sinergia grant to extend LBIBCell to 3D.The software is currently
used in conjunction with microscopy data to explore the mechanisms that enable
biased outgrowth of buds during lung and kidney branching morphogenesis and
to determine the mechanisms that define epithelial cell organisation.

The packing of cells in epithelia exhibits striking regularities, regardless of the
organism and organ. One of these regularities is expressed in Lewis’ law, which
states that the average apical cell area is linearly related to the number of neigh-
bours, such that cells with larger apical area have on averagemore neighbours. The
driving forces behind the almost 100-year old Lewis’ law have remained elusive.
We now provide evidence that the observed apical epithelial packing minimizes
surface energy. Lewis’ law emerges because the apical cell areas then assume the
most regular polygonal shapes within a contiguous lattice, thus minimising the
average perimeter per cell, and thereby surface energy. Based on our theory, we
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predict that the linear Lewis’ law generalizes to a quadratic law if the variability
in apical areas is increased beyond what is normally found in epithelia. We con-
firmed this prediction experimentally by generating heterogeneity in cell growth
in Drosophila epithelia. Our discovery provides a link between epithelial organisa-
tion, cell division, and growth and has implications for the general understanding
of epithelial dynamics.

The growth rate of all normal tissues slows down exponentially over time.
The underlying mechanism has remained elusive. Growth termination in the
Drosophila eye disc is the result of cell differentiation. Using data-based mod-
eling, together with the Casares group we defined the core regulatory interactions
that control the movement of the differentiation wave in the eye disc, and showed
that growth termination requires an independent decline in the growth rate [2].
We further showed that the growth rate in the eye disc declines inversely propor-
tional to the total size of the growing eye disc [9]. The observation is consistent
with growth control by dilution of a cytokine, and we showed that the cytokine
Unpaired (Upd) presents a suitable candidate for growth control by dilution [8].
Other mechanisms must, however, apply in other organs, as the growth rate in the
Drosophila wing disc is not controlled by dilution [10].

In conclusion, data-based modelling can be used to define mechanisms for fun-
damental developmental processes such as the control of branching morphogenesis,
the organisation of epithelia, and growth control.
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Indentation of spherical shells: Bistability and Buckling

Matteo Taffetani

(joint work with Dominic Vella)

Simple biological structures like cells and viruses can be modelled as shell struc-
tures that enclose a low pressurized environment or a soft substrate. Interesting
mathematical questions are related to the understanding of how they interact with
the surrounding environment, in term of their response to external stimuli or their
locomotion. Indeed, indentation of a spherical structure can be used to probe
its mechanical properties [1] while buckling and snap-through instability in shell
have been proved to be an effective way to generate motion in microswimmers [2];
moreover, superficial wrinkling induced by indentation can be used to modify the
properties of a shell with a potential application toward its functionalization.

The general idea behind this work is to show novel evidences on the bistabil-
ity and buckling of spherical shells and to provide mathematical explanations of
these phenomena. A known result of calculus of variation states that a non-trivial
configuration accommodated by a poked elastic spherical shell subjected to large
displacements can be represented as an isometric transformation described by a
local eversion, i.e. an axisymmetric ‘mirror buckled’ shape [3]. This deformed
solution is energetically favourable since the work due to the indentation is mainly
concentrated into the circular ridge that connects the region where the spherical
cap is everted to the region where the shell remains undeformed: the energy of
this solution vanishes as ∼ h5/2 with a decreasing thickness h.

Here the attention is posed on two interesting questions on the behaviour of spher-
ical shells beyond the axisymmetric ‘mirror buckled’ shape. (i) The existence of
a stable axisymmetric configuration (other than the natural one) of the inverted
shell without the application of any point force, i.e. a self-equilibrated ‘mirror
everted’ shape analogous to the ‘mirror buckled’ shape but with the plane of re-
flection coincident with the plane of the planform of the shell, and the robustness
of this everted configuration against a singular perturbation represented by a force
indentation. (ii) If a shell in its natural configuration is indented at its apex, the
mirror buckling is unlikely to be observed, since indentation drives to either wrin-
kling (in pressurized shell) or polygonal buckling (in pressureless shell). In the
former case it can be shown analytically that the nonlinear wrinkling features in
the limit of large pressurization and large displacement are mainly governed by
geometric effects due to a combination between the natural curvature and the
curvature induced by the indentations, thus defining a different type of isometry
known as ‘asymptotic wrinkly isometry’ [4].

Limiting to the case of axisymmetric solutions, a pressureless spherical shell is
monostabile if the only self-equilibrated state is the natural configuration while it
is bistable if also the stable axisymmetric ‘mirror everted’ configuration exists. A
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deep shell can be described in term of three dimensionless parameters: the Poisson
ratio ν; a term related to the depth of the shell, as its solid angle α; a term that
describes the balance between the stretching and the bending energies, thus de-
pending on the shell thickness λ. By making use of finite element simulations, the
monostability/bistability threshold can be been identified up to almost a complete
hemisphere. While remaining within a small error, the same threshold can be
computed through a continuation analysis based on the shallow shell equations:
then, we can employ the shallow shell limit to compute the monostable/bistable
threshold that, in term of λ, does not depend on α and varies linearly against ν:
λth ≈ 1.44ν + 5.06. A natural way to connect these two self-equilibrated states
(while in the bistable parameters regime) is through pointwise indentation. Al-
though the existence of both these two self-equilibrated states, it is possible to
show that a shell can asymmetric buckle before the snap-through point is reached.
Employing the shallow shell theory, the comparison between indentation from nat-
ural and indentation from ‘mirror eversion’ reveals that: (i) very thin shell always
prefers to buckle before the snapping occurs with the marginal stable mode of
the polygonal buckling that depends on the type of conditions applied along the
external boundary; if the boundary is free to deform in-plane, the polygonal buck-
ling with mode 2 is observed while mode 3 is approached when the thickness is
decreased. (ii) Thicker shells always admit a axisymmetric path that continu-
osly connects the two stable solutions. (iii) In between these two limits, there
exist a regime where the snap-through process becomes asymmetric. This work
also provides new insights on the robustness of the ‘mirror buckling’ symmetry of
spherical shell caps: indeed, although indentation leads to asymmetrical buckling
before snap-through for thin shells, they are also more ‘robust’ to snap-through.

In the domain where the indentation of a spherical shell induces buckling, the
second question is related to the evolution of this asymmetric pattern well beyond
the linear threshold: the circumferential axisymmetric ridge eventually becomes
linearly unstable in favour of (i) a wrinkled pattern in pressurized shells and (ii) a
polygonal buckled shape in pressureless shells. In the former case, finite element
evidences show that the circumferential wavenumber m of the wrinkling pattern
in the far from threshold regime varies -increases, more specifically- with the dis-
tance from the point of indentation and with the indentation applied itself. A
asymptotic expansion of the equilibrium and constitutive equations in the small
parameter (1/m) shows that the wrinkled pattern arises to relieve the excess in
the hoop compression, consistently with what expected in the tension field theory
[5], and allows to derive theoretical correlations that relate the spatial variation
of m to the mechanical and geometrical properties of the shell: m depends on the
local (i.e. function of the spatial position r) balance between bending and stretch-
ing energies, with the latter mainly due to the competition between the natural
curvature of the shell and the one induced by the indentation along the wrinkles.
Interestingly, in the largest part of the wrinkled domain the wavenumber depends

only on the geometrical parameter of the problem as m ∼
(
δ/h
)1/2

(

r/
√
δR
)3/2

,
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with R and th the undeformed radius and the thickness of the shell and δ the
applied displacement of the apex. More challenging is the case of indentation of
pressureless spherical shells. Evidences from finite element simulations show that
buckling is initially of polygonal and, possibly, it is followed by a crumpled state
for very large indentations. In this regime, a clear description of he buckled pat-
tern in the far from threshold limit has still not been proposed.

The proposed approach can be extended to the mechanical/mathematical inves-
tigation of similar configurations, i.e. a shell over a different types of substrate,
but with asymmetric initial geometries. The case of a substrate with vanishing
properties remains unclear and its explanation is still an open interesting prob-
lem: in this case, the lack of a characteristic length due to the balance between the
elasticity of the shell and the properties of the substrate can induce localization
as a response of a compressive loading. Initially this localization induced by the
indentation emerges as the formation of a circular ridge that eventually buckles.
The open question is then to understand why this happens and how it evolves.
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Forces in Biosystems

Reinhard Lipowsky

The bottom-up approach to synthetic biology requires a detailed understanding of
the basic construction modules that are necessary for their controlled assembly and
integration into artificial protocells. These modules include membrane compart-
ments as provided by giant vesicles, biomolecular machines such as cytoskeletal
motors and filaments as well as template-controlled assemblers such as ribosomes.
These modules experience intermolecular forces with each other and with their
aqueous environments, respond to externally applied forces, and generate local
forces when coupled to exergonic chemical reactions such as ATP hydrolysis.

Giant vesicles provide a direct connection between the nano- and the microregime.
Indeed, these vesicles represent cell-like compartments with linear dimensions of
many micrometers but are enclosed by single molecular bilayers that have a thick-
ness of a few nanometers. The bilayer membranes respond sensitively to molecular
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interactions with solutes, biopolymers, and nanoparticles. These nanoscopic re-
sponses are amplified by the giant vesicles and can then be studied on much larger
scales by optical microscopy. When the membranes are exposed to an asymmetric
environment, they acquire a spontaneous curvature and tend to form membrane
nanotubes. [1] Several quantitative methods have been recently developed by
which one can deduce the value of the spontaneous curvature and of the associ-
ated spontaneous tension from the morphology of the tubulated vesicles. [2, 3, 4]
In addition, it has been demonstrated by micropipette aspiration and changes in
the osmotic conditions that the membrane nanotubes increase the robustness of
giant vesicles to mechanical perturbations, [3].

The interactions of nanoparticles with biomembranes are essential for many
processes such as biomedical imaging, drug delivery, nanotoxicity, and viral in-
fection. In order to enter the cell, the particle must cross the cell membrane via
endocytosis, a process that consists of three substeps: adhesion of the nanoparticle
to the membrane; complete engulfment of this particle by the membrane, which
then forms a narrow membrane neck that connects the particle-bound membrane
segment to the mother vesicle; and cleavage or scission of the membrane neck.
All three substeps are governed by the interplay between curvature elasticity and
membrane-particle adhesion and can be understood in terms of a few key param-
eters: particle size, adhesive strength of membrane-particle interactions, as well
as bending rigidity and spontaneous curvature of the membrane. The onset of
adhesion is described by an instability condition that depends on particle size, ad-
hesive strength, and bending rigidity. [5] The complete engulfment is governed by
a stability condition that involves the spontaneous curvature as well. [5, 6] Finally,
the scission of the membrane neck can be understood in terms of effective constric-
tion forces which are generated by the spontaneous curvature or by the adhesive
nanoparticle. [6] The underlying theory has been extended to Janus particles,
which experience curvature-induced forces that push the particles towards local
minima of membrane curvature [7], and to the adhesion-induced fission of mem-
branes by ESCRT proteins, for which a minimal system based on giant vesicles
and only three proteins has been recently established [8].

Another relatively new research area are giant vesicles exposed to aqueous two-
phase systems and water-in-water emulsions. [9, 10] These systems exhibit a vari-
ety of wetting morphologies and morphological transformations that reflect both
the capillary forces arising from the water-water interfaces and the membrane
curvature generated by the asymmetric aqueous environments. Striking wetting
morphologies have also been observed for the recently discovered membraneless
organelles that behave like liquid droplets. [11]

At the end, a brief outlook was given on cooperative transport by teams of
molecular motors [12, 13], on protein synthesis by ribosomes [14], and on the
perspectives arising from the sequential bottom-up assembly of synthetic cells that
has been achieved very recently using microfluidic emulsion droplets [15].
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Mechanotransduction by engineered extracellular matrices

Britta Trappmann

Cell fate decisions are influenced by many cues, which together constitute the cell
microenvironment. One critical regulator is the extracellular matrix (ECM), which
varies not only in composition, but also in physical properties such as stiffness. The
impact of matrix stiffness on cell spreading and differentiation has been studied
intensively on 2D surfaces using synthetic hydrogels, but very little is known about
stiffness sensing within more complex 3D matrices.

Unlike linear elastic hydrogels, most natural tissues are fibrous. To investi-
gate how cells sense stiffness in settings structurally similar to native ECMs, we
designed a synthetic fibrous material with tunable mechanics. Increasing fiber
stiffness suppressed mesenchymal stem cell spreading and proliferation, in con-
trast to flat hydrogels. We identified fiber recruitment as a mechanism by which
cells actively probe and respond to the mechanics of fibrous environments.

