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Abstract. Machine learning and in particular deep learning offer several
data-driven methods to amend the typical shortcomings of purely analyt-
ical approaches. The mathematical research on these combined models is
presently exploding on the experimental side but still lacking on the theo-
retical point of view. This workshop addresses the challenge of developing
a solid mathematical theory for analyzing deep neural networks for inverse
problems.
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Introduction by the Organisers

The mini-workshop Deep Learning and Inverse Problems, organized by Simon Ar-
ridge (London), Maarten Valentijn de Hoop (Houston), Peter Maaß (Bremen) and
Carola-Bibiane Schönlieb (Cambridge) was well attended with 15 participants and
aimed at bringing together experts from different scientific directions to contribute
in overall 11 talks mathematically proven results in the theory of deep neural net-
works for inverse problems.
The classical approach to inverse problems starts with an analytical description
F : X → Y of the forward operator in some function spaces X and Y. The main
target in inverse problems is to reconstruct an unknown x∗ from given noisy data
yδ ∼ F (x∗), where the generalized inverse F−1 is unbounded. However, these
purely analytic models are typically just an approximation to the real application
and their extension are often restricted due to the high degree of complexity or
an only partial understanding of the underlying physical processes. Furthermore,
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the inputspace of many applications will be just a subspace of the whole function
space X and obey an unknown stochastic distribution.
The huge field of machine learning provides several data-driven approaches to
tackle these problems by using training datasets to either construct a problem
adapted forward operator and use an established inversion method or to solve
the inverse problem directly. In particular deep learning approaches using neural
networks with multiple internal layers have become popular over the last decade.
However, no consistent mathematical theory on deep neural networks for inverse
problems has been developed yet besides the stunning experimental results, which
have been published so far for many different types of applications to inverse prob-
lems.
One theme which was addressed by several talks during the workshop was the inter-
pretation of the different layers of a neural network as discretization of continuous
systems like ODEs, PDEs and integro-differential equations (see the abstracts of
Eldad Haber, Lars Ruthotto, Carola Schönlieb and Thomas Pock). These ap-
proaches allow to address in particular stability of neural networks and it allows
to develop novel network designs based on classical discretization schemes for in-
verse problems.
Optimization of neural networks by using a functional analytical network for e.g.
optimizing activation functions (Michael Unser) or regularization schemes (Martin
Benning) was a second common point of discussion. The classical interpretation of
Tikhonov regularization for inverse problems can thus be mirrored by the design
of the neural network.
Another source of inspiration for tackling deep neural networks is harmonic anal-
ysis as a concept for detecting invariants in large data sets and for interpretation
on neural network behaviour in general (see the abstracts of Maarten de Hoop and
Gitta Kutyniok).
On the application side, the focus was on medical imaging, where remarkable re-
sults were presented for CT-reconstructions with few measurements (Ozan Öktem)
and for the linear problem of photoacoustic tomography (Andreas Hauptmann and
Simon Arridge).

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Deep Networks meet ODEs

Eldad Haber

(joint work with L. Ruthotto, E. Holtham, L. Meng, B. Chang)

In this work, we explore deep learning (see e.g. [2, 1]) from the point of view
of dynamical systems. A main goal is to use the interpretation of deep neural
networks as a parameter estimation problem of a nonlinear dynamical system to
analyze the stability of the forward propagation for simplified Residual Network
(ResNet) architectures [5].
For given training data Y0 = [y1,y2, . . . ,ys]

⊺ ∈ R
s×n and C = [c1, c2, . . . , cs]

⊺ ∈
R

s×m, we consider the forward propagation of the ResNet, whose N layers are
given by

(1) Yj+1 = Yj + hσ(YjKj + bj) for j = 0, . . . , N − 1,

with a nonlinear activation function σ : Rs×n → R
s×n, weights K0, . . . ,KN−1 ∈

R
n×n, biases b0, b1, . . . , bN−1 ∈ R and a parameter h > 0 to allow a continuous

interpretation of the model. The description of the ResNet in (1) can be regarded
as an explicit Euler discretization of the nonlinear Ordinary Differential Equation
(ODE)

(2) ẏ(t) = σ(K⊺(t)y(t) + b(t)), with y(0) = y0,

for a time interval t ∈ [0, T ] with final time T > 0 (see also [4, 3]). Therefore,
the stability of the forward propagation can be analyzed via the classical stability
theory of ODEs. Accordingly, the ODE is stable if

max
i=1,2,...,n

ℜ(λi(J(t))) ≤ 0

for all t ∈ [0, T ], where ℜ denotes the real part and λi(J(t)) is the i-th eigenvalue
of the Jacobian J(t) ∈ R

n×n of the right-hand side in Equation (2). Based on
these observations, we derive stability criteria for such ResNet models and develop
new network architectures, which ensure stability as well as a well-posed learning
problem.
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Expressibility of Sparsely Connected Deep Neural Networks

Gitta Kutyniok

(joint work with Helmut Bölcskei, Philipp Grohs, Philipp Petersen)

The last years have seen a renaissance of neural networks, which can mainly be
attributed to the massive amounts of available training data and the significantly
increased computational power allowing the training of deep neural networks. The
outstanding success of deep neural networks in real-world applications can be
witnessed in applications such as game intelligence, image analysis, and speech
recognition. Despite this success story, most of the related research is empirically
driven and a mathematical foundation is almost completely missing.
One central task of a neural network is to approximate a function, which for in-
stance encodes a classification task. Given a set of sample values, the network is
then trained by, for instance, stochastic gradient descent. Thus, one key question
concerns the general ability of deep neural networks to approximate functions.
Certainly, the more neurons, edges, and layers are available, the more the approx-
imation power – also coined expressiblity – of the network should grow. Hence
it seems conceivable to consider this question for a restricted number of edges or
layers, say. Such sparse deep neural networks – often referred to as networks with
sparse connectivity – are also interesting from the point of view of computational
efficiency and memory requirements.
To analyze the question of the expressive power of sparsely connected deep neural
networks, we start with a mathematically precise definition of a neural network.

