
Mathematisches Forschungsinstitut Oberwolfach

Report No. 19/2018

DOI: 10.4171/OWR/2018/19

Mini-Workshop: Superexpanders and Their Coarse
Geometry

Organised by
Anastasia Khukhro, Neuchâtel

Tim de Laat, Münster

Mikael de la Salle, Lyon

15 April – 21 April 2018

Abstract. It is a deep open problem whether all expanders are superex-
panders. In fact, it was already a major challenge to prove the mere existence
of superexpanders. However, by now, some classes of examples are known:
Lafforgue’s expanders constructed as sequences of finite quotients of groups
with strong Banach property (T), the examples coming from zigzag prod-
ucts due to Mendel and Naor, and the recent examples coming from group
actions on compact manifolds. The methods which are used to construct
superexpanders are typically functional analytic in nature, but also rely on
arguments from geometry and combinatorics. Another important aspect of
the study of superexpanders is their (coarse) geometry, in particular in order
to distinguish them from each other.

The aim of this workshop was to bring together researchers working on
superexpanders and their coarse geometry from different perspectives, with
the aim of sharing expertise and stimulating new research.

Mathematics Subject Classification (2010): 05C10, 05C12, 20F65, 46B85.

Introduction by the Organisers

Expanders are sequences of finite highly connected sparse graphs with an increas-
ing (and unbounded) number of vertices. It is a non-trivial fact that expanders
exist, but by now several constructions, coming from different areas of mathemat-
ics, are known. Expanders have found striking applications in various areas of
mathematics and in theoretical computer science.

A coarse embedding of a metric space into another one is an embedding that
preserves the large-scale metric structure. By the seminal and by now well-known
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result of Gromov, we know that expanders do not coarsely embed into a Hilbert
space, which shows that even when considering their large-scale geometry, they
are incompatible with Euclidean structure.

Recall that a Banach space is superreflexive if and only if it admits an equivalent
uniformly convex norm. A superexpander is a sequence of finite d-regular graphs
Gn = (Vn, En) (n ∈ N) such that limn→∞ |Vn| = ∞ and such that for every
superreflexive Banach space X there exists a constant γ > 0 such that for all
n ∈ N and every f : Vn → X , the inequality

1

|Vn|2

∑

v,w∈Vn

‖f(v)− f(w)‖2 ≤
γ

d|Vn|

∑

v∼w

‖f(v)− f(w)‖2

holds. As a consequence, superexpanders do not coarsely embed into any su-
perreflexive Banach space. Note that the above condition, known as a Poincaré
inequality, is equivalent to such a condition with the squares of the norms replaced
by a pth power for any 1 ≤ p <∞.

It is a fundamental, deep open problem whether all expanders are superex-
panders. By now, some classes of examples of superexpanders are known. In his
seminal work on the Baum-Connes conjecture, Lafforgue introduced strong Ba-
nach property (T) and proved that certain sequences of finite quotients of groups
with this property are superexpanders. Superexpanders coming from zigzag prod-
ucts were constructed in the groundbreaking work of Mendel and Naor. In recent
years, a new source of superexpanders, constructed from group actions on com-
pact manifolds, has been investigated, by Sawicki, by de Laat and Vigolo, and by
Fisher, Nguyen and van Limbeek.

To prove that an expander is a superexpander, one typically employs methods
from functional analysis, and expertise in the geometry of Banach spaces appears
to be inevitable. So far, there is no theory or framework that allows us to consider
the aforementioned classes of examples of superexpanders in a unified way, and
the problem whether all expanders are superexpanders remains wide open.

An important problem that is intimately related to the superexpander prob-
lem is the classification of expanders (and superexpanders) up to coarse equiv-
alence. A priori, it could very well be the case that different constructions of
(super)expanders yield equivalent objects, and distinguishing between expanders
is a new and challenging topic. Only in 2014, Mendel and Naor initiated the
study of non-equivalence of expanders. One of the many fruitful discussions dur-
ing the mini-workshop was about the question of what the right notion of coarse
equivalence (or coarse distinction) of expanders is.

The aim of this mini-workshop was to bring together researchers working on
superexpanders and their coarse geometry from different perspectives, in order to
share expertise and explore new directions of research. The workshop consisted
of five lectures (each 60 minutes), which covered some of the recent and earlier
breakthroughs in the topic, 19 research talks (each 50 minutes), and several very
stimulating discussion sessions. Additionally, there was also much time for infor-
mal discussions.
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It is the pleasure of the organizers to thank all participants for their lectures,
research talks and very fruitful contributions to the discussions.
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Superexpanders from random graphs and actions on compact spaces . . . . 1134

Manor Mendel
Expanders and coarse non-universality of CAT(0) spaces . . . . . . . . . . . . . 1135

Federico Vigolo
Coarse geometry of approximating graphs: discrete fundamental group . . 1136

Tullia Dymarz
BiLipschitz vs Quasi-isometric equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . 1138

Thang Nguyen (joint with David Fisher and Wouter van Limbeek)
Rigidity of warped cones’ coarse geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 1141

Maria Paula Gomez-Aparicio
The Baum-Connes conjecture and Oka’s principle . . . . . . . . . . . . . . . . . . . 1144

Damian Sawicki
Warped cones violating the coarse Baum–Connes conjecture . . . . . . . . . . . 1147

Cornelia Druţu
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Abstracts

Asymptotic structure and nonlinear geometry of Banach spaces

Florent Baudier

1. Super-expander graphs and geometry of Banach spaces

Problem 1. Let Y be an arbitrary super-reflexive Banach space and (Gn)n∈N be a
sequence of expander graphs. Is it true that (Gn)n∈N does not equi-coarsely embed
into Y ?

Ozawa’s localization technique [17] (see also [13]) shows that a large class of
super-reflexive Banach spaces cannot equi-coarsely contain sequences of expander
graphs.

Theorem 2. Let Y be a Banach space and (Gn)n∈N be a sequence of expander
graphs. If the unit ball of Y uniformly embeds into Hilbert space then (Gn)n∈N

does not equi-coarsely embed into Y .

We refer to [3, Chapter 9] for Banach spaces satisfying the condition in Theorem
2. In particular, Theorem 2 applies to all the spaces below since one can construct
Mazur-type maps.

(1) ℓp and Lp[0, 1] for p ∈ [1,∞) [12].
(2) noncommutative Lp spaces for p ∈ [1,∞) [19].
(3) Banach spaces with an unconditional basis and non-trivial cotype [15].
(4) Banach lattices with non-trivial cotype [4].

Therefore, Problem 1 has a positive answer for super-reflexive Banach lattices.
The following Banach spaces do not satisfy the condition in Theorem 2.

(1) c0 (more generally Banach spaces with trivial cotype) [5]
(2) non-reflexive Banach spaces with non-trivial type [18].

Problem 1 would follow from the following long-standing open problem in non-
linear Banach space theory.

Problem 3. Let X be a separable super-reflexive Banach space. Is the unit sphere
of X uniformly homeomorphic to the unit sphere of ℓ2?

The problem of the coarse minimality of Hilbert space shares some similitudes
with Problem 1 since the existence of Mazur-type maps are pivotal as well. Using
the Mazur maps, Nowak [14] proved that ℓ2 coarsely embeds into ℓp for all p ∈
[1,∞). This result was generalized by Ostrovskii [16].

Theorem 4. Let Y be a Banach space with an unconditional basis such that its
unit sphere is uniformly homeomorphic to the unit sphere of ℓ2. Then ℓ2 coarsely
embeds into Y .

The author was partially supported by the National Science Foundation under Grant Number
DMS-1800322.
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It is unclear whether the unconditionality assumption is needed. Whether
Hilbert space coarsely embeds into every infinite-dimensional Banach space was
recently solved negatively in [2].

Theorem 5. Hilbert space does not coarsely embed into Tsirelson’s original space
T ∗.

T ∗ is a reflexive Banach space with an unconditional basis and trivial cotype.
It follows from Theorem 4 that Hilbert space coarsely embeds into every super-
reflexive Banach space with an unconditional basis. The following problem seems
challenging.

Problem 6. Is there a super-reflexive Banach space that does not coarsely contain
Hilbert space?

By Gowers’ dichotomy, such a space must be hereditarily indecomposable. The
only known super-reflexive Banach space that is hereditarily indecomposable is
Ferenczi’s space [6]. A key concept in the proof of Theorem 5 is the concept of
asymptotic structure of Maurey, Milman, and Tomczak-Jaegermann [11], and is
touched upon in the second part of this report. It would certainly be interesting to
exhibit new subclasses of super-reflexive Banach spaces that cannot equi-coarsely
contain sequences of expander graphs.

Problem 7. Let Y be a weak Hilbert space and (Gn)n∈N be a sequence of expander
graphs. Is it true that (Gn)n∈N does not equi-coarsely embed into Y ?

Problem 8. Let Y be an asymptotically Hilbertian Banach space and (Gn)n∈N

be a sequence of expander graphs. Is it true that (Gn)n∈N does not equi-coarsely
embed into Y ?

2. Stability of reflexivity under smoothness assumptions

In this second part we discuss to what extend reflexivity is preserved under non-
linear embeddability. Heinrich and Mankiewicz [7] proved that if a Banach space
X bi-Lipschitzly embeds into a reflexive Banach space Y then X linearly embeds
into Y . Therefore reflexivity is preserved under bi-Lipschitz embeddability. A
version of Ribe’s rigidity theorem [20] says that if a Banach space X coarse Lip-
schitzly embeds into a Banach space Y then X is (crudely) finitely representable
into Y , and thus super-reflexivity is preserved under coarse Lipschitz embeddabil-
ity. However, in 1984 Ribe [21] showed that the Banach spaces

(∑∞
n=1 ℓ1+ 1

n

)
ℓ2

and
(∑∞

n=1 ℓ1+ 1
n

)
ℓ2
⊕ ℓ1 are uniformly homeomorphic (and in particular coarse

Lipschitzly embeddable into each other). It follows that reflexivity is not stable
under coarse Lipschitz embeddability. It turns out that reflexivity can be stable
under nonlinear embeddability if we impose some smoothness condition. For a
Banach space X the modulus of asymptotic uniform smoothness ρ̄X is given for
t > 0 by

ρ̄X(t) = sup
x∈SX

inf
Y ∈cof(X)

sup
y∈SY

‖x+ ty‖ − 1,
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where cof(X) denotes the collection of all closed finite codimensional subspaces. X
is called asymptotically uniformly smooth if limt→0+ ρ̄X(t)/t = 0, and if ρ̄X(t) ≤
ctp for some c > 0 and p ∈ (1,∞), we say that X is asymptotically uniformly
smooth of power type p. It is a deep result of Knaust, Odell and Schlumprecht
[10] that every separable asymptotically uniformly smooth Banach space admits
an equivalent norm that is asymptotically uniformly smooth of power type p.

