
Mathematisches Forschungsinstitut Oberwolfach

Report No. 12/2018

DOI: 10.4171/OWR/2018/12

Statistical Inference for Structured High-dimensional
Models

Organised by
Anatoli Juditsky, Saint Martin d’Hères

Alexandre Tsybakov, Malakoff

Cun-Hui Zhang, Piscataway

11 March – 17 March 2018

Abstract. High-dimensional statistical inference is a newly emerged direc-
tion of statistical science in the 21 century. Its importance is due to the
increasing dimensionality and complexity of models needed to process and
understand the modern real world data. The main idea making possible
meaningful inference about such models is to assume suitable lower dimen-
sional underlying structure or low-dimensional approximations, for which the
error can be reasonably controlled. Several types of such structures have
been recently introduced including sparse high-dimensional regression, sparse
and/or low rank matrix models, matrix completion models, dictionary learn-
ing, network models (stochastic block model, mixed membership models) and
more. The workshop focused on recent developments in structured sequence
and regression models, matrix and tensor estimation, robustness, statistical
learning in complex settings, network data, and topic models.

Mathematics Subject Classification (2010): 62Gxx (in particular, 62G05, 62G08, 62G10).

Introduction by the Organisers

The workshop Statistical Inference for Structured High-Dimensional Models, or-
ganized by Anatoli Juditsky (Université Grenoble-Alpes), Alexandre Tsybakov
(CREST, ENSAE), and Cun-Hui Zhang (Rutgers University), was held March
11th – March 17th, 2018. The workshop aimed to highlight recent achievements
in high-dimensional inference for structured statistical models based on the in-
terplay of techniques from mathematical statistics, optimization theory and high-
dimensional probability, and to bring together researchers to exchange the ideas
and to explore open mathematical problems. These goals were largely achieved.
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The workshop was well attended by 52 participants with broad geographic repre-
sentation from three continents. Twenty five talks were presented, and seven PhD
students shortly presented their work in a ”Young researcher’s series” on Tuesday
evening. The talks can be roughly chategorized into the following topics, which
the workshop was focused on.

Estimation and inference in structured sequence and high-dimensional regres-
sion models: Pierre Bellec reports recent advances on the noise-barrier and signal
bias of the Lasso and other convex estimators; Emmanuel Candes presents an
asymptotic theory in logistic regression in the regime where the number of data
points is of the same order as the number of unknown parameters; Richard Sam-
worth studies the least square estimation in isotonic regression in general dimen-
sions; Bin Yu studies local identifiability analysis of dictionary learning.

Matrix and tensor estimation: Vladimir Koltchinskii discusses asymptotically
efficient estimation of functionals of high-dimensional covariance; Zongming Ma re-
ports recent developments in local asymptotic normality in spiked random matrix
models; Vladimir Spokoiny studies large ball probability with applications to in-
ference for spectral projectors; Martin Wahl presents relative perturbation bounds
with applications to empirical covariance operators; Dong Xia studies noisy low
rank tensor completion; Anru Zhang discusses singular value decomposition for
high-dimensional tensor data.

Robust inference: Rina Foygel Barber studies robust inference with the knock-
off filter; Olivier Collier presents recent work on sparse functional estimation and
robust variance estimation; Arnak Dalalyan studies statistically and computation-
ally efficient estimation of multidimensional linear functionals; Stanislav Minsker
considers robust modifications of U-statistics and their applications.

Statistical leaning in complex settings and computational issues: Chao Gao
presents convergence rates of variational posteriors; Alexandra Carpentier stud-
ies hypothesis testing with Gaussian mixture models; Andrea Montanari studies
feasibility in weak recovery of high-dimensional signals; Boaz Nadler develops an
asymptotic theory of projection pursuit in high dimensions; Richard Nickl studies
information operators and statistical inverse problems; Johannes Schmidt-Hieber
presents a statistical theory for deep neural networks; Yihong Wu studies optimal
estimation of Gaussian mixtures via denoised method of moments.

Network data, topic models and other applications: Mladen Kolar studies esti-
mation and inference for differential networks; Jing Lei discusses nonparametric
network representation and estimation using graph root distribution; Florentina
Bunea presents optimal estimation of structured loading matrices with applica-
tions to overlapping clustering and topic models; Zheng Ke develops a spectral
approach to optimal topic estimation.
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Abstracts

On statistical and computational complexity of two problems:

estimating multidimensional linear functionals and robust estimation

of a mean

Arnak Dalalyan

(joint work with Olivier Collier)

Let us consider the problem of estimating a linear functional in the Gaussian
sequence model. This means that we observe n noisy vectors Y1, . . . , Yn ∈ R

p such
that

Yi = θi + σξi, i = 1, . . . , n,(1)

where θi = E[Yi] are the unknown signals. The noise variables ξi are assumed to
be iid Gaussian Np(0, Ip) and the noise level is assumed to be known. Our goal
in this model is to estimate the linear functional L(Θ) =

∑
i∈[n] θi in the scenario

of column sparsity of the matrix Θ = [θ1, . . . , θn] ∈ R
p×n. This means that the

number of nonzero columns of Θ, denoted by s, is much smaller than n.

Figure 1. An illustration of the problem of linear functional estima-
tion. In this example n = 103, p = 5×104 and s = 50. We show on the
left a subsample of 16 vectors Yi each of which is obtained by vectoriz-
ing the corresponding image and, on the right, the results obtained by
the naive estimator

∑
i∈[n] Yi and the oracle estimator

∑
i:θi 6=0 Yi.

Our first result shows that the minimax risk defined by

rmmx(n, p, s) = inf
L̂

sup
Θ

E[‖L̂− L(Θ)‖22]

admits the following lower bound: there is a universal constant c > 0 such that

rmmx(n, p, s) ≥ cσ2(s2 log(1 + n
s2 ) + sp).
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We then analyze some estimator having polynomial in (s, p, n) computational
complexity, such as the block soft and hard thresholding, and show that for
the best choice of the tuning parameter they have a worst case risk of order
σ2(s2{p log(1 + n2p/s4)}1/2 + sp). To date, this is the best known upper bound
on the minimax risk over all possible computationally efficient estimators. Along
with this result, we define a new estimator L̂GSS, termed greedy subset selector,
for which the following property holds: there is a universal constant C such that
for every δ ∈ (0, 1) and for every s-column sparse matrix Θ,

P
[
‖L̂GSS − L(Θ)‖22 ≤ Cσ2

(
s2 log(n/δ) + sp

)
∧
(
n log(1/δ) + np

)]
≥ 1− δ.

Combined with the lower bound mentioned above, we see that the nonasymptotic
minimax rate is between s2 ∧n+ sp and s2 ∧ (np)+ sp, up to possible logarithmic
factors. This also shows that the GSS estimator is rate optimal in the regime
s = O(

√
n∨ p). In the regime of the large sparsity, s ≥ const(

√
n∨ p), the rate of

the minimax risk remains unknown (we only know that it is between n+ sp and
s2 ∧ np).

We then focus on the problem of robust estimation of the mean of a Gaussian
distribution. The model, similar to (1), reads as

Yi = µθi + σξi, i = 1, . . . , n,(2)

where µ ∈ R
p is the unknwon mean. The goal now is to estimate µ considering

that the nuisance parameter Θ is s-column sparse as before. The sparsity s plays
here the role of the number of outliers. Without loss of generality, we assume
hereafter that σ = 1.

Using the results of [2], one can show that the minimax risk in this problem,
defined as

rmmx
µ (n, p, s) = inf

µ̂
sup
µ,Θ

E[‖µ̂− µ‖22]

is of the order (up to possible log terms)

rmmx
µ (n, p, s)

log≍ p

n
+
( s
n

)2
,

and that this rate can be attained by Tukey’s median. It is also known that the
coordinate-wise median or the geometric median have a much larger risk, of the
order

p

n
+ p
( s
n

)2
.

The most important shortcoming of Tukey’s median is that its computational
complexity is prohibitively large even for moderate values of p. To improve on
this, we continue our efforts [5, 1] in using convex programming based approaches
to solve the robust estimation problem. Our main result is the introduction of
a new estimator, that can be seen as an iterative group-soft thresholding, that
satisfies the following property: for every ν ∈ (0, 1) (close to zero), if we perform
K = log2(1/ν)+log log p iterations of our algorithm IGST, the resulting estimator



Statistical Inference for Structured High-dimensional Models 599

µ̂IGST satisfies

E[‖µ̂IGST − µ‖22] .
p

n
+
( s
n

)2
+
(s4p
n4

)1−ν

.