Definition 1. Let d be the dimension of the input layer, L the total number of
layers, N1, . . . , NL the dimensions of the L − 1 hidden layers, and hence N :=∑L

j=1 Nj the total number of neurons. Then Φ : Rd → R
NL given by

Φ(x) = WLρ(WL−1ρ(. . . ρ(W1(x))), x ∈ R
d,

is called a neural network, which is composed of non-linear functions ρ : R → R –
often referred to as activation functions or rectifiers – acting component-wise and
affine linear maps Wℓ : RNℓ−1 → R

Nℓ , 1 ≤ ℓ ≤ L. We denote the class of such
neural networks by NNL,M,d,ρ

Let us next review how approximation theory measures the approximation rate
depending on certain restricting conditions on the approximation. One common
scenario is to consider a class of functions C within L2(Rd) and a complete system
(ϕi)i∈I ⊆ L2(Rd), with the restricting condition being the number of elements of
the system allowed to compose an approximation. Taking this viewpoint, one then
studies the error of best M -term approximation of some f ∈ C given by

‖f − fM‖L2(Rd) := inf
IM⊂I,#IM=M,(ci)i∈IM

‖f −
∑

i∈IM

ciϕi‖L2(Rd),
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where fM is referred to as best M -term approximation. The largest γ > 0 such
that

Mγ sup
f∈C

‖f − fM‖L2(Rd) → 0 as M → ∞

determines the optimal (sparse) approximation rate of C by the system (ϕi)i∈I .
From a conceptual viewpoint, we derive a relation between the approximation ac-
curacy and the complexity of the approximating system in terms of sparsity.
We now transfer this concept to the approximation with neural networks, replacing
the complexity of the approximating system in terms of sparsity by the complexity
of the approximating neural network in terms of sparse connectivity. For this, we
first aim to derive a lower bound on the sparsity of the connectivity. This requires
the introduction of a complexity measure for a class of functions C within L2(Rd).
We choose the following notion from rate-distortion theory, which describes the de-
pendence of the minimally possible code length of C on the required approximation
quality.

Definition 2. Let d ∈ N and, for each ℓ ∈ N, let E
ℓ := {E : L2(Rd) → {0, 1}ℓ}

denote the set of binary encoders with length ℓ and D
ℓ := {D : {0, 1}ℓ → L2(Rd)}

the set of binary decoders of length ℓ. For arbitrary ǫ > 0 and C ⊂ L2(Rd), the
minimax code length L(ǫ, C) is then given by

L(ǫ, C) := min{ℓ ∈ N : ∃(E,D) ∈ E
ℓ ×D

ℓ : sup
f∈C

‖D(E(f))− f‖L2(Rd) ≤ ǫ},

and the optimal exponent γ∗(C) is defined by

γ∗(C) := inf{γ ∈ R : L(ǫ, C) = O(ǫ−γ)}.

This now allows us to state our first main result from [1]. Notice how the lower
bound on the number of edges for a given approximation accuracy is dependent
on the optimal exponent.

Theorem 1. Let d ∈ N, ρ : R → R, c > 0, and let C ⊂ L2(Rd). Further, let

Learn : (0, 1)× C → NN∞,∞,d,ρ

satisfy that, for each f ∈ C and 0 < ǫ < 1, all weights of Learn(ǫ, f) can be
encoded with < −c log2(ǫ) bits and supf∈C ‖f −Learn(ǫ, f)‖L2(Rd) ≤ ǫ. Then, for
all γ < γ∗(C),

ǫγ sup
f∈C

M(Learn(ǫ, f)) → ∞ as ǫ → 0,

where M(Learn(ǫ, f)) denotes the number of non-zero weights in Learn(ǫ, f).

This now raises the question, whether this is indeed a sharp result in the sense
of whether – for a given class of functions C – there exists a neural network such
that

sup
f∈C

M(Learn(ǫ, f)) = O(ǫ−γ∗(C)) as ǫ → 0.
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Figure 1. Left: A neural network mimicking an M -term ap-
proximation composed of elements of (ϕi)i∈I . Right: A neural
network mimicking some ϕi.

This would lead to optimally memory efficient deep neural networks.
Let now C be a class of functions in L2(Rd) and (ϕi)i∈I ⊂ L2(Rd). We first assume
that (ϕi)i∈I satisfies that, for each i ∈ I, there exists

(1) a neural network Φi with at most C > 0 edges such that ϕi = Φi.

By the construction illustrated in Figure 1, we can in fact construct a network Φ
with O(M) edges, which mimics an M -term approximation as

Φ =
∑

i∈IM

ciϕi, if |IM | = M.

Next, assume that, in addition, we find some C̃ > 0 such that, for all f ∈ C ⊂
L2(Rd), there exists IM ⊂ I with

(2) ‖f −
∑

i∈IM

ciϕi‖ ≤ C̃M−1/γ∗(C).

This leads to the following result from [1], stated here in a significantly simpli-
fied form. Notice though that already this result indicates how to derive neural
networks which are memory optimal.

Theorem 2. Let C ⊂ L2(Rd) and (ϕi)i∈I ⊂ L2(Rd) satisfying (1) and (2). Then
every f ∈ C can be approximated up to an error of ǫ by a neural network with only
O(ǫ−γ∗(C)) edges.

Proof. By (1), there exists a network Φ with O(M) edges with Φ =
∑

i∈IM
ciϕi.

Now set ǫ = C̃M−1/γ∗(C) and solve (2) for the number of edges M . This yields
M = O(ǫ−γ∗(C)). �

Thus, for those networks there exists some constant C > 0 satisfying

sup
f∈C

M(Learn(ǫ, f)) ≤ Cǫ−γ∗(C) for all ǫ > 0,

thereby showing that the bound in Theorem 1 is sharp.
Since in applied harmonic analysis, representation systems such as wavelets,

ridgelets, or shearlets – more generally α-shearlets [2], which includes those as
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special cases – are build as affine systems, they are particularly amenable to the re-
quirement (1) and in fact do satisfy it. In addition, it is known that α-shearlets pro-
vide (almost) optimally sparse approximation properties for α-cartoon-like func-
tions [2, 3] – which could even be regarded as classification functions –, thereby
fulfilling (2).
For more details we refer to [1]. Thus, roughly speaking, it is fair to say that deep
neural networks have as much approximation power as classical systems from the
area of applied harmonic analysis.
Numerical experiments using samples of simple classification functions as input
to a network of a topology as given in Figure 1 show that already the standard
backpropagation algorithm generates deep neural networks (almost) obeying those
optimal approximation rates. Most intriguingly, one can even witness that this
network then automatically learns those representation systems from applied har-
monic analysis which are provably known to provide optimally sparse approxima-
tions. For the numerical experiments, please see [1].
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PDE-Based Image Classification using Deep Neural Networks

Lars Ruthotto

(joint work with Eldad Haber)

In this talk, we presented the connection between Convolutional Neural Networks
(CNNs), which are a common machine learning method applied widely to speech,
image, and video data, and Partial Differential Equations (PDEs), which are
invaluable in modeling physical phenomena but are also used broadly in many
branches of applied mathematics. Our interpretation shows that training neural
networks is similar to the inverse problem of estimating parameters of a nonlinear,
time-dependent system of PDEs.