We now define a collection of inequalities that are crucial for our purposes. Let
dH be the Hamming metric on [N]k (the k-subsets of N).

Definition. Let p ∈ (1,∞]. We say that a metric space (Y, dY ) has property KH
p

if there exists C > 0 such that for every k ∈ N and every f : ([N]k, dH)→ Y with
Lip(f) <∞, there exists M ∈ [N]ω such that

(1) sup
m̄,n̄∈[M]k

dY (f(m̄), f(n̄)) ≤ CLip(f)k1/p,

where we adopt the convention k1/∞ = 1.

For Banach spaces, property KH
p is easily seen to imply reflexivity. Indeed,

assume by contradiction that Y is not reflexive. Then, by James’ characterization
of reflexive spaces [8], there exists a sequence (yn)

∞
n=1 ⊂ BY such that for all k ≥ 1

and m̄ = {m1,m2, . . . ,m2k} ∈ [N]2k,

(2)
∥∥∥

k∑

i=1

ymi −
2k∑

i=k+1

ymi

∥∥∥ ≥
k

2
.

For every k ∈ N and m̄ = {m1, . . . ,mk} ∈ [N]k, define ϕk(m̄) =
∑k

i=1 ymi . Then
ϕk : [N]

k → Y is clearly 2-Lipschitz with respect to dH, and by property KH
p there is

M ∈ [N]ω such that diam(ϕk([M]k)) ≤ 2Ck1/p for some universal constant C > 0.
Since by (2) diam(ϕk([M]k)) ≥ k/2, we obtain a contradiction.

Kalton and Randrianarivony [9] showed that every separable reflexive Banach
space that is asymptotically uniformly smooth of power type p satisfies property
KH

p . The following consequence was observed in [1].

Theorem 9. Let Y be a reflexive Banach space that admits an equivalent norm
that is asymptotically uniformly smooth. If a Banach space X coarse Lipschitzly
embeds into Y then X is reflexive.

The core of the proof of Theorem 5 is to show that T ∗ satisfy property KH
∞. The

proof can be upgraded to show that every reflexive asymptotic-c0 Banach space
also satisfy property KH

∞.

Definition. A Banach space X is said to be an asymptotic-c0 Banach space if for
all k ≥ 1, and all ε > 0

∃X1∈cof(X), ∀x1 ∈ SX1
, ∃X2 ∈ cof(X), ∀x2 ∈ SX2

, . . . , ∃Xk∈cof(X), ∀xk∈ SXk

and for all (ai)
k
i=1 ⊂ R,

1

(1 + ε)
sup

i=1,...,k
|ai| ≤

∥∥∥
k∑

i=1

aixi

∥∥∥ ≤ (1 + ε) sup
i=1,...,k

|ai|.
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Asymptotic-c0 Banach spaces are extremely smooth in the sense that they are
asymptotically uniformly smooth of power type p for every p ∈ (1,∞). In [2] the
following theorem was proved.

Theorem 10. Let Y be a reflexive asymptotic-c0 Banach space. If a Banach space
X coarsely embeds into Y then X is reflexive.

Theorem 9 and Theorem 10 exhibit an interesting phenomenon and shed some
light on the subtle tension between the degree of smoothness and the degree of
faithfulness of the embedding needed in order to preserve reflexivity.
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Superexpanders from zigzag products

Assaf Naor

In [1] the zigzag product of graphs was introduced as a way to combine two graphs
so as to obtain a larger graph while maintaining control of both its degree and its
spectral gap. Using the zigzag product, an iterative procedure was devised in [1]
to construct arbitrarily large bounded degree expander graphs. In [2] it was shown
how this approach can be used to control nonlinear spectral gaps, and the iterative
procedure of [1] was adapted to construct super-expanders. In [3] it was shown
that this approach yields expanders relative to certain ”wild CAT(0) spaces and
random graphs. This tutorial-style presentation is an introduction to the zigzag
product and the associated iterative construction of expanders relative to certain
metric spaces. It explains geometric and analytic issues that need to be overcome
in order to implement this strategy in the absence of tools from linear algebra,
and presents some open problems.
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Existence of superexpanders, after Vincent Lafforgue

Mikael de la Salle

The aim of this lecture was to present Lafforgue’s proof of the existence of super-
expanders, that is a sequence of bounded degree graphs which are expanders with
respect to every superreflexive Banach spaces. This statement is a very particular
case of the results from [4, 5], so I took the opportunity to simplify as much as
possible the statements and proofs.

Let p be a prime number (for example 2). For every integer n ≥ 1, denote by
Fpn the field with pn elements, consider tn ∈ F∗

pn a generator of the multiplicative
group of Fpn and denote by Gn the Cayley graph of SL3(Fpn) with respect to the
elementary matrices ∪i6=j{Ei,j(1), Ei,j(tn)}.
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Theorem. [4,5] The sequence Gn = (Vn, En) is an expander with respect to every
uniformly convex Banach space X (and even every Banach space not containing
uniformly the ℓn1 ’s): there is γ > 0 such that, for every n and every f : Vn → X,

inf
x∈X

(
1

|Vn|

∑

s∈Vn

‖f(s)− x‖2

) 1
2

≤ γ


 1

|En|

∑

(s,t)∈En

‖f(s)− f(t)‖2




1
2

.

The inequality in the theorem is called X-valued Poincaré inequality, as it can
be written as ‖f‖Lp(V ;X)/constants ≤ γ‖∇f‖Lp(E,V ).

For the non-experts of Banach space geometry, let me simply recall that not
containing uniformly the ℓn1 ’s has many equivalent forms and names: it is the same
as having type > 1, being B-convex, K-convex etc.

Consider Γn, the subgroup of SL3(Fp[t]) whose reduction modulo tp
n

− 1 is the
identity, that is the kernel of the reduction morphism

SL3(Fp[t])→ SL3(Fp[t]/(t
pn

− 1)).

One can regard Γn as a lattice in the locally compact group G = SL3(Fp((t
−1)))

over the locally compact field of Laurent series Fp((t
−1)). One shows (induction)

that, for a fixed Banach space X , the sequence Gn is an expander with respect to
X if and only if the sequence of representations λn,X of G on L2(G/Γn;X) has
uniform spectral gap in the sense that there is a compact subset Q ⊂ G and ε > 0
such that for every n, and every f ∈ L2(G/Γn;X),

(1) sup
g∈Q
‖λn,X(g)f − f‖ ≥ ε inf

x∈X
‖f − x‖.

So far no assumption on X is made, and it is likely that (1) (equivalently the
Theorem) holds for every Banach space X which does not contains the family
(ℓn∞)n uniformly, see Question d in [5]. However the way (1) is proven is by
proving another stronger form of spectral gap, namely that there is a probability
measure µ on G such that, for every f ∈ L2(G/Γn;X) of mean 0,

(2) ‖

∫
λn,X(g)fdµ(f)‖ ≤

1

2
‖f‖.

By the triangle inequality, (2) implies (1). These two forms of spectral gap are
equivalent when X is uniformly convex ([3, Proposition 5.1] or [2, Theorem 1.1]),
but (2) cannot hold if X contains the ℓn1 ’s uniformly. Indeed, otherwise by duality
it would also hold for ℓ∞, which would imply that the Theorem holds from ℓ∞.
This is clearly impossible as ℓ∞ contains isometrically every finite (even separable)
metric space.

To prove (2), we can forget about the specific form of the λn,X and work with
an arbitrary isometric representation without invariant vectors of G on a space
not containing uniformly the ℓn1 ’s. The argument is too long to be explained in
details in this extended abstract, but let me at least say that it is obtained in two
steps.

Step 1: Understanding representations of the maximal compact subgroup
K = SL3(Fp[[t

−1]]) of G. This is done by exploiting the existence of large nipoltent
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(upper-triangular) subgroups of K, and by using Bourgain’s version [1] of the
Hausdorff-Young inequality for X-valued harmonic analysis of abelian groups to-
gether with ideas from the fast Fourier transform [5].

Step 2: Applying Step 1 to the restriction to K of the representation of G,
and using a thorough and very fast exploration of the Weyl chamber K\G/K first
obtained in [4].
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Aut(F5) has property (T )

Piotr W. Nowak

(joint work with M. Kaluba and N. Ozawa)

Property (T ) is a fundamental rigidity property for groups. It was introduced by
Kazhdan in 1966. The simplest way to define it is through one of its characteri-
zations: a finitely generated group G has property (T ) if every action of G on a
Hilbert space by affine isometries has a fixed point.

Property (T ) is now known to hold for a few classes of groups, nevertheless it
should certainly be considered a rare property. There are two main reasons behind
property (T ). The first is an algebraic structure of the group rigid enough to force
this kind of behavior. This is the case for SLn(Z), n ≥ 3, and more generally
for higher rank Lie groups and their lattices. The second is a spectral property,
that can be described as possesing positive curvature with respect to Euclidean
geometry. More precisely, the condition is that the link of a generating set, or of a
contractible simplicial complex on which G acts cocompactly, has the first positive
eigenvalue greater than 1/2. This method yields property (T ) for automorphism

groups of thick buildings, such as Ã2 buildings, and certain random hyperbolic
groups in the Gromov density model. We refer to [1] for an excellent overview of
the topic.

The aim of our work is to prove property (T ) for a new group. Denote by
Aut(Fn) the group of automorphisms of the free group Fn on n generators, and by
Out(Fn) its quotient by the subgroup of inner automorphisms. The abelianization
α : Fn → Zn induces a surjection

α∗ : Aut(Fn)→ GLn(Z),
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which factors through Out(Fn). For n = 2, the map Out(F2) → GL2(Z) is in
fact an isomorphism. The special automorphism group SAut(Fn) ⊆ Aut(Fn) is
the preimage α−1

∗ (SLn(Z)). This subgroup has index 2 in Aut(Fn) and has a
particularly convenient set of generators within Aut(Fn): it is generated by the
Nielsen transformations. We fix this generating set for the group SAut(Fn). Our
main result is the following

Theorem 1 ([4]). The group SAut(F5) has property (T ) with Kazhdan constant
κ ≥ 0.176.