Furthermore, a hurdle in 3D contexts is to isolate the role of ECM stiffness from
other matrix properties, in particular degradability. If cells are fully encapsulated,
changes in bulk stiffness also influence the amount of matrix crosslinks that a cell
has to cleave in order to spread and interact with its surroundings, impacting cell
shape and function. Here, we have developed a sugar-based hydrogel system that
offers independent control over mechanical properties, adhesive ligand density and
matrix degradation rates. The material can be processed under physiologic condi-
tions rendering it suitable for cell encapsulation. Matrix metalloproteinase (MMP)
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cleavable peptides as crosslinking units enable cellular matrix remodeling and vari-
ation of their sequence gives access to a range of degradation rates. Using this
system, we study the impact of matrix stiffness and degradability on angiogenic
sprouting. In particular, we demonstrate that matrix degradability and mechanics
control the multicellularity of 3D endothelial cell invasion.
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Symmetry breaking and self-organisation in mouse development

Takashi Hiiragi

(joint work with Dimitri Fabrèges)

A defining feature of living systems is the capacity to break symmetry and gen-
erate well-defined forms and patterns through self-organisation. Our group aims
to understand the principle of multi-cellular self-organisation using a well-suited
model system: early mouse embryos. Mammalian eggs lack polarity and thus
symmetry is broken during early embryogenesis. This symmetry breaking results
in the formation of a blastocyst consisting of two major cell types, the inner cell
mass and the trophectoderm, each distinct in its position and gene expression.
Our recent studies unexpectedly revealed that morphogenesis and gene expression
are highly dynamic and stochastically variable during this process (Dietrich et
al. 2015; Ohnishi et al. 2014). Determining which signal breaks the symmetry
and how the blastocyst establishes a reproducible shape and pattern despite the
preceding variability remains fundamental open questions in mammalian develop-
ment. We have recently developed a unique set of experimental frameworks that
integrate biology, physics and mathematical modelling. Using a reduced system,
we find that Cdh1-independent contact asymmetry directs temporally-controlled
apical domain formation, which is necessary and sufficient for symmetry breaking
and segregating the first cell lineages in mouse development (Korotkevich et al.
2017). Furthermore, we show that asymmetric segregation of the apical domain
generates blastomeres with different contractility, which triggers their sorting into
inner and outer positions (Mâıtre et al. 2015; Mâıtre et al. 2016). Hence, contrac-
tility couples the positioning and fate specification of blastomeres, and this mecha-
nism ensures the robust self-organization of the blastocyst and confers remarkable
regulative capacities to early mammalian embryos. We aim to understand how
molecular, cellular and physical signals are dynamically coupled across the scales
for self-organisation during early mammalian development.
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Modeling large-scale cell migration and proliferation with mechanical
and biochemical interactions: Bridging discrete and continuum via
dynamic cellular finite-element method (DyCelFEM) method and

Accurate Chemical Master Equation solutions

Jie Liang

(joint work with Youfang Cao, Jieling Zhao, Anna Terebus, Margaret Gardel,
Luisa DiPietro)

A challenging task in cell and tissue modeling is to account for changes in cellular
shapes, topological arrangement, and physical mechanics across the scale when
there are a thousands of migrating and interacting cells. In addition, the recon-
ciliation of the discrete nature of individual cells and the continuum mechanical
description of tissues remains a difficult task. Furthermore, integrating cellular
mechanics with biochemical signaling networks controlling cellular behavior poses
an additional challenge.

We have been developing a method, called the dynamic cellular finite-element
model (DyCelFEM), to bridge these gaps [1]. Our approach accounts for changes
in cellular topology, cellular shapes, and cellular mechanics, and models the full
range of cell motion, from movements of individual cells to collective cell migra-
tions. The transmission of mechanical forces regulated by intercellular adhesions
and their ruptures are also accounted for. Intra-cellular protein signaling net-
works controlling cell behaviors are also embedded in individual cells. With this
approach, we can examine specific effects of biochemical and mechanical cues in
regulating cell migration and proliferation, and in controlling tissue patterning.
Using a simplified re-epithelialization model of wound tissue, our simulation re-
sults using DyCelFEM suggest that biochemical cues are better at guiding cell
migration with improved directionality and persistence, while mechanical cues are
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better at coordinating collective cell migration. We also discuss an example us-
ing DyCelFEM to study the movement of a single cell interacting with ECM-like
medium. Please see [1] for more details.

As molecular interaction network control cellular behavior, and often such meso-
copic networks are stochastic in nature, the discrete Chemical Master Equation
(dCME) provides a fundamental framework to study a large class of stochastic
networks that underly diverse biological phenomena. These include stem cell dif-
ferentiatoin, cellular fate decision, and tumorogenesis. There are a number of chal-
lenges when solving dCMEs arising from stochastic networks: How do we know
if the computed peaks of probability mass are complete and we are not missing
anything important? How to be sure if the computed probability landscape is not
erroneous? How to accurately compute probabilities of rare events (e.g., 10−12)?
What are the best accuracy we can hope to achieve with a laptop, or with a giant
computer? Answers to these important question are largely unknown except for
a few simple toy examples. Overall, we cannot distinguish if a network model is
incorrect or the computational solution is inadequate.

In this talk, we discussed how these important questions can be answered for a
large class of stochastic networks using the n-simplex optimal state enumeration
algorithm and the acme (accurate chemical master equation) method [2, 3]. We
discuss how exact time-evolving probabilistic landscapes can be computed without
Monte Carlo simulation or Fokker-Planck/Langevin approximation. In addition,
we discuss how a priori error bound of the steady state probability landscape due to
state space truncation that is inevitable for complex networks can be constructed,
without trial simulation using the quotient matrix technique. We revisit details
of dynamics of probability landscapes of a number of stochastic networks, and
give examples on how exact results can be computed for large stochastic network
(16-nodes), and how to relate the computed probability landscape to phenomeno-
logical characterization of cellular decision networks such as bi-stability, epigenetic
states, and the robustness of wild type versus mutants. Recent development in
theory of discrete probability flux and velocity are also be discussed. Biological
examples of solving the puzzles of phage lambda and HIV latency are briefly be dis-
cussed. (Please see [3] and [2] and gila.bioe.uic.edu/liang/liang\_pub.html

for further information).
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Life is Different: it is Inherited

Bob Eisenberg

What is different about life? Why do life sciences require different science and
mathematics? I address these issues starting from the obvious: all of life is inher-
ited from genes. Twenty thousand genes of say 30 atoms each control an animal
of ∼1025 atoms. How is that possible? Answer: the structures of life form a
hierarchy of devices that allow handfuls of atoms to control everything. A nerve
signal involves meters of nerve but is controlled by a few atoms. Indeed, potas-
sium and sodium differ only in the diameter of the atoms. Life depends on this
difference in diameter. Sodium and potassium are otherwise identical. The task
of the biological scientist is first to identify the hierarchy of devices and what they
do. Then we want to know how the devices work. We want to understand life well
enough to improve its devices, in disease and technology.

Patterning through growth

Arnd Scheel

Pattern formation has been studied extensively, mostly in the context of linear
instabilities and the selection of wavenumbers through linear dispersion relations.
One starts from the idea that a physical systems is quenched, such that a trivial
state looses stability. Random, or white noise small amplitude perturbations then
induce exponential growth of certain Fourier modes. This talk focuses on two
aspects of this pattern formation scenario. First, the selection of finite Fourier
wavenumbers and thereby of patterns with a distinguished wavelength usually
requires rather complex mechanisms, such as disparate rates of diffusivity as sug-
gested in Turing’s seminal work. Second, random initial conditions typically lead
to highly disorganized patterns with many defects, that may or may not evolve
towards a simpler crystalline structure.

The first part of the talk shows how very simple systems may exhibit pattern
formation with selected, well-defined wavenumbers, when initial conditions are
shot noise perturbations of a quenched, unstable state. A first example is the
reaction-diffusion system

ct = ∆c− f(c, e)

et = κ∆e+ f(c, e),

with cubic nonlinearity f(c, e) = e(1 − e)(e − a) + γc, 0 < a < 1, γ > 0. Linear
instabilities of e ≡ a, c ≡ 0 do not select finite wavenumbers. Most dramatically,
in the case κ = 0, white noise perturbations of this state lead to highly disor-
ganized patterns on arbitrarily fine length scales, not subject to coarsening. On
the other hand, shot noise perturbations generate regular periodic patterns with
finite wavelength [6]. The talk briefly reviews methods that allow to predict these
wavenumbers [10] and presents extensions to run-and-tumble systems [11]. In a
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related direction, deposition of mass through a source term h(ξ) with finite mass
∫
h < ∞,

ct = ∆c− f(c, e) + ch(x− ct)

et = κ∆e + f(c, e),

and stable initial conditions e ≡ c ≡ 0, can also lead to regular patterns in the
wake of the deposition front propagating at speed c.

The second part of the talk studies this directional quenching procedure in
more detail. It turns out that the growth process can effectively select patterns
and avoid defect formation, thus leading to pure crystalline patterns in its wake.
We study systems where a trivial state is unstable in a growing subset Ωt of the
plane. Examples are the Allen-Cahn equation,

ut = ∆u− µsign(x− ct)u− u3,

the Cahn-Hilliard equation,

ut = −∆
(

∆u− µsign(x− ct)u− u3
)

,

and the Swift-Hohenberg equation,

ut = − (1 + ∆)
2
u− µsign(x− ct)u − u3,

with parameter jump at the boundary of Ωt, chosen for instance as {x < ct}.
One is then interested in the emergence of striped patterns in Ωt, and how they
are selected by the growth mechanism, that is, by the geometry of Ωt. Phe-
nomenologically, one notices that stripes are perpendicular to the boundary of Ωt

in the Allen-Cahn equation. In both Cahn-Hilliard and Swift-Hohenberg equa-
tion, stripes are parallel to the boundary for large rates of growth, but tend to be
perpendicular for slow growth. We present theoretical results that explain this di-
chotomy and predict alignment and strain in striped phases arising through growth
[1, 2, 3, 4, 5, 7, 8, 9, 10, 12]. The key object is a moduli space M ⊂ R3, which
contains points (kx, ky, c) corresponding to pure crystalline growth at rate c, cre-
ating striped patterns with wave vector k = (kx, ky). More precisely, we consider
Ωt = {x < ct} and look for “simplest” solutions to the underlying equations that
leave behind striped patterns with wave vector k that is, solutions that converge
to periodic patterns up(kxx+kyy; k), up(ξ; k) = up(ξ+2π; k), k = |k|, as x → −∞,
and that are periodic or stationary in appropriately comoving frames. In the case
of the Allen-Cahn equation, the moduli space is completely characterized as a
quarter of an ellipse in the kx = 0 plane, and a line segment in c = ky = 0. The
moduli space in Swift-Hohenberg is similarly described as a surface over such a
quarter ellipse, together with a line segment in ky = c = 0, but contains a number
of interesting singularities near boundaries.

In conclusion, we relate these moduli spaces to observations in direct simula-
tions, and point to a number of open problems and future directions.
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Tissue self-organization through mechanical feedback

Pierre Degond

(joint work with Diane Peurichard, Fanny Delebecque, Anne Lorsignol,
Corinne Barreau, Jacques Rouquette, Xavier Descombes, Louis Casteilla)

In this talk, we mostly report on the work published in [1] about self-organization
of adipose tissue. Adipose tissue is constituted of clusters of fat cells (adipocytes)
named lobules separated by walls composed of extracellular matrix (ECM). During
development, they emerge from an unstructured fiber network containing cells.

In the present work, we show that directionally organized cell and fiber struc-
tures can emerge as a result of simple mechanical interactions between the cells
and the fiber network. We consider a two-dimensional microscopic model to test a
scenario in which the mutual repulsion between cells modelled as non-deformable
and non-overlapping spheres and ECM elements modelled as segments having the
ability of cross-linking to each other shape the organization of the tissue.

The results of the model are compared with biological data acquired on fixed
mouse adipose tissue which has been immuno-stained for segmentation of cell and
lobule boundaries. The model shows that two parameters play a key role: the
proportion of linked fiber pairs (which is related to the stiffness of the ECM) and



The Mathematics of Mechanobiology and Cell Signaling 463

the fiber unlinking frequency (related to the ECM plasticity). We outline three
zones of this two-dimensional parameter space separated by abrupt transition re-
gions which can be associated with healthy or pathological tissues respectively. We
also provide parameter conditions that allow us to recover the observed biological
tissues.

We have also presented results of ongoing work which use the present work to
explore the conditions for healing or regeneration of injured tissues.
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Chemical potential rather than concentration should be used to
characterize plasma membrane cholesterol

Fredric S. Cohen

(joint work with Artem G. Ayuyan)

The importance of cholesterol is appreciated by the public and scientists alike. The
cholesterol content in blood plasma of individuals is routinely clinically measured.
Despite the importance of blood cholesterol, the overwhelming majority of choles-
terol, ∼90%, resides in cells, and of this 90%, ∼80% is within plasma membranes.
Cholesterol constitutes, on a mole basis, more than 1/3 of plasma membrane lipid
molecules. At such a high density, it is a priori likely that cholesterol’s interactions
would have profound effects on biological processes, yet cholesterol is routinely
characterized by its concentration, rather than by its chemical activity.

In the absence of interactions, the chemical potential of a substance, µ, is
given by µ = µ0 + kBT lnC, where µ0 is a standard chemical potential (refer-
ence energy), C is the concentration of the substance, and kB and T have their
usual meaning. Interactions can be readily accounted for through the equation
µ = µ0 + kBT lnC + energy of interactions. This equation yields the free energy
per molecule and is often written as µ = µ0 + kBT ln a, where a is chemical ac-
tivity. The term a incorporates the energy of interactions, allowing the chemical
potential to be written in similar forms in the absence of interactions (an ideal
solution), and in the presence of interactions (a real solution).