The abstract goal of machine learning is to find a function f : Rn × R
p →

R
m that can be described by its parameter θ ∈ R

p such that f(·, θ) accurately
predicts the result of an observed phenomenon (e.g., the class of an image, a
spoken word etc.). In supervised learning, a set of input features y1, . . . ,ys ∈
R

n and output labels c1, . . . , cs ∈ R
m is available and used to build the model

f(·, θ). The output labels are vectors that represent the probability of a particular
example, to belong to each class. For brevity, we will denote the training data by
Y = [y1,y2, . . . ,ys] ∈ R

n×s and C = [c1, c2, . . . , cs] ∈ R
m×s.

Motivated by supervised image classification, we consider deep residual net-
works (ResNets), introduced in [4]. We derived a continuous interpretation of the
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filtering provided by ResNets in [1], and similar observations were made in [5].
ResNets can be seen as a forward Euler discretization (with fixed step size of
δt = 1) of the initial value problem on t ∈ [O, T ]

∂tY(θ, t) = F(θ(t),Y(t)), for t ∈ (0, T ](1)

Y(θ, 0) = Y0,(2)

where Y0 are the input features and F is an operator comprising of affine linear
transformations and pointwise nonlinearities. The learning problem then consists
of finding θ and weights of a linear classifier by solving

min
θ,W,µ

1

2
S(WY(θ, T ) +Bµ,C) + αR(θ,W, µ),(3)

where S is a loss function (e.g., least-squares misfit or a cross entropy), Bµ is a
bias vector, and R is a regularizer (e.g., a Tikhonov regularizer also referred to as
weight decay).

When dealing with image data, the features in Y have an exploitable structure.
We highlighted the relation between deep residual CNNs and nonlinear systems
of PDEs. In convolutional neural networks, the weights θ parameterize a typically
band-limited convolution operator that is used to filter the data. Due to their
compact support, the convolution operator can be written as a linear combination
of partial differential operators whose contributions are controlled by θ. In our
case of image classification, the input data, Y can be seen as a discretization of
a continuous process, Y (x) and hence we obtain a fully continuous setting for
training deep residual CNNs.

The key idea presented in this talk is to design the function F in (1) so that the
resulting CNN can be related to, e.g., parabolic or hyperbolic PDEs. This struc-
ture can then be used computationally. Note that for classical residual neural
networks the type of the underlying PDE depends on the choice of θ and can even
vary in time. We present three different dynamics that are inspired by parabolic,
hyperbolic and Hamiltonian systems. The parabolic networks allow one to devise
multiscale training algorithms, whereas the latter two types allow for memory-free
implementation. Despite their very different characteristics, we found in exten-
sive numerical examples that all CNNs can be trained and that in many cases
committing to a dynamic helps the CNN generalize better.

The talk led to many fruitful discussions that identified a few future research
questions, including:

• The continuous framework results in a new understanding of the concepts
of layers as time discretization points. This motivates adaptive schemes for
choosing layers, e.g., shallow-to-deep training. While we have good results
for small-scale test problems with deterministic optimization methods [1]
an interesting and open question is how to incorporate such a scheme in
stochastic optimization methods.

• Another question concerns the design of regularization functionals for the
learning problem. Currently, smoothness in time is enforced and found
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to help both in ensuring stability and in generalization. However, more
explicit prior knowledge and constraints will be considered in the future.

• In the context of inverse problems an important question is the stability
of the resulting CNN. The conjecture is that the PDE-motivated networks
- after suitable discretization - help enforce stability. However, more thor-
ough analysis and detailed numerical experiment need to be performed.
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Recent Approaches for Using Machine Learning in Image

Reconstruction

Ozan Öktem

(joint work with Jonas Adler, Carola-Bibiane Schönlieb, Sebastian Lunz)

The starting point in using techniques from machine learning to solve an inverse
problem is to rephrase the latter as a statistical estimation problem, so a recon-
struction method becomes a (non-randomised) decision rule. Statistical decision
theory can then be used for selecting an appropriate method.

Statistical Inverse Problems

Let X and Y denote separable Banach spaces where (Y,SY ) and (X,SX) are
measurable spaces. Next, define the data model as M : X → PY where PY is
the set of probability measures on Y . Following [4], a (statistical) inverse problem
is the task of estimating x∗ ∈ X from data y ∈ Y , which is a single observation
generated by Y -valued random variable y ∼ M(x∗) with a known data model
M : X → PY .
It is often common to introduce a X-valued random variable x that generates
x∗. In such case, the data model can be thought of as the data likelihood, i.e.,
M(x) = L(y | x = x) dy. Furthermore, if x ∼ Px∗ with a probability distribution
fully specified by x∗ ∈ X , then (x, y) ∼ Px∗ ⊗M(x∗). A special case is when the
Y -valued random variable y is given by a known forward operator A : X → Y as

(1) y = A(x∗) + e with e ∼ Pnoise.

This corresponds to having a data model M(x) := δA(x)∗Pnoise = Pnoise

(
· −A(x)

)

whenever e does not depend on A(x∗).
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Reconstruction

A reconstruction method is formally a measurable X-valued mapping on Y , i.e.,
it can be viewed as non-randomised decision rule. More precisely, the tuple(
(Y,SY ), {M(x)}x∈X

)
defines a statistical model, which in turn defines a sta-

tistical decision problem by selecting (X,SX) as decision space and considering a
loss function given by a functional ℓX : X ×X → R.
A common framework is Bayesian regularisation, which starts out by assuming
that (x, y) ∼ π0 ⊗M(x∗) where both π0 and x 7→ M(x) are known and x∗ ∈ X is
unknown. It therefore becomes natural to estimate x∗ by exploring the posterior
distribution, e.g., to maximise it (maximum a posteriori estimator). Another is to

minimise Bayes risk, i.e., to consider the reconstruction method A† : Y → X that
minimises the π0-averaged expected loss:

Rπ0
(A†) := Eµ

[
ℓX

(
x,A†(y)

)]
where µ = π0 ⊗M(x∗).

In the Gaussian setting, there is a well developed theory, e.g., one can describe how
the posterior distribution concentrates its mass near x∗ ∈ X as e → 0. Further-
more, for certain class of forward operators it is also possible to characterise the
microscopic fluctuations of the posterior around x∗. The latter involves consider-
ing the inverse of the associated normal operator (Fischer information operator),
which describes how the ill-posedness of the inverse problem influences the uncer-
tainty, see [8] for more about this line of research.