The proof relies on the following characterization of property (T ) due to Ozawa.

Theorem 2 ([6]). A finitely generated group has property (T ) if and only if there
exists a finite collection ξi ∈ RG and κ > 0 such that

(1) ∆2 − κ∆ =

n∑

i=1

ξ∗i ξi.

The condition (1) can easily be translated into the existence of a positive definite
matrix P , indexed by some finite subset E ⊆ G, such that

(2) ∆2 − κ∆ = xPxT ,

where x = [δg1 , . . . , δgn ] and the gi run through the elements of E.
From now on we fix E to be the ball of radius 2 in the word length metric

on G. The strategy to prove Theorem 1 is to find a solution of the equation (2)
with the assistance of a computer. There are solvers appropriate for semidefinite
programming, i.e. software designed to solve systems of linear equations such as
(2), with the restriction that P is positive semidefinite. This approach was used
successfully to reprove property (T ) for SLn(Z) by Netzer and Thom for n = 3
[5], Fujiwara and Kabaya for n = 3, 4 [2] and Kaluba and Nowak for n = 3, 4, 5
[3]. In these cases the new proof included new, drastically improved, estimates of
Kazhdan constants for SLn(Z), n = 3, 4, 5.

In the case of Aut(F5) the ball B(e, 2) has 4 641 elements, and consequently
the matrix P depends on 10 771 761 variables, too many for a solver to handle. In
order to simplify the problem and reduce the number of variables we symmetrize
the problem. Consider an action of a finite group Σ of automorphisms of G which
preserves the set E and the Laplacian ∆. We show that if a solution P of (2)
exists then there exists a solution P invariant under the action of Σ, and thus
it suffices to find such a Σ-invariant P . This significantly reduces the number of
variables in the matrix, however poses a new problem: solvers are not able to
handle group-invariant matrices.

A classical theorem of Wedderburn implies that the algebra of Σ-invariant ma-
trices is isomorphic to a direct sum of matrix algebras. The next step is thus a
construction of an explicit isomorphism

M
Σ
E ≃ ⊕π∈Σ̂1dimπ ⊗Mmπ ,

where Σ̂ is the unitary dual of Σ and mπ denotes the multiplicity of π ∈ Σ̂. For
G = Aut(F5) we choose Σ = Z2 ≀ S5 and the above isomorphism is constructed
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using a system of minimal projections. The resulting reduction in complexity is
indeed significant: from the previously mentioned 10 771 761 variables to 13 232
variables in 36 blocks. Then using a solver we obtain a solution P with accuracy
of the order 10−9 and κ = 1.2.

The last and crucial step is the certification of the solution. The solution pro-
vided by the solver is by definition approximate. However, since the solution is
obtained with very good accuracy an additional argument, based on the fact that
the Laplacian ∆ is an order unit for self-adjoint elements of the augmentation
ideal in RG, allows to deduce the existence of a mathematically precise solution.
This argument turns the above reasoning into a rigorous proof of property (T ) for
Aut(F5) and in the process gives an explicit estimate on the Kazhdan constant of
G.
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Generalized expanders and coarse fundamental groups

Thiebout Delabie

Generalized expanders. A well-known property of expanders is that they do
not coarsely embed into a Hilbert space. So any metric space that coarsely contains
an expander does not coarsely embed into a Hilbert space. However these are not
the only metric spaces that do not coarsely embed into a Hilbert space. In order
to find such an equivalence we introduce generalized expanders.

Definition 1 (Tessera [Tes]). A sequence of bounded metric spaces Xn is a gener-
alised expander if there exists a sequence rn > 0, a sequence of probability measures
µn on Xn ×Xn and a constant C such that the following conditions are met:

• The sequence rn tends to infinity as n→∞.
• We have that µn(D) = 0 for D = {(x, y) : d(x, y) < rn}.
• For every ϕ : Xn → ℓ2 that is 1-Lipschitz we have

∑

x,y∈Xn

‖ϕ(x) − ϕ(y)‖2µn(x, y) ≤ C.

For this property we do indeed find an equivalence between containing a gen-
eralized expander and non-embeddability into a Hilbert space.
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Theorem 2 (Tessera [Tes]). A metric space does not coarsely embed into a Hilbert
space if and only if it has a coarsely-embedded sequence of generalized expanders.

In order to find examples more easily we introduce relative expanders. For a
sequence of Cayley graphs we can use the group structure to create the measures
µn.

Definition 3 (Arzhantseva and Tessera [AT]). A sequence of finite groups Gn is
an expander relative to a sequence of subgroups Hn < Gn if there exists a constant
C such that the following conditions are met:

• The diameter of Hn in the Cayley graph of Gn goes to infinity as n goes
to infinity.
• For every ϕ : Xn → ℓ2 that is 1-Lipschitz we have

∑

x∈Xn

∑

z∈Hn

‖ϕ(x)− ϕ(xz)‖2 ≤ C|Gn||Hn|.

As Hn is a group, at least half of the elements in Hn are not contained in the
ball of radius 1

2 diam(Hn) centred at e. Therefore every relative expander is a
generalized expander, because we can take µn as the uniform measure on the set
of pairs (x, xz) with x ∈ Gn, z ∈ Hn and d(e, z) ≥ 1

2 diam(Hn).

Box spaces. Most examples of relative expander are box spaces.

Definition 4. Let G be a group with a finite generating set S and let Nn be
filtration, i.e. a sequence of finite index normal subgroups such that this sequence
is decreasing, i.e. Nn+1 < Nn and their intersection is trivial, i.e.

⋂∞
n=1 Nn = {1}.

Then the box space �(Nn)G is the disjont union
⊔∞

n=1 Cay(G/Nn, S̄), where S̄ is
the image of S under the quotient map G→ G/Nn.

This disjoint union can be seen as either a sequence of graphs or as a single
metric space. In the latter case the distance between elements of the same graph
is the distance within that graph and the distance between elements of different
graphs is the sum of the diameters of those graphs.

Box spaces are useful to provide examples. For example Arzhantseva, Guent-
ner and Špakula in [AGS] show that �(Mn)FS embeds into a Hilbert space, where
FS is a finitely generated free group, M1 = FS and Mn is the group generated by
squares of elements in Mn−1.
There also exists a box space �(Kn)FS that is an expander. In [Lub] Lubotzky
shows that SL2(Z/2

n
Z) is an expander. As a corollary �(Kn)F2 is an expander

with Kn the kernel of F2 → SL2(Z/2
nZ), where the generators are mapped to[

1 2
0 1

]
and

[
1 0
2 1

]
.

These two sequences of sets can be used to construct generalized expanders that
do not coarsely contain expanders.
In [AT] Arzhantseva and Tessera show that a box space of Z2 ⋊ F3 is such an
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example, where the generators of F3 act on Z2 as

[
−1 0
0 −1

]
,

[
1 2
0 1

]
and

[
1 0
2 1

]
.

Here the quotients are (Z/2nZ)2 ⋊ F3/Mn.
In the same paper Arzhantseva and Tessera show that
Z ≀F2/Kn

F2/Mn =
⊕

F2/Kn
Z ⋊ F2/Mn is generalized expander, but not a rel-

ative expander as defined in Definition 3. This is the most promising example of
a metric space that coarsely embeds into some ℓp with p > 2, but not in ℓ2. The
other examples of relative expanders do not embed into any ℓp with p <∞.
A last example is given by Khukhro and the author. In [DK] they show that
�(Nn)F3 is a relative expander, for Nn = M ′

kn
∩K ′

n where M ′
n is similar to Mn,

K ′
n is similar to Kn and kn →∞ as n→∞, but kn should be small compared to

n.

Coarse fundamental groups. In order to coarsely distinguish different box
spaces we define a coarse version of a fundamental group. These are fundamental
groups relative to some constant r > 0.
An r-path p in a metric space X is an r-Lipschitz map p : {0, . . . , ℓ(p)} → X . Here
ℓ(p) is the length of p. Coarse homoptopy between such paths was first defined by
Barcelo, Kramer, Laubenbacher and Weaver in [BKLW].

Definition 5. Let r > 0 be a constant, let X be an r-connected metric space and
let p and q be two r-paths in X. We say that p and q are r-homotopic if there
exists a sequence p0 = p, p1,. . . , pn = q such that pi is r-close to pi−1 for every
i ∈ {1, 2, . . . , n}.
Two r-paths p and q are r-close if one of the two following cases is satisfied:

(a) For every i ≤ min(ℓ(p), ℓ(q)) we have that p(i) = q(i) and for bigger i we
either have p(i) = p(ℓ(q)) or q(i) = q(ℓ(p)), depending on which path is
defined at i.

(b) We have that ℓ(p) = ℓ(q) and for every 0 ≤ i ≤ ℓ(p) we have d(p(i), q(i)) ≤
r.

The coarse fundamental group π1,r(X) is the set of r-loops at a certain base point
up to r-homotopy with the usual composition as a group action.

Note that π1,r(X) is independent of the base point, because X is r-connected.
In [DK2] Khukhro and the author show that if G is a finitely presented group with
G = 〈S|R〉, then for r big compared to the length of the relators in R and N ⊳G
such that N ∩BG(e, 4r) = {e} we have that π1,r(Cay(G/N)) is isomorphic N . As
a consequence we can use coarse fundamental groups to recall the filtration that
is used to create the box space.

Theorem 6. Let G and H be finitely presented groups with respective filtrations Ni

and Mi such that �(Ni)G ≃CE �(Mi)H. Then there exists an almost permutation
with bounded displacement f of N such that Ni

∼= Mf(i) for every i in the domain
of f .

Note that a map f : A→ B is an almost permutation if it is a bijection between
co-finite sets of A and B.
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A first corollary of this theorem is that if two box spaces of finitely presented
groups are coarsely equivalent, then the groups are commensurable.
This theorem can also be used to give an example of two box spaces �NiG and
�MiG that are not coarsely equivalent such that G/Ni ։ G/Mi with [Mi : Ni]
bounded.

Finally Theorem 6 can be used to show that there exist infinitely many Ra-
manujan expanders with different coarse structures.

Corollary 7. There exist infinitely many coarse equivalence classes of box spaces
of the free group F3 that contain Ramanujan expanders.
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Superexpanders from random graphs and actions on compact spaces

Cornelia Druţu

This talk has been a survey of some topics on superexpanders, in particular in
connection with random graphs and with actions on compact spaces.

