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Introduction by the Organisers

The mini-workshop Gibbs Measures for Nonlinear Dispersive Equations, organised
by Giuseppe Genovese (Zürich), Benjamin Schlein (Zürich) and Vedran Sohinger
(Coventry) brought together 16 participants with broad geographic representation.

The topic of the meeting, i.e. the notion of Gibbs measure, occurs naturally
in the context of nonlinear dispersive PDEs, probability theory, as well as in
many-body quantum mechanics. Therefore one of the main scientific aims was
to strengthen the bridge between mathematicians of these different communities.

The workshop unfolded around three main themes involving Gibbs measures,
namely nonlinear dispersive equations, stochastic differential equations and many-
body quantum mechanics. A majority of the contributions were devoted to the
first theme. They included analytical and deterministic aspects, as discussed in the
talks of N. Visciglia and F. Cacciafesta, along with the construction of invariant
or quasi-invariant measures for different models, as in the talks by A. B. Cruzeiro,
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R. Lucá, L. Thomann, A. Nahmod, J. Lukkarinen and G. Genovese. As for the
theme of stochastic differential equations, we had the talk of H. Weber in the
parabolic setting and the talk of L. Tolomeo in the dispersive one. Finally the
theme of many-body quantum mechanics was concentrated on recent advances on
the derivation of the Gibbs measure starting from a quantum mechanical ensemble
in a semiclassical limit. P. T. Nam and N. Rougerie presented a derivation for the
Bose gas in dimensions 1 and 2 and A. Knowles discussed a different approach
in dimensions 1,2 and 3. V. Sohinger finally explained the derivation of time-
dependent correlation functions in the 1-dimensional case.

The format of the workshop consisted of several lectures per day (from two to
four). Much time was reserved to discussions, deepening the arguments of the
lectures and developing scientific interaction.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Conservation laws and almost conservation laws for dispersive PDEs
with applications

Nicola Visciglia

Several dispersive equations are completely integrable, we mention in particular
cubic NLS, dNLS (derivative NLS), KdV, BO (Benjamin-Ono equation). As a
consequence there exist infinitely many energies (conservation laws) preserved
along the corresponding flows and having the following structure:

Ek(u) =
1

2
‖u‖2

Ḣk +Rk(u),

for k integer (in the case of BO k can be fractional as well) and Rk(u) involving
lower order terms. Two important consequences of this fact are in order:

(1) boundedness of Sobolev norms, namely supt ‖u(t, x)‖Hk < ∞ where
u(t, x) is any solution of the dispersive model (with a further L2-smallness
assumption in the case of dNLS);

(2) existence of invariant measures for the corresponding flow, of the type

f(u)dµk where dµk = ” exp−‖u‖2

Hk du” and f(u) is a suitable density.

Concerning the issue of invariant measure there is a huge literature, we only quote
a few of them: [8] for cubic NLS and KdV, [3] and [4] for dNLS, [6] and [7] for
BO.

The connection between exact conservation laws and invariant measures
comes from the fact that one (roughly speaking) can exponential the conservation
law and hence the measure

exp(−Ek(u))du = exp(−Rk(u))︸ ︷︷ ︸ dµk

f(u)

is expected to be invariant along the flow. At least formally, this fact follows by
the Hamiltonian structure of the PDEs and Liouville theorem.

It is worth mentioning that, for dispersive equations which are no more com-
pletely integrable, the situation is more involved and for instance it is not clear
whether or not the high order Sobolev norms can grow when time goes over, and
eventually to understand how fast they can grow (see [1] and [2]). Let’s focus for
simplicity on the case of NLS

{
i∂tu+∆gu = u|u|2m, (t, x) ∈ R×Md

u(0, x) = ϕ(x) ∈ Hs

where (Md, g) is a compact d-dimensional Riemannian manifold, ∆g is the Laplace
Beltrami operator, s the regularity of the initial data. Following pioneering paper
by Bourgain (and further subsequent generalizations) one can show that for d =
1, 2 the growth of high Sobolev norms is at most polynomial. The approach by
Bourgain relies heavily on the celebrated spaces Xs,b.



1086 Oberwolfach Report 18/2018

An alternative approach has been developed in the paper [5] where, beside
results on the polynomial growth in dimensione d = 1, 2, it has been established
exponential growth for solutions to cubic NLS posed on a generic compact manifold
of dimension d = 3. The key point in [5] is the introduction of suitable almost

invariant conservation laws Ẽk(u), namely energies whose time derivative along
solutions involve lower order terms that can be estimated by quite elementary
arguments, hence getting polynomial growth of the high Sobolev norms
along the evolution.