Challenges

Bayesian non-parametric theory [5] provides a large class of priors, and variants
used in imaging primarily encode regularity properties [6, 3]. Despite this, avail-
able handcrafted priors π0 are incomplete in the sense that they only captures a
fraction of the a priori information that is available about x∗. As an example, a
natural a priori information in medical imaging is that the object being imaged
is a human being. It is very difficult, if not impossible, to explicitly construct a
prior that captures this information.
Furthermore, exploring the posterior is highly non-trivial due to computational
issues and MCMC techniques, albeit efficient, are insufficient for imaging appli-
cations. One can perhaps compute the maximum a posteriori estimator (MAP)
estimator, but any estimator requiring integration over X , such as the posterior
mean (conditional mean) or minimising Bayes risk, is computationally unfeasible.
The same also holds for estimators relevant for uncertainty quantification.
As we shall see next, both these challenges are addressed by learned iterative meth-
ods that use a deep neural network to define an optimal reconstruction method,
i.e., one that minimises Bayes risk A† 7→ Rπ0

(A†).
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Learned Iterative Methods

Machine learning, and deep neural networks in particular, have demonstrated a
remarkable capacity in capturing intricate relations from example data [7]. In-
stead of using handcrafted problem specific models, one uses generic models that
are adapted through learning against example data. It is therefore temping to
investigate whether one can learn a prior by these techniques.

First, instead of providing a handcrafted π0, we have (supervised) training
data (xi, yi) ∈ X × Y generated by (x, y) ∼ µ = π0 ⊗ M(x∗). Next, finding an
optimal reconstruction method requires searching over all non-randomised decision
rules, which is computationally unfeasible. Instead, we restrict our attention to
those given by a (deep) neural network architecture since these have large capacity
(can approximate any Borel measurable mapping arbitrarily well [9] and there are
computationally feasible implementations. To summarise, we have a parametrised

family of reconstruction methods A†
θ : Y → X and the optimal one is given by

(2) θ∗ ∈ argmin
θ∈RN

Eµ

[
ℓX

(
x,A†(y)

)]
≈ argmin

θ∈RN

[ 1

m

∑

i

ℓX
(
xi,A

†
θ(yi)

)]
.

The above is a fully data driven approach for reconstruction, i.e., the (unknown)
measure µ = π0 ⊗ M(x∗) is replaced by its empirical counterpart given by the

training data. Hence, the optimal reconstruction method A†
θ∗ is derived with-

out utilising knowledge about how data is generated. This is an serious problem
for imaging applications where the large number of unknowns require large train-
ing datasets that are not available. In many inverse problem, knowledge about
how data is generated is contained in the data model x 7→ M(x) that is known.
The learned iterative schemes [1, 2] construct a deep convolutional neural network
architecture that accounts for the data model, or more precisely the data like-
lihood. The idea is to unroll a fixed point iterative scheme relevant for solving
the inverse problem and use a deep convolutional residual network to learn the
iterative update. The resulting reconstruction method is computationally feasible
and outperforms state-of-the-art by a significant margin as shown in [2].

Task Based Reconstruction

A learned iterative methods for reconstruction can be combined in a generic man-
ner with any task that can be adequately adressed using a neural network, thereby
resulting in an end-to-end reconstruction method that is adapted to the task.

More precisely, let
(
(X,SX), {Pa}a∈△

)
be a statistical model for the recon-

struction space and consider any task that can be formalised as a non-randomised
decision rule T : X → D, where (D,SD) is a task adapted decision space. We
also introduce the task related loss function LD(Θ, a) := ℓD

(
τ(Θ), a

)
for given

τ : △ → D (feature extraction map) and ℓD : D ×D → R. If (x, a) ∼ η denotes a
(X ×D)-valued random variable, then an ‘optimal’ task minimises the expected
loss T 7→ Eη

[
ℓD

(
T(x), a

)]
.
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True image & segmentation (k = 2). Joint reconstruction and segmentation.

Figure 1. Joint tomographic reconstruction and segmentation.
The reconstructed segmentation is a grey-scale image with values
in [0, 1] that gives probability that point is part of the segmented
structure.

True image of a ‘4’. Sequential scheme: Im-
age classified as ‘8’ with
99.99% confidence.

Joint scheme: Image clas-
sified as ‘4’ with 99.70%
confidence.

Figure 2. Joint tomographic reconstruction and classification of
MNIST images. Tomographic data is from 5 directions and highly
noisy (Poisson noise). Classification from noisy tomographic data
using the sequential scheme yields an overall accuracy of 93.35%
whereas the joint scheme has an accuracy of 96.60%. Classify-
ing against clean images yields 97.5% accuracy. Clearly, a joint
scheme outperforms a sequential one.

Just as with reconstruction, it is unfeasible to search over all decision rules so
we restrict our attention to those given by a (deep) neural network architecture.
Moreover, the joint law η is approximated by its empirical counterpart derived from
(supervised) training data (xi, ai) ∈ X×D generated by (x, a) ∼ η. To summarise,
we have a parametrised family of mappings TΘ : X → D, each a candidate for
modelling the task, and the optimal one is given by

(3) Θ∗ ∈ argmin
Θ∈RM

Eη

[
ℓD

(
TΘ(x), a

)]
≈ argmin

Θ∈RM

[ 1

m

∑

i

ℓD
(
TΘ(xi), ai

)]
.
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A joint task based reconstruction operator is now defined as TΘ ◦ A†
θ : Y → D

and the issue at hand is how to select an ‘optimal’ parameter (θ,Θ) ∈ R
N × R

M .
We consider a choice that minimises the following joint expected loss (risk) against
triplets of training data (xi, yi, ai) ∈ X × Y ×D generated by (x, y, a) ∼ σ:

(4) (θ∗,Θ∗) ∈ argmin
(θ,Θ)∈RN×RM

Eσ̂

[
C1ℓX

(
A†

θ(y), x
)
+ C2ℓD

(
TΘ ◦ A†

θ(y), a
)]

The joint task based reconstruction operator is given by TΘ∗ ◦A†
θ∗ : Y → D where

(θ∗,Θ∗) solves (4). Note that σ̂ above is the empirical measure given by the
training data (xi, yi, ai) and it replaces the unknown measure σ. Furthermore, the

parametrisation (neural network architecture) of A†
θ incporsporates the knowledge

of how data in Y is generated (data likelihood). We also note that it is possible
to pre-train by solving (2) and (3) using separate training data sets.

We conclude with showing two examples involving grey-scale images on a do-
main Ω ⊂ R

d, so X = L2(Ω,R). The first is joint reconstruction and segmentation
(figure 1). The task of segmenting an image into k components can be represented
by a mapping defined on X that associates a point in the image to a probability
distribution over Zk (k labels). This can be formulated as a statistical estimation
problem with non-randomised decision rules where △ is Zk-valued measurable
maps on Ω, and Pθ is some given set of probability measures on X . The deci-
sion space D is the set of measurable mappings from Ω to the class of probability
measures on Zk and the loss function is LD(θ, a) := ℓD

(
τ(θ), a

)
where

ℓD(a, z) :=

∫

Ω

[
−

∑

i∈Zk

a(t)(i) log
[
z(t)(i)

]]
dt for a, z : Ω → PZk

,

τ(θ)(t) := δθ(t) for θ : Ω → Zk and t ∈ Ω.