All these results are discussed and proved in [3], while analogous problems in the
Poisson model are studied by [4].
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Sparse functional estimation and robust variance estimation

Olivier Collier

(joint work with Laëtitia Comminges and Alexandre B. Tsybakov)

Adaptive estimation in the sparse mean model and in sparse regression exhibits
some interesting effects. We consider estimation of a sparse vector, of its l2-
norm and of the noise variance in the sparse linear model. We establish the
optimal rates of adaptive estimation when adaptation is considered with respect
to the noise level, the noise distribution and sparsity. These rates turn out to be
different from the minimax non-adaptive rates when they are known. A crucial
issue is the ignorance of the noise level. Moreover, knowing or not knowing the
noise distribution can also influence the rate. For example, the rates of estimation
of the noise level can differ depending on whether the noise is Gaussian or sub-
Gaussian without a precise knowledge of the distribution. We also show that in
the problem of estimation of a sparse vector under the l2-risk when the variance
of the noise in unknown, the optimal rate depends dramatically on the design.

Robust modifications of U-statistics and their applications

Stanislav Minsker

(joint work with Xiaohan Wei)

Let Y be a d-dimensional random vector with unknown mean µ and covariance
matrix Σ. Results presented in this talk are motivated by the task of design-
ing an estimator of Σ that admits tight deviation bounds in the operator norm
‖ · ‖ under minimal assumptions on the underlying distribution, such as existence
of only 4th moments of the coordinates of Y . To address this task, we propose
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“robust” versions of the operator-valued U-statistics, obtain non-asymptotic guar-
antees for their performance, and demonstrate implications of these general results
for structural covariance estimation problems.

Consider a sequence of i.i.d. random variables X1, . . . , Xn (n ≥ 2) taking val-
ues in a measurable space (S,B). Assume that H : Sm → H

d (where 2 ≤ m ≤ n
and H

d is the set of all d × d self-adjoint matrices) is a Sm-measurable permu-
tation symmetric kernel, meaning that H(x1, . . . , xm) = H(xπ1 , . . . , xπm

) for any

(x1, . . . , xm) ∈ Sm and any permutation π. Let Ψ(x) =

{
x2

2 − |x|3

6 , |x| ≤ 1,
1
3 + 1

2 (|x| − 1), |x| > 1

be the analogue of Huber’s loss function. For any A ∈ H
d with the spectral de-

composition A =
∑

j λjuju
∗
j , we define Ψ(A) =

∑
j Ψ(λj)uju

∗
j . Given θ > 0,

let

Ûn,θ = argminU∈Hd trace

[ ∑

(i1,...,im)∈Im
n

Ψ
(
θ (H(Xi1 , . . . , Xim)− U)

)]

be the “robust” version of the U-statistic

Un =
(n−m)!

n!

∑

(i1,...,im)∈Im
n

H(Xi1 , . . . , Xim).

The following result holds: let k = ⌊n/m⌋, and assume that t > 0 satisfies dt
k ≤

1
104 . Then for any σ ≥

∥∥∥E (H(X1, . . . , Xm)− EH(X1, . . . , Xm))
2
∥∥∥
1/2

and θ∗ :=

1
σ

√
2t
k ,
∥∥∥Ûn,θ∗ − EH

∥∥∥ ≤ 23σ
√

t
k with probability at least 1− (4d+1)e−t. Several

extensions and statistical applications of this result are discussed.
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What do we really know about logistic regression?

Emmanuel J. Candès

(joint work with Pragya Sur)

Every student in statistics or data science learns early on that when the sample
size n largely exceeds the number p of variables, fitting a logistic model produces
estimates that are approximately unbiased. Every student also learns that there
are formulas to predict the variability of these estimates which are used for the
purpose of statistical inference; for instance, to produce p-values for testing the
significance of regression coefficients. Although these formulas come from large
sample asymptotics, in which the number n of observations is increasingly large
and the number p of variables under study is held constant, we are often told that
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we are on reasonably safe grounds when n is large in such a way that n ≥ 5p
or n ≥ 10p. This paper shows that this is far from the case, and consequently,
inferences routinely produced by common software packages are often unreliable.
This is a very siginificant problem since applied researchers everywhere routinely
fit high-dimensional models.

Consider a logistic model with independent features in which n and p become
increasingly large in a fixed ratio. Then we show that

(1) the MLE is biased,
(2) the variability of the MLE is far greater than classically predicted,
(3) and the commonly used likelihood-ratio test (LRT) is not distributed as a

chi-square.

The bias of the MLE is extremely problematic as it yields completely wrong pre-
dictions for the probability of a case based on observed values of the covariates.

In this talk, we present a new theory, which asymptotically predicts (1) the bias
of the MLE, (2) the variability of the MLE, and (3) the distribution of the LRT.
We empirically also demonstrate that these predictions are extremely accurate in
finite samples. Further, an appealing feature is that these novel predictions depend
on the unknown sequence of regression coefficients only through a single scalar,
the overall strength of the signal. This suggests very concrete procedures to adjust
inference; we describe one such procedure learning a single parameter from data
and producing accurate inference.

Our theory is presented in [1], see also [2] and we give below one salient result.
Imagine we have n independent observations (yi,Xi) where yi ∈ {0, 1} is the
response variable and Xi ∈ R

p the vector of predictor variables. The logistic
model posits that the probability of a case conditional on the covariates is given
by

P(yi = 1 |Xi) = σ(X ′
iβ),

where σ(t) = et/(1 + et) is the standard sigmoidal function. We describe the
asymptotic properties of the MLE and the LRT in a high-dimensional regime,
where n and p both go to infinity in such a way that p/n → κ. We work with
independent observations {Xi, yi} from a logistic model such that P(yi = 1 |Xi) =
ρ′(X ′

iβ). We assume here that Xi ∼ N (0, n−1Ip), where Ip is the p-dimensional
identity matrix. (This means that the columns of the matrix X of covariates
are unit-normed in the limit of large samples.). The exact scaling of Xi is not
important: the important scaling is the overall strength of the signal and we
assume that the p regression coefficients (recall that p increases with n) are scaled
in such a way that

(1) lim
n→∞

Var(X ′
iβ) = γ2,

where γ is fixed. It is useful to think of the parameter γ as the signal strength.
Another way to express (1) is to say that limn→∞ ‖β‖2/n = γ2.

Theorem 1. Assume the dimensionality and signal strength parameters κ
and γ are such that γ < gMLE(κ) (the region where the MLE exists asymptotically).
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Assume the logistic model described above where the empirical distribution of {βj}
converges weakly to a distribution Π with finite second moment. Suppose further
that the second moment converges in the sense that as n→ ∞, Avej(β

2
j ) → Eβ2,

β ∼ Π. Then for any pseudo-Lipschitz function ψ of order 2,1 the marginal dis-
tributions of the MLE coordinates obey

(2)
1

p

p∑

j=1

ψ(β̂j − α⋆βj , βj)
a.s.−→ E[ψ(σ⋆Z, β)], Z ∼ N (0, 1),

where β ∼ Π, independent of Z.

Above, α and σ⋆ are solutions to a simple system of nonlinear equations—
naturally, the system depends on κ and γ—and can be easily computed.

In a nutshell, this new theory establishes that in some sense, β̂j is asymptotically
normal with mean α⋆ and standard deviation σ⋆. This is not at all what classical
predicts. More rigorously,

• this result quantifies the exact bias of the MLE in some statistical sense.
This can be seen by taking ψ(t, u) = t in (2), which leads to

1

p

p∑

j=1

(β̂j − α⋆βj)
a.s.−→ 0,

and says that β̂j is centered about α⋆ βj .
• Second, our result also provides the asymptotic variance of the MLE
marginals after they are properly centered. This can be seen by taking
ψ(t, u) = t2, which leads to

1

p

p∑

j=1

(β̂j − α⋆βj)
2 a.s.−→ σ2

⋆ .

• Third, our result establishes that upon centering the MLE around α⋆β,
it becomes decorrelated from the signal β. This can be seen by taking
ψ(t, u) = tu, which leads to

1

p

p∑

j=1

(β̂j − α⋆βj)βj
a.s.−→ 0.
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Statistical theory for deep neural networks with ReLU activation

function

Johannes Schmidt-Hieber

Large databases and increasing computational power have recently resulted in
astonishing performances of deep neural networks (DNNs) for a broad range of
learning tasks, including image and text classification, speech recognition and
game playing. Available theoretical results on neural networks cannot explain
these successes. A mathematical theory is, however, essential for several purposes.
Firstly, one wants to explain and understand several effects that are empirically
observed in trained networks. Secondly, a lot of expert knowledge is required to set
up the architecture of a network. Theoretical results should in the long run replace
this expert knowledge and lead to automatic recommendations of preferable initial
network configurations. Thirdly, one would like to have mathematical tools that
compare deep networks to other existing techniques. Finally, a mathematical
theory should be able to detect scenarios for which neural networks are not optimal
and point to possible limitations. The mathematical understanding should then
give insight on how to further improve the performance of neural networks. All
four aspects of a mathematical theory for multilayer neural networks are currently
unsolved.