We have developed a way to experimentally measure the chemical potential of
cholesterol in plasma membranes of cells, µCH. The logical basis of the method
rests on a fundamental consequence of the definition of chemical potential: mole-
cules move from high to low chemical potential between two media; movement
ceases only when the chemical potential of a substance is equal in the two media
– the substance is at equilibrium. Using this fundamental principle, we reasoned
that if a water-soluble carrier of cholesterol was included in the extracellular solu-
tion bathing cells, cholesterol would move between the aqueous solution and the
cell membrane until their cholesterol chemical potentials equalized. Cholesterol
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concentration is readily measured (as blood cholesterol is measured) and so, if the
cholesterol concentration in the carrier-containing aqueous phase could be related
to chemical potential, the cholesterol chemical potential of the plasma membranes,
µCH, would also be known. We obtained this relationship by noting that if an ideal
solution were brought into contact with a non-ideal aqueous solution that contains
cholesterol and a carrier for it, the chemical potential of the non-ideal solution
will equilibrate to that of the ideal solution whose chemical potential is given by
µ0 + kBT lnC. We created an ideal solution by dissolving cholesterol in a hydro-
carbon: because solubility is low in the hydrocarbon used, cholesterol molecules
are too far apart to interact, and thus cholesterol in a hydrocarbon yields an ideal
solution.

We used methyl-β-cyclodextrin (MBCD) as the cholesterol carrier. MBCD
molecules bind cholesterol with a fixed stoichiometry, and hence binding of choles-
terol to the binding sites of MBCD can be described by a Langmuir isotherm,
as was experimentally verified. The isotherm provides the relationship between
chemical potential and concentration of cholesterol bound to MBCD in an aqueous
phase.

Figure 1. The chemical potential of cholesterol in an aqueous so-
lution of MBCD-cholesterol after equilibrating for 15 min (final)
vs the chemical potential of cholesterol in the original solution.
The intersection of a curve fit through the experimental points
and the line of equal initial and final chemical potentials of the
solution yields µCH, the chemical potential of cholesterol in the
plasma membrane. For any initial chemical potential, the differ-
ence between the experimentally measured final chemical poten-
tial and the initial chemical potential is used to obtain the amount
of cholesterol that moved into (points above the equilibrium line)
or out of (below the line) solution into the cells (MDA-MB-231,
a breast cancer cell line).

To determine µCH, cells in culture are bathed by an aqueous solution that con-
tains MBCD with bound cholesterol. The time for cholesterol to reach equilibrium
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between the aqueous solution and plasma membrane is fast, occurring within 15
min. If the cholesterol chemical potential is higher in solution than in the cell
membranes, cholesterol will move from solution into cells until the chemical po-
tentials equalize. In contrast, if the chemical potential is lower in the bathing
solution, cholesterol will transfer from the cells to MBCD, again equalizing choles-
terol chemical potential between plasma membranes and aqueous solution. The
only case in which there will be no net transfer of cholesterol is if the cholesterol
chemical potential in solution is equal to µCH. Of course, the likelihood of this
happening by chance is nil. Fortunately, one need not experimentally achieve this.
The point where a plot of the final chemical potential in solution equals the initial
chemical potential (the 45° line of equilibrium) precisely provides the cholesterol
chemical potential of the plasma membrane, µCH (Fig. 1). As a reference, we set
the chemical potential of hydrated crystalline cholesterol = 0. Consequently, all
measured cholesterol chemical potentials are negative.

Figure 2. µCH, obtained from experiments illustrated by Fig. 1,
is plotted against the total (calculated) cholesterol content of
MDA-MB-231 cells. This content is shown as dimensionless, nor-
malized units. The unperturbed content = 1. Note that at all
cell densities, an inflection point is present near the cell’s natural
level of cholesterol. Blue triangles are highest density, red squares
are intermediate density, and black circles are the lowest density.
Different portions of different curves can be steep or shallow.

The amount of cholesterol that was transferred in reaching equilibrium between
the plasma membrane and the aqueous solution is readily obtained from the dif-
ference between the amount of cholesterol bound to MBCD at any initial chemical
potential and that bound at equilibrium (the final concentration): the final choles-
terol content in the plasma membrane is obtained from the initial content and the
amount transferred. Knowing this final amount of cholesterol in cells allows the
relationship between µCH and cell cholesterol to be derived (Fig. 2). The depen-
dence of chemical activity on cholesterol concentration in the plasma membrane
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Figure 3. The dependence of cholesterol chemical activity on
plasma membrane cholesterol concentration was obtained. We
used the standard values of a plasma membrane cholesterol con-
centration of 40 mol %, and plasma membranes containing 80%
of total cell cholesterol to derive the curves. The overall shape
of a curve for cholesterol activity vs cholesterol concentration in
the plasma membrane depends on the density of cells in culture.
Symbols are the same as for Fig. 2. These curves were calculated
for µ0 = 0.

is also obtained (Fig. 3). It is striking that cholesterol in the plasma membrane
is not well-approximated by an ideal solution: the activity coefficient of plasma
membrane cholesterol (coefficient = activity/concentration) is only about 0.4 at
the lowest cholesterol concentration, and approaches 1 only at the highest con-
centration, when cholesterol is close to its saturation level. Also, the shapes of
the curves of activity vs. cholesterol content depend on the density (number of
cells/area) of the cells grown in culture. (Here we used breast cancer cells, and
density is easy to vary even though the cells are always confluent because contact
inhibition is absent for cancer cells.) It may be noteworthy that these curves ex-
hibit an inflection point near the natural cell cholesterol content (value 1 in Fig. 2)
or membrane concentration (0.4 mol fraction in Fig. 3) of cholesterol.

This work presents many experimental and theoretical challenges. From the
theoretical viewpoint, one immediate question is: What is implied by the changing

sign of the second derivative of the cholesterol chemical potential, d2µ
dC2 or equiv-

alently d2µ
dN2 , where N is the number of cholesterol molecules? Model-dependent

interpretations may reveal why the inflection point is situated near the natural,
unaltered cholesterol content. If a model is created to account for this, important
but so far unappreciated biological principles may be uncovered.
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Unbalanced optimal transport and quantization

Benedikt Wirth

(joint work with David Bourne, Bernhard Schmitzer)

Formulations of classical optimal transport. The theory of optimal transport
(see e. g. [1] for a rigorous introduction) deals with the problem of transporting
mass from a given initial mass distribution ρ0 ∈ M+(Ω) (where Ω ⊂ R

n shall be
a closed bounded Lipschitz domain and M+(Ω) denotes the nonnegative Radon
measures on Ω) to a final mass distribution ρ1 ∈ M+(Ω) in the most cost-efficient
way. The cost for transporting one unit mass from x ∈ Ω to y ∈ Ω is described by
a nonnegative function c(x, y). The original formulation by Gaspard Monge seeks
the optimal transport map T : Ω → Ω, where T (x) indicates the location which
the mass from x shall be transported to,

(1) C(ρ0, ρ1) = inf

{∫

Ω

c(x, T (x)) dρ0(x)

∣
∣
∣
∣
ρ0(T

−1(B)) = ρ1(B)∀B ∈ B(Ω)

}

(B(Ω) denotes the Borel subsets of Ω). The constraint on T means that after
transporting mass ρ0 by T it equals ρ1. There are a few conceptual problems
with this formulation such as that mass from a point x cannot be split up for the
transport. This is remedied by Kantorovich’s classical convex formulation seeking
a so-called transport plan π ∈ M+(Ω× Ω),

(2) C(ρ0, ρ1) = min

{
∫

Ω×Ω

c(x, y) dπ(x, y)

∣
∣
∣
∣
∣

π(B × Ω) = ρ0(B)
π(Ω× B) = ρ1(B)

∀B ∈ B(Ω)

}

,

in which π(x, y) is interpreted as the mass transported from x to y. Standard
Fenchel–Rockafellar duality then yields the Kantorovich–Rubinstein formulation,

(3) C(ρ0, ρ1) = sup

{∫

Ω

αdρ0 +

∫

Ω

βdρ1

∣
∣
∣
∣
α(x) + β(y) ≤ c(x, y)∀x, y ∈ Ω

}

.

There exist more equivalent formulations (e. g. the flow-based Benamou–Brenier
formulation). This allows to always choose the most suitable one for modelling,
numerics, or analysis, as will also be exploited below. The choice c(x, y) = |x −
y|p yields an important instance of optimal transport for which Wp(ρ0, ρ1) =
p
√

C(ρ0, ρ1) metrizes weak-* convergence on the space of probability measures.
During the past decades optimal transport theory evolved into a highly active

field reaching into different mathematical disciplines. For instance, optimal trans-
port metrics are used in machine learning, properties of partial differential equa-
tions (PDEs) and their solutions are investigated using optimal transport-based
gradient flows or estimates, and notions of curvature can be defined on nonsmooth
spaces using optimal transport. In particular modelling examples are manifold:
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• Bio-related transportation models often use variants of optimal transport, e. g.
modelling nutrient transport or vascular transport networks (see e. g. [1, §4.4.2]).

• Using optimal transport as a metric on molecule distributions (such as the heads
and the tails of lipids in a cell membrane) one can derive biomechanical models
such as a micromodel for cell membrane bending stiffness [4].

• By now it is classical that important PDEs (e. g. the diffusion equation) can be
written as gradient flows of some entropy with respect to the Wasserstein metric
(a Wasserstein-type gradient flow model of tumour growth is found in [2, Ch. 6]).

• The task of optimally discretizing a given measure ρ0 by a weighted sum of
N Dirac masses is known as quantization and has various applications; e. g.,
thinking of ρ0 as spatial nutrient distribution one can ask how N biological cells
would optimally position themselves during competition for resources.

• Several image and data processing methods rely on optimal transport, e. g. colour
transfer (in which colour histograms of images are masses to be transported) or
estimation of molecular motion from a temporal sequence of microscopy images.

Unbalanced transport. If mass is merely transported, ρ0 and ρ1 must have iden-
tical total mass. So-called “unbalanced transport” also allows mass mismatches
between ρ0 and ρ1 (e. g. [2]), which meets a strong demand from applications:

• The transported material may change its mass during transport, e. g. moving
cells or tissue may grow during the motion.

• The supply ρ0(Ω) of a material (e. g. nutrients) may not match the demand ρ1(Ω).
• If ρ0, ρ1 are measured data, the measurement noise causes spurious mass changes.
• Allowing mass changes increases robustness in transport-based data processing.

The simplest version of unbalanced transport adds a cost K(λ) for a mass change
by the factor λ, where K : [0,∞) → [0,∞] is convex with K(1) = 0. Writing ρ

µ

for the Radon–Nikodym derivative of ρ with respect to µ, (1)-(3) then turn into

C(ρ0, ρ1)

=inf

{∫

Ω

c(x, T (x)) dρ(x)+

∫

Ω

K
(

ρ
ρ0

)

dρ0+

∫

Ω

K
(
ρ◦T−1

ρ1

)

dρ1

∣
∣
∣
∣
ρ∈M+(Ω), T :Ω→Ω

}

=min

{
∫

Ω×Ω

c(x, y) dπ(x, y)+

∫

Ω

K
(
π(·,Ω)
ρ0

)

dρ0+

∫

Ω

K
(
π(Ω,·)
ρ1

)

dρ1

∣
∣
∣
∣
∣
π∈M+(Ω)

}

=sup

{∫

Ω

−K∗(−α)dρ0+

∫

Ω

−K∗(−β)dρ1

∣
∣
∣
∣
α(x)+β(y) ≤ c(x, y)∀x, y∈Ω

}

,

where K∗(γ) = supz∈R
γz −K(z) denotes the Legendre–Fenchel conjugate of K.

Similarly to classical optimal transport, particular variants of unbalanced trans-
port induce a metric which metrizes weak-* convergence on M+(Ω) [2, Ch. 2].
Current research tries to identify more formulations and feasible numerical schemes
as well as fine characterizations of optimal transportat plans (see e. g. [3] and ref-
erences therein for a characterization of unbalanced W1-type transport models).
Quantization. As an example of unbalanced transport applications we consider
the previously mentioned quantization of a Lebesgue-continuous measure ρ0 ∈
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M+(Ω) for the case that c(x, y) is an increasing function of |x − y|, that is, for
fixed N > 0 we consider the problem

Q(ρ0) = min






C(ρ0, ρ1)

∣
∣
∣
∣
∣
∣

ρ1 =

N∑

i=1

miδxi
, m1, . . . ,mN ≥ 0, x1, . . . , xN ∈ Ω






.

As in classical optimal transport, this allows a geometric reformulation in terms of
tiling the domain optimally with Voronoi cells Vi = {x ∈ Ω | |x−xi| ≤ |x−xj | ∀j}.

Theorem 1. Q(ρ0) = min
{
∑N

i=1

∫

Vi
−K∗(−c(x, xi)) dx

∣
∣
∣ x1, . . . , xN ∈ Ω

}

.