Note that ℓD simply integrates the point-wise Shannon entropy of the (spatially
independent) probability measures a(t) and z(t) for t ∈ Ω. Such a task is e.g. well
modelled by an ‘off the shelf’ U-net convolutional neural net [10].

The second is joint reconstruction and classification (figure 2) where an image
is classified into one of k labels. Here D is the space of probability distributions
over Zk and ℓD is the cross entropy. Such a task is e.g. well modelled by an
‘off the shelf’ convolutional neural net classifier using ReLU activation with 3
convolutional layers, each followed by 2× 2 max pooling for segmentation.
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[2] J. Adler and O. Öktem. Learned primal-dual reconstruction, IEEE Transactions on Medical
Imaging, (2018).

[3] M. Benning and M. Burger. Modern regularization methods for inverse problems, Acta
Numerica, 27, 1–111, (2018).

[4] S. N. Evans and P. B. Stark. Inverse problems as statistics, Inverse Problems, 18(4), R1–
R55, (2002).



574 Oberwolfach Report 11/2018

[5] S. Ghosal and A. W. van der Vaart. Fundamentals of Nonparametric Bayesian Inference,
Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press,
(2017).

[6] J. P. Kaipio and E. Somersalo. Statistical and Computational Inverse Problems, Applied
Mathematical Sciences, 160, (2005).

[7] Y. LeCun, Y. Bengio and G. Hinton. Deep learning, Nature, 521(7553), 436–444, (2015).
[8] R. Nickl. On Bayesian inference for some statistical inverse problems with partial differen-

tial equations, Bernoulli News, 24(2), 5–9, (2017).
[9] A. Pinkus. Approximation theory of the MLP model in neural networks, Acta Numerica,

143–195, (1999).
[10] O. Ronneberger, P. Fischer and T. Brox. U-Net: Convolutional networks for biomedical im-

age segmentation, Medical Image Computing and Computer-Assisted Intervention – MIC-
CAI 2015: 18th International Conference, Proceedings, Part III, Lecture Notes in Computer
Science, 9351, 234–241, (2015).

New Representer Theorems: From Compressed Sensing to Deep

Learning

Michael Unser

Regularization is a classical technique for dealing with ill-posed inverse problems;
it has been used successfully for biomedical image reconstruction and machine
learning.
In this talk, we present a unifying continuous-domain formulation that addresses
the problem of recovering a function f from a finite number of linear function-
als corrupted by measurement noise. We show that depending on the type of
regularization—Tikhonov vs. generalized total variation (gTV)—we obtain very
different types of solutions/representer theorems.
While the solutions can be interpreted as splines in both cases, the main distinc-
tion is that the spline knots are fixed and as many as there are data points in the
former setting (classical theory of RKHS) [5, 2], while they are adaptive and few
in the case of gTV [4].
Finally, we consider the problem of the joint optimization of the weights and acti-
vation functions in a deep neural network subject to a second-order total variation
penalty. The remarkable outcome is that the optimal configuration is achieved
with a deep-spline network that can be realized using standard ReLU units [3].
The latter result is compatible with the state-of-the-art in deep learning, but it
also suggests some new computational/ optimization challenges.
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Deep Learning for some Tomographic Problems

Simon Arridge and Andreas Hauptmann

(joint work with Jonas Adler, Paul Beard, Marta Betcke, Ben Cox, Sarah
Hamilton, Nam Huynh, Felix Lucka, Vivek Muthurangu, Sebastien Ourselin, and

Jennifer Steeden)

Mathematically, the task of reconstructing a tomographic image from measure-
ment data is formulated as an inverse problem: given the unknown (image) of
interest ftrue ∈ X , the measured data g ∈ Y , and a forward operator A : X → Y ,
then the forward problem is modelled by the simple equation

g = A(ftrue) + δg,

where δg ∈ Y denotes some noise in the observation. The inverse problem aims
to recover ftrue from the measurement of g. This is typically an ill-posed task

which is conventionally approached through the design of an operator A†
R based

on knowledge of the forward and adjoint mappings and an explicit regularisation
operator R. However, in a learning based approach, the idea is to find a mapping

F†
θ parametrized by θ that is simple to design and faster to apply.
In this work we combine the conventional and learning based frameworks, and

differentiate between two fundamentally different approaches:

(1) Model enforced: Direct reconstruction followed by learning based post-
processing. In this approach image reconstruction is carried out using a
simple/fast inversion step, and post-processing is used to remove artefacts
and noise. In this case we are given a reconstruction operatorA† : Y → X ,

then our inverse mapping is given by F†
θ = Gθ ◦ A† where Gθ : X → X is

typically a sophisticated convolutional neural network (CNN).
(2) Model based learning and reconstruction: In this approach the forward and

adjoint operators of the imaging problem are used directly in the inverse
algorithm. Here we learn an iterative update fk+1 = Gθ(∇d(g,F(fk)), fk),
where d(g,F(fk)) denotes the data-fit and Gθ : X ×X → X is typically a
simple CNN.

In the following we present various results of ongoing work in our research group,
with a specific focus on application to experimental and clinical data.

Spatio-temporal De-aliasing for Magnetic Resonance Imaging

In magnetic resonance imaging (MRI) one obtains the measurement g as the
Fourier transform of f . Ideally a stable reconstruction can be obtained by in-
verse Fourier transformation of fully sampled k-space data, but in cardiac imaging
a full k-space sampling can only be obtained during cardiac gated breath-hold and
especially sick and very young patients find breath-holding difficult. Thus, real-
time sequences with highly undersampled data are required to achieve sufficient
acceleration factors (14× in our application).

As shown in [5] a convolutional neural network is especially suited for inverse
problems, such as MRI, where the normal operator A∗A is of convolutional type.
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Inverse FT
Real-time

De-aliased by CNN
Breath-hold
Reference recon.

Figure 1. Reconstructions of actual real-time measurements in
comparison to breath-hold reference of the same patient (right)

In our study [4], we extend this approach to a 3D (2D plus time) setting and
investigate both reconstruction quality, and clinical relevance of the reconstruction.

The specific CNN was trained using synthetic training data created from previ-
ously acquired breath hold cine images from 250 patients and then used to recon-
struct actual real-time, tiny Golden Angle (tGA) radially sampled free breathing
data acquired in 10 new patients. Clinical relevance was determined by calculat-
ing ventricular volumes from the reconstructed data. Results show that clinical
measures of reconstructions from real-time data are not statistically significantly
different from gold-standard, cardiac gated, breath-hold techniques.