A neural network requires the choice of an activation function σ : R → R and
the network architecture. The main interest is in understanding the rectifier linear
unit (ReLU) σ(x) = max(x, 0) because there is a clear gain in deep networks
using the ReLU instead of sigmoidal activation function, cf. [2]. In computer
science, multilayer neural networks are defined as directed acyclic graphs. For
theoretical purposes, it is, however, more convenient to work with the following
equivalent algebraic definition. For v = (v1, . . . , vr) ∈ R

r, define the shifted
activation function σv : Rr → R

r as σv(y) = (σ(yi − vi))i=1,...,r. The network
architecture (L,p) consists of a positive integer L called the number of hidden
layers or depth and a width vector p = (p0, . . . , pL+1) ∈ N

L+2. A neural network
with network architecture (L,p) is then any function of the form

f : Rp0 → R
pL+1 , x 7→ f(x) =WL+1σvL

WLσvL−1 · · ·W2σv1W1x,(1)

where Wi is a pi × pi−1 weight matrix and vi ∈ R
pi is a shift vector. Network

functions are therefore build by alternating matrix-vector multiplications with the
action of the non-linear activation function σ. A network with one hidden layer is
called shallow and the term multilayer refers to L > 1.

The key problem is to fit a neural network given training data. This means
that the network architecture is chosen beforehand and the weight matrices and
shift vectors that constitute the set of network parameters are learned/estimated
from the sample. In the supervised learning setting n independent and identically
distributed copies of pairs (X, Y ) are observed. Here, X is a d-dimensional random
vector modelling the input of the network and Y denotes the corresponding output.
The output can be a real number or a class label. The statistical challenge is to
reconstruct/learn the regression function f(x) = E[Y |x = x] from the sample.
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In practice, the loss induced by the log-likelihood is minimized using stochastic
gradient descent (SGD). Because of the non-convex function space, these gradient
descent methods converge to one of the many local minima. It is now widely
believed that the risk of most of the local minima is not much larger than the risk
of the global minimum, cf. [1]. For the theory it is convenient to ignore SGD and
to study the empirical risk minimiser instead.

To develop theory, we consider nonparametric regression. If the errors are
Gaussian, the log-likelihood induced loss is the least squares loss. Given a network
architecture (L,p) and a number of non-zero/active parameters s, the (L,p, s)-
neural network estimator is defined as the minimizer of the empirical least squares
risk over all networks with architecture (L,p), s non-zero network parameters and
all non-zero network parameters bounded in absolute value by a constant.

In principle, we could study the convergence rate of the neural network esti-
mator assuming that the true regression function is β-smooth (e.g. in the Hölder
sense). Since in practical applications of DNNs the input dimension is large any
statistical method will suffer from the curse of dimensionality. Convergence rates
are hence extremely slow. We argue that it is therefore irrelevant whether a method
attains these rate. Instead we study a class for which faster rates are achievable.
Many objects for which DNNs give state of the art results have a modular or hi-
erarchical structure. To build text, for instance, we first can generate lines, from
lines letters, from letters words, from words sentences and from sentences para-
graphs. The key observation is that only few objects are combined to build an
object on a higher abstraction level. To build a word for instance, few letters are
combined. Mathematically speaking, the structural assumption on the regression
function is that it has a decomposition of the form f = gq ◦ . . . ◦ g0 for functions
gi = (gij)j : Rdi → R

di+1 , where each function gij has Hölder smoothness βi and
is ti-variate.

If β∗
i := βi

∏q
ℓ=i+1(βℓ ∧ 1) we can show that the prediction risk of the (L,p, s)-

neural network estimator achieves the minimax rate maxi n
−2β∗

i /(2β
∗

i +ti) up to
logarithmic factors provided that the network depth L is proportional to logn, the
width of the network is large (sufficiently large powers of n) and

s ≍ maxi n
ti/(2β

∗

i +ti) logn. The precise statement can be found in [3]. The con-
vergence rate only depends on the ”effective dimension” ti but not on di. This can
lead to fast rates that are not affected by the curse of dimensionality. As special
cases, one can show that DNNs achieve (near) optimal rates for common structural
constraints such as (generalized) additive models.

Networks of the form (1) with ReLU activation function generate piecewise lin-
ear functions. Fitting piecewise linear functions does typically not give optimal
rates if the true function is more than twice differentiable. Because of the nonlin-
earity, DNNs achieve (near) optimal rates for all smoothness indices. For that we
need the network depth to be proportional to logn.
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The noise barrier and the large signal bias of the Lasso and other

convex estimators

Pierre C. Bellec

Convex estimators such as the Lasso, the matrix Lasso and the group Lasso have
been studied extensively in the last two decades, demonstrating great success in
both theory and practice. This paper introduces two quantities, the noise barrier
and the large scale bias, that provides novel insights on the performance of these
convex regularized estimators.

In sparse linear regression, it is now well understood that the Lasso achieves
fast prediction rates, provided that the correlations of the design satisfy some
Restricted Eigenvalue or Compatibility condition, and provided that the tuning
parameter is at least larger than some universal threshold. Using the two quantities
introduced in the paper, we show that the compatibility condition on the design
matrix is actually unavoidable to achieve fast prediction rates with the Lasso. In
other words, the ℓ1-regularized Lasso must incur a loss due to the correlations of
the design matrix, measured in terms of the compatibility constant. This results
holds for any design matrix, any active subset of covariates, and any positive
tuning parameter.

It is now well known that the Lasso enjoys a dimension reduction property: if the
target vector is s-sparse, the prediction rate of the Lasso with tuning parameter λ
is of order λ

√
s, even if the ambient dimension p is much larger than p. Such results

require that the tuning parameters is greater than some universal threshold. We
characterize sharp phase transitions for the tuning parameter of the Lasso around a
critical threshold dependent on s. If λ is equal or larger than this critical threshold,
the Lasso is minimax over s-sparse target vectors. If λ is equal or smaller than
critical threshold, the Lasso incurs a loss of order σ

√
s –which corresponds to a

model of size s– even if the target vector is more sparse than s.
Remarkably, the lower bounds obtained in the paper also apply to random, data-

driven tuning parameters. Additionally, the results extend to convex penalties
beyond the Lasso.
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Robust inference with the knockoff filter

Rina Foygel Barber

(joint work with Emmanuel Candès, Richard Samworth)

We consider the variable selection problem, which seeks to identify important
variables influencing a response Y out of many candidate features X1, . . . , Xp .
We wish to do so while offering finite-sample guarantees about the fraction of
false positives—selected variables Xj that in fact have no effect on Y after the
other features are known. More formally, after observing the data, we select a set

Ŝ ⊂ {1, . . . , p} indexing the features that we believe to be directly associated with
Y , and would like to control the false discovery rate,

E

[
|Ŝ ∩ {j : feature Xj is null}|

max{1, |Ŝ|}

]
,

where a feature Xj is said to be null if Xj ⊥⊥ Y | X−j , i.e. Xj is independent
from the response Y after controlling for the p − 1 remaining features, X−j =
(X1, . . . , Xj−1, Xj+1, . . . , Xp).

When the number of features p is large (perhaps even larger than the sample
size n), and we have no prior knowledge regarding the type of dependence between
Y and X , the model-X knockoffs framework [2] nonetheless allows us to select
a model with a guaranteed bound on the false discovery rate, as long as the
distribution of the feature vector X = (X1, . . . , Xp) is exactly known. This model
selection procedure operates by constructing “knockoff copies” of each of the p

features, denoted by X̃1, . . . , X̃p, which are then used as a control group to ensure
that the model selection algorithm is not choosing too many irrelevant features.

The method operates by drawing the p-dimensional knockoff feature vector X̃ ,
conditionally on the observed features X , in such a way that the joint distribution

of (X, X̃) is pairwise exchangeable, i.e. for each j,

(X, X̃)
d
= (X1, . . . , Xj−1, X̃j , Xj+1, . . . , Xp, X̃1, . . . , X̃j−1, Xj, X̃j+1, . . . , X̃p),

meaning that by swapping the jth featureXj with its knockoff copy X̃j , the overall
distribution is unchanged. The combined 2p many features (p original features and
p knockoffs) along with the response Y are then fed as input to a model selection
algorithm, and the algorithm’s ability to filter out the knockoffs from its selected
set is used to indicate its likely FDR.