Proof. 1. Using the notation from the previous paragrph, one first shows existence
of an optimal transport map T (Monge formulation) and transport plan π (Kan-
torovich formulation) for which then necessarily sptπ ⊂ {(x, T (x)) |x ∈ Ω}. 2. In
the optimum, the duality gap between the Kantorovich and the Kantorovich–
Rubinstein formulation vanishes, from which one can deduce sptπ ⊂ {(x, y) ∈
Ω × Ω |α(x) + β(y) = c(x, y)}. Thus, any x ∈ Ω with T (x) = xi satisfies
α(x) + β(xi) = c(x, xi), which together with α(x) + β(xj) ≤ c(x, xj) immedi-
ately implies T−1(xi) = Ci(β) := {x ∈ Ω | c(x, xi) − β(xi) ≤ c(x, xj) − β(xj)∀j}.
3. With the above and using Ω =

⋃N
i=1 Ci(β) we can now write

Q(ρ0) = min
mi,xi,ρ,T

N∑

i=1

[
∫

Ci(β)

c(x, xi) dρ(x)+

∫

Ci(β)

K
(

ρ
ρ0

)

dρ0 +miK

(
ρ(Ci(β))

mi

)]

.

Explicitly minimizing over mi and then β yields mi = ρ(Ci(β)) and Ci(β) =

Ci(0) = Vi so that Q(ρ0) = minxi,ρ

∑N
i=1

∫

Vi
c(x, xi)

ρ
ρ0

+K
(

ρ
ρ0

)

dρ0, which upon

optimizing in ρ yields the desired result. �

Again similarly to classical optimal transport, in two spatial dimensions one
can even quite precisely estimate the quantization cost Q(ρ0).

Theorem 2. Q(ρ0) = N
∫

H(|Ω|/N) −K∗(−c(0, x)) dx + O(N−1/2) for ρ0 the

Lebesgue measure on Ω ⊂ R
2 and H(A) the regular hexagon of area A centred

at 0.

Proof. The upper bound is obtained as the cost C(ρ0, ρ1) for a ρ1 which is con-
structed as a regular hexagonal lattice of Dirac masses. The lower bound uses
Fejes Tóth’s result that for any increasing f : [0,∞) → R and l-sided poly-
gon V of area A we have

∫

V f dx ≥
∫

V (A,l) f dx for V (A, l) the regular l-sided

polygon of area A centred at 0 (in our case f = −K∗(−c(0, ·))). The right-
hand side turns out to be convex in A and l so that by Jensen’s inequality

Q(ρ0) = minxi

∑N
i=1

∫

Vi−xi
f dx ≥ N

∫

V (A,l)
f dx, where A = |Ω|/N and l = 6

are the average polygon volume and side number for any Voronoi tesselation. �

One can even characterize the asymptotically optimal point density of ρ1 for
large N if ρ0 is a spatially varying Lebesgue-continuous measure. In contrast to
classical optimal transport, the optimal point density nonlocally depends on the
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global mass distribution in such a way that whole regions with positive measure
may be completely neglected in favour of regions with higher mass.
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A Hamilton-Jacobi approach for models from evolutionary biology:
the case of a time-varying environment

Sepideh Mirrahimi

(joint work with Susely Figueroa Iglesias)

In this work, we study the evolutionary dynamics of a phenotypically struc-
tured population in a time-periodic environment. While the evolutionary dynam-
ics of populations in constant environments are widely studied (see for instance
[4, 2, 3, 13, 10]), the theoretical results on varying environments remain limited
(see however [8, 11]). The variation of the environment may for instance come from
the seasonal effects or a time varying administration of medications to kill cancer
cells or bacteria. Several questions arise related to the time fluctuations. Could
a population survive under the fluctuating change? How the population size will
be affected? Which phenotypical trait will be selected? What will be the impact
of the variations of the environment on the population’s phenotypical distribution?

The dynamics of phentoypically structured populations subject to selection and
mutations, can be modeled by parabolic integro-differential equations or systems
(see for instance [9, 4, 1, 3]). The solution of such equations, in the limit of
small mutations and in long time, concentrate on one or several Dirac masses
(corresponding to dominant traits) which evolve in time.
Here, we study in particular the following Lotka-Volterra type model:

(1)







∂tn(t, x)− σ∆n(t, x) = n(t, x)[a(t, x) − ρ(t)], (t, x) ∈ [0,+∞)× R
d

ρ(t) =

∫

Rd

n(t, x)dx,

n(t = 0, x) = n0(x).

Here, n(t, x) represents the density of individuals with trait x at time t. The
mutations are represented by a Laplace term with rate σ. The term a(t, x) is a
time-periodic function, corresponding to the net growth rate of individuals with
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trait x at time t. We also consider a death term due to competition between the
individuals, whatever their traits, proportional to the total population size ρ(t).

We first prove that, in long time, the solution converges to the unique periodic
solution of the problem. Next, we describe this periodic solution asymptotically as
the effect of the mutations, σ, vanishes. Using a theory based on Hamilton-Jacobi
equations with constraint, we prove that, as the effect of the mutations vanishes,
the solution concentrates on a single Dirac mass, while the size of the population
varies periodically in time.
When the effect of the mutations are small but nonzero, we provide some formal
approximations of the moments of the population’s distribution. We then show,
via some examples, how such results could be compared to biological experiments
[7].

A main part of our work is based an approach based on Hamilton-Jacobi equa-
tions with constraint. This approach has been developed during the last decade
to study asymptotically the dynamics of populations under selection and small
mutations. There is a large literature on this approach. We refer for instance to
[4, 12, 10] where the basis of this approach for problems coming from evolutionary
biology were established. Note that related tools were already used to study the
propagation phenomena for local reaction-diffusion equations [5, 6].
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Homoenergetic solutions for the Boltzmann equation

Juan J. L. Velázquez

(joint work with Richard D. James, Alessia Nota)

The Boltzmann equation describes the density of particles of a gas in the phase
space f (x, v, t) . This equation has the form:

∂tf + v · ∇xf = Q [f ]

=

∫

R3

dv∗

∫

S2

dωB (v − v∗, ω)
[
f∗

′f ′ − f∗f
]
, x ∈ R

3, v ∈ R
3, t > 0(1)

where:

(2) v′ = v −
[
(v − v∗) · ω

]
ω , v′∗ = v +

[
(v − v∗) · ω

]
ω

and:

(3) f = f (x, v, t) , f∗ = f (x, v∗, t) , f ′ = f
(
x, v′, t

)
, f∗

′ = f
(
x, v′∗, t

)
.

In the derivation of (1)-(3) it is assumed that only binary collisions between the
gas particles are relevant. The collision kernel B (v − v∗, ω) depends on the specific
form of the interaction between pairs of particles. If the particles interact by means
of a power law potential the collision kernelB (v − v∗, ω) is a homogeneous function
of |v − v∗| .

There exists a well developed theory of well posedness and a description of the
long time behaviour for the solutions of (1)-(3) which are spatially homogeneous,
i.e. f = f (v, t) . In that case, it can be proved for a large class of collision kernels
B (v − v∗, ω) that the solutions of (1)-(3) approach asymptotically to a Maxwellian
distribution:

M (v) =
ρ

(2πT )
3

2

exp

(

−|v − V |2
2T

)

, ρ > 0, T > 0, V ∈ R
3.

Maxwellian distributions describe particle distributions of gases in equilibrium
situations. However, they cannot be expected to describe velocities in open systems
which exchange matter, energy or momentum with the exterior. The mathematical
theory of Boltzmann equation in open systems is much less understood than in
the case of closed systems.
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Nevertheless, there exists a class of solutions of the Boltzmann equation which
provide some insight in the dynamics of open systems. These solutions were intro-
duced by Galkin and Truesdell in the 60′s and they are termed as homoenergetic
solutions. They have the form:

(4) f (x, v, t) = g
(
v − ξ (x, t) , t

)
, w = v − ξ (x, t) .

From the physical point of view the dispersion of velocities has the same form
at every point of the space for these solutions. Only the mean velocity changes
from point to point and it might also change in time.

Since the homoenergetic solutions of (1)-(3) depend on a smaller number of
variables as the general solution of the Boltzmann equation, the mathematical
theory of these solutions is much simpler than the theory of general solutions
of the Boltzmann equation. Actually, the well-posedness theory of homoenergetic
solutions is (1)-(3) which was developed by Cercignani (cf. [1], [2]) is rather similar
to the well posedness theory of homogeneous solutions of (1)-(3).

Actually, some stringent conditions must be assumed for the function ξ (x, t)
in order to have solutions of (1)-(3) with the form (4). It turns out that we must
have:

(5) ξ (x, t) = M (t)x

where M (t) is a 3× 3 real matrix for each t > 0. Moreover, M (t) must solve:

(6)
dM (t)

dt
+
(
M (t)

)2
= 0

and the function g in (4) satisfies:

(7) ∂tg (w, t)−M (t)w · ∂wg (w, t) = Q [g] (w, t)

The possible asymptotic behaviour of the solutions of (6), (7) has been studied
in [3], [4]. We first remark that the general solution of (6) has the form:

(8) M (t) = A (I +At)−1

where A is a constant matrix. The long time asymptotics of the functions (8) can
be described in detail using the Jordan canonical form of A. This analysis shows
that the mapping (5) can yield several types of shear deformations, compression
and expansions as well as combination of them. These deformations do not describe
the most general possible stretching which can be applied to a gas, but they yield
a rather large class of deformations which allow to obtain information about the
distribution of velocities for Boltzmann gases under stress in several interesting
physical situations.

The long time asymptotics of the solutions of (7) depends on the specific form
of M (t) and in the homogeneity properties of the kernel B (v − v∗, ω) . This long
time asymptotics is determined by the relative size for large times of the terms
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M (t)w · ∂wg (w, t) and Q [g] (w, t) . In the examples studied in [3], [4] we have
described examples in which one of the following situations takes place:

M (t)w · ∂wg (w, t) ≪ Q [g] (w, t)(9)

M (t)w · ∂wg (w, t) ≃ Q [g] (w, t)(10)

M (t)w · ∂wg (w, t) ≫ Q [g] (w, t)(11)

In the first situation the collisions are the most relevant effect. The long time
asymptotics of the solutions is then described approximately by Maxwellian dis-
tributions for which the temperature changes slowly in time as t → ∞. The tem-
perature can increase or decrease, depending on the specific form of the matrix
M (t) . The case (10) is particularly interesting, because there is a balance between
collisions and deformations. It has been proved in [3] that there exist self-similar
solutions for some choices of M (t) and collision kernels B (v − v∗, ω) for which (7)
admits self-similar solutions for which (10) takes place. These self-similar solutions
are non-Maxwellians and fundamental properties like detailed balance which al-
ways take place in equilibrium situations do not take place anymore. Finally, some
situations in which (11) takes place have been discussed in [4]. In this last situation
the particle distributions are non-Maxwellians and are also non-selfsimilar.

References

[1] C. Cercignani, Existence of homoenergetic affine flows for the Boltzmann equation. Arch.
Rat. Mech. Anal. 105(4), 377–387, (1989)

[2] C. Cercignani, Shear Flow of a Granular Material. J. Stat. Phys. 102(5),1407–1415, (2001)
[3] R. D. James, A. Nota, J. J. L. Velázquez, Self-similar profiles for homoenergetic so-

lutions of the Boltzmann equation: particle velocity distribution and entropy. Preprint
arXiv:1710.03653 (2017)

[4] R. D. James, A. Nota, J. J. L. Velázquez. Long time asymptotics for homoenergetic solutions
of the Boltzmann equation for non Maxwell molecules. In preparation

An electroneutral model for ion transport

Huaxiong Huang

(joint work with Zilong Song, Xiulei Cao)

The Poisson-Nernst-Planck (PNP) system describes the transport of ions under
the influence of both an ionic concentration gradient and an electric field. It
is essentially a system coupling diffusion and electrostatics, and the nonlinearity
comes from the drift effect of electric field on ions. Such a system and its variants
have found extensive and successful applications in biological systems, in particular
in the description of ion transport through cells and ion channels [6, 7]. It has also
been applied to many industrial fields, such as the semiconductor devices [8] and
the detection of poisonous lead by ion-selective electrode [9].

One intriguing feature of this system is the presence of boundary layer (BL)
near the boundary of concerned domain, often called Debye layer in literature.
A large number of works have been devoted to the BL analysis of PNP systems.
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For example, singular perturbation analysis of PNP system has been carried out
for narrow ion channels with certain geometric structure [10, 11]. Geometric sin-
gular perturbation approach has been developed to investigate the existence and
uniqueness of solutions in stationary PNP system [12, 13] as well as the effects of
permanent charge and ion size [14, 15]. Recently, Wang et al. [16] have tackled
the steady state PNP system with arbitrary number of ion species and arbitrary
valences, and have successfully reduced the asymptotic solutions to a single scalar
transcendental equation.

In general, the solution consists of two parts, the BL solution in a small neigh-
bourhood of boundary and the bulk solution in the interior region of the domain.
In one-dimensional (1D) case, the leading order solution in BL can be constructed
either explicitly or in integral form. Based on the BL analysis, effective continuity
conditions have been proposed to connect the bulk solution and BL solution, e.g.,
the continuity of electro-chemical potential in [5]. These effective conditions have
been applied to the study of steady states of 1D systems, showing the existence of
multiple steady states with piecewise constant fixed charge [4].

In this talk, we present some recent work that systematically derives an elec-
troneutral model with effective conditions that eliminates the need to resolve the
boundary layer computationally. These conditions replace the BL region and have
potential applications for deriving macroscopic models [3] of bulk region in com-
plicated structures. For example, some macroscopic continuum equations are de-
rived in bulk region for the lens circulation [2, 1], by taking into account the
fluxes through membranes with an ad hoc model for the BL effect, so the fluxes
calculated there might not be accurate.