Superexpanders have interesting connections with John Roe’s construction of
warped cones. This construction associates to an action of an infinite group on a
compact space an unbounded metric space. John Roe introduced it in the hope
of producing a metric counter-example to the Baum–Connes conjecture, and his
expectations were confirmed recently by work of Damian Sawicki. This made
it essential to understand when do warped cones contain families of expanders:
families of expanders are another metric counter-example to Baum–Connes, by
work of Higson-Lafforgue-Skandalis, thus the question is equivalent to asking when
do warped cones represent a really new counter-example. The question has been
answered by Federico Vigolo, who gave necessary and sufficient conditions on the
action, emphasizing the fact that quite often expanders do appear in the warped
cone. In the process, Tim de Laat and Federico Vigolo construct new families of
super-expanders and explain that these families are not coarsely equivalent to V.
Lafforgue’s super-expanders in any way.
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Another interesting aspect of warped cones is that they provide a metric in-
variant of a group action. This has been emphasized recently by work of Fisher-
Limbeek-Nguyen and opened another compelling direction of research.

Random graphs are presumably sources of superexpanders even though for the
moment this is not known. Some results are known, about expansion features of
random graphs considered with respect to particular type of Banach spaces such
as the Lp–spaces.

Expanders and coarse non-universality of CAT(0) spaces

Manor Mendel

A Banach space X is called 2-convex if there exists K > 0 such that for any
probability distribution µ in W2(X) (the Wasserstein space over X), and for every
x0 ∈ X ,

(1) dX(x0,B(µ))
2 +K−2

Ex∼µdX(B(µ), x)2 ≤ Ex∼µd(x0, x)
2,

where B(µ) =
∫
X xdµ(x).

The CAT(0) property is a natural generalization of 2-convexity to metric spaces,
where B : W2(X)→ X is a barycenter map, mapping the Dirac delta measure at
point x to point x, and with K = 1.

Expander relative to a metric space X is a family of constant degree graphs
G = (V,E) for which there exists Γ > 0 satisfying for any map f : V → X ,

(2) Ex,y∈V dX(f(x), f(y))2 ≤ ΓEx∼ydX(f(x), f(y))2.

Expander relative to a metric space X implies that the expander does not embed
in X , not even (uniformly) coarsely.

Following the discovery of super-expanders by Lafforgue [2], it is natural to
ask whether there exist “CAT(0)-expanders”, i.e., expander relative to all CAT(0)
spaces. While this question is still unresolved, in a joint work with A. Naor [5] we
have proved the existence of expanders relative to interesting CAT(0) spaces that
contain the Euclidean cones over the (properly scaled) metric of most high-girth
graphs. In particular it shows:

• The existence of a CAT(0) spaceX and two different families of expanders:
one that is not an expander relative to X , and one that is.
• The existence of an expander relative to the metric of random regular
graphs.

The proof uses the zigzag expander construction of Reingold et. al. [6] as applied
relative to 2-convex spaces in [4].

While it is unknown whether there exists an expander that does not coarsely
embed in any CAT(0) space, in a joint work with A. Eskenazis and A. Naor [1]
we showed another family of finite metric spaces, the discrete tori with the ℓ∞
distance, that do not coarsely embed in any CAT(0) space. The proof uses the
(sharp) metric cotype property, that was first studied as a metric characterization
of the cotype property of Banach spaces [3].
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Coarse geometry of approximating graphs: discrete fundamental group

Federico Vigolo

Given an action by diffeomorphisms of a finitely generated group Γ = 〈S〉 on a
compact riemannian manifold M and a parameter r > 0, we can “approximate”
this action up to error ≈ r with a finite graph. The idea for doing so is to choose a
finite partition P of M into many (regular) regions R ⊂M that have comparable
sizes and so that the diameter of these regions is approximately r. We then define
an approximating graph at scale r as the graph Gr(Γ y M) whose vertex set is the
set of regions in the partition P , and so that two regions R,R′ ∈ P are linked by
an edge in Gr(Γ y M) if there exists a generator s ∈ S so that the intersection
s(R) ∩R′ is not trivial.

Mimicking the notion of Cheeger constant in the dynamical setting, we say that
the action Γ y M is expanding action in measure if there exists some constant
α > 0 such that for every measurable subset A ⊂ M with Vol(A) ≤ 1

2 Vol(M)
the measure of the union of the images of A under the generators of Γ is at least
α-times larger than the measure of A:

Vol
(⋃

s∈S s(A)
)
≥ (1 + α)Vol(A).

It turns out that for any sequence of parameters rk → 0, the sequence of
approximating graphs Grk(Γ y M) is a family of expanders if and only if the
action Γ y M is expanding in measure [14].

This construction is very flexible, and allows us to construct a wealth of new
examples of families of expanders. In fact, any measure preserving action with a
spectral gap is expanding in measure [14], and there are a number of examples of
such actions. Moreover, if a measure preserving action has a strong Banach-valued
spectral gap then any sequence of graphs approximating it is actually a family of
superexpanders [4, 11] (see also [7]). An example that is worth mentioning is the
following: let Γd := SO(d,Z[ 15 ]) and consider the action by isometries on the sphere

Γd y Sd−1. Then the graphs approximating this action are superexpanders for
every d ≥ 5 [4].
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Another feature of this construction is that the graphs thus obtained are well
suited to a geometric study. This is because they relate very nicely with another
metric construction: John Roe’s warped cone (see [8–10]). Given an action by
diffeomorphisms of a finitely generated group Γ = 〈S〉 on a compact Riemannian
manifold (M,̺), the warped cone associated with it is the infinite metric space(
OΓ(M), δΓ

)
obtained from the infinite Riemannian cone (M × [1,∞), t2̺ + dt2)

by warping the metric. That is, the metric δΓ is obtained from the cone metric
t2̺ + dt2 by imposing the condition that for every element s in the generating
set S the distance between any two points of the form (x, t) and (s · x, t) be at
most 1. It turns out [14] that the approximating graphs Gr(Γ y M) are uniformly
quasi-isometric to the level sets M × {1/r} ⊂ OΓ(M) (i.e. the quasi-isometry
constants do not depend on r).

It follows that in order to study the geometry of the expanders obtained via
this approximation procedure it is enough to study the geometry of the associated
warped cone. As an example, it is proved in [4] (see also [12, 13]) that the graphs
approximating a free action by isometries Γ y M are ‘locally’ quasi-isometric
to Γ × Z

dim(M). Using this result, it can be proved that the superexpanders
Grk(Γd y Sd−1) above mentioned are pairwise not coarsely equivalent when d ≥ 5
varies. Moreover, they are never coarsely equivalent to superexpanders obtained
as box spaces of a cocompact lattice of an algebraic group of higher rank.1

A rather different approach to coarse rigidity for approximating graphs is in-
spired by [2] and makes use of discrete fundamental groups. The discrete funda-
mental group at scale θ of a metric space (X, d) was defined by Barcelo, Capraro
and White [1] as the group π1,θ(X) which is the analogue of the fundamental group
of X where continuous loops are replaced by closed θ-paths (i.e. finite sequences
of points with d(xi, xi+1) ≤ θ) which are considered up to θ-homotopies.

From our perspective, the usefulness of the discrete fundamental groups is that
the study of the groups π1,θ(X) for (families of) metric spaces can provide some
strong coarse invariants. Indeed, even if it is not true in general that π1,θ(X) is
invariant under coarse equivalences, it is easy to show that a coarse equivalence
X → Y induces a homomorphism of π1,θ(X) to π1,θ′(Y ) where the parameter
θ′ is explicitly bounded in term of θ and the constants of the coarse equivalence.
This information can sometimes be enough to prove that such a coarse equivalence
cannot exist.

It turns out that it is possible to explicitly compute the discrete fundamental
groups of the level sets of warped cones [3, 15], and this allows one to prove that
a number of families of expanders and superexpanders are not pairwise coarsely
equivalent (uncountably many, actually [3]). As an interesting byproduct, it turns
out that—once θ is fixed—the discrete fundamental group of the approximating
graphs Gr(Γ y M) does not depend on the approximation scale r (as long as it is
small enough). Moreover, the superexpanders Grk(Γd y Sd−1) are coarsely simply

1This is one of the two previously known constructions of superexpanders, due to V. Lafforgue
[5] (the other one being via zig-zag products [6]).
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connected; from which it follows that they are not coarsely equivalent to any box
space [2, 15].
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BiLipschitz vs Quasi-isometric equivalence

Tullia Dymarz

A finitely generated group G can be considered as a metric space when endowed
with a word metric

dS(g, h) := ‖g
−1h‖S

where ‖·‖S measures the minimal word length with respect to a fixed finite generat-
ing set S. The metric dS , however, can vary depending on the chosen generating set
S. In geometric group theory we are interested in properties that can be detected
by any word metric on G. The notion of biLipschitz equivalence captures this
relation although usually we study the geometry of groups up to quasi-isometric
equivalence which allows one to study groups not only via their word metrics but
also via geodesic ‘model’ spaces on which these groups act properly discontinuously
and cocompactly.

A quasi-isometry between metric spaces (X, dX) and (Y, dY ) is a map f :
X → Y that is coarsely biLipschitz and whose image is coarsely dense: i.e. there
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exist K,C ≥ 0 such that for all x, y ∈ X

−C + 1/KdX(x, y) ≤ dY (f(x), f(y)) ≤ KdX(x, y) + C

and if the C neighbourhood of f(X) is all of Y .
If C = 0 then f is a biLipschitz equivalence.

Question 1. Is biLipschitz equivalence the same as quasi-isometric equivalence
for finitely generated groups?

In choosing to study finitely generated groups up to quasi-isometric equivalence
instead of simply biLipschitz equivalence we are allowed to import a rich theory of
techniques from differential geometry. It is easy to see that biLipschitz equivalence
is not the same as quasi-isometric equivalence when comparing arbitrary metric
spaces. When restricting to finitely generated groups themselves, however, this
was an open question.

Indeed in [G], one of the fundamental monographs in geometric group theory,
Gromov proposed the problem of understanding which quasi-isometries are close to
bijective quasi-isometries. (For finitely generated groups a biLipschitz equivalence
is the same as a bijective quasi-isometry.) Later in [W], Whyte proved that any
quasi-isometry between nonamenable finitely generated groups (see Definition 1
below) is a bounded distance from a bijection. In other words, he proved that any
quasi-isometry gives rise to a biLipschitz equivalence. In [D] I answered the above
question by giving the first examples of finitely generated groups that are quasi-
isometric but not biLipschitz equivalent; necessarily these groups are amenable.
(See definition of amenability below).