Another important question for dispersive models which are not completely
integrable, concerns the quasi-invariance of the measure dµk along the flow,
namely to understand whether or not Φ∗

t (dµk) is absolutely continuous w.r.t to
dµk, where Φt is the corresponding flow. We believe that the analysis of the

measures exp(−Ẽk(u))du, where Ẽk(u) are the aforementioned almost invariant
conservation laws, can shed some light on this problem at least for NLS in
dimension d = 1.
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The Dirac equation and invariant measures

Federico Cacciafesta

The Dirac equation is among the fundamental equations in relativistic quantum
mechanics, and it is widely used in physics to describe relativistic particles of spin
1/2. We recall that the 3D Dirac equation can be written as

(1) i∂tu+Du+mβu = 0, u(t, x) : Rt × R
3
x → C

4
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where D = −i
3∑

k=1

αk∂k = −i(α ·∇) and αj and β are the standard Dirac matrices.

From a dynamical point of view, the Dirac equation can be related to the Klein-
Gordon or the wave ones (depending whether the mass m ≥ 0), as indeed the
operator D is constructed such that D2 = −I4∆. Therefore, the flow eit(D+βm)f
satisfies the same apriori estimates as the corresponding one for the Klein-Gordon
flow (Strichartz, time-decay, local smoothing...). The situation becomes definitely
more involved when perturbations come into play, either of potential type (electric
or magnetic), nonlinear interaction or even geometric ones. Indeed, in this kind of
problems and especially in a low regularity setting or close-to-the scaling critical
regime, the algebraic structure of the operator typically needs to be exploited in
order to obtain precise results.

In this talk we will describe how to prove dispersive estimates for the Dirac
equation on some curved spacetimes. In particular, we will discuss how to obtain:

• Local smoothing estimates for asymptotically flat or some warped-products
manifolds by a direct application of the classical multiplier method;

• Strichartz estimates in the spherically symmetric case in various settings
(which include the hyperbolic space), by relying on the so called ”partial
wave decomposition”, which is roughly speaking a radial decomposition of
the Dirac operator in 2-dimensional spaces. These results, in particular,
allow applications to the well-posedness for some nonlinear models.

Both these results are ongoing joint works with Anne-Sophie de Suzzoni.

Despite its major impact in physical applications and quantum chemestry, the
understanding of several aspects related to the Dirac equation are still far to be
satisfactory, the main reason for that being the rich and complicated algebraic
structure of the operator that make mosts of the tools that give strong results for
the Schrödinger equation (the non-relativistic counterpart) typically difficult to
be applied. Among the many open problems related to dynamical aspects of the
Dirac equations we mention the following:

• Dispersive estimates for the Dirac-Coulomb equation. The Coulomb oper-
ator is critical with respect to the natural scaling of the (massless) Dirac
operator and, as it is known, the study of dispersive dynamics of flows
perturbed with scaling-critical potentials is typically difficult as in fact all
the perturbative strategies are ruled out. Differently from the Schrödinger
and wave equations perturbed with inverse square potentials, for which
Strichartz estimates are well known, only a weak local smoothing effect
has been proved in the present contest (see [2]).

• The Dirac equation on curved spacetime. Much still needs to be done on
the topic: e.g. nothing is known on the dynamics of the Dirac equation
on compact manifolds.

• Randomized initial data/ existence of an invariant measure. At the mo-
ment, it has not been possible to exploit any probabilistic technique to
improve the deterministic results for the nonlinear Dirac equation. The



1088 Oberwolfach Report 18/2018

main obstruction in this direction is the indefinite sign of the energy, which
makes it impossibile to obtain uniform bounds in the standard construc-
tion of the Gibbs measure. Nevertheless, one could (maybe) start from the
1D cubic equation (Thirring model) and rely on the invariance of the L2

norm. Also, one could hope to obtain the existence of a ”weak” invariant
measure, i.e. of a random variable distributional valued that is a weak
solution of the nonlinear equation and such that its law is a measure ρ in-
dependent on time, to this case by adapting the strategy developed in [1]
which relies, essentially, on the Prokhorov-Skorokhod’s method combined
with Feynman-Kac theory for oscillatory processes.

References

[1] F. Cacciafesta and Anne-Sophie de Suzzoni. Invariance of Gibbs measures under the flows of
Hamiltonian equations on the real line, preprint, https://arxiv.org/abs/1512.02069.