Post-processing of Direct Reconstructions in Electrical Impedance

Tomography

In [2] we present a similar approach but applied to the nonlinear inverse problem
of electrical impedance tomography (EIT), modeled as an inverse boundary value
problem governed by a generalised Laplace equation

(1)

{
∇ · σ∇u = 0 in Ω,

σ∂νu = ϕ on ∂Ω,

where u models the electrical potential inside the domain Ω ⊂ R
2 for a given con-

ductivity σ, with the Neumann boundary condition describing the applied mean-
free current ϕ. The measurement data consists of pairs of current and voltage
measurements and is modeled by the current-to-voltage (Neumann-to-Dirichlet)
map Λσ defined by Λσϕ := u|∂Ω .

A reconstruction of the conductivity σ, can be obtained by a direct inversion al-
gorithm known as the D-bar method [6]. First the measured data is transformed to
a non-linear Fourier transform of the conductivity, the so-called scattering trans-
form, which can then be inverted by solving a D-bar equation. Regularisation
is applied by low-pass filtering (the stable region) of the scattering transform,
resulting in blurred reconstructions. Therefore we investigated training a post-
processing network to sharpen these low-pass filtered reconstructions. The trained
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Experiment Low-Pass D-bar Image Corrected by CNN

Figure 2. Reconstructions of EIT measurements from the
ACT4 system at RPI, simulating a pleural effusion (higher con-
ductivity) in the left lung.

network is then applied to measurement data from the ACT4 system located at
the Rensselaer Polytechnic Institute.

Learned Iterative Reconstruction for Photoacoustic Limited-view

Measurements

As seen in the two previous studies direct reconstruction and post-processing per-
forms very well, but is ultimately limited by the information contained in the initial
reconstruction. This limitation will have a considerable influence in limited-view
geometries and hence motivated by [1] we investigate in [3] a possibility to learn
an iterative reconstruction algorithm for realistic 3D high resolution limited-view
photoacoustic tomography.

In this application we consider only the linear part that is typically modeled by
the following initial value problem for the wave equation

(∂tt − c20∆)p(r, t) = 0, p(r, t = 0) = x, ∂tp(r, t = 0) = 0.

The measurement is then modeled as a linear operator M acting on the pressure
field p(r, t) restricted to the boundary of the computational domain Ω and a finite
time window: y = M p|∂Ω×(0,T ). The simulation of the forward operator and its
adjoint is computationally demanding and hence learning of the iterative recon-
struction algorithm needs to follow a greedy approach, i.e. each iterate is learned
separately and to the best possible state given the result of the previous iterate.

The network is trained on a set of segmented lung vessels from human CT scans
and with some modifications applied to in-vivo measurements of a human hand.
Results show that the iterative approach does outperform simple post-processing
at the cost of longer computations times, but significantly faster than classical
iterative schemes.
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Total variation
20 iter., PSNR: 38.05

Sub-sampled
Learned recon.

5 iter., PSNR: 41.40

Fully-sampled
Reference recon.

Figure 3. Example for real measurement data of a human palm.
The images shown are top-down maximum intensity projections.
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From Variational Models to Variational Networks

Thomas Pock

(joint work with K. Kunisch, Y. Chen, K. Hammernik, E. Kobler, F. Knoll)

Variational models are one of the most successful and flexible mathematical frame-
works for solving inverse problems in imaging. The basic idea is to represent the
solution u∗ of the inverse problem as a minimizer of a regularized least-squares
problem of the form

u∗ = argmin
u

R(u) +
1

2
‖Au− b‖2,

where A is the linear forward operator of the inverse problem, b is the measurement
data, and R is a regularization functional that should favor physically meaningful
solutions. Over the years, different regularization functionals have been proposed.
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Arguably, the most successful one is the total variation (TV) semi-norm [6]

TV(u) =

∫

Ω

|Du|.

Its most important property is that it allows for sharp discontinuities in the solu-
tion. From a computational point of view, the TV is very convenient, since it is
convex and hence allows to compute a global minimizer. One caveat of the total
variation is that it favors piecewise constant solutions. This leads to the so-called
staircasing artifact, which introduces blocky structures in the solution. In order to
overcome this problem, different higher-order smoothness variant of the TV have
been proposed, such as the total generalized variation (TGV) [1]. The TGV of
second order is defined as

TGV2(u) = inf
v

∫

Ω

|Du− v|+ α

∫

Ω

|Ev|,

where v is an auxiliary vector field and Ev denotes the symmetrized gradient of
v. The parameter α > 0 can be used to assign a different importance to the
higher-order smoothness term.

Although TV and TGV are very successful models, they are still too simple to
capture the complexity of natural images, e.g. thin structures, texture. There-
fore an interesting questions is whether one could not learn a better regularization
functional from images. An interesting model, which still can be seen as a gener-
alization of the TV is given by the so-called fields of experts (FoE) prior model [5].
It is given by

FoE(u) =
n∑

i=1

∫

Ω

φi((ki ∗ u)(x)dx,

where ki are small filter kernels and φi are non-linear potential functions. In [3],
we used bilevel optimization to learn the optimal kernels and potential functions
for the task of image denoising. The idea is to find parameters ϑ = (ki, φi)

n
i=1 that

minimize the quadratic difference between the minimizer of the variational model
and the corresponding groundtruth solution g. Formally, the bilevel optimization
problem is given by

min
ϑ

1

2
‖u∗(ϑ) − g‖2

s.t. u∗(ϑ) = argmin
u

FoE(u, ϑ) +
1

2
‖Au− b‖2.

In order to compute gradients of the upper level function with respect to the
parameters ϑ, one needs to rely on the implicit function theorem. This requires
in each gradient computation to solve the variational model with high accuracy
and also to solve a linear system equation involving the Hessian matrix of the
variational model. This is computationally very expensive and very sensitive with
respect to errors in the computation of the minimizer of the variational model.

An alternative way to learn the parameters is to replace the exact minimizer in
the bilevel formulation by the T -th iterate of a solver for the variational model, e.g.
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the T -th iterate of a gradient descent algorithm. With this, the bilevel optimization
problem becomes

min
ϑ

1

2
‖uT (ϑ)− g‖2

s.t. ut+1 = ut − ht
(
∇FoE(ut, ϑ) +A∗(Aut − b)

)
, t = 0, ..., T − 1,

where ht is a suitable step size and u0 is a suitable initial solution. The striking
advantage of this formulation is that we can always compute the exact gradient of
the upper level function with respect to the parameter vector ϑ, based on the chain
rule, which in the neural networks community is known as the back-propagation
algorithm. Indeed, representing the iterative algorithm as a graph, we see that it
becomes very similar to recently proposed convolutional neural networks (CNNs).
Another advantage of this formulation is that inaccuracies of the solution in the
lower-level problem, e.g. when performing only a small number of iterations,
do not introduce errors to the learning problem. In fact the parameters will be
learned such that we get the best performance out of a fixed computational budget
prescribed by the number of iterations T .