The key idea for deriving effective boundary conditions is to bring back the
higher order contributions. For the case of Dirichlet boundary conditions, the
continuity of electro-chemical potential in [5] can serve as the leading order effec-
tive boundary condition. In this talk, we present a higher order effective boundary
condition for this case, which can recover the continuity of electrochemical poten-
tial at leading order. This condition will be verified by numerical examples and
it produces higher-order accuracy in computation. For the case of flux bound-
ary conditions, few people have addressed this issue, because the leading order
approximation for flux does not provide a correct effective boundary condition.
Mathematically speaking the solution is not unique by using leading order condi-
tion, and physically speaking the higher-order contribution accounts for accumu-
lation of ions in BL, which is essential in biophysical processes. These effective
conditions are demonstrated in a concrete example of action potential for neu-
ronal axon, where by further simplification the higher-order terms reduce to an
equivalent capacitor often adopted in cable models.
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Mathematical modelling and simulation of the early stage of
atherosclerosis

Maria Neuss-Radu

(joint work with Telma Silva, Willi Jäger, Adelia Sequeira)

Atherosclerosis is the process in which plaques are built up in the walls of arteries,
causing stenosis of the lumen, hardening of the arteries and loss of elasticity. This
leads to reduction of blood flow through the vessels, blood clot formation (upon
rupture of plaques), and break off of blood clots leading to heart attacks or strokes.
We consider here only the early stages of atherosclerosis, involving the signaling
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processes and the inflammatory response. At this early stage, changes in geometry
(e.g. by plaque growth) have no significant impact.

The vascular endothelial cells form an interface between the lumen and the
arterial wall, which is composed by three layers: intima, media and adventitia. The
endothelial layer is a selective membrane which regulates the homeostasis, controls
the exchange of signals (e.g. cytokines), substances (e.g. LDL, water) and cells
(e.g. immune cells) between blood and arterial wall. Endothelial dysfunction can
be induced e.g., by elevated concentration of low-density-lipoproteins (LDL), low
wall shear stress (WSS), free radicals, hypertension or infectious microorganisms,
and it leads to a compensatory inflammatory response, see e.g., [3].

The sequence of processes in early atherosclerosis (EA) begins with the accumu-
lation of LDL particles into the intima, due to endothelial dysfunction. Inside the
intima, LDL are oxidized, causing the segregation of cytokines and activation of
endothelium, leading to an inflammatory reaction. Lumenal monocytes adhere to
the activated endothelium, roll along the endothelial cells (EC) surface and finally
transmigrate into the intima. There, they differentiate into active macrophages
taking up the oxidized LDL (oxLDL), until they become foam cells. In acute
inflammation monocytes production is increased due to factor increasing monocy-
topoiesis (FIM), synthesized and secreted by macrophages. Former contributions
to EA are given e.g., in [1, 2].

In this paper, we develop a model of the early atherosclerosis (EA) stage based
on new concepts and providing a more detailed understanding. We succeeded
in: a) quantifying the LDL accumulation on the EC surface; b) determining the
EP to LDL depending on WSS, cytokines and LDL; c) deriving the endothelial
permeability (EP) to monocytes as a function of WSS and cytokines; d) taking into
account the transport of monocytes on the EC surface (mimicking the monocytes
adhesion and rolling) and the increasing in the monocytes influx in the lumen,
as result of high concentration of factor increasing monocytopoiesis (FIM); e)
coupling between fluid flow in the lumen modeled by the Navier-Stokes system,
flow in the vessel wall by Biot system for poroelastic media and the inflammation
modeled by convection/chemotaxis-reaction-diffusion equations.

We emphasize that a main focus is set on modeling the functionality of the
endothelial layer as a selective interface between lumen and vessel wall. The per-
meability of this layer to LDL and to monocytes depends on their evolution in
the system. This quantity is of central importance for the dynamics of the whole
system, motivating the development of the presented model and its simulations,
demonstrating the evolutions of relevant factors, at least in a simplified situation.

To give an insight into the mathematical model, let us consider the equations
describing the concentration of monocytes. In the lumen, at the endothelium and
in the intima, this concentration is denoted by ml,mend and mi respectively. In
the lumen it is described by

∂ml

∂t
+∇ ·

(

−dml∇ml + ulm
l
)

= 0(1a)
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with the boundary conditions

ml = ml
in + fm

(

1

|Γout|

∫

Γout

F l
imdx

)

, at the inflow(1b)

−dml∇ml · nl = 0, at the outflow(1c)

During an acute inflammation the number of circulating monocytes increases con-
trolled by the humoral factor FIM. Thus, in the inlet condition (1b) an extra
term fm representing the additional production of monocytes due to FIM was
introduced. fm is a function of the average of FIM concentration in the lumen,
measured at the outlet, chosen to be linear and satisfying f(0) = 0.

The total flux of the monocytes from lumen to endothelium can be described by
the following transmission condition at the endothelial surface denoted by Γend:

(2)
(

−dml∇ml + ulm
l
)

· nl = raccm

(

ml −mend
)

on Γend.

Here, raccm is a function that decreases with WSS and increases with cytokines
(CMcp), which can be defined as follows

raccm

(
WSS,CMcp

)
=

rmax
m,WSS

1 +WSS/WSS0
+ rmax

m,CMcp

CMcp

1 + CMcp
.(3)

The motion of the monocytes along the endothelial surface contributes sig-
nificantly to the opening of the junctions, in order to facilitate the monocytes
transmigration. The transport of the monocytes on the EC surface, mimicking
the monocytes adhesion and rolling, can be described by the equation

∂mend

∂t
+∇Γend

· (Υmend) = raccm

(

ml −mend
)

− Pm

(

mend −mi
)

,(4)

where Pm = Pm

(
WSS,CMcp

)
is the endothelial permeability to monocytes. It is

influenced by the inflammatory signals CMcp, permitting monocytes to leave the
circulation and migrate into the focus of injury and by the WSS. The function

Figure 1. The WSS profile for a steady flow (left), and the en-
dothelial permeability to monocytes (right).
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Υ is the transport vector field, with the direction of wall shear stress. A more
detailed description of Υ is given in [4]. In the intima, the dynamics of monocytes
is due to diffusion, reaction and chemotactic migration in the gradient of CMcp.

Numerical simulations of a simplified early atherosclerosis model in a stenosed
vessel were performed in a 2D geometry with experimental data from the literature.
As results we mention the following: In Figure 1, we see an increase of the EP
to monocytes in the region of low WSS, whereas in Figure 2, the accumulation of
monocytes at the site of low WSS magnitude is observed.

Figure 2. Concentration of monocytes inside the intima, for t = 105 s.
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Multiscale modelling of plant biomechanics and cellular signalling
processes

Mariya Ptashnyk

(joint work with B. Seguin, C. Venkataraman)

Analysis of interactions between mechanical properties and chemical processes,
that influence the elasticity and extensibility of plant tissues, is important for a
better understanding of plant growth and development. To study the interplay
between the mechanics, microscopic structure and the chemistry in plant tissues
we derive a microscopic model for plant cell wall biomechanics. Plant cell walls,
main feature of plant cells, are composed of cellulose microfibrils imbedded in
the wall matrix of pectin and hemicellulose and must be strong to resist high



480 Oberwolfach Report 8/2018

internal hydrostatic pressure, as well as flexible to permit growth. Pectin, one of
the main components of the primary (growing) cell walls, is deposited into the cell
wall in a highly methylestrified state, where it is modified by the enzyme pectin-
methylesterase (PME) by removing methyl groups. The demethylesterified pectin
interacts with calcium ions to produce load bearing cross-links, which reduce cell
wall expansion. It is supposed that calcium-pectin cross-linking chemistry is one
of the main regulators of plant cell wall elasticity and growth [5].

In the mathematical model we assume that elastic properties of cell walls depend
on the chemical processes (interactions between pectin and calcium) and chemical
reactions depend on mechanical stresses within the cell walls (the stress within the
cell walls can break the load-bearing cross-links). The calcium-pectin chemistry is
defined by the following four interactions: (i) demethyl-esterification of pectin by
PME, (ii) creation of calcium-pectin cross-links via binding of demethyl-estrified
pectin and calcium ions, (iii) breakage of calcium-pectin cross-links under the
presence of mechanical stress, (iv) decay of demethyl-esterified pectin, see e.g. [4].

We assume that microfibrils in the cell walls are distributed periodically and
have a diameter on the order of ε, characteristic size of the microstructure. Then
the domains occupied by microfibrils and the cell wall matrix are defined by

Ωε
F =

⋃

ξ∈Z2

{
ε(ŶF + ξ)× (0, a3) | ε(Ŷ + ξ) ⊂ (0, a1)× (0, a2)

}
and Ωε

M = Ω \ Ωε
F ,

where Ω = (0, a1) × (0, a2) × (0, a3), with a1, a2, a3 > 0, represents a flat section

of a cell wall, Ŷ = (0, 1)2, Y = Ŷ × (0, a3), ŶF is an open subset, with ŶF ⊂ Ŷ ,

ŶM = Ŷ \ ŶF , YF = ŶF × (0, a3), and YM = Y \ YF . The boundary between the
wall matrix and microfibrils is denoted by Γε = ∂Ωε

M ∩ ∂Ωε
F .

The calcium-pectin chemistry within the cell wall matrix is described by reac-
tion-diffusion equations for densities of methylestrified pectin pε

1, PME pε
2, deme-

thylestrified pectin nε
1, calcium ions nε

2, and calcium-pectin cross-links bε:

(1)







∂tp
ε = div(Dp∇pε)− Fp(p

ε)

∂tn
ε = div(Dn∇nε) + Fn(p

ε,nε) +Rn(n
ε, bε, e(uε))

∂tb
ε = div(Db∇bε) +Rb(n

ε, bε, e(uε))

in Ωε
M , t > 0,

where pε = (pε
1,p

ε
2), n

ε = (nε
1,n

ε
2), e(u

ε) = 1
2 (∇uε + ∇uεT) is the symmetric

gradient, div(Dm∇mε) = (div(D1
m∇mε

1), div(D
2
m∇mε

2))
T for m = pε or nε, and

displacement uε satisfies the equations of linear elasticity

(2) div(Eε(bε, x)e(uε)) = 0 in Ω, t > 0,

with the elasticity tensor defined as Eε(ξ, x) = E(ξ, x̂/ε) and the Ŷ -periodic in y
function E is given by E(ξ, y) = EM (ξ)χŶM

(y) + EFχŶF
(y) for ξ ∈ R. Equations

(1) and (2) are completed by initial and boundary conditions.
To study mechanical properties of plant cell walls, the macroscopic equations

are derived using homogenization techniques of two-scale convergence and periodic
unfolding [1]. The macroscopic model for plant cell wall biomechanics has the
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same structure as the microscopic equations (1) and (2) with macroscopic diffusion
coefficients and macroscopic elasticity tensor determined in terms of solutions of
the corresponding ‘unit cell’ problems. To determine the macroscopic elasticity
tensor for the plant cell walls

Ehom,ijkl(b) = −
∫

Y

[

Eijkl(b, y) +
(
E(b, y)ey(w

ij)
)

kl

]

dy

the ‘unit cell’ problems

(3)

{

divy
[(
EM (b)χYM

+ EFχYF

)
(ey(w

kl) + bkl)
]
= 0 in Y,

∫

Y wkl dy = 0, wkl is Y -periodic,

with bkl = 1
2 (b

k⊗bl+bl⊗bk) and k, l = 1, 2, 3, where (b1,b2,b3) is the standard

basis in R
3, are solved numerically [2]. For the microstructure considered here,

the macroscopic elasticity tensor Ehom(b) depends linearly on Young’s module of
the cell wall matrix, which is a function of the calcium-pectin cross-links density b.
Hence it is sufficient to compute Ehom(b) for two values of b and apply linear inter-
polation to determine Ehom(b) for all other values of b. Numerical solutions for the
macroscopic model demonstrate heterogeneity in the cell wall displacement due to
interactions between mechanical stresses, microstructure, and chemical processes.

Fig. 1 The displacements in the x2-direction for different configurations of microfibrils.

In a microscopic model for intercellular signalling processes we consider interac-
tions between signalling molecules diffusing in the extra- and intracellular spaces
and receptors and co-receptors localized on the cell membranes. Using multiscale
analysis techniques we derive a macroscopic two-scale model for signalling pro-
cesses on the tissue level, composed of reaction-diffusion equations for signalling
molecules c and s in the extra- and intracellular spaces

∂tc−∇ · (A∇c) = Fe(c)−
1

|Ye|

∫

Γ

Ge(c, rf , rb)dγy in Ω, t > 0,

∂ts−∇y · (Di(y)∇ys) = Fi(s) in Ω× Yi, t > 0,

Di(y)∇ys · ν = Gi(pa, s) on Ω× Γ, t > 0,
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coupled with reaction-diffusion equations for free and bound receptors rf and rb
and active and inactive co-receptors pa, pd







∂trf = Df∆Γ,yrf −Ge(c, rf , rb)

∂trb = Db∆Γ,yrb +Ge(c, rf , rb)−Gd(rb, pd, pa)

∂tpd = Dd∆Γ,ypd −Gd(rb, pd, pa)

∂tpa = Da∆Γ,ypa +Gd(rb, pd, pa)−Gi(pa, s)

on Ω× Γ, t > 0,

where ∆Γ is the Laplace-Beltrami operator on surface Γ, the Lipschitz domain Ω
represents a part of a tissue, the ‘unit cell’ Y and subsets Yi ⊂ Y and Ye = Y \Y i

correspond to a rescaled cell surrounded by extracellular space Ye, see [3]. The
macroscopic diffusion matrix A is defined by

Aij = −
∫

Ye

[

De,ij(y) +
(
De(y)∇yw

j
)

i

]

dy,

where

−∇y · (De(y)(∇yw
j + bj)) = 0 in Ye,

∫

Y

wj(y)dy = 0,

−De(y)(∇yw
j + bj) · ν = 0 on Γ, wj Y − periodic.