In this work, we study the practical setting where the distribution of X could
only be estimated, rather than known exactly, and the knockoff copies of the Xj ’s
are therefore constructed somewhat incorrectly. Our results, which are free of any
modeling assumption whatsoever, show that the resulting model selection pro-
cedure incurs an inflation of the false discovery rate that is proportional to our
errors in estimating the distribution of each feature Xj conditional on the remain-
ing features {Xk : k 6= j}. The model-X knockoffs framework is therefore robust
to errors in the underlying assumptions on the distribution of X , making it an
effective method for many practical applications, such as genome-wide association
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studies, where the underlying distribution on the features X1, ..., Xp is estimated
accurately but not known exactly.

More concretely, suppose that PX is the true distribution of feature vector
X , and let QX be an estimate of this distribution. Suppose that our knockoff

features X̃ are constructed such that the pairwise exchangeability property is
satisfied relative to the estimated distribution QX of the features X (since the
true distribution PX is not known). In other words, we choose a conditional

distribution P̃X̃|X such that the joint distribution QX × P̃X̃|X satisfies pairwise

exchangeability, i.e.

If X ∼ QX and X̃ | X ∼ P̃X̃|X , then pairwise exchangeability is satisfied.

Assuming that the true distribution PX is well approximated by QX , then the true

joint distribution of (X, X̃), which is given by PX × P̃X̃|X , must approximately

satisfy pairwise exchangeability. To quantify this, we define the following measure
of divergence: for each feature j, let

K̂Lj =

n∑

i=1

log

(
Pj(Xij | Xi,−j)Qj(X̃ij | Xi,−j)

Qj(Xij | Xi,−j)Pj(X̃ij | Xi,−j)

)
,

where Pj and Qj are the jth conditionals of PX and QX , respectively—that is,
the true and estimated conditional distribution of Xj given X−j , and the indices
i = 1, . . . , n denote the n i.i.d. data points. In other words, this divergence mea-

sures whether swapping Xj with X̃j (across all n observed data points) would

substantially change the likelihood of the data. The notation K̂Lj suggests the

KL divergence, and indeed, E[K̂Lj ] is equal to the KL divergence between the

distribution of (Xi,∗, X̃i,∗)i=1,...,n, and the distribution of the same random vec-

tors with Xj and X̃j swapped. Of course, it’s clear that this divergence is zero if
pairwise exchangeability for the jth feature is satisfied exactly.

Our main results prove that K̂Lj exactly characterizes the performance of the
knockoff filter. First, as an upper bound, we show that false discoveries are con-
trolled, at least among the set of features Xj whose knockoffs are constructed to

be nearly pairwise exchangeable in the sense that K̂Lj is small:

Theorem 1.

E

[
|Ŝ ∩ {j : feature Xj is null, and K̂Lj ≤ ǫ}|

max{1, |Ŝ|}

]
≤ α · eǫ,

where α is the target FDR level, and ǫ ≥ 0 is arbitrary.

Our proof is based on a novel leave-one-out technique, inspired by leave-one-
out analyses of the Benjamini-Hochberg method [4] for multiple testing, e.g. the
analysis of [5].

Second, we show a lower bound that (up to constant factors) matches this upper
bound, proving that if a worst-case algorithm can lose FDR control whenever

maxnull j K̂Lj is likely to be ≥ ǫ:
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Theorem 2. If P{K̂Lj ≥ ǫ} ≥ c > 0 for some null j, then there exists a model
selection procedure that controls FDR at level α when X ∼ QX is the true feature
distribution, but if PX is the true feature distribution, has FDR ≥ α·(1+c(1−e−ǫ)).

Many open questions remain for this problem—in particular, in future work,

we hope to address the question of whether the divergence measure K̂Lj is too
pessimistic in practical settings, where we might be likely to use model selection
algorithms that are severely constrained in how they use the available data (e.g. se-
lecting features based only on coarse summary statistics), for which our worst-case
lower bound result (Theorem 2) above will no longer apply. In practical settings,
are there less conservative measures of our approximation error in the model for
the feature vector X , that will lead to FDR control results once we assume some
constraints on the model selection algorithm?
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A spectral approach to topic modeling

Zheng Tracy Ke

In the probabilistic topic models, the quantity of interest—a low-rank matrix con-
sisting of topic vectors—is hidden in the text corpus matrix, masked by noise, and
Singular Value Decomposition (SVD) is a potentially useful tool for learning such
a low-rank matrix. However, the connection between this low-rank matrix and
the singular vectors of the text corpus matrix are usually complicated and hard
to spell out, so how to use SVD for learning topic models faces challenges.

We overcome the challenge by revealing a surprising insight: there is a low-
dimensional simplex structure which can be viewed as a bridge between the low-
rank matrix of interest and the SVD of the text corpus matrix, and which allows us
to conveniently reconstruct the former using the latter. Such an insight motivates
a new SVD-based approach to learning topic models.

For asymptotic analysis, we show that under the popular probabilistic model
(Hofmann 1999), the convergence rate of the ℓ1-error of our method matches that
of the minimax lower bound, up to a multi-logarithmic term. In showing these
results, we have derived new element-wise bounds on the singular vectors and
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several large-deviation bounds for weakly dependent multinomial data. Our results
on the convergence rate and asymptotical minimaxity are new.

We have applied our method to two data sets, Associated Process (AP) and
Statistics Literature Abstract (SLA), with encouraging results. In particular, there
is a clear simplex structure associated with the SVD of the data matrices, which
largely validates our discovery.

Optimal estimation of structured loading matrices with applications to

overlapping clustering and topic models

Florentina Bunea

(joint work with Mike Bing, Yang Ning, Marten Wegkamp)

This work introduces a novel estimation method, called LOVE, of the entries and
structure of a loading matrix A in a sparse latent factor model X = AZ + E,
for an observable random vector X in Rp, with correlated unobservable factors
Z ∈ RK , with K unknown, and independent noise E. Each row of A is scaled
and sparse. In order to identify the loading matrix A, we require the existence
of pure variables, which are components of X that are associated, via A, with
one and only one latent factor. Despite the fact that the number of factors K,
the number of the pure variables, and their location are all unknown, we only
require a mild condition on the covariance matrix of Z, and a minimum of only
two pure variables per latent factor to show that A is uniquely defined, up to signed
permutations. Our proofs for model identifiability are constructive, and lead to our
novel estimation method of the number of factors and of the set of pure variables,
from a sample of size n of observations on X . This is the first step of our LOVE
algorithm, which is optimization-free, and has low computational complexity of
order p2. The second step of LOVE is an easily implementable linear program
that estimates A. We prove that the resulting estimator is minimax rate optimal
up to logarithmic factors in p.

The model structure is motivated by the problem of overlapping variable clus-
tering, ubiquitous in data science. We define the population level clusters as
groups of those components of X that are associated, via the sparse matrix A,
with the same unobservable latent factor, and multi-factor association is allowed.
Clusters are respectively anchored by the pure variables, and form overlapping
sub-groups of the p-dimensional random vector X . The Latent model approach
to OVErlapping clustering is reflected in the name of our algorithm, LOVE.

The third step of LOVE estimates the clusters from the support of the columns
of the estimated A. We further guarantee cluster recovery with zero false positive
proportion, and with false negative proportion control. The practical relevance
of LOVE is illustrated through the analysis of an RNA-seq data set, devoted to
determining the functional annotation of genes with unknown function.

We also consider the related, but different, problem of estimation in topic mod-
els. If one observes n independent multinomials of dimension p, the topic models
postulate a certain factorization of the expectation of the p× n data matrix. We
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provide conditions under which the factors are identifiable, and concentrate on the
estimation of one of them, known as the word-topic matrix. We adapt LOVE to
this problem, and provide a computationally efficient algorithm that yields mini-
max adaptive estimators of the word-topic matrix.
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Two problems in weak recovery

Andrea Montanari

We study the problem of reconstructing an unknown high-dimensional parameters
vector “better than random,” in two different contexts.

(1) Generalized linear measurements [with M. Mondelli]

Unknown object: θ0 ∈ R
d, ‖θ0‖2 =

√
d. (yi, xi)i≤n, xi ∼ N(0, Id/d), yi ∼

P (·|〈θ0, xi〉).
(2) Group-synch on grids [with E. Abbe, L. Masoulie, A. Sly, N. Srivastava]

Unknown object (θi)i∈V , θi ∈ G ⊆ R
m×m a compact group; measurements:

Yij with E(Yij |θ) = cθ−1
i θj for G = (V,E) a known graph.