In [2], we generalized the above scheme, by allowing the parameter vector ϑ

to vary in each iteration of the iterative algorithm making the scheme even more
similar to CNNs. Hence, we gave this scheme the name variational networks. It
turns out that the additional flexibility leads to a significant performance increase
on a number of inverse problems including image restoration, superresolution,
JPEG deblocking and MRI reconstruction [4].

Unfortunately, it turns out that it is hard to make theoretical statements about
variational networks. For example it would be helpful to show that variational
networks decrease in each iteration some (Bregman) distance to the ground truth
solution. We hope that we can give some answers to such problems in our future
research.
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Deep Learning Mitigating Ill-posedness in Inverse Problems

Maarten Valentijn de Hoop

(joint work with Joan Bruna, Ivan Dokmanić, Stéphane Mallat)

We present two complementary learning-based methods to recovery in ill-posed
inverse problems.
The first approach is based on learning generalized moments in a feature space of
the models from the data. We distinguish subspaces on which the inverse problem
is Lipschitz continuous from a residual that we aim to “Gaussianize” in a feature
space. For the feature transform, we introduce a deep scattering network, provid-
ing a scale-dependent sparsity specification. If we have a sufficiently large set of
relevant models, we can introduce and train a generative network the “inverse” of
which can replace the above mentioned transform.
The second method is based on learning a deep network generating a new ac-
quisition representing a “preconditioning” of the data. Here, we introduce a
strategy and example network derived from boundary control that expand the
well-posedness of the inverse problem.
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Large Scale Machine Learning and Inverse Problems

Lorenzo Rosasco

(joint work with Ernesto De Vito, Andrea Caponnetto, Umberto De Giovannini,
Francesca Odone)

Extracting an estimator from a finite set of input-output samples of an unknown
probability distribution, which should be descriptive for new input data – this is
the main goal of the theory of learning from examples (see [8, 4]).
Many works established the strong connections of this field with the theory of
inverse problems (see [8, 5, 4]). However, these works mainly focus on the discrete
setting and do not consider the probabilistic properties of the learning problem.
The probabilistic aspect of learning theory and the intrinsically deterministic na-
ture of the theory of inverse problems makes it non-trivial to draw straightforward
connections between these two field of studies.
In this work, which is based on the findings in [2], we try to extend this analysis to
the continuous case, which will allow us, among other things, to clearify the rela-
tion of the consistency approach in learning theory and the stability convergence
property in inverse problems.
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As learning problem, we consider the input space X ⊂ R
n and the output space

Y ⊂ [−M,M ] ⊂ R for M ≥ 0. The input x ∈ X and the output y ∈ Y are
related via the unknown probability distribution ρ(x, y) on X × Y. The main goal
is now to extract a function fz : X → R via a given training set z := (x,y) =
((x1, y1), . . . , (xℓ, yℓ)), which is drawn independently and identically distributed
with respect to the probability distribution ρ. The function fz should be able to
describe the distribution ρ, such that fz(x) is a good estimate of the output for
given input data x ∈ X. The map z 7→ fz is commonly referred to as the learning
algorithm. The computation of fz is done by minimizing the expected risk

I[f ] :=

∫

X×Y

V (f(x), y) dρ(x, y),

where V (f(x), y) is the loss function.
In our work, we restrict ourselves for simplicity reasons to the most common
quadratic loss

V (f(x), y) = (f(x)− y)2.

Usually, the minimization problem is reformulated as a regularized least squares
problem of the form

(1) min
f∈H

{
1

ℓ

ℓ∑

i=1

(f(xi)− yi)
2 + λΩ(f)

}
,

where H is a fixed space of functions, called the hypothesis space, Ω a penalty
term and λ > 0 a regularization parameter. In our work, we assume that H is a
reproducing kernel Hilbert space on X with a continuous kernel K to ensure the
necessary structure for our analysis (see also [1, 6]). The learning algorithm is
called consistent, if the parameter λ can be chosen such that

(2) lim
ℓ→+∞

P

[
I[fλ(ℓ,z)

z
]− inf

f∈H
I[f ] ≥ ε

]
= 0

for all ε > 0.
From the side of inverse problems, we consider two Hilbert spaces H and K, a
linear bounded operator A : H → K and the equation

Af = g,

where g ∈ K denotes the unknown exact data without noise. The problem is
typically called ill-posed, if the solution does not exist, is not unique or does
not depend continuously of the data. What is actually known from the data is
just a noisy version of g, namely gδ ∈ K with ‖g − gδ‖K ≤ δ. One of the most
common ways to tackle this is by considering a variational regularization approach.
Applying Tikhonov regularization to the inverse problem, we aim for a solution of
the minimization task

(3) min
f∈H

{
‖Af − gδ‖

2
K + λ‖f‖2H

}
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for λ > 0, which admits the unique minimizer

fλ
δ = (A∗A+ λI)−1A∗gδ

with A∗ the adjoint operator of A. To be a valid regularization technique, the
parameter λ has to be chosen depending on the noise level δ and the noisy data

gδ, such that the reconstruction f
λ(δ,gδ)
δ converges to the solution f † given by the

Moore-Penrose inverse, if the noise goes to zero, i.e.

(4) lim
δ→0

∥∥∥fλ(δ,gδ)
δ − f †

∥∥∥
H

= 0.

The similarity between the least squares problem in (1) and the variational regu-
larization approach in (3) as well as between the consistency property (2) of the
learning problem and the convergence property (4) in ill-posed inverse problems
is striking. However, it is not clear from the learning problem, how to derive a
direct problem, i.e. an operator between the Hilbert spaces H and K and how the
noise level δ in inverse problems is connected to statistical learning.
This work makes an in-depth analysis of these relations and will result, among
other things, in a new probabilistic bound for the regularized least-squares algo-
rithm.
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Deep Neural Bregman Architectures

Martin Benning

(joint work with Martin Burger)

We show that, under certain constraints, deep neural networks and iterative reg-
ularisation methods are equivalent. We further exploit this equivalence to derive
a novel Fejér-monotonicity result for deep neural network architectures.
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A deep neural network is a composition of simple, parametrised non-linear op-
erators, i.e. mathematically a deep neural network can be described as

uk =

{
Gk−1(θk−1, u

k−1) k 6= 1

G0(θ0, f
δ) k = 1

,(1)

for k = {1, . . . , k∗}. Here f δ denotes some input, uk∗

describes the output of

the k∗-layer network, the individual uk-s are the hidden layers, and {Gk}
k∗−1
k=0

represent the non-linear operators, parametrised with parameters {Θk}
k∗−1
k=0 . A

famous example for (1) is the Rectified Linear Unit (ReLU [6]), which reads as

uk =

{
max(0, Ak−1u

k−1 + bk−1) k 6= 1

max(0, A0f
δ + b0) k = 1

.(2)

Hence, the individual non-linear operators are all of the form Gk(Θk, u
k) = max(0,

Aku
k + bk), for parameters Θk := (Ak, bk).