Spatial separation in the distribution of signalling molecules in the extra- and
intracellular spaces and receptors on the cell membranes triggers formation of
patterns on the tissue level.
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Force generation and contraction of random actomyosin bundles.

Dietmar Oelz

(joint work with Alex Mogilner (NYU, New York), Boris Y. Rubinstein (Stowers
Institute, Kansas City))

The majority of mechanical force generated by cells is caused by the interplay of
polar actin filaments and myosin-II molecular motor proteins which generate the
force that moves them in the direction indicated by the polarity of the filament.
The details of force generation in striated muscle cells are well understood. In
non-muscle actomyosin bundles, however, myosin motors and actin filaments are
highly disordered and the resulting forces might be either contractile or expansive



The Mathematics of Mechanobiology and Cell Signaling 483

(figure 1a). It is therefore not clear what mechanisms promote contractility of
non-muscle contractile bundle structures such as the rear bundle in keratocytes,
cytokinesis (a crucial substep of cell division) constriction rings and stress fibers.

In [1] we formulate and analyze a minimal mechanism that promotes the con-
traction of random actomyosin bundles.As a reference experimental system for
model formulation and simulations we used the constriction ring which forms in
the cortex of eukaryotic cells at the onset of cell division. Its contraction finally
leads to the separation of the mother cell into two daughter cells (cytokinesis).
We treat the constriction ring as a closed 1D ring of cross-linked actin filaments
interspersed with myosin-II motor proteins (figure 1b). The model is the first one
to admit the simulation of non-muscle actomyosin contraction on a microscopic
scale. Its central part consists of one force balance equation for each of the N
actin filaments with index i, velocity vi and polarity ni ∈ {−1, 1}, which read in
the isometric case with fixed radius

(1) 0 =
N∑

j=1

ϑij Fs

(

ni −
vi − vj
2Vm

)

︸ ︷︷ ︸

Molecular motor force

−
N∑

j=1

η Aij

(
vi − vj

)

︸ ︷︷ ︸

Cross-linker caused drag friction

for i = 1...N ,

where ϑij ∈ {0, 1} are the coefficients of a connectivity matrix representing connec-
tions between actin filaments by molecular motor proteins and Aij represents the
length of the region where pairs of filaments overlap and where they are exposed to
cross-linking. Furthermore, Fs and Vm are the stall force and free moving velocity
of molecular motors and η is the coefficient for cross-linker caused drag friction.
The model was derived as a generalized gradient flow and it couples the system
(1) to one more equation which relates the contractile tension of the constriction
ring σ to the sum of forces transmitted through every possible cross-section of the
ring,

(2) σ = −
∑

i,j

ϑij Fs τij

(

ni −
vi − vj
2Vm

)

+
1

2

∑

i,j

η Aij τij
(
vi − vj

)
,

where the coefficients τij ∈ {−1, 0, 1} restrict the summation to the forces trans-
mitted through a specific cross-section.

The result of our numerical experiments (figure ??) is that in order to contract,
actin filaments in the ring have to treadmill, i.e. to elongate at one tip (the
“barbed” end) and simultaneously to shorten at other tip (the “pointed” end)
and filaments have to be sufficiently crosslinked (figure 1b). The model predicts,
in agreement with key experimental observations, a constant rate of contraction.
Finally, the model demonstrates that with time pattern formation takes place in
the ring worsening the ability of the ring to contract. Therefore the more random
actin dynamics are, the higher contractility.

Fluid type continuum models are usually easier to handle and to understand
than models which track the fate of single proteins and protein complexes, and
their parameters and the quantities they describe are often those which effectively
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(a)
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R
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αi-1
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result: contractile

treadmilling effect

(b)

Figure 1. Actin filaments are polar having one barbed/plus end
and one pointed/minus end. Myosin-II thick filaments exert forces
that drive them towards the barbed end of actin fibers. As a con-
sequence, actin filaments experience a force that pushes them in
the direction of their pointed ends. (A) Expansive/contractile
effect of myosin-II sliding. Top: for a pair of anti-parallel fila-
ments with barbed/plus ends facing away from a myosin-II dimer
or minifilament, myosin motor activity causes contraction of the
system by pulling the actin filaments closer together. Bottom:
for filaments with barbed/plus ends facing inward, myosin activ-
ity causes expansion by pushing the actin filaments away from
each other (from [2]). (B) Sketch of contractile ring model and
the mechanism of contraction.

Figure 2. Snapshot of the simulation of a contracting cytoki-
nesis ring (side view). Actin filaments are colored according to
their polarity. Myosin thick filaments (green, black, sky-blue) are
colored according to whether they are attached to parallel actin
filaments, anti-parallel ones, or none.
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can be observed in experiments. Therefore, in [3], we derive a macroscopic contin-
uum model from the microscopic model (1), (2) for actomyosin contraction. Due
to this special procedure its macroscopic parameters are not phenomenological but
retain their specific interpretation in terms of aggregated microscopic parameters
and quantities.

We consider the limit of dense crosslinking and of actin filaments being much
shorter than the length of the bundle/ring, which is exactly what is observed [4].
The singular perturbation analysis reveals the following macroscopic model for the
actomyosin ring on the periodic domain x ∈ [0, L) (here in the special case of fixed
length L with isotropic polarity, without initial data),

(3)







∂tµ+ ∂x (vµ) = Dm∂xxµ ,

∂tρ+ ∂x(vρ− vtr ρ̄) = Da∂xxρ ,

∂tρ̄+ ∂x(vρ̄− vtr ρ) = Da∂xxρ̄ ,

0 = ζ ρ v − Fs
l

2
∂xµ− η

l4

12
∂x

(

ρ2∂xv
)

.

Drift-diffusion equations for actin filament density ρ = ρ(t, x), where t > 0 refers
to time, actin filament polarity ρ̄ = ρ̄(t, x) and myosin motor filament density
µ = µ(t, x) are coupled to an overdamped momentum equation for the velocity
field v = v(t, x). The coefficient vtr is the treadmilling rate at which actin filaments
elongate at the barbed/plus ends and shorten at the pointed/minus ends, and ζ
describes surface friction. The macroscopic viscosity is given by ηρ2l4/12 where
l > 0 is the length of actin filaments. The singular perturbation limit also reveals
that the macroscopic stress is given by Fs l/2 representing the bias of myosin
binding site positions towards the pointed ends of actin filaments. The fact that
the treadmilling rate is strictly positive guarantees that this bias is positive. The
actual value of the treadmilling rate, though, does not influence the contractile
stress, which is a striking observation.

Analysis and simulations of this model provide many biologically relevant in-
sights and estimates and predict a highly nontrivial pattern formation and trav-
eling wave solutions. This is even more remarkable as recently traveling waves of
actomyosin were experimentally observed for the first time [5].
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Cell crawling in confined environments without adhesion

Christian Schmeiser

(joint work with G. Jankowiak, D. Peurichard, A. Reversat, M. Sixt)

For many cell types, chemical adhesions are an essential part of their motility
machinery, providing the necessary transfer of momentum to the environment. On
the other hand it has been shown that leukocyte motility in confined environments
is possible in the absence of adhesion [2]. A theoretical explanation of this process
is missing.

We have combined an experimental approach, where we observe cell crawling
through artificial micro-channels with varying geometry, with a theoretical ap-
proach based on a mathematical model, trying to provide a minimal mechanism
explaining the experimental observations [1].

The experiments show motility in narrow channels with structured walls of short
enough wave lengths (see Fig. 1, top), whereas in channels with flat walls cells are
unable to move, although cytoskeletal activity as in moving cells is observed.

Figure 1. Adhesion-free cell crawling in a micro-channel. Top:
experiment. Bottom: simulation

The mathematical model is based on the assumption that the motility is driven
by rearward flow of the actin cortex along the cell periphery. We describe the part
of the cortex extending between the top and bottom walls of the channel by its
projection as a closed curve, which at time t is given by

{X(s, t) : s ∈ [0, 1]} ⊂ Ω ⊂ R
2 with X(0, t) = X(1, t) ,

where the parameter s is a Lagrangian variable, and Ω describes the channel. The
dynamics is modeled by the PDE

µ∂tX = PΩ

[

vI[s0,s1]∂sX + ∂s

(

κ
(|∂sX | − 1)+

|∂sX | ∂sX

)

− p∂sX
⊥ + Fcomp

]

,
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where the left hand side describes friction (with friction constant µ) with the
surrounding fluid, assumed motionless. The projection PΩ to the set of admissible
velocities is only active for X ∈ ∂Ω. The first term in the bracket describes
net addition (at s = s0) and removal (at s = s1) of cortical actin with speed v
by excess polymerization and depolymerization. The next term describes elastic
resistance against stretching of the cortex with spring constant κ. An internal
excess pressure is denoted by p, causing a force in the outward normal direction.
Finally, the force Fcomp compensates the momentum created by moving actin
material from X(s1, t) to X(s0, t). We choose it somewhat distributed around
s = s0 and s = s1, satisfying

∫ 1

0

Fcomp(s, t)ds+ v(X(s1, t)−X(s0, t)) = 0 ,

to provide the appropriate compensation. This guarantees that the center of mass
of a cell staying away from the channel walls does not move. Numerical simulations
reproduce the qualitative behavior observed in experiments, i.e. no movement in
channels with flat walls and movement in structured channels with short enough
wave length (see Fig. 1, bottom). More details and an existence analysis can be
found in [1].
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Initiation of T cell signalling

Alan D. Rendall

(joint work with Eduardo D. Sontag)

T cells are responsible for recognizing foreign substances (antigens) in our bodies
and taking action to eliminate these if necessary. This requires a signalling process
where a foreign substance is detected by a receptor molecule on the surface of the
cell and this information is transmitted to the nucleus. The machinery involved
is a network of chemical reactions. The whole process can take hours or days but
here we concentrate on the initiation of the T cell response which only takes a
few minutes. It is of central importance for correct T cell function. A system
of ordinary differential equations modelling this initial phase was introduced by
François et. al. [2] and some aspects of its solutions were studied by numerical
and heuristic methods in that paper. Together with Eduardo Sontag we set out
to obtain as much information as possible about these solutions by analytical
methods. The results are presented in [5] and in what follows we will concentrate
on two of the main insights obtained.
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In the model of [2] there are two key parameters L and ν, the amount of antigen
present and the rate with which an antigen which has bound to the T cell receptor
unbinds. One of the unknowns in the ODE system, CN , indicates that the T cell
has been activated. The condition for this is that CN exceeds a certain threshold.
In this context the system is supposed to be in a steady state and the value of CN

in that state is denoted by C∗
N . The quantity of biological interest is then the re-

sponse function C∗
N = f(L, ν). In [2] an approximate formula was obtained for the

dependence of the function f on L with ν being held constant. In [5] we identified
conditions under which we could prove that this formula is an approximation in a
suitable sense. As a by-product of the process of precisely formulating and proving
this statement we discovered that we could extend the statement to include the
dependence on ν. An interesting feature of the dependence of f on L is that it is
not monotone. This theoretical prediction of the model has been experimentally
confirmed. On the other hand a non-monotone behaviour of f on ν had been
seen experimentally but it was believed that this could not be reproduced by the
model. In fact these experimental results were controversial but later experiments
done in [3] confirmed them. Our formula shows that this feature of f is consistent
with the model of [2] if the parameters are chosen correctly. This suggests that
the causes of this phenomenon could lie in the first three minutes after the cell
encouters its antigen, i.e. in the period which the model is supposed to describe.
The most surprising feature of the response function is that in certain regimes it
is a decreasing function of L and an increasing function of ν. The approximate
expression for f in such a regime is

(
φβ

αγST

)N/2(
κR+ ν

κR

)N/2−1

L1−N/2

and this gives the behaviour of interest when the parameter N is at least three.
(All the quantities in this formula other than L and ν are positive parameters in
the ODE system.)