We obtain several results when G = Z
d is the d-dimensional grid.

Convergence Rates of Variational Posterior Distributions

Chao Gao

We study convergence rates of variational posterior distributions for nonparametric
and high-dimensional inference. We formulate general conditions on prior, likeli-
hood, and variational class that characterize the convergence rates. Under similar
”prior mass and testing” conditions considered in the literature, the rate is found
to be the sum of two terms. The first term stands for the convergence rate of the
true posterior distribution, and the second term is contributed by the variational
approximation error. For a class of priors that admit the structure of a mixture
of product measures, we propose a novel prior mass condition, under which the
variational approximation error of the generalized mean-field class is dominated
by convergence rate of the true posterior. We demonstrate the applicability of our
general results for various models, prior distributions and variational classes by
deriving convergence rates of the corresponding variational posteriors.
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“Large ball probability” and inference for spectral projectors

Vladimir Spokoiny

Let X1, . . . , Xn be i.i.d. sample in R
p with zero mean and the covariance matrix Σ.

We consider the problem of confidence estimation of the projectors on a eigenspace
of Σ. This paper offers two procedures: one is based on the resampling technique;
the other one is Bayesian and uses Bayesian calculus from the conjugated Wishart
prior. Accuracy of both methods is evaluated with sharp error bounds. The study
heavily uses recent results on “large ball probability” for Gaussian measures in a
Hilbert space.

Local identifiability analysis of dictionary learning

Bin Yu

At the workshop, Bin Yu from UC Berkeley gave a talk on “local identifiability
analysis of dictionary learning.” She started by citing Jerzy Neyman, the founding
father of Berkeley Statistics, that the experimental sciences are sources of theoreti-
cal problems. Using a functional genomics project to map a cell’s destiny based on
spatial gene expression images from embryonic fruitflies, she motivated the study
of the local idenfiability problem of dictionary learning.

In particular, theoretical properties of learning a dictionary via ℓ1-minimization
are studied. N data points or images are assumed i.i.d. random linear combina-
tions of the K columns from a complete (i.e., square and invertible) reference
dictionary, a K ×K matrix D. Here, the random linear coefficients are generated
from either the s-sparse Gaussian model or the Bernoulli-Gaussian model. First,
for the population case, a sufficient and almost necessary condition is established
for the reference dictionary D to be locally identifiable, i.e., a local minimum of
the expected ℓ1-norm objective function. Our condition covers both sparse and
dense cases of the random linear coefficients and significantly improves the suffi-
cient condition by Gribonval and Schnass (2010). In addition, it is shown that for a
complete µ-coherent reference dictionary, i.e., a dictionary with absolute pairwise
column inner-product at most µ ∈ [0, 1), local identifiability holds even when the
random linear coefficient vector has up to O(µ−2) nonzeros on average. Moreover,
the local identifiability results also translate to the finite sample case with high
probability provided that the number of signals N scales as O(K logK).

One and two sided composite-composite tests in Gaussian mixture

models

Alexandra Carpentier

(joint work with Nicolas Verzelen, Etienne Roquain, Sylvain Delattre)

Finding an efficient test for a testing problem is often linked to the problem of
estimating a given function of the data. When this function is not smooth, it is
necessary to approximate it cleverly in order to build good tests.
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In this talk, we will discuss two specific testing problems in Gaussian mixtures
models. In both, the aim is to test the proportion of null means. The aforemen-
tioned link between sharp approximation rates of non-smooth objects and minimax
testing rates is particularly well illustrated by these problems.
Consider a distribution ν with support in R. We observe n i.i.d. data of distribution

Xi ∼ ν ∗ N (0, 1).

Let ρ > 0 and p ∈ [0, 1). We consider the two following testing problems :

TP : H0,p : ν = (1− p)δ0 + pν′ vs H1,ρ : Supp(ν) ⊂ [−ρ, ρ]c,
(two sided problem) and

TP+ : H+
0,p : ν = (1− p)δ0 + pν′, Supp(ν′) ⊂ R

+ vs H+
1,ρ : Supp(ν) ⊂ [ρ,+∞),

(one sided problem). These two testing problems correspond to testing a given
proportion of null means in the means of the signal, with or without a positivity
constraint.
Our objective is then to find the minimax optimal order of ρ such that a non-trivial
test exists, i.e. find

ρ∗p = inf{ρ > 0 : ∃T test with , inf
ν∈H0,p

Eν [T ] + inf
ν∈H1,ρ

Eν [1− T ] < 1/2
}
,

and

ρ∗,+p = inf{ρ > 0 : ∃T test with , inf
ν∈H+

0,p

Eν [T ] + inf
ν∈H+

1,ρ

Eν [1− T ] < 1/2
}
.

When p = 0, the problem is akin to simple signal detection [3] - the null hypothesis
is simple and we have respectively

ρ∗0 ≈ n−1/4 and ρ∗,+0 ≈ n−1/2.

We consider rather the specific case p = 1/2, which corresponds to a large null
hypothesis, and our objectives are (i) to understand how the size of the null hy-
pothesis will affect the rate and (ii) to understand how the shape constraint will
impact the testing problems, i.e. how different TP and TP+ are. In this case,
solving the testing problems is related to estimating a one or two sided indicator
function. The main problem is then on the rate at which these indicator functions
can be approximated. It is possible to prove that this task can be performed op-
timally using Chebychev polynoms (one sided case) and symmetrized Chebychev
polynoms (two sided case) - leading therefore to upper and lower bounds on ρ as

ρ∗1/2 ≈ log(n)−1/2 and ρ∗,+1/2 ≈ log(n)−3/2.

Very related results can be found in [5, 4]. In this problem, it is interesting to
see how clearly the upper and lower bounds can be derived by solving a given
functional approximation problem.
This testing problem has consequences for the problems of sparsity testing [1],
but also estimation in the Gaussian contamination model, and FDR estimation in
multiple testing [2].
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Isotonic regression in general dimensions

Richard J. Samworth

(joint work with Qiyang Han, Tengyao Wang and Sabyasachi Chatterjee)

We study the least squares regression function estimator over the class of real-
valued functions on [0, 1]d that are increasing in each coordinate. For uniformly
bounded signals and with a fixed, cubic lattice design, we establish that the estima-
tor achieves the minimax rate of order n−min{2/(d+2),1/d} in the empirical L2 loss,
up to poly-logarithmic factors. Further, we prove a sharp oracle inequality, which
reveals in particular that when the true regression function is piecewise constant
on k hyperrectangles, the least squares estimator enjoys a faster, adaptive rate
of convergence of (k/n)min(1,2/d), again up to poly-logarithmic factors. Previous
results are confined to the case d ≤ 2. Finally, we establish corresponding bounds
(which are new even in the case d = 2) in the more challenging random design
setting. There are two surprising features of these results: first, they demonstrate
that it is possible for a global empirical risk minimisation procedure to be rate op-
timal up to poly-logarithmic factors even when the corresponding entropy integral
for the function class diverges rapidly; second, they indicate that the adaptation
rate for shape-constrained estimators can be strictly worse than the parametric
rate.

This talk is based on work in the paper [1].

References

[1] Q. Han, T. Wang, S. Chatterjee and R. J. Samworth (2017), Isotonic regression in general
dimensions, https://arxiv.org/abs/1708.09468.



614 Oberwolfach Report 12/2018

Information operators and statistical inverse problems

Richard Nickl

We consider two statistical inverse problems, and discuss the characterisation of
the ‘information operator’ driving the LAN expansion in these models by PDE
methods.

First (see [5]), we consider the statistical inverse problem of recovering a func-
tion f : M → R, where M is a smooth compact Riemannian manifold with
boundary, from measurements of general X-ray transforms Ia(f) of f , corrupted
by additive Gaussian noise. For M equal to the unit disk with ‘flat’ geometry
and a = 0 this reduces to the standard Radon transform, but our general setting
allows for anisotropic media M and can further model local ‘attenuation’ effects
– both highly relevant in practical imaging problems such as SPECT tomogra-
phy. We study a nonparametric Bayesian inference method based on standard
Gaussian process priors for f . The posterior reconstruction of f corresponds to a
Tikhonov regulariser with a reproducing kernel Hilbert space norm penalty that
does not require the calculation of the singular value decomposition of the forward
operator Ia. We prove Bernstein-von Mises theorems for a large family of one-
dimensional linear functionals of f , and they entail that posterior-based inferences
such as credible sets are valid and optimal from a frequentist point of view. In
particular we derive the asymptotic distribution of smooth linear functionals of the
Tikhonov regulariser, which attains the semi-parametric information lower bound.
The proofs rely on an invertibility result for the ‘Fisher information’ operator I∗aIa
between suitable function spaces, a result of independent interest that relies on
techniques from microlocal analysis.