[2] F. Cacciafesta and Eric Séré. Local smoothing estimates for the Dirac Coulomb equation in
2 and 3 dimensions, J. Funct. Anal. 271 no.8, 2339-2358 (2016)

The interacting 2D Bose gas and nonlinear Gibbs measures

Nicolas Rougerie, Phan Thành Nam

(joint work with Mathieu Lewin)

During the MFO workshop “Gibbs measures for nonlinear dispersive equations”,
we have announced a new theorem bearing on high-temperature 2D Bose gases.
The purpose of this note is to state the result in a concise manner. Background,
details, generalizations, discussion, references and proofs will appear elsewhere
shortly.

Hilbert space and state space. We consider the grand-canonical picture of
the homogeneous 2D Bose gas. We assume periodic boundary conditions and thus
particles live in the 2D unit flat torus T. The particle number is not fixed: we
work in the bosonic Fock space

(1) F = C⊕ L2(T2)⊕ . . .⊕ L2
sym

((
T
2
)n)⊕ . . .

where L2
sym

((
T2
)n)

is the usual n-particle bosonic space of symmetric square-
integrable wave-functions (identified with the n-fold symmetric tensor product of
L2(T2) with itself).

We denote

(2) S (F) := {Γ self-adjoint operator on F, Γ ≥ 0, TrF[Γ] = 1}
the set of all (mixed) quantum states on the bosonic Fock space F. For any state
Γ ∈ S(F) of the form

Γ = Γ0 ⊕ Γ1 ⊕ . . .⊕ Γn ⊕ . . .
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we define its reduced k-body density matrix, a positive trace-class operator on

L2
sym

((
T2
)k)

, by the formula

Γ(k) :=
∑

n≥k

(
n

k

)
Trn+1→k [Γn] .

The partial trace Trn+1→k is taken on n− k variables, no matter which by sym-
metry.

Hamiltonian. We are interested in the equilibrium states of

(3) Hλ = H0 + λW, H0 =
⊕

n≥1

n∑

j=1

−∆j

with λ > 0 a coupling constant and

W =
⊕

n≥2

∑

1≤i<j≤n

w(xi − xj), ŵ ≥ 0

where w : T2 7→ R is even and ŵ is its Fourier transform (sequence of its Fourier
coefficients). Equivalently,

Hλ =
∑

k

|k|2a†kak +
λ

2

∑

k,p,q

ŵ(k)a†p+ka
†
q−kapaq

with annihilation ak and creation a†k operators associated to the Fourier modes

eik·x, annihilating/creating a particle with momentum k ∈ (2πZ)
2
.

Quantum Gibbs state. We investigate the minimizer, amongst states Γ ∈ S(F),
of the free-energy functional at temperature T and chemical potential ν, setting
an energy reference E0:

(4) Fλ,T [Γ] := TrF [(Hλ − νN ) Γ] + T TrF [Γ log Γ] + E0.

Here N =
⊕

n≥0 n =
∑

k a
†
kak is the particle number operator. The minimum

free-energy is achieved by the Gibbs state

(5) Γλ,T :=
1

Zλ,T
exp

(
− 1

T
(Hλ − νN )

)

where the partition function Zλ,T fixes the trace equal to 1. The minimum free-
energy is then

Fλ,T = −T logZλ,T + E0.

Nonlinear Gibbs measure. Let κ > 0 and µ0 be the gaussian measure with

covariance (−∆+ κ)
−1

. This is a probability measure supported on the negative
Sobolev spaces

⋂
s<0H

s(T2). Let PK be the orthogonal projector on the span of
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the Fourier modes with |k| ≤ K. Consider then an interaction energy with local
mass renormalization

E int
K [u] =

1

2

∫∫

T2×T2

(
|PKu(x)|2 −

〈
|PKu(x)|2

〉
µ0

)

× w(x − y)
(
|PKu(y)|2 −

〈
|PKu(y)|2

〉
µ0

)
dxdy.

(6)

Here 〈 . 〉µ0
denotes expectation in the measure µ0. One can show that the sequence

E int
K [u] converges to a limit E int[u] in L1(dµ0) and that

(7) dµ(u) :=
1

z
exp

(
−E int[u]

)
dµ0(u),

with 0 < z <∞ a normalization constant, makes sense as a probability measure.

Result: the high-temperature/mean-field limit. Let κ > 0 and denote

N0(T ) :=
∑

k∈(2πZ)2

1

e
|k|2+κ

T − 1

the expected particle number of the non-interacting quantum Gibbs state (λ = 0)
at temperature T and chemical potential −κ. This number is easily seen to be of
order T logT for large T and fixed κ. Assume that

ŵ(k) ≥ 0 for all k ∈ (2πZ)2 and
∑

k

(
1 + |k|2

)1/2
ŵ(k) <∞.

Then, we have the following

Theorem (High-temperature/mean-field limit of the 2D Bose gas).
Set, for some κ > 0,

(8) ν = ŵ(0)λN0(T )− κ and E0 =
1

2
λŵ(0)N0(T )

2.