The definition of the response function assumes that there is only one steady
state for fixed values of the parameters. Our other main result was that this
is not always the case. There are parameter values for which there are up to
three steady states. This possibility was not considered in [2]. The method of
proof is to show that under suitable circumstances steady states are in one-to-
one correspondence with positive roots of a certain quartic equation and then to
show that the parameters can be chosen so that the number of such roots is three.
Whether there are parameters for which more than three steady states exist is an
open question. At this point it is appropriate to mention some other models for
the initiation of T cell activation in the literature, although no rigorous results
are available for those. The model of [2] arose by trying to simplify a much more
elaborate model of [1] as much as possible while retaining its explanatory power.
The possibility of the existence of multiple steady states was not considered in
[1] either. In a model of [4], intermediate in complexity between those of [2]
and [1], simulations showed the presence of multiple steady states. In [4] the
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authors also studied a stochastic version of their model and found that it could
lead to different conclusions from the deterministic model. The reason is that
a stable steady state which is inaccessible for the evolution in the deterministic
model might be reached by jumping over a barrier in the stochastic model. For
comparison, stochastic simulations in [2] did not show any essential differences
from the corresponding deterministic model. Multiple steady states were also seen
in simulations of a model of intermediate complexity in [6]. In addition stable
oscillations were observed. Whether the model of [2] allows periodic solutions is
an open question although it was proved in [5] that damped oscillations occur.
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Modelling glioma growth with fully anisotropic diffusion

Thomas Hillen

(joint work with A. Swan, K.J. Painter, C. Surulescu, C. Engwer, M.
Knappitsch, A. Murtha)

The human brain has a complex geometric structure consisting of white and gray
matter, blood vessels, ventricles, skull etc. It forms a highly anisotropic medium.
Glioma in the brain are known to invade along white matter tracks and along other
brain structures. Using diffusion tensor imaging (DTI) it is now possible to obtain
directional information of the brain geometry [1, 8]. In my talk I will show how this
DTI information can be used to parametrize a fully anisotropic diffusion equation
for glioma spread [5, 4, 9]. We compare the model to alternative approaches from
the literature [2, 7, 6] and we validate the model on clinical data of glioma patients
[10]. We discuss the future use in treatment design [10].
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Modelling Tumor Invasion through Basal Membranes

Luigi Preziosi

Before invading the surrounding tissue, many tumours are contained in membranes
that compartmentalize the physiological tissue from the surrounding environment.
This quite frequent situation is for instance encountered in breast, ovary, and pan-
creatic tumours. Actually, when tumours develop remaining inside the membrane
they are denoted as in situ tumours to distinguish them from invading tumours.

Basal membranes are not solid walls, but are formed by fiber networks that on
the one hand allow nutrients and chemical factors to diffuse through very easily, but
on the other hand are so tight that cells can not pass through. This is essentially
due to the presence of the nucleus that represents the stiffest organelle of the cell.
So that, even if the cell can extend protrusions beyond the membrane, its nucleus
is trapped by the network, and the cell can not squeeze through.

At a certain stage of development some tumour cells acquire a phenotype char-
acterized by the production of metalloproteinases (MMPs), an enzyme capable
to digest the collagen fibers forming the basal membranes. The action of MMPs
widens the pores of the fibre network allowing the cell to escape and invade the
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surrounding tissue. A similar process also occurs upon encontering several cellular
lining, such as the mesothelial layer, and in the processes of intravasation and ex-
travasation of the capillary and lymphatic system, thus representing a fundamental
step in the spread of metastases.

Wolf et al. [8] studied the motility of cells in isolation and at the boundary of
spherical aggregates as a function of the characteristic pore size of the extracellular
matrix (ECM). They identified the existence of a critical pore size for cell migration
below which cells stop. This phenomenon, named the physical limit of migration,
was modelled by Arduino et al. [1] who started from the following multiphase
model

(1)







∂φ

∂t
+∇ · (φv) = Γ ,

∇ ·T−M−1v = 0 ,

associated with a proper constitutive equation describing the stress T of the cell
aggregate that will not be discussed here. In Eq. (1) φ is the volume ratio of
tumour cells, v their velocity, Γ is the growth term, and M is the motility tensor
related to the interaction force between cells and the ECM.

The crucial term on which we want to focus here is the motility term, that we
will assume isotropic and that on the basis of the experiments in [8] mentioned
above might be related to the pore cross section Am of the ECM through the
following relationship

(2) M = α
(Am(x)−A0)+
(

1 + Am(x)−A0

A1

)n ,

where A0 is the critical cross-section related to the physical limit of migration.
In fact, being (f)+ = (f + |f |)/2 the positive part of f , where Am(x) < A0

the motility coefficient vanishes and from the second equation in (1) written as
v = M∇ ·T, it is evident that there is no motion.

The denominator in (2) is introduced to take into account of the existence of an
optimal pore size favouring cell migration above which cell speed decreases again,
as discussed in [5, 6, 7].

However, the values A0 is not constant but it is found to depend on some
microscopic characteristics of the cells, namely the nucleus size and elasticity, the
nuclear membrane stiffness, cell adhesion and traction.

In this respect, Giverso et al. [3, 4] determined a criterium aimed at describing
when a cell with a nucleus radius Rn can penetrate a cylindrical microchannel with
a section Ap. The criterium involves the dimensionless number G = ρbαMF/µ
that compares the nucleus shear modulus µ with quantities related to the traction
forces, namely the density of expressed and activated adhesion modecules, ρb, the
portion of the surface of contact composed by ECM ligands, αM , and of course
the strength of the traction force F . Hence, large G’s correspond, for instance,
to larger traction forces, better ability to adhere to the substratum, or softer cell
nuclei.
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The criterium reads as

(3) G < Ḡ :=
a(Ãp) + 8πβb(Ãp)

c(Ãp)L(Ãp, R̃c)
,

where

a(Ãp) =
2

3
Ãp +

1

3Ã2
p

− 1 , b(Ãp) =







Ãp

2




1 +

sin−1
√

1− Ã3
p

Ã
3/2
p

√

1− Ã3
p




− 1







2

,

c(Ãp) =
2

Ãp

−1+

√

1− Ãp, L(Ãp, Ãc)=
4R̃3

c − 3Ãp − 2R̃
3/2
p − 2− 2(1− Ãp)

3/2

3
√

Ãp

.

It can be noticed that the r.h.s. of (3) is a function of the normalized cross section

Ãp = Ap/(πR
2
n) and only through L of R̃c = Rc/Rn (where Rc is the cell radius),

in addition to the dimensionless parameter β = λ0Rn/µ that is proportional to
the ratio between the stiffness of the nuclear membrane λ0 and the shear modulus
of the nucleus µ.

The criterium allows then to discriminate when multicellular aggregates invade
or alternatively are segregated by porous structures, according to microscopic me-
chanical characteristics of the cells.

Stimulated by the mentioned need to extend the previous approach to the pres-
ence of basal membranes, in [2] we used a limit procedure to replace the motion
through a layer with specific motility characteristics with an effective thin mem-
brane. In order to explain the result, we can consider the simplest constitutive
model for the cell aggregate, T = −p(φ)I, so that the mathematical model (1)
reduces to

(4)
∂φ

∂t
= ∇ · [φM(x)∇p(φ)] + Γ .

Since at the border of biological tissues the porosity of the ECM can present jumps,
the motility M can be discontinuous. Therefore, the usual interface conditions,
namely continuity of fluxes and of pressure, must be imposed there.

Considering a thin domain in between two external domains, then when its
thickness goes to zero, it is possible to prove that the thin layer can be replaced
by a membrane on which the following interface condition need be imposed

(5) M̃ [[Π(φ)]] = Mφn · ∇p(φ) ,

where Π′(φ) = φp′(φ) (primes stand for derivative), n is the normal to the mem-
brane and it is not important on which side of the membrane the r.h.s. of (5) is
evaluated, because it is continuous across the membrane, due to the continuity of
flux.

The coefficient M̃ is the effective motility across the membrane. It inherits the
same structure as in (2). In particular, for prohibitively small pore cross sections
of the ECM, i.e., below the mentioned physical limit of migration, it vanishes
yielding the no-flux condition.
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It can be noticed that the interface condition (5) is a generalization of the
classical Kadem-Katchalsky interface condition. In fact, if p(φ) = P lnφ/φ0, then
Eq. (4) reduces to a standard diffusion equation and the condition (5) reduces to

(6) M̃ [[φ]] = Mn · ∇φ .

In [2] the case of more cell populations was considered yielding a more compli-
cated interface condition.

The model deduced in this way allows to describe the macroscopic invasion or
segregation of multicellular aggregates by basal membranes, taking into account of
the limitations imposed by the mechanical characteristic of the nuclear envelope
and its solid interior material and of the traction ability of the cell.
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On the Dynamics of Fluidic Two-Phase Biomembranes:
Coupling (Navier-)Stokes to Helfrich

Harald Garcke

(joint work with John W. Barrett and Robert Nürnberg)

Lipid molecules have a hydrophilic head and a hydrophobic tail. They sponta-
neously aggregate to form a lipid bilayer structure. This biomembrane behaves in
normal direction like an elastic material with resistance to bending. In-plane the
lipids can move freely which leads to a fluid-like viscous behaviour.

Modeling the membrane idealized as a smooth closed hypersurface Γ ⊂ R
d

Canham [5] and Helfrich[6] introduced the bending energy

ECH(Γ) =

∫

Γ

(α(κ − κ)2 + αK)dHd−1
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where κ is the mean curvature, K the Gaussian curvature, α and α are bending
rigidities and κ is the spontaneous curvature.

Arroyo and DeSimone [1] introduced a model for the evolution of biomembranes
with the following features. The interior and the exterior of the membrane are
modeled as incompressible fluids which in particular leads to conservation of the
enclosed volume. The membrane itself is an incompressible fluid which leads to
surface area conservation. The fluid flow equations are coupled to the elastic
energy via the first variation of the energy

~fΓ =
δE

δΓ
(Γ) = (−∆sκ − (κ − κ)|∇s~ν|2 + 1

2 (κ − κ)2κ)~ν

where ∆s is the surface Laplace operator, ∇s is the surface gradient, ∇s~ν is the
Weingarten map and ~ν denotes the exterior unit normal to the region occupied by
the interior fluid.

In the model the fluid velocity is assumed to be continuous across the membrane,
the membrane is moved in the normal direction with the normal velocity of the
bulk fluid and, in addition, the surface Navier-Stokes equations

ρΓ∂
•
t ~u−∇s · σΓ = [σ]+−~ν + ~fΓ , ∇s · ~u = 0

have to hold on Γ. Here ρΓ is the surface mass density, ∂•
t is the material derivative

and the surface stress tensor is given as

σΓ = 2µΓDs(~u)− pΓPΓ

where pΓ is the surface pressure, µΓ is the surface shear viscosity, PΓ is the pro-
jection onto the tangent space and

Ds(~u) =
1
2PΓ(∇s~u+ (∇s~u)

T )PΓ

is the surface rate-of-strain tensor. Furthermore, the term [σ]+−~ν is the force exerted
by the bulk on the membrane.

In my talk I introduced a finite element approach which has the properties

- volume conservation,
- area conservation,
- energy stability,

on a semi-discrete (continuous in time, discrete in space) level. This approach
is hence structure preserving and stable. The last property is due to the fact
that the energy stability leads to a priori estimates. We also demonstrated the
practicability of the method by several computational results and in particular we
were able to show that surface viscosity alone can lead to a transition from tank
treading to tumbling for membranes in shear flow.

Finally, I introduced a new model for two-phase fluidic membranes. In this
model the above fluid model is supplemented with an additional variable c on the
membrane which takes the value ±1 in the pure phases. The energy for two-phase
membranes is

E(Γ, c) =

∫

Γ

b(κ, c) + αG(c)K + βbCH(c)dHd−1
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with the Cahn–Hilliard energy

bCH(c) = 1
2γ|∇sc|2 + γ−1Ψ(c)

and
b(κ, c) = 1

2α(c)(κ − κ(c))2 .

In particular, the bending energies α, αG and the spontaneous curvature now de-
pend on the concentration.

Via δE
δΓ the new energy now gives a new forcing term in the fluid equations

which in particular leads to a Marangoni type forcing. The concentration c solves
the convective Cahn–Hilliard surface equation

γ∂•
t c = ∆sm ,
m = −βγ∆sc+ βγ−1Ψ′(c) + b,c(κ, c) + (αG)′(c)K

which has to hold on Γ. Numerical computations showed effects of the two-phase
nature of the membrane like budding and also two-phase membranes tend to re-
main more deformed after shape deformations through constrictions.
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A model for the initiation of pattern generating mechanisms revisited

Dirk Horstmann

(joint work with Marcello Lucia)

In 1989 Oster and Murray proposed in [9] a model for the pattern generating of
cartilage condensations in the vertebrate limb bud that was later in [7, 8] also
connected to the stripe pattern generation mechanisms in the skin of alligator
embryos. After some rescaling and some change of notation the model is given by

(1)

{

nt = ∆n−∇ · (n∇u), x ∈ Ω ⊂ R
d, t > 0

ut = ∆u− u+ λ n
γ+n , x ∈ Ω ⊂ R

d, t > 0,

where n(x, t) denotes some cell density and u(x, t) an attractant concentration, λ
and γ are positive constants and homogeneous Neumann boundary conditions and
suitable initial data are assumed to be imposed. Simulations done by P. Grindrod,
J. D. Murray and S. Sinha in [2] show that multiple peaks appear as time tends to
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infinity. The local existence of a solution for problems like (1) follows (for example)
from results by Senba & Suzuki in [11]. The global (in time) boundedness of the
solution has been shown (for example) in [6], while the convergence of the solution
to a steady state as t → ∞ is established (under some technical assumptions) in
[5]. Thus, to get some deeper insights into the final profile of the solution of (1)
one should take a closer look at the steady state problem related to (1).

This is exactly what has been done in this talk that reports about some of the
results achieved in [5]. The steady state problem related to (1) reduces to a single
nonlocal elliptic equation with homogeneous Neumann boundary data given by:

(2) −∆u+ u = λ
eu

ω
|Ω|

∫

Ω

eu + eu
,

∂u

∂n
= 0 on ∂Ω, where ω =

γ|Ω|
∫

Ω

n(x, 0)dx
.