Second (see [4]), the inverse problem of determining the potential f > 0 in the
partial differential equation

∆

2
u− fu = 0 on O s.t. u = g on ∂O,

where O is a bounded C∞-domain in R
d and g > 0 is a given function prescribing

boundary values, is considered. The data consist of the solution u corrupted
by additive Gaussian noise. A nonparametric Bayesian prior for the function
f is devised and a Bernstein - von Mises theorem is proved which entails that
the posterior distribution given the observations is approximated by an infinite-
dimensional Gaussian measure that has a ‘minimal’ covariance structure in an
information-theoretic sense. The function space in which this approximation holds
true is shown to carry the finest topology permitted for such a result to be possible.
As a consequence the posterior distribution performs valid and optimal frequentist
statistical inference on f in the small noise limit.

For background on nonparametric statistics and Bernstein-von Mises theorems,
we refer to [1, 2, 3].
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Asymptotically efficient estimation of functionals of high-dimensional

covariance

Vladimir Koltchinskii

We consider a problem of estimation of functionals of the form 〈f(Σ), B〉 of un-
known covariance operator Σ in R

d based on i.i.d. observations X1, . . . , Xn sam-
pled from normal distribution with zero mean and covariance Σ. Assuming that f
is a smooth function in real line and B is an operator with nuclear norm bounded
by a constant, the goal is to develop an asymptotically efficient estimator of the
functional 〈f(Σ), B〉 with

√
n convergence rate in the setting when the dimen-

sion d of the space is allowed to grow with n. We achieve this goal by developing
a new bias reduction method in high-dimensional problems and constructing an
estimator of the form 〈h(Σ̂), B〉 with bias of the order o(n−1/2), where Σ̂ is the
sample covariance based on observations X1, . . . , Xn and h is a sufficiently smooth
approximate solution of the equation EΣh(Σ̂) = f(Σ),Σ ∈ Cd

+ on the cone Cd
+ of

covariance operators in R
d. This estimator coincides with the usual plug-in esti-

mator 〈f(Σ̂), B〉, when d = o(n1/2), but, in the case when d ≥ n1/2, the bias of
the plug-in estimator becomes larger than n−1/2 and a non-trivial bias correction
is necessary to develop efficient estimators with

√
n convergence rate. We show

that if d ≤ nα for some α ∈ (0, 1) and f belongs to Besov space Bs
∞,1(R) for some

s > 1
1−α , then asymptotically efficient estimation is possible. More details could

be found in [1].
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Asymptotic normality of log-likelihood ratios in spiked random matrix

models

Zongming Ma

(joint work with Debapratim Banerjee)

We study likelihood ratio statistics in a number of spiked random matrix models,
including Gaussian mixtures and spiked covariance matrix models. We work di-
rectly with multi-spiked cases and allow flexible sub-Gaussian priors on the signal
component. We derive asymptotic normality for the log-likelihood ratios when the
signal-to-noise ratios are below certain thresholds.

Singular value decomposition for high-dimensional high-order data

Anru Zhang

High-dimensional high-order data arise in many modern scientific applications in-
cluding genomics, brain imaging, and social science. In this talk, we propose a
general framework of tensor singular value decomposition (tensor SVD), which
aims to extract the hidden low-rank structure from high-dimensional high-order
data. To be specific, a low-rank tensor X ∈ R

p1×p2×p3 is observed with entry-
wise corruptions as Y = X + Z. Here Z is the p1-by-p2-by-p3 noisy tensor with

{Zijk}p1,p2,p3

i,j,k=1

iid∼ N(0, σ2); X is a fixed tensor with low Tucker ranks in the sense

that all fibers of X along three directions (i.e., counterpart of matrix columns and
rows for tensors) lie in low-dimensional subspaces, say U1, U2, and U3, respectively.
Our goal is to estimate U1, U2, U3, and X from the noisy observation Y.

First, we develop comprehensive results on both the statistical and computa-
tional limits for tensor SVD [1]. Let the Tucker rank of X be (r1, r2, r3). The
statistical and computational barriers of tensor SVD problem rely on a key factor
λ, i.e., the smallest non-zero singular values of matricizations of X, which essen-
tially measures the signal strength of the problem. When p = min{p1, p2, p3},
pk ≤ Cp, rk ≤ Cp1/2 for k = 1, 2, 3 and a constant C > 0, our main results can
be summarized into the following three phases according to signal-to-noise ratio
(SNR): λ/σ.

(1) When λ/σ = pα for α ≥ 3/4, the scenario is referred to as the strong

SNR case. The fast higher-order orthogonal iteration (HOOI) recovers
U1, U2, U3, and X with the minimax optimal rate of convergence over a
general class of low-rank tensors.

(2) When λ/σ = pα for α < 1/2, we refer to this case as the weak SNR

case, and propose the minimax lower bound to show that there are no
consistent estimators of U1, U2, U3, or X;

(3) When λ/σ = pα for 1/2 ≤ α < 3/4, the scenario is referred to as the mod-

erate SNR case. We provide a computational lower bound to show that
no polynomial time algorithm can recover U1, U2, U3 consistently based on
an assumption of hypergraphic planted clique detection. Meanwhile, the
maximum likelihood estimator, although being computational intractable,
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achieves optimal rates of convergence over a general class of low-rank ten-
sors.

Second, we consider the sparse tensor singular value decomposition which allows
more robust estimation under sparsity structural assumptions [2]. A procedure
named Sparse Tensor Alternating Truncation for Singular Value Decomposition
(STAT-SVD) was proposed for sparse tensor SVD. The method consists of two
steps: (i) a thresholded spectral initialization and (ii) an iterative alternating up-
dating scheme. One crucial part of the procedure is a novel double projection
& thresholding scheme, which provides a sharp criterion for thresholding in each
iteration. Since each step of STAT-SVD only involves basic matrix and tensor
operations, such as matricization, multiplication, matrix SVD, and thresholding,
the proposed procedure can be implemented efficiently. We study both the the-
oretical and numerical properties of the proposed procedure. In particular, we
prove by an upper bound argument that the proposed procedure can recover the
low-rank structures accurately. A lower bound is further developed to show that
the proposed estimator is rate optimal for a general class of simultaneously sparse
and low-rank tensors.

It is also noteworthy that the results can be further generalized to fourth or
higher order tensors, or when the noise is sub-Gaussian distributed.
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Network representation using graph root distributions

Jing Lei

Consider a random symmetric two-way binary array

A = (Aij : i ≥ 1, j ≥ 1) ,

with convention Aii = 0. Each upper-diagonal entry of A is a Bernoulli random
variable. The row-column joint exchangeability means that

(Aij : i ≥ 1, j ≥ 1)
d
= (Aσ(i)σ(j) : i ≥ 1, j ≥ 1)

for all finite index permutation mapping σ.
Analogous to the de Finetti theorem, the Aldous-Hoover theorem says that any

symmetric exchangeable binary arrayA can be generated by sampling independent
(si : i ≥ 1) from Unif(0, 1) (the uniform distribution on [0, 1]), and sampling
Aij independently from a Bernoulli distribution with probability W (si, sj) for a
symmetric measurable function W (·, ·) : [0, 1]2 7→ [0, 1]. For any given realization
of A, we can simply treat W as a non-random parameter.
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Two functionsW1 andW2 generate the same distribution of exchangeable arrays
if and only if there exist two measure-preserving mappings h1, h2 such that

W1(h1(s), h1(s
′)) =W2(h2(s), h2(s

′)) , a.e. .

When this is the case, we say W1 and W2 are weakly isomorphic, denoted as

W1
w.i.
= W2 .

The notion “
w.i.
= ” defines an equivalence relation on the space of all symmetric

functions that map [0, 1]2 to [0, 1]. When W1 and W2 are not weakly isomorphic,
then they lead to different distributions of exchangeable random graphs. In this
case, the sub-graph counts have different distributions under W1 and W2. Such
a sampling distribution difference can be linked to the cut-distance between two
graphons, defined as

δ�(W1,W2)

= inf
h1,h2

sup
S×S′:⊆[0,1]2

∣∣∣∣
∫

S×S′

[W1(h1(s), h1(s
′))−W2(h2(s), h2(s

′))] dsds′
∣∣∣∣ ,

where h1, h2 range over all measure-preserving mappings.
We develop an alternative characterization of exchangeable random graphs.