Then, in the limit T → ∞, λT → 1 we have

(9)
Fλ,T − F0,T

T
→ − log z.

Moreover, for every k ≥ 1 and p > 1

(10) Tr

∣∣∣∣
k!

T k
Γ
(k)
λ,T −

∫
|u⊗k〉〈u⊗k|dµ(u)

∣∣∣∣
p

→ 0.

Finally

(11) Tr

∣∣∣∣
1

T

(
Γ
(1)
λ,T − Γ

(1)
0,T

)
−
∫

|u〉〈u| (dµ(u)− dµ0(u))

∣∣∣∣→ 0.

Comments. A detailed discussion is postponed to a future paper, that will also
contain the proof of the theorem. The following remarks are thus intentionally
kept to a bare minimum.

1. The 1D analogue of this theorem was proved first in [14], see also [15] and [9, 10].
No renormalization is necessary to define the limit object in this case. The 2D and
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3D cases are investigated in [9] where the analogue of the above result is proved for
some modified Gibbs state instead of the minimizer of the free-energy functional.

2. The construction of the nonlinear Gibbs measure µ requires renormalization
because the natural interaction

1

2

∫∫

T2×T2

|u(x)|2w(x − y)|u(y)|2dxdy

does not make sense on the support of the gaussian measure. The renormalized
version (6) is relatively simple to control because ŵ ≥ 0. Positivity of the interac-
tion is then preserved: E int

K [u] ≥ 0 for all u. In more involved cases one can rely
on tools from constructive quantum field theory, see [7, 11, 22, 24] for reviews.

3. Gibbs measures related to µ are known [5, 6, 17] to be invariant under suitably
renormalized nonlinear Schrödinger flows. They also appear as long-time asymp-
totes for stochastic nonlinear heat equations, see [16, 18, 23] and references therein
for recent results.

4. The above theorem is part of the more general enterprise of gaining mathe-
matical understanding on positive-temperature equilibria of the interacting Bose
gas. The ground state and mean-field dynamics of this system are now well-
understood, but rigorous works showing the effect of temperature seem rather
rare [4, 8, 19, 20, 21, 25].

5. In the physics literature, classical field theories [26] of the type we rigorously
derive are used as effective descriptions at criticality, i.e. aroung the BEC phase
transition, to obtain the leading order corrections due to interaction effects [1,
2, 3, 12, 13]. Results of these papers are not easy to relate to our theorem, in
particular because we work in 2D where there is no phase transition in the strict
sense of the word. However (11) is reminiscent of methods for calculating the
critical density/critical temperature of the Bose gas in presence of interactions.

Acknowledgements. It is a pleasure to thank Jürg Fröhlich, Markus Holzmann,
Antti Knowles, Benjamin Schlein, Vedran Sohinger and Jakob Yngvason for helpful
discussions. Special thanks also to Giuseppe Genovese, Benjamin Schlein and
Vedran Sohinger for organizing the workshop where the above result was first
announced, and to the Mathematisches Forschungsinstitut Oberwolfach for hosting
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Solutions and invariant measures for Euler equations on the plane

Ana Bela Cruzeiro

We present the author’s recent results in collaboration with Alexandra Symeonides
([3],[4]) about the construction of invariant (and quasi-invariant) probability mea-
sures for Euler equations and their importance for the definition of solutions.

We show how invariant Gibbs-type Gaussian measures are helpful to prove ex-
istence of solutions for Euler equations starting (almost everywhere) from their
support. The corresponding functional spaces, endowed with probability mea-
sures that we know a priori to be invariant or quasi-invariant for the equations
(more precisely, that we know to be infinitesimally invariant) are abstract Wiener
spaces (similar to path the space of the Brownian motion). One can consider on
an abstract Wiener space the Malliavin calculus ([5]) a kind of differential calcu-
lus adapted to deal with non regular functionals. Once formulated in functional
spaces, some partial differential equations such as the ones we consider here be-
come ordinary differential equations. Flows for ordinary differential equations in
context of Wiener spaces were first studied in [2]. These methods can be applied
to construct flows for Euler equations.

The Euler equation on the plane. Let us consider the incompressible Euler
equation

∂u

∂t
+ (u · ∇)u = −∇p, div u = 0

on the 2-d torus T ≃ [0, L]× [0, L] (space periodic boundary conditions). Writing
u = ∇⊥ϕ = (−∂2ϕ, ∂1ϕ), the corresponding vorticity equation is the following

∂∆ϕ

∂t
= −(∇⊥ϕ.∇)∆ϕ.