Obviously, the constant function u0 = λ
ω+1 solves trivially the problem. But are

there nonconstant solutions of (2) and what do they look like? As a first step one
takes a closer look and analyzes the local elliptic Neumann problem:

(3) −∆u+ u = λ
eu

γ + eu
,

∂u

∂n
= 0 on ∂Ω.

We point out, that this is also the local version of the steady state problem related
to the following chemotaxis model with volume-filling (compare for example [3]):

(4)

{

nt = ∆n−∇ ·
(

n(1 − n
γ )∇u

)

,

ut = D∆u− u+ λn.

In [3, 4] one can find some plots for the steady state solutions and the time evolution
of solutions to (4) for different initial data that show the formation of multiple
peaks and, as time prolongs, the coarsening of the peaks. Let us point out that
the local problem has also been studied in [1, 2, 10, 12] using completely different
approaches, basically bifurcation arguments, in contrast to the techniques used in
[5].

We remark that any solution of the local problem (2) satisfies 0 < u < λ and for
each λ > 0 we have ||u||H1(Ω) ≤ λ2|Ω|.

Now setting f(s) = s − λ es

γ+es we see that for all λ, γ > 0 the function f(s) has

the following properties:

• 1 ≤ ♯
(
f−1(0)

)
≤ 3;

• f admits three distinct zeros if and only if

λ > 4 and γ ∈ (γ−, γ+), where γ± = 2e
λ
2

e±
1

2

√
λ(λ−4)

λ− 2±
√

λ(λ − 4)
.

Let us denote by z1, z2, z3 the three ordered zeros of f for λ > 4 and γ ∈ (γ−, γ+).
Then, we remark that:

• For λ > 4: max
s∈[0,∞)

−f ′(s) = λ
4 − 1.
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• z1, z2 are strict local minima of the functional:

F(u) =

∫

Ω

|∇u|2 + u2 dx − λ

∫

Ω

log (γ + eu) dx.

• F is strictly convex for γ ≥ 1 and λ
4 − 1 < µ2(Ω), where µ2 denotes the

first nontrivial eigenvalue of the Laplacian with homogeneous Neumann
boundary data.

• In one spatial dimension any solution of the local problem has to be con-
stant if λ

4 − 1 < µ2(I) with I = [0, L].

Defining

L = −∆+ 1, N(u) =
eu

γ + eu
and setting K(u) := −L−1 ◦N

we can rewrite the local problem (3) as

(5) (Id+ λK)(u) = 0.

By the compactness ofK and since, at each λ, the set of solutions to (5) is bounded,
one remarks that the Leray-Schauder degree of Id + λK is well-defined. In the
following its total Leray-Schauder degree is denoted by

degLS(Id+ λK) =
∑

u is a solution of (5)

(−1)ν(u),

where ν(u) is the Morse index of u. Furthermore, one finds out that

degLS(Id+ λK) = 1.

Let us assume that we have a given interval I = [0, L] with L > 0 large enough.
The existence of only one (by reflection two) nontrivial monotone solution of (3)
is established by the use of an appropriate time map related to the Neumann
problem (3). The following statements about the existence of nontrivial solutions
are shown by calculating the Morse indices of the constant solutions and of the
unique monotone solution to (3):

• If µ2k(I) < −f ′(z2) < µ2k+1(I) holds for some k ∈ N. For k = 1 there exist
at least five and for any other k ∈ N there exist at least seven solutions
for the local problem (3).

• If µ2k+1(I) < −f ′(z2) < µ2k+2(I) holds for some k ∈ N. For k = 1
there exist at least seven and for any other k ∈ N there exist at least nine
solutions for the local problem (3).

Finally, one can turn to the nonlocal problem (2). In a similar way as it has
been done for the local problem one can establish the following statements for the
nonlocal Neumann problem (2), that (as far as we know) has not been analyzed
up to now:

• In one spatial dimension the nonlocal problem (2) admits only the trivial
solution u = λ

ω+1 if λ
4 − 1 ≤ µ2(I), where I = [0, L].
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• Let s0 denote the unique real number satisfying ωs0e
s0 = 1. If λ− 1 ≤ s0

then the nonlocal problem (2) admits a unique solution for any dimension.
• In one spatial dimension one can show that, if λ

4 − 1 > µ2(I) and λ 6=
(ω+1)2(µ+1)2

µω , where µ denotes an eigenvalue of the Laplacian with homo-

geneous Neumann boundary data, and λ 6= 4(ω+1)2

ω , then the Morse index
of the trivial solution is odd and, therefore, at least one nontrivial solution
of (2) has to exist.
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Wrinkling phenomenon in the bidomain model

Giovanni Bellettini

(joint work with S. Amato, M. Paolini, F. Pasquarelli)

The bidomain model originates from a microscopic model describing the electrical
properties of the (disjoint) intracellular and extracellular media Ωi and Ωe in the
cardiac tissue, coupled through the cellular membrane with the addition of a num-
ber of variables (Hodgkin-Huxley model), simplified to a single “recovery variable”
(FitzHugh-Nagumo), which is neglected here. The bidomain model derives after a
homogenization process so that in the end Ωi = Ωe = Ω, the physical region occu-
pied by the heart. Given T > 0, and more generally a smooth bounded connected
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open set Ω ⊂ R
n, n ≥ 2, and denoting ui = ui,ǫ, ue = ue,ǫ : [0, T ] × Ω → R the

intra and extra cellular electric potentials respectively, the bidomain model can be
described with the following weakly parabolic system, of variational nature:

(1)

{

ǫ ∂
∂t (ui − ue)− ǫdiv (Mi∇ui) + ǫ−1W ′

(
ui − ue

)
= 0,

ǫ ∂
∂t (ui − ue) + ǫdiv (Me∇ue) + ǫ−1W ′

(
ui − ue

)
= 0.

Here ǫ ∈ (0, 1) is a small positive parameter, W ′ is the derivative of a double-
well potential with minima at ±1, and Mi,Me are two symmetric positive definite
matrices. The degeneracy of (1) can be understood writing the system as follows:

ǫ∂t(Bu)− ǫdivq+ ǫ−1f(u) = 0,

where u = [ui, ue]
T , q = [Mi∇ui,−Me∇ue]

T , B =

[
1 −1
1 −1

]

, the operator div acts

componentwise, and f([ui, ue]
T ) = [W ′(ui−ue),W

′(ui−ue)]
T . Although matrix B

is singular, problem (1), coupled with (4) below, is well-posed in a suitable sense.
We remark that (1) is the “gradient flow” (after a suitable rescaling of time) of
the functional

(2)

∫

Ω

[
ǫ

2
(Mi∇v · ∇v +Me∇v · ∇v) + ǫ−1W (v − ω)

]

dx

with respect to the degenerate scalar product ((v, ω), (η, ζ)) →
∫

Ω
(ω−v)(ζ−η) dx.

We refer to [5] for the derivation of the model and its mathematical properties,
and for a list of related references.

A crucial role in the description of the electrochemical changes governing the
heart beating is played by the transmembrane potential u = uǫ := ui − ue, which
typically exhibits a thin transition region of order ǫ which separates the advancing
depolarized region where u ≈ 1 from the one where u ≈ −1.

We note that one of the two parabolic equations in (1) can be replaced by an
elliptic equation, and the system can be equivalently rewritten as

(3)







ǫ ∂
∂tu− ǫdiv (Mi∇ui) + ǫ−1W ′(u) = 0,

div(Mi∇ui +Me∇(ui − u)) = 0,

u = ui − ue.

System (3) makes more clear the initial and boundary conditions for (1), which
are for instance of the form:

(4) u(0, ·) = u0(·) at {t = 0}, Mi∇ui ·νΩ = Me∇ue ·νΩ = 0 on [0, T ]×∂Ω,

with u0 possibly depending on ǫ, νΩ the outward unit normal to ∂Ω, and · being
the Euclidean scalar product. Our interest here is related to the limit behaviour
of the transmembrane potential u, as ǫ → 0+. It is worthwhile to recall that the
Γ-limit of the sequence of functionals in (2) has been almost characterized [2].

When Mi and Mi are proportional, it can be seen that (1) reduces to a single
reaction-diffusion equation for u, a case not of interest in the present discussion.
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On the other hand, a nontrivial case is the so-called reciprocal anisotropic ratio,
given by Mi = diag(ρ, 1) and Me = diag(1, ρ), ρ > 0. We notice that, if we set

(5) (φi(ξ
∗))2 = αi(ξ

∗) := Miξ
∗ · ξ∗, (φe(ξ

∗))2 = αe(ξ
∗) := Meξ

∗ · ξ∗,
where ξ∗ denotes a generic covector of the dual (Rn)∗ of Rn, then Mi is the Hessian
of αi/2, and Mi∇ui = Ti(∇ui), where Ti(ξ

∗) := ∇αi(ξ
∗)/2, and similarly for Me.

In this way, system (1) generalizes to a nonlinear case, i.e., using two convex
one-homogeneous symmetric functions (called convex anisotropies, not necessarily
induced by a scalar product), in place of φi and φe. We refer to φi and φe in (5)
as the case of linear convex anisotropies, which is the one we are concerned here.

Remarkably, a non-negligible anisotropy, not necessarily convex, and in general
nonlinear, occurs in the limit ǫ → 0+ of (1), because of the fibered structure of the
myocardium. Let us introduce the following function Φ [4], [1], called combined
anisotropy:1

(6) Φ :=

(
1

αi
+

1

αe

)− 1

2

.

It is possible to show [4] that, in the case of reciprocal anisotropic ratio, Φ is convex
if and only if ρ ∈ [1/3, 3]. Incidentally, we are not aware of a characterization of
those anisotropies that can be obtained combining two convex anisotropies as in
(6).

The following formal result was proven in [3], to which we refer for the details.
Let be given a smooth boundary ∂E compactly contained in Ω. Suppose that the
initial datum u0 = u0ǫ is well-prepared around ∂E, in particular {u0 = 0} = ∂E.
Suppose that {Φ ≤ 1} (Frank diagram), Φ as in (6), is smooth and uniformly
convex. Then, as ǫ → 0+, the zero-level set of the solution u = uǫ of (1), (4)
converges to the Φ-mean curvature flow starting from ∂E, for sufficiently short
times, with an error of order O(ǫ).

The interesting fact is that system (1) remains well-posed even when Φ is not
convex, hence when the Φ-mean curvature flow is ill-posed. In some sense, system
(1), (4) can be considered as one of the possible regularizations2 of the ill-posed
Φ-mean curvature flow. Therefore, it is natural to investigate numerically the
behaviour of {u = 0} for small values of ǫ, for instance, in the case of reciprocal
anisotropic ratio, when ρ ∈ (0, 1/3) ∪ (3,+∞). Numerical experiments have been
performed in [4] for n = 2, for large values of ρ > 3 and small values of ǫ (say,
ǫ ≈ 0.08), of the space grid h = cǫ with c not too small due to the prohibitive
computational cost (say, c ≈ ǫ/4) for certain values of time t, looking at the be-
haviour of the “interface” {u(t, ·) = 0}, taking the unit Euclidean circle ∂E as
initial condition. The experiments show the appearence of the wrinkling phenom-
enon (formation of microstructure). For instance, at time of the order t ≈ 0.02 one
observes the formation of oscillations of wavelength of order ǫ, quickly propagating

1We observe that the same combination can be done in the more natural context of Minkowski
functions of solid symmetric bounded bodies which are star-shaped with respect to the origin.

2In view of the instability of the problem, it is not clear whether any reasonable regularization
of the Φ-mean curvature flow would lead to the same final evolution.
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along only that part of interface having the Euclidean unit normal (Φ-normalized
to one) falling in the nonconvex portion of {Φ = 1}. This leads to believe that
the observed evolution is not the evolution of ∂E by the co({Φ ≤ 1})-curvature
flow, co({Φ ≤ 1}) being the convexification of {Φ ≤ 1}. Next, the oscillations
have the tendency to merge, forming longer waves; the wrinkled region tends to
disappear, being eroded by the surrounding evolving part. Eventually, the front
seems to assume, locally around the discussed region, a form reminiscent to that
of the Wulff-shape3 corresponding to co({Φ ≤ 1}), in this case a strictly convex
curve with an angle.

System (1) has been generalized to an arbitrary number of potentials, as well
as the formal asymptotics of the corresponding system as ǫ → 0+; in this case
several nonlinear anisotropies must be combined [1]. Finally, stability of fronts in
the bidomain model in Ω = R

2 has been recently studied in [6].
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GERMANY

Prof. Dr. Huaxiong Huang

Department of Mathematics and
Statistics
York University
4700 Keele Street
North York ON M3J 1P3
CANADA

Prof. Dr. Dagmar Iber

D-BSSE, CoBi
ETH Zürich
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Université Paul Sabatier
118, route de Narbonne
31062 Toulouse Cedex 9
FRANCE

Prof. Dr. Stefan Neukamm

Fachrichtung Mathematik
Technische Universität Dresden
01062 Dresden
GERMANY

PD Dr. Maria Neuss-Radu

Department Mathematik
Universität Erlangen-Nürnberg
Cauerstrasse 11
91058 Erlangen
GERMANY

Prof. Dr. Dietmar Ölz
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