Definition 1. A Krěın space K = H+⊖H− is the direct sum of two Hilbert spaces
H+ and H−. For each (x, y), (x′, y′) ∈ K with x, x′ ∈ H+ and y, y′ ∈ H−, the
Krěın inner product is

(1) 〈(x, y), (x′, y′)〉K = 〈x, x′〉H+ − 〈y, y′〉H−
.

The space K is also a linear normed space isomorphic to H+ ⊕H− equipped with
norm

‖(x, y)‖K = (‖x‖2H+
+ ‖y‖2H−

)1/2 .

Definition 2. We call a probability measure F on K a graph root distribution if
for two independent samples Z1 and Z2 from F

P(〈Z1, Z2〉K ∈ [0, 1]) = 1 .

Definition 3. We say two distributions F1, F2 on K are equivalent up to orthog-

onal transform, written as F1
o.t.
= F2, if there exist orthogonal transforms Q+ on

H+ and Q− on H−, such that (X,Y ) ∼ F1 ⇒ (Q+X,Q−Y ) ∼ F2.

We summarize our representation results in the following corollary.

Theorem 1. There exists a one-to-one correspondence between trace-class

graphons (under the equivalence relation “
w.i.
= ”) and square-integrable GRD’s with

uncorrelated positive and negative components

(under the equivalence relation “
o.t.
= ”).
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Next we show that the Wasserstein distance between two equivalence classes of
GRD’s induce a stronger topology than the cut distance in the space of graphon
equivalence classes. We consider the orthogonal Wasserstein distance

dow(F1, F2) := inf
ν∈V(F1,F2)

inf
Q+,Q−

E(Z1,Z2)∼ν‖Z1 − (Q+ ⊕Q−)Z2‖ ,

where Q+, Q− range over all orthogonal transforms on H+, H−, respectively, and
(Q+ ⊕ Q−) denotes the orthogonal transform as the direct sum of Q+ and Q−:
(Q+ ⊕Q−)(x, y) = (Q+x,Q−y).

Theorem 2. Let F1, F be two square-integrable GRD’s on K, with corresponding
graphons W1, W . Then

δ�(W1,W ) ≤ (EF1‖Z‖+ EF ‖Z‖)dow(F1, F ) .

As a consequence, if (FN : N ≥ 1) are square-integrable GRD’s on K with corre-
sponding graphons (WN : N ≥ 1), then

dow(FN , F ) → 0 ⇒ δ�(WN ,W ) → 0 .

We then show that GRD’s can be easily estimated. Given n ≥ 1, suppose we
have observed an n×n block ofA: An = (Aij : 1 ≤ i, j ≤ n), where A is generated
from a GRD F . Assume

(A1) For all j, j′ ≥ 1, E(X,Y )∼F (XjXj′) = λj1(j = j′), E(X,Y )∼F (YjYj′ ) =
γj1(j = j′), E(X,Y )∼F (XjYj′ ) = 0.

(A2) There exist positive numbers c1 ≤ c2, 1 < α ≤ β such that

c1j
−α ≤ (λj∧γj) ≤ (λj∨γj) ≤ c2j

−α , (λj−λj+1)∧(γj−γj+1) ≥ c1j
−β , ∀ j ≥ 1 .

(A3) EZ∼F ‖Z‖4 <∞.

Let (λ̂j , âj) be the positive eigenvalue-eigenvector pairs of An, and (γ̂j , b̂j) be the
negative absolute eigenvalue-eigenvector pairs.

Let X̂i = (
√
λ̂1â1i, ...,

√
λ̂pâpi, 0, ..., 0), Ŷi = (

√
γ̂1b̂1i, ...,

√
γ̂pb̂pi, 0, ..., 0). Let F̂

be the probability measure with 1/n mass at (X̂i; Ŷi) for 1 ≤ i ≤ n.

Theorem 3. Under assumptions (A1-A3), we have, when p = o
(
n

1
2β+α

)
,

do.w.(F̂ , F ) = OP (p
−(α−1)/2 + pn−1/(p∨3)) .

The right hand side is oP (1) if p = O(log n/ log logn).

A sparsity parameter can easily be incorporated the graph root sampling
scheme. Let F be a GRD. For a node sample size n and sparsity parameter
ρn ∈ (0, 1), the corresponding sparse graph root sampling scheme is essentially
generating node sample points from a scaled distribution:

An,i,j ∼ Bernoulli(〈ρ1/2n Zi, ρ
1/2
n Zj〉K) ,

where Zi
iid∼ F .
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Theorem 4. Under assumptions (A1-A3) with β ≥ 3α/2, if ρn ≥ c logn/n for a
positive constant c and

p = o
[
n1/(2β+α) ∧ (nρn)

1/(2β)
]

then dw(ρ
−1/2
n F̂ , F ) = OP (p

β−(α−1)/2(nρn)
−1/2 + p−(α−1)/2 + pn−1/(p∨3)).
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Estimation and inference for differential networks

Mladen Kolar

We present a recent line of work on estimating differential networks and conducting
statistical inference about parameters in a high-dimensional setting. First, we
consider a Gaussian setting and show how to directly learn the difference between
the group structures. A debiasing procedure is presented for construction of an
asymptotically normal estimator of the difference. Next, building on the first
part, we show how to learn the difference between two graphical models with latent
variables. Linear convergence rate is established for an alternating gradient descent
procedure with correct initialization. Finally, we discuss how to do statistical
inference on the differential networks when data are not Gaussian.

Optimal estimation of Gaussian mixtures via denoised method of

moments

Yihong Wu

(joint work with Pengkun Yang)

The Method of Moments [5] is one of the most widely used methods in statistics
for parameter estimation, obtained by solving the system of equations that match
the population and estimated moments. However, in practice and especially for
the important case of mixture models, one frequently needs to contend with the
difficulties of non-existence or non-uniqueness of statistically meaningful solutions,
as well as the high computational cost of solving large polynomial systems. More-
over, theoretical analysis of method of moments are mainly confined to asymptotic
normality style of results established under strong assumptions [2, 3].

In this talk I will present some recent results for estimating Gaussians loca-
tion mixtures with known or unknown variance. To overcome the aforementioned
theoretic and algorithmic hurdles, a crucial step is to denoise the moment esti-
mates by projecting to the truncated moment space before executing the method
of moments. Not only does this regularization ensures existence and uniqueness of
solutions, it also yields fast solvers by means of Gauss quadrature. Furthermore,
by proving new moment comparison theorems in Wasserstein distance via polyno-
mial interpolation and marjorization, we establish the statistical guarantees and
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optimality of the proposed procedure. In particular, we prove the following: Given
n independent samples drawn from a k-component Gaussian mixture π ∗N(0, σ2),

where π ,
∑k

i=1 wiδµk
is the latent discrete distribution, the number of compo-

nents k is a constant, π has a bounded support and σ is bounded,

• if σ is known, then there exists an estimator π̂ such that

EW1(π, π̂) ≤ O(n− 1
4k−2 )

• if σ unknown, then there exists an estimator (π̂, σ̂), due to Lindsay [6],
such that

EW1(π, π̂) ≤ O(n− 1
4k ) E|σ − σ̂| ≤ O(n− 1

2k ).

Both estimators can be computed in O(n) time. Both rates are minimax opti-
mal, with the lower bound in the known-σ case previously shown in [4]. Fur-
thermore, in the known-σ case, the estimator is automatically adaptive to the
clustering structure, in the sense that if the k components fall into k0 well-
separated (separated by a constant) clusters [1, 4], then the same procedure fulfills

EW1(π, π̂) ≤ O(n
− 1

4(k−k0)+2 ), which, in the fully separated scenario of k0 = k, re-

duces to the parametric rate n− 1
2 .