Among the conserved quantities of the Euler equation we have the energy and the
enstrophy, namely

E = −1

2

∫

T

ϕ∆ϕdx, S =
1

2

∫

T

|∆ϕ|2dx

In [3] we considered the invariant Gibbs measure, formally given by

dµL(ϕ) =
1

Z
e−S(ϕ) Dϕ

that we have used to construct irregular solutions. More precisely, set eLk (x) =
1
Le

2πi
L

k.x, k ∈ Z2, a basis of L2(T), decompose ϕ =
∑

k>0 ϕ
L
k (t)e

L
k (x) and define

the random variables

ΦL(ω, x) =
∑

k

aLk (ω)e
L
k (x),

where

aLk (ω) =
√
2 (

L

2πk
)2 [Wk2+1(ω)−Wk2 (ω)],
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and Wk are i.i.d. complex-valued Brownian motions. Then µL is its law, the
Gaussian measure with mean zero and covariance

< a,C−1a >=
1

2

∑

k

(
2πk

L
)4 |aLk |2

The support of µL is the Sobolev space Hβ(T), β < 1.

One can prove that ΦL is a Cauchy sequence in L2(Ω;Hβ
loc(R

2)) for β < 1; if Φ

denotes its limit and µ its law, then µL converges weakly to µ in Hβ
loc.

The vorticity equation (periodic case), written in the functional spaces, is, ex-
plicitly,

d

dt
ϕL = B(ϕL)

where

BL(ϕ
L) =

∑

k>0

BL
k (ϕ

L)eLk (x)

and

BL
k (ϕ

L) =
1

L

(
2π

L

)2∑

h>0
h 6=k

[
(h⊥ · k)(k · h)

k2
− h⊥ · k

2

]
ϕL
hϕ

L
k−h,

h⊥ = (−h2, h1).
Using the Lp

µ regularity of the vector field B as well as the invariance of µ for
B (the fact that the divergence, i.e. the dual of the gradient applied to B is zero),
we can prove the following:

Theorem. Let β < −1. There exists a unique flow U(t, ϕ) defined for t ∈ R,

ϕ ∈ Hβ
loc µ− a.e. such that

U(t, ϕ) = ϕ+

∫ t

0

B(U(s, ϕ))ds µ− a.e.

The flow is continuous in Hβ
loc and the measure µ is invariant for the flow, namely

∫
f(U(t, ϕ))dµ(ϕ) =

∫
fdµ ∀t ∀f.

A modified Euler equation. Let σ(x) =
√
ε

2π e
− ε|x|2

2 the Gaussian probability

density in R2, ρ = σ−1. We consider the equation

∂ũ

∂t
+ (ũ · ∇)ũ = −∇p+ εxp, div ũ = 0

Notice that ũ, p depend on ε.
The corresponding vorticity equation for this modified Euler equation reads

∂

∂t
Lϕ = −(∇⊥ϕ.∇)Lϕ (E)
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where Lϕ = ∆ϕ− εx.∇ϕ is the Ornstein-Ulhenbeck operator in L2
σdx.

Concerning classical solutions we have:

Theorem. Given ω0 with ρω0 ∈ L1∩L∞, there exists T > 0 such that equation
(E) has a weak solution ω(t) defined for t < T , with ρω = Lϕ ∈ L∞([0, T ];L1 ∩
L∞).

Now consider the probability measure formally given by

dµσ(ϕ) =
1

Z
e
− 1

2 (‖Lϕ‖2
L2
σ
+‖ϕ‖2

L2
σ
)Dϕ

More rigorously, it is the law of the random variable

Γ(ω, x) :=
∑

k

Wk(ω)

1 + |k|Hk(x),

where Hk are Hermite polynomials on R
2, forming an o.n. basis of L2

σdx.

dµσ(ϕ) =
∏

k

(1 + |k|)2
2π

e−
1
2 (1+|k|)2|ϕk|2dϕk

The vorticity equation for the modified Euler equation, with
ϕ(t, x) =

∑
k≥0 ϕk(t)Hk(x), reads

d

dt
ϕ(t) = B̃(ϕ(t))

where

B̃(ϕ) = −
∑

|p|≥0

∑

0<|k|<2|p|

∑

0<|q|<|p|

1

|k| (|p| − |q|)A(p, q, k)ϕpϕqHk,

A(p, q, k) = [−√
p2q1Θ(p1, q1− 1, (p1+ q1− 1−k1)/2)Θ(p2− 1, q2, (p2+ q2− 1−

k2)/2) +
√
p1q2Θ(p1− 1, q1, (p1 + q1− 1− k1)/2)Θ(p2, q2− 1, (p2+ q2− 1− k2)/2)],

Θ(n,m, r) =

[(
n

r

)(
m

r

)(
n+m− 2r

n− r

)]1/2
.

