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Abstract. Introduced by Bökstedt-Hsiang-Madsen in the nineties, topolog-
ical cyclic homology is a manifestation of the dual visions of Connes-Tsygan
and Waldhausen to extend de Rham cohomology to a noncommutative set-
ting and to replace algebra by higher algebra. The cohomology theory that
ensues receives a denominator-free Chern character from algebraic K-theory,
used by Hesselholt-Madsen to evaluate the p-adic K-theory of p-adic fields.
More recently, Bhatt-Morrow-Scholze have defined a “motivic” filtration of
topological cyclic homology and its variants, the filtration quotients of which
give rise to their denominator-free p-adic Hodge theory AΩ.
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Introduction by the Organisers

Cyclic homology was introduced by Connes and Tsygan in the early eighties to
serve as an extension of de Rham cohomology to a noncommutative setting. The
negative version of cyclic homology receives a trace map from algebraic K-theory,
which extends the classical Chern character and roughly records traces of powers
of matrices. This trace map is a powerful rational invariant of algebraic K-theory.
Indeed, a theorem of Goodwillie from 1986 shows that, rationally, the discrepancy
for K-theory to be invariant under nilpotent extentions of rings agrees with that
for negative cyclic homology; and a theorem of Cortiñas from 2006 shows similarly
that, rationally, the discrepancy for K-theory to preserve cartesian squares of rings
agrees with that for negative cyclic homology.

In the early seventies, Boardman and Vogt planted the seeds for the higher
algebra that was only fully developed much later by Joyal and Lurie, and, later in
the decade, Waldhausen extended Quillen’s definition of algebraic K-theory from
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the rings of algebra to the (connective E1-)rings of higher algebra. Waldhausen
advocated that the initial ring S of higher algebra be viewed as an object of
arithmetic and that the cyclic homology of Connes and Tsygan be developed with
the ring S as its base. In his philosophy, such a theory should be meaningful
integrally as opposed to rationally.

In 1985, Bökstedt realized Waldhausen’s vision as far as Hochschild homology
is concerned, and he named this new theory topological Hochschild homology. (A
similar construction had been considered by Breen ten years earlier.) He also made
the fundamental calculation that, as a graded ring,

THH∗(Fp) = HH∗(Fp/S) = Fp[x]

is a polynomial algebra on a generator x in degree two. By comparison,

HH∗(Fp/Z) = Fp〈x〉

is the corresponding divided power algebra, and hence, Bökstedt’s theorem sup-
ports Waldhausen’s vision that passing from the base Z to the base S eliminates
denominators. In fact, the base-change map HH∗(Fp/S) → HH∗(Fp/Z) can be
identified with the edge homomorphism of a spectral sequence

E2
i,j = HHi(Fp/π∗(S))j ⇒ HHi+j(Fp/S),

so apparently the higher stable homotopy groups of spheres, which Serre had
proved to be finite, are exactly the right size to eliminate the denominators in the
divided power algebra.

The appropriate definition of cyclic homology relative to S was given in 1993 by
Bökstedt-Hsiang-Madsen. It involves a new ingredient that is not present in the
Connes-Tsygan cyclic theory, namely, a Frobenius. The nature of this Frobenius is
now much better understood thanks to the work of Nikolaus-Scholze [18], and we
will use this work as our basic reference. As in the Connes-Tsygan theory, the circle
group T acts on topological Hochschild homology, and by analogy, we may define
negative topological cyclic homology and periodic topological cyclic homology to
be the homotopy fixed points and the Tate construction of this action, respectively:

TC−(A) = THH(A)hT and TP(A) = THH(A)tT.

There is always a canonical map from homotopy fixed points to the Tate construc-
tion, but, after p-completion, the Frobenius gives rise to another such map and the
Bökstedt-Hsiang-Madsen topological cyclic homology is the homotopy equalizer of
these two maps:

TC(A) TC−(A) TP(A).//
ϕp

//

can
//

Topological cyclic homology receives a trace map from algebraicK-theory, which is
called the cyclotomic trace map, and Dundas-McCarthy-Goodwillie showed that
the discrepancy for K-theory to be invariant under nilpotent extensions agrees
integrally with that for topological cyclic homology. Similarly, by work of Geisser-
Hesselholt and Dundas-Kittang, the discrepancy for K-theory to preserve cartesian
squares of rings agrees integrally with that for topological cyclic homology.
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Calculations of algebraic K-groups, or rather the homotopy groups of the p-adic
completion of the K-theory spectrum, by means of the cyclotomic trace begin with
the calculation that said trace map

K(Fp)→ TC(Fp)

induces an isomorphism of p-adic homotopy groups in non-negative degrees. The
Dundas-McCarthy-Goodwillie theorem together with continuity results of Suslin
and Hesselholt-Madsen then show that the same is true for

K(Zp)→ TC(Zp)

and, more generally, for finite algebras over the ring of Witt vectors in a perfect
field of characteristic p. This was used by Hesselholt-Madsen in 2003 to verify
the Lichtenbaum-Quillen conjecture for p-adic fields, by evaluating the relevant
topological cyclic homology, and one of the goals of the Arbeitsgemeinschaft was
to understand this calculation.

The theories TC− and TP are of significant independent interest, since they
are closely related to interesting p-adic cohomology theories, both new and old.
The precise relationship was established only recently by work of Bhatt-Morrow-
Scholze that defines “motivic filtrations” on THH and related theories, the graded
pieces of which are p-adic cohomology theories such as crystalline cohomology and
the AΩ-theory of [2]. For example, if X is a scheme smooth over a perfect field of
characteristic p, then the jth graded pieces of TC, TC−, and TP form a homotopy
equalizer

Zp(j) Filj RΓcrys(X/W (k)) RΓcrys(X/W (k)).//

“
ϕp

pj
”

//

can
//

A second goal of the Arbeitsgemeinschaft was to understand these filtrations.
Since the questions that we consider are mainly in the p-complete setting and for

E∞-algebras (in fact, usual commutative rings!), we largely restrict our attention
to this case, and in particular work with p-typical cyclotomic spectra.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Introduction to the Tate construction and cyclotomic spectra

Stefan Patrikis

1. Overview

The aim of this lecture is to define the stable ∞-category of cyclotomic spectra
following [3]. Let T = S1 be the unit circle, and for each prime p let Cp ⊂ T be
the cyclic subgroup of order p. Informally, a cyclotomic spectrum is a spectrum
X with T-action and T ∼= T/Cp-equivariant maps

ϕp : X → XtCp .

Here (·)tCp denotes the Tate construction; it naturally carries an action of T/Cp
∼
−→

T (the identification under the map z 7→ zp). Most of this talk is simply formalizing
this definition. We need to address three things:

(1) what is meant by a spectrum with T-action;
(2) what the Tate construction is;
(3) how cyclotomic spectra form a stable ∞-category CycSp.

2. The Tate construction

2.1. Equivariant objects. We begin in a more general setting. All∞-categorical
language will be as in the books [1] and [2] of Lurie. In particular, an ∞-category
C is a simplicial set having all inner horn liftings.

Definition 1. Let G be a group, and let C be an ∞-category. We define the
∞-category of G-equivariant objects in C by Fun(BG, C) (recall that for any ∞-
category C and simplicial set K, Fun(K, C) is an∞-category). We will often write
this as CBG.

Concretely, a G-equivariant object of C is a functor (i.e. a map of simplicial sets)
BG→ C. The main example of interest to us is when C = Sp is the ∞-category of
spectra (in which case we follow [3] in referring to SpBG as “spectra with G-action”
to avoid confusion with the usual language of equivariant homotopy theory), and
when G is either a finite group or the circle group T; in the latter case by BT we
mean the classifying space of the topological group T.

2.2. Norm maps. To motivate the Tate construction, recall the classical con-
struction of Tate cohomology groups. Let G be a finite group, and let M be a
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G-module. Then we obtain a norm map NmG : MG →MG defined by NmG(m) =∑
g∈G g ·m. The Tate cohomology groups are then given by

Ĥi(G;M) =





Hi(G;M), i ≥ 1,

Coker(NmG), i = 0,

ker(NmG), i = −1,

H−i−1(G;M), i ≤ −2.

A key consequence of this definition is that a short exact sequence of G-modules
yields a long exact sequence (infinite in both directions) in Tate cohomology;
moreover, the product in group cohomology extends to one on Tate cohomology
(in all degrees).

We now explain an ∞-categorical analogue.

Definition 2. Let G be a group, and let C be an ∞-category. If C has colimits
indexed by BG, then define the homotopy orbits functor by

(·)hG : CBG → C

F 7→ colim
BG

F.

Dually, if C has limits indexed by BG, then define the homotopy fixed points
functor

(·)hG : CBG → C

F 7→ lim
BG

F.

Examples 3. When can we construct a “norm” NmG : XhG → XhG that is a
natural transformation of functors CBG → C (i.e. a morphism in Fun(CBG, C))?

The framing of this question is of course not satisfactory, since it articulates
no desiderata for the transformation NmG. One elementary requirement would be
that the general construction should specialize to the classical norm map when we
take X to be the Eilenberg-Maclane spectrum of some G-module (for some finite
group G). In what follows, we will give an elementary approach (following [3, §I.1]
and [2, §6.1.6]) to constructing norm maps for finite G; for a different approach
that works more generally, see [3, §1.4]. Later talks will make use of this latter
approach, particularly since it gives a usable universal property.

In any case, the answer to this question depends heavily on C. First recall
that an ∞-category C is pre-additive (called semi-additive in [2]) if it is pointed,
has finite products and coproducts, and these agree (see [3, Definition I.1.1] for a
precise formulation).

Proposition 4. Let C be a pre-additive ∞-category admitting limits and colimits
indexed by classifying spaces of finite groups, and let f : X → Y be a map of Kan
complexes that is a relative finite groupoid (see the proof for details). Then there
is a natural transformation Nmf : f! → f∗ of functors CX → CY (whose defining
properties will be elaborated in the course of the construction).
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Proof. Before beginning the proof proper, we start with some preliminaries. Until
otherwise noted, we let C be any ∞-category. Let f : X → Y be any map of Kan
complexes. Then we obtain a pullback

f∗ : CY → CX

(recall CX = Fun(X, C)). If they exist, we let f!, f∗ : CX → CY be the left and
right adjoints of f∗; these exist provided C admits colimits and limits indexed by
the simplicial sets X ×Y (Y/y).

Now we begin the proof of the proposition, but still until otherwise specified
not putting any hypothese on C and f . The proof will be inductive, based on the
following construction. For any map f : X → Y of Kan complexes, consider the
diagonal δ : X → X ×hY X (homotopy pull-back). Assume δ! and δ∗ exist, and
that there is a natural transformation Nmδ : δ! → δ∗ that is an equivalence (in

Fun(CX , CX×h
YX)). Consider the homotopy pullback diagram

X ×hY X

p1

��

p0
// X

f

��

X
f

// Y.

We obtain (using the two adjunctions and the equivalence Nmδ) a natural trans-
formation

p∗0 → δ∗δ
∗p∗0 ≃ δ∗

Nm−1
δ−−−−→

∼
δ! ≃ δ!δ

∗p∗1 → p∗1,

and then again by adjunction a transformation idCX → p0,∗p
∗
1. If we moreover as-

sume that C has enough limits and colimits that f∗ and f! exist, then the pull-back
diagram yields a natural transformation f∗f∗ → p0,∗p

∗
1 that is also an equivalence

(see [2, Lemma 6.1.6.3]; this uses the fact that the diagram is a homotopy pull-
back). Combining these observations, we obtain a transformation idCX → f∗f∗,
and thus by adjunction a transformation f! → f∗. We define

(⋆) Nmf : f! → f∗

to be this natural transformation between functors CX → CY .
Now we explain how the “inductive” argument of the previous paragraph lets

us build step-by-step toward the proof of the proposition; the basic idea is that δ is
more connected than f , so we can induct on the connectivity. In what follows, we
will say that a map f : X → Y of Kan complexes is n-truncated if the homotopy
fibers Ff are all n-truncated in the sense that πk(Ff ) = 0 for all k ≥ n+ 1.

Step −1: Let f be (−1)-truncated, so all homotopy fibers are either empty
or contractible. Then δ is an equivalence, so we obviously have an equivalence
Nmδ : δ!

∼
−→ δ∗. We claim that if C is pointed (there exist initial and final objects

and the map(s) between them are equivalences), then f! and f∗ exist, and Nmf

as in Equation (⋆) is an equivalence. We explain a couple of key points. We can
reduce to the case Y = ∆0. Then X is either (a) contractible or (b) empty. If (a),
then f is a homotopy equivalence, and f! and f∗ are both homotopy inverse to f∗,
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equivalent under Nmf ; if (b), then CX ≃ ∆0, and f!, f∗ : ∆0 → C are identified
with initial and final objects of, and Nmf with an equivalence from an initial to a
final object.

Step 0: Now assume f is only 0-truncated, and that C is pointed. By the Mayer-
Vietoris-type sequence on homotopy groups (πn(X ×hY X) → πn(X) ⊕ πn(X) →
πn(Y ) → πn−1(X ×hY X) → · · · ), the diagonal δ is (−1)-truncated, so by Step
−1, Nmδ : δ! → δ∗ exists and is an equivalence. Now further assume that C is pre-
additive and f has finite homotopy fibers. Then f! and f∗ exist (the requisite limits
and colimits in C are finite products and coproducts), and by the construction of
Equation (⋆), Nmf : f! → f∗ exists. Moreover, Nmf is an equivalence, the key
point being that for any objects X and Y of C, the obvious map X ⊔ Y → X × Y
is an equivalence (C is pre-additive).

Step 1: Finally, assume f is only 1-truncated, and moreover is a relative finite
groupoid in the sense that the homotopy fibers of f have finitely many connected
components, each of which is equivalent to the classifying space of a finite group.
Then (by Mayer-Vietoris) δ is 0-truncated with finite fibers, so if C is pre-additive,
then Nmδ exists and is an equivalence. If we assume moreover that C has limits
and colimits indexed by classifying spaces of finite groups (or just for those arising
as in the homotopy fibers of f), then f! and f∗ exist, and the basic construction
(⋆) yields a natural transformation Nmf : f! → f∗ (not necessarily an equivalence).

This completes the promised construction. �

The construction of the last Proposition yields the following application:

Corollary 5. Let G be a finite normal subgroup of a topological group H, and
let f : BH → B(H/G) be the projection. Let C be a pre-additive ∞-category
with limits and colimits indexed by BG. Then there is a natural transformation
Nmf : f! → f∗ arising from the inductive construction of Proposition 4.

Definition 6. In the setting of the Corollary, we will write NmG : (·)hG → (·)hG

for Nmf : f! → f∗. This is the promised norm map for the finite group G and the
∞-category C.

2.3. The Tate construction. The Tate construction will take the “cofiber” of
NmG. In order to make sense of this, we have to assume C has more structure.

Definition 7. Let C be a stable ∞-category with all colimits indexed by BG for
some finite group G. The Tate construction is the functor

(·)tG : CBG → C

X 7→ cofib(NmG : XhG → XhG).

More generally, if G is a normal subgroup of H , then the same formula yields
(·)tG : CBH → CB(H/G).

Remark 8. The Tate construction is exact, in the sense of stable ∞-categories: it
sends fiber sequences to fiber sequences.
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Remark 9. In this approach to constructing NmG, the comparison to the classi-
cal construction is somewhat tedious, since one has to trace through the induc-
tive construction. For a G-module M , let HM be the Eilenberg-Maclane spec-

trum, regarded as an object of SpBG. The defining fiber sequence (HM)hG
NmG−−−→

(HM)hG → (HM)tG yields a long-exact sequence in homotopy groups, where
πn(HMhG) ∼= Hn(G;M) and πn(HMhG) ∼= H−n(G;M). Once one identifies
the map π0(NmG) : π0(HMhG) → π0(HMhG) with the classical norm map, one

recovers πn(HM tG) ∼= Ĥ−n(G;M) for all integers n.

We include one more important fact about the multiplicativity of the Tate
construction:

Theorem 10 (Theorem I.3.1 of [3]). Let G be a finite group. The functor

(·)tG : SpBG → Sp

admits a lax symmetric monoidal structure making the natural transformation
(·)hG → (·)tG lax symmetric monoidal. In fact, the space of pairs consisting
of a lax symmetric monoidal structure on (·)tG and a lax symmetric monoidal
refinement of (·)hG → (·)tG is contractible.

3. Cyclotomic spectra

We can now construct the stable∞-category of cyclotomic spectra, making precise
the informal description in §1. In the notation of the previous section, let C = Sp
be the stable ∞-category of spectra, let H = T (the circle), and let G be any of
the finite cyclic subgroups Cp ⊂ T. For all p, we have the Tate construction

(·)tCp : SpBT → SpB(T/Cp) ∼= SpBT,

with the identification coming from the isomorphism of topological groups T/Cp
∼
−→

T, z 7→ zp. To define CycSp, we need one more general categorical construction:

Definition 11. Let F,G : C → D be functors between ∞-categories. Define the
lax equalizer of F and G to be the (1-categorical) pullback of simplicial sets

LEq(F,G) //

��

D∆1

(ev0,ev1)

��

C
(F,G)

// D ×D.

We sometimes write LEq(C
F

⇒
G
D) for LEq(F,G). LEq(F,G) is itself an∞-category

([3, Proposition II.1.5]).

For instance, an object of LEq(F,G) is a pair (c, f) consisting of an object c of
C and a morphism F (c)→ G(c) in D. Mapping spaces in LEq(F,G) are computed
as follows. Let X,Y be objects of LEq(F,G), given by pairs (cX , fX) and (cY , fY )
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as above. Then the space MapLEq(F,G)(X,Y ) is the equalizer (see [3, Proposition

II.1.5(ii)])

(⋆⋆) MapLEq(F,G)(X,Y ) ≃ Eq

(
MapC(cX , cY )

f∗
XG

⇒
f∗
Y F

MapD(F (cX), G(cY ))

)
.

Definition 12. Consider the two functors SpBT →
∏
p SpBT given by F = (id)p

and G = ((·)tCp)p. The ∞-category of cyclotomic spectra CycSp is defined to be
LEq(F,G), i.e.

CycSp = LEq

(
SpBT

(id)p

⇒

((·)tCp )p

∏

p

SpBT

)
.

Working with just a single prime p, we make an analogous definition of p-cyclotomic
spectra:

CycSpp = LEq

(
SpBCp∞

id

⇒
(·)tCp

SpBCp∞

)

(again using the identification Cp∞/Cp
∼
−→ Cp∞).

In particular, an object of CycSp is a pair (X, (ϕp)p) of a spectrum with T-
action X and morphisms ϕp : X → XtCp for all primes p. There is no compatibility
requirement as p varies.

General facts about lax equalizers translate to the following basic properties of
CycSp (see [3, Proposition II.1.5] for details, and for additional, more technical,
accessibility and presentability properties):

(1) A morphism in CycSp is an equivalence if and only if its image in SpBT is
an equivalence (which is the case if and only if its pullback along {1} → T
to Sp is an equivalence).

(2) CycSp is a stable ∞-category.

(3) The functor CycSp→ SpBT is exact and preserves small colimits.

Example 13. The sphere spectrum S ∈ Sp refines to an object of CycSp when
given the trivial T action (i.e., when regarded as an object of SpBT by pullback
along BT → ∗). Namely, by adjunction there is a map (in Sp) S → ShCp, and
thus a map S→ StCp . To add the necessary equivariant structure, we consider the
composite (in Sp)

S→ ShT ≃ (ShCp)hT/Cp → (StCp)hT/Cp .

Adjunction yields the T ∼= T/Cp-equivariant structure on S→ StCp .

Finally, since CycSp is a stable ∞-category we obtain mapping spectra functors

mapCycSp(·, ·) : CycSpop × CycSp→ Sp,

and we can then define the topological cyclic homology of a cyclotomic spectrum:
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Definition 14. Let (X, (ϕp)p) be a cyclotomic spectrum. The integral topologi-
cal cyclic homology TC(X) is the mapping spectrum mapCycSp(S, X) ∈ Sp. Like-
wise, for an object (X,ϕp) of CycSpp, the p-typical topological cyclic homology is
TC(X, p) = mapCycSpp

(S, X).

Combining the formula of Equation (⋆⋆), Example 13, and the equivalence

(see [2, Corollary 1.4.2.23]) Funex(CycSp, Sp)
Ω∞

−−→ Funlex(CycSp, sSet), applied to
mapCycSp(S, ·), we deduce the following computation of TC(X):

Proposition 15 (Proposition II.1.9 of [3]). Let (X, (ϕp)p) be a cyclotomic spec-
trum. Then writing can for the map

can: XhT ≃ (XhCp)h(T/Cp) ≃ (XhCp)hT → (XtCp)hT,

there is a functorial fiber sequence computing TC(X):

TC(X)→ XhT
(ϕhT

p −can)p
−−−−−−−→

∏

p

(XtCp)hT,

and analogously for p-cyclotomic spectra.
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Genuine cyclotomic spectra

Anna Marie Bohmann

In this talk, we discuss how the Nikolaus–Scholze definition of cyclotomic spectra
[6], as outlined in the previous talk, relates to the previous definition of “genuine”
cyclotomic spectra, as in Hesselholt–Madsen [3]. We focus on the comparison in
the case of a chosen prime p. Thus, the main goal of this talk is to explain the
following theorem:

Theorem 1 ([6, Theorem II.3.8, Theorem II.6.3]). There is a functor CycSpgen
p →

CycSpp from the ∞-category of genuine p-cyclotomic spectra to the ∞-category of
p-cyclotomic spectra in the sense of Nikolaus–Scholze that is an equivalence on the
full sub-∞-categories of bounded below spectra.

This functor, and the fact that it is an equivalence on bounded spectra, is a
surprising and powerful result. The exegesis of this functor will be in three parts.
First, we give a description of genuine cyclotomic spectra, which includes some
indication of why even the existence of this functor is surprising, much less that it
is an equivalence. Second, we explain how this functor arises. Lastly, we indicate
why this functor restricts to an equivalence on bounded below spectra.
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1. What are genuine cyclotomic spectra?

Each object of the ∞-category CycSpp of p-cyclotomic spectra consists of a spec-

trum X with an action of Cp∞ and a map X → XtCp from X to the Cp-Tate
construction on X . In contrast, the objects of the ∞-category CycSpgen

p consist of
a genuine Cp∞ -spectrum X , in the sense of genuine equivariant stable homotopy
theory, together with an equivalence X → ΦCpX of X to its “geometric fixed
points.”

A genuine G-spectrum has an underlying spectrum with an action of G, but it
is a much more structured object, as we will see below. We denote the∞-category
of spectra with G action by SpBG and the ∞-category of genuine G-spectra by
GSp.1

There are several ways to describe genuine G-spectra [1, 4, 5, 7], but the salient

features for us are the following. Recall that in SpBG, an equivalence X → Y
is a weak equivalence that is also an equivariant map. This means that only
well-defined notion of the “fixed points” of a spectrum Y ∈ SpBG is that of the
homotopy fixed points, Y hG. In GSp, it is harder for a map to be a weak equiv-
alence and there are two additional well-defined notions of fixed points. These
are the categorical fixed points, denoted XG, and geometric fixed points, denoted
ΦG(X). The categorical fixed points are the most “fundamental,” in that both
geometric fixed points and homotopy fixed points can be defined in term of cate-
gorical fixed points. They are frequently just called the “fixed points.” Categorical
fixed points for genuine G-spectra fit into several nice adjunctions that parallel the
adjunctions enjoyed by fixed points for G-spaces. However, categorical fixed points
don’t commute with smash product or taking suspension spectrum of a G-space.
Geometric fixed points don’t have these adjunction properties, but do commute
with smash products and taking suspension spectra. This latter property is the
origin of the name.

Remark 2. Note that if H is a subgroup of G and X ∈ GSp, there are also well-
defined notions of categorical H-fixed points XH , geometric fixed points ΦH(X)
and homotopy fixed points XhH .

These more refined versions of fixed points allow one to give a characterization
of a weak equivalence in GSp: a map X → Y in GSp is a weak equivalence if
the induced map on H-fixed points XH → Y H is a weak equivalence of spectra
for all subgroups H of G. Since fixed points under the trivial group is simply the
underlying spectrum, we see that a weak equivalence in GSp is in particular a
weak equivalence of underlying spectra-with-G-action. There is thus a forgetful
functor

U : GSp→ SpBG.

1Classically, “genuine G-spectra” are defined when G is a compact Lie group, which Cp∞

is decidedly not. The ∞-category of “genuine Cp∞ spectra” is defined as the limit of the ∞-

categories of genuine Cpn -spectra; see [6, p. 43].
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In general, this functor forgets a lot of information—this is evident in the relax-
ation of the “weak equivalence” condition—which makes the equivalence part of
Theorem 1 surprising.

At heart, the forgetful functor U is the functor of Theorem 1, but it is not
apparent that forgetting defines a functor CycSpgen

p → CycSpp: if X → ΦCpX is
an object of CycSpgen

p , forgetting yields a spectrum with Cp∞ -action and a map

to the underlying spectrum with Cp∞ -action of ΦCpX , rather than a map to the
Tate spectrum XtCp .

2. The functor CycSpgen
p → CycSpp

We now show that there is a functor CycSpgen
p → CycSpp arising from the forgetful

functor Cp∞Sp → SpBCp∞ . The basic ingredient is a comparison map between
the underlying spectrum with Cp∞ -action of ΦCpX and the Tate spectrum XtCp .
In order to define this comparison, we need a better understanding of homotopy
fixed points, geometric fixed points and the Tate construction.

Definition 3. Let E[ 6⊇Cp] be a free contractible Cp∞ -space.2 That is, E[ 6⊇Cp] is
characterized by having fixed point spaces with homotopy types

(E[ 6⊇Cp])
H ≃

{
∅ H = Cpn , n ≥ 1

∗ H trivial.

Definition 4. Let X be a genuine Cp∞ -spectrum. For any n ≥ 1, the Cpn -
homotopy fixed points of X can be defined as

XhCpn = (F (E[ 6⊇Cp]+, X))Cpn .

The functor F (E[ 6⊇ Cp]+,−) : Cp∞Sp → Cp∞Sp has an important interpreta-
tion. As a consequence of Definition 4, we see that spectra F (E[ 6⊇ Cp]+, X) in
the image of this functor have the property that for any Cpn , their categorical
Cpn -fixed points and their homotopy Cpn -fixed points agree.

Definition 5. A genuine Cp∞ -spectrum X ∈ Cp∞Sp is called Borel if XCpn ≃
XhCpn for all n.

Thus the image F (E[ 6⊇Cp]+,−) consists of Borel spectra, and in fact this prop-
erty characterizes the image: the image of the functor F (E[ 6⊇Cp]+,−) is the full
sub-∞-category of Borel spectra. Since homotopy fixed points are determined by
the underlying homotopy type of a spectrum, a map of genuine Cp∞ -spectra that
is an equivalence on underlying spectra with Cp∞ -action induces an equivalence
after applying F (E[ 6⊇Cp]+,−). This is the essence of the following theorem.

Theorem 6 ([6, Theorem II.2.7]). The forgetful functor U : Cp∞Sp → SpBCp∞

admits a fully faithful right adjoint B : SpBCp∞ → Cp∞Sp whose essential image
consists of the Borel spectra. We call B the Borel construction or Borelification.

2We think of E[ 6⊇Cp] as a Cp∞ -space where the action by the family of all subgroups not

containing Cp. This is the origin of the notation.



820 Oberwolfach Report 15/2018

One way to conceptualize this theorem is that the Borel construction takes the
only “fixed point data” that a spectrum with Cp∞ -action is entitled to have, its
homotopy fixed points, and makes that the actual fixed point data. Since the
homotopy type of a genuine Cp∞ -spectrum is determined by the homotopy type
of all its fixed point spectra, this suffices to determine BY up to homotopy.

We next describe the Cp-geometric fixed points of a genuine Cp∞ -spectrum.

Definition 7. Let Ẽ[ 6⊇Cp] be space defined by the cofiber sequence

(1) E[ 6⊇Cp]+ → S0 → Ẽ[ 6⊇Cp].

where the map E[ 6⊇Cp]+ → S0 is given by mapping the basepoint to the basepoint
and E[ 6⊆ Cp] to the non-base point of S0.

Definition 8. If X ∈ Cp∞Sp is a genuine Cp∞ -spectrum, the Cp-geometric fixed

points of X are defined to be the Cp-categorical fixed points (Ẽ[ 6⊇Cp] ∧X)Cp .

This definition of geometric fixed points relies on the fact that the only subgroup

of Cp∞ not containing Cp is the trivial subgroup; Ẽ[ 6⊇Cp] cannot be used to define
ΦCpn for n > 1.

For any X ∈ Cp∞Sp, smashing the cofiber sequence (1) with X yields a cofiber
sequence

E[ 6⊇Cp]+ ∧X → X → Ẽ[ 6⊇Cp] ∧X.

and then taking Cp-fixed points yields a cofiber sequence

(E[ 6⊇Cp]+ ∧X)Cp → XCp → (Ẽ[ 6⊇Cp] ∧X)Cp .

Using the Adams isomorphism, the left-hand term can be identified as the homo-
topy orbits XhCp , so this sequence takes the form

XhCp → XCp → ΦCpX.

Smashing the cofiber sequence (1) with the map from X to the Borelification of
X produces a map of cofiber sequences
(2)

E[ 6⊇Cp]+ ∧X

��

// X

��

// Ẽ[ 6⊇Cp] ∧X

��

E[ 6⊇Cp]+∧F (E[ 6⊇Cp]+,X) //F (E[ 6⊇Cp]+,X) // Ẽ[ 6⊇Cp]∧F (E[ 6⊇Cp]+X)

and one can show that the left vertical map is a genuine weak equivalence. This
is the heart of “Generalized Tate cohomology” in the sense of [2]. Notice that in
the lower cofiber sequence all of the spectra are Borel, which yields the following
proposition.
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Proposition 9. For a genuine Cp∞-spectrum X, the underlying cofiber sequence
of spectra with Cp∞-spectra obtained by smashing the sequence (1) with the Borelifi-
cation F (E[ 6⊇Cp]+, X) and taking Cp-fixed points is the norm cofibration sequence

XhCp → XhCp → XtCp

of [6, Definition I.1.3] which defines the Cp-Tate construction on the underlying
spectrum with Cp∞ -action of X.

Thus the applying Cp-fixed points to the diagram (2) induces a natural map of
cofiber sequences

XhCp
//

≃

��

XCp //

��

ΦCpX

��

XhCp
// XhCp // XtCp

Proposition 10. The right vertical map above yields a natural transformation of
functors

Cp∞Sp
ΦCp

//

��

☛☛☛☛�	

Cp∞Sp

��

SpBCp∞
(−)tCp

// SpBCp∞

where the vertical maps are the forgetful functor.

This natural transformation is the comparison we need to define the forgetful
functor CycSpgen

p → CycSpp. On objects, this functor takes a genuine Cp∞ -

spectrum X with its equivalence X
∼
−→ ΦCpX to the underlying spectrum with

Cp∞ -action of X equipped with the map X → ΦCpX → XtCp .

3. The equivalence

Proving that the functor CycSpgen
p → CycSpp is an equivalence on the sub-∞-

categories of bounded below spectra requires both formal work with adjoint func-
tors and a nonformal calculational ingredient. In order to better understand this
functor, we factor it through an ∞-category CoAlgΦCp whose objects are spectra
X ∈ Cp∞Sp equipped with a map X → ΦCpX of genuine Cp∞ -spectra that is not
required to be an equivalence. The adjoint functor theorem for presentable infinity
categories provides right adjoints as follows:

Theorem 11 ([6, Lemma II.6.2, Theorem II.5.6]). The forgetful functors

CycSpgen
p

ι
−→ CoAlgΦCp and CoAlgΦCp

U
−→ CycSpp have right adjoints

CycSpgen
p

ι
((

CoAlgΦCp

Rι

ii

U
''

CycSpp.

B

hh
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To show that CycSpgen
p → CycSpp is an equivalence on the full sub-∞-categories

of bounded below spectra, it therefore suffices to show that composite Uι reflects
equivalences and the counit UιRB is an equivalence on bounded below spectra.
In fact, since genuine weak equivalences can be detected via equivalences on all
geometric fixed points, for spectra known to be genuine cyclotomic, underlying
equivalences must be genuine equivalences. Hence Uι reflects equivalences.

We discuss the two right adjoints in turn, starting with the adjoint B to the
forgetful functor U : CoAlgΦCp → CycSpp. Although it is not immediately obvious,
on bounded below spectra this adjoint is given by applying the Borelification
functor of Theorem 6. This is our excuse for the abuse of notation in calling both
adjoints B.

Suppose Y → Y tCp is a cyclotomic spectrum in CycSpp. Applying B to this

map yields a map BY → B(Y tCp) of genuine Cp∞ -spectra. The Tate construction
depends only on underlying Borel-type data, so B(Y tCp) ≃ (BY )tCp . As we saw
in Proposition 10, there is a map ΦCpBY → BY tCp , so in order to produce an
object in CoAlgΦCp , it suffices to prove that this map is a genuine equivalence on
bounded below spectra.

For any Cp∞ -spectrum X , the map of cofiber sequences (2) yields a pullback
diagram

X //

��

Ẽ[ 6⊇Cp] ∧X

��

F (E[ 6⊇Cp]+, X) // Ẽ[ 6⊇Cp] ∧ F (E[ 6⊇Cp]+, X)

which after applying Cpn -fixed points becomes

(3) XCn
p

��

// (ΦCpX)Cpn−1

��

XhCpn // XtCpn

Note that the bottom row of this square depends on only on the underlying spec-
trum Cp∞ -action of X because it arose from F (E[ 6⊇Cp]+, X).

Now if X = BY is a Borel spectrum, for each n ≥ 1, the left map is an
equivalence, and so we have an equivalence of spectra (ΦCpBY )Cpn−1 ∼

−→ BY tCpn .
To prove that the map ΦCpBY → BY tCp is an equivalence, we must show that it
induces an equivalence on Cpn−1 -categorical fixed points for all n ≥ 1, and since
for Borel spectra, categorical and homotopy fixed points agree, it suffices to prove
the following lemma.

Lemma 12. If Y ∈ SpBCp∞ is bounded below, then Y tCpn+1 ≃ (Y tCp)hCpn .

This equivalence follows from a key calculational lemma.
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Lemma 13 (Tate Orbit Lemma, [6]). If Y ∈ SpBCp2 is bounded below, then the

norm map YhCp2
→ (YhCp)hCp2/Cp is an equivalence and thus

(YhCp)tCp2/Cp ≃ ∗

The Tate Orbit Lemma follows from an induction argument starting with
Eilenberg–MacLane spectra.

Proof of Lemma 12. Consider YhCpn−2 as a spectrum with Cp2 -action; note that

(YhCpn−2 )hCp2
= YhCpn

. Thus the Tate orbit lemma implies that the norm map

YhCpn
→ (YhC

pn−1
)hCp is an equivalence. By induction, we deduce that the norm

map YhCpn
→ (YhCp)hCpn−1 is an equivalence. We then have a diagram of norm

sequences

YhCpn
//

∼

��

Y hCpn //

∼

��

Y tCpn

��

(YhCp)hCpn−1 // (Y hCp)hCpn−1 // (Y tCp)hCpn−1

where the middle vertical map is an equivalence by definition and the left vertical
equivalence is the one we’ve just constructed. �

Hence for Y bounded below, the map ΦCpBY → BY tCp induces an equivalence

(ΦCpBY )Cpn−1 → (BY tCp)Cpn−1 ≃ (BY tCp)hCpn−1

on all fixed points and therefore is an equivalence of genuine Cp∞ -spectra. Thus,
when Y → Y tCp is a bounded below cyclotomic spectrum,

BY → B(Y tCp) ≃ ΦCp(BY )

is an object of CoAlgΦCp . This shows that the right adjoint to the functor
U : CoAlgΦCp → CycSpp is given by Borelification as desired.

The second right adjoint, R : CoAlgΦCp → CycSpgen
p , takes place purely in the

world of genuine Cp∞ -spectra. It replaces a genuine Cp∞ -spectrum X equipped
with a map X → ΦCpX with a genuine Cp∞ -spectrum for which this map is an
equivalence. The existence of this adjoint follows from the adjoint functor theorem
and results about presentability of and existence of colimits in the ∞-categories
in question. A detailed description is given in [6, Theorem II.5.6].