Theorem 2 (Dymarz). Let F and G be finite groups with |F | = n and |G| = nk

where k > 1. Then there does not exist a bijective quasi-isometry between the
lamplighter groups F ≀Z and G ≀Z if k is not a product of prime factors appearing
in n.

These first examples given by the above theorem are finitely generated but not
finitely presented. More recently in [DPT] as a follow up to the above theorem,
with Taback and Peng we prove the following:

Theorem 3 (Dymarz-Peng-Taback). For each n there exist families of examples
of groups of type Fn that are quasi-isometric but not biLipschitz equivalent.

In particular this theorem provides the first finitely presented counterexamples.
Separated nets. More generally, the question of quasi-isometric versus biLip-

schitz equivalence can be asked for separated nets. Given a metric space (X, d), a
coarsely dense subset D ⊂ X is a separated net if there is some ǫ > 0 such that
for all x, y ∈ D we have d(x, y) ≥ ǫ. Any two such nets in X are quasi-isometric
to X and hence to each other but it is not always the case that are biLipschitz
equivalent. Indeed Burago-Kleiner [BK] and McMullen [M] constructed separated
nets in Rn for n ≥ 2 that are not biLipschitz equivalent to Zn.

With Kelly, Li and Lukyanenko in [DKLL] we were able to extend these results
to all connected, simply connected nilpotent Lie groups, showing that each such



1140 Oberwolfach Report 19/2018

group has separated nets that are not biLipschitz equivalent. Additionally with
Navas in [DN] we give examples of non-nilpotent solvable Lie groups containing
separated nets that are not biLipschitz equivalent.

Definition 1. A finitely generated group or more generally a uniformly discrete
space with bounded geometry is amenable if it contains a sequence of finite sets
{Si} with the property that for all r > 0

lim
i→∞

|∂rSi|

|Si|
= 0

where ∂rS is the set of points not in S but at distance at most r away from S. It
is non-amenable otherwise.

By Whyte’s theorem all quasi-isometries between nonamenable groups (spaces)
are bounded distance from a biLipschitz equivalence so counter examples can only
occur in amenable spaces.

Question 4. Does any finitely generated amenable group (space) Γ always contain
a coarsely dense net D ⊂ Γ that is not biLipschitz equivalent to Γ?

In fact this is the case for lattices in Rn with n ≥ 2 and lattices in all Lie
groups covered by [DKLL] and [DN]. In [DN] we also show this is true for solvable
Baumslag-Solitar groups.

Question 5. In general (non-nilpotent) solvable Lie groups are there always sep-
arated nets that are not biLipschitz equivalent?

The techniques used in [DN] to prove results for non-nilpotent solvable Lie
groups rely on quasi-isometric rigidity theorems but such rigidity theorems are
currently not available for many solvable Lie groups.

The most interesting problem is the following:

Question 6. Is there a solvable or nilpotent Lie group that contains two cocompact
lattices that are not biLipschitz equivalent?

A positive answer to this question would add to the very short list of counter
examples we provide in Theorems 2 and 3 of finitely generated groups that are
quasi-isometric but not biLipschitz equivalent. It would also show that even in
the ‘nicest’ of groups these equivalences are not the same.
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Rigidity of warped cones’ coarse geometry

Thang Nguyen

(joint work with David Fisher and Wouter van Limbeek)

Warped cones were first defined by John Roe ([6]) for the purpose of constructing
metric spaces without property (A) and counterexamples to the coarse Baum-
Connes conjecture. The geometry of warped cones is determined by both dynamics
of the action and geometry of the space and group. Warped cones can also be a
source of expanders and super-expanders. The main goal of this project is to
understand how much coarse geometry of warped cones tells us about dynamics
of actions.

Let us first recall the warped cone construction. Let Γ be a finitely generated
group acting on a closed Riemannian manifold M . For t > 0, define the metric
space Mt := (tM × Γ)/Γ, where tM is a copy of M scaled by a factor t and Γ is
equipped with a fixed word metric. EachMt is called a level set of the warped cone
for Γ action on M . And a warped cone can be either uncountable or countable
disjoint union of the Mt. We note that when the action has spectral gap, by
discretizing Mt by approximating graphs we obtain (super-)expanders ([5, 7, 9]).

We study coarse geometry of warped cones in terms of quasi-isometry. Suppose
that we have two isometric actions Γ y M and Λ y N of finitely generated groups
on closed manifolds. We say (Mtn)

∞
n=1 and (Nsn)

∞
n=1 are quasi-isometric if there

are quasi-isometries fn : Mtn → Nsn with uniform constants for all n. It can
be seen that if Γ y M and Λ y N are conjugate then (Mt) are quasi-isometric
with (Nt). We also have quasi-isometry between warped cones in a slightly more
general setting as follows.

Definition 1. Two group actions Γ0 y M0 and Γ1 y M1 are commensurable if

• Mi is a finite cover of Mi−1 for one of i = 0, 1 and
• for the same index i we have that Γi is the group of lifts of Γi−1 to Mi.

In the definition the indices should be interpreted modulo 2.

Definition 2. A commensuration of the actions Γ y M and Λ y N consists of
the following data:

• an action Γ′ y M ′ commensurable to Γ y M and an action Λ′ y N ′

commensurable to Λ y N ,
• a bi-Lipschitz map f : M ′ → N ′,
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• an isomorphism ϕ : Γ′ → Λ′,

such that f is ϕ-equivariant.

It is not hard to see that two actions having a commensuration give rise to
quasi-isometric warped cones. A natural question is whether the converse holds.
The answer turns out to be negative by examples of Z-action by rotations on S1

of Kim’s [4] and Z-action by irrational rotations on S1 versus trivial action on the
torus S1 × S1 of Kielak–Sawicki [8]. The absence of a Z factor in acting groups is
necessary for the converse to hold. In fact, we obtain a rigidity statement when we
assume this necessary condition together with an extra technical condition (FSL).
Our main result is

Theorem 3. Let Γ and Λ be finitely presented groups acting isometrically, freely
and minimally on closed manifolds M and N (respectively). Assume that

• Neither of Γ and Λ is commensurable to a group with a nontrivial free
abelian factor, and Γ has Property FSL, and
• There exist uniform quasi-isometries fn : Mtn → Nsn , where tn, sn →∞.

Then there is a commensuration of the action of Γ on M and the action of Λ on
N .

Roughly speaking, groups with property FSL are groups that have only finitely
many automorphisms satisfying any fixed constraint on distortion with respect
to the stable length of group elements. Sources of FSL groups are rich, including
lattices in semisimple Lie groups, hyperbolic groups, some free products and direct
products.

Independently, de Laat-Vigolo ([1]) and shortly after Sawicki ([8]) study local
geometry of warped cones, deducing quasi-isometry of Γ×Rdim(M) and Λ×Rdim(N)

from quasi-isometry of warped cones. Our result is not only able to tell us coarse
equivalence of geometry of Γ and Λ but also the conjugation between the actions.
We also mention here that there are also studies about quasi-isometry of box
spaces, objects that share lots of similarity with warped cones, in [2, 3].

We briefly mention here intuition and how to build such a conjugation in our
result. Because of the Riemannian metric inN is rescaled by sn in the level setNsn ,
images of close points under fn are close if the metric in Nsn were not distorted
by Λ-action. If this were the case, taking limits of quasi-isometries should give us
a Lipschitz limit. But because the metric is distorted by Λ-jumps, we first need to
correct the quasi-isometries by canceling all Λ−jumps. This can be done locally
and then extended by monodromy. The obstruction for doing this is Λ−jumps
along image of a loop in π1(M) is not trivial. Studying coarse fundamental groups
helps us to show that the obstruction is finite. Using structure of homogeneous
spaces, we can pass to finite quotients of manifolds and quotients by finite groups
to obtain commensurable actions without obstruction for correcting the quasi-
isometries. The property FSL then helps us to be able to take limit with a resulted
Lipschitz map. We do the same for reverse direction to have inverse of Lipschitz
limit map.
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An application of our main result, we construct uncountably many non-quasi-
isometric (super-)expanders:

Theorem 4. Let K be a compact Lie group and fix r ≥ 2. Then free, rank r
subgroups of K with spectral gap yield quasi-isometrically disjoint expanders un-
less they are commensurable. In particular, there exist explicit quasi-isometrically
disjoint continuous families of expanders.

To obtain families as in the theorem, we just note that from the existing lit-
erature we can produce many free groups with spectral gap: For example, set
K = SU(n) with n ≥ 2 and fix a free dense subgroup Λ ⊆ SU(n) of rank r − 1
and with spectral gap. Then consider the family {〈Λ, k〉}k∈K . For generic k, we
have Γ := 〈Λ, k〉 ∼= Fr, and the spectral gap for Λ implies that Γ has spectral gap.
For super-expander construction, we take Γ of the form ∆ × Fn and do similar
construction, where ∆ has strong (T) and Fn is free.

To end this, we also mention here some open questions. We first note that the
condition FSL is technical that is necessary for this proof. We do not know if it
is necessary for our theorem or if all finitely generated subgroups of compact Lie
groups have Property FSL.

Question 5. Can the technical condition FSL be removed?

It is also natural to study quasi-isometric embeddings or coarse embeddings.

Question 6. Is there a rigidity statement for the case of QI-embeddings or even
coarse embedding?

In our current proof, we use quasi-isometry to obtain isomorphism of coarse
fundamental groups and to obtain inverse of limit map. The former one seems to
be a more serious issue in the embedding case than the latter one. So to study
embedding question by using same idea in our proof, we may need to understand
the algebraic property of induced maps on coarse fundamental groups.

There is another notion of equivalence, proposed by A. Naor, that could be
more natural in study of graphs and expanders. We say two sequences of metric
spaces (An) and (Bn) are weak-equivalent if there are subsequences of indexes
(tn) and (sn) such that there are coarse embeddings fn : (An) → (Bsn) and
fn : (Bn)→ (Atn).

Question 7. How much does weak-equivalence of warped cones tell us about
dynamics of actions?