We have the following regularity results:
For all r ≥ 1, β > 0, γ > 0,

B̃ ∈ Lr
µσ

(H−γ
σ (R2);Hβ

σ (R
2))

∇B̃ ∈ Lr
µσ

(H−γ
σ (R2);HS(H2(R2);Hβ

σ (R
2))

∇2B̃ ∈ Lr
µσ
(H−γ

σ (R2);HS(H2(R2)⊗H2(R2;Hβ
σ (R

2))

∃λ > 0 :

∫ (
expλ ‖∇B̃‖HS(H2

σ ;H
β
σ ) + expλ |divµσ

B̃|dµσ

)
dµσ < +∞

Here ∇ and ∇2 are taken in the Malliavin calculus sense.
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Using Malliavin Calculus on abstract Wiener spaces these assumptions are suf-
ficient to prove the existence of a flow for the modified vorticity equation starting
a.e. on the support of µσ, which is H−γ

σdx(R
2) ∩ Lp

loc(R
2).

We see that one can define solutions starting from functions and not only distri-
butions as in the standard Euler case. In this modified case the Gaussian measure
is not invariant for the flow but only quasi-invariant (the divergence is not equal
to zero). Denoting the density of the law of the flow ϕ(t) with respect to µσ by
kt, we have kt ∈ Lr

µσ
∀r ≥ 1.
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Invariant measures for the periodic derivative nonlinear Schrödinger
equation

Renato Lucà

(joint work with G. Genovese, D. Valeri)

The periodic DNLS equation

(1)

{
i∂tψ + ψ′′ = iβ

(
ψ|ψ|2

)′
ψ(x, 0) = ψ0(x) , x ∈ T ,

where ψ(x, t) : T × R → C, ψ0(x) : T → C, ψ′(x, t) denotes the derivative of ψ
with respect to x, and β ∈ R is a real parameter is a dispersive nonlinear model
describing the motion along the longitudinal direction of a circularly polarized
wave, generated in a low density plasma by an external magnetic field. This is
an integrable system, in the sense that there is an infinite sequence of linearly
independent quantities (integrals of motion) which are conserved by the flow.

In our previous work [GLV16] we constructed a family of weighted Gaussian
measures, supported on Sobolev spaces of increasing regularity, associated to the
integrals of motion of the DNLS equation. The measure associated to the energy
(namely at H1 level) had already been constructed in [TT10] . Here we construct
a sequence of weighted Gaussian measures invariant along the flow of a gauged
version of the equation (GDNLS). The pull-back of these measures are invariant
under the flow of DNLS and are presumably the measures constructed in [GLV16].
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The DNLS equation has interesting transformation properties with respect to
a group of gauge maps which will be now discussed. For α ∈ R let Gα : L2(T) →
L2(T) be defined by

(2) Gα(f)(x) := eiαI(f(x))f(x) .

where

(3) I(f(x)) := 1

2π

∫ 2π

0

dθ

∫ x

θ

(
|f(y)|2 −

‖f‖2L2(T)

2π

)
dy .

One can easily check that the (real) function I(f(x)) is the unique zero average
(2π-periodic) primitive of |f(x)|2 − (2π)−1‖f‖2L2.

Let ψ be a solution of the DNLS equation (1). For any α ∈ R, we set for brevity

(4) ϕ := Gα(ψ) .

Clearly we have ψ = G−α(ϕ). Even if ϕ depends on the choice of the parameter
α, see (4), we omit these dependence to simplify the notations. If ψ is a solution
of the DNLS equation then, for any α ∈ R, the function ϕ solves the GDNLS

(5) i∂tϕ+ ϕ′′ + 2iαµϕ′ = ic1|ϕ|2ϕ′ + ic2ϕ
2ϕ̄′ + c3|ϕ|4ϕ+ c4µ|ϕ|2ϕ+ Γ[ϕ]ϕ ,

where

(6) c1 = 2(α+ β) , c2 = 2α+ β , c3 = −α2 − αβ

2
, c4 = −αβ

and

(7) Γ[f ] =

(
3αβ

4π
+
α2

π

)
‖f‖4L4 − α2µ[f ]2 +

iα

π

∫

T

f ′f̄ .