Instead of giving a detailed characterization of the functor R : CoAlgΦCp →
CycSpgen

p , we unpack the structure of a genuine cyclotomic spectrum that is
bounded below. We show that the data of such a spectrum can be reconstructed
from underlying data, which makes the equivalence of ∞-categories of Theorem 1
plausible. In fact, this reconstruction is ultimately what proves that the counit of
the adjunction in Theorem 11 is an equivalence on bounded below spectra; see [6,
Sections II.5 and II.6].
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Let X be a genuine cyclotomic spectrum that is bounded below. Since XtCpn

depends only on the underlying spectrum of X , we can invoke Lemma 12 to see
that the pullback square (3) takes the form

XCpn //

��

(ΦCpX)Cpn−1

��

XhCpn // (XtCp)hCpn−1

and thus

XCpn ≃ XhCpn ×
(XtCp )

hC
pn−1 (ΦCpX)Cpn−1

Note that since ΦCpX ≃ X , all of the geometric fixed points ΦCpnX are also
bounded below, and thus via induction we can describe XCpn using an iterated
pullback diagram

XCpn //

��

ΦCpnX

��

· · ·

��

// (ΦCpnX)tCp

(ΦCpX)hCpn−1

��

// ((ΦCpX)tCp)hCpn−2

XhCpn // (XtCp)hCpn−1

In fact, this description holds for any bounded below Cp∞ -spectrum all of whose
geometric fixed points are also bounded below. When we additionally assume X is
genuine cyclotomic so that there are equivalences X

∼
−→ ΦCpX

∼
−→ ΦCp2X

∼
−→ · · · ,

the fixed point spectrum XCpn becomes the iterated pullback

(4) XCpn ≃ XhCpn ×
(XtCp )

hC
pn−1 X

hCpn−1 ×
(XtCp )

hC
pn−2 · · · ×XtCp X.

Here the maps from left to right are those coming from the norm cofibration
sequence and the maps from right to left are those induced on homotopy fixed
points by X

∼
−→ ΦCpX → XtCp .

This pullback shows that the categorical fixed point spectra of X , which de-
termine its genuine homotopy type, are in fact recoverable from the Borel, or
underlying, data of X . This is essence of why the counit UιBR of the adjunction
in Theorem 11 is an equivalence on bounded below spectra: For bounded below
cyclotomic spectra, the “extra” structure built in by the right adjoints was actually
already present!

We can also use the iterated pullback of (4) to see the key structure of a cyclo-
tomic spectrum that is necessary to form topological cyclic homology. Recall that
classically, topological cyclic homology is built from maps R and F of the form
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R,F : XCpn → XCpn−1 . The map F is given by inclusion of fixed points, and the
map R is defined using the cyclotomic structure:

R : XCpn → (ΦCpX)Cpn−1 ∼
−→ XCpn−1 .

Using the maps R, one defines TR as the inverse limit over the maps R: TR =
lim
←−R

XCpn . Then TC is defined as the equalizer

TC // TR
F

//
id // TR .

Under the iterated pullback description (4) of XCpn , the map R : XCpn → XCpn−1

is given by forgetting the first factor of the iterated pullback. The map F : XCpn →
XCpn−1 is given by forgetting the last factor and composing with the maps
XhCpn → XhCpn−1 at each level. Thus, we see that all of the necessary data
for defining TC of a bounded below genuine cyclotomic spectrum is captured by
the underlying spectrum with Cp∞ -action.

References

[1] A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in
stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathe-
matical Society, Providence, RI, 1997, With an appendix by M. Cole.

[2] J. P. C. Greenlees and J. P. May. Generalized Tate cohomology, Memoirs of the American
Mathematical Society 113 (1995) no. 543.

[3] Lars Hesselholt and Ib Madsen. On the K-theory of finite algebras over Witt vectors of
perfect fields, Topology, 36 (1997), 29–101.

[4] L. G. Lewis, J. P. May, and M. Steinberger, Equivariant stable homotopy theory, Lecture
Notes in Mathematics, vol. 1213, Springer-Verlag, Berlin, 1986, With contributions by J. E.
McClure.

[5] M. A. Mandell and J. P. May, Equivariant orthogonal spectra and S-modules, Memoirs of
the American Mathematical Society, 159 (2002), no. 755.

[6] T. Nikolaus and P. Scholze. On topological cyclic homology. arxiv:1707.01799 [math.AT].
[7] S. Schwede. Lecture notes on equivariant stable homotopy theory. 104 pp.

http://www.math.uni-bonn.de/people/schwede/equivariant.pdf.

The Tate diagonal

Fabian Hebestreit

The goal of the talk was to construct the Tate diagonal and establish its basic
properties, following [NiSc 17, Section 3] and [LNRo 12]. Among them is the
simplest case of Segal’s conjecture, the connection to which I spell out in the final
section (it did not feature in the Arbeitsgemeinschaft again).

Throughout, the words category, functor, natural transformation and so on will
refer to their (∞, 1)-categorical incarnations. Following Nikolaus and Scholze I
will denote the wedge and smash product of spectra by ⊕ and ⊗ instead of the
usual ∨ and ∧, respectively.
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1. Construction of the Tate diagonal

First a bit of notation: Given a prime number p and a spectrum X , we shall denote

Dp(X) = (X⊗p)hCp ,

Fp(X) = (X⊗p)hCp ,

Tp(X) = (X⊗p)tCp ,

the homotopy orbits, homotopy fixed point and Tate construction of the p-fold
smash power of X , with Cp ⊆ Sp the subgroup generated by the p-cycles (itself
cyclic of order p) acting by permuting the factors. If we denote the category of
spectra by Sp these assignments give rise to evident functors

Dp,Fp,Tp : Sp −→ Sp.

The functor Dp is a version of the extended power construction discussed further in
Talk number 5, whereas Tp is sometimes called the topological Singer construction.
By definition of the Tate construction the norm map N naturally connects these
functors into an objectwise exact sequence

Dp
N

=⇒ Fp =⇒ Tp.

We shall now set out to construct the Tate diagonal ∆p, a particular natural
transformation

id =⇒ Tp : Sp −→ Sp,

essentially from formal properties of the functor Tp. To this end we have:

Proposition 1. The functor Tp is exact.

Proof. Let X0 → X1 → X2 be a fibre sequence and consider the ‘obvious’ filtration
F of X⊗p

1 (by Cp-spectra), given informally by

Fs = ‘im’




⊕

I∈{0,1}p

|I|=s

XI1 ⊗ · · · ⊗XIp −→ X⊗p
1




with the induced Cp-action. More formally, the terms XI1 ⊗ · · · ⊗ XIp assemble
into a functor

X : {0, 1}p −→ Sp,

where the source is regarded as a category via its product ordering and the un-
derlying spectrum of Fi is just the colimit of the full subcategory on the objects
with at most i entries being 1. To obtain the Cp-action we extend X to a functor
on the category {0, 1}phCp

using the symmetry of the smash product and define Fi
as the left Kan extension of X along the projection

{0, 1}phCp
−→ ∗hCp = BCp.

Then F0 = X⊗p
0 , Fp = X⊗p

1 and for 0 ≤ s < p there are canonical exact sequences

Fs−1 −→ Fs −→
⊕

I∈{0,2}p

|I|=2s

XI1 ⊗ · · · ⊗XIp
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of Cp-spectra, the action of the last term given by permutation of the wedge and
smash factors.
Claim: The induced maps

F
tCp

0 −→ · · · −→ F
tCp

p−1

are all equivalences.

Granting the claim the exact sequence

F
tCp

p−1 −→ FtCp
p −→ X

tCp

2 ,

the functor −tCp : SpCp → Sp is exact after all, becomes

Tp(X0) −→ Tp(X1) −→ Tp(X2)

as desired.

To prove the claim observe that by virtue of the exactness of −tCp the cofibre

of F
tCp

s−1 → F
tCp
s is




⊕

I∈{0,2}p

|I|=2s

XI1 ⊗ · · · ⊗XIp




tCp

≃
⊕

J∈{0,2}p/Cp
|J|=2s

(⊕

I∈J

XI1 ⊗ · · · ⊗XIp

)tCp

and the J-th term on the right is the image of XI1 ⊗· · ·⊗XIp under the induction

functor Sp → SpCp for any I ∈ J : To see this, note only that J is automatically
a free Cp-orbit, since the only fixed points of the Cp-action on {0, 2}p are the
constant sequences both of which are excluded by the assumption 0 < s < p. But
the Tate construction vanishes on induced spectra. �

We now obtain ∆p from the following standard fact:

Observation 2. For a stable category C and a category D admitting finite limits,
the functor

Ω∞ : Funex(C, Sp(D∗)) −→ Funlex(C,D)

is an equivalence.

Here Fun(l)ex denotes the full subcategories of functors Fun that are (left) exact
and

Sp(D) = lim
(
· · ·

Ω
→ D∗

Ω
→ D∗

Ω
→ D∗

)

the category of spectral objects in D, with Ω∞ : Sp(D)→ D the projection to the
last entry in the limit diagram.

For S the category of groupoids (‘spaces’), we then have Sp = Sp(S) and by
definition the above precisely says that Ω∞ witnesses Sp(D) being the stabilisation
of D.

As we shall need a construction from the proof later, let me provide a sketch:
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Proof. The inverse functor is given by sending F ∈ Funlex(C,D) to

X 7−→ (. . . , F (Σ2X), F (ΣX), F (X)),

pointed by the composite ∗ = F (∗)
F (0)
→ F (X) and with structure maps F (ΣnX)→

ΩF (Σn+1X) obtained as an instance of the following general construction (by
staring at the diagram below) of maps G(X)→ ΩG(ΣX) for any pointed functor
G from a pointed category with finite colimits to one with finite limits:

G(X)

��

%%❏
❏

❏
❏

❏
// G(∗)

≃

��
ΩG(ΣX)

��

// ∗

��

G(∗)
≃ // ∗ // G(ΣX)

The outer sqaure is G applied to the defining pushout of ΣX and the inner square
is the pullback defining its upper left corner. It is this general construction we
shall need again below.

It is now readily checked that the functor we constructed above is indeed exact
and an inverse to Ω∞: For the former note that Sp(D) has an invertible loop
functor, and is therefore stable, whence exactness for a functor into spectra objects
is the same as left exactness, which can be tested at level 0, since Ω preserves limits.
For the latter, note first that the composition starting and ending at Funlex(C,D)
is evidently the identity. For the other composition we observe that for the n-th
component of an exact functor F : C → Sp(D∗) we have

Fn ≃ FnΩnΣn ≃ ΩnFnΣn ≃ F0Σn,

as functors C → D∗, which shows that F is recovered from its lowest piece by the
recipe above, since the forgetful map

Funlex(C,D∗) −→ Funlex(C,D)

is obviously an equivalence (since every object in C is pointed and left exact func-
tors preserve pointed objects). �

Using the Yoneda lemma and the identification Hom(S,−) ≃ Ω∞ : Sp→ S with
S the sphere spectrum, we can now compute

Nat(id,Tp) ≃ Nat(Ω∞,Ω∞Tp)

≃ Nat(Hom(S,−),Ω∞Tp)

≃ Ω∞Tp(S)

≃ Hom(S,Tp(S)),

with the composite given by evaluating a natural transformation on the sphere.
Observing that Tp(S) ≃ StCp (for the trivial Cp-action on S) we set:
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Definition 3. The Tate diagonal ∆p is the essentially unique transformation
which on the sphere is given by the canonical map

S −→ ShCp −→ StCp .

Here the first map is given by

S ≃ F(∗, S)
r∗
→ F(BCp, S) ≃ ShCp

using the projection r : BCp → ∗ (and F denoting function spectra). Let me warn
the reader that for an arbitrary spectrum X , the map ∆p : X → Tp(X) does not
factor through Fp(X) (in particular, the functor Fp is not exact). This is for
example the case for HZ, as is readily deduced from the computations in the proof
of part ii) of the theorem below.

2. Properties of the Tate diagonal

Theorem 4. We have:

i) ∆p : idSp =⇒ Tp admits an essentially unique symmetric monoidal refine-
ment.

ii) Every transformation

id =⇒ TZ

p : D(Z)→ D(Z)

vanishes objectwise (where TZ
p(C) = (C⊗Zp)tCp).

iii) For X bounded below, Tp(X) is p-complete and the induced map

∆p : X̂
p −→ Tp(X)

is an equivalence.

To make sense of the first statement, recall that Tp obtains a lax symmetric
monoidal refinement from its decomposition into

Sp
−⊗p

−→ SpCp −tCp

−→ Sp,

since the first functor becomes symmetric monoidal through the evident reshuffling
of factors and the second functor was given a lax symmetric monoidal structure
in the first talk.

The second statement says that the existence of the Tate diagonal is a feature of
higher algebra, that is not present in classical derived categories. This dichotomy
will be the ultimate source of extra structure, in particular the coveted Frobenius
lifts, on topological, as opposed to non-topological, Hochschild homology and its
derivates.

The third statement has non-trivial overlap with Segal’s conjecture on the stable
cohomotopy of classifying spaces, on which I will comment briefly in the third
chapter. Either assertion becomes false upon dropping the assumption that X
be bounded below, the counterexample KU is discussed after [NiSc 17, Theorem
III.1.7].
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Proof. To obtain i), I will discuss the following

Claim: The identity functor is initial among exact, lax symmetric monoidal
functors Sp→ Sp.

To observe that the unique multiplicative transformation id =⇒ Tp obtained
from this has the Tate diagonal as its underlying transformation simply observe
that the defining composite

S −→ ShCp −→ StCp

is one of commutative ring spectra (and since S is initial among such it is unique
with this property): For the first map this is clear, and for the second it is imme-
diate from the symmetric monoidal structure of the transformation −hCp → −tCp

obtained in the first talk.
To obtain the claim we follow [Ni 16]. It is (somewhat tautologically) true that

for any symmetric monoidal category C with unit I, the functor

Hom(I,−) : C −→ S

is initial among all lax symmetric monoidal functors; the required transformation
comes from Yoneda’s lemma, as

Nat(Hom(I,−), F ) ≃ F (I),

and as part of the data of a lax symmetric monoidal functor comes a map ∗ → F (I).
Now for a preadditive source category C for which the symmetric monoidal struc-
ture preserves products, the functor Hom(I,−) naturally takes values in commuta-
tive cartesian monoid objects in S (i.e. E∞-spaces), since it preserves products and
every object of a preadditive category admits a unique cartesian monoid structure.
Viewed as a functor

Hom(I,−) : C −→ cMon(S)

it then becomes initial among product preserving, lax symmetric monoidal func-
tors. Similarly, for C additive, Hom(I,−) lifts to commutative group objects in
S (i.e. grouplike E∞-spaces or equivalently connective spectra) and for C stably
symmetric monoidal (i.e. stable with biexact symmetric monoidal structure) it lifts
to

Hom(I,−) : C −→ Sp

and becomes initial among all exact, lax symmetric monoidal functors.
A similar line of argument cannot be followed for the category D(Z), and indeed

the identity is not initial among exact, lax symmetric monoidal endofunctors of
D(Z); we shall obtain this as a corollary of the second part. The identity on D(Z)
is initial among all exact, lax symmetric monoidal functors that are Z-linear (that
is the induced map on morphism spectra is HZ-linear, e.g. a dg-functor), and part
ii) therefore implies that TZ

p is not Z-linear.
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To obtain ii) we shall consider the Eilenberg-Mac Lane functor H: D(Z)→ Sp
and show:

Claim 1: Every transformation

τ : H =⇒ H ◦ Tp(Z) : D(Z)→ Sp

is a Z/p-multiple of

H
∆pH
=⇒ Tp ◦H

π
=⇒ H ◦ TZ

p ,

where π comes from the map

(H−)⊗p −→ H
(
−⊗Zp

)
,

that is part of the lax symmetric monoidal structure H canonically carries, and
the fact that the square

D(Z)Cp
−tCp

//

H
��

D(Z)

H

��

SpCp
−tCp

// Sp

commutes (essentially by construction of −tCp).

Claim 2: The transformation a · (π ◦∆pH) lifts to a transformation

id =⇒ TZ

p : D(Z)→ D(Z)

only when a = 0.

Together these claims show that the underlying transformation in spectra of any
id⇒ TZ

p vanishes, whence by general non-sense about derived categories (and the
fact that Z has projective dimension 1) the same holds objectwise for the original
transformation (though it is not clear that it is trivial itself): Every C ∈ D(Z)
is formal (i.e. quasi-isomorphic to the sum of its homology groups placed in the
corresponding degree) and for abelian groups M and N

π0HomD(Z)(M [m], N [n]) = Extn−m
Z

(M,N)

vanishes unless m = n or n + 1, both of which can be detected on homology (di-
rectly in case of the former and by the Bockstein sequence in case of the latter)
and therefore on the underlying transformation in spectra.
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To obtain claim numero uno note first that H ◦TZ
p : D(Z)→ Sp is exact (TZ

p is
by the same argument as for Tp), so that

Nat(H,HTZ

p) ≃ Nat(Ω∞H,Ω∞HTZ

p)

≃ Nat(Hom(Z,−),Ω∞HTZ

p)

≃ Ω∞HTZ

p(Z)

≃ Ω∞HZtCp .

This gives

π0Nat(H,HTZ

p ) = π0(Ω∞HZtCp) = H0(ZtCp) = Ĥ0(Cp,Z) = Z/p.

Now it is readily checked that π ◦∆pH corresponds to 1 under this identification,
for example since it is multiplicative. Let me warn the reader about a subtle point
here: Composing the equivalence above with the identification

Ω∞HZtCp ≃ Hom(Z,ZtCp)

results in a map

Nat(H,HTZ

p ) ≃ Hom(Z,ZtCp)
H
−→ Hom(HZ,HZtCp).

In contrast to the case of endofunctors on spectra, this is not given by evaluating
a transformation at Z ∈ D(Z). Tracing through the diagrams shows that the two
images of a transformation τ lie in the same component of Hom(HZ,HZtCp) if and
only if

τZ : HZ −→ HZtCp

happens to be HZ-linear and this need not be the case as the second claim shows.
Incidentally, using iii) for the analogous calculation with Tp gives

π0Nat(id,Tp) = π0(Ω∞StCp) = π0(Ω∞Ŝp) = Ẑ
p

and composition with H and π induces the projection Ẑ
p → Z/p.

To obtain the second claim consider for a lift τ : id⇒ TZ
p (and any preimage of

a in the integers) the commutative diagram

HZ
a·∆p

// TpHZ
µtCp

//

π

��

HZtCp

HZ
Hτ // HT Z

p Z ∼

HµtCp

// HZtCp .

It shows that µtCp ◦ a∆p lies in the image of

H: Hom(Z,ZtCp) −→ Hom(HZ,HZtCp).
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But the components of the latter are easily determined:

π0Hom(HZ,HZtCp) = π0Hom(HZ, τ≥0HZtCp)

=
∏

i∈N

π0Hom(HZ,Σ2iHZ/p)

= (Ap/β)̂I ,

where I ⊆ Ap is the augmentation ideal of the Steenrod algebra and β ∈ Ap is
the Bockstein homomorphism. Furthermore, Nikolaus and Scholze show that the
value of µtCp ◦∆p at HZ corresponds to

∑
i∈N

P i, only p-fold multiples of which
lie in the image of

H: π0Hom(Z,ZtCp) −→ π0Hom(HZ,HZtCp)

since this map identifies with the unit map Z/p→ (Ap/β)̂I .

For part iii) let us first verify thatXtCp is indeed p-complete, whenX is bounded
below (which will verify that TpX is p-complete, since smash powers of bounded
below spectra remain bounded below). Now for any Z[Cp]-module A

π∗(HAtCp) = Ĥ∗(Cp;A)

is p-torsion, so HAtCp is p-complete. But then inductively so is (τ≤nX)tCp by
exactness of −tCp . We obtain the result from

XtCp ≃ lim(τ≤nX)tCp ,

since limits of p-complete spectra are themselves p-complete; to see the equiva-
lence observe that it trivially holds for homotopy fixed points instead of the Tate
construction (by commuting limits) and also for homotopy orbits (since their for-
mation preserves connectivity).

For the proof of the second part we need to recall the fibre sequences

Dp(X) −→ Fp(X) −→ Tp(X)

and the stabilisation maps G(X) → ΩG(ΣX) from the observation in Section 1.
Applying the latter to all entries of the former, shifting one to right and using the
exactness of Tp yields a grid of fibre sequences

��
id
�� ��

ΩnFp(Σ
nX) //

��

TpX
∂n //

id

��

Ωn−1Dp(Σ
nX)

��

Ωn+1Fp(Σ
n+1X) //

��

TpX
∂n+1

//

id

��

ΩnDp(Σ
n+1X)

��
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Claim: Taking the limit along the vertical maps gives an equivalence

∂ : Tp(X) −→ lim Ωn−1Dp(Σ
nX).

The Z/p-homology of DpX is well-known, so granting the claim we can use
the Adams spectral sequence to extract information about TpX . As doing so,
however, requires taking a limit, I will simplify matters by assuming X to be
of finite type (in addition to bounded below). Nikolaus and Scholze show how
to remove this restriction a posteriori, by a pro-argument. It seems plausible to
me that the finiteness assumption we make can be circumvented in the argument
below by incorporated their argument directly, but I have not pursued this.

For X of finite type, we can now consider the induced maps on Adams spectral
sequences (the vertical arrows indicating convergence)

Ext(Z/p,H∗(X,Z/p))
(∂n◦∆p)∗

//

��

Ext(Z/p,H∗(Ωn−1Dp(Σ
nX),Z/p))

��

π∗(X̂
p)

(∂n◦∆p)∗
// π∗(Ωn−1Dp(Σ

nX )̂p),

where the Ext-groups are formed for the coaction of the dual Steenrod algebra
(Ap)∗. Taking the limit over n on the right hand side produces a comparison map

Ext(Z/p,H∗(X,Z/p))
lim (∂n◦∆p)∗

//

��

Ext(Z/p, lim H∗(Ωn−1Dp(Σ
nX),Z/p))

��

π∗(X̂
p)

(∆p)∗
// π∗(TpX),

where we have used the finiteness assumption to a) commute the limit with forming
Ext (the homology of Ωn−1Dp(Σ

nX) is again of finite type, see below) and b) with
forming homotopy groups, and c) to ensure that the limit of the spectral sequences
remains a spectral sequence with the same convergence properties (these claims
are verified in great detail in [LNRo 12]). Now as mentioned the homology of
extended powers is entirely computable, indeed it only depends on the homology
of X : There are functors

DLn : (Ap)∗-CoMod −→ (Ap)∗-CoMod

together with natural isomorphisms

ι : DLnH∗(−;Z/p) =⇒ H∗(Dn−;Z/p).

There are also natural maps DLn(−)[n] ⇒ DLn(−[n]), which model the homo-
topical stabilisation maps and allow us to form

R(M) = lim DLp(M [n])[1− n],

the Singer construction, so that

lim H∗(Ωn−1Dp(Σ
nX),Z/p) = R(H∗(X ;Z/p)).
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Finally, there is a natural map ǫ : id⇒ R such that

H∗(X ;Z/p)

ǫ

tt✐✐✐✐
✐✐✐✐

✐✐✐✐
✐✐✐✐

✐

lim (∂n◦∆p)∗

��

R+(H∗(X ;Z/p)
ι // lim H∗(Ωn−1Dp(Σ

nX),Z/p))

commutes. The proof now ends unceremoniously with:

Theorem 5 (Adams-Gunawardena-Miller, Lin). For every bounded below (Ap)∗-
comodule M the map ǫ induces an isomorphism

Ext(Z/p,M) −→ Ext(Z/p,R(M)).

It remains to verify the claim, but for this we simply compute the homotopy
fibre:

lim ΩnFp(Σ
nX) ≃ lim Ωn

(
(ΣnX)⊗p

)hCp

≃
(
lim Ωn(ΣnX)⊗p

)hCp

and here all transition maps (and thus their limit) vanish before taking homotopy
fixed points: Rewrite the last term as

lim Ωn(ΣnX)⊗p ≃ lim Sp(n−1) ⊗X⊗p

to see that the transition maps are induced by the diagonal S1 → Sp, which is
null. �

3. Relation to Segal’s conjecture

Finally, let me explain how part iii) of the theorem above is related to Segal’s
conjecture. Neither the methods of this paragraph, nor the conjecture itself, were
used in the remainder of the Arbeitsgemeinschaft.

Consider for a group G the map

b : R(G,C) −→ K0(BG),

determined by assigning to a complex G-representation V the class of the vector
bundle EG×G V → BG; here R denotes representation rings and K0 the zeroeth
topological K-group of Atiyah and Hirzebruch. Through the natural identification

K0 ∼= π0F(−,KU)

the group K0(X) carries a filtration by the images of the various π0F(X, τ≥nKU)
and letting I ⊆ R(G,C) denote the augmentation ideal Atiyah showed:

Theorem 6. For G finite, K0(BG) is complete with respect to the filtration above,
the map b is continuous for the I-adic topology on R(G,C) and the induced map

R(G,C)̂I −→ K0(BG)

is an isomorphism.
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The theorem actually holds for G a compact Lie-group and in that form is known
as the Atiyah-Segal completion theorem. The theorem of Barratt-Priddy-Quillen
in the form of an identification

S ≃ K(Fin),

of the (algebraic) K-theory of the category of finite sets, lead Segal to conjec-
ture that a similar completion theorem might hold for stable cohomotopy upon
replacing vector bundles by finite sets. More formally, he conjectured that the
tautological map s : A(G) → K(Fin)0(BG) should, via the identification above,
give rise to an isomorphism

A(G)̂I −→ S0(BG)

for every finite group G; here A(G) is the Burnside ring of G. His conjecture was
eventually proven in full by Carlsson via a reduction to the case of elementary p-
groups, the simplest case of which is implied by part iii) of the theorem in Section
2 (which in the case at hand was proven by Lin for p = 2 and Gunawardena for p
odd).

To see the relation between the conjecture for G = Cp and the theorem, we need
a bit of genuinely equivariant homotopy theory. Since Cp has only one proper sub-
group, there is for every genuine Cp-spectrum the bicartesian isotropy separation
square

XgCp //

��

XφCp

��

XhCp // XtCp ,

where I have denoted the genuine and geometric fixed points by the superscripts
gCp and φCp, respectively. Denoting the category of genuine Cp-spectra by SpgCp

the composite functor

SpgG −→ SpG
Ω∞

−→ SG

canonically factors through the category SgG of genuine G-spaces. The arising
functor Ω∞ : SpgG −→ SgG admits a left adjoint (named Σ∞ of course) and to
translate Segal’s conjecture we shall need two facts about it:

i) It commutes with taking geometric fixed points: There is a canonical
natural equivalence

(Σ∞−)φG ≃ Σ∞(−G).

ii) There is another canonical natural equivalence, tom Dieck’s splitting,

(Σ∞−)cG ≃
⊕

H≤G

Σ∞
(
EWG(H)×WG(H) −

H
)
,

where the wedge runs over conjugacy classes of subgroups and WG(H)
denotes the Weyl group of H in G.
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Now generally, the splitting implies that for the sphere spectrum with trivial G-
action (which is the suspension spectrum of ∗ ∈ SgG) we have

π0(SgG) ∼= A(G).

Considering the isotropy separation square for the sphere with trivial Cp-action
we obtain

S⊕ Σ∞BCp //

s

��

S

∆p

��

F(BCp, S) // Tp(S);

and as indicated the left hand vertical map identifies with Segal’s map (on π0) and
the right hand one with the Tate diagonal, whence the third part of our theorem
implies that

ŝp : Ŝp ⊕ (Σ∞BCp)̂p → F(BCp, S)̂p
is an equivalence. Now it is readily checked directly that s maps the summand
in ScCp corresponding to the trivial subgroup by an equivalence to the summand
F(∗, S) of F(BCp, S) and the other summand of the target

F̃(BCp, S) = fib
(
F(∗, S)

r∗
→ F(BCp, S)

)

is p-complete: The reduced group cohomology of any finite p-group is p-torsion,
thus by induction so is

F̃(BCp, τ≤nS)
)

and the statement follows by passing to the limit. From this discussion we obtain
an equivalence

(Σ∞BCp)̂p → F̃(BCp, S)

and all that remains to verify is that the homotopy groups of the source can also
be described by completion at the augmentation ideal of A(Cp) instead of p. This
is a general fact about Mackey functors (see [MaMC 82, Lemma 5]), but for π0
can be checked by hand: We have

A(Cp) = Z[T ]/(T 2 − pT ) and I = (T − p)

with T represented by any free and transitive Cp-set, and it is easily computed
that Im+1 = pmI, whence the I- and p-adic topologies agree on I.
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Topological Hochschild homology of E∞-rings

Jonas McCandless

The main focus of this talk is to define topological Hochschild homology of E∞-ring
spectra and show that it admits the structure of a cyclotomic E∞-ring spectrum.
Let us first discuss Hochschild homology for a few moments. Let k be a commuta-
tive ring, and let R be an associative k-algebra. Let us for simplicity assume that
R is flat over k. Define Hochschild homology HH(R/k) as the geometric realization
of the following simplicial k-module

· · · R ⊗k R ⊗k R R⊗k R R

where the two maps R ⊗k R → R are given by x ⊗ y 7→ xy and x ⊗ y 7→ yx
respectively, and the three maps R⊗kR⊗k R→ R⊗kR are given by x⊗ y⊗ z 7→
xy⊗z, x⊗y⊗z 7→ x⊗yz, and x⊗y⊗z 7→ zx⊗y respectively. There is a Z/(n+1)-
action on the term in simplicial degree n which essentially means that the geometric
realization HH(R/k) aquires a T-action. More precisely, the simplicial k-module
above is the underlying simplicial k-module of a cyclic k-module in the sense of
Connes. We can also think of HH(R/k) as an object of the derived category
D(k) of k-modules via the Dold-Kan correspondence. This works very well if R
is a flat k-module, but if we want to compute something like HH(Fp/Z), then
we need to derive the tensor product. In fact, there is a more natural definition
of HH(R/k). Recall that if R is any ring, then the derived ∞-category D(R)
of R-modules inherits a symmetric monoidal structure from the usual symmetric
monoidal structure on the category of chain complexes over R. Let us write ⊗R
for this symmetric monoidal structure on D(R). We define Hochschild homology
by

HH(R/k) := R⊗R⊗kRop R

now as an object in the derived∞-category of k-modules. Moreover, one shows as
before that HH(R/k) naturally admits the structure of a T-equivariant object of
D(k). Let us now return to Hochschild homology of Fp as a Z-algebra. We have
the following lemma:

Lemma 1. As a graded algebra the Hochschild homology of Fp over Z is

π∗ HH(Fp/Z) = ΓFp{x},

a divided polynomial algebra on a generator x in degree 2.

The seminal idea of Waldhausen was to replace the initial commutative ring
Z with the sphere spectrum S and consequently work in the ∞-category Sp of
spectra equipped with its smash product symmetric monoidal structure. This
turns out to be a phenomenal idea and we are going to see some instances of this
here. Later, we will see that topological Hochschild homology of the Eilenberg-
MacLane spectrum HFp is a polynomial ring Fp[x] which is due to Bökstedt. We
are going to define topological Hochschild homology of E∞-ring spectra and show
that it admits the structure of a cyclotomic E∞-ring spectrum. We will see that
this crucially relies on the result that the Tate diagonal refines to a lax symmetric
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monoidal transformation between lax symmetric monoidal functors as established
in the previous talk. Let CAlg denote the ∞-category of E∞-ring spectra and let
S denote the ∞-category of spaces.

Proposition 2. Let A be an E∞-ring spectrum. The functor

MapCAlg(A,−) : CAlg→ S

corepresented by A admits a left adjoint.

Proof. This is an immediate consequence of the Adjoint Functor Theorem for pre-
sentable ∞-categories [2, Corollary 5.5.2.9]. The ∞-category S of spaces is pre-
sentable [2, Example 5.5.1.8], and the∞-category CAlg of E∞-rings is presentable
[3, Corollary 3.2.3.5]. A functor corepresented by an object preserves small limits
and is accesible [2, Proposition 5.5.2.7]. �

We will now define topological Hochschild homology for E∞-rings following
[5, Chapter IV]. The more general definition of topological Hochschild homol-
ogy for E1-rings will be given in a later lecture. It is a result due to McClure,
Schwänzl, and Vogt [4] that our definition is equivalent to that one. See also [5,
Proposition IV.2.2] for a proof. Let A⊗(−) : S → CAlg denote a left adjoint of
MapCAlg(A,−) : CAlg→ S.

Definition 3. Let A be an E∞-ring spectrum. The topological Hochschild ho-

mology THH(A) of A is defined by THH(A) := A⊗S1

.

We obtain a functor THH: CAlg→ CAlg determined by the construction A 7→
A⊗S1

. If A is an E∞-ring, then we have the functor A⊗(−) : S → CAlg and the
map ∗ → S1 of spaces induces a map i : A → THH(A) of E∞-rings. Another
observation is that THH(A) admits the structure of a T-equivariant object in the
∞-category of E∞-rings. To see this we note that T acts continuously on S1 by
left multiplication so we obtain a map

S1 → MapS(S1, S1)→ MapCAlg(THH(A),THH(A))

of spaces by functoriality. Consequently, the functor THH: CAlg → CAlg refines
to a functor THH: CAlg → CAlgBT. To summarize, if A is an E∞-ring, then
THH(A) is a T-equivariant E∞-ring spectrum equipped with a non-equivariant
map i : A→ THH(A) of E∞-rings. Moreover, topological Hochschild homology of
an E∞-ring spectrum is initial with these properties. We summarize the discussion
above as follows.

Proposition 4 (McClure-Schwänzl-Vogt [4]). Let A be an E∞-ring. If B is an
T-equivariant E∞-ring equipped with a map f : A → B of E∞-rings, then there
exists a unique T-equivariant map f̄ : THH(A)→ B of E∞-ring spectra such that
the following diagram

A THH(A)

B

i

f
f̄
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of E∞-rings commutes.

Remark 5. Let us be very careful and write out the final statement of Proposition
4. Let U : CAlgBT → CAlg denote the forgetful functor induced by the inclusion
∗ → BT. Given f : A→ B as above. The existence of a unique T-equivariant map
f̄ : THH(A) → B of E∞-rings such that the diagram above commutes in CAlg

means that there exists an edge f̄ : THH(A) → B of CAlgBT which is unique up
to contractible space of choice, and that there exists a 2-simplex in CAlg with
edges i, U(f̄), and f which we picture as follows

U(THH(A))

A U(B).

U(f̄)
i

f

Next, we endow THH(A) with a cyclotomic structure following [5, Chapter IV].
Concretely, this means that we have to specify a T-equivariant map

ϕp : THH(A)→ THH(A)tCp

of E∞-rings for every prime number p, where THH(A)tCp is equipped with the
residual T/Cp ≃ T-action. We need to recall some of material from the previous
talks. Fix a prime number p. There is a functor Tp : Sp → Sp determined by the
construction

X 7→ (X ⊗ · · · ⊗X)tCp

where X ⊗ · · · ⊗X denotes the p-fold tensor product equipped with the Cp-action
given by cyclic permutation of the factors. In the previous talk we showed that Tp
is an exact functor [5, Proposition III.1.1]. With this in mind let us briefly recall
how the Tate diagonal was defined. Composition with the functor Ω∞ : Sp → S
induces an equivalence

FunEx(Sp, Sp)
≃
−→ FunLex(Sp,S)

of∞-categories. We also saw that evaluation on the sphere induces an equivalence

MapFunEx(Sp,Sp)(idSp, Tp) ≃ MapSp(S, TpS) ≃MapSp(S, StCp)

of spaces. The Tate diagonal is a natural transformation ∆p : idSp → Tp which
corresponds to the composite S→ ShCp → StCp under the equivalence above. For
a more detailed discussion we refer the reader to [5, Section III.1 and III.3]. Recall

that the functor (−)tCp : SpBCp → Sp admits an essentially unique lax symmetric
monoidal structure [5, Theorem I.3.1]. This means that the functor Tp : Sp → Sp
inherits a lax symmetric monoidal structure. We proved the following result in a
previous talk:

Proposition 6 ([5, Proposition III.3.1]). There exists an essentially unique lax
symmetric monoidal transformation

∆p : idSp → Tp
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such that the underlying natural transformation of functors is given by the Tate
diagonal.

If A is an E∞-ring equipped with a Cp-action, then AtCp admits the structure
of an E∞-ring since (−)tCp admits a lax symmetric monoidal structure. It follows
from Proposition 6 that the Tate diagonal

∆p : A→ (A⊗ · · · ⊗A)tCp

refines to a map of E∞-rings. This will be crucial below.