This question is more subtle than Question 6. To get some rigidity statement,
this may need more conditions than Question 6.
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The Baum-Connes conjecture and Oka’s principle

Maria Paula Gomez-Aparicio

Let G be a locally compact group and denote by C∗
r (G) the reduced C∗-algebra

associated to G. If A is a C∗-algebra endowed with an action of G, denote by
C∗

r (G,A) the reduced crossed product associated to this action. In [1], Baum,
Connes and Higson defined an assembly map,

µB
r : Ktop(G,A)→ K(C∗

r (G,A)),

where Ktop(G,A) is the G-equivariant K-homology with compact support and
with values in A, of EG , the universal classifiying space for proper G-actions.
Recall that Ktop(G,A) is given by the following formula :

Ktop(G,B) = lim
→

KKG(C0(X), B),

where the inductive limit is taken among all G-invariant and G-compact close sub-
sets X of EG . In particular, for B = C, we denote µC

r by µr.
This morphism is defined using Kasparov’s KK-theory (cf. [6]) and is called The
Baum-Connes assembly map. The Baum-Connes conjecture is then stated as fol-
lows:

Conjecture 1 (The Baum-Connes conjecture). For all locally compact groups the
assembly map µr is an isomophism.

And the Baum-Connes conjecture with coefficients as follows :

Conjecture 2 (The Baum-Connes conjecture with coefficients). For all locally
compact groups G and for all G-C∗-algebras B, the assembly map µB

r is an iso-
morphism.

Both conjectures, with and without coefficients, have been proven for a large
class of groups that includes for example all a-T-menable groups. For those groups
in particular, the proof is due to Higson and Kasparov (see [4]) and it is based
on a method known as ”Dirac-dual Dirac”. introduced by Kasparov in [6]. This
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method does not work for groups having property (T).

However, Lafforgue proved Conjecture 1 for all semi-simple Lie groups and for
some of its closed subgroup, precisely those having property (RD). For example,
Conjecture 1 is true for all cocompact lattices in SL3(R) but it is still open for
SL3(Z).

On the other hand, Conjecture 2 has been proven for all hyperbolic groups (see
[11]), but it still open for higher rank semi-simple Lie groups and their closed
subgroups.

Moreover, Higson, Lafforgue and Skandalis gave a counterexample to Conjec-
ture 2 using the existence of some groups that contain expanders coming from
property (T) (see [5]). Furthermore, Lafforgue proved that a strong version of
property (T) prevents the methods that have been used so far to succeed (see
[10]). Nonetheless, a direction that is still open concerns applying the ideas of
Bost, who defined a version of Oka principle in Noncommutative Geometry (see
[2]).

Let us mention that in regards to Lie groups, injectivity of both maps µA
r and

µr is known thanks to the work of Kasparov and Skandalis (see [6], [7], [8]), hence
the problem that is still open for those groups is surjectivity.

Before explaining what is Oka principle in his context, let us mention that for
semi-simple Lie groups, Lafforgue also proved an analogue conjecture known as
Bost’s conjecture intended to compute the K-theory of L1(G). More precisely,
Lafforgue defined a morphism

µB
L1 : Ktop(G,B)→ K(L1(G,B)),

for all locally compact groups G and all G-C∗-algebra B. The Bost conjecture is
stated as follows:

Conjecture 3 (Bost). For all locally compact groups G and all G-C∗-algebra B
the map µB

L1 is an isomorphism.

Conjecture 3 is true for all semi-simple Lie groups and all their closed subgroups

(see [9]). Moreover, the Baum-Connes map µB
r factors through µL1

B , hence, if G is
a semi-simple Lie group or a closed subgroup in a semi-simple Lie group, the ques-
tion that remains open is to prove that the inclusion map i : L1(G,B) →֒ C∗

r (G,B)
induces an isomorphism i∗ at the level of K-theory. This implies Conjecture 2 and
Conjecture 1 if B = C for G. Unfortunately, to prove that i∗ is a isomorphism is
not an easy task. As an example, for G = SL2(R), it is a known fact that L1(G)
is not stable under holomorphic calculus in C∗

r (G).

Let ρ be a finite representation of G on a complex hermitian finite dimensional
vector space V . Then ‖ρ‖ can be used as a weight to define exponential decay
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subalgebras of crossed product algebras. In the case of L1(G,A), this are easy to
define : let L1,ρ(G,A) be the completion of Cc(G,A) by the norm

‖f‖1,ρ =

∫

G

‖f(g)‖A‖ρ(g)‖End(V )dg.

It is clear that L1,ρ(G,A) is a dense subalgebra of L1(G,A). Following the work
of Bost (see [2]) an Oka principle applied to this case should say that this two al-
gebras have the same K-theory. This statement is true, by the work of Lafforgue
for all semi-simple Lie groups and all their closed subgroups.

In [3], some twisted crossed products, denoted by A ⋊ρ
r G were defined as well

as morphisms

µρ,A
r : Ktop(G,A)→ K(A⋊

ρ
r G).

Taking ρ very large this algebras, play the same role in C∗
r (G,A) as L1,ρ(G,A) in

L1(G,A); they are constructed to be some kind of exponential decay ”subalgebras”
of C∗

r (G,A). Suppose now that G is a group for which Conjecture 3 is known to
be true. Then, taking ρ very large, allows us to write the following diagram :

K(C∗
r (G,A)) K(A⋊ρ

r G)
τoo

}}

Ktop(G,A)

µA
r

77♦♦♦♦♦♦♦♦♦♦♦

µρ,A
r

%%

≃

µA
L1

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

K(L1(G,A))

OO

K(L1,ρ(G,A))
≃oo

OO

Oka principle applied to this crossed products states that the twisted group
algebras, A⋊ρ

r G, have the same K-theory as C∗
r (G,A), i.e. τ is an isomorphism.

This would then imply the surjectivity of µB
r , hence the Baum-Connes conjecture

with coefficients for G.
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Warped cones violating the coarse Baum–Connes conjecture

Damian Sawicki

A version of the Baum–Connes conjecture for metric spaces was proposed by Roe
in 1993. Similarly to other versions, it predicts that a certain assembly map µ is
an isomorphism, in this case between the coarse K-homology of the metric space
in question and the K-theory of its Roe algebra.

In particular, if our metric space is a finitely generated group, the conjecture is
equivalent to the classical Baum–Connes conjecture with certain coefficients and
it implies injectivity of the classical assembly map, which is known as the strong
Novikov conjecture.

In 2014 Druţu and Nowak [1] predicted that the coarse assembly map is not
surjective for warped cones over actions with a spectral gap, see Oberwolfach Re-
port 3/2015. Warped cones are unbounded metric spaces whose geometry encodes
the dynamics of a group action on a compact space and its interplay with metric
properties of this space.

By a celebrated result of G. Yu, the conjecture holds for bounded geometry
metric spaces coarsely embeddable into a Hilbert space. As a first step towards
the prediction of Druţu and Nowak, in a joint work [4] with Nowak we proved that
indeed warped cones over actions with a spectral gap do not satisfy the assumptions
of Yu’s result, namely they do not admit coarse embeddings into the Hilbert space
and in fact also into more general Banach spaces under the appropriate spectral
gap assumptions.

Kasparov and Yu [3] showed that in order to conclude injectivity of the coarse
assembly map, it suffices to assume coarse embeddability into a super-reflexive
Banach space. This sparked a lot of interest in the search for super-expanders
(the topic of the Mini-Workshop summarised in the present Oberwolfach Report),
that is, expanders with respect to super-reflexive Banach spaces.

While warped cones over spectral gap actions need not be coarsely equivalent
to graphs, under assumptions guaranteeing that they are, we strengthened the
result of [4] about the non-embeddability into Banach spaces to the expansion
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with respect to these spaces [5]. It includes expansion with respect to all Banach
spaces of non-trivial type—expanders of such strength were earlier constructed by
V. Lafforgue.

Work [5] generalises to the setting of Banach spaces a seminal result for classi-
cal expanders by Vigolo [8], who was the first to study graphs quasi-isometric to
warped cones. Quasi-isometric rigidity of such (super-)expanders was later stud-
ied by de Laat–Vigolo, the author, Fisher–Nguyen–van Limbeek, and Vigolo [9]
(details can be found in other abstracts of the present Oberwolfach Report). In
particular, paper [9] provides examples of warped cones whose levels are not quasi-
isometric to any box space.

Until recently, the following counterexamples to the coarse Baum–Connes con-
jecture were known:

• µ is not injective for
⊔

n nS
2n—the coarse disjoint union of spheres of

dimension 2n and radius n (Yu, 1998);
• µ is not surjective for expanders obtained as box spaces of certain groups
(Higson–Lafforgue–Skandalis [2], 2002);
• µ is not surjective for expanders with large girth and of not necessarily
bounded degree (Willett–Yu, 2012).

As a topological space, the warped coneOΓY over an action ΓyY is the product
[0,∞)× Y (quotiented by {0}× Y ). It turns out that OΓY may satisfy the coarse
Baum–Connes conjecture even if ΓyY has a spectral gap, so, in order to prove
the prediction of Druţu and Nowak, it is necessary to pass to a subspace T × Y
such that the inclusion T ⊆ [0,∞) is not a quasi-isometry.

Denote any such subspace by O′
ΓY . Then, the main result of [6] is the following.

Theorem 1. Assume that an action ΓyY by Lipschitz homeomorphisms is free
and has a spectral gap and that Γ has property A. Then the surjectivity part of the
coarse Baum–Connes conjecture fails for O′

ΓY .

By the above-mentioned work of D. Fisher, T. Nguyen, and W. van Limbeek,
there are continuum actions yielding pairwise coarsely non-equivalent spaces O′

ΓY
satisfying the assumptions of Theorem 1. By [9] some of them are not coarsely
equivalent to earlier counterexamples to the coarse Baum–Connes conjecture ob-
tained as box spaces, and they are also not coarsely equivalent to counterexamples
obtained as large-girth graphs (e.g. by Theorem 4 below).

As a result of the following, Theorem 1 provides first counterexamples to the
coarse Baum–Connes conjecture that are not coarse disjoint unions of graphs
(moreover, they have bounded geometry).

Proposition 2. Let ΓyY be an action on a Cantor set Y and equip Y with an
ultrametric satisfying a mild condition and such that the action is by Lipschitz
homeomorphisms (such a metric always exists). Then, for any T as above, the
space O′

ΓY is not coarsely equivalent to a family of graphs.