We now demonstrate that the ReLU (2) can be interpreted as an iterative
regularisation method of the form of a modification of the linearised Bregman
iteration [8, 7]. In its generic form, this modification reads as [1]

uk = argmin
u

{
〈K∗Qk−1(Kuk−1 − f δ), u− uk−1〉+D

pk−1

J (u, uk−1)
}
,(3a)

pk = pk−1 −K∗Qk−1(Kuk−1 − f δ) ,(3b)

for k = {1, . . . , k∗}, initial values u0 and p0 ∈ ∂J(u0). Here K is a linear and

bounded operator, {Qk}
k∗−1
k=0 a family of symmetric, positive definite operators, J

a proper, convex and lower semi-continuous functional, and D
pk−1

J (uk, uk−1) the

Bregman distance [2, 5] with respect to J , for arguments uk and uk−1, and a
subgradient pk−1 ∈ ∂J(uk−1). If we choose

J(u) :=
1

2
‖u‖22 + χ≥0(u) ,

where χ≥0 denotes the characteristic function over the non-negative orthant, we
can rewrite (3a) to

uk = max(0, (I −K∗Qk−1K)uk−1 +K∗Qk−1f
δ + qk−1) .

For Ak−1 := I−K∗Qk−1K and bk−1 := K∗Qk−1f
δ + qk−1 this coincides with (2),

if we allow for a different input (in this case u0). An important consequence of the
connection between (2) and (3) is that we can derive a Fejér monotonicity result

for (3) if we choose J and {Qk}
k∗−1
k=0 such that the surrogate functional

Jk(u) := J(u)−
1

2
〈Qk(Ku− f δ),Ku− f δ〉
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is convex for all k ∈ {0, . . . , k∗ − 1}. If we assume that we want to iterate towards
a function u†, and that for u† we can choose the stopping index k∗ such that

〈Qk∗−1(Kuk∗

− f δ),Kuk∗

− f δ〉 ≤ 〈Qk∗−1(Ku† − f δ),Ku† − f δ〉

< 〈Qk−1(Kuk − f δ),Kuk − f δ〉
(4)

is satisfied for all k < k∗, then we can guarantee the following monotonicity result.

Lemma 1 ([1, Lemma 9.7]). Suppose u† satisfies the discrepancy estimates (4).
Then the iterates (3) satisfy

D
qk

Jk
(u†, uk) ≤ D

qk−1

Jk−1
(u†, uk−1)

with qk ∈ ∂J(uk), for all k < k∗.

As a consequence, given samples {f δ
j , u

†
j}

m
j=1 of training (input and output)

data, a sensible learning model to obtain optimal parameters Θ̂ = (Q̂0, . . . , Q̂k∗−1)
could be the following minimisation problem:

Θ̂ ∈ argmin
Θ





m∑

j=1

D
qk

∗

Jk∗
(u†

j , u
k∗

j (Θ)) s.t. Jk is convex for all k < k∗



 .

Open research questions are the numerical realisation and numerical examples of
the proposed model. Also, the monotonic decrease result is merely a first step
towards a better mathematical understanding of deep neural networks. Follow-
up research can, for example, try to establish whether deep neural networks with
suitable constraints are also convergent regularisation methods, or if the iterates
converge to a minimiser of some objective energy.
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Learning Regularisers for Imaging Inverse Problems: From Quotient

Minimisation to Adversarial Neural Networks

Carola-Bibiane Schönlieb

(joint work with Martin Benning, Guy Gilboa, Joana Grah, Sebastian Lunz,

Ozan Öktem)

We consider variational regularisation models of the form

(1) min
u∈B

{J (u) +D(Tu, g)} ,

where g is the given datum, u an image computed from g, T : B → H a lin-
ear forward operator between an appropriately chosen solution space B and data
space H , D a distance function in H and J a regularisation functional. We are
interested in the idea of learning parametrised regularisers that can distinguish
between desired and undesired examples, that is train J from elements in B that
we want J to favour and from elements in B that we want J to discourage. In
particular, we propose two strategies in this realm: learning sparsity-promoting
regularisers by quotient minimisation [2, 3] and learning regularisers via deep gen-
erative adversarial networks (GANs) [5], in particular using so-called Wasserstein
GANs [1]. Let us briefly review both approaches.

In [2, 3] we propose to learn a K-dimensional parametrisation h of a regulari-
sation functional J by

ĥ ∈ argmin
‖h‖2=1

mean(h)=0

1
M

M∑
i=1

K∑
k=1

J (u+
i ;hk)

1
N

N∑
j=1

K∑
k=1

J (u−
j ;hk)

, J (u;h) = ‖u ∗ h‖1

where we focus on sparsity-promoting J s, hk corresponds to a convolution kernel,
and u+

i and u−
i are desired and undesired input signals, respectively. We show how

this approach can be used for learning optimal sparse filters for signals and images
of a particular class, e.g. anisotropic filters for images with only vertical structures,
to decompose an image into different sparsity patterns, and how learned filters
can be deployed as a very simple image classification approach. For the numerical
solution of the quotient minimisation model we propose an optimisation scheme
that is based on numerical algorithms for non-linear eigenvalue problems [4] and
for which convergence along subsequences can be proven.

The second approach for learning disparity-based regularisers from [5] is based
on Wasserstein GANs [1]. Here, a regulariser is trained with the discriminative
part of a Wasserstein GAN to distinguish between the distribution of ‘undesirable’
outcomes (modelled by, if it exists, the pseudo-inverse T †g) and ‘desirable’ out-
comes (modelled by the groundtruth for u). More precisely, we train a regulariser
ΨΘ, parametrised by a neural network Θ to minimise the Wasserstein loss function

EX∼πΨΘ(X)− EX∼ρΨΘ(X) + λ · E (‖∇xΨΘ(X)‖ − 1)
2
+ .
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which is used to approximate

sup
f∈1−Lip

EX∼ρf(X)− EX∼πf(X),

where π and ρ are the distributions of desirable images (ground truth images)
and of typical corrupted images ρ, respectively. For the resulting regularisation
model (1) with J = ΨΘ we provide, under appropriate assumptions on π and ρ,
existence and stability results. The performance of the regulariser is discussed for
applications in image denoising and computed tomography.

In conclusion, the discussed approaches demonstrate two different and promis-
ing ways for learning image regularisers by showing them both desirable and un-
desirable solutions. Note that both approaches render regularisers that can be
integrated in a variational framework, making them amenable to the derivation
of mathematical guarantees for the solution and for statistical interpretation, and
they can be trained with both paired and unpaired training data (π, ρ) providing
a more flexible supervised learning framework.
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