We are now ready to endow topological Hochschild homology of an E∞-ring
with a cyclotomic structure. The p-fold tensor product A ⊗ · · · ⊗ A equipped
with the Cp-action given by cyclic permutation of the factors is an induced Cp-
object in the ∞-category of E∞-rings with an action of Cp. More precisely, the

forgetful functor CAlgBCp → CAlg admits a left adjoint given by the construction
A 7→ A⊗ · · · ⊗A. By adjunction, there exists a Cp-equivariant map

ψ : A⊗ · · · ⊗A→ THH(A)

of E∞-rings induced by the map i : A→ THH(A). Consequently, we obtain a map

A
∆p
−−→ (A⊗ · · · ⊗A)tCp

ψtCp

−−−→ THH(A)tCp

of E∞-rings. By the universal property of THH (Proposition 4), there exists a
unique T-equivariant map

ϕp : THH(A)→ THH(A)tCp

of E∞-rings where the target is equipped with the residual T/Cp ≃ T-action such
that the following diagram

A THH(A)

(A⊗ · · · ⊗A)tCp THH(A)tCp

i

∆p ϕp

ψtCp

of E∞-rings commutes. The T-equivariant map ϕp : THH(A) → THH(A)tCp of
E∞-rings is called the Frobenius map on THH(A). We have a Frobenius map
ϕp : THH(A)→ THH(A)tCp for every prime p and these endow the T-equivariant
E∞-ring THH(A) with a cyclotomic structure.

Remark 7. The Frobenius maps ϕp : THH(A)→ THH(A)tCp are a special feature
of the topological theory. This is because the Tate diagonal is a special feature of
spectra. More precisely, let C be a stable∞-category which admits small limits and
colimits and letG be a finite group. In this case we can define the Tate construction
(−)tG : CBG → C. In particular, we can define the Tate construction on the derived
∞-categoryD(Z) of Z-modules. Recall that the derived∞-categoryD(Z) admits a
symmetric monoidal structure and we will denote the tensor product by ⊗Z. Let C
be an object of D(Z). Just as above the construction C 7→ (C⊗Z · · ·⊗ZC)tCp which
sends C to the Tate construction of Cp on the p-fold tensor product C⊗Z · · ·⊗ZC
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equipped with the Cp action given by cyclic permutation of the factors refines
to an endofunctor T Z

p : D(Z) → D(Z) on the derived ∞-category of Z-modules.
However, the definition of the Tate diagonal relies on the universal property of the
stable ∞-category of spectra. Nikolaus and Scholze prove the following theorem:

Theorem 8 ([5, Theorem III.1.10]). Every natural transformation idD(Z) → T Z
p of

endofunctors on the derived ∞-category D(Z) of Z-modules induces the zero map
in homology. In particular, there is no lax symmetric monoidal transformation
idD(Z) → T Z

p .

The construction that we have just given of the Frobenius map on THH of an
E∞-ring relied crucially on the Tate diagonal admitting a lax symmetric monoidal
structure. More precisely, if we consider the commutative diagram above defining
the Frobenius maps ϕp : THH(A) → THH(A)tCp , then the horizontal maps can
be represented by maps of chain complexes. However, the vertical maps cannot
be represented by maps of chain complexes by the theorem above.

The Frobenius maps ϕp : THH(A) → THH(A)tCp present on THH of an E∞-
ring are related to a refinement of the ordinary Frobenius homomorphism of com-
mutative rings to a Frobenius-type map of E∞-ring spectra called the Tate-valued
Frobenius. Before we recall the definition of the Tate-valued Frobenius we make
some preliminary remarks. If R is an E∞-ring equipped with a Cp-action, then
we have a Cp-equivariant multiplication map m : R⊗ · · · ⊗R→ R which is deter-
mined by m ◦ η ≃ idR, where η : R → R ⊗ · · · ⊗ R is the unit of the adjunction
which exhibits the p-fold tensor product R⊗ · · · ⊗ R as the induced Cp-object of

CAlgBCp .

Definition 9 ([5, Definition IV.1.1]). Let p be a prime number. Let R be an E∞-
ring equipped with the trivial Cp-action. The Tate-valued Frobenius ϕR : R →
RtCp of R is given by the composite

R
∆p
−−→ (R ⊗ · · · ⊗R)tCp mtCp

−−−→ RtCp

map of E∞-rings.

The ϕR : R → RtCp deserves to be called the Tate-valued Frobenius as the
following example shows.

Example 10. Let A be an ordinary commutative ring and let HA denote the
Eilenberg-MacLane spectrum of A. The Eilenberg-MacLane spectrum HA admits
the structure of an E∞-ring. The Tate-valued Frobenius ϕHA : HA → HAtCp

recovers the usual Frobenius homomorphism of A on π0. We have that π0HA ≃ A
and π0HA

tCp ≃ Ĥ0(A,Cp) ≃ A/p and π0ϕHA : A→ A/p is given by a 7→ ap.

We now examine how the Frobenius map ϕp : THH(A) → THH(A)tCp on
THH(A) is related to the Tate-valued Frobenius of A. By the universal prop-
erty of THH(A), there exists a unique T-equivariant map π : THH(A) → A such
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that the following diagram

A THH(A)

A

i

idA

π

of E∞-rings commutes. We have the following:

Corollary 11 ([5, Corollary IV.2.4]). Let A be an E∞-ring. The composite map

A
i
−→ THH(A)

ϕp
−−→ THH(A)tCp

πtCp

−−−→ AtCp

of E∞-rings is canonically equivalent to the Tate-valued Frobenius.

Proof. We have a commutative diagram

A THH(A)

(A⊗ · · · ⊗A)tCp THH(A)tCp AtCp

i

∆p ϕp

ψtCp πtCp

Consequently, it is enough to show that the composite map

A⊗ · · · ⊗A THH(A) A
ψ π

is a Cp-equivariant map of E∞-rings which is equivalent to the Cp-equivariant
multiplication map m : A⊗· · ·⊗A→ A of A, where A is equipped with the trivial
Cp-action. Since A ⊗ · · · ⊗ A is an induced Cp-object of CAlgBCp it suffices to
show that π ◦ i is equivalent to the identity idA which is true by construction of
π. This ends the proof. �

I will end this talk with discussing the Tate-valued Frobenius on the 2-periodic
complex K-theory spectrum KU. Recall that KU admits the structure of an E∞-
ring. We need to discuss some further properties of the Tate-valued Frobenius.

Lemma 12 ([5, Lemma IV.1.3]). There is a unique lax symmetric monoidal fac-
torization

((X ⊗ · · · ⊗X)tCp)hW

X (X ⊗ · · · ⊗X)tCp

∆p

of the Tate diagonal, where W is the Weyl group of Cp in Σp which is cyclic of
order p− 1. The action of W on (X⊗p)tCp is the residual action of the Σp-action
on X⊗p.

Proof. First note that the functor T hWp : Sp→ Sp given by

X 7→ ((X ⊗ · · · ⊗X)tCp)hW
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is exact since both Tp and (−)hW are exact. It also admits a lax symmetric
monoidal structure since it is a composite of two functors which admit lax sym-
metric monoidal structures. The identity functor idSp is initial among exact lax
symmetric monoidal endofunctors on Sp by a result of Nikolaus ([6], Corollary
6.9). This shows the existence of the map X → ((X⊗p)tCp)hW . Commutativity
of the diagram follows from the result that there is a unique, up to contractible
choice, lax symmetric structure on the Tate diagonal. �

An immediate consequence of this lemma is the following refinement of the
Tate-valued Frobenius.

Corollary 13 ([5, Corollary IV.1.4]). Let R be an E∞-ring. The Tate-valued
Frobenius is equivalent to the composite map

R→ (RtCp)hW → RtCp

of E∞-rings.

We will also refer to the map R→ (RtCp)hW as the Tate-valued Frobenius map.
Why is this description of the Tate-valued Frobenius useful? One reason is that
the homotopy fixed points become completely algebraic, that is

π∗(RtCp)hW ≃ (π∗R
tCp)W .

To see this we look at the homotopy fixed point spectral sequence

E2
i,j = H−i(W,πjR

tCp)⇒ πi+j(R
tCp)hW .

Since |F×
p | = p− 1 is invertible in π∗R

tCp we conclude that the E2-page is concen-
trated on the line i = 0.

Let us now contemplate the Tate-valued Frobenius on the complex K-theory
spectrum KU. Recall that π∗KU = Z[β±], where |β| = 2. We can compute the
homotopy groups of the Tate construction of KU by a result due to Greenlees and
May [1]. In this case we find that

π∗KUtCp = π∗KU((t))/((t+ 1)p − 1) = π∗KU⊗Z Qp(µp),

Recall that Gal(Qp(µp)/Qp) ≃ W and the action of W on π∗KUtCp is precisely
the Galois action. We conclude that

π∗(KUtCp)hW ≃ (π∗KUtCp)W ≃ π∗KU⊗Z Qp(µp)
W ≃ π∗KU⊗Z Qp.

Very similarly one can show that if X is a compact object in the ∞-category of
spaces, then

π∗((KUX)tCp)hW ≃ π∗KUX ⊗Z Qp

where KUX denotes the spectrum of maps from Σ∞
+X → KU. We will end this

talk by stating the following proposition which describes the Tate-valued Frobenius
on KU.
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Proposition 14 ([5, Proposition IV.1.12]). Let X be a compact object in the

∞-category S of spaces. The Tate-valued Frobenius on KUX is on π0 given by

KU0(X)→ KU0(X)⊗Z Qp

V 7→ ψp(V )

where ψp : KU0(X) → KU0(X) denotes the pth Adams operation, and ψp(V )
is considered as an element of KU0(X) ⊗Z Qp under the canonical inclusion

KU0(X)→ KU0(X)⊗Z Qp.
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Dyer-Lashof operations

Guozhen Wang

The Dyer-Lashof operations are tools to understand the homology of E∞-algebras.
In this talk, we will first give an account of the dual Steenrod algebra which
is the homology ring of the Eilenberg-MacLane spectrum. Then we will give a
general construction of the power operations and specialize to the case of ordinary
homology which gives rise to the Dyer-Lashof operations. We will also give the
basic properties of these operations. Finally we will give Steinberg’s computations
of the Dyer-Lashof operations on the dual Steenrod algebra, which will be used to
determine the structure of the topological Hochschild homology of Fp.

1. The dual Steenrod algebra

Fix a prime p. Let HFp be the Eilenberg-MacLane spectrum with coefficients
in Fp. Then it represents mod p cohomology: for any spectrum X , we have
H∗(X ;Fp) = [Σ∗X,HFp]. We will abbreviate H = HFp and H∗(X) = H∗(X ;Fp).

By the Yoneda lemma, the set of natural transformations between H∗(−) and
itself is H∗H = [Σ∗H,H ]. This forms an algebra under composition, which is
called the Steenrod algebra.

Theorem 1. (1) For p = 2, the Steenrod algebra H∗H is generated by the
Steenrod squares Sqi, i = 1, 2, . . . , with |Sqi| = i, under the Adem rela-
tions:

SqiSqj =

⌊i/2⌋∑

k=0

(
j − k − 1

i − 2k

)
Sqi+j−kSqk

http://www.math.harvard.edu/~lurie/papers/HA.pdf
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for i < 2j.
(2) For odd prime p, the Steenrod algebra H∗H is generated by the Steenrod

powers P i, i = 1, 2, . . . and the Bockstein β, with |P i| = 2i(p − 1) and
|β| = 1, under the Adem relations:

P aP b =
∑

i

(−1)a+i
(

(p− 1)(b− i)− 1

a− pi

)
P a+b−iP i

for a < pb and

P aβP b =
∑

i

(−1)a+i
(

(p− 1)(b− i)

a− pi

)
βP a+b−iP i

+
∑

i

(−1)a+i+1

(
(p− 1)(b− i)− 1

a− pi− 1

)
P a+b−iβP i

for a ≤ pb.

We can also dualize to study operations on the homology. Now suppose X be
a spectrum with finitely many cells under any dimension. Then we have H∗(X) is
canonically identified with the dual graded Fp-vector space of H∗(X).

For any operation P ∈ HiH , its transpose acts on the homology of X :

P∗ : H∗(X)→ H∗−i(X)

So we get a right action of the Steenrod algebra on the homology :

H∗(X)⊗H∗H → H∗(X)

We can further dualize and get a co-action of the dual of the Steenrod algebra
(i.e. the homology H∗H of the Eilenberg-MacLane spectrum):

H∗(X)→ H∗H ⊗H∗(X)

To further understand the co-action formulations of homology operations, we
first study the properties of the dual Steenrod algebra. Recall that H is an E∞-ring
spectrum with structure map

m : H ⊗H → H

and

u : S→ H

Here we use ⊗ to denote smash product over the sphere spectrum S.
In particular, since H ⊗H is a ring spectrum, H∗H = π∗(H ⊗H) is a ring. It

has the following operations:

(1) left unit map H∗ → H∗H induced by

H
id⊗u
−−−→ H ⊗H

and right unit map H∗ → H∗H induced by

H
u⊗id
−−−→ H ⊗H

They agree because H∗ is the base field.
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(2) co-multiplication H∗H → H∗H ⊗H∗H induced by

H ⊗H
id⊗u⊗id
−−−−−→ H ⊗H ⊗H

where π∗(H ⊗H ⊗H) is identified with H∗H ⊗H∗H via the isomorphism

H∗H ⊗H∗H → π∗(H ⊗H ⊗H ⊗H)
id⊗m⊗id
−−−−−−→ π∗(H ⊗H ⊗H)

(3) co-unit H∗H → H induced by the multiplication map m.
(4) conjugation (antipode) χ : H∗H → H∗H induced by the twist map which

exchanges the two factors:

H ⊗H → H ⊗H

So H∗H is a graded commutative ring with a co-multiplication. One can check
that these two are compatible and we get a Hopf algebra, i.e. Spec(H∗H) becomes
an affine (super) algebraic monoid. Moreover, the conjugation plays the role of an
inverse, so it is actually an affine (super) algebraic group. For p = 2, the algebraic
group represented by H∗H is the group of automorphisms of the additive formal
group.

Remark 2. It turns out that the left unit and the right unit maps are equal for
the Eilenberg-MacLane spectrum.

For a generalized homology theory, these two maps are different in general, and
we get a Hopf algebroid instead of Hopf algebra.

The structure for the dual Steenrod algebra is studied by Milnor [3]:

Theorem 3. The Hopf algebra H∗H is as follows:

(1) For the prime 2,

H∗H = Fp[ξ1, ξ2, . . . ]

ψ(ξi) =
∑

ξ2
k

i−k ⊗ ξk

(2) For p odd prime,

H∗H = Fp[ξ1, ξ2, . . . ]⊗ E[τ0, τ1, . . . ]

ψ(ξi) =
∑

ξp
k

i−k ⊗ ξk

ψ(τi) = τi ⊗ 1 +
∑

ξp
k

i−k ⊗ τk

Remark 4. At the prime 2, the definition of the generators of H∗H is as follows:
Let x : Σ∞−1RP∞ → H be the non-trivial map. Let ei ∈ Hi(RP∞) be the

generators of homology. Then ξi is defined to be x∗(e2i).
One can check using the Steenrod actions on the cohomology of real projective

space, that Sqi is dual to ξi1.
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2. The Dyer-Lashof operations

First we define the notion of power operations in a general setting.
Let A and E be E∞-ring spectra. We will define power operations on the

A-homology of E.
Recall that A being E∞ implies, among other things, that the multiplication

map descends to the homotopy orbit:

µn : Dn(A) = (A⊗n)hΣn → A

and similarly for E.
Moreover, the spectrum A⊗ E is also an E∞-ring spectrum.
Let x : Sm → A⊗E be an element of AmE. Here Sm = ΣmS. We can construct

the following map:

x̃ : A⊗DnS
m id⊗Dnx−−−−−→ A⊗Dn(A⊗ E)

id⊗µn
−−−−→ A⊗A⊗ E

m⊗id
−−−→ A⊗ E

For any e ∈ Ak(DnS
m), we can define the power operation associated to e

Θe : AmE → AkE

by the formula:
Θe(x) = x̃∗(e)

Now we specialize to the case when A = H is the Eilenberg-MacLane spectrum.
First we consider the 2-primary case. By the homotopy orbit spectral sequence,

Hk(D2S
m) is 1-dimensional for k ≥ 2m. (In fact, D2S

m is homotopy equivalent
to ΣmRP∞

m .) Let
er ∈ Hr+2m(D2S

m)

be the generator in degree r + 2m.

Definition 5. Define the Dyer-Lashof operations Qr, r ∈ Z, to be

Qr(x) = Θer−mx

for x in degree m.

From the definition, we have:

Theorem 6. Let x be a homology class in degree m,

(1) Qr(x) = 0 for r < m.
(2) Qm(x) = x2.

As in the case of Steenrod operations, we also have the Cartan formula and the
Adem relations:

Theorem 7. (Cartan formula)

Qr(xy) =
∑

i+j=r

(Qix)(Qjy)

Theorem 8. (Adem relations) If r > 2s then

QrQs =
∑

i

(
i− s− 1

2i− r

)
Qr+s−iQi
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In addition to these, we also have the commutation relations between Steenrod
operations and the Dyer-Lashof operations:

Theorem 9. (Nishida relations)

Sqr∗Q
s =

∑

i

(
2n + s− r

r − 2i

)
Qs−r+iSqi∗

for any n large enough that the binomial coefficient is meaningful.

Remark 10. The usual definition of the Steenrod squares amounts to be the nega-
tive Dyer-Lashof operations on the Spanier-Whitehead dual of a suspension spec-
trum. One can check that in this case the Adems relations for the Dyer-Lashof
operations becomes the Adem relations for the Steenrod squares.

For an odd prime p, we can define the Dyer-Lashof operations Qi’s similarly.
Together with the Bockstein β, they generate the Dyer-Lashof algebra under the
Adem relations.

Theorem 11. (Adem relations) If r > ps,

QrQs =
∑

i

(−1)r+i
(

(p− 1)(i− s)− 1

pi− r

)
Qr+s−iQi

If r ≥ ps,

QrβQs =
∑

i

(−1)r+i
(

(p− 1)(i − s)

pi− r

)
βQr+s−iQi

+
∑

i

(−1)r+i
(

(p− 1)(i − s)− 1

pi− r − 1

)
Qr+s−iβQi

The odd primary Nishida relations is as follows:

Theorem 12. (Nishida relations)

P r∗Q
s =

∑

i

(−1)r+i
(
pn + (p− 1)(s− r)

r − pi

)
Qs−r+iP i∗

P r∗ βQ
s =

∑

i

(
pn + (p− 1)(s− r)− 1

r − pi

)
βQs−r+iP i∗

−
∑

i

(
pn + (p− 1)(s− r)− 1

r − pi− 1

)
Qs−r+iP i∗β

for any n large enough that the binomial coefficient is meaningful.

For the proof of these formulas, see [2] and [4]
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3. Dyer-Lashof operations on the dual Steenrod algebra

We will give the formulas for the action of the Dyer-Lashof operations on the dual
Steenrod algeba in this section.

First we consider the case for p = 2. To state the formula, let

ξ = t+ ξ1t
2 + ξ2t

4 + · · ·+ ξkt
2k + · · ·

where t is an indeterminant. Set ζi = χ(ξi) to be the conjugate of ξi.

Theorem 13. (Steinberg)

(1) t−1 + ξ1 +
∑

s>0 t
sQsξ1 = ξ−1.

(2) Q2i−2ξ1 = ζi.
(3) For s > 0, we have

Qsζi =

{
Qs+2i−2ξ1, if s ≡ 0 or − 1 mod 2i

0, otherwise

(4) Q2iζi = ζi+1.

Note that (2) and (4) are special cases of (1) and (3). Only (4) will be used in
Bökstedt’s calculations of THH(Fp).

We will give the proof of (4) using the Nishida relations. The proof of the other
formulas are similar, see [4].

To use the Nishida relations, first we note the following lemma, which follows

from the fact that the Steenrod algebra is generated by the Sq2
i

’s:

Lemma 14. The following are equivalent for x, y ∈ H∗H with |x| = |y| > 0:

(1) x = y.
(2) For any P ∈ H∗H, < P, x >=< P, y >.
(3) For any admissible I = (i1, i2, . . . ) with |I| = |x|, SqI∗x = SqI∗y. (Recall

that such a sequence is admissible if ik ≥ 2ik+1 for all k, and SqI ’s with
I admissible forms a basis for the Steenrod algebra.)

(4) For any P ∈ H∗H, P∗x = P∗y.

(5) For any k ≥ 0, Sq2
k

∗ x = Sq2
k

∗ y.

We will check the last condition for the two sides in (4):
By the Nishida relation, we have

Sq1∗Q
2iζi = Q2i−1ζi = ζ2i

and for k > 0,

Sq2
k

∗ Q2iζi =

(
2k + 2i

2i

)
Q2i−2kζi = 0

On the other hand, by the co-action formula in H∗H and the fact Sqi is dual
to ξi1,

Sq2
k

∗ ζi+1 =

{
ζ2i , k = 0

0, otherwise



Arbeitsgemeinschaft: Topological Cyclic Homology 851

So we conclude:

Q2iζi = ζi+1

Finally we state the formulas for the action of the Dyer-Lashof operations on
the dual Steenrod algebra at an odd prime p. Let

ξ = t2 + ξ1t
2p + ξ2t

2p2 + · · ·+ ξkt
2pk + · · ·

and

τ = t+ τ0t
2 + τ1t

2p + · · ·+ τkt
2pk + · · ·

Theorem 15. (Steinberg)

(1) t−1 + τ0 +
∑

s>0 t
2s(p−1)Qsτ0 = ξ−1τ .

(2) Q
pi−1
p−1 τ0 = (−1)iχτi.

(3) For s > 0, we have

Qsχξi =





(−1)iβQs+
pi−1
p−1 τ0, if s ≡ −1 mod pi

(−1)i+1βQs+
pi−1
p−1 τ0, if s ≡ 0 mod pi

0, otherwise

and

Qsχτi =

{
(−1)i+1Qs+

pi−1
p−1 τ0, if s ≡ 0 mod pi

0, otherwise

(4) Qp
i

χξi = χξi+1. Q
piχτi = χτi+1.

where χ is the conjugation in H∗H.
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Bökstedt’s computation of THH(Fp)

Eva Höning

In this talk we discuss the following theorem:

Theorem 1 (Bökstedt). We have

π∗ THH(Fp) = Fp[u],

where u has degree |u| = 2.

We first explain why the homotopy of THH(Fp) can be deduced from its HFp-
homology: Recall that the HFp-homology of every spectrum X is a comodule over
the dual Steenrod algebra A∗ = (HFp)∗HFp. The coaction is given by

π∗(HFp ⊗X) π∗(HFp ⊗ S ⊗X) π∗(HFp ⊗HFp ⊗X)

π∗(HFp ⊗HFp ⊗HFp HFp ⊗X)

π∗(HFp ⊗HFp)⊗Fp π∗(HFp ⊗X).

∼=

∼=

We claim that π∗ THH(Fp) can be identified with the comodule primitives in
(HFp)∗ THH(Fp), i.e. with the elements x in (HFp)∗ THH(Fp) that are mapped
to 1 ⊗ x under the coaction map. This follows from the following remark applied
to R = THH(Fp) and B = HFp.

Remark 2. Let B be an E∞-ring spectrum and let R be an E∞-B-algebra. Then
we have a split equalizer

R B ⊗R B ⊗B ⊗R.
e

s

f
g

t

The map e is defined by “r 7→ 1 ⊗ r”, the map s by “b ⊗ r 7→ br”, the map f
by “b ⊗ r 7→ 1 ⊗ b ⊗ r” , the map g by “b ⊗ r 7→ b ⊗ 1 ⊗ r” and the map t by
“b⊗ c⊗ r 7→ b⊗ cr. If π∗(B ⊗B) is flat over π∗(B), we get a split equalizer

π∗(R) π∗(B ⊗R) π∗(B ⊗B)⊗π∗(B) π∗(B ⊗ R).
f∗

The map f∗ is then given by f∗(x) = 1⊗ x.

In order to prove Theorem 1 it thus suffices to show that we have

(HFp)∗ THH(Fp) = A∗ ⊗Fp Fp[u],

where u is primitive. To compute the HFp-homology of THH(Fp) we use the
Bökstedt spectral sequence. For an E∞-ring spectrum B it takes the form

E2
m,n = HHm,n

(
(HFp)∗B/Fp

)
=⇒ (HFp)m+n THH(B).

Here, HHm,n(−/Fp) denotes Hochschild homology over the ground ring Fp, where
m indicates the homological degree and n indicates the internal degree coming
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from the grading of the input. The spectral sequence can be constructed by using
that THH(B) is the geometric realization of a simplicial object and by using the
skeleton filtration. It is an A∗-comodule spectral sequence. Angeltveit and Rognes
have shown that THH(B) is an augmented commutative B-algebra, and in the
stable homotopy category even a B-bialgebra [1, Theorem 3.9]. Since the structure
maps are simplicial, the Bökstedt spectral sequence is an A∗-comodule (HFp)∗B-
algebra spectral sequence, and if every page is flat over (HFp)∗B, it is an A∗-
comodule (HFp)∗B-bialgebra spectral sequence [1, Proposition 4.2, Theorem 4.5].
This means that every page Er∗,∗ is a bigraded (HFp)∗B-algebra in the category
of A∗-comodules. The differential dr satisfies the Leibniz formula

dr(xy) = dr(x)y ± xdr(y),

and for the coaction νr on Er∗,∗ we have the formula

νr ◦ dr = (id⊗ dr) ◦ νr.

Furthermore, the comodule algebra structure on the Er+1-page is induced by
the comodule algebra structure on the Er-page, and the structure converges to
the comodule algebra structure on (HFp)∗ THH(B). If the flatness condition is
satisfied, we in particular have a comultiplication ψr on each Er∗,∗ for which the
co-Leibniz formula

ψr ◦ dr = (dr ⊗ id± id⊗ dr) ◦ ψr

holds.
Let σ : ΣB → THH(B) be the composition

ΣB Σ THH(B) THH(B) ⊗ Σ∞T+ THH(B).

Here, the first map is the suspension of the unit map and the last map is given by
the T-action on THH(B). To define the second map note that we have a cofiber
sequence

Σ∞∞+ Σ∞T+ Σ∞T.

There is a unique retraction map T+ →∞+. Thus, the cofiber sequence is canon-
ically split and we have a canonical section Σ∞T → Σ∞T+. Applying HFp-
homology we get a map σ∗ : (HFp)∗B → (HFp)∗+1 THH(B).
We also define a map σ : (HFp)∗B → HH1,∗

(
(HFp)∗B/Fp

)
by sending a class x to

the class that is represented in the standard Hochschild complex by 1 ⊗ x. Note
that the classes σx are infinite cycles in the Bökstedt spectral sequence, because
they have filtration degree one. It follows from the construction of the spectral
sequence that σ∗(x) is represented in the E∞-page by the class σx.
To compute the differentials in the Bökstedt spectral sequence and the multiplica-
tive extensions, we will need that σ∗ commutes with the Dyer-Lashof operations.

Proposition 3 (Bökstedt/ Angeltveit-Rognes). For x ∈ (HFp)∗B we have

Qkσ∗(x) = σ∗Q
k(x)

in (HFp)∗+2k(p−1)+1 THH(B).
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Proof. The following proof is due to Angeltveit and Rognes [1, Proposition 5.9].
Consider the diagram

THH(B) Map(Σ∞T+,THH(B)) THH(B)⊗Map(Σ∞T+, S).≃

Here, Map(−,−) is the mapping spectrum and the first map is adjoint to the
circle action. The spectra Map(Σ∞T+,THH(B)) and Map(Σ∞T+, S) are E∞-
ring spectra via the diagonal T+ → T+ ∧ T+ and the multiplications of S and
THH(B). The maps in the diagram are maps of E∞-ring spectra. We denote the
induced map in HFp-homology

(HFp)∗ THH(Fp) (HFp)∗ THH(Fp)⊗Fp (HFp)∗ Map(Σ∞T+, S)

by ρ∗. We have

(HFp)∗ Map(Σ∞T+, S) = (HFp)−∗Σ∞T+ = Fp{1} ⊕ Fp{l},

where l is dual to the image of the identity under

π1(Σ∞T) (HFp)1Σ∞T (HFp)1Σ∞T+.

If we denote by σ′ the composition

Σ THH(B) THH(B)⊗ Σ∞T+ THH(B),

we have
ρ∗(x) = x⊗ 1 + σ′

∗x⊗ l.

By naturality of the Dyer-Lashof operations we get

Qk(x ⊗ 1 + σ′
∗x⊗ l) = Qkρ∗(x) = ρ∗(Qk(x)) = Qkx⊗ 1 + σ′

∗Q
kx⊗ l.

From the Cartan formula and the facts that Qi(l) = 0 for i 6= 0 and Q0(l) = l, it
follows that the left side is equal to Qkx⊗ 1 +Qkσ′

∗x⊗ l. �

Remark 4. Using ρ∗, one can also show that σ∗ is a derivation.

We now consider the Bökstedt spectral sequence converging to (HFp)∗ THH(Fp).
We restrict to the case, where p is an odd prime. For the rest of the talk we write
⊗ for ⊗Fp . Recall that the dual Steenrod algebra is given by

A∗ = Fp[ξ̄1, ξ̄2, . . . ]⊗ ΛFp{τ̄0, τ̄1, . . . }.

Here, ξ̄i := χ(ξi) and τ̄i := χ(τi), where ξi and τi are the classes defined in the
previous talk. The generators have the degrees |ξ̄i| = 2pi − 2 and |τ̄i| = 2pi − 1.
One gets that the E2-page of the Bökstedt spectral sequence is given by

E2
∗,∗ = A∗ ⊗ ΛFp{σξ̄1, . . . } ⊗ ΓFp{στ̄0, . . . },

where ΓFp{−} denotes the divided power algebra over Fp. Note that there is one

more στ̄i than there are σξ̄i’s. One can show that the comultiplication is given by

ψ2(σξ̄i) = 1⊗A∗ σξ̄i + σξ̄i ⊗A∗ 1

ψ2(στ̄
[k]
i ) =

∑

l+n=k

στ̄
[l]
i ⊗A∗ στ̄

[n]
i .
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To compute the differentials we first need to prove the following fact about multi-
plicative extensions:

Lemma 5. In (HFp)∗ THH(Fp) we have (σ∗τ̄i)
p = σ∗τ̄i+1 for all i ≥ 0.

Proof. Recall that we have Qp
i

(τ̄i) = τ̄i+1. By Proposition 3 we thus get

σ∗τ̄i+1 = σ∗
(
Qp

i

(τ̄i)
)

= Qp
i

(σ∗τ̄i).

Because of 2pi = |σ∗τ̄i| this is the same as (σ∗τ̄i)
p. �

Lemma 6. In (HFp)∗ THH(Fp) we have σ∗(ξ̄i) = 0 for all i ≥ 1.

Proof. Let i ≥ 1. Recall that the Bockstein homomorphism satisfies β(τ̄i) = ξ̄i.
By Lemma 5 and because β is a derivation we have

σ∗ξ̄i = σ∗
(
β(τ̄i)

)
= β

(
σ∗(τ̄i)

)
= β

(
(σ∗τ̄i−1)p

)

= p · (σ∗τ̄i−1)p−1β(σ∗τ̄i−1) = 0.

�

We now consider the spectral sequence again. Since the differentials are compatible
with the bialgebra structure, a shortest non-zero differential in lowest total degree
must map from an algebra indecomposable to a coalgebra primitive, i.e. an element
x with

ψ(x) = 1⊗A∗ x+ x⊗A∗ 1

(see [1, Proposition 4.8]). The formulas for the comultiplication imply that the
coalgebra primitives have filtration degree one. Using this one gets di = 0 for
i = 2, . . . , p − 2. Using Lemma 6 and the comodule bialgebra structure of the
spectral sequence one gets

dp−1(στ̄
[p]
i ) = aiσξ̄i+1

for a unit ai ∈ Fp. Note that this formula implies

dp−1(στ̄
[p+k]
i ) = aiσξ̄i+1στ̄

[k]
i

for all k ≥ 0: By induction on k one proves that

dp−1(στ̄
[p+k]
i )− aiσξ̄i+1στ̄

[k]
i

is zero. In the induction step this follows, because the class is a coalgebra primitive
in filtration degree > 1. We get that

Ep∗,∗ = A∗ ⊗ Fp[στ̄0, στ̄1, . . . ]/(στ̄
p
0 , στ̄

p
1 , . . . ).

Since this is generated as an Fp-algebra by classes in filtration degree ≤ 1 the
spectral sequences collapses at the Ep-page. With Lemma 5 we get

(HFp)∗ THH(Fp) = A∗ ⊗ Fp[στ̄0]

as an A∗-algebra. Recall that the class τ̄0 ∈ A∗ is mapped under the coaction map
to

1⊗ τ̄0 + τ̄0 ⊗ 1 ∈ A∗ ⊗ A∗.
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Since σ∗ is a comodule map and a derivation, σ∗τ̄0 is a comodule primitive. As
explained at the beginning of the talk, this proves Theorem 1.
Finally, we want to outline the proof of the following theorem by Nikolaus and
Scholze:

Theorem 7 (Nikolaus, Scholze). As E∞-algebras in cyclotomic spectra we have

THH(Fp) ≃ τ≥0(HZtCp).

We first explain what the cyclotomic structure on the right is. For this note that:
For every spectrum X there is a cyclotomic spectrum Xtriv whose underlying

spectrum is X and which has the trivial T-action. The Frobenius maps are defined
by

X XhCp XtCp .

Here, the first map is pullback along BCp → ∗. In the statement of Theorem 7 we
equip HZ with this trivial cyclotomic structure.

For every connective cyclotomic spectrum there is a connective cyclotomic spec-
trum shpX whose underlying spectrum is τ≥0(XtCp) and which has the residual

action. Since this spectrum is p-complete by [3, Lemma I.2.9],
(
τ≥0(XtCp)

)tCq
is

zero for q 6= p and we only have to define the Frobenius map for the prime p.
For this note that the Frobenius map X → XtCp of X factors over the connective
cover of XtCp , because X is connective. The Frobenius map of shpX is given by
applying τ≥0

(
(−)tCp

)
to X → τ≥0(XtCp). This defines the cyclotomic structure

on τ≥0(HZtCp) in Theorem 7. Also note that the Frobenius map induces a map
of cyclotomic spectra X → shp(X).

We now roughly outline the proof of Theorem 7. Note that the proofs of The-
orem 8 and Theorem 9 below rely on Bökstedt’s theorem.

Theorem 8. We have

πi TC(Fp) =

{
Zp, i = −1, 0

0, otherwise.

Proof. See [3, Corollary IV.4.10]. �

The theorem implies that we have a map

HZ HZp = τ≥0 TC(Fp) TC(Fp).

We have an adjunction

(−)triv : Sp CycSp : TC .

We thus get a map

HZtriv THH(Fp)

in cyclotomic spectra. Theorem 7 then follows from
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Theorem 9. We have

shp(HZtriv) shp
(
THH(Fp)

)
THH(Fp).

≃ ≃

Proof. See [3, Corollary IV.4.13]. �
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Topological Hochschild homology of stable ∞-categories

Thomas Nikolaus

We give a definition of topological cyclic homology for stable∞-categories based on
the notion of a ‘trace theory’ as invented by Kaledin. From a different perspective
some of the constructions and results in this talk are also contained in the work
of Blumberg–Mandell [2] and Ayala–Mazel-Gee–Rozenblyum [1]. We omit a lot of
proofs and details in this note which will appear in [5].

1. Unstable THH

We begin this note by recalling Connes cyclic category Λ. We first define a related
category Λ∞, the paracyclic category. It is defined as a full subcategory of the
category of ordered sets with an order preserving Z-action in which morphisms
are non-decreasing equivariant maps. Then Λ∞ consists of those objects which
are isomorphic to 1

nZ with the obvious ordering and the Z-action by addition of

integers. We denote the object 1
nZ also by [n]Λ ∈ Λ∞ and by definition every

object in Λ∞ is equivalent to one of those.
There is a canonical functor ∆→ Λ∞ which sends a non-empty linearly ordered

set S to the set Z × S with lexicographic ordering and Z action by addition in
the left factor. We define the cyclic category Λ by identifying certain morphisms
in Λ∞, namely the quotient by the relation f ∼ f + k for k ∈ Z. The object of
Λ corresponding to 1

nZ is written as [n]Λ. One should think of Λ as consisting of
cyclic graphs:

[1]Λ ! 1 [2]Λ ! 12 [3]Λ ! 1

2

3
For every such cyclic graph with n vertices we have an associated ‘free category’

Tn ∈ Cat and then a map [n]Λ → [m]Λ in Λ corresponds to a functor Tn → Tm of
these categories that is a map of degree one of the circle after geometric realization.
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Really the poset 1
nZ with its Z-action should be considered as the universal cover

of such a graph/category. In particular this assignment gives us a functor

(1) Λ→ Cat [n]Λ 7→ Tn .