Example 3. The action SLm(Z)y lim
←−n

SLm(Z/knZ) (with a product metric) sat-

isfies the assumptions of Theorem 1 and Proposition 2 for any m, k ≥ 2.
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Since any countable group Γ admits a free, measure-preserving action on a
Cantor set, Proposition 2 yields plenty of examples, in particular it can be applied
to actions of simple groups, where the theory of box spaces is not available. If
such Γ has Kazhdan property (T), then its action on an ergodic component has a
spectral gap, opening the possibility to apply Theorem 1.

The proof of Theorem 1 follows a strategy of Higson. We start with a projection
P constructed by Druţu and Nowak, which is supposed to yield a K-theory class
not in the image of µ. One of the fundamental difficulties was to prove that P be-
longs to the Roe algebra because it naturally occurs as a limit of finite propagation
operators that are yet not locally compact.

Then we need the following result.

Theorem 4 (S–Jianchao Wu [7]). Consider Γ×OY with a certain metric d1 and
a map π : Γ×OY → OΓY given by π(γ, x) = γx. Then the metric on OΓY is the
quotient metric of d1 under π. Moreover, π is asymptotically faithful if and only
if ΓyY is free.

If ΓyY is isometric, then d1 is simply the product metric of the word metric
on Γ and the metric on the infinite (or: Euclidean) cone OY (the warped cone is
obtained by modifying (‘warping’) the metric on the infinite cone). Asymptotic
faithfulness of Willett and Yu means that π is isometric on balls of increasing
radius. In particular, the fact that for isometric actions on manifolds the pointed
Gromov–Hausdorff limit of levels of the warped cone is the Cartesian product
Γ× Rm is a corollary of the above structural result.

The core of the argument is a construction of two tracial maps on the K-theory
of the Roe algebra of O′

ΓY that are equal after composing with µ by the Atiyah Γ-
index theorem but take different values on [P]. The value of the first trace on [P]
is non-zero (it is explicit). In order to construct the second trace, we lift—using
Theorem 4—operators in the Roe algebra of O′

ΓY to operators on Γ×O′Y . This
involves the operator norm localisation property of Chen, Tessera, Wang, and Yu,
which we prove for Γ×O′Y .

The Kazhdan projection P of Druţu and Nowak is defined using the group
action as the limit of increasing powers of a Markov operator. After lifting to
Γ×O′Y , the action involves only the first coordinate and—by the non-amenability
of Γ—powers of the Markov operator converge to zero. Consequently, the value of
the second trace (defined via the lifting procedure) on [P] is zero, which concludes
the proof.

Acknowledgement: The author was partially supported by Narodowe Centrum
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Expanders, fixed point properties on Banach spaces and random
graphs

Cornelia Druţu

This talk has been based on joint work with J. Mackay. In it, further details have
been provided on how random graphs have expansion properties stronger than the
classical ones, and therefore random groups have stronger versions of property (T).
Moreover these stronger fixed point properties have an interesting connection with
a geometric feature of a random group: the conformal dimension of its boundary.
In particular, in the triangular model random groups have the property that the
supremmum of the set of parameters p ∈ (0,∞) for which the group has property
FLp is at most δ = the conformal dimension of the boundary of the group and at

least δ1/2

log δ . Using completely different methods and work of Pisier, de la Salle and

de Laat improved the lower bound to δ1/2. It would be very interesting to have
better estimates than these, in particular to investigate if indeed there is anything
special about the power δ1/2 of the conformal dimension.

With J. Mackay we also proved a weaker version of the theorem, for random
groups in the Gromov density model.

Diameters in box spaces

Alain Valette

It is well known that the diameter in a graph sequence of d-regular graphs, is
at least logarithmic in the number of vertices in the corresponding graphs: this
is obtained by comparing a ball in a d-regular graph to a ball of same radius in
the d-regular tree. If the graph sequence is an expander, the diameter is exactly
logarithmic in the number of vertices, see e.g. [Lub]. So having a diameter growing
faster than logarithmic can be viewed as a strong form of non-expansion. To
quantify this, fix α ∈]0, 1], say that the graph sequence (Xn)n>0 has property Dα

if the diameter of Xn is larger than a constant times |Xn|α. We study property
Dα for box spaces of finitely generated, residually finite groups G.

In the first part of the talk, we report on joint work with Ana Khukhro, pub-
lished in [KV]. We first prove that G admits a box space with property D1 if and
only if G is virtually cyclic (this appeals to the fact that a group has linear growth
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if and only if it is virtually cyclic, a result due to J. Justin [Jus]). For 0 < α < 1,
a remarkable result by E. Breuillard and M. Tointon [BT] (invoking the theory of
approximate groups) says that if some box space has Dα, then G virtually maps
onto Z. We prove that the converse also holds. It has to be emphasized that, since
non-abelian free groups have box spaces with Dα and other box spaces which are
expanders, we cannot replace “some box space” by “any box space” in the above
characterization.

In the second part of the talk, we consider groupsG with a given embedding into
SLN(Z). This allows to define a congruence subgroup of G as the intersection of G
with a congruence subgroup of SLN (Z). An interesting open question is whether
that notion of congruence subgroups of G, depends on the choice of the embedding
into SLN(Z). (Compare with a remarkable result by A. Garrido [Gar]: for a branch
group, the congruence subgroups - as defined by the levels of the rooted tree on
which the group acts - do not depend on the choice of a branch action). In work
in progress with Etienne Grezet, we show that, for semi-direct products Z2 ⋊A Z,
with A ∈ SL2(Z) a hyperbolic matrix, if such an arithmetic box space has Dα,
then α ≤ 2/3. Using deep results by M. Aka and U. Shapira [AS], we show that
the bound can be lowered to α ≤ 1/3 for congruence box spaces modulo families
of integers supported on finitely many primes.
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Upgrading fixed points

Masato Mimura

Let X be a metric space and G be a locally compact group (mainly, countable
discrete group). By α : G y X , we mean a (continuous) G-action by isometries.
(If X = E is a Banach space, then we in addition assume that α : G y E is by
affine isometries.) For a subgroup M 6 G and for α : G y X , set Xα(M) as the
set of α(M)-fixed points in X . Let R be a unital and associative ring, possibly
non-commutative.

We address the following problem.
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Problem 1 (Upgrading Problem). Let α : G y X. Let (Mj)j∈J be a family of
subgroups of G such that 〈

⋃
i∈J Mj〉 = G. Assume that for every j ∈ J , it holds

that Xα(Mj) 6= ∅.
Under which condition can we conclude that Xα(G) 6= ∅?

Note that the conclusion above is not always true: Consider a natural action
D∞ y R of the infinite dihedral group D∞ = 〈a, b|a2 = b2 = e〉, and set M1 = 〈a〉
and M2 = 〈b〉.

In this report, we will concentrate on the following setting of G and (Mj)j∈J .
Before proceeding to our setting, we explain the definition of elementary groups
in algebraic K-theory. Take R as above. Let n ∈ N≥2. By [n], we mean the set
{1, 2, . . . , n}. Recall that GL(n,R) is defined as the group of all invertible elements
in the matrix ring Matn×n(R). For i, j ∈ [n] with i 6= j and r ∈ R, we define an
elementary matrix eri,j by

(eri,j)k,l =






1, for k = l,
r, for (k, l) = (i, j),
0, otherwise.

Definition 2. The elementary group E(n,R) is the subgroup of GL(n,R) gener-
ated by {eri,j : i 6= j ∈ [n], r ∈ R}.

By Gaussian elimination, if R is a Euclidean domain, then for every n ≥ 2, it
holds that E(n,R) = SL(n,R). Hence, we may regard E(n,R) as a generalization
of SL(n,Z) to other coefficient rings R from Z. (Unlike SL(n,R), the elementary
group E(n,R) is defined even over a non-commutative ring.)

Note that for every i 6= j ∈ [n], er1i,je
r2
i,j = er1+r2

i,j (r1, r2 ∈ R). Moreover, the
following commutator relation

(#) [er1i,j , e
r2
j,k] = er1r2i,k for i 6= j 6= k 6= i and for r1, r2 ∈ R

holds true, where our commutator convention is [γ1, γ2] = γ1γ2γ
−1
1 γ−1

2 . They
imply that if R is a finitely generated ring and n ≥ 3, then E(n,R) is a finitely
generated group.

Here is our setting: Fix R as above and n ∈ N≥3.

• GR(= G
(n)
R ) = E(n,R).

• J = [2], and MR(= M
(n)
1,R) = 〈e

r
i,n : i ∈ [n− 1], r ∈ R〉 and LR(= M

(n)
2,R) =

〈ern,j : j ∈ [n− 1], r ∈ R〉.

Abstractly,MR and LR above are both isomorphic to the additive group (Rn−1,+).
By (#), it holds that 〈MR∪LR〉 = GR. Throughout this report, we use the symbols
GR,MR, LR for these three groups above.

The main motivation of us to study this example of (GR,MR, LR) is the fol-
lowing theorem. Recall that we assume R that is unital and associative.

Theorem 3 (Relative fixed point properties). Assume that R is finitely generated.

(1) (Kassabov [3]) For every n ≥ 3, GR > MR and GR > LR have relative
property (T). This property is equivalent to relative property (FHilbert).
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(2) (M. [5], together with results of Olivier [8] and Tanaka [11]) For n ≥ 4,
GR > MR and GR > LR have relative property (FE). Here E is either the
class of all non-commutative Lq-spaces (associated to every von Neumann
algebra) for all q ∈ [1,∞), or the class of all reflexive Orlicz spaces over
[0, 1] (with the Lebesgue measure) over C.

Here for a (non-empty) class E of Banach spaces, we say that G > M has relative
property (FE) if for every E ∈ E and for every α : G y E, it holds that Eα(M) 6= ∅.
The (full) fixed point property, property (FE ), is defined as relative property (FE)
for G > G. (Similarly, (relative) property (FE) is defined for a single Banach space
E.) In (1) above, by Hilbert, we denote the class of all Hilbert spaces. Therefore,
the Upgrading Problem in our setting asks whether we can upgrade the relative
fixed properties as in Theorem 3 to the full fixed point property for GR.

Our main theorem gives a new answer to Problem 1. It is stated in terms of
“(Game)-condition” on G and (Mj)j∈J . We do not exhibit the condition in this
report. See the forthcoming version of our preprint [6] or the expository article [7];
the latter focuses only on property (FHilbert). Nevertheless, we emphasize that our
“(Game)-condition” is intrinsic, more precisely, it is a purely algebraic condition
on G and (Mj)j∈J (described in terms of inclusions and group generation) with
no dependence on X or α. Our main theorem asserts that under this “(Game)-
condition” on G and (Mj)j∈J , some weak conditions on X and α suffice to deduce

that Xα(G) 6= ∅. In particular, it enables us to upgrade relative properties (FE)
for GR > MR and GR > LR to property (FE ) for GR if either of the following two
conditions on the class E is satisfied.