The GDNLS equation admits a countable family of integral of motions. The
simplest are:

E0[ϕ] =
1

2
‖ϕ‖2L2 ,

E 1
2
[ϕ] =

i

2

∫
ϕ′ϕ̄+

1

4
(2α+ β)‖ϕ‖4L4 − παµ2 ,(8)

E1[ϕ] =
1

2
‖ϕ‖2

Ḣ1 + iαµ

∫
ϕϕ̄′ +

i

4
(4α+ 3β)

∫
|ϕ|2ϕ′ϕ̄

+ πα2µ3 − α

4
(4α+ 3β)µ‖ϕ‖4L4 +

1

4
(α+ β)(2α + β)‖ϕ‖6L6 ,

where µ = µ[ϕ] := 1
2π‖f‖2L2. When k ≥ 2 the general form of the integrals of

motion is

Ek[ϕ]

=
1

2
‖ϕ‖2

Ḣk + ikαµ

∫
ϕ̄(k)ϕ(k−1) − 1

2
((2k + 2)α+ (2k + 1)β)ℑ

∫
ϕ(k)ϕ̄(k−1)|ϕ|2,
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plus remainders, which are lower differential degree polynomials in ϕ, ϕ̄ and their
derivatives. Notice that, setting

α = −2k + 1

2k + 2
β ,

we reduce to

Ek[ϕ] =
1

2
‖ϕ‖2

Ḣk − ik
2k + 1

2k + 2
βµ

∫
ϕ̄(k)ϕ(k−1) + remainders .

We ca define a measure on L2(T) as follows

(9) Q̃k[f ] := Ek[f ]−
1

2
‖f‖2

Ḣk , ρ̃k(A) =

∫

A

k−1∏

m=0

χRm
(Em(f)) exp(−Q̃k[f ])γk(df),

for any A ∈ B(L2(T)), where R0, . . . , Rk−1 are positive real parameter with
R0 ≪ 1 and χRm

are positive cut off functions of the intervals [−Rm, Rm]. Here
γk denotes the standard (infinite-dimensional) Gaussian measure with covariance
associated to the Hk scalar product on T. The condition R0 ≪ 1 ensures the

integrability of the density in (9) w.r.t. γk. Q̃k and so ρ̃k depends on α.
The goal is to prove that ρ̃k is invariant under Φt,αk

, that is the flow associated
to the GDNLS equation (5) for our choice of α. Then we obtain an invariant
measure for DNLS letting ρ̂k(A) := (ρ̃k ◦ Gαk

)(A). Namely

Theorem 1 ([GLV18]). Let k ≥ 2 and let R0 be sufficiently small. Then there
exists a probability measure ρ̂k on (L2(T),B(L2(T))) such that the flow-map Φt

associated to DNLS is measure preserving in (L2(T),B(L2(T)), ρ̂k).

The low regularity case k = 1 had been already treated in [NOR-BS12] and
[NR-BSS11]. In the first paper the authors show the invariance of the measures
under the flow for the choice α = −β. In the second paper they prove that
the pull-back measure is indeed the measure constructed in [TT10] for the DNLS
equation.
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Gibbs measures and parabolic SPDEs

Hendrik Weber

Stochastic quantisation, first proposed by Parisi and Wu in the early 80s [1] is
a method by which complex measures arising in field theories are sampled as
the invariant measures of suitable distribution valued Markov processes. The
Euclidean Φ4 theories constitute an interesting test case for the mathematically
rigorous implementation of this idea. They are given by measures on the space of
distributions, and are formally described by the expression

(1) µ(dX) ∝ exp
(
− 2

∫ [1
2
|∇X(x)|2 − 1

4
X(x)4 +

1

2
∞X(x)2

]
dx
)
dX,

where the term 1
2∞X(x)2 indicates that a renormalisation procedure has to be

performed in the construction of the measure. In this case the associated distri-
bution valued Markov process is (at least formally) given by the stochastic PDE

(2) ∂tX = ∆X − (X3 −∞X) + ξ,

where ξ is space-time white noise.

A rigorous interpretation for (2) was not known until Hairer’s ground-breaking
work on Regularity Structures [2] where this interpretation was given for the first
time and short time well posedness on a finite domain for (2) was shown. Hairer’s
work triggered a lot of activity, including [3], [4] where alternative arguments for
this short time well posedness were given.

In this talk recent work on the large scale behaviour of solutions was reviewed.
The main result presented was the a priori bound

E

[
sup

0<t≤1
sup

X0∈B− 3
5

∞,∞

(√
t ‖X(t)‖

B− 1
2
−ε

∞,∞

)p]
<∞.(3)

for solutions of (2) over the three dimensional torus obtained in [5]. This bound
holds for all choices of p < ∞ and ε > 0, and ‖ · ‖αB∞,∞

stands for the norm

of the Hölder-Besov space of regularity α ∈ R. The bound expresses the strong
non-linear damping coming from the cubic term X3 in the sense that solutions at
any positive time t can be controlled uniformly over all possible choices of initial
datum X0. This fact can be used, for example, to give a dynamic construction of
the invariant measure (1).