In a choice free way we can write this functor as sending a poset P ∈ Λ with
Z-action to the quotient category TP := P/Z where the poset P is considered as
a category and the quotient is taken in the category of categories.

For an ∞-category D we denote by D∼ the maximal Kan complex inside of D,
i.e. the groupoid core.

Definition 1. For a small ∞-category C we define a space uTHH(C) ∈ S as the
geometric realization of the cyclic space1

Λop → S [n]Λ 7→ Fun (NTn, C)
∼ .

Remark 2. One can check that for a given ∞-category C there is an equivalence

Fun (NTn, C)
∼ ≃ colim

c1,...,cn∈C∼

n∏

i=1

MapC(ci, ci+1)

where cn+1 = c1. This is the formula that we generalize for stable ∞-categories
later.

Now we want to compare this definition of unstable topological Hochschild
homology to the usual definition using the standard cyclic Bar construction.

Proposition 3. If M is an associative monoid in the ∞-category S of spaces
then the space uTHH(BM) for the associated ∞-category BM is equivalent to the
geometric realization of the cyclic Bar construction of M :

· · · //////

//
M ×M ×M ////// M ×M //// M

An immediate consequence of our definition of unstable cyclic homology the
way we defined it is the following well-known result of Goodwillie-Jones which is
usually proven quite differently.

Corollary 4. Let X be a space (i.e. a Kan complex) considered as an ∞-category.
Then we have an equivalence

uTHH(X) ≃ LX .

where LX = Map(T, X) is the free loop space of X.

Proof. For X an ∞-groupoid we have that

Fun(NTn, X)∼ ≃ Fun (|NTn|, X) ≃Map (T, X)

and the underlying simplicial object for varying n is constant. �

1For a cyclic space Λop → S the geometric realization is defined as the colimit of the under-
lying simplicial space ∆op → Λop → S.
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Now the space uTHH(C) carries some extra structure: first it clearly has a T-
action induced by the fact that it is the geometric realization of a cyclic object2.
Secondly the category Tpn comes with a canonical Cp-action by rotation (where
Cp is the cyclic group with p elements) . Clearly we have (in Cat as well as in
Cat∞) that the homotopy orbits of this Cp-action on Tpn are given by Tn. As a
result we get an equivalence

Fun(NTn, C)
≃
−→ Fun(NTpn, C)

hCp .

One can show that the target of this map is also a cyclic object if we let n vary
and this equivalence is an equivalence of cyclic objects. We omit the details here.

As soon as we know this it follows that we have a map of cyclic objects which
after realization, and commuting the homotopy fixed points out of the colimit
(recall that the colimit only depends on the underlying simplicial object), gives us
a T-equivariant map

uTHH(C)→ uTHH(C)hCp .

This map is the key part of an ‘unstable cyclotomic structure’ on uTHH(C).

2. Stable ∞-categories and THH

In this section we want to define a variant of uTHH as discussed in the previous
section, called THH(C) where we require C to be a stable ∞-category and such
that THH(C) is a spectrum in contrast to the space uTHH(C). The idea is to
define THH(C) as the geometric realization of a cyclic object which is informally
given by

[n]Λ 7→ colim
c1,...,cn∈C∼

n⊗

i=1

mapC(xi, xi+1)

where mapC(−,−) denotes the mapping spectrum in C. This generalizes the de-
scription in Remark 2. The main point is to make this informal description into a
homotopy coherent functor.

To this end we define an ∞-category Λst of ‘labelled cyclic graphs’. Let us first
give an informal description of this ∞-category and then the precise definition.
Up to equivalence, an object in Λst is given by a cyclic graph labelled with stable
∞-categories C1, . . . , Cn and colimit preserving functors Fi : IndCi+1 → IndCi
(a.k.a. profunctors or bimodules) for every i (as usual i is taken mod n). We will
abbreviate such an object as (F1, . . . , Fn) leaving the stable ∞-categories implicit

or even as ~F . Graphically such an object for n = 5 will be depicted as follows

2See [4, Appendix T] for details
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C1

F1

C2
F2

C3

F3

C4
F4

C5

F5

Here the functors are really profunctors but we draw them as ordinary arrows.
The morphisms in Λst are generated by the following basic morphisms: composing
adjacent functors, inserting identities, rotations and lax maps of diagrams of fixed
shape. Lax means that for a given shape there are 2-cells allowed. For example
if we have two endoprofunctors F : Ind(C) → Ind(C) and G : Ind(D) → Ind(D)
considered as objects in Λst

CF DG

,

then such a morphism corresponds to a pair of a functor φ : C → D and a
natural transformation η : φ! ◦ F → G ◦ φ! filling the diagram

Ind(C)
F //

φ!

��

✡✡✡✡�	 η

Ind(C)

Φ!

��

Ind(D)
G // Ind(D)

.

In particular for C = D and φ = id there are still morphisms of profunctors built
into Λst. After this informal discussion we now make the definition of Λst precise:

Definition 5. Let X → S be a categorical fibration of simplcial sets. We say
that that it is a flat stable fibration if it is a flat categorical fibration3 , every fibre
Xs for s ∈ S is a stable ∞-category and for every edge s → s′ in S the induced
map Xop

s ×Xs′ → S is excisive in every variable separately 4. A functor X → X ′

of flat stable fibrations over S is a functor of fibrations over S which is fibrewise
exact. We denote the ∞-category of flat stable fibrations over S (considered as a

subcategory of the slice category) by Stab♭/S .

3This means that it is a categorical fibration and that for every 2-simplex ∆2 → S the induced
map X ×S Λ2

1 → X ×S ∆2 is a categorical equivalence., see [3]
4Such a functor is equivalently given by a colimit preserving functor IndXs′ → IndXs
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There is a functor

χ : Λop → Cat∞ [n]Λ 7→ Stab♭/NTn

and we let Λst be the coCartesian fibration over Λop classifying χ. We refer to
objects of Λst as cyclic graphs of stable ∞-categories.

Note that the coCartesian morphisms of Λst over Λop are compositions of con-
traction, insertion and rotation morphisms. In the following we will study functors
T : Λst → Sp. In particular we will realize topological Hochschild homology as such
a functor. Let us start by an example.

Proposition 6. There is a functor

End : Λst → Cat∞

such that objectwise we have End(X → NTn) ≃ FunNTn(NTn, X), i.e. it is the
∞-category of sections of the flat stable fibration.

For a cyclic graph of stable ∞-categories described by the list of profunctors
(F1, . . . , Fn) the ∞-category End(F1, . . . , Fn) has as objects sequences of objects
(ci ∈ Ci) together with morphisms ci → Fi(ci+1). In particular for the cyclic graph
given by the identity endoprofunctor on a stable ∞-category this is the category
End(C) ≃ Fun(NT1, C) of endomorphisms in C.

Using the functor End we get a resulting functor

E : Λst End
−−→ Cat∞

(−)∼

−−−→ S
Σ∞

+
−−→ Sp .

which is key for what follows. We have an equivalence

E(F1, . . . , Fn)∼ ≃ colim
ci∈C∼

i

n⊗

i=1

Σ∞
+ MapInd(Ci)(ci, Fici+1) .

For every sequence of stable∞-categories (C1, . . . , Cn) one can construct a functor

n∏

i=1

FunL(IndCi+1, IndCi)→ Λst

where FunL denotes colimit preserving (equivalently left adjoint) functors. It sends
the sequence (F1, . . . , Fn) to the object denoted in the same way in Λst.

Definition 7. Let T : Λst → Sp be a functor.

(1) T is called reduced if for every sequence of stable ∞-categories C1, . . . , Cn
the restriction of T to a functor

n∏

i=1

FunL(IndCi+1, IndCi)→ Sp

is reduced in every variable separately, i.e. sends the zero functor to a zero
object in Sp
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(2) T is called stable if for every sequence of stable ∞-categories C1, . . . , Cn
the restriction of T to a functor

n∏

i=1

FunL(IndCi+1, IndCi)→ Sp

is exact in every variable separately, i.e. sends pushouts
in Funex(IndCi+1, IndCi) to pullbacks in Sp.

Proposition 8. The inclusions

Funst(Λst, Sp) ⊆ Funred(Λst, Sp) ⊆ Fun(Λst, Sp)

admit left adjoints T 7→ T st and T 7→ T red such that

T st(F1, . . . , Fn) ≃ lim−→k
ΩnkT

(
ΣkF1, . . . ,Σ

kFn
)
.

and T red(F1, . . . , Fn) is given by the total cofibre of the n-cube

P{1, . . . , n} → Sp S ⊆ {1, . . . , n} 7→ T (F ′
1, . . . , F

′
n)

where F ′
i is given by Fi for i ∈ S and by the zero functor otherwise.

We will abusively denote the composite left adjoint

Fun(Λst, Sp)→ Funst(Λst, Sp)

given by first making the functor reduced and then stable also by (−)st. The results
above show that the restriction of the transformation T → T st to the subcategory

n∏

i=1

FunL(IndCi+1, IndCi) ⊆ Λst

exhibit T st |∏n
i=1 FunL(IndCi+1,IndCi) as the exact (i.e. 1-excisive and reduced) ap-

proximation of T |∏n
i=1 FunL(IndCi+1,IndCi). This more or less directly implies the

following result.

Proposition 9. The stable approximation Est to the functor E : Λst → Sp as
constructed above is pointwise given by

Est(F1, . . . , Fn) ≃ colim
c1,...,cn∈C∼

n⊗

i=1

mapC(xi, Fixi+1) .

Now we can now define topological Hochschild homology through the usual
cyclic Bar construction as

THH(C) =
∣∣ . . . Est(idC , idC , idC)

//
//
// E

st(idC , idC) //
// Est(idC)

∣∣ .
In fact we can define THH now more generally.

Definition 10. We more generally define THH(F1, . . . , Fn) as the realization of
the simplicial object

. . .
//
//
// E

st(F1, id, F2, id, . . . , Fn, id) //
// Est(F1, . . . , Fn)
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where the simplicial object is obtained from an appropriately constructed simplicial
object in Λst. This gives us a functor

THH: Λst → Sp

which comes with a transformation Est → THH.

In particular we have a functor Catst∞ → Stab♭/NT1
→ Λst sending C to

(idP(C)) = (C ×NT1 → NT1)

i.e. the cyclic graph

Cid

The composition with THH as defined above then gives THH for
stable ∞-categories.

Definition 11. A functor T : Λst → Sp is called a trace theory if it sends coCarte-
sian morphisms in Λst to equivalences in Sp. It is called a stable trace theory, if it
additionally is stable (see Definition 7).

For a trace theory T we have equivalences T (F ◦ G) ≃ T (F,G) ≃ T (G,F ) ≃
T (G ◦ F ). Thus it behaves like the usual cyclic invariance of the trace of an
endomorphism. This is the reason for the naming. In fact, for a trace theory
T : Λst → Sp the values T (F ) for a single functor already determine all values,
since we have

T (F1, . . . , Fn) ≃ T (F1 ◦ . . . ◦ Fn) .

The main point of the notion of trace theory is that the combinatorics of Λst

encode a homotopy coherent way of expressing the ‘cyclic invariance’. Also note
that every coCartesian morphism is a composition of rotation, contraction and
insertion morphisms (since this is true in Λ). The rotations are equivalence in
Λst and the insertions are one sided inverses to contractions. Therefore to check
that something is a trace theory it suffices to check that the morphisms given by
contraction of two adjacent profunctors induces an equivalence of spectra.

Theorem 12. The functor THH : Λst → Sp is a stable trace theory. Moreover
the natural transformation E → THH exhibits THH : Λst → Sp as the universal
stable trace theory under E.

Proposition 13. For every trace theory T and every functor F : IndC → IndC
there is a Cp-action on T (F ◦ . . . ◦ F ) ≃ T (F, . . . , F ) which extends to a T-action
for F = id.

Proof. The first claim is obvious since T (F ◦ . . . ◦ F ) is by the trace property
equivalent to T (F, . . . , F ) which has a Cp-action since the object (F, . . . , F ) ∈
Λst carries a Cp-action. For the second we observe that T (idC) is equivalent to
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the colimit of the cyclic diagram [n] 7→ T (idC , . . . , idC) (with p-identities) since
all structure maps are equivalences. Thus it gets an induced T-action as the
realization of a cyclic object. By subdividing this cyclic object we see that the
action is compatible with the one on T (id, . . . , id). �

Proposition 14. For every trace theory T : Λst → Sp the induced functor

T : Catst∞ → Λst → Sp

is Morita invariant, that is for an exact functor F : C → D of stable ∞-categories
which is an equivalence after idempotent completion the induced map T (C)→ T (D)
is an equivalence.

Proof. Being an equivalence after idempotent completion means that we have an
inverse profunctorG : IndD → IndC such thatG◦Ind(F ) ≃ idIndC and Ind(F )◦G ≃
idIndD. We then have

T (C, id) ≃ T (C, G ◦ Ind(F )) ≃ T (D, Ind(F ) ◦G) ≃ T (D, id)

which shows the claim. �

We recall that a Verdier sequence of stable ∞-categories is a sequence of stable
∞-categories C → D → E such that the composition is the zero functor (this is a
property and not extra structure) and such that it is a fibre and cofibre sequence
in Catst∞.

Proposition 15. Let T : Λst → Sp be a stable trace theory. Then for every
Verdier sequence C → D → E of stable ∞-categories the induced sequence

T (C)→ T (D)→ T (E)

is a fibre sequence of spectra.

Proof. The induced sequence

Ind(C)
i
−→ Ind(D)

p
−→ Ind(E)

is a split Verdier sequence, that is there are right adjoints to Rp to p and Ri to i
such that the unit id → Ri ◦ i as well as the counit p ◦ Rp → id are equivalences
(these exist by the adjoint functor theorem). Then we get a cofibre sequence of
functors

i ◦Ri → idInd(D) → Rp ◦ p

using the properties of a Verdier sequence. Now using the trace property of T we
get equivalences T (C) ≃ T (Ri ◦ i) ≃ T (i ◦ Ri) and T (E) ≃ T (p ◦ Rp) ≃ T (Rp ◦ p)
and under these equivalences the sequence in question corresponds to the sequence
T (i◦Ri)→ T (idInd(D))→ T (Rp◦p) which is a fibre sequence by stability of T . �

Corollary 16. For every stable ∞-category THH(C) = THH(idC) carries canon-
ically a T-action. For every functor F : IndC → IndC the spectrum THH(F p) ≃
THH(F, . . . , F ) carries a Cp-action. Moreover THH is Morita invariant and lo-
calizing .
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We now can form the spectrum THH(~F , . . . , ~F )tCp . This assignment again
forms a functor Λst → Sp in a non-trivial way (similar to the discussion at the end
of the first section). We again omit the details of the construction.

Example 17. There is a natural transformation E → EhCp sending a sequence
of morphisms (ϕ1, . . . , ϕp) to the p-fold iterate. Formally there is an equivalence
of the ∞-categories of sections

End(X → NTn) ≃ End(w∗X → NTpn)hCp

where w : Tpn → Tn is the projection. This induces the transformation in question
(where we again omit the construction of the coherences in this text).

Proposition 18. The functor ~F 7→ THH(~F , . . . , ~F )tCp is a stable trace theory.

Proof. Clearly it is a trace theory since for every contraction in F the induced
morphism can (before taking Tate) be written as an p-fold composition of contrac-
tions and is thus an equivalence. For stability we use the usual fact about Tate
construction of a multilinear functor being exact. �

Now we get an induced transformation of functors Λst → Sp as in the diagram

E //

��

THH

ϕp∃!
��
✤
✤
✤

EhCp // THHtCp

.

After evaluation on C this gives us a T-equivariant map

ϕp : THH(C)→ THH(C)tCp .

for every stable∞-category C. This shows that THH(C) is a cyclotomic spectrum.
But the transformation is more general since it also gives some information for
THH with coefficients: for an endofunctor F : IndC → IndC we get a map

THH(F )→ THH(F, . . . , F )tCp ≃ THH(F ◦ . . . ◦ F )tCp

generalizing the cyclotomic Frobenius.

Corollary 19. The functor THH : Catst∞ → Sp extends to a functor

THH : Catst∞ → CycSp

where CycSp is the ∞-category of cyclotomic spectra. This functor is Morita
invariant and localizing (i.e. sends Morita equivalences to equivalences and Verdier
sequences to cofibre sequences). Therefore also the composite

TC : Catst∞ → CycSp→ Sp

is Morita invariant and localizing.



866 Oberwolfach Report 15/2018

References

[1] D. Ayala, A. Mazel-Gee, and N. Rozenblyum, Factorization homology of enriched ∞-
categories, ArXiv 1710.06414 (2017).

[2] A. J. Blumberg and M. A. Mandell, Localization theorems in topological Hochschild homology
and topological cyclic homology, Geom. Topol., Volume 16, Number 2 (2012), 1053-1120.

[3] J. Lurie, Higher Algebra, www.math.harvard.edu/~lurie/papers/HA.pdf (2018).
[4] T. Nikolaus and P. Scholze, On topological cyclic homology, ArXiv 1707.01799 (2017).

[5] T. Nikolaus, Topological Hochschild homology and cyclic K-theory, in preparation.

TC of spherical group rings

Markus Land

The goal of this talk is to give a proof the following theorem due to Bökstedt-
Hsiang-Madsen [1, Theorem IV.3.6].

Theorem 1. Let M be an E1-group in spaces and p be any prime. Then, after
p-completion, there is a pullback square of the form

TC(S[M ]) Σ
(
Σ∞

+ L(BM)hT
)

Σ∞
+ L(BM) Σ∞

+ L(BM).
id−ϕ̃p

Here, L(BM) is the free loop space of the classifying space BM of M and the
map ϕ̃p is the map induced by the map x 7→ xp on S1. Furthermore, S[M ] = Σ∞

+M
is the spherical group ring of M – an E1-ring spectrum.

To set the stage, we recall some definitions, see [1, Definition II.1.8 & Proposi-
tion II.1.9].

Definition 2. Let (X,ϕp) be a p-cyclotomic spectrum. Then its topological cyclic
homology TC(X) is given by

TC(X) = mapCycSpp
(S, X)

Prop
≃ fib

(
XhT (XtCp)hT

)
.

can−ϕhT

p

The first step is to understand THH(S[M ]). For this we recall from the last
lecture that we have defined topological Hochschild homology for categories:

Definition 3. Let C be an ∞-category. Then, as constructed in the last lecture,
its unstable topological Hochschild homology uTHH(C ) is given by

uTHH(C ) = colim
n∈∆

Fun
(
(n),C

)∼
∈ SBT.

As the association n 7→ (n) is a cocyclic category, it follows that uTHH(C ) is in
fact the geometric realization of a cyclic space, and as such is canonically endowed
with a T-action. Furthermore, for every prime p, in the last lecture, an unstable
cyclotomic Frobenius, i.e. a T-equivariant map

uTHH(C ) uTHH(C )hCp
ψp

www.math.harvard.edu/~lurie/papers/HA.pdf
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was established, so that uTHH(C ) is a cyclotomic object in S, the ∞-category
of spaces. If C is a stable ∞-category, or more generally a spectrally enriched
∞-category, then one similarly obtains THH(C ) as a cyclotomic spectrum.

For an E1-ring spectrum R, its category of compact modules ModωR is a stable
∞-category, and one defines topological Hochschild homology of R via its category
of compact modules:

THH(R) = THH(ModωR)

which is thus a cyclotomic spectrum. One then sets

TC(R) = TC(THH(R)).

We will make use of the following lemma.

Lemma 4. (1) Let M be an E1-space (not necessarily grouplike) and let BM
be the ∞-category with one object and M as endomorphisms. Then there
is an equivalence uTHH(BM) ≃ Bcyc(M).

(2) Let X be an ∞-groupoid. Then uTHH(X) ≃ L(X) as cyclotomic spaces,
where the free loop space has the unstable cyclotomic Frobenius given by
the map L(X)→ L(X)hCp induced by the pth-power map on S1.

(3) Let C be an ∞-category. Then Σ∞
+ uTHH(C ) ≃ THH(Fun(C op, Sp)ω) as

cyclotomic spectra.

Proof. Part (1) was discussed in the last lecture. For part (2) we observe the
following: Since X is an ∞-groupoid, we have

Fun((n), X)∼ ≃ Fun((n), X) ≃ Fun((n)gp, X) ≃ Fun(S1, X) ≃ Map(S1, X)

where (−)gp is the left adjoint to the inclusion of ∞-groupoids in ∞-categories.
Concretely, it is the a functor that inverts all morphisms in an ∞-category. Thus
uTHH(X) is the geometric realization of the constant simplicial space

Map(S1, X) = L(X).

It is not constant as a cyclic space, and in fact, it turns out that the induced T-
action on the geometric realization is the natural one through S1. For (3) the idea
is as follows. We define a spectrally enriched category Σ∞

+ C given by applying the
functor Σ∞

+ to all mapping spaces. Then, essentially by definition we obtain

Σ∞
+ uTHH(C ) ≃ THH(Σ∞

+ C ).

To obtain the claim, it hence suffices to prove that Σ∞
+ C and Fun(C op, Sp)ω are

Morita equivalent, i.e. have equivalent spectral presheaves. For this we simply
calculate

Funex((Σ∞
+ C )op, Sp) ≃ Fun(C op, Sp)

and

Funex(Fun(C op, Sp)ω , Sp) ≃ FunL(Fun(C op, Sp), Sp)) ≃ Fun(C op, Sp)⊗ Sp

≃ Fun(C op, Sp).

where the tensor product denotes the symmetric monoidal structure on the ∞-
category of stable presentable ∞-categories for which Sp is the unit. �
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Corollary 5. For an E1-group M , we have

THH(S[M ]) ≃ Σ∞
+ L(BM)

as cyclotomic spectra.

Proof. Since M is an E1-group, the category BM is in fact an ∞-groupoid and as
such equivalent to BM , the classifying space of the grouplike E1-space M . Thus
we obtain

Σ∞
+ L(BM) ≃ Σ∞

+ uTHH(BM) ≃ THH(Fun(BM, Sp)ω).

It hence suffices to recall from the Schwede-Shipley theorem that

Fun(BM, Sp) ≃ ModS[M ]

as the former is compactly generated and S[M ] is the E1-spectrum of endomor-
phisms of a generator. �

Making the cyclotomic Frobenius explicit gives a commutative diagram

THH(S[M ]) Σ∞
+ L(BM)

THH(S[M ])tCp
(
Σ∞

+ L(BM)
)tCp

(
Σ∞

+ L(BM)
)hCp

Σ∞
+ L(BM)hCp

In other words, THH(S[M ]) is an example of a p-cyclotomic spectrum with
Frobenius lift:

Definition 6. A lift of the Frobenius on a p-cyclotomic spectrum (X,ϕp) is a

2-simplex in the ∞-category SpBT whose boundary looks as follows

X XhCp

XtCp .

ϕ̃p

ϕp

can

In particular, a lift of Frobenius ϕ̃p comes equipped with a homotopy between
can ◦ ϕ̃p and ϕp.

We will now discuss two examples.

Example 7. We aim to describe the spaces uTHH(BN) ≃ Bcyc(N) and
uTHH(BZ) ≃ Bcyc(Z). As Z is a group, for the latter, we can use the equiva-
lence

uTHH(BZ) ≃ L(BZ) ≃ L(S1).

The map
Z× S1 −→ L(S1)

given by (n, t) 7→ (s 7→ t · sn) is a homotopy equivalence and it is S1-equivariant if
we endow the space Z× S1 with the action λ · (n, t) = (n, λn · t).

In order to calculate uTHH(BN) we really use the equivalence to the cyclic bar
construction and calculate the cyclic bar construction explicitly. It is easy to see
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that Bcyc(N) has components indexed by N and that the space indexed by 0 is simply
a point. However, the space indexed by n ≥ 1 turns out to be equivalent to S1, and
the map induced by the inclusion N→ Z induces a homotopy equivalence on cyclic
bar constructions when restricted to components indexed by n ≥ 1. In pictures we
obtain

Bcyc(N) . . . ∅ ∅ ∗ • • . . .

Bcyc(Z) . . . • • • • • . . .

Z . . . −2 −1 0 1 2 . . .

T T/C2

T/C2 T T/C0 T T/C2

where • denotes the space S1, and the T/Cn indicates that T acts on S1 via the
nth-power map. In short, we can summarise this as to read that

Bcyc(N) = ∗ ∐
∐

n≥1

S1/C|n|

and likewise that

Bcyc(Z) =
∐

n∈Z

S1/C|n|

where S1/C0 is the space S1 with trivial T-action.

We will now prove the following version of the main theorem, compare [1,
Proposition IV.3.4].

Theorem 8. Let X be a bounded below, p-complete, p-cyclotomic spectrum equip-
ped with a Frobenius lift ϕ̃p : X → XhCp and let ϕ̄p be the composite X → XhCp →
X. Then there is a pullback diagram of the form

TC(X) ΣXhT

X X.

tr

id−ϕ̄p

Here, the map tr is the T-transfer and will be explained in the course of the proof.

Notice that this theorem implies the main theorem, since the p-completion
of THH(S[M ]) is bounded below, p-complete, p-cyclotomic and equipped with a
Frobenius lift by our previous results.
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Proof of the Theorem. By definition of topological cyclic homology, we have a pull-
back diagram

TC(X) 0

XhT XhT (XtCp)hT
id−ϕ̃hT

p canhT

where we use the Frobenius lift. By patching of pullback diagrams, we may there-
fore first calculate the fibre of the map

XhT (XtCp)hT.canhT

This will require some steps.
First, we claim that for any bounded below spectrum X with T-action, the

canonical map

XtT −→ lim
n
XtCpn

is a p-completion map, compare [1, Lemma II.4.2]. Furthermore, if X is p-
complete, then so is XtT and thus this map is an equivalence. To prove this,
we can reduce, by an induction over the Postnikov tower of X , to the case where
X = HM , for an abelian group M on which T necessarily acts trivially. By a
length two resolution of M we may further reduce to the case where M is torsion-
free. Then we obtain that

π∗(HM tT) = M [u±]

for |u| = 2. Similarly,

π∗(HM tCpn ) = M/pn[u±]

and the restriction map is the canonical projection. The claim then follows.
Next, as we have already seen in an earlier lecture, an iterative application of

the Tate-orbit lemma shows that there is a canonical equivalence

XtCpn (XtCp)hCpn/Cp≃

see [1, Lemma II.4.1].
Combining with the previous equivalence, for a bounded below and p-complete

spectrum X , we obtain an equivalence

XtT lim
n

(XtCp)hCpn/Cp ≃ (XtCp)hCp∞≃ .

Recall that Cp∞ ⊆ T is the subgroup of elements that are annihilated by a power
of p. Lastly, we note that the canonical map

BCp∞ −→ BT

is a p-adic equivalence: It is a nice exercise to see that this map induces an
equivalence on mod p homology. Putting all together, it follows that for a bounded
below and p-complete spectrum X , we obtain an equivalence

XtT (XtCp)hT≃
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which makes the diagram

XhT XtT

(XtCp)hT

can

canhT
≃

commute. Now we use that there is a natural fibre sequence

ΣXhT XhT XtTN can

The map N is the appropriate version of the norm map for compact Lie groups
that are not necessarily finite: Recall that we have defined a norm map for finite
groups in the first lecture. For compact Lie groups, the adjoint representation of
the group enters to “twist” the homotopy orbits. In the case of the circle group
T, this adjoint representation is a trivial 1-dimensional representation, and so the
domain of the norm map is given by ΣXhT. We refer to [1, Corollary I.4.3] for
details and a proof of the above fibre sequence.

Summarizing the above, we obtain a pullback square as follows

TC(X) ΣXhT

XhT XhT.

N

id−ϕ̃hT

p

For a spectrum with T action X , we shall define the T-transfer as the composite

ΣXhT
N
−→ XhT −→ X

where the latter map is induced by restricting homotopy orbits along the trivial
subgroup of T. Thus, to finish the proof of the theorem it suffices to argue that
the diagram

XhT XhT

X X

id−ϕ̃hT

p

id−ϕ̄p

is also a pullback.
We recall that X is a functor BT→ Sp and that ϕ̃p can be viewed as a natural

transformation

X ◦ fp
ψp
−→ X

where fp : BT → BT is the map induced by the pth-power map on T. In this
language, the map ϕ̃hTp is given by

lim
BT

X lim
BT

(X ◦ fp) lim
BT

X
f∗
p ψp

.

We will need a general principle for calculating limits indexed over spaces.
For sake of clarity we formulate it as a lemma; its proof follows from a simple
calculation in mapping spaces using the Yoneda lemma.
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Lemma 9. Let F : I → S be a functor, and let X = colim
I

F be its colimit. Then,

Fun(X, Sp) ≃ lim
I

Fun(F (i), Sp)

and for each X-parametrized spectrum F : X → Sp we have

lim
X

F ≃ lim
i∈I

lim
F (i)

F|F (i).

Now we observe that BT ≃ CP∞, and that fp can be modelled by raising all
projective coordinates to the pth-power. In particular, fp restricts to self-maps of
CPn for all n ≥ 0. We use this to deduce that the map ϕ̃hTp is also given by inverse
limit (over n) of the composite

lim
CPn

X lim
CPn

(X ◦ fp) lim
CPn

X
fp ψn

p

which we call ϕ̃np . Thus in order to show that the diagram

lim
n

lim
CPn

X lim
n

lim
CPn

X

X X

id−lim
n
ϕ̃n

p

id−ϕ̄p

is a pullback it suffices to show that for each n ≥ 0, the diagram

lim
CPn

X lim
CPn

X

X X

id−ϕ̃n
p

id−ϕ̄p

is a pullback. Performing an induction over n (the induction start n = 0 being
trivial as ϕ̃0

p = ϕ̄p), it then suffices to show that the diagram

lim
CPn

X lim
CPn

X

lim
CPn−1

X lim
CPn−1

X

id−ϕ̃n
p

id−ϕ̃n−1
p

is a pullback diagram. For this we observe that by the above lemma, the pushout
of spaces

S2n−1 CPn−1

∗ CPn
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induces a pullback diagram of spectra

lim
CPn

X lim
CPn−1

X

X map(S2n−1
+ , X)

as X restricted to S2n−1 is trivial. It follows that there is a fibre sequence

Ω2nX lim
CPn

X lim
CPn−1

X.

We thus have a diagram

Ω2nX lim
CPn

X lim
CPn−1

X

Ω2nX lim
CPn

X lim
CPn−1

X

id−pn·f
id−ϕ̃n

p id−ϕ̃n−1
p

The fact that the induced map on fibres is of the claimed form follows from the
fact that the map fp : CPn → CPn has degree pn. To prove the theorem it thus
suffices to show that for each n ≥ 1, the map

Ω2nX Ω2nX
id−pn·f

is an equivalence. Now we claim in general, that a map of the form

Z Z
id−pα

for some self map α is a p-adic equivalence; from this the theorem follows as we
assumed X to be p-complete. To show the claim, we need to show that it induces
an equivalence after tensoring with S/p, the mod p Moore spectrum. For this,
consider the fibre sequence

Z Z Z/p ≃ Z ⊗ S/p
·p

and deduce from the long exact sequence in homotopy groups the short exact
sequence

0 coker(·p|πn(Z)) πn(Z/p) ker(·p|πn−1(Z)) 0

where the left hand and right hand side are p-torsion groups. It follows that
id − pα induces isomorphisms on coker(·p|πn(Z)) and ker(·p|πn−1(Z)) and thus by
the 5-lemma also on πn(Z/p). �
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To finish, let us make the main theorem explicit for the trivial E1-group. We
obtain that there is a pullback diagram of p-complete spectra

TC(S) ΣShT

S S.

tr

0

The fibre of the (shifted) T-transfer tr : ShT → Σ−1S is often referred to as P∞
−1(C).

It is a spectrum with one cell in each even dimension ≥ −2. Putting this all
together, we obtain the famous p-adic equivalence

TC(S) ≃ S⊕ ΣP∞
−1(C).
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The Cyclotomic Trace

David Gepner

Although it can be defined more generally,1 the algebraic K-theory functor is quite
naturally regarded as a lax symmetric monoidal functor

K : Catst∞ → Sp

from the ∞-category of small stable ∞-categories and exact functors to the ∞-
category of spectra. While there are a number of constructions which produce
this and related functors, the two that will be most relevant to this talk are Wald-
hausen’s S• construction, which directly constructs a spectrum from a stable ∞-
category C by splitting sequences of morphisms in C, and the theory of noncommu-
tative motives over the sphere, which constructs a large symmetric monoidal stable
∞-category such that the spectrum of maps from the unit (the motive associated
to the sphere) to the motive associated to an arbitrary small stable ∞-category C
recovers the algebraic K-theory of C.

We begin by recalling the ∞-categorical version of Waldhausen’s S•-construc-
tion. Given an arbitrary ∞-category C, we have the ∞-category Fun(∆1, C) of
arrows of C. In particular, Fun(∆1,∆n) is equivalent to the nerve of the partially
ordered set {i, j}0≤i≤j≤n. Hence an object of Fun(Fun(∆1,∆n), C) consists of
objects Ai,j of C for each 0 ≤ i ≤ j ≤ n, maps Ai,j → Ai′,j′ for i ≤ i′ and j ≤ j′,
etc. If C is a stable ∞-category, we write Sn(C) ⊂ Fun(Fun(∆1,∆n), C) for the

1For instance, in the setting of exact ∞-categories or even Waldhausen ∞-categories.
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full subcategory consisting of those objects Ai,j such that Ai,j ≃ 0 whenever i = j
and each square

Ai,j //

��

Ai,j+1

��

Ai+1,j
// Ai+1,j+1

is (co)cartesian. Note that S0(C) ≃ ∆0, S1(C) ≃ C, and more generally Sn(C) ≃
Fun(∆n−1, C). Also note that, letting n vary, we obtain a simplicial stable ∞-
category S•(C), and that the three maps Fun(∆1, C) ≃ S2(C)→ S1(C) ≃ C send a
morphism f : A→ B to A, B, and the cofiber C of f , respectively.

Passing the to maximal subgroupoid (S•(C))∼ yields a simplicial space whose
geometric realization |(S•(C))∼| comes equipped with a natural map Σ((C)∼) →
|(S•(C))∼| of spaces obtained by restriction to the 1-skeleton. Finally, observe that
each Sn(C) is itself a stable∞-category, so that we may iterate the S• construction
to form a multisimplicial space (Sn• (C))∼, and we will2 write |(Sn• (C))∼| for its
(iterated) geometric realization.

Definition 1. The algebraic K-theory of C is the spectrum associated to the pre-
spectrum {K(C)n}n∈N given by K(C)n = |(Sn• (C))∼|, with structure maps induced
by the natural transformation Σ((−)∼)→ |(S•(−))∼| described above.

Remark 2. It turns out that this is surprisingly close to a spectrum: the maps
K(C)n → ΩK(C)n+1 are already equivalences for n > 0. In particular, Ω∞K(C) ≃
Ω|S•(C)∼|. This follows from Waldhausen’s Additivity Theorem.

The aforementioned map C∼ → Ω∞K(C) ≃ Ω|(S•(C))∼| induces a map on π0
such that, if A → B → C is a (co)fiber sequence in C, then [B] = [A] + [C] ∈
π0K(C). This, together with the higher homotopy coherences which occur as
a result of forming loop space of the geometric realization, make rigorous the
intuitive notion that the algebraic K-theory “splits exact sequences”. There is
a categorification of this notion which leads to the theory of noncommutative
motives.

Definition 3. A functor F : Catst∞ → Sp is said to be localizing (respectively,
additive) if F preserves filtered colimits and sends localization sequences (respec-
tively, additivity sequences) in Catst∞ to (co)fiber sequences of spectra.

Let PreaddSp (Catst∞) denote the additive localization of the presentably symmetric
monoidal stable ∞-category of spectral presheaves on small stable ∞-categories;
that is,

PreaddSp (Catst∞) ⊂ PreSp((Catst∞)ω)

is the full subcategory of those functors X : (Catst∞)ω)op → Sp such that, for any
additivity sequence A → B → C in Catst∞, X(C) → X(B) → X(A) is a (co)fiber

2Unambigously, as the n-fold product (∆op)×n of the simplicial indexing category with itself
is sifted, by [6, Lemma 5.5.8.4].
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sequence. The stable Yoneda embedding

Σ∞
+ Map(−,−) : Catst∞ → PreSp((Catst∞)ω)

followed by the additive localization determines a functor

Madd : Catst∞ → PreaddSp (Catst∞)

which sends C to its additive noncommutative motive Madd(C). When C = PerfR
is the stable ∞-category of perfect R-modules for some ring spectrum R, we will
often write Madd(R) in place of Madd(PerfR).