• Each element in E is super-reflexive, and E is closed under taking metric
ultraproducts (with respect to a fixed non-principal ultrafilter on N).
• Each element in E is separable and reflexive, and property (T) implies
property (TE).

Here we do not give the definition of property (TE); see Bader–Furman–Gelander–
Monod [1].

For every fixed q ∈ (1,∞), the class BNCLq of all non-commutative Lq-spaces
satisfies the former condition (Raynaud). The class of all reflexive Orlicz spaces
over [0, 1] over C meets the latter one ([11]). Therefore, we obtain the following
corollary. (To prove (2) below, we need some extra work.)

Theorem 4 (Full fixed point properties, M. [6]). Assume that R is finitely gen-
erated.

(0) (Simpler alternative proof of the work of Ershov and Jaikin-Zapirain [2])
For every n ≥ 3, GR = E(n,R) has property (T) (which is equivalent to
property (FHilbert).

(1) For every n ≥ 4, GR = E(n,R) has property (FE ). Here E is either the
class of all non-commutative Lq-spaces for all q ∈ (1,∞), or the class of
all reflexive Orlicz spaces over [0, 1] over C.

(2) For every n ≥ 4, GR = E(n,R) has property (FC1
). Here C1 denotes the

Banach space of trace class operators acting on ℓ2.
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Item (0) was first proved in [2]. In their proof, the upgrading process was
done by ǫ-orthogonality argument. This argument moreover provided them with
an estimate of Kazhdan constants. Our alternative proof, on the other hand,
does not supply any estimation of them. However, their upgrading condition is
extrinsic: Their condition is a numerical comparison of some spectral quantity to
a certain threshold; later Oppenheim [9] extended this framework, but both of the
spectral quantity and the threshold are sensitively affected if we change the target
Banach space E. In particular, their methods may not seem to be able to prove
the statement in (1) in Theorem 4. Our proof is based on the intrinsic upgrading
mentioned above. Some outcomes of it are that proofs are simpler (see a 9-page
expository article [7] for the full proof of our upgrading for property (FHilbert))
and that we can obtain (0)–(2) in Theorem 4 in a unified approach.

The fixed point property with respect to non-commutative L1-space is myste-
rious. For ordinary L1-spaces E, it is showed that property (T) implies property
(FE). However, the proof is based on the fact that these spaces admit radial coarse
embeddings into a Hilbert space; it completely breaks down for non-commutative
L1-spaces. Indeed, C1 is an example of non-commutative L1-spaces, but it is
known that C1 even fails to admit a coarse embedding into a Hilbert space. Non-
commutative L1-spaces have trivial (linear-)type, and hence the approach by V.
Lafforgue [4] (or Oppenheim [9]) via strong property (TE) (or robust property
(TE)) totally does not work. Our approach does not give the full result (because
these spaces are not super-reflexive) at the present. However, as stated in (2) of
Theorem 4, we managed to prove the fixed point property if our non-commutative
L1-space is C1.

To close up this report, we discuss some application to expanders. Let
(pm)m∈N≥1

be a sequence of primes. Then, there is a natural isomorphism

SL(4m,Fpm)(= E(4m,Fpm)) ≃ E(4,Matm×m(Fpm)).

Here Fp denotes the finite filed of order p for a prime p. The key observation here is
that regardless of values of m (and pm), the ring Matm×m(Fpm) is generated (as a
ring) by unit and two elements (for instance, e11,2 and a cyclic permutation matrix).
Hence, E(4,Z〈s, t〉) maps onto SL(4m,Fpm) for every m ∈ N≥1, where Z〈s, t〉
means the non-commutative polynomial ring over Z with two indeterminates s
and t. By (1) of Theorem 4, the group E(4,Z〈s, t〉) has property (FBNCLq

) for all

q ∈ (1,∞). By combining this with results of de la Salle [10] and Oppenheim [9]
(which show that property (FBNCLq

) is equivalent to “robust property (TBNCLq
)”

([9]) if q ∈ (1,∞)) and a forthcoming work of Gomez-Aparicio, Liao and de la
Salle on “geometric robust property (TE)”, we obtain the following byproduct.

Corollary 5. For every sequence (pm)m∈N≥1
of primes, there exists a system

(Sm)m∈N≥1
of generators of cardinality 4 for finite groups (SL(4m,Fpm))m∈N≥1

such that he following holds true: The sequence of Cayley graphs

(Cay(SL(4m,Fpm), Sm)))m
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forms an expander family with “geometric robust property (TBNCLq
) for all q ∈

(1,∞).”
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Problem Session

Assaf Naor, Florent Baudier, Piotr Nowak, Masato Mimura

The most fundamental problem related to this workshop is the question of whether
all expanders are superexpanders, as recalled in the introduction. In several ex-
tended abstracts, interesting open problems were mentioned. In this section, we
record some additional open problems, which were suggested by participants or
came up during discussion sessions.

Problem 1 (Naor). Do there exist two sequences of bounded degree graphs that
are incomparable?

Two sequences of bounded degree graphs are said to be incomparable if each
is an expander with respect to the other, i.e., each satisfies a Poincaré inequality
with respect to the other. This is a stronger notion than that of the two sequences
not admitting a coarse embedding into one another. Note that being incomparable
in this way forces both sequences to be expanders.

Problem 2. Does there exist a bounded geometry metric space that embeds into
ℓp for some 2 < p <∞ but not into a Hilbert space?
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The problem dates back to the work of Johnson and Randrianarivony [JR],
which proves that ℓp does not coarsely embed into the Hilbert space for p > 2.
Note that there exists an example of a space that does not embed into a Hilbert
space and for which it is unknown whether it embeds into ℓp for all p (see the
extended abstract by Thiebout Delabie above).

Problem 3 (Baudier). Let 2 < p <∞. Does Lp([0, 1]) embed coarsely into ℓp?

From the perspective of locally finite metric spaces (e.g. discrete bounded ge-
ometry spaces), the two spaces are indistinguishable: a locally finite subset of Lp

embeds in a bi-Lipschitz way in ℓp by a work of Baudier [Bau]. Note also that
for 1 ≤ p, q ≤ 2 there always is a coarse embedding Lp([0, 1]) →֒ ℓq, which can be
obtained by composing the classical embedding Lp([0, 1]) →֒ L2([0, 1]) of [BDCK]
with Nowak’s embedding L2([0, 1]) →֒ ℓq [Now06]. Further details can be found in
[AB], where the above problem is stated as Question 6.5.

Problem 4 (Nowak). Is there a free and measure-preserving action of a free group
on a manifold such that the associated warped cone admits a wall structure?

Note that such a warped cone would not satisfy property A. The first examples
of locally finite metric spaces without property A yet coarsely embeddable into
the Hilbert space were found by Nowak [Now07] and the first examples among
box spaces by Arzhantseva, Guentner, and Špakula [AGŠ]. Works of Khukhro
[Khu12,Khu14] provide many further examples as well as permanence properties
for groups admitting such box spaces.

By considering warped cones over the respective completions, one can construct
coarsely embeddable warped cones without property A [Saw], however the case of
actions on manifolds remains open. The construction of [Saw] relates to Sawicki’s
question whether there is a ‘slowly-growing’ box space �(Nn)G as above, that is,
whether one can require [Nn : Nn+1] to be bounded.

Problem 5 (Mimura). For a prime power q, let Fq be the finite field of order q.
Let (pm)m∈N be a sequence of primes. Let (nm)m∈N be a sequence of integers at
least 3. Assume that either limm→∞ pm =∞ or limm→∞ nm =∞ holds true. Fix
such (pm)m and (nm)m.

Can the sequence of finite groups (SL(nm,Fpm))m form a family of super-
expanders? More precisely, does there exist a system (Sm)m of generating sets
of a fixed cardinality for (SL(nm,Fpm))m such that the sequence of the resulting
Cayley graphs ((Cay(SL(nm,Fpm), Sm))m∈N is a super-expander family?

The condition of [limm→∞ pm = ∞ or limm→∞ nm = ∞] is imposed in order
to ensure limm→∞ |SL(nm,Fpm)| =∞.

This problem consists of two cases differing by the boudedness of (nm): one may
be called “bounded rank case” and the other “unbounded rank case.” (Recall that
the local rank of SL(n, k) is n − 1 for a local field k.) The “bounded rank case”
will be resolved in the affirmative if SL(3,Z) has property (TBsr

). Here Bsr is the
class of all super-reflexive Banach spaces.
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We remark that for “bounded rank case”, if we consider (qm)m a sequence of
prime powers, instead of the sequence (pm)m of primes, then there exists (qm)m
such that the problem is settled in the affirmative. Indeed, fix a prime p and let
qm = prm , rm ∈ N≥1, such that limm→∞ rm = ∞. For simplicity, we discuss
the case where nm = 3 for all m. The key here is that every group of the form
SL(3,Fprm ) is a group quotient of SL(3,Fp[t]), where Fp[t] denotes the polynomial
ring over Fp with indeterminate t. To see this, employ a basic result in elemen-

tary number theory that the multiplicative group F
×
prm is cyclic. Fix a generator

trm ∈ F
×
prm of it. Then, the map which sends t ∈ Fp[t] to trm ∈ Fprm induces

a surjective group homomorphism from SL(3,Fp[t]) to SL(3,Fprm ) (to see that
the group homomorphism above is surjective, observe that both of the special lin-
ear groups above coincide with the elementary groups respectively over the same
rings). The celebrated work of V. Lafforgue [Laf] implies that SL(3,Fp[t]) has
property (TBsr

). Therefore, a Margulis-type argument indicates a way to find a
system of generators of (SL(3,Fprm ))m to obtain a super-expander family.

Problem 6 (Naor). Give a description of the unique discrete Hilbert space.

Any two nets in an infinite-dimensional Banach space are bi-Lipschitz equivalent
by [LMP], and if a net in a Banach space X is bi-Lipschitz equivalent to a net in
ℓ2, then X is linearly isomorphic to ℓ2 by Theorem 10.21 of [BL]. There is thus
a unique discrete Hilbert space in the bi-Lipschitz category. Note that in finite
dimensions, nets are not unique ([BK], [McM]).
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