In the (simpler) two-dimensional case a similar bound holds. This was one of
the key ingredients in [6] to prove a strong equilibration result for solutions of (2).
There it was shown that there exists a λ > 0 such that for all t > 0 the Markov
transition semigroup Pt for (2) satisfies

sup
x

‖Pt(x) − µ‖TV ≤ (1− λ)
t
,

where ‖ · ‖TV denotes the total variation metric.
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In the end of the talk, ongoing work with A. Moinat [7] was discussed. As a toy
problem we investigate the one-dimensional stochastic reaction diffusion equation

(4) (∂t − ∂2x)u = −|u|m−1u+ ξ, m > 1

and show a space-time version of the ”coming down from infinity” property

‖u‖PR
≤ C(m.α, ε)max

{
R− 2

m−1−ε, [ξ]
2

2+(m−1)α

α−2,P0

}

for ε > 0. Here ‖u‖PR
denotes the supremum norm of u restricted to the cylinder

PR := {(t, x) : t ∈ [R2, 1], |x| ≤ 1−R},
and [ξ] denotes a local Besov-Hölder norm of ξ restricted to P0.
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Almost sure scattering for the one dimensional nonlinear Schrödinger
equation

Laurent Thomann

(joint work with N. Burq)

1. Introduction

We present the main results of our article [2]. We study long time dynamics for
the one-dimensional nonlinear Schrödinger equation

(1)

{
i∂sU + ∂2yU = |U |p−1U, (s, y) ∈ R× R, 1 < p < 5,

U(0, ·) = U0,

where U0 is a random initial condition, with low Sobolev regularity. The distri-
bution of U0 will be given by a Gaussian measure and we will study its evolution
under the nonlinear flow of (1), denoted by Σ(s) and compare it with the evolution

under the linear flow Σlin(s) = eis∂
2
y .

When working on compact manifolds M instead of Rx, there exists natural
Gaussian measures µ supported in some Sobolev spacesHσ(M) which are invariant
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by the flow Σlin(s) of the linear equation. At some particular scales of regularity
these measures can be suitably modified to ensure that they are invariant by the
non linear flow.

In our context the situation is different, since dispersion prohibits the existence
of measures invariant by the linear flow. First we define mesures on the space of
initial data for which we can describe precisely the non trivial evolution by the
linear flow. Second, we prove that the non linear evolution of these measures is
absolutely continuous with respect to these linear evolutions, and finally we get
benefit from this precise description to prove almost sure scattering of our solutions
of (1) for p > 3.

This work extends previous results from [3], were the case p ≥ 5 is considered.
When p ≥ 5, monotonicity properties allow to simplify the proof and a complete
description of the non linear evolution of the measures is unnecessary.

2. Statement of the results

We denote by H = −∂2x + x2, the harmonic oscillator in one space dimension, and
by {en, n ≥ 0} the Hermite functions its L2-normalised eigenfunctions, Hen =
λ2nen = (2n + 1)en. Recall that the family {en, n ≥ 0} forms a Hilbert basis of
L2(R).

Consider a probability space (Ω,F ,p) and let {gn, n ≥ 0} be a sequence of
independent complex standard Gaussian variables. Let σ > 0, we define the
probability measure µ on H−σ(R) as the image of the probability measure p on Ω
by the map

ω 7−→ γω =

+∞∑

n=0

1

λn
gn(ω)en, µ = p ◦ γ−1.

For σ > 0, denote by

Hσ(R) =
{
u ∈ L2(R) : |Dx|σu ∈ L2(R), |x|σu ∈ L2(R)

}
.

and define H−σ(R) as its dual space.

The measure µ satisfies µ
(
Hσ(R)

)
= 0 and µ

(
H−σ(R)

)
= 1, for all σ > 0.

To begin with, we have the following global well-posedness result.

Theorem 1. Let 1 < p < 5. Then Equation (1) has for µ-almost every initial
data a unique global solution satisfying for some σ > 0,

U(s, ·)− eis∂
2
yU0 ∈ C

(
R;Hσ(R)

)
,

with uniqueness in a space continuously embedded in C
(
R;Hσ(R)

)
. This defines

a flowmap Σ(s), and for all s ∈ R we have U(s) = Σ(s)U0.

We are now able to study the evolution of µ under the nonlinear flow of (1)
defined in Theorem 1.

Theorem 2. Let 1 < p < 5.
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(1) For all s ∈ R, the measures Σ(s)#µ and (eis∂