Theorem 4. [2] For any small stable ∞-category C, the spectrum of maps from

Madd(S) to Madd(C) in PreaddSp (Catst∞) is canonically equivalent to K(C). More-

over, if F : Catst∞ → Sp is any additive functor then the spectrum of natural
transformations of additive functors K → F is equivalent to F (S).

Corollary 5. [3] The set of equivalence classes of maps from K to THH is equiv-
alent to π0THH(S) ∼= π0S ∼= Z. The set of equivlaence classes of lax symmetric
monoidal maps from K to THH is a singleton set (corresponding to the unit 1 ∈ Z).
In particular, the Dennis trace map is the unique lax symmetric monoidal functor
K → THH.

Unfortunately, TC is neither additive nor localizing; rather, it is pro-additive
and pro-localizing, in the sense that TC ≃ limn TCn and each TCn is localizing
and therefore additive as well. Similar calculations apply to calculating spaces
of natural transformations from K-theory to each TCn, which therefore assemble
to the cyclotomic trace map K → TC, which again is the unique lax symmetric
monoidal natural transformation. Our goal for the remainder of this talk is to
construct a cyclotomic analogue of K-theory, called cyclic K-theory, which comes
equipped with a map of cyclotomic spectra to THH, and therefore refines the
cyclotomic trace map. For this, we need the notion of an additive trace theory.

The ∞-category Λst is obtained as a hybrid of Catst∞ and Λ, Connes’ cyclic
category, by decorating Tn, the circle with n marked points, n > 0, with stable
∞-categories Xi, 1 ≤ i ≤ n, and the edges connecting these marked points with
bimodules (a.k.a. correspondences, distributors, profunctors, etc.)

Fi ∈ FunL(Ind(Xi+1), Ind(Xi)).

As the geometry suggests, we work mod n, so in particular X0 = Xn and X1 =
Xn+1, etc., by definition. It sits over Λop as a cocartesian fibration such that the
fiber of Λst over Tn is the ∞-category of stable flat fibrations over Tn.

The (co)cartesian morphisms of Λst are of three types, corresponding to the
generators of Λop: rotation, contraction, and insertions. The rotation morphisms
simply reindex the indexing ∞-categories Xi and bimodules Fi, mod n, while the
contraction morphisms act by tensor product of bimodules (equivalently, composi-
tion of functors after applying Ind), and the insertion morphisms act by repeating
an object Xi and inserting the identity functor of Xi, viewed as a bimodule.
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Definition 6. A trace theory is a functor T : Λst → Sp which sends cocartesian
morphisms in Λst to equivalences.

As might be expected, THH refines to a trace theory THH : Catst∞ → Sp via
the formula

THH(F1, . . . , Fn) := |Bcyc
• (F1, . . . , Fn)|,

where the simplicial structure comes from the functor ∆→ Λ given on objects by
[n] 7→ Tn+1. However, there is a still more universal example, namely cyclic K-
theory. In order to construct cyclic K-theory, we must first consider the K-theory
of endomorphisms.

Definition 7. Let End : Catst∞ → Catst∞ be the endofunctor of Catst∞ given by
End(X) = Fun(∆1/∂∆1, X). The endomorphism K-theory functor

Kend = K ◦ End : Catst∞ → Sp

is the composite of the endomorphism functor followed by the K-theory functor.

If X = PerfR for R a connective ring spectrum, then

π0K
end(R) ≃ π0K(R)⊕Wrat

π0R,

where Wrat
π0R
⊂Wπ0R, the so-called rational Witt ring, is the dense subring of the

Witt vectors Wπ0R of π0R consisting, roughly, of those power series which arise as
rational functions (see [1] and [4] for details). More or less by construction, Kend

refines to a functor Kend : Λst → Sp.
Recall that we have an equivalence

End(F1, . . . , Fn)∼ ≃ colim
(x1,...,xn)∈(X1×···×Xn)∼

n∏

i=1

Map(xi, Fixi+1),

so that E(F1, . . . , Fn) := Σ∞
+ End(F1, . . . , Fn)∼ is given by the formula

E(F1, . . . , Fn) ≃ colim
(x1,...,xn)∈(X1×···×Xn)∼

n⊗

i=1

Σ∞
+ Map(xi, Fixi+1).

By construction, E is a functor from Λst to spectra; moreover, it is universal in
the following precise sense.

Theorem 8. E is the initial fiberwise lax symmetric monoidal functor Λst → Sp.

Theorem 9. There is a canonical equivalence Eadd ≃ Kend between the addi-
tivization of E and endomorphism K-theory.

Theorem 10. Kend is the initial fiberwise lax symmetric monoidal additive func-
tor Λst → Sp.

The set of equivalence classes of natural transformations of additive functors
K → Kend is canonically isomorphic to π0K

end(S) ∼= Z ⊕Wrat
Z

. As a product of
rings, we have units 1 ∈ Z and 1 ∈ Wrat

Z
, and one checks fairly easily that the

natural transformation corresponding to the unit 1 ∈ Z is induced by the natural
transformation Id → End : Catst∞ → Catst∞ given by the zero endomorphism,
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whereas the natural transformation corresponding to the unit 1 ∈Wrat
Z

is induced
by the natural transformation Id → End : Catst∞ → Catst∞ given by the identity
endomorphism.

Definition 11. The cyclic K-theory functor Kcyc : Catst∞ → Sp is the cofiber of
the zero endomorphism inclusion K → Kend.

Proposition 12. Kcyc extends to a functor Λst → Sp equipped with a natural
transformation Kend → Kcyc which exhibits Kcyc as the initial reduced (a.k.a.
pointed) functor under Kend.

Corollary 13. Kcyc is the initial fiberwise lax symmetric monoidal reduced addi-
tive functor Λst → Sp.

Proposition 14. Kcyc is a trace theory.

The proof is an elaboration of the following argument. Let X1 and X2 be small
stable ∞-categories equipped with colimit preserving functors F1 : X2 → X1 and
F2 : X1 → X2, and consider the following commutative diagram

K(X2) //

��

K(X1 ×X2) //

��

K(X1)

��

K(X2) //

��

Kend(F1, F2) //

��

Kend(F1F2)

��

0 // Kcyc(F1, F2) // Kcyc(F1F2)

in which the top left vertical map is an equivalence. It follows that the top right
square is (co)cartesian, and therefore that the bottom right horizontal map is an
equivalence, so that contraction cocartesian morphisms are sent to equivalences.

Proposition 15. THH : Λst → Sp is an additive trace theory.

Corollary 16. There is a morphism of additive trace theories Kcyc → THH.

This is the highly structured version of the Dennis trace map, and we recover
the cyclotomic trace by applying TC. Of course, TC(THH) recovers ordinary
topological cyclic homology, but in the case of Kcyc, which admits Frobenius lifts,

we can apply T̃C instead, as defined and studied in [5]. That is,

T̃Cp(K
cyc(X)) ≃ fib

(
Kcyc(X)hT

1−ϕ̃p
−→ Kcyc(X)hT

)
.

Since the algebraic K-theory functor factors through this fiber, we obtain the
cyclotomic trace

K(X)→ T̃Cp(K
cyc(X))→ TC(THH(X)) ≃ TC(X)

as the composite. This is a natural transformation of functors from small stable
∞-categories to spectra.
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The theorem of Dundas-Goodwillie-McCarthy

Sam Raskin

The purpose of this talk was to outline the proof of the following theorem, following
[1].

Theorem 1 (Dundas-Goodwillie-McCarthy). For B → A a morphism of connec-
tive E1-rings such that π0(B) → π0(A) is surjective with kernel a nilpotent ideal,
the diagram of spectra induced by the cyclotomic trace map:

K(B) //

��

TC(B)

��

K(A) // TC(A)

is Cartesian.

(This result is true with K-theory indicating either connective or non-connective
algebraic K-theory. In what follows, we use K-theory to denote connective K-
theory.)

Roughly, the proof of Theorem 1 proceeds as follows. First, one shows that the
cyclotomic trace map induces an isomorphism on Goodwillie derivatives. In fact,
the Goodwillie derivatives of both sides identify with the suspension of topological
Hochschild homology.

Then one reduces the general case of Theorem 1 to this “linearized” version,
and certain structural features (meaning commutation with certain colimits, etc.)
of K-theory and TC.

One remarkable feature is how asymmetrically K-theory and TC are studied
here. K-theory is treated fairly abstractly, while problems about TC are essentially
reduced to an explicit calculation in the split square-zero case (Theorem 16).

Below, we will explain the reduction to the calculation of derivatives plus struc-
tural features. Then we formulate what is needed about K-theory and TC and
indicate the key ideas.
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Throughout this note, all language should be understood in the homotopical
sense. So category means∞-category, limits and colimits are homotopy limits and
colimits, etc. We use cohomological indexing throughout.

Goodwillie calculus

The Goodwillie derivative. Suppose ψ : C → D is a functor between cocom-
plete stable categories commuting with sifted colimits (i.e., colimits of filtered and
simplicial diagrams). The Goodwillie derivative ∂ψ : C → D of ψ is initial among
continuous exact functors receiving a natural transformation from ψ.

Explicitly, ∂ψ is calculated as follows.
First, observe that for any F ∈ C , the morphisms 0→ F → 0 give a functorial

direct sum decomposition ψ(F ) = ψred(F ) ⊕ ψ(0). Then ψred is reduced, i.e., it
takes 0 ∈ C to 0 ∈ D .

Then there is a canonical natural transformation Σ ◦ψred → ψred ◦Σ, or equiv-
alently, ψred → ΩψredΣ. Finally, we have:

∂ψ = colim
(
ψred → ΩψredΣ→ Ω2ψredΣ

2 → . . .
)

We will actually use this construction in slightly more generality. Suppose C

is equipped with a t-structure compatible with filtered colimits and we are given
ψ : C≤0 → D commuting with sifted colimits. Then there is again a functor
∂ψ : C → D ∈ StCatcont initial among functors commuting with colimits and
receiving a natural transformation ψ → (∂ψ)|C≤0 .

To construct ∂ψ in this setup, note that ψred makes sense as before, and then
one has:

∂ψ(F ) = colim
m

colim
n≥m

Ωnψred(Σ
nτ≤mF )

If the t-structure on C is right complete and ψ : C → D commutes with sifted
colimits, then ∂ψ in the previous sense coincides with ∂(ψ|C≤0).

Notation. We let Alg denote the category of E1-algebras. We let Algconn ⊂ Alg

denote the subcategory of connective E1-algebras. For A ∈ Alg and M an A-
bimodule, we let A ⊕M ∈ Alg denote the split square-zero extension of A by M
(whose underlying spectrum is A⊕M).

The following result is a first approximation to the main result of this section.

Theorem 2. Let Ψ : Algconn → Sp be a functor. Suppose that for every A ∈
Algconn, the functor:

ΨA : A–bimod≤0 → Sp

M 7→ Ψ(A⊕M)

commutes with sifted colimits, has vanishing Goodwillie derivative, and has under-
lying reduced functor ΨA,red mapping A–bimod≤0 to Sp≤0.

Then for every A ∈ Algconn and M ∈ A–bimod≤−1, the map Ψ(A⊕M)→ Ψ(A)
is an isomorphism.
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A categorical variant. We will deduce Theorem 2 from the following result.

Theorem 3. Let C and D be cocomplete stable categories equipped with t-structures
compatible with filtered colimits, and suppose the t-structure on D is left separated.
Let ψ : C ≤0 → D≤0 be a reduced functor that commutes with sifted colimits.

Suppose that ∂(ψ(F ⊕−)) = 0 for every F ∈ C≤−1. Then ψ(F ) = 0 for every
F ∈ C≤−1.

Proof that Theorem 3 implies Theorem 2. Fix A ∈ Algconn and define

ψ : A–bimod≤0 → Sp as ΨA,red. We claim that the hypotheses of Theorem 3 are
satisfied.

The only non-tautological point is that for M ∈ A–bimod≤−1 (in fact, even

M ∈ A–bimod≤0), the Goodwillie derivative of ψ(M ⊕−) is zero. For M = 0, this
is an assumption. In general, we have:

ψ(M ⊕−)⊕Ψ(A) = Ψ(A⊕ (M ⊕−)) = Ψ((A⊕M)⊕−).

The latter functor has vanishing derivative by the hypothesis that the Goodwillie
derivative of ΨA⊕M vanishes.

�

The bilinear obstruction to linearity. To prove Theorem 3, it is convenient
to use the following construction.

For F ,G ∈ C≤0, define Bψ(F ,G ) to be the natural summand ψ(F ⊕ G ) =
ψ(F ) ⊕ ψ(G )⊕Bψ(F ,G ).

Note that ψ commutes with all colimits if and only if it commutes with pairwise
direct sums (because ψ is reduced and commutes with sifted colimits). Therefore,
Bψ may be understood as the obstruction to ψ commuting with all colimits.

Simplicial review. Suppose F• is a simplicial object in C . We let |F•| denote
the geometric realization of this simplicial diagram, i.e., the colimit. Similarly, let
|F•|≤n denote the partial geometric realization colim

∆
op
≤n

F•, were ∆≤n ⊂ ∆ is the

full subcategory of simplices of order ≤ n.
We recall:

Lemma 4. For n ≥ 0, Coker(|F•|≤n → |F•|≤n+1) is a direct summand of
Fn+1[n+ 1].

Our main technique is now the following.

Lemma 5. Suppose ψ : C≤0 → D commutes with sifted colimits. For every
F ∈ C , ψ(ΣF ) admits an increasing filtration fil• ψ(ΣF ) such that:

• fili ψ(ΣF ) = 0 for i < 0.
• For i ≥ 0, gri ψ(ΣF ) is a direct summand of ψ(F⊕i)[i].
• More precisely, gr0 ψ(ΣF ) = ψ(0), gr1(ψ(ΣF )) = ψred(F )[1], and

gr2(ψ(ΣF )) = Bψred
(F ,F )[2].
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Proof. There is a canonical simplicial diagram:

. . .F ⊕F
→→→ F ⇒ 0

with geometric realization ΣF . (For example, this simplicial diagram is the Cech
construction for 0→ ΣF .)

Because ψ commutes with geometric realizations, we have:

ψ(ΣF ) = |ψ(F⊕•)|.

We then set fili ψ(ΣF ) = |ψ(F⊕•)|≤i. This filtration tautologically satisfies the
first property, and it satisfies the second property by Lemma 4. The third property
follows by refining Lemma 4 to identify exactly which summand occurs, which we
omit here.

�

By a clear inductive argument, we obtain:

Corollary 6. Suppose that ψ : C≤0 → D≤0 commutes with sifted colimits. Then
for every n ≥ 0, ψ(C ≤−n) ⊂ D≤−n.

Proof of Theorem 3. We will show by induction on n that these hypotheses
on ψ force ψ(C≤−1) ⊂ D≤−n. The case n = 1 is given by Corollary 6. In what
follows, we assume the inductive hypothesis for n and deduce it for n+ 1.

First, we claim that for F ∈ C≤−1, the functor Bψ(F ,−)[−1] : C ≤0 → D sat-
isfies the hypotheses of Theorem 3. Clearly this functor is reduced and commutes
with sifted colimits.

Let us show that this functor maps C≤0 into D≤0. Fix G ∈ C≤0. The reduced
functor Bψ(−,G ) commutes with sifted colimits and maps C ≤0 into D≤0. By
Corollary 6, Bψ(F ,G ) ∈ D≤−1, so Bψ(F ,G )[−1] ∈ D≤0 as desired.

Finally, note that for any F ′ ∈ C≤−1, the functor ΩBψ(F ,F ′⊕−) : C≤0 → D

has vanishing Goodwillie derivative, as it is a summand of the functor ψ(F ⊕F ′⊕
−)[−1].

Therefore, we may apply the inductive hypothesis to this functor. We obtain
that Bψ(F ,−) maps C≤−1 to D≤−n−1. In particular, Bψ(F ,F ) ∈ D≤−n−1.

Next, we claim that Coker(Σψ(F ) → ψ(ΣF )) ∈ D≤−n−3. Note that by the
construction of Lemma 5, the map:

Σψ(F ) = gr1 ψ(ΣF ) = fil1 ψ(ΣF )→ ψ(ΣF )

is the canonical map used in the definition of the Goodwillie derivative. Therefore,
it suffices to show that gri ψ(ΣF ) ∈ D≤−n−3 for i ≥ 2.

By induction, ψ(F i) ∈ D≤−n by induction. Therefore, gri ψ(ΣF ) ∈ D≤−n−i.
This gives the claim for i ≥ 3. If i = 2, then gri ψ(ΣF ) = Bψ(F ,F )[2], and
the claim follows from the above. We deduce that for F ∈ C≤−1, the map
ψ(F )→ Ωψ(ΣF ) is an isomorphism on H−n.

We obtain H−n(ψ(F ))
≃
−→ H−n(∂ψ(F )). But of course, ∂ψ = 0, so we obtain

ψ(F ) ∈ D≤−n−1, providing the inductive step.
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Further vanishing results. We now wish to extend the above results to give
vanishing for connective objects. In what follows, C ,D ∈ StCatcont are equipped
with t-structures compatible with filtered colimits.

Definition 7. (1) A functor ψ : C ≤0 → D≤0 is extensible if there exists

ψ̃ : C≤1 → D≤1 commuting with sifted colimits with ψ̃|C≤0 = ψ.
(2) A functor ψ : C ≤0 → D≤0 is pseudo-extensible if:

• ψ is reduced and commutes with sifted colimits.
• Every ϕ in Sψ maps C≤0 → D≤0, where Sψ ⊂ Hom(C ,D) is the

minimal subgroupoid such that ψ ∈ Sψ and such that for every
F ∈ C≤0 and ϕ ∈ Sψ , Bϕ(F ,−)[−1] ∈ Sψ.

The following lemma follows from Corollary 6.

Lemma 8. If ψ : C≤0 → D≤0 is extensible, then it is pseudo-extensible.

We now have the following result, which in the extensible case is just a rephras-
ing of Theorem 3.

Theorem 9. In the setting of Theorem 3, suppose ψ is pseudo-extensible and
∂(ψ(F ⊕−)) = 0 for every F ∈ C≤0. Then ψ maps C ≤0 to ∩D≤−n.

Proof. First, we claim ψ(F ) ∈ D≤−1 for all F ∈ C ≤0. As in the proof of Theorem
3, it suffices to show gri ψ(ΣF ) ∈ D≤−3 for all i, and this is automatic for i ≥ 3.
For i = 2, we have gr2 ψ(ΣF ) = Bψ(F ,F )[2], and Bψ(F ,F ) ∈ D≤−1 by pseudo-
extensibility.

Next, observe that any ϕ ∈ Sψ is pseudo-extensible, and by induction the
Goodwillie derivatives of the functors ϕ(F ⊕−) vanish for any F ∈ C≤0. There-
fore, by the above argument, every ϕ ∈ Sψ maps C≤0 into D≤−1. This shows
that ψ[−1] is pseudo-extensible, so we may apply induction to obtain the theorem.

�

We immediately deduce the following.

Corollary 10. In the setting of Theorem 2, suppose that the functors ΨA,red :

A–bimod≤0 → Sp are pseudo-extensible.

Then Ψ(A⊕M)
≃
−→ Ψ(A) for any M ∈ A–bimod≤0.

Infinitesimal extensions. We now extend the above to arbitrary nilpotent ex-
tensions, as in the statement of Theorem 1.

Let AlgSqZeroconn be the category whose objects are square-zero extensions B → A
of connective E1-algebras and whose morphisms preserve this structure in the
natural sense.

We now introduce the following hypotheses on a functor Ψ : Algconn → Sp.

Definition 11. (1) Ψ is convergent if for any A ∈ Algconn, the natural mor-
phism Ψ(A)→ lim

n
Ψ(τ≥−nA) is an isomorphism.

(2) Ψ infinitesimally commutes with sifted colimits if the functor:
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AlgSqZeroconn → Sp

(B → A) 7→ Ker
(
Ψ(B)→ Ψ(A)

)

commutes with sifted colimits.

Proposition 12. Suppose that Ψ is convergent and infinitesimally commutes
with sifted colimits. Suppose moreover that Ψ is constant on split square-zero
extensions, i.e., for every A ∈ Algconn and M ∈ A–bimod≤0, the morphism
Ψ(A⊕M/A) = 0.

Then Ψ is infinitesimally constant, that is, for every f : B → A ∈ Algconn with
H0(B) → H0(A) surjective with nilpotent kernel, the map Ψ(B) → Ψ(A) is an
isomorphism.

Proof. A standard argument using convergence of Ψ reduces to showing that Ψ
is constant along square-zero extensions. Then using that Ψ infinitesimally com-
mutes with sifted colimits, we reduce to A being a free E1-algebra on generators
in degree 0, for which every square-zero extension splits. �

Outline of the proof

First, one has the following two results, about K-theory and TC respectively.

Theorem 13. (1) For A ∈ Algconn, the functor:

A–bimod≤0 → Sp≤0

M 7→ K(A⊕M)

commutes with sifted colimits. Moreover, the underlying reduced functor
is extensible in the sense of §.

(2) For A ∈ Algconn, the Goodwillie derivative of the functor:

A–bimod≤0 → Sp

M 7→ K(A⊕M)

is canonically isomorphic to the functor M 7→ THH(A,M)[1].

Theorem 14. (1) For A ∈ Algconn, the functor:

A–bimod≤0 → Sp

M 7→ TC(A⊕M)

is pseudo-extensible in the sense of §.
(2) For A as above and M ∈ A–bimod≤0:

TCred(A⊕M) := Ker(TC(A⊕M)→ TC(A)) ∈ Sp≤−1.

(3) The Goodwillie derivative of the above functor is canonically isomorphic
to THH(A,−)[1]. Moreover, this isomorphism is compatible with the cy-
clotomic trace and the isomorphism of Theorem 13.
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Applying Corollary 10 to the cokernel of the cyclotomic trace map, these two
results clearly imply Theorem 1 in the split square-zero case.

The general case of Theorem 1 now follows from Proposition 12 and:

Theorem 15. The functors K,TC : Algconn → Sp are convergent and infinitesi-
mally commute with sifted colimits.

Unfortunately, the proofs of the above results are outside the scope of this
summary. Let us give some indications though.

The results on TC all essentially reduce to the following calculation.

Theorem 16. For A ∈ Algconn and M ∈ A–bimod≤0, there is a natural isomor-
phism:

TC(A⊕M)
≃
−→ TC(A)⊕ lim

n
THH(A,M [1]

⊗
A
n
)Z/n

where the limit is over positive integers ordered under divisibility. The notation
indicates genuine Z/n-invariants; implicitly, we are using a natural genuine Z/n-

action on THH(A,M
⊗
A
n
) constructed using a generalization of Nikolaus-Scholze’s

Tate Frobenius.
In particular, TCred(A ⊕ M) has a complete decreasing filtration indexed by

positive integers under divisibility, and there is a canonical isomorphism:

grn TCred(A⊕M)
≃
−→ THH(A,M [1]

⊗
A
n

)hZ/n.

The extension of K-theory from Theorem 13 (1) is given by so-called
parametrized K-theory. The calculation of its derivative is a theorem of Dundas-
McCarthy [2], [3], and may be proved by comparing universal properties for K-
theory and Goodwillie derivatives. Convergence of K-theory is straightforward.
To show infinitesimal commutation with colimits, one notes that (B → A) 7→
Ker(GL∞(B) → GL∞(A)) commutes with sifted colimits by noting that this
kernel is M∞(I) for I = Ker(B → A) ∈ A–bimod, and then uses Volodin’s con-
struction of K-theory to compare BGL∞ with K-theory itself.
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THH of log rings

Malte Leip

Fix throughout K, a complete discrete valuation field of characteristic 0, with
perfect residue field k of characteristic p > 2 and valuation ring A. Examples
are K = Qp with A = Zp and k = Fp or more generally p-adic fields, i. e. finite
extensions of Qp.

1. Motivation

This was the first in a series of four talks with the goal of understanding Hesselholt
and Madsen’s calculation [HM03, Theorem A] of the K-theory
groups Kn(K,Z/pv).

There is a localization sequence due to Quillen [Qui73, Corollary after Theorem
5 in §5] relating the K-theory of k,A and K:

(1) K(k)
i∗−→ K(A)

j∗

−→ K(K)

In [HM03, Addendum 1.5.7], Hesselholt and Madsen show that it takes part in
a morphism of cofiber sequences

(2)

K(k) K(A) K(K)

TC(k; p) TC(A; p) TC(A,A ∩K×; p)

i∗

tr tr

j∗

tr

i∗ j∗

where the left-hand and middle vertical maps are the usual cyclotomic trace maps,
the vertical maps as well as both maps j∗ are maps of E∞-ring spectra, and the
maps i∗ are maps of K(A)- and TC(A; p)-module spectra, respectively. The object
fitting in the lower right turns out not to be TC(K; p), but something different,
namely TC of the log ring (A,A∩K×), denoted by TC(A,A∩K×; p). The lower
cofiber sequence arises from an analogous cofiber sequence of cyclotomic spectra
involving THH(A,A ∩K×), the topological Hochschild homology of the log ring1

(A,A∩K×). The left-hand and middle vertical morphisms in diagram (2) induce
isomorphisms on πm (−,Z/pn) for m ≥ 0 by a result of Hesselholt and Madsen
[HM97, Theorem D], so in order to calculate Km(K,Z/pn) for m ≥ 1, we can
instead study TCm(A,A ∩K×; p,Z/pn).

2. THH of log rings

In this section we will define THH of log rings (R,M). The definition used here
[HS17, Description of talk 11], given in the framework of Nikolaus and Scholze
[NS17], differs from the one used in [HM03], where in order to define THH of the
log ring (A,A ∩K×), Hesselholt and Madsen start with the category of bounded
complexes of finitely generated projective A-modules with weak equivalences those

1The program used the term logarithmic THH where we use THH of log rings.



Arbeitsgemeinschaft: Topological Cyclic Homology 887

morphisms that become quasi-isomorphisms after tensoring with K [HM03, Defi-
nition 1.5.5]. All statements discussed below for THH(A,A ∩K×) hold for both
definitions, though some statements are significantly easier to prove in the new
setting.

Definition 1 ([Kat89, 1.1]). Let R be a commutative ring. A pre-log structure
on R consists of a commutative monoid M together with a morphism of monoids
α : M → R, where R is a monoid under multiplication.

A log ring is a commutative ring together with a pre-log structure.2

From now, R will always denote a commutative ring and (R,M) a log ring.

Examples 2 ([Kat89, 1.5]).

(a) The inclusion of the units R× → R is called the trivial (pre-)log structure.
(b) The canonical (pre-)log structure on A is A ∩K× = A \ {0} → A.
(c) If we choose a uniformizer π ∈ A, then we obtain a pre-log structure

α : N→ A defined by n 7→ πn.
(d) Note that the pre-log structure in example (b) is the monoidal product of

the ones in examples (a) and (c), where the morphisms of pre-log structures
on A from the trivial one to the canonical one and from the one in example
(c) to the canonical one are the unique ones.

Recall from talk 8 by Markus Land that S[BcycM ] denotes the spherical group
ring of the cyclic bar construction (see [NS17, Section IV.3]) of the E∞-monoid in
spaces M . The pre-log structure α : M → R induces a morphism S[M ] → R of
E∞-ring spectra, which in turn induces a morphism of E∞-algebras in cyclotomic
spectra

(3) S[BcycM ] ≃ THH(S[M ])→ THH(R)

where the equivalence is the one discussed in talk 8.
For any E∞-monoid N in spaces, the universal property of N → BcycN as

the inital E∞-morphism from N into an E∞-monoid in spaces with circle ac-
tion (like in [NS17, Proposition IV.2.2]) furnishes us with a dashed T-equivariant
E∞-morphism BcycN → N (where N carries the trivial T-action) as in the follow-
ing diagram.

(4)

N BcycN

N
id

Applying this to the group completion of M , denoted by Mgp, we can form the
pullback M ×Mgp BcycMgp, where the other morphism is the canonical map from
M into its group completion. This is again an E∞-monoid in spaces with T-action,

2It would be more correct to call this a pre-log ring. A pre-log structure (M,α) is a log
structure if α induces an isomorphism M× → R×. For our purposes, the distinction is not
relevant, so we follow the terminology of [HM03] and call any ring with a pre-log structure a log
ring.
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and it can be given a space level Frobenius lift using the one for BcycMgp (see
[NS17, Lemma IV.3.1]). Taking the spherical group ring we obtain an E∞-algebra
in cyclotomic spectra S[M ×Mgp BcycMgp].

Finally, we can also define a morphism of E∞-algebras in cyclotomic spectra
S[BcycM ] → S[M ×Mgp BcycMgp], induced from a morphism BcycM → M as in
diagram (4) and a morphism BcycM → BcycMgp that is in turn induced by the
canonical map M →Mgp.

We can now define THH of a log ring:

Definition 3 ([HS17]). Let (R,M) be a log ring. Then let

(5) THH(R,M) = THH(R) ⊗
S[BcycM ]

S[M ×
Mgp

BcycMgp]

where the tensor product is taken as E∞-algebras in cyclotomic spectra, and the
maps are the ones discussed above.

3. Log differential graded rings

In the previous section we defined THH(R,M) as an E∞-algebra in cyclotomic
spectra. In this section we will discuss how π∗ (THH(R,M)) carries the structure
of a log differential graded ring with underlying log ring (R,M).

Definition 4 ([HM03, Section 2.2]). A log differential graded ring consists of a
graded commutative differential graded ring E∗, together with a pre-log structure
M → E0, where E0 is a monoid under multiplication, and a morphism of monoids
d log : M → E1, where E1 is a monoid under addition. This data has to satisfy
two properties: d ◦ d log = 0 and α(x)d log(x) = d(α(x)) for all x ∈M .

The log ring (E0,M) is called the underlying log ring of E∗.

Remark 5 ([Kat89, Section 1.7 and 1.9]). There is a universal example of a log
differential graded ring with underlying log ring (R,M), namely, the de Rham
complex with log poles, given by:

(6) Ω∗
(R,M) = Λ∗

RΩ1
(R,M)

where

(7) Ω1
(R,M) =

(
Ω1
R ⊕

(
R⊗

Z

Mgp

))
/〈(d(α(x)), 0) − (0, α(x) ⊗ x) | x ∈M〉

and d log(x) = (0, 1⊗ x).

In order to explain how π∗ (THH(R,M) carries the structure of a log differential
graded ring, we first need to define the graded ring structure and differential on
π∗ (THH(R,M), and construct the maps α : M → π0 (THH(R,M)) as well as
d log : M → π1 (THH(R,M)). This is what we do next.

First, as THH(R,M) is an E∞-ring spectrum, the homotopy groups obtain a
graded commutative graded ring structure. It was explained in talk 6 by Eva
Höning how one obtains out of the T-action on THH(R,M) a morphism of spec-
tra Σ THH(R,M) → THH(R,M). The induced morphism on homotopy groups,
which increases degree by one, will be denoted by d.
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Next, we have to define α : M → π0 (THH(R,M)). This is to be the composite
from the top left to the bottom right in the following commutative diagram:

(8)

M π0 (S[M ]) π0 (S[BcycM ]) π0

(
S[M ×

Mgp
BcycMgp]

)

R π0(R) π0 (THH(R)) π0 (THH(R,M))

Note that we can also define a morphism analogous to the composite of the top
row, but with M replaced by Mgp:

(9) α′ : Mgp → π0

(
S[Mgp ×

Mgp
BcycMgp]

)

After composing this with the morphism into the tensor product with THH(R)
over S[BcycM ] this corresponds to Mgp → π0 THH(R[α(M)−1]).

As M is discrete, S[M ×Mgp BcycMgp] splits T-equivariantly into a coproduct∐
m∈M S[{m}×MgpBcycMgp], making π∗ (S[M ×Mgp BcycMgp]) into an M -graded

ring, and similarly for Mgp instead of M . In the defining identity for d log, the
equation α(x)d log(x) = d(α(x)), α(x) has M -degree x and d does not change the
degree, so we expect d log(x) to have M -degree 1M . Let

(10) d log′ : Mgp → π1

(
S[Mgp ×

Mgp
BcycMgp]

)

be defined by d log′(x) = α′(x−1)d(α′(x)). As this map has image in the degree
1Mgp part, and

(11) π∗

(
S[M ×

Mgp
BcycMgp]

)
→ π∗

(
S[Mgp ×

Mgp
BcycMgp]

)

maps the degree 1M part isomorphically to the degree 1Mgp part, we may define
d log as the dashed arrow in the following diagram, where the dotted arrow is the
unique one making the diagram commute and such that its image is in the degree
1M part.

(12)

π1 (THH(R,M))

M π1

(
S[M ×

Mgp
BcycMgp]

)

Mgp π1

(
S[Mgp ×

Mgp
BcycMgp]

)

d log

d log′
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Proposition 6 ([HM03, Proposition 2.3.1]). π∗ (THH(R,M) together with d, α
and d log as defined above is a log differential graded ring with underlying log ring
(canonically isomorphic to) (R,M).

Proof. It was already remarked above that the graded ring structure is graded
commutative. One can check that d satisfies the identities d2 = 0 as well as3

d(xy) = (dx)y + (−1)deg(x)x(dy).
That α is a morphism of monoids is immediate from the definition, as all mor-

phisms in diagram (8) are morphisms of monoids. That d log is a morphism of
monoids and that α(x)d log(x) = d(α(x)) holds can immediately be checked in
π∗ (S[Mgp ×Mgp BcycMgp]). For d ◦ d log = 0 we have to additionally use that
(dα(x)) · (dα(x)) = 0 in THH(R) (see for example [KN18, Lemma 2.3 and Prop
3.11]).

As the lower horizontal morphisms in diagram (8) are isomorphisms, the un-
derlying log ring can be identified with (R,M). �

4. The cofiber sequence for THH(A,A ∩K×)

In this section we move on from the case of a general log ring (R,M) and consider
instead example (b), (A,A ∩K×).

Recall from example (d) that (A,A∩K×) is the monoidal product of the trivial
pre-log structure on A and the pre-log structure given by N → A, n 7→ πn, after
choosing a uniformizer π ∈ A. By compatibility of Bcyc etc. with the monoidal
product we obtain

(13) THH(A,A ∩K×)

≃ THH(A) ⊗
S[Bcyc(A×)×Bcyc(N)]

S

[(
A× ×

A×
BcycA×

)
×

(
N×

Z

BcycZ

)]

≃ THH(A) ⊗
S[Bcyc(A×)]⊗S[Bcyc(N)]

(
S

[
A× ×

A×
BcycA×

]
⊗ S

[
N×

Z

BcycZ

])

≃

(
THH(A) ⊗

S[BcycA×]
S
[
BcycA×

])
⊗

S[Bcyc(N)]
S

[
N×

Z

BcycZ

]
≃ THH(A,N)

where the first equivalence uses compatibility of Bcyc with products and that
products of pullbacks are pullbacks, and the second that S[−] is monoidal.

In talk 8, Markus Land identified the T-equivariant map of E∞-monoids in
spaces BcycN→ BcycZ with the inclusion of the submonoid {(1, 0)}∪T×Z>0 into
T× Z, where t ∈ T acts on (s, n) by t · (s, n) = (tn · s, n).

Considering the induced map BcycN→ N×ZB
cycZ, and adding basepoints, we

can thus identify the cofiber with S1, with trivial T-action, and taking suspension
spectra yields

(14) S[BcycN]→ S[N×
Z

BcycZ]→ ΣS

3This boils down to the fact that the diagonal map considered as an element of π1(T × T) is
[id× id] = [id× const1] + [const1 × id], where constx is the constant map with image x.
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which is a cofiber sequence of S[BcycN]-module cyclotomic spectra. Tensoring with
THH(A) over S[BcycN], we obtain the following:

Proposition 7 ([HM03, Theorem 1.5.6]). There is a natural cofiber sequence

(15) THH(k)
i∗−→ THH(A)

j∗

−→ THH(A,A ∩K×)

of THH(A)-module cyclotomic spectra, where the THH(A)-module structure on
THH(k) comes from the morphism of E∞-ring spectra THH(A) → THH(k) in-
duced by A→ A/πA = k, and the THH(A)-module structure on THH(A,A∩K×)
comes from the morphism THH(A) → THH(A,A ∩K×) appearing in the cofiber
sequence, which is a morphism of E∞-ring spectra.