These results can also be viewed as provable algorithms for Generalized Method
of Moments [3] which involves non-convex optimization and lacks theoretical guar-
antees. Extensions to multiple dimensions will be discussed. In particular, we show
that for d-dimensional location normal mixtures with identity covariance matrix
and with bounded means and d = O(n), it is possible to achieve the worst-case
rate

O

((
d

n

) 1
4

+

(
1

n

) 1
4k−2

log2(n)

)

which is minimax optimal up to logarithmic factors.
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Projection pursuit in high dimensions

Boaz Nadler

(joint work with Gil Kur, Peter J. Bickel)

Projection pursuit is a classical exploratory data analysis method to detect in-
teresting low dimensional structure in multivariate data. Originally, projection
pursuit was applied mostly to data of moderately low dimension. Motivated by
contemporary applications, we here study its properties in high dimensional set-
tings. Specifically, we analyze the asymptotic properties of projection pursuit on
structure-less multivariate Gaussian data with an identity covariance, as both di-
mension p and sample size n tend to infinity, with p/n → γ ∈ [0,∞]. Our main
results are as follows:

(i) if γ = ∞, then there exist projections whose corresponding empirical cu-
mulative distribution function can approximate any arbitrary distribution;

(ii) if γ ∈ (0,∞), not all limiting distributions are possible. Yet, depending
on the value of γ various non-Gaussian distributions may still be approx-
imated.

(iii) If γ ∈ (0,∞) but we restrict to sparse projections, involving only few of
the p variables, then asymptotically all empirical cdf’s are Gaussian.

(iv) if γ = 0, then asymptotically all projections are Gaussian.

We conjecture that for γ < 1, all distributions that one may converge to must be
a mixture of a Gaussian N(0, q) distribution, where q < (1 +

√
γ)2, with possibly

a small non-Gaussian component.
Some of our results extend to mean centered sub-Gaussian data and to projec-

tions into k dimensions. Hence, in the ”small n, large p” setting, unless sparsity
is enforced and regardless of the chosen projection index, projection pursuit may
detect apparent structure that has no statistical significance. Furthermore, our
work reveals fundamental limitations on the ability to detect non-Gaussian signals
in high dimensional data, in particular via independent component analysis (ICA)
and related non-Gaussian component analysis.
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Relative perturbation bounds with applications to empirical

covariance operators

Martin Wahl

(joint work with Moritz Jirak)

Let Σ be a self-adjoint, positive trace class operator on a separable Hilbert space
H. By the spectral theorem, there exists a sequence λ1 ≥ λ2 ≥ · · · > 0 of
positive eigenvalues (which is either finite or infinite and summable), together
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with an orthonormal system of eigenvectors u1, u2, . . . such that Σ has spectral
representation Σ =

∑
j≥1 λjuj⊗uj. For u, v ∈ H, we denote by u⊗v the rank-one

operator defined by (u ⊗ v)x = 〈v, x〉u, x ∈ H. We suppose that the eigenvectors
of Σ form an orthonormal basis of H.

Let Σ̂ be another self-adjoint, positive trace class operator on H. We consider
Σ̂ as a perturbed version of Σ and write E = Σ̂−Σ for the additive perturbation.

Again, by the spectral theorem, there exists a sequence λ̂1 ≥ λ̂2 ≥ · · · ≥ 0 of
eigenvalues, together with an orthonormal basis of eigenvectors û1, û2, . . . such

that Σ̂ =
∑

j≥1 λ̂j ûj ⊗ ûj .
Given a natural number d ≥ 1, a basic problem is to bound the distance between

the eigenspaces Vd = span(u1, . . . , ud) and V̂d = span(û1, . . . , ûd). Letting PVd

and PV̂d
be the orthogonal projections onto Vd and V̂d, respectively, a natural

distance is given by the Hilbert-Schmidt norm ‖PV̂d
−PVd

‖2, which has a geometric
interpretation in terms of principal angles. The most well-known results in this
direction are the Davis-Kahan sinΘ theorem and its generalizations, which give
upper bounds in terms of the eigenvalue separation and the size of the perturbation,
see e.g. [2, 3, 1]. In many cases, more precise bounds can be derived using
perturbation theory for linear operators, as developed in [6].

In this work, we establish a local sinΘ theorem, tailored for empirical covariance
operators. One of the key ingredients is a contraction property, intimately con-
nected to a relative eigenvalue separation condition. A first result in this direction
is the following theorem.

Theorem 1. Let d ≥ 1. Let x > 0 be such that |〈uj, Euk〉|/
√
λjλk ≤ x for all

j, k ≥ 1. Suppose that

∑

j≤d

λj
λj − λd+1

+
∑

k>d

λk
λd − λk

≤ 1/(4x).

Then we have

‖PV̂d
− PVd

‖2 ≤ 2
√
2x

√∑

j≤d

∑

k>d

λjλk
(λj − λk)2

.

Let us discuss an application of this result to empirical covariance operators.
Let X be a random variable taking values in H. Suppose that X is centered
and strongly square-integrable, meaning that EX = 0 and E‖X‖2 < ∞. Let
Σ = EX ⊗ X be the covariance operator of X , which is a self-adjoint, positive

trace class operator. For j ≥ 1, let ηj = λ
−1/2
j 〈uj, X〉 be the j-th Karhunen-Loève

coefficient of X . Let X1, . . . , Xn be n independent copies of X and let

Σ̂ =
1

n

n∑

i=1

Xi ⊗Xi

be the empirical covariance operator. Combining Theorem 1 with Burkholder’s
inequality and Markov’s inequality, we get:
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Corollary 1. Let d ≥ 1. In the above setting, suppose that supj≥1 E|ηj |q ≤ Cη

for q ≥ 4 and some constant Cη > 0. For t > 0, suppose that

t√
n

(∑

j≤d

λj
λj − λd+1

+
∑

k>d

λk
λd − λk

)
≤ 1/4.

Then, with probability at least 1− Cp2t−q/2, we have

‖PV̂d
− PVd

‖22 ≤ 8t2

n

∑

j≤d

∑

k>d

λjλk
(λj − λk)2

.

Here, p is the dimension of H and C > 0 is a constant which depends only on
q and Cη. Moreover, the bound also holds with probability at least 1 − Cd20t

−q/2,
with d0 such that λd0 ≤ λd/2.
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Tensor Sparsification and Tensor Completion

Dong Xia

(joint work with Ming Yuan, Cun-Hui Zhang)

We propose a novel tensor sparsification algorithm based on weighted sampling
which significantly improves the existed results in sampling complexity. It is shown
that our algorithm can be applied for approximating tensor SVD with both space
and time complexity.

In addition, we propose two frameworks for estimating a low rank tensor from
a subset of its entries with focus on both the statistical and computational effi-
ciencies. In the noiseless setting, we show that a gradient descent algorithm with
initial value obtained from a novel spectral method can reconstruct the tensor
with sharp sample size requirement. Unlike those earlier approaches for tensor
completion, our method is efficient to compute, easy to implement, and does not
impose extra structures on the tensor. If the observations are noisy, we show that
an even simpler algorithm by combining spectral thresholding and power itera-
tions achieves the optimal rates of convergence which fills in the void of statistical
property of noisy tensor completion problems. Even under weak conditions, our
algorithm significantly outperforms the existing approaches in the literature.



Statistical Inference for Structured High-dimensional Models 625

References

[1] Dong Xia and Ming Yuan, On Polynomial Time Methods for Exact Low Rank Tensor
Completion, arXiv preprint arXiv:1702.06980, 2017.

[2] Dong Xia and Ming Yuan, Effective Tensor Sketching via Sparsification, arXiv preprint
arXiv:1710.11298, 2017.

[3] Dong Xia and Ming Yuan and Cun-Hui Zhang, Statistically Optimal and Computa-
tionally Efficient Low Rank Tensor Completion from Noisy Entries, arXiv preprint

arXiv:1711.04934, 2017.

Reporter: Anru Zhang



626 Oberwolfach Report 12/2018

Participants

Dmitry Babichev

National Institute for Research in
Computer Science and Control
INRIA - CS 42112
2, Rue Simone Iff
75589 Paris Cedex
FRANCE

Prof. Dr. Pierre Bellec

Department of Statistics and
Biostatistics
RUTGERS
The State University of New Jersey
501 Hill Center, Busch Campus
110 Frelinghuysen Road
Piscataway NJ 08854
UNITED STATES

Prof. Dr. Peter Bühlmann
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5, Avenue Henry le Châtelier
91764 Palaiseau Cedex
FRANCE

Hang Deng

Department of Statistics
Rutgers University
Hill Center, Busch Campus
New Brunswick, NJ 08903
UNITED STATES

Prof. Dr. Rina Foygel Barber

Department of Statistics
The University of Chicago
5747 S. Ellis Avenue
Chicago, IL 60637-1514
UNITED STATES

Prof. Dr. Chao Gao

Department of Statistics
The University of Chicago
5747 S. Ellis Avenue
Chicago, IL 60637-1514
UNITED STATES

Prof. Dr. Alexander Goldenshluger

Department of Statistics
University of Haifa
Haifa 31905
ISRAEL

Prof. Dr. Anatoli Juditsky

Laboratoire Jean Kuntzmann
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