Proof. The only thing left to note is that

(16) THH(A) ⊗
THH(S[N])

S ≃ THH(A) ⊗
THH(S[N])

THH(S)

≃ THH

(
A ⊗

S[N]
S

)
≃ THH(A/πA) ≃ THH(k)

�

5. The log differential graded ring π∗ (THH(A,A ∩K×),Z/p)

In this section we discuss Hesselholt and Madsen’s calculation of the homotopy
groups with Z/p-coefficients of THH(A,A ∩K×) as a log differential graded ring.

5.1. Definition of the morphism. The result identifies the log differential grad-
ed ring π∗ (THH(A,A ∩K×),Z/p) with Ω∗

(A,A∩K×)⊗Z(Z/p)[κ], where κ has degree

2 and dκ = κd log(−p). We start by defining a morphism from the latter log
differential graded ring to the former.

First, note that the morphism S
≃
−→ THH(S)→ THH(A,A∩K×) is T-equivari-

ant where S carries the trivial T-action, and thus THH(A,A ∩ K×)/p also car-
ries a T-action, acting through morphisms of E∞-ring spectra, and the morphism
from THH(A,A ∩K×) is compatible with that structure. Hence, as in section 3,
π∗ (THH(A,A ∩K×),Z/p) obtains the structure of a graded commutative differ-
ential graded ring, which can be upgraded to a log differential graded ring using
the morphism of differential graded rings

(17) π∗(THH(A,A ∩K×))→ π∗(THH(A,A ∩K×),Z/p)

Here, the log differential graded structure on the source is the one from Propo-
sition 6, which has underlying log ring (canonically isomorphic to) (A,A ∩K×).
In Remark 5 it was noted that Ω∗

(A,A∩K×) is the universal such thing. Hence we

obtain a morphism of log differential graded rings

(18) Ω∗
(A,A∩K×) → π∗

(
THH(A,A ∩K×)

)

Composed with morphism (17) we finally obtain a morphism

(19) Ω∗
(A,A∩K×) → π∗

(
THH(A,A ∩K×)

)
→ π∗

(
THH(A,A ∩K×),Z/p

)
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As κ has degree 2, the statement we are aiming at in particular claims that
in degrees 0 and 1, morphism (19) is an isomorphism after tensoring the source
with Z/p. In fact, this is already true integrally, i. e. morphism (18) is already an
isomorphism in degrees 0 and 1. We record this now together with some other
facts which will use below without proof4:

Facts 8.

(A) [HM03, Proposition 2.3.4] Morphism (18)

Ωn(A,A∩K×) → πn
(
THH(A,A ∩K×)

)

is an isomorphism for n = 0, 1.
(B) [HM03, Proof of proposition 2.3.4] The abelian group

π2
(
THH(A,A ∩K×)

)

is uniquely divisible.
(C) [HM03, Corollary 2.2.5] Ω1

(A,A∩K×)[p] = (A/p) · d log(−p)

What is still missing from the definition of a morphism

(20) Ω∗
(A,A∩K×) ⊗Z (Z/p)[κ]→ π∗

(
THH(A,A ∩K×),Z/p

)

is the image of κ. To define κ ∈ π2 (THH(A,A ∩K×),Z/p), we use the Bockstein
sequence:

(21) 0→ π2
(
THH(A,A ∩K×)

)
/p→ π2

(
THH(A,A ∩K×),Z/p

)

β
−→ π1

(
THH(A,A ∩K×)

)
[p]→ 0

By fact (B), the left hand group is 0. Hence β is an isomorphism. Furthermore,
for the right hand group we obtain

(22) π1
(
THH(A,A ∩K×)

)
[p]

∼=
←− Ω1

(A,A∩K×)[p] = (A/p) · d log(−p)

where the isomorphism is the one induced by the isomorphism from (A), and the
equality is the one from (C).

We can now define κ as the element mapped to d log(−p) under this composition
of isomorphisms. In particular, as an A/p-module we have

(23) π2
(
THH(A,A ∩K×),Z/p

)
= A/p · κ

5.2. Statement of the Theorem.

Theorem 9 ([HM03, Theorem B=2.4.1]). The morphism of log differential graded
rings constructed in subsection 5.1

(24) Ω∗
(A,A∩K×) ⊗

Z

(Z/p)[κ]→ π∗
(
THH(A,A ∩K×),Z/p

)

is a natural isomorphism. Here, κ has degree 2 and dκ = κd log(−p).

4For G an abelian group, G[p] denotes the kernel of multiplication by p on G.
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The proof of the theorem can be divided into two parts: Showing that the mor-
phism is an isomorphism of graded A-algebras, and showing that dκ = κd log(−p)
holds in π∗ (THH(A,A ∩K×),Z/p).

In order to show the first part, Hesselholt and Madsen distinguish the wildly
ramified and tamely ramified cases, where the latter uses the former. We will only
discuss the wildly ramified case, and give a brief sketch of the proof that morphism
(24) is an isomorphism of graded A-algebras in that case in subsection 5.3.

Assuming that morphism (24) is an isomorphism of graded A-algebras in all
cases, subsection 5.4 will then sketch the main argument to obtain the formula for
dκ.

5.3. Isomorphism of graded A-algebras (in the wildly ramified case).
Assume for this entire subsection that we are in the wildly ramified case.

From (A) and multiplication by p on A being injective we directly obtain the
isomorphism in degrees 0 and 1. One can check that Ωn(A,A∩K×)/p

∼= 0 for n > 1,

so that multiplication by κ is an isomorphism from degree n ≥ 0 to degree n+ 2
on the source. Hence it suffices to show that the same is true in the target. The
case n = 0 can be handled by the description π2 (THH(A,A ∩K×),Z/p) = A/p · κ
obtained in (23). Thus only the case n ≥ 1 remains. Using the Bockstein sequence
as well as facts (B) and (C) again one can show that

(25) π2 (THH(A),Z/p)→ π2
(
THH(A,A ∩K×),Z/p

)

is an isomorphism. Hence the source is also isomorphic to A/p as an A-module,
with generator κ̃ that is defined as the unique element that is sent to κ under
isomorphism (25).

As the cofiber sequence from Proposition 7 is a sequence of THH(A)-modules,
we obtain the following morphism of long exact sequences of A/p-modules (here,
πn(T (−)) is short-hand notation for πn (THH(−),Z/p) and MA for A ∩K×):

πn (T (k)) πn (T (A)) πn (T (A,MA)) πn−1 (T (k))

πn+2 (T (k)) πn+2 (T (A)) πn+2 (T (A,MA)) πn+1 (T (k))

κ̃·

i∗

κ̃·

j∗

κ·

∂

κ̃·

i∗ j∗ ∂

The claim now follows from the five lemma if multiplication by κ̃ is an isomor-
phism on πn (THH(k),Z/p) and πn (THH(A),Z/p) for n ≥ 0. But this follows
from the explicit calculation of those rings by Lindenstrauss and Madsen for A in
[LM00] and Hesselholt and Madsen for k in [HM97], see the discussion in [HM03,
Section 2.4, page 40].

This shows that morphism (24) is an isomorphism of graded A-algebras in the
wildly ramified case.

5.4. Compatibility with log differential graded ring structure; formula
for dκ. As morphism (24) is by construction compatible with d log and the dif-
ferential on Ω∗

(A,A∩K×), what is left after having shown that the morphism is an

isomorphism of graded A-algebras is just the relation dκ = κd log(−p).
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To obtain this identity up to a unit u in Fp one can use naturality and check
it on A = Zp, where d is an isomorphism from degree 2 to degree 3, the source
being isomorphic to Z/p and generated by κ, the target isomorphic to Z/p and
generated by κd log(−p).

As we already know that morphism (24) is an isomorphism of A-algebras, we
know that κd log(−p) is nonzero. Hence it suffices to check that u = 1 in a single
example. We can thus just consider the wildly ramified case.

In this case, κ̃ can be checked to be the unique element of π2 (THH(A)) such
that

(26) β(κ̃) = −
(
(eK/p)π

eK−1 + θ′(π)
)
θ(π)−1dπ

where β is the Bockstein morphism, eK is the ramification index and θ ∈ W (k)[x]
such that A = W (k)[π]/ (πeK + pθ(π)). In particular, this description of κ̃ is inde-
pendent of the definition of THH(A,A ∩K×). See [Ser79, §5, Theorem 4] for the
structure of A and [HM03, Section 5.4, page 78] for the formula for β(κ̃). Hessel-
holt and Madsen obtain in [HM03, Remark 5.3.3] that dκ̃ = −θ′(π)θ(π)−1dπ · κ̃,
from which the required identity for dκ follows by a simple calculation using
that π∗ (THH(A),Z/p)→ π∗ (THH(A,A ∩K×),Z/p) is a morphism of differential
graded A-algebras that sends κ̃ to κ.
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The logarithmic de Rham–Witt complex

Piotr Achinger

Let K be a complete discrete valuation field of characteristic zero with perfect
residue field k of characteristic p > 2. We denote by A = OK the integral subring
of K. In [HM03], Hesselholt and Madsen compute the mod pv K-theory groups
of K:

K2s(K,Z/p
v) ∼= H0(K,µ⊗s

pv )⊕H2(K,µ
⊗(s+1)
pv ),

K2s−1(K,Z/pv) ∼= H1(K,µ⊗s
pv ).

Let us briefly outline their strategy.
For any category with fibrations and weak equivalences C (for example, the

exact category of finite projective modules over a ring), we have the cyclotomic
trace from K-theory to topological cyclic homology (see Lecture 9):

tr : K(C) −→ TC(C; p).

In an earlier paper [HM97], Hesselholt and Madsen prove that for every finite
W (k)-algebra R, this map induces an isomorphism on non-negative homotopy
groups with mod pv coefficients Ki(R,Z/pv) ∼= TCi(R; p,Z/pv). We apply this
with R = A and R = k, and then the localization sequence for K-theory and
Waldhausen’s approximation theorem can be used to show that

tr : Ki(K,Z/p
v) −→ TCi(A|K; p,Z/pv)

is an isomorphism for i ≥ 1. Here A|K is the category of bounded complexes of fi-
nite projectiveA-modules, with levelwise monomorphisms as cofibrations, but with
maps inducing a quasi-isomorphism after inverting p as weak equivalences. The
idea is that A|K is sufficiently close to the category of finite projective K-modules
to yield Ki(K) ∼= Ki(A|K), but at the same time it can be studied p-adically since
A is a p-adic ring. One can think of A|K as a relative p-adic compactification (or:
a model) of K. This idea is very close to the philosophy of logarithmic structures,
which partially explains the appearance of log structures in what follows.

(In fact, the construction of topological Hochschild homology (and consequently
of topological cyclic homology TC) has been generalized to log rings (R,M), i.e.
rings R endowed with a multiplicative monoid homomorphism M → R (see §1.2
below). In our situation, there are natural maps

K(K)
tr
−→ THH(A|K)← THH(A,M),

the latter being an equivalence of cyclotomic spectra. Following this recent change
of perspective, and for notational uniformity, we shall use TC((A,M); p) in place of
TC(A|K; p) in these notes. The reader should keep this in mind when comparing
with the original paper [HM03]1.)

In the next step, one realizes the spectrum TC((A,M); p) as the homotopy
fixed points of “Frobenius” on another spectrum TR(A,M) (denoted TR(A|K; p)

1Other changes in notation: we shall denote the log de Rham–Witt complex by W•Ω∗
(A,M)

instead of W•ω∗
(A,M)

, and write [a]n instead of an for the Teichmüller character.
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in [HM03]). This way we can reduce the computation of Ki(K,Z/pv) further to
the computation of TR•

∗((A,M),Z/pv).
The spectra TRn(A,M) themselves are Cpn−1 -fixed points of the topological

Hochschild homology spectrum THH(A,M). This construction endows them with
a lot of extra structure:

(1) a commutative ring structure,
(2) the Connes differential d : TRn

q (A,M)→ TRn
q+1(A,M),

(3) F : TRn(A,M)→ TRn−1(A,M) the natural inclusion,
(4) V : TRn−1(A,M)→ TRn(A,M), the transfer map, ,
(5) the restriction maps R : TRn(A,M)→ TRn−1(A,M).

The operators d, F , and V are induced by the circle action on THH, while the
definition of R requires the cyclotomic structure. In addition, one can construct
the Teichmüller lift (a multiplicative map)

A→ TRn
0 (A,M)

and the log differential

d log : M := A ∩K× → TRn
1 (A,M).

(In fact, d log naturally factors through K1(K) = K× via the cyclotomic trace).
This data makes TR•

∗(A,M) into a log Witt complex over (A,M) (see Definition 2
and Theorem 3). The category of log Witt complexes over any log ring (A,M) has
an initial object, the log de Rham–Witt complex W•Ω∗

(A,M) and hence we obtain

a natural map

(1) W•Ω∗
(A,M) −→ TR•

∗(A,M).

It is shown that this map is an isomorphism in degres ∗ ≤ 2.
Finally, if µpv ⊆ K, then one can construct a natural map

(2) µpv → TR•
2((A,M),Z/pv)

as follows. By definition of mod pv homotopy groups, we have the exact sequence

0→ TR•
∗(A,M)/pv → TR•

∗((A,M),Z/pv)→ TR•
∗−1(A,M)[pv]→ 0

Moreover, it is shown that TR•
∗(A,M) is p-divisible for ∗ > 1. It follows that

TR•
2((A,M),Z/pv) is the pv-torsion subgroup of TR•

1(A,M) ∼= W•Ω1
(A,M). The

map (2) desired above sends ζ ∈ µpv (K) to d log ζ. The main result of [HM03] is
then the following.

Theorem 1 ([HM03, Theorem C]). The map induced by (1) and (2)

W∗Ω•
(A,M) ⊗Z S(µpv ) −→ TR•

∗((A,M),Z/pv)

is an isomorphism of log Witt complexes over (A,M). Here S(µpv ) is the sym-
metric algebra of µpv (K), considered as a differential graded algebra with µpv in
degree two, with differential on the tensor product defined by

d(1⊗ ζ) = d log[ζ]⊗ ζ (ζ ∈ µpv ).
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By taking Frobenius invariants, one obtains a formula for TCi((A,M); p,Z/pv)
and consequently Ki(K,Z/pv). The proof of Theorem C is quite easily reduced to
the case v = 1, in which case the left hand side is a (twisted) symmetric algebra
over the mod p reduction W •Ω∗

(A,M) of the log de Rham–Witt complex. The

proof in this case relies on an explicit calculation of this complex as well as the
computation of the Tate spectral sequence.

The goal of this talk is to explain some details going into the proof of Theorem 1
pertaining to the log de Rham–Witt complex W∗Ω•

(A,M). More precisely, we are

going to:
(1) Define the notion of a log Witt complex over a log ring (A,M) and the

universal example, the log de Rham–Witt complex W∗Ω•
(A,M), and state the result

that TR•
∗((A,M),Z/pv) is a log Witt complex.

(2) Explicitly compute the mod p reduction

W ∗Ω•
(A,M) := W∗Ω•

(A,M)/pW∗Ω•
(A,M).

Part (2) will be self-contained except for a dimension computation (Proposition 11)
which relies on the computation of the Tate spectral sequence (see Lectures 13 and
14).

Let us remark here that the assumption p > 2 is used many times in the proof.
In fact, for p = 2 the very definition of a Witt complex needs to be changed; this
has been carried out in V. Costeanu’s thesis [Cos08]. The analogs of the results of
[HM03] for p = 2 have not yet been obtained.

Acknowledgements. I thank Lars Hesselholt for explaining to me various tech-
nical points of [HM03], and Irakli Patchkoria for giving an inspiring lecture on
a closely related topic at a seminar at the University of Bonn a week before the
Arbeitsgemeinschaft.

1. The log de Rham–Witt complex

1.1. Witt vectors. We briefly review some relevant facts about Witt vectors; the
reader is advised to consult e.g. [Hes15, §1] for a complete discussion.

To any ring R, one functorially attaches rings Wn(R) (n ≥ 1) of Witt vectors
of length n, with a functorial bijection of sets Wn(R) = R×n. The ring structure
is uniquely determined by the requirement that the ghost map w : Wn(R)→ R×n

w(a0, . . . , an−1) = (a0, a
p
0 + pa1, . . . , a

pn−1

0 + pap
n−2

1 + . . .+ pn−1an−1),

is a natural transformation of ring-valued functors. One has W1(R) = R as rings,
and the restriction map (forgetting the last coordinate)

R : Wn(R)→Wn−1(R)

is a ring homomorphism. The composition Rn−1 : Wn(R) → W1(R) = R has
a natural multiplicative section

[−]n : R→Wn(R), [a]n = (a, 0, . . . , 0)
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called the Teichmüller character. The Verschiebung (shift) map

V : Wn−1(R)→Wn(R), V (a0, . . . , an−2) = (0, a0, . . . , an−2)

is additive and every element in Wn(R) can be represented as

(a0, . . . , an−1) = [a0]n + V [a1]n−1 + . . .+ V n−1[an−1]1.

The Frobenius F : Wn(R) → Wn−1(R) is a ring homomorphism satisfying
F [a] = [ap]. If pR = 0, then F is the map induced by the Frobenius on R by
functoriality followed by the restriction map R : Wn(R) → Wn−1(R). In general,
one has

F (a0, . . . , an−1) ≡ (ap0, . . . , a
p
n−2) mod pWn(R).

The map V is F -linear in the sense that

V (F (x)y) = xV (y).

Moreover, FV = p and V F = V (1). It follows that

(3) V (x)V (y) = V (FV (x) · y) = V (px · y) = pV (xy).

1.2. Log rings. A log ring is a pair (R,M) where R is a ring and M is a commu-
tative unital monoid endowed with a homomorphism α : M → R to the multiplica-
tive monoid underlying R (called here a log structure, though technically speaking
maybe it should rather be called a pre-log structure). In our situation, we will
endow A = OK with the standard log structure M = A∩K∗ →֒ A. Alternatively,
we could pick a uniformizer π of A and set M = N with the map M → A sending
k to πk, and get the same results in what follows, but then some functoriality is
lost. We shall think of (A,M) as a compactification of K (relative to Zp), where
the log structure is supposed to indicate that it is K, not A, that we care about. In
particular, we expect certain invariants of (A,M) to reflect properties of K rather
than A.

The module of differentials Ω1
R has a logarithmic variant Ω1

(R,M), the module

of log differentials : it is the initial target for a log derivation, i.e. a pair of maps

d : R→ Ω1
(R,M) and d log : M → Ω1

(R,M)

where d is a derivation and d log is a homomorphism satisfying

α(m) · d logm = dα(m).

Explicitly, one can express Ω1
(R,M) in terms of Ω1

R and M as follows:

Ω1
(R,M)

∼= Ω1
R ⊕ (R⊗ZM

gp)/〈(dα(m), 0)− (0, α(m)⊗m)〉, d logm = (0, 1⊗m).

A log differential graded algebra over (R,M) is a differential graded algebra
(E∗, d) over R endowed with a map d log : M → E1 satisfying

α(m) · d logm = dα(m) and d ◦ d log = 0.

The universal (initial) such object is the log de Rham complex Ω∗
(R,M). The un-

derlying graded algebra is the exterior algebra on Ω1
(R,M).
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Finally, let us note that the construction of Witt vectorsWn(R) is easily adapted
to log rings: given a log ring (R,M), we make Wn(R) into a log ring using the
composition

M −→ R
[−]n
−−−→ Wn(R)

with the Teichmüller character. We shall write (Wn(R),M) for this log ring.

1.3. Log Witt complexes and log de Rham–Witt. The classical de Rham–
Witt complex WΩ•

X of a smooth scheme over a perfect field k of characteristic
p > 0, defined by Deligne and Illusie [Ill79] inspired by ideas of Bloch, is a functorial
complex computing the crystalline cohomology of X over W (k). It has been
generalized to log schemes by Hyodo and Kato [HK94].

Hesselholt and Madsen defined the absolute de Rham–Witt complex [HM04]
of a scheme X over Z(p) and its log variant in [HM03]. Their motivation is very
different from the original one, as they are not interested in the hypercohomology
of these complexes, but rather the structure of the spectra TR.

Let us cut to the chase and give the definition we will need.

Definition 2 ([HM03, Definition 3.2.1]). Let (R,M) be a log ring.

(1) A log Witt complex over (R,M) consists of:
(i) a pro-log differential graded ring (E∗

• ,ME) together with a map of
pro-log rings λ : (W•(R),M)→ (E0

• ,ME);
(ii) a map of pro-log graded rings

F : E∗
n → E∗

n−1

such that λF = Fλ and such that

Fd logn a = d logn−1 a, for all a ∈M

Fd[a]n = [a]p−1
n−1d[a]n−1, for all a ∈ R;

(iii) a map of pro-graded modules over the pro-graded ring E∗
• ,

V : F ∗E∗
n → E∗

n+1

such that λV = V λ, FV = p and FdV = d.
A map of log Witt complexes over (R,M) is a map of pro-log differential
graded rings which commutes with the maps λ, F and V .

(2) The log de Rham–Witt complex of (R,M) is the initial object of the cat-
egory of Witt complexes over (R,M), denoted by W•Ω∗

(R,M).

The map F is a “divided Frobenius:” it does not commute with d, but it satisfies
dF = pFd (dually, we have V d = pdV ; both formulas easily follow from d = FdV ).
If R is an Fp-algebra, then F = piFR : WnΩiR → Wn−1ΩiR where FR is the map
of Witt complexes induced by the absolute Frobenius of R. We shall also use the
following formula

V (x · dy) = V (x · FdV y) = V (x) · dV (y).
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The proofs of the existence of the initial objects W•Ω∗
R andW•Ω∗

(R,M) is a rather

formal application of the adjoint functor theorem. By construction, the natural
maps

Ω•
R →W•Ω∗

R and Ω•
(R,M) →W•Ω∗

(R,M)

are surjective.

Theorem 3 ([HM03, Proposition 3.3.1]). The homotopy groups TR•
∗(A,M), en-

dowed with the maps d, F , R, V , [−]n and d logn form a log Witt complex over
(A,M).

2. The log de Rham–Witt complex of (A,M) modulo p

Let A again be the ring of integers of K, endowed with the standard log structure
M = A ∩ K× →֒ A. The goal of this section is to study the mod p reduction
W •Ω∗

(A,M) of the log de Rham–Witt complex W•Ω∗
(A,M) of (A,M).

The ring A itself admits the following description: there is a unique ring homo-
morphism

f : W (k)→ A

inducing the identity on k. This extension of complete discrete valuation rings is
totally ramified, thus if π is a uniformizer of A (which we fix from now on), then it
generates A as a W (k)-algebra and its minimal polynomial φ(x) is an Eisenstein
polynomial. In other words, A admits the following presentation

A ∼= W (k)[π]/(πe + p · θ(π))

with θ(x) ∈ W (k)[x] of degree < e and invertible constant term. The integer e
is called the absolute ramification index of K. In particular, W 1(A) = A/p =
k[x]/(xe) is a truncated polynomial ring.

It follows from this presentation that the module of relative log differentials
Ω1

(A,M)/W (k) (where W (k) is given the trivial log structure) can be written as

(4) Ω1
(A,M)/W (k)

∼= A/(πφ′(π)) · d log π.

Later on, we shall need the following:

Lemma 4. The i-th module of log differentials Ωi(A,M) =
∧i

Ω1
(A,M) is zero modulo

p for i ≥ 2.

In fact, the module is even uniquely divisible [HM03, Lemma 2.2.4], but we shall
not need this. Note that when we write Ω1

A, Ω1
(A,M), we treat A as an abstract ring

(with no topology), which is not the same as considering continuous differentials.
For example, Ω1

Zp
is quite large while the corresponding continuous differentials

vanish.

Proof. First we show that Ω1
W (k) is zero modulo p: we have

Ω1
W (k)/p = Ω1

W (k)/(p, dp) = Ω1
k = 0.
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Next, Ω1
(A,M) sits in an exact sequence

Ω1
W (k) ⊗W (k) A→ Ω1

(A,M) → Ω1
(A,M)/W (k) → 0,

where the module on the right is a cyclic torsion A-module (4). When we take

exterior powers
∧i

for i ≥ 2, this torsion module disappears, and therefore the
result Ωi(A,M) is uniquely divisible. �

2.1. Degree zero. We shall now discuss Wn(A) := Wn(A)/pWn(A). For starters,
let us deal with A = Zp.

Lemma 5. The Fp-algebra Wn(Zp) admits the elements

1, V (1), V 2(1), . . . , V n−1(1)

as a basis, and

V s(1) · V t(1) = 0

if s, t > 0.

Proof. For any p-torsion free ring R, the sequences

(5) 0→ R
V n−1

−−−→Wn(R)→Wn−1(R)→ 0

are exact. In particular,

0→ Fp
V n−1

−−−→Wn(Zp)→Wn−1(Zp)→ 0

are exact, and it follows by induction that the elements V s(1) form an Fp-basis.
To prove the second assertion, note that (3) shows that

V (x) · V (y) = 0

in Wn(R) for any ring R. �

The above proof shows that for an arbitrary ring R, the image of V (Wn−1(R))
in Wn(R) is an ideal of square zero. The short exact sequence (exact also on the
left if R has no p-torsion)

Wn−1(R)
V
−→Wn(R)→ R/p→ 0

shows that Wn(R) is a square-zero extension of R/p. This extension does not split
in general.

The k-algebra structure on Wn(A). Passing to Wn(A), we note first that the p-th
power of the Teichmüller character

[−]pn : A→Wn(A),

which is multiplicative, becomes also additive modulo p, that is

[x]pn + [y]pn ≡ [x+ y]pn.
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This way, we can consider Wn(A) as an algebra over A/p, which itself is a k-
algebra via k = W (k)/p → A/p. Since k is perfect, we can undo the Frobenius
twist we just made, by considering Wn(A) as a k-algebra via

ρn : k
F−1

k−−−→ k → A/p
[−]n mod p
−−−−−−−−→Wn(A)

FWn(A)
−−−−−→Wn(A).

Explicitly, this map sends a ∈ k to the class of [b]pn modulo p, where b ∈W (k) ⊆ A
is any lift of a1/p. Our goal is to obtain a presentation of Wn(A) as a k-algebra via
the map ρn. We will make frequent use of the filtration induced by the V -filtration
on Wn(A).

The structure of Wn(A) as a k-algebra. Using the fact that

V s[−]n : A→Wn(A)

is additive modulo V s+1, it is easy to see that the elements V s[πi]n with s < n and
i < e, form a k-basis of Wn(A). The multiplication table is not too complicated.
Let us try to compute V s[πi] · V t[πj ]: using the relation (3), we have

V s[πi] · V t[πj ] = 0 if s, t > 0.

For s = 0, we compute:

[πi] · V t[πj ] = V t(F t[πi] · [πj ]) = V t([πp
ti+j ]).

Here we also used the relation F [a] = [ap] modulo p. Since the resulting exponent
pti+ j might be ≥ e, we need to express V s([πi]) with i ≥ e in the chosen basis.

To this end, let us first deal with [πe]. Here is the key computation:

[πe] = [−pθK(π)] = [−p] · [θK(π)] = V (1) · [θK(π)]

= V (F (θK(π))) = V ([θK(π)p]) = V (θ
(1)
K ([π]p)) = V (1)θK([π]).

Here we used the relation [−p] = V (1) modulo p, and θ
(1)
K is obtained from the

image of θK in k[x] by raising the coefficients to the p-th power. For example, if
K = W (k)[p1/e], so θK = 1, then we obtain [πe] = V (1), and in general

V s[πe+i] = V s(V (1)[πi]) = V s(V (F [πi])) = V s+1([πpi]).

This calculation suggests that we should adapt our basis to θK . This is done
as follows: introduce the modified Verschiebung

Vπ : Wn−1(A)→Wn(A), Vπ(a) = θK([π])V (a),

then we still have FVπ = 0 mod p. And since θK(0) is a unit, the elements

V iπ([πj ]) with i = 0, . . . , n− 1, j = 0, . . . , e− 1

also form a basis of Wn(A). We have now seen all ingredients of the proof of:

Proposition 6 ([HM03, Proposition 3.1.5]). In the algebra Wn(A), the elements
V sπ ([πi]) (s < n, i < e) form a k-basis. Moreover

V sπ ([πi]) · V tπ([πj ]) =

{
0 s, t > 0

V tπ([πp
ti+j ]) s = 0.
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and

V sπ ([π]e+i) = V s+1
π ([π]pi).

In particular, the product of two basis elements is either zero or another basis
element.

An interesting feature of this description is that the resulting k-algebra Wn(A)
depends only on the absolute ramification index e (up to isomorphism depending
on the choice of the uniformizer).

Addendum. For future reference, we note that repeated application of the second
relation yields the following. Let r(i) be the p-adic valuation of i−pe/(p− 1), and
let s ≤ r(i), so that ps divides the number

(i− pe/(p− 1)) + ps+1e/(p− 1) = i+ pe+ p2e+ . . .+ pse.

Then

[πp
−s(i+pe+p2e+...+pse)] = V ([πp

−s+1(i+pe+p2e+...+pse)−e])(6)

= V ([πp
−s+1(i+pe+p2e+...+ps−1e)]) = . . . = V s([πi]).

2.2. Degrees ≥ 2. We will now show that WnΩi(A,M) is zero for i ≥ 2. In fact,

WnΩi(A,M) is uniquely divisible for i ≥ 2. In Lemma 4, we have shown this for

Ω∗
(A,M), which is the case n = 1. To deduce the divisibility of WnΩi(A,M) for larger

n by induction, we need a devissage argument relating the kernel of the restriction
map

R : WnΩi(A,M) →Wn−1Ωi(A,M)

to the modules Ω∗
(A,M). Let us pause to think of what an element in the kernel of

R should look like. First, an element of the form V n(x) should be killed, and for
i = 0 this describes the kernel completely. Second, it may happen that dV n(x) is
not of this form, since V d = pdV , while still dV n(x) should be killed by R. This
motivates the definition of the standard filtration (which makes functorial sense
for any Witt complex):

FilsWnΩi(A,M) = V sWn−sΩ
i
(A,M) + dV sWn−sΩ

i−1
(A,M).

Lemma 7 ([HM03, Lemma 3.2.4]). The kernel of

Rs : WnΩi(A,M) →Wn−sΩ
i
(A,M)

equals FilsWnΩi(A,M).

Proof. For fixed value of n− s, the system WnΩi(A,M)/Fils forms a log Witt com-

plex, and can be shown to satisfy the universal property. �

This implies that we have a surjection

N : Ωi(A,M)⊕Ωi−1
(A,M) → Filn−1WnΩi(A,M), N(ω1, ω2)= dV n−1λ(ω1)+V n−1λ(ω2).
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By induction, Lemma 4 implies then that WnΩi(A,M) is uniquely divisible for i ≥ 3.

It remains to analyze the structure of WnΩ2
(A,M). To show that WnΩ2

(A,M) = 0,

by induction it suffices to show the following lemma:

Lemma 8. The map

dV n−1 : Ω1
(A,M) = W1Ω1

(A,M) →WnΩ2
(A,M)

is zero modulo p.

Proof. The source is generated by the elements πid log π with i < e. Since in any
Witt complex we have

V (x)d logm = V (x · F (d logm)) = V (x · d logm),

we see that

V n−1(πid log π) = V n−1[πi] · d log π.

We will show by induction on s that the elements V s(πid log π) = V s[πi]·d log π are
closed. For s = 0, this element is either d log π (and we require that d ◦ d log = 0),
or i > 0 and

[πi]d log π = [πi−1]d[π]

which is closed. For the induction step, suppose that s > 0 and that i is prime to
p. Then

[πi]d log π =
1

i
d[πi],

which is exact, while V d = pdV = 0 mod p, so in fact V s([πi]d log π) = 0. On the
other hand, if i = pi′ then the second relation in Proposition 6 shows that

V s[πi] = V s[πpi
′

] = V s−1[πe+i
′

],

which is closed by the induction assumption. �

2.3. Degree 1. From what we have learned so far, we see that WnΩ1
(A,M) is

spanned by monomials in the elements

V sπ ([πi]), dV sπ ([πi]) and V sπ ([πi]d log π) = V sπ ([πi])d log π

with s < n and i < e. By an explicit calculation of the Wn(A)-module structure
on WnΩ1

(A,M) using Proposition 6, we can see that in fact the elements of the

latter two types span WnΩ1
(A,M) as a k-vector space.

Proposition 9 ([HM03, Proposition 3.4.1(ii)]). We have the following formulas
in WnΩ1

(A,M):

V sπ ([πi]) · dV tπ ([πj ]) =





dV tπ ([πp
ti+j ])− iV tπ([πp

ti+j ]d log π) if 0 = s ≤ t,

−iV tπ(θK(π)
pt−s

(
ps+1−1

p−1

)

[πp
t−si+j ]d log π) if 0 < s ≤ t,

jV sπ (θK(π)
ps−t

(
pt+1−1

p−1

)

[πi+p
s−tj ]d log π) if s ≥ t,
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V sπ ([πi]) · V tπ([πj ]d log π) =





V tπ([πp
ti+j ]d log π) if s = 0,

V sπ ([πi+p
sj ]d log π) if t = 0,

0 otherwise.

In particular, the 2ne elements dV sπ ([πi]), V sπ ([πi])d log π (s < n, i < e) span
WnΩ1

(A,M).

Proof. These formulas follow from differentiating the formulas in Proposition 6
and the formula

FdVπ(x) = θ([π])pdx. �

So we have 2ne elements spanning a vector space. It turns out that almost half
of them vanish, as the following proposition shows.

Proposition 10 ([HM03, Proposition 3.4.1(i)]). Let r(i) be the p-adic valuation
of i− pe/(p− 1) and let α = p−r(i)(i − pe/(p− 1)) ∈ F×

p . Then for every i < e

dV 0
π ([πi]) = dVπ([πi]) = . . . = dV r(i)−1

π ([πi]) = 0,

dV r(i)π ([πi]) = α · V r(i)π ([πi]d log π),

V r(i)+1
π ([πi]d log π) = V r(i)+2

π ([πi]d log π) = . . . = V n−1
π ([πi]d log π) = 0.

In particular, the ne elements

(7)
{
dV sπ ([πi]d log π) | i < e, s < r(i)

}
∪
{
dV sπ ([πi]) | i < e, r(i) ≤ s < n

}

span WnΩ1
(A,M).

Proof. If s ≤ r, then (6) shows that

V s([πi]) = [πp
r(i)−sα],

so
dV s([πi]) = d[πp

r(i)−sα] = pr(i)−sα[πp
r(i)−sα−1]d[π],

which is zero mod p if r(i) − s > 0, showing the first relation, and for s = r(i) it
equals

α[πα−1]d[π] = α[πα]d log[π] = αV r(i)π ([πi]d log π).

The last set of relations follows from

V r(i)+jπ ([πi]d log π) = V jπ (V r(i)π ([πi]d log π)) = V jπ (α−1dV r(i)π ([πi]))

which vanishes for j > 0 since dVπ is zero modulo p. �

Theorem 11 ([HM03, Proposition 6.1.1]). dimkWnΩ1
(A,M) = ne. In particular,

the elements (7) form a basis of WnΩ1
(A,M).

About the proof. We know already that the dimension is at most ne. To show that

it is ≥ ne, it is enough to exhibit a log Witt complex E∗
• with dimE

1

n ≥ ne and
W•Ω∗

(A,M) → E∗
• surjective in degree 1. Such an example is provided by the log

Witt complex TR∗
•(A,M); the dimension of TR1

n((A,M),Z/p) is computed to be
ne in Section 6, using the computation of the Tate spectral sequence in Section 5
(see Lecture 13). �
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2.4. A generalization to smooth schemes over A. In the paper [GH06],
Geisser and Hesselholt generalize the above computation to smooth schemes X
over A. As can be seen from [HM03], in the case of SpecA, the cohomology
groups Hq(K,µ⊗s

pv ) can be identified as the Frobenius invariants inside log de
Rham–Witt (at least if K contains µpv ). The analog of these cohomology groups
are the sheaves of nearby cycles i∗Rqj∗µpv where i : Xk → X resp. j : XK → X is
the inclusion of the special resp. general fiber. We endow X with the log structure
MX induced by the open immersion j.

Theorem 12 ([GH06, Theorem A]). Suppose that K contains pv-th roots of unity.
Then for every q ≥ 0 there is a natural exact sequence

0→ i∗Rqj∗µ
⊗q
pv → i∗WΩq(X,MX )/p

v 1−F
−−−→ i∗WΩq(X,MX)/p

v → 0.

As in [HM03], one ingredient of the proof is the computation of the mod p
reduction WΩ∗

(X,MX ) of the log de Rham–Witt complex of (X,MX).

Theorem 13 ([GH06, Proposition 1.3.2]). Let d = dimXk = dimX − 1. Locally
on Xk, the sheaf i∗WnΩ∗

(X,MX ) on Xk can be given a non-canonical structure of

a vector bundle of rank
(
d+ 1

q

)
e

n−1∑

s=0

pds.

Note that for d = 0 we obtain ne for q = 0, 1 and 0 otherwise, while for n = e = 1
the rank is the rank of

∧q
Ω1

(X,MX ).
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The Tate spectral sequence for THH of log rings

Achim Krause

This talk is concerned with the computation of

TR(A,M ; p) = lim
(
· · ·

R
−→ THH(A,M)Cp2

R
−→ THH(A,M)Cp R

−→ THH(A,M)
)
,

following [1]. Here p is an odd prime, and A is a complete discrete valuation ring
of mixed characteristic (0, p), with perfect residue field k and field of fractions K,
endowed with the canonical pre-log structure M = A ∩K×.

THH(A,M)Cpn denotes “genuine fixed points”, which can be defined without
appealing to genuine equivariant homotopy theory as the iterated pullback

(1) THHCpn := THHhCpn ×
THH

tCpn THHhCpn−1 ×
THH

tC
pn−1 · · · ×THHtCp THH .

(Here we have abbreviated THH(A,M) by THH for reasons of space.)
In particular, the inverse limit TR(A,M ; p) can be thought of as the infinite

iterated pullback of this form.
The computation proceeds by means of the Tate spectral sequence

Ĥ−i(Cpn ;πj(THH(A,M)/p))⇒ πi+j(THH(A,M)tCpn /p).

Here the grading convention is homological Serre grading, so the differential dr

goes from bidegree (i, j) → (i − r, j + r − 1), and the abutment is such that the
homotopy group πm(THH(A,M)tCpn /p) is an iterated extension of the E∞-terms
along the codiagonal i+ j = m.

One has an explicit description of the E2-page. This depends on conventions
for generators of the group cohomology of Cpn . In [1], Lemma 4.2.1, concrete
generators t ∈ H2(Cpn ;Fp) and un ∈ H

1(Cpn ;Fp) are constructed.

Lemma 1. For A a complete discrete valuation ring of mixed characteristic (0, p)
with residue field k and field of fractions K, let eK be the ramification degree of
K. Choose a generator πK of the maximal ideal of A. Then

π∗(THH(A,M)/p) = k[πK , κ]/πeKK ⊗k Λk(dlog πK)

where πK is the image of πK ∈ A in π0(THH(A,M)), dlog πK is an element in
degree 1 coming from the log ring structure, and κ is the unique element in degree
2 sent to the p-torsion element dlog(−p) under the connecting homomorphism
π2(THH(A,M)/p)→ π1(THH(A,M)).

With this description,

Ĥ∗(Cpn ;π∗(THH(A,M)/p)) = k[πK , κ, t
±1]/πeKK ⊗k Λk(dlog πK , un),

where the bidegrees of generators are given by |πK | = (0, 0), |κ| = (0, 2),
| dlog πK | = (0, 1), |un| = (−1, 0), |t| = (−2, 0).

The d2-differentials in the Tate spectral sequence are determined by the Connes
operator, and can be seen to satisfy

d2πK = tπK dlog πK

d2κ = tκ dlog(−p)
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One can show the following two facts about the spectral sequence:

(1) The elements dlog x are always permanent cycles, coming from x ∈ K×

under the composition

K× → K1(K)
tr
−→ π1 TR(A,M ; p)

(2) The elements −tκp and (−tκ)p
n

are permanent cycles in the Tate spec-
tral sequence for (THH(A,M)/p)tCpn , representing the image of v1 ∈
π2(p−1)(S/p) in π∗(THH(A,M)tCpn /p) and V n−1(1) ∈

π∗(THH(A,M)tCpn /p), i.e. the image of 1 ∈ π∗(THH(A,M)tCp/p) under
the transfer

THHtCp → THHtCpn

associated to the inclusion Cp ⊂ Cpn .

For n = 1, THHtCp is a module over THH via the Frobenius map

THH
ϕp
−−→ THHtCp .

Since THH(A,M) is a module over the Eilenberg-MacLane spectrum HA, this
implies that both THH(A,M) and THH(A,M)tCp are generalized Eilenberg-Mac-
Lane spectra. In particular, for n = 1, the action of v1 ∈ π∗(S/p) on
π∗(THH(A,M)tCp/p) has to be zero.

It follows that the permanent cycle −tκp has to be hit by a differential.
For simplicity, let us look at the unramified case K = W (k), so eK = 1. In

that situation, the E2-page is given by k[κ, t±1] ⊗k Λk(dlog(−p), un). After the
d2-differential, which is determined by d2κ = tκ dlog(−p), the E3-page takes the
form k[(κp), t±1]⊗k Λk(dlog(−p), un).

For degree reasons, the only differential that can hit tκp is d2p+1(t−pu1)
·
= tκp.

Since this implies that d2p+1(u1)
·
= tp+1κp = t(tκ)p, and (tκ)p is a permanent

cycle, it also follows that t is a permanent cycle. Thus, we have a periodic family of
differentials, and the E2p+2-page consists only of k[t±1]⊗Λ(dlog(−p)). For degree

reasons, the spectral sequence degenerates at this stage, and π∗(THHtCp /p) is just
a single copy of k in each degree (positive and negative).

1u1t· · · · · · t−pu1 t−p t−p−1u1 · · ·

dlog(−p)· · · · · ·

t(tκ)p · · · · · ·· · · tκp u1κ
p κp

It turns out that the Frobenius map THH
ϕp
−−→ THHtCp is actually an equiv-

alence on p-completed connective covers. One can see this for THH(A,M) for
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general A, too: Using the fact that the spectral sequence is natural in A one can
see that all differentials dr for 2 < r < p+ 1 vanish, and by comparison with the
unramified case one sees d2p+1 to be nontrivial.

Lemma 2. For A a complete discrete valuation ring of mixed characteristic as
above, the Frobenius map

THH(A,M)
ϕp
−−→ THH(A,M)tCp

is an equivalence on p-completed connective covers.

Theorem 3. For all n ≥ 1, the maps

THH(A,M)Cpn → THH(A,M)hCpn → THH(A,M)tCpn+1

are equivalences after passing to p-completed connective covers.

Proof. From the Tate-Orbit Lemma of [2] and Lemma 2, one obtains that the map

THH(A,M)hCpn
ϕp
−−→ (THH(A,M)tCp)hCpn ≃ THH(A,M)tCpn+1

is an equivalence on p-completed connective covers. Combining this with the
definition of genuine fixed points (1), one sees that the projection map

THH(A,M)Cpn → THH(A,M)hCpn

is an equivalence on p-completed connective covers, too. �

Having determined the structure of the Tate spectral sequence for n = 1, one
can also compute THH(A,M)hCp : One compares the Tate spectral sequence to
the homotopy fixed point spectral sequence

H−i(Cp;πj(THH(A,M)/p))⇒ πi+j(THH(A,M)hCp/p)

whose E2-page agrees with the second-quadrant truncation of the Tate spectral
sequence. The differentials in the homotopy fixed point spectral sequence are com-
pletely determined by the differentials in the corresponding Tate spectral sequence.

As a result of the truncation, terms along the right edge that were hit in the
Tate spectral sequence are not hit in the homotopy fixed point spectral sequence.
For example, the element (−tκp), detecting v1, cannot be hit anymore for degree
reasons (it was hit by t−pu1 via d2p+1 in the Tate spectral sequence, which has
origin in the truncated area).

Instead, some higher power of (−tκp) is being hit in the homotopy fixed point
spectral sequence, namely

(−tκp)p+1 = tp+1κpκp
2

= d2p+1(u1κ
p2),

and for degree reasons, this is the first power of (−tκp) that can be hit by a

differential. One sees that in π∗(THH(A,M)hCp/p), vp+1
1 = 0, and vj1 6= 0 for

j < p+ 1.
Through the equivalence on positive-degree homotopy groups given by the map

THH(A,M)hCp/p → THH(A,M)tCp2/p from Theorem 3, one thereby infers in-

formation on the Tate spectral sequence for THH(A,M)tCp2/p. For example, we

can see that vp+1
1 acts trivially, so the Tate spectral sequence for Cp2 will have a
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horizontal vanishing line again, but of height about 2p2. This is caused by a longer

differential than in the Cp case, namely a non-zero d2p
2+2p+1-differential on u2.

By truncating this Tate spectral sequence for Cp2 , one obtains the homotopy
spectral sequence for Cp2 , which in turn yields information on the Tate spectral
sequence for Cp3 by Theorem 3. Through a complicated induction, one can com-
pletely determine the structure of the Tate and homotopy fixed point spectral
sequences for all K and Cpn with vp(eK) ≥ n, i.e. for sufficiently wildly ramified
K. The case of general K is then decided by passing to a suitable extension L/K
with vp(eL) ≥ n.
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Proving the main results in Hesselholt-Madsen

Vigleik Angeltveit

Recall that K is a complete discrete valuation field of mixed characteristic (0, p)
with p odd. Associated to K we have its ring of integers A = OK and a log
structure given by the inclusion α : M = A ∩K× → A. We choose a uniformizer
π, and we assume that the quotient field k = A/(π) is perfect. Also recall that
Ω∗

(A,M) denotes the universal log differential graded ring, and that W•Ω∗
(A,M) is

the log de Rham Witt complex, which is defined as the initial log Witt complex
over (A,M). Our first goal is to prove the following:

Theorem 1 (Hesselholt-Madsen [1]). Suppose µpv ⊂ K. Then

W•Ω∗
(A,M) ⊗ SZ/pv(µpv )→ TR•

∗(A,M,Z/pv)

is an isomorphism of pro-abelian groups.

Here SZ/pv (µpv ) ∼= Z/pv[x] with |x| = 2 is a polynomial ring on a generator
in degree 2. It is convenient to not having to explicitly choose a generator. The
group denoted TRn(−) usually has an extra p in the notation to remind us that
we are taking Cpn−1 fixed points of THH, but because p is fixed we omit it from
the notation.

We interpret this as saying that TRn
∗ (A,M,Z/pv) is close to WnΩ∗

(A,M) ⊗

Z/pv[x]. Hence we can compute TC∗(A,M) by understanding W•Ω∗
(A,M) and

the x just comes along. Hence TC∗(A,M,Z/pv) is 2-periodic whenever µpv ⊂ K.
We also know that the cyclotomic trace map trc : K∗(K)→ TC∗(K) is an equiva-
lence after p-completing, so the above result shows that algebraic K-theory is also
2-periodic when µpv ⊂ K.
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Theorem 2 (Hesselholt-Madsen [1]). For s ≥ 1, and K not necessarily containing
µpv , there are canonical isomorphisms

K2s(K,Z/p
v) ∼= H0(K,µ⊗s

pv )⊕H2(K,µ⊗s+1
pv )

K2s−1(K,Z/pv) ∼= H1(K,µ⊗s
pv )

If µpv ⊂ K then Gal(K) acts trivially on µpv , so we get the same answer for all
s ≥ 1.

In general we have a Galois cohomology spectral sequence converging to the
étale K-theory K ét

∗ (K,Z/pv) with the same E2-term as in Theorem 2. For v = 1
and µp ⊂ K we can compute both sides and prove directly that the canonical map

K∗(K,Z/p)→ K ét
∗ (K,Z/p)

is an isomorphism for ∗ ≥ 1. If K does not contain µp we can pass to a field
extension that does, and the passage from Z/p coefficients to Z/pv coefficients is
formal. So in the end Theorem 2 follows by a comparison with étale K-theory.

We return to the proof of Theorem 1. Recall that if µp ⊂ K a choice of
generator of µp determines a Bott class bn ∈ TRn

2 (A,M,Z/p). The class bp−1
n

is independent of this choice, and is the image of v1 ∈ π2p−2(S/p). Similarly, if
µpv ⊂ K we have such a class in TRn

2 (A,M,Z/pv). We can use that to build a
map SZ/pv (µpv )→ TRn

∗ (A,M) that is independent of choices for each n.
Recall that W•Ω∗

(A,M) → TR•
∗(A,M) is an isomorphism in degree ∗ ≤ 2. For

µpv ⊂ K we then get a map

(1) W•Ω∗
(A,M) ⊗ SZ/pv (µpv )→ TR•

∗(A,M,Z/pv).

Here R, F and V act as the identity on SZ/pv (µpv ) while d acts by 0.
Now the plan is to prove that Equation 1 is a pro-isomorphism by studying

π∗(THH(A,M)tCpn ,Z/pv). For v = 1 we will do this explicitly, while the passage
to v > 1 is mostly formal.

So we start by considering v = 1. From the previous lecture we know that the
map TRn(A,M) → THH(A,M)tCpn to the Tate spectrum is an isomorphism on
mod p homotopy groups in degree ∗ ≥ 0 so we study TRn

∗ (A,M,Z/p) through
its map to π∗(THH(A,M)tCpn ,Z/p). Calculating the Tate spectral sequence is
difficult but doable, and we saw some of the techniques that go into the calculation
in the last lecture. Assuming either that A = W (k) or that µp ⊂ K, the E2-term
of the Tate spectral sequence converging to π∗(THH(A,M)tCpn ,Z/p) is given by

E2 = Λ{un, dlog πK} ⊗ S{πK , αK , τ
±1
K }/(π

eK
K ).

Here |un| = −1, |τK | = −2, | dlog πK | = 1, |πK | = 0, and |αK | = 2. The
variable αK is a slight modification of the variable κ from before and τK is a slight
modification of t. These are not quite canonical, as they depend on a choice of
generator of µp and uniformizer πK . If A = W (k) then αK = κ and τK = t,
otherwise we need µp ⊂ K to make the change of variables.

It’s helpful to organize this as a module over k[v1] where v1 = τKα
p
K represents

the usual v1:
E2 = k[v1]

{
uǫn(dlog πK)δτaKπ

r
Kα

d
K

}
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where ǫ, δ ∈ {0, 1}, 0 ≤ r ≤ eK − 1, 0 ≤ d ≤ p− 2, and a ∈ Z. Define

{a, r, d}K =
(pa− d)eK
p− 1

+ r.

This is going to act as a sort of πK -adic valuation on π∗(THH(A,M)tCpn ,Z/p).
After some work, which we omit, Hesselholt and Madsen found that

E∞ =

n−1⊕

v=1

k[v1]/vp
v−1+...+1

1

{
uǫn dlog πKτKπKα

d
K | νp{a, r, d}K = v

}

⊕
⊕

k[v1]/vp
n−1+...+1

1

{
(dlog πK)δτaKπ

r
Kα

d
K | νp{a, r, d} ≥ n

}

Proposition 3. If µp ⊂ K or A = W (k) then

dimk TRn
q (A,M,Z/p) = neK

for all q ≥ 0.

Proof. This is a counting argument using that TRn
q (A,M,Z/p) is isomorphic to

πq(THH(A,M)tCpn ,Z/p) for q ≥ 0 together with the above calculation of E∞. �

If µp ⊂ K then the Bott class bn is represented by

−π
eK/(p−1)
K αK ,

and the multiplicative extensions in passing from E∞ to the abutment are gener-
ated by

πeKK = −τKαK .

(This class is typically not an infinite cycle.) Using this we can rewrite E∞ as a
direct sum of truncated bn-towers instead.

Lemma 4. Suppose µp ⊂ K. An element in E∞ represents a class in the image
of the composite

WnΩ∗
(A,M) ⊗ SZ/p(µp)→ TRn

∗ (A,M,Z/p)→ π∗(THH(A,M)tCpn ,Z/p)

if and only if {a, r, d}K ≥ 0.

Proof. Earlier in the day we calculated an upper bound on TRn
q (A,M,Z/p) for

q ≤ 1. That there are no further relations follows from TRn
q (A,M,Z/p) =

TRn
1 (A,M)/p having the size given by this upper bound and it being a (part

of a log) Witt complex over (A,M). Thus, the upper bound is attained.
So it suffices to show that

bqn :
⊕

E∞
s,ǫ−s →

⊕
E∞
s,2q+ǫ−s

is an isomorphism for q = 0, 1. Using a combinatorial argument one can see that
this holds because all bn-towers either start in degree 0 or 1 or are in negative

degree, and because for the class −π
eK/(p−1)
K αK that represents bn in the spectral

sequence, the number {a, r, d}K is zero. �
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We think of {a, r, d}K as a valuation, π∗(THH(A,M)tCpn ,Z/p) as the field, and
TRn

∗ (A,M,Z/p) as the ring of integers.
Now we can prove the v = 1 case of Theorem 1.

Proof. For • = n, the left hand side consists of infinite bn-towers starting in degree
0 and 1. The right hand side consists of finite bn-towers as described by E∞.

In fixed degree 2q + ǫ this is an isomorphism if we exclude the bn-towers of
height ≤ q. Let E∗

• denote either side, and define a filtration by

Fils E∗
n = V sE∗

n−s + dV sE∗
n−s.

Then Fil0E∗
n = E∗

n ⊃ Fil1E∗
n ⊃ . . . ⊃ FilnE∗

n = 0. The map respects the
filtration, so it induces a map

Grs
(
WnΩ∗

(A,M) ⊗ SZ/p(µp)
)
2q+ǫ

→ Grs TRn
2q+ǫ(A,M,Z/p).

The point is that Fils for large s contains all the short bn-towers, so in fixed degree
2q+ ǫ the map is an isomorphism on Grs−N for s < n−N with N depending only
on q.
This uses that

V s(un−s dlog πKτ
a
Kπ

r
Kα

d
K) = un dlog πKτ

a
Kπ

r
Kα

d
K

d(un dlog πKτ
a
Kπ

r
Kα

d
K) = dlog πKτ

a
Kπ

r
Kα

d
K .

�

To prove the general case of Theorem 1 we use the long exact sequence associ-
ated to the short exact sequence 0→ Z/pv−1 → Z/pv → Z/p → 0 of coefficients,
and show that it breaks up into short exact sequences. We will omit the details,
but simply remark that the key point is that given a generator ζ of µp, dlog ζ is
zero mod pv−1 because ζ has a pv−1’st root.

References
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Flat descent for THH

Wies lawa Nizio l

The goal of my talk was to prove the following theorem:

Theorem 1. ([2, Cor. 3.3]) The functors

THH(−), TC−(−), THH(−)hT, TP(−)

on the category of commutative rings are fpqc sheaves.

Proof. It suffices to prove the theorem for THH(−) and THH(−)hT. This is be-
cause the two remaining functors are obtained from these by taking limits:

(1) TC−(−) = THH(−)hT,
(2) TP(−) = THH(−)tT = cofib(Nm : THH(−)hT[1]→ THH(−)hT).
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Case of THH(−).
Step 1: reduction to HH(−).
We start with recalling the following fact:

Fact 2. Let S be a connective E1-ring spectrum. Let {Mn}n∈N be a weak Post-
nikov tower of connective S-module spectra1. Let M := proj limnMn. Then,
for any right t-exact2 functor F : D(S) → Sp, the tower {F (Mn)}n∈N is a weak
Postnikov tower with limit F (M).

Let A be a commutative ring. Apply the above fact with the tower {τ≤n THH(Z)}n
with limit THH(Z), spectrum S = THH(Z), and F (−) = THH(A) ⊗THH(Z) −.
From Fact 2 we get the weak Postnikow tower {THH(A) ⊗THH(Z) τ≤n THH(Z)}n
that converges to THH(A).

It suffices now to show that, for every n, THH(−) ⊗THH(Z) τ≤n THH(Z) is a
sheaf. From the exact triangle

πn+1 THH(Z)[n+ 1]→ τ≤n+1 THH(Z)→ τ≤n THH(Z)

we see that it suffices to check that, for all n, THH(−) ⊗THH(Z) πn THH(Z) is a
sheaf. But we have

THH(−)⊗THH(Z) πn THH(Z) ≃ (THH(−)⊗THH(Z) Z)⊗Z πn THH(Z).

Hence, by the lemma below, it suffices to show that THH(−)⊗THH(Z)Z is a sheaf.
But, by the same lemma, this is quasi-isomorphic to HH(A).

Lemma 3. We have

(1) πn THH(Z) is a finitely generated abelian group
(2) THH(A)⊗THH(Z) Z ≃ HH(A).

Proof. The first claim follows from the fact that the stable homotopy groups of a
sphere are finitely generated abelian groups. The second claim is immediate from
the universal properties of HH(−) and THH(−). Let us recall what they are. For
HH(−) we have:

(1) HH(A/R) is a E∞-R-algebra with T-action,
(2) there exist a (non-equivariant) E∞-R-algebra map A→ HH(A/R),
(3) HH(A) is initial with respect to (1) and (2).

For THH(−):

(1) THH(A) is a E∞-ring spectrum T-action,
(2) there exist a (non-equivariant) map A→ THH(A) of E∞-ring spectra,
(3) THH(A) is initial with respect to (1) and (2).

�

Remark 4. The homotopy groups of THH(Z) were computed by Bökstedt. More
generally we have:

1This means that the fiber of Mn+1 →Mn is n-connected.
2This means that F (D(S)≤0) ⊂ Sp≤0.
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Theorem 5. (Lindenstrauss-Madsen) Let A be a number ring. Then (noncanon-
ically)

πi THH(A) ≃

{
A if i = 0,

D−1
A /nA if i = 2n− 1.

Here DA is the different of A (recall that it can be defined as the annihilator of
ΩA/Z).

In particular, we have π1 THH(A) = π1 HH(A) = D−1
A /A.

Example 6. If A = Z then

πi THH(Z) ≃

{
Z if i = 0,

Z/nZ if i = 2n− 1.

This is a theorem of Bökstedt.

Step 2: the case of HH(−). Let R be a commutative ring. We have shown that
it suffices to prove that HH(−/R) is an fpqc sheaf.
Digression 1: Cotangent complex.
Let A/R be a commutative algebra. Recall how the cotangent complex LA/R can
be defined: take P· → A - a simplicial resolution by polynomial R-algebras. Set
LA/R := ΩP·/R⊗P· A . The wedge powers are defined as ∧iALA/R := ΩiP·/R

⊗P· A.

This is well defined as an ∞-functor: the complex ∧iALA/R does not depend on
the choice of a simplicial resolution, up to a contractible choice.

We list the following properties:

(1) π0(LA/R) ≃ ΩA/R;

(2) if A/R is smooth then ∧iALA/R ≃ ΩiA/R. If A/R is étale then ∧iALA/R ≃ 0;

(3) (Flat base change): For an algebra B/R and a flat algebra C/R we have
LB/R ⊗R C ≃ LB⊗RC/C .

Digression 2: HKR-filtration (after Hochschild-Kostant-Rosenberg)

Proposition 7. Let A/R be a commutative algebra. There exists a descending
separated filtration F ·

HKR on HH(A/R) with

griHKR HH(A/R) ≃ (∧iALA/R)[i]

Proof. Let A/R be smooth. Then π∗ HH(A/R) is a strictly anticommutative
differential graded R-algebra equipped with a map of (commutative) R-algebras
A→ π0 HH(A/R). Recall that the de Rham complex is universal for this property,
hence we get a canonical map

Ω∗
A/R → π∗ HH(A/R)

independent of any model of HH(A/R).

Theorem 8. (HKR) The map Ω∗
A/R

∼
→ π∗ HH(A) is an isomorphism.
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For A/R smooth, define F iHKR HH(A/R) := τ≥i HH(A/R). We have

griHKR HH(A/R) ≃ πi HH(A/R)[i] ≃ ΩiA/R[i].

This lifts to any algebra S: take A· → S - a simplicial polynomial resolution. Set
F iHKR HH(S/R) := τ≥i HH(A·/R). We have

griHKR HH(S/R)=τ≥i/τ≥i+1 HH(A·/R)≃πi HH(A·/R)[i]≃ΩiA·/R
[i]≃∧iSLS/R[i].

�

Let us now return to Step 2. Let us use the HKR-filtration

Fn+1
HKR HH(−/R)→ FnHKR HH(−/R)→ grnHKR HH(−/R) ≃ ∧n−L−/R[n]

to get the weak Postnikov tower {HH(−/R)/FnHKR}n. It suffices now to show that
HH(−/R)/FnHKR is a sheaf. But this follows from the following theorem:

Theorem 9. (Bhatt, [1]) Let i ≥ 0. The functor A 7→ ∧iALA/R is an fpqc sheaf
with values in D(R), i.e., if A→ B is faithfully flat then

∧iALA/R
∼ // lim(∧iBLB/R

//
// ∧iB2LB2/R

////// ∧iB3LB3/R · · · ),

where we wrote Bn := B ⊗R · · · ⊗R B, the n’th tensor product of B over R.

Proof. If i = 0 this is just flat descent. Assume i = 1. Form the maps R → A→
B· := Cech(A→ B) we obtain the exact triangle of cosimplicial B·-modules

LA/R ⊗A B
· → LB·/R → LB·/A

We need to show that

(1) LA/R
∼
→ lim(LA/R ⊗A B

·)
(2) TotLB·/A ≃ 0

The first claim holds for any M ∈ D(A) by fpqc descent. For the second claim,
we use the Postnikov filtration to reduce to showing that πiLB·/A is acyclic. By
the flat base change we have

(πiLB·/A)⊗A B ≃ πiLB·⊗AB/B.

We need to show that this is zero. But this follows from the fact that the map
B → B· ⊗A B is a homotopy equivalence.

We leave the case of i > 1 to the reader. �

Case of THH(−)hT. The proof is similar to the case of THH(−). The key
different fact used is that τ≤nRhT is a perfect R-complex. �

References
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BMS filtrations on THH and its variants

Arthur-César Le Bras

Let X be a CW-complex. To obtain the Atiyah-Hirzebruch spectral sequence
computing the topological K-theory of X :

Ei,j2 = Hi−j(X,Z(−j)) = πj−i[X,HZ(−j)] =⇒ Ktop
−i−j(X) = π−i−j [X,KU ],

one can, instead of using the skeletal filtration on X , use the double speed Post-
nikov filtration on the K-theory spectrum KU (recall that the n-th Postnikov
section τ<nT of a spectrum T is obtained by killing all homotopy groups of T
above dimension n by attaching cells ; the n-th piece of the Postnikov filtration is
the homotopy fiber of the map T → τ<nT , which is the n-connective cover of T ).

The goal of the talk is, following [2], to construct a similar – but more involved –
filtration, the BMS filtration (called the motivic filtration by the authors of [2]), on
THH, TC−, TP and TC over quasi-syntomic rings over a characteristic p perfect
ring. If A is such a ring, n ∈ Z, and

Zp(n)(A) := grn TC(A)[−2n]

is the (shifted) n-th graded piece of TC(A) for the BMS filtration, one has a
spectral sequence :

Ei,j2 = πj−i(Zp(−j)(A)) =⇒ π−i−j TC(A),

resembling the above Atiyah-Hirzebruch spectral sequence or the spectral sequence
deduced from the filtration of algebraic K-theory by motivic cohomology. For the
comparison with classical p-adic cohomology theories (as crystalline cohomology),
the case of (quasi-)smooth rings over a perfect ring is probably the most inter-
esting and doing the construction for general quasi-syntomic rings may seem like
unnecessary generality ; it is actually a crucial feature of the argument.

The talk has two parts. We first introduce quasi-syntomic rings and state
some properties of the quasi-syntomic site. Then we explain how to construct the
filtrations, by combining some explicit computations with a descent argument. It
follows very closely [2, §4, §6, §7].

1. The quasi-syntomic site

1.1. Quasi-syntomic rings. In the following, we will restrict to characteristic p,
p being a fixed prime, though, as explained in [2], all the constructions extend to
the mixed characteristic case.

Definition 1. Let A be a commutative ring, M ∈ D(A) (the derived category
of A-modules). If a, b ∈ Z ∪ {±∞}, one says that M has Tor-amplitude in [a, b]
if for every A-module N , N ⊗L M ∈ D[a,b](A). One says that M is flat if it has
Tor-amplitude in [0, 0] (by definition, this means that M is concentrated in degree
0 and flat in the usual sense).
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Definition 2. Let A be an Fp-algebra.
(1) The Fp-algebra A is quasi-syntomic if the cotangent complex LA/Z ∈ D(A)

has Tor-amplitude in [−1, 0]. Let QSyn denote the category of all quasi-syntomic
Fp-algebras.

Let A→ B be a morphism of Fp-algebras.
(2) One says that A → B is a quasi-smooth map (resp. a quasi-smooth cover)

if it is flat (resp. faithfully flat) and if LB/A ∈ D(B) is flat.
(3) One says that A → B is a quasi-syntomic map (resp. a quasi-syntomic

cover) if it is flat (resp. faithfully flat) and if LB/A ∈ D(B) has Tor-amplitude in
[−1, 0].

We endow the category QSynop with the topology defined by quasi-syntomic
covers.

Remark 3. A theorem of Avramov says that a Noetherian ringA is a local complete
intersection ring if and only if LA/Z has Tor-amplitude in [−1, 0]. Therefore, the
above definition extends the classical definition of a syntomic ring to the non-
Noetherian setting.

Example 4. Any perfect Fp-algebra R is a (usually non-Noetherian !) quasi-
syntomic ring : the cotangent complex LR/Z has Tor-amplitude in [−1,−1] and is
isomorphic to R[1]. Indeed, the composition Z→ Fp → R gives rise to a triangle

R⊗L

Fp
LFp/Z → LR/Z → LR/Fp

.

Because Fp = Z/p, LFp/Z is simply pZ/p2Z[1] ≃ Fp[1]. Hence it suffices to show
that

LR/Fp
= 0.

To see this, choose a simplicial resolution R• of R by polynomial Fp-algebras.
The assumption that R is perfect implies that the Frobenius map ΦR• induces
an isomorphism LR/Fp

≃ LΦ∗R/Fp
. But for any k, if one identifies Rk with a

polynomial algebra Fp[X1, X2, . . . ], ΦRk
sends Xi to X

p
i , thus is the zero map on

differentials. This proves the claim.

Lemma 5. The category QSynop with the quasi-syntomic topology forms a site.

The only non trivial thing to check is that pull-backs of covers exist ; this is an
easy exercise.

1.2. Quasi-regular semi-perfect rings. Once again, we restrict to the charac-
teristic p setting.

Definition 6. An Fp-algebra S is quasi-regular semi-perfect if S ∈ QSyn and if
there exists a surjective morphism R → S, with R perfect (in particular, S is
semi-perfect, i.e. Frobenius is surjective). We denote by QRSPerf the category of
quasi-regular semi-perfect Fp-algebras and endow QRSPerfop with the topology
defined by quasi-syntomic covers.

Remarks 7. (a) If S ∈ QRSPerf, LS/Z actually has Tor-amplitude in degrees

[−1,−1]. Indeed, as S is semi-perfect, L0
S/Z = Ω1

S/Z is zero.
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(b) Any perfect ring lies in QRSPerf. Two other interesting examples are
S = OCp/p and S = Fp[T 1/p∞ ]/(T − 1).

(c) The category QRSPerfop with the quasi-syntomic topology forms a site
(once again, only the existence of pull-backs is non obvious).

The following key result shows that quasi-regular semi-perfect rings form a basis
of the quasi-syntomic topology on QSynop.

Proposition 8. An Fp-algebra A lies in QSyn if and only if there exists a quasi-
syntomic cover A → S, with S ∈ QRSPerf. Moreover, if A → S is a quasi-
syntomic cover with S ∈ QRSPerf, all terms

Si := S ⊗A S ⊗A · · · ⊗A S (i − times)

of the Čech nerve S• lie in QRSPerf.

Proof. If there exists a quasi-syntomic cover A → S, with S ∈ QRSPerf, the
transitivity triangle :

LA/Z ⊗
L

A S → LS/Z → LS/A

shows that LA/Z ⊗
L

A S has Tor-amplitude in [−1, 1], as the other two terms
have Tor-amplitude in [−1, 0] (because S ∈ QSyn and because A → S is quasi-
syntomic). By connectivity of the cotangent complex, this improves to [−1, 0]. As
A→ S is faithfully flat, we get that A ∈ QSyn.

Conversely, choose a surjective ring morphism :

F = Fp[{xi}i∈I ]→ A,

for some big enough index set I. Adjoining to F all p-power roots of the xi, i ∈ I,
one gets a perfect Fp-algebra F∞. Base changing F → F∞ along F → A gives a
map

A→ S := F∞ ⊗F A.

The map A → S is a quasi-syntomic cover, being the base change of the quasi-
syntomic cover F → F∞. This easily implies (using the transitivity triangle for
Z→ A→ S) that S ∈ QSyn. Moreover F∞ is perfect and surjects onto S.

The last assertion is left to the reader. �

The proposition implies that the restriction along the natural map

u : QRSPerfop → QSynop

induces an equivalence between sheaves on QRSPerfop and sheaves on QSynop with
values in any reasonable1 category C. If F is a C-valued sheaf on QRSPerfop, we
call the associated sheaf on QSynop the unfolding of F . It is explicitely computed
as follows : if A ∈ QSyn, choose a quasi-syntomic coverA→ S, with S ∈ QRSPerf,
and compute the totalization of the cosimplicial object F(S•) in C.

Remark 9. In what follows, we will work with the category QSynR, for some fixed
perfect ring R, formed by maps R → A, with A ∈ QSyn, and similarly with
QRSPerfR. One can check that if A ∈ QSynR, LA/R has Tor-amplitude in [−1, 0].

1In technical terms : any presentable ∞-category.



920 Oberwolfach Report 15/2018

2. Construction of the filtrations on THH and its variants

Let R be a characteristic p perfect ring, fixed from now on. Let A ∈ QSynR. The
goal is to endow THH(A), TC−(A), TP(A) and TC(A) with complete exhaus-
tive decreasing Z-indexed multiplicative filtrations Fil∗ THH(A), Fil∗ TC−(A),
Fil∗ TP(A) and Fil∗ TC(A) (the BMS filtrations) such that

∆̂A := gr0 TC−(A) = gr0 TP(A)

comes equipped with a complete decreasing N-indexed multiplicative filtration
N≥∗∆̂A (the Nygaard filtration), with graded pieces N ∗∆̂A, together with natural
isomorphisms :

grn THH(A) = Nn∆̂A[2n] ; grn TC−(A) = N≥n∆̂A[2n] ; grn TP(A) = ∆̂A[2n]

and :
Zp(n)(A) := grn TC(A) = hofib(ϕ− can : N≥n∆̂A → ∆̂A).

Remarks 10. (a) The graded pieces Zp(n)(A) are a priori spectra, but since Zp(0)
is the constant sheaf given by the Eilenberg-McLane spectrum of Zp and since
all these graded pieces are module spectra over Zp(0)(A), these spectra can be
represented, non-canonically, by chain complexes.

(b) This filtration gives rise to the spectral sequence

Ei,j2 = πj−i(Zp(−j)(A)) =⇒ π−i−j TC(A)

alluded to in the introduction. The sheaves Zp(n) are related the more classical
logarithmic de Rham-Witt sheaves, as will be explained in the next talks.

The strategy to construct these filtrations is quite simple : one defines them
explicitely at the level of quasi-regular semi-perfect rings ; one then uses quasi-
syntomic descent to treat the case of general quasi-syntomic rings. In both cases,
this remarkably reduces by some dévissages to understanding properties of the
cotangent complex.

2.1. Computations for quasi-regular semi-perfect rings. We start by ana-
lyzing things for R itself.

Proposition 11. Let R be a perfect Fp-algebra. Then π∗ THH(R) ≃ R[u] is a
polynomial algebra, with u ∈ π2 THH(R).

Proof. We first prove that for any R→ R′, with R,R′ perfect, the natural map

THH(R)⊗L

R R
′ → THH(R′)

is an isomorphism. It is enough to check this after tensoring by Z over THH(Z)
(because one can then argue by induction for ⊗THH(Z)τ≤n THH(Z)). Thus one
needs to prove that :

HH(R)⊗L

R R
′ ≃ HH(R′).

Using the Hochschild-Kostant-Rosenberg filtration (HKR filtration), this amounts
to prove that :

∧iRLR/Z ⊗
L

R R
′ ≃ ∧iR′LR′/Z,



Arbeitsgemeinschaft: Topological Cyclic Homology 921

which is easily deduced from Example 4. This base change property reduces us to
prove the proposition for R = Fp ; in this case, this is the content of Bökstedt’s
theorem. �

Proposition 12. One can find generators u ∈ π2 TC−(R), v ∈ π−2 TC−(R) and
σ ∈ π2 TP(R) such that :

π∗ TC−(R) ≃W (R)[u, v]/(uv − p) ; π∗ TP(R) ≃W (R)[σ, σ−1]

and such that the map induced on homotopy groups by

ϕhT : TC−(R) = THH(R)hT → TP(R) = (THH(R)tCp)hT

is the ϕW (R)-linear map sending u to σ and v to pσ−1, and such that the map
induced on homotopy groups by

can : TC−(R)→ TP(R)

is the linear map sending u to pσ and v to σ−1.

Proof. We simply describe π0 TC−(R), which is the hardest part, and refer the
reader to [2, §6] for the rest. Because π∗ THH(R) is concentrated in even degrees
and has trivial T-action, the homotopy fixed point spectral sequence :

Ei,j2 = Hi(T, π−j THH(R)) =⇒ π−i−j TC−(R)

degenerates. In particular, one can lift u ∈ π2 THH(R) to an element (still
denoted) u ∈ π2 TC−(R) and the natural generator of H2(T, π0 THH(R)) to
v ∈ π−2 TC−(R). The degeneracy of the spectral sequences also provides a de-
scending complete N-indexed multiplicative filtration on π0 TC−(R) such that

gri TC−(R) = π2i THH(R) ≃ R,

for i ≥ 0. In particular, the map

π0 TC−(R)→ π0 THH(R) = R

makes π0 TC−(R) a pro-infinitesimal thickening of R. By the universal property
of W (R), this gives a unique map W (R)→ π0 TC−(R), with

im(pW (R)) ⊂ Fil1 π0 TC−(R) = ker(π0 TC−(R)→ R).

By multiplicativity of the filtration, one has

im(piW (R)) ⊂ Fili π0 TC−(R),

for all i ≥ 1. Proving that the map W (R) → π0 TC−(R) is an isomorphism
can thus be checked on graded pieces, i.e. by showing that certain maps from R
to R are isomorphisms, which readily reduces by base change to the case R =
Fp. In this case, we know by [1, Lem. IV.4.7] that the images of p and uv in
H2(T, π2 THH(Fp)) are the same. By multiplicativity, the images of pi and uivi in
H2i(T, π2i THH(Fp)) are the same. Hence all the graded maps are isomorphisms.

Up to modifying u by a unit, we can also arrange that uv = p in π0 TC−(R). �

Now we can turn to quasi-regular semi-perfect rings.
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Theorem 13. Let S ∈ QRSPerfR. Then :
(1) π∗ THH(S) only lives in even degrees.
(2) Let i ∈ Z. Multiplication by u ∈ π2 THH(R) gives an injective map :

π2i−2 THH(S)→ π2i THH(S)

and this endows π2i THH(S) with a functorial finite increasing filtration with

graded pieces ∧jSLS/R[−j], for 0 ≤ j ≤ i in increasing order.

Proof. We start by noting for any R-algebra A, we have a T-equivariant fiber
sequence

THH(A)[2]→ THH(A)→ HH(A/R) (∗)

(see [2, Th. 6.7]). We will first apply this when A is a quasi-smooth R-algebra.
Then, by the universal property of the de Rham complex, the natural antisym-
metrisation map

Ω1
A/R = Ω1

A/Z → π1 HH(A) = π1 THH(A)

(the first equality comes from the fact that R is perfect) extends to a map of
graded A-algebras Ω∗

A/R → π∗ THH(A). Using the HKR filtration, one sees that

the composite of this map with the map π∗ THH(A)→ π∗ HH(A/R) is an isomor-
phism. Thus the long exact sequence on homotopy groups induced by the fiber
sequence (∗) splits in short exact sequences, for all i :

0→ πi−2 THH(A)→ πi THH(A)→ πi HH(A/R) ≃ ΩiA/R → 0.

Therefore, the natural map

Ω∗
A/R ⊗R π∗ THH(R)→ π∗ THH(A)

has to be an isomorphism. This proves that on the category of quasi-smooth
algebras over R, the Postnikov filtration on THH is a complete decreasing N-
indexed multiplicative filtration Fil∗P with graded pieces

grnP THH(−) ≃
⊕

0≤i≤n,i−n even

Ωi−/R[n].

By left Kan extension, we get a complete decreasing N-indexed multiplicative
filtration Fil∗P on THH over the category of all R-algebras, with graded pieces

grnP THH(−) ≃
⊕

0≤i≤n,i−n even

∧iL−/R[n].

Now we apply this to our quasi-regular semi-perfect ring S over R. By Remark
7 (a) and induction on i, ∧iLS/R has Tor-amplitude in [−i,−i] and thus lives in
homological degree i. Hence, for any n, grnP THH(S) only lives in even degrees.
This implies (1), by completeness of the filtration.

To prove (2), we use the fiber sequence (∗) for A = S. As the homotopy
groups of all terms are in even degrees (we just proved it for THH(S) and it is
easily verified for HH(S/R) using the HKR filtration), the long exact sequence on
homotopy groups splits in short exact sequences :

0→ π2i−2 THH(S)→ π2i THH(S)→ π2i HH(S/R)→ 0,
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for all i. This provides the desired filtration on π2i THH(S), as (by the HKR
filtration), π2i HH(S/R) = ∧iSLS/R[−i]. �

Remark 14. The filtration Fil∗P was only introduced as an auxiliary tool ; as we
will see, the interesting filtration is the one defined by (2) of the proposition,
which comes from the (double speed) Postnikov filtration. That they differ is
explained by the fact that the Postnikov filtration on THH over QRSPerf is not
(the restriction to QRSPerf of) the left Kan extension of the Postnikov filtration
on THH over quasi-smooth R-algebras.

Theorem 15. Let S ∈ QRSPerfR.
(1) The homotopy fixed point and Tate spectral sequences computing TC−(S)

and TP(S) degenerate. Both π∗ TC−(S) and π∗ TP(S) live in even degrees.
(2) The degenerate homotopy fixed point and Tate spectral sequences endow

∆̂S := π0 TC−(S) ≃
can

π0 TP(S)

with the same descending complete N-indexed filtration N≥∗∆̂S , with graded pieces
denoted by N ∗∆̂S.

(3) One has, for any n, natural identifications :

π2n THH(S) = Nn∆̂S ; π2n TC−(S) = N≥n∆̂S ; π2n TP(S) = ∆̂S .

(4) One has a natural isomorphism of R-algebras

∆̂S/p ≃ L̂ΩS/R

(the right hand side is the Hodge-completed derived de Rham complex of S over

R) and ∆̂S is p-torsion free.

Proof. As π∗ THH(S) only lives in even degrees, the first three points are easy.
The proof of (4) relies on the fiber sequence used in the proof of Theorem 13 and
the identification of π0HC−(S) as the Hodge-completed derived de Rham complex

L̂ΩS/R (whose proof uses quite subtle arguments about filtered derived categories
and is given in [2, Prop. 5.14]). �

2.2. The filtrations. We start by reminding the reader that the cotangent com-
plex (and its wedge powers), the Hodge-completed derived de Rham complex,
THH, TC−, TP and TC are all fpqc sheaves. This was proved in the last talk by
reduction to the case of the cotangent complex and will be crucial for us.

We first explain the construction of the BMS filtration for THH on quasi-
syntomic rings. As promised, this is done in two steps. By Theorem 13, if
S ∈ QRSPerfR and i ∈ Z, π2i THH(S) has a functorial finite increasing filtration

with graded pieces ∧jSLS/R[−j], for 0 ≤ j ≤ i in increasing order. In other words,
if S ∈ QRSPerfR, the double speed Postnikov filtration endows the spectrum
THH(S) with a functorial complete descending Z-indexed T-equvariant filtration
Fil∗ THH(S) such that gri THH(S) is canonically an S-module spectrum (with
trivial T-action) admitting a finite increasing filtration with graded pieces given
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by ∧jSLS/R[2i − j], 0 ≤ j ≤ i. This is our BMS filtration on QRSPerfR, and the
end of the first step.

The second step is quasi-syntomic descent. We recalled that THH on QSynop
R

is the unfolding of its restriction to QRSPerfopR . The last paragraph demonstrates
that the double speed Postnikov filtration on THH over QRSPerfopR and the filtra-
tion on its graded pieces unfold to QSynop

R : indeed, wedge powers of the cotangent
complex satisfy descent. Therefore, we see that for any A ∈ QSynR, the spectrum
THH(A) admits a functorial complete descending Z-indexed T-equvariant filtra-
tion Fil∗ THH(A) such that gri THH(A) is canonically an A-module spectrum
(with trivial T-action) admitting a finite increasing filtration with graded pieces

given by ∧jALA/R[2i− j], 0 ≤ j ≤ i.

The same game can be played with Theorem 15, to construct the Nygaard fil-
tration : the sheaf ∆̂− and its filtration N≥∗∆̂− on QRSPerfopR unfold2 to QSynop

R ,
since by Theorem 15, one has, for all S ∈ QRSPerfR and all n,

Nn∆̂S ≃ π2n THH(S)[−2n],

and we just checked that the right hand side unfolds to a sheaf on QSynop.
This unfolding defines (∆̂−,N≥∗∆̂−) on QSynop

R , and one has, for all A ∈
QSynR and all n,

Nn∆̂A ≃ π2n THH(A)[−2n],

as well as a natural identification of E∞-R-algebras ∆̂A/p ≃ L̂ΩA/R.
The same kind of arguments apply to construct the sought after filtrations on

TC−, TP and TC on QSynR : cf. [2, Prop. 7.13].

References
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Identification of the graded pieces

Kęstutis Česnavičius

1. TP for quasiregular semiperfect algebras

We fix a prime number p, recall that an Fp-algebra R is perfect if its absolute
Frobenius endomorphism x 7→ xp is an isomorphism, and consider the following
class of Fp-algebras.

Theorem 1 ([BMS18], 8.8). An Fp-algebra S is quasiregular semiperfect if it
admits a surjection R ։ S from a perfect Fp-algebra R such that the cotangent
complex LS/R is quasi-isomorphic to a flat S-module placed in degree −1.

2The most economic way to do this is to see them as defining a sheaf with values in the
complete filtered derived category of W (R)-modules.
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Remark 2. The perfectness of R ensures that

LS/Fp

∼
−→ LS/R,

so the condition on the cotangent complex does not depend on the choice of R.
Moreover, since the absolute Frobenius of S is surjective, a canonical choice for R
is

S♭ := lim
←−x 7→xp

S.

Example 3. Any quotient of a perfect Fp-algebra by a regular sequence is quasireg-
ular semiperfect. Concretely, S could be, for instance,

Fp[T 1/p∞ ]/(T − 1).

Our goal is to review the following identification, established in [BMS18], §8, of
the homotopy groups of the topological periodic cyclic homology of a quasiregular
semiperfect S:

π∗(TP(S)) ∼= Âcris(S)[σ, σ−1] with deg(σ) = 2,

where Acris(S) is a certain Fontaine ring that will be reviewed in §2 and Âcris(S)
is its completion for the Nygaard filtration. Thus, concretely,

π∗(TP(S)) ∼=

{
Âcris(S) for even ∗,

0 for odd ∗.

Example 4. For perfect Fp-algebras, such as S♭, we have the identification with
the p-typical Witt ring:

Âcris(S
♭) ∼= W (S♭), so also π∗(TP(S♭)) ∼= W (S♭)[σ, σ−1].

The latter identification is already familiar from the earlier talks of the workshop:
to derive it, one analyzes the Tate spectral sequence. This spectral sequence also
gives the vanishing of πodd(TP(S)), so we will assume these facts as known.

In the view of 4, since TP(S) is always a module over TP(S♭), all we need to
discuss is the identification

(1) π0(TP(S)) ∼= Âcris(S).

For this, we will proceed in three steps:

(1) in §2, we will review the construction of the ring Âcris(S);
(2) in §3, we will review the derived de Rham–Witt complex LWΩS/Fp

of S
over Fp and will identify its Nygaard completion as follows:

Âcris(S) ∼= L̂WΩS/Fp
;

(3) in §4, we will conclude by reviewing the identification:

π0(TP(S)) ∼= L̂WΩS/Fp
.
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2. The ring Acris(S)

For a quasiregular semiperfect Fp-algebra S, we consider the following Zp-algebras.

(i) The ring A◦
cris(S) defined as the divided power envelope over (Zp, pZp) of

the composite surjection W (S♭) ։ S♭ ։ S.
(ii) The ring Acris(S) defined as the p-adic completion of A◦

cris(S).

Thus, the kernel of the surjection A◦
cris(S) ։ S is equipped with a divided

power structure that is compatible with the divided power structure on the ideal
pZp ⊂ Zp, and A◦

cris(S) is the initial such W (S♭)-algebra: for every surjection
D ։ T of Zp-algebras whose kernel is equipped with a divided power structure
over Zp and every morphisms a, b that fit into the commutative diagram

W (S♭)

a

��
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽✽

✽✽
✽

$$❏
❏❏

❏❏
❏❏

❏❏
// // S

b

��

A◦
cris(S)

PD/Zp

��
✤
✤
✤

<< <<②②②②②②②②②

D // // T

there exists a unique divided power Zp-morphism indicated by the dashed arrow
that makes the diagram commute. The ring Acris(S) enjoys the analogous universal
property among the p-adically complete D. It follows from the definitions that

Acris(S)/p ∼= A◦
cris(S)/p ∼= PD-envelope/Fp

(S♭ ։ S).

By functoriality, Acris(S) comes equipped with a Frobenius endomorphism ϕ.
The resulting ideals

N≥n(Acris(S)) := ϕ−1(pnAcris(S)) ⊂ Acris(S) for n ≥ 0

form an exhaustive, ϕ-stable filtration of Acris(S), the Nygaard filtration. The
ϕ-stability implies that the Nygaard completion

Âcris(S) := lim
←−n≥0

(
Acris(S)/N≥n(Acris(S))

)

inherits a Frobenius endomorphism from Acris(S).
In the case of a perfect ring, such as S♭, the kernel of the surjection W (S♭) ։ S♭

carries a unique divided power structure, so

A◦
cris(S

♭) ∼= W (S♭) ∼= Acris(S
♭).

Moreover, in this case, the Frobenius ϕ is an isomorphism, so

N≥n(Acris(S
♭)) ∼= pnW (S♭), and hence also Âcris(S

♭) ∼= W (S♭).
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3. The derived de Rham–Witt complex

The argument that relates π0(TP(S)) to Âcris(S) uses the derived de Rham–Witt
complex of S over Fp as an intermediary. To recall the latter, we begin by reviewing
the de Rham–Witt complex using the recent approach of Bhatt–Lurie–Mathew
[BLM18].

For a fixed prime p, consider the commutative differential graded algebras

C• = (C0 d
−→ C1 d1

−→ . . . ) with Ci[p] = 0 for all i

equipped with an algebra endomorphism F : C• → C• such that:

(1) F : C0 → C0 lifts the absolute Frobenius endomorphism of C0/p;
(2) dF = pFd;

(3) F : Ci
∼
−→ d−1(pCi+1) for all i;

(4) the unique additive endomorphism V : C• → C• such that FV = p (whose
existence is ensured by the previous requirement, and which necessarily
also satisfies V F = p) is such that the following map is an isomorphism:

C• ∼
−→ lim
←−n>0

(
C•

Im(V n)+Im(dV n)

)
.

The last requirement implies that each Ci is an inverse limit of pn-torsion abelian
groups, and hence is p-adically complete (the unique limit of a p-adic Cauchy
sequence exists already in each term of the inverse limit). The map F does not
respect the differentials, but the Frobenius endomorphism

ϕ := (piF in degree i) : C• → C•

does. The resulting ideals

N≥n(C•) := ϕ−1(pnC•) ⊂ C• for n ≥ 0

form a separated, exhaustive, ϕ-stable filtration of C•, the Nygaard filtration.

Theorem 5 (Bhatt–Lurie–Mathew). The functor

{C• as above}
C• 7→C0/V C0

−−−−−−−−−→ Fp-algebras

admits a left adjoint

R 7→WΩ•
R/Fp

,

so that

HomF -cdga(WΩ•
R/Fp

, C•) ∼= HomFp-alg.(R,C
0/V C0).

Moreover, for a regular Fp-algebra R, the complex WΩ•
R/Fp

agrees with the

deRham–Witt complex of Deligne–Illusie that was defined and studied in [Ill79].

Remark 6. The last aspect implies that for regular R one has a quasi-isomorphism

Ω•
R/Fp

∼
−→WΩ•

R/Fp
/p.
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Definition 7. The derived deRham–Witt complex LWΩR/Fp
of a simplicial Fp-

algebra R is the value at R of the left Kan extension along the vertical inclusion

{simplicial Fp-algebras}
R 7→ (LWΩR/Fp ,N

≥•)
//

{p-completeE∞-algebras in
the filtered derived ∞-
category of Zp-modules

}

{
polynomial Fp-algebras
of finite type

}� ?

OO

R 7→ (WΩ•
R/Fp

,N≥•)

44❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

of the indicated diagonal functor, and its Nygaard completion L̂WΩR/Fp
is the

completion of LWΩR/Fp
with respect to the filtration N≥•.

Remark 8. Using the left Kan extension, one may analogously define the derived

de Rham complex LΩR/Fp
and its Hodge completion L̂ΩR/Fp

. 6 implies the canon-
ical identification

LWΩR/Fp
/p ∼= LΩR/Fp

and further arguments imply that also

L̂WΩR/Fp
/p ∼= L̂ΩR/Fp

.

For us, the key significance of the derived de Rham–Witt complex comes from
the following relation to the construction Acris discussed in §2.

Theorem 9 ([BMS18], 8.14). For a quasiregular semiperfect Fp-algebra S, there
is a canonical identification

Acris(S) ∼= LWΩS/Fp

that is compatible with the Nygaard filtrations; in particular, one also has

Âcris(S) ∼= L̂WΩS/Fp
.

Proof sketch. One eventually bootstraps the conclusion from the identifications

Acris(S)/p ∼= LΩS/Fp

8
∼= LWΩS/Fp

/p,

the first of which follows from [Bha12], 3.27. A key reduction is to the case of the

Fp-algebra S♭[X
1/p∞

i | i ∈ I]/(Xi | i ∈ I), where I := Ker(S♭ ։ S). �

4. The relation to π0(TP(S))

We fix a quasiregular semiperfect Fp-algebra S and seek to review in 12 the iden-
tification (1). For this, we rely on the following lemmas.

Lemma 10 ([BMS18], 5.13). Letting HP indicate periodic cyclic homology, we
have a natural identification

π0(HP(S/Fp)) ∼= L̂ΩS/Fp
.
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Proof sketch. One combines:

(1) the Tate spectral sequence that relates HP to the Hochschild homology
HH;

(2) the Hochschild–Kostant–Rosenberg theorem that gives the identification

π2i(HH(S/Fp)) ≃
(∧i LS/FP

)
[−i]. �

Lemma 11 ([BMS18], 6.7). We have a natural identification

π0(TP(S))/p ∼= π0(HP(S/Fp)).

Proof sketch. By Bökstedt’s computation, one has the fiber sequence

THH(Fp)[2]→ THH(Fp)→ HH(Fp/Fp).

By base changing to THH(S) over THH(Fp), one obtains the fiber sequence

THH(S)[2]→ THH(S)→ HH(S/Fp).

Upon applying the Tate construction, the latter becomes the fiber sequence

TP(S)[2]
p·σ
−−→ TP(S)→ HP(S/Fp).

Since the odd homotopy groups vanish, one concludes by applying π0. �

Theorem 12 ([BMS18], 8.15). We have a natural identification

π0(TP(S)) ∼= L̂WΩS/Fp

9
∼= Âcris(S).

Proof sketch. The lemmas imply the desired identification modulo p:

π0(TP(S))/p ∼= L̂ΩS/Fp

8
∼= L̂WΩS/Fp

/p ∼= Âcris(S)/p.

To bootstrap from this, one relies on the universal property of Acris(S) via the
identification LWΩS/Fp

∼= Acris(S) of 9. The key intermediate case is that of

Fp[T±1/p∞ ]/(T − 1) ∼= Fp[Qp/Zp],

in which one uses the descent of the group algebra Fp[Qp/Zp] to its counterpart
over the sphere spectrum in order to argue the identification

TP(Fp[Qp/Zp]) ∼= HP(Z[Qp/Zp]). �
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Sup. (4), 12 (1979), 501–661.

http://arxiv.org/abs/1204.6560
http://arxiv.org/abs/1802.03261


930 Oberwolfach Report 15/2018

Topological periodic cyclic homology of smooth Fp-algebras

Elden Elmanto

The goal of this talk is to use theorems from previous talks to deduce certain
calculations of topological periodic cyclic homology of smooth k-algebras, where
k is a perfect field of characteristic p > 0.

These calculations revolve around the motivic filtration constructed in [1] on
the topological periodic cyclic homology of a quasisyntomic ring A, TP(A); see
[1, Theorem 1.12]. In the present situation, being quasisyntomic means that the
cotangent complex of LA/k has tor-amplitude [−1, 0]. We denote by QSynk the
full subcategory of k-algebras spanned by quasisyntomic k-algebras.

The motivic filtration is a descending filtration defined on the spectrum TP(A):

TP(A) · · · ← Fil−1 TP(A)← Fil0 TP(A)← Fil1 TP(A)← · · ·Filn TP(A) · · · .

By construction it agrees with the double-speed Postnikov filtration of spectra
whenever A is quasiregular semiperfect [1, Definition 8.8] — this just means that
the cotangent complex LA/k is a flat module concentrated in homological degree
1 and the Frobenius on A is surjective. The first calculation is an identification of
the associated graded of the motivic filtration.

Theorem 1. Suppose that A is a smooth k-algebra where k is a perfect field of
charecteristic p > 0, then there is an equivalence in, D(W (k)), the derived category
of W (k)-modules

(1) grn TP(A) ≃ RΓcrys(A/W (k))[2n].

In fact, the associated graded gr0 TP(A) identifies with the derived global sec-
tions of a certain homotopy sheaf which we now describe. We have a presheaf of
commutative W (k)-algebras on QSynop

k

π0 TP(−) : QSynk → CAlgW (k).

We endow QSynop
k with the quasisyntomic topology where the covers are faith-

fully flat maps A → B in QSynk such that the cotangent complex LB/A has
tor-amplitude in [−1, 0]. Suppose that A ∈ QSynk, then we consider derived
global sections of this presheaf restricted to QSynA := (QSynk)/A, with respect
to the quasisyntomic topology. This is an E∞-W (k)-algebra which we denote by
RΓsyn(A;π0 TP(−)) and we have an equivalence

gr0 TP(−) ≃ RΓsyn(A;π0 TP(−)).

This is a consequence of quasisyntomic descent for the presheaf of spectra TP(−)
[1, Corollary 3.3]. Specializing (1) to n = 0 we obtain an equivalence of E∞-W (k)-
algebras

RΓsyn(A;π0 TP(−)) ≃ RΓcrys(A/W (k)),

which is [1, Theorem 1.10].
As a result of Theorem 1 the spectral sequence obtained from the motivic

filtration is of the form

E2
i,j = πi+j(gr−j TP(A)) ∼= Hj−i

crys(A/W (k))⇒ TPi+j(A),
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where the differentials are of the form

dr : Eri,j → Eri−r,j+r−1.

One can think of the graded pieces as the “weight” of the motivic filtration
(see §2 for how the Adams operations sort out the weights).
Setting hi,j := πi+j(gr−j TP(A)). The spectral sequence then displays as

−2 −1 0 1 2

h0,−2

h2,0

h3,1

h4,2

h5,3

h1,0

h2,1

h3,2

h4,3

h0,−1h1,−1

h0,0

h1,1

h2,2

h3,3

h0,1

h1,2

h2,3

h0,2

h1,3

In the spectral sequence displayed above, the divided Bott element discussed in [2,
Section 4] lies in the term h0,1 with total degree 2. We call this element σ. The
next theorem states that the motivic filtration splits after inverting p and, thus,
the spectral sequence degenerates at the E2-page. More precisely:

Theorem 2. Suppose that A is a smooth k-algebra where k is a perfect field of
charecteristic p > 0, then we have an equivalence of E∞-W (k)-algebras

TP(A)[ 1p ] ≃ RΓcrys(A/W (k))[ 1p ][σ, σ−1]

where |σ| = 2.

The proof of this theorem will exploit the fact that the Adams operations acts
by different eigenvalues on each of the associated graded pieces.

1. Proof of Theorem 1

Recall that, by [3], the crystalline cohomology of a smooth k-algebra A can
be computed as the cohomology of the de Rham-Witt complex WΩA/k. We first
claim that

Proposition 3. For any smooth k-algebra A, the commutative W (k)-algebra
WΩA/k computes the derived global sections of the presheaf π0 TP(−)|QSynA

.
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Proof. According to [1, Theorem 8.15], for any quasiregular semiperfect k-algebra
A, we have an equivalence of commutative W (k)-algebras

(2) L̂WΩA/k ≃ π0 TP(A),

where L̂WΩA/k is the Nygaard completed derived de Rham-Witt complex. By
construction, this is the value on A of the left Kan extension of the de Rham-
Witt complex along the inclusion of polynomial k-algebras to QSynA, and then
completed with respect to the Nygaard filtration; see [1, Section 8.1] for details.
We claim two properties about the derived de Rham-Witt complex:

(1) the presheaf on QSynop
k ,

L̂WΩ−/k : QSynk → D(W (k)),

is a sheaf for the quasisyntomic topology, and

(2) the restriction of L̂WΩ−/k to SmAffk agrees with WΩ(−)/k.

Let us prove the proposition assuming these two properties. Let Aperf be the
colimit

A
φ
→ A

φ
→ A · · · ,

where φ is the Frobenius. Then Aperf is quasiregular semiperfect and furthermore
the map A → Aperf is a quasisyntomic cover; the map is faithfully flat using the
characterization of regularity via the Frobenius (for a general result see [4], but
this fact is an easier exercise in this setting). With this, we get the following string
of equivalences in CAlg(D(W (k))):

RΓsyn(A, π0 TP(A)) ≃ lim
∆
π0 TP(A⊗A•

perf )

≃ lim
∆
L̂WΩ

A
⊗A•

perf /k

≃ L̂WΩA/k

≃ WΩA/k.

We now prove the first of the claimed properties of L̂WΩA/k. Taking its mod-p
reduction gives an equivalence [1, Theorem 8.14.5] in D(k)

L̂WΩA/k/p ≃ L̂ΩA/k.

where the right hand side is the Hodge completed derived de Rham complex, defined
by an analogous Kan extension and completion procedure for the deRham complex.

Since L̂WΩA/k is p-complete for all A ∈ QSynk, it suffices to check descent after

reduction mod-p and thus we need to check descent for the presheaf ̂LΩ(−)/k.
This is a consequence of quasisyntomic descent for the cotangent complex, and its
exterior powers [1, Theorem 3.1].

To check the second property, we recall that, Zariski-locally, the structure map

of a smooth k-algebra A is of the form k → k[x1 · · · , xn]
g
→ A where g is étale.

Since the Nygaard completed derived deRham-Witt complex has Zariski descent
and its value agrees with the de Rham-Witt complex on polynomial k-algebras, it
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suffices to check that the derived deRham-Witt satisfies étale base change. This
can again be checked after reduction mod p. �

Proposition 3 proves the case n = 0 of Theorem 1. To obtain Theorem 1, we
use the periodicity of TP(A) [1, Section 6] to deduce that

grn TP(A) ≃ gr0 TP(A)[2n],

where the equivalence is given by multiplication by σn.

2. Proof of Theorem 2

Since any k-algebra is p-complete, we have that THH(A) ≃ A⊗T
∧
p . Now, T∧

p ≃
K(Zp, 1) and so its space of automorphisms identifies with the units of ΩK(Zp, 1),
i.e., the group Z×

p . Each ℓ ∈ Z×
p , then defines an Adams operation

(3) ψℓ : THH(A) ≃ A⊗T
∧
p

(idA)⊗ℓ·

→ THH(A) ≃ A⊗T
∧
p ,

which is a map of E∞-ring spectra, but is not T-equivariant for the usual T-action
on THH(A).

We can construct a version of the Adams operation which is T-equivariant
after “speeding up” the T-action on the target by multiplication by ℓ. Indeed,
consider the self-map mℓ : T → T; z 7→ zℓ. For any T-spectrum E we define
the T-spectrum Ereparmℓ where the underlying spectrum is E, and the T-action is
informally described by

T⊗ E
mℓ⊗id
−→ T⊗ E

act
−→ T⊗ E.

More precisely, restriction along mℓ : T → T induces a functor (mℓ)
∗ : SpBT →

SpBT. The T-spectrum Ereparmℓ is defined, as a T-spectrum, as (mℓ)
∗E.

In the case of THH(A), we get the following more explicit description. we
denote by (T∧

p )reparm the p-complete circle equipped with an action of T “sped up
by ℓ”; the point now is that the map mℓ : T∧

p → (T∧
p )reparmℓ is T-equivariant and

thus the map (3)

ψℓ : THH(A)
(id)⊗ℓ·

−→ THH(A)reparmℓ ≃ A⊗(T∧
p )

reparm
ℓ ,

is T-equivariant.
We have the following observation

Lemma 4. Let Spp denote the ∞-category of p-complete spectra and ℓ ∈ Z×
p .

Then the functor (mℓ)
∗ : SpBT

p → SpBT

p is an equivalence of ∞-categories.

Proof. For any p-complete spectrum E, the T-action factors uniquely through a

T∧
p -action, hence we are left to prove that the induced functor (mℓ)

∗ : Sp
BT

∧
p

p →

SpBT
∧
p is an equivalence of ∞-categories. Since ℓ acts invertibly on T∧

p , the claim
follows.

�



934 Oberwolfach Report 15/2018

As a result, THH(A)reparmℓ ≃ THH(A) as T-spectra and thus we get an induced
operation

ψℓ : TP(A)
(ψℓ)tT

−→ (THH(A)reparmℓ)tT ≃ TP(A).

Proposition 5. [1, Proposition 9.14] The Adams operation ψℓ acts on grn TP(A)
by multiplication with ℓn.

In particular if we invert p, then we have an isomorphism of Q-vector spaces

(π∗ grn TP(A)[ 1p ])ψ
ℓ−ℓn ∼= π∗ grn TP(A)[ 1p ]. To prove Theorem 2 we consider the

diagram of spectra

(4)

⊕n∈Z(TP(A)[ 1p ])ψ
ℓ−ℓn TP(A)[ 1p ]

⊕n∈Z(Filn TP(A)[ 1p ])ψ
ℓ−ℓn

⊕n∈Z(grn TP(A)[ 1p ])ψ
ℓ−ℓn ≃ ⊕n∈Z(grn TP(A)[ 1p ]) ,

where, for any spectrum E with an action of ψℓ, we define

Eψ
ℓ−ℓn := fib(E

ψℓ−ℓn

→ E).

Since π∗ TP(A)[ 1p ] is a graded Q-vector space, the top horizontal map induces an

injection on homotopy groups ⊕n∈Z(π∗ TP(A)[ 1p ])ψ
ℓ−ℓn →֒ π∗ TP(A)[ 1p ]. It then

suffices to prove that vertical arrows are equivalences of spectra, whence we have
a map of filtered Q-vector spaces which is an isomorphism on graded pieces. The
multiplicative properties of the filtration [1, Theorem 1.12.1] gives us the conclu-
sion of Theorem 2.

To check the claimed equivalence, we consider the action of the Adams operation
ψℓ on TP(A)[ 1p ] as endowing it with the structure as a module over S[ψℓ]1. The

functoriality of the Adams operations tells us that the cofiber sequence of spectra

Filn TP(A)[ 1p ]→ TP(A)[ 1p ]→
TP(A)

Filn TP(A)
[ 1p ],

is a cofiber sequence of S[ψℓ]-modules. We first claim that ( TP(A)
Filn TP(A) [

1
p ])ψ

ℓ−ℓn is

contractible. Indeed, the we have a filtration on TP(A)
Filn TP(A) [

1
p ] given by

{
Filk TP(A)

Filn TP(A)
[ 1p ]}k>n.

1This means the spherical monoid algebra of the free monoid on one generator ψℓ. In other
words, taking Spec of this derived ring gives us the “flat affine line” over the sphere spectrum.
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Where the associated graded are {grk TP(A)[ 1p ]}k>n. Proposition 5 tells us that

the action of ψℓ−ℓn on grk TP(A)[ 1p ] is homotopic to the action of ℓk−ℓn and so is

invertible. An induction argument shows that the action of ψℓ−ℓn on TP(A)
Filn TP(A) [

1
p ]

is thus invertible and so we have an equivalence of fibers

Filn TP(A)[ 1p ])ψ
ℓ−ℓn → (TP(A)[ 1p ])ψ

ℓ−ℓn ,

which tells us that the top vertical arrow of (4) is an equivalence. A similar
argument applied to the cofiber sequence

Filn+1 TP(A)[ 1p ]→ Filn TP(A)[ 1p ]→ grn TP(A)[ 1p ]

tells us that the bottom vertical arrow is an equivalence.
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Fachbereich Mathematik und Informatik
Freie Universität Berlin
Arnimallee 3
14195 Berlin
GERMANY

Prof. Dr. Peter Scholze

Mathematisches Institut
Universität Bonn
Endenicher Allee 60
53115 Bonn
GERMANY

Martin Patrick Speirs

Department of Mathematics
University of Copenhagen
Universitetsparken 5
2100 København
DENMARK

Joseph M. Stahl

Department of Mathematics
University of California, Berkeley
1062 Evans Hall
Berkeley CA 94720-3840
UNITED STATES



940 Oberwolfach Report 15/2018

Jan Steinebrunner

Mathematical Institute
Oxford University
Woodstock Road
Oxford OX2 6GG
UNITED KINGDOM

Yuri Sulyma

Department of Mathematics
The University of Texas at Austin
1 University Station C1200
Austin, TX 78712-1082
UNITED STATES

Prof. Dr. Goncalo Tabuada

Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139-4307
UNITED STATES

Prof. Dr. Vadim Vologodsky

Department of Mathematics
University of Oregon
Eugene, OR 97403-1222
UNITED STATES

Dr. Guozhen Wang

Shanghai Center for Mathematical
Sciences
Fudan University
Jiangwan Campus
2005 Songhu Road
Shanghai Shi 200 438
CHINA

Allen Yuan

Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139-4307
UNITED STATES

Dr. Inna Zakharevich

Department of Mathematics
Cornell University
320 Tower Road
Ithaca, NY 14850
UNITED STATES

Prof. Dr. Yifei Zhu

Department of Mathematics
Southern University of Science and
Technology
Huiyuan 3-419
Shenzhen, Guangdong 518 055
CHINA


	References
	1. Overview
	2. The Tate construction
	2.1. Equivariant objects
	2.2. Norm maps
	2.3. The Tate construction
	3. Cyclotomic spectra
	References
	1. What are genuine cyclotomic spectra?
	2. The functor CycSpgenpCycSpp
	3. The equivalence
	References
	1. Construction of the Tate diagonal
	2. Properties of the Tate diagonal
	3. Relation to Segal's conjecture
	References
	References
	1. The dual Steenrod algebra
	2. The Dyer-Lashof operations
	3. Dyer-Lashof operations on the dual Steenrod algebra
	References
	References
	1. Unstable `39`42`"613A``45`47`"603ATHH
	2. Stable -categories and `39`42`"613A``45`47`"603ATHH
	References
	References
	References
	Goodwillie calculus
	The Goodwillie derivative
	Notation
	A categorical variant
	The bilinear obstruction to linearity
	Simplicial review
	Proof of Theorem 3
	Further vanishing results
	Infinitesimal extensions

	Outline of the proof
	References
	1. Motivation
	2. THH of log rings
	3. Log differential graded rings
	4. The cofiber sequence for THH(A,A intersect K^x )
	5. The log differential graded ring of the homotopy groups of THH(A,A intersect K^x) with Z/p coefficients
	5.1. Definition of the morphism
	5.2. Statement of the Theorem
	5.3. Isomorphism of graded A-algebras (in the wildly ramified case)
	5.4. Compatibility with log differential graded ring structure; formula for dk

	References
	1. The log de Rham–Witt complex
	1.1. Witt vectors
	1.2. Log rings
	1.3. Log Witt complexes and log de Rham–Witt
	2. The log de Rham–Witt complex of (A, M) modulo p
	2.1. Degree zero
	2.2. Degrees 2
	2.3. Degree 1
	2.4. A generalization to smooth schemes over A
	References
	References
	References
	References
	1. The quasi-syntomic site
	1.1. Quasi-syntomic rings
	1.2. Quasi-regular semi-perfect rings
	2. Construction of the filtrations on `39`42`"613A``45`47`"603ATHH and its variants
	2.1. Computations for quasi-regular semi-perfect rings
	2.2. The filtrations
	References
	1. `39`42`"613A``45`47`"603ATP for quasiregular semiperfect algebras
	2. The ring Acris(S)
	3. The derived deRham–Witt complex
	4. The relation to 0(`39`42`"613A``45`47`"603ATP(S))
	References
	1. Proof of Theorem 1
	2. Proof of Theorem 2
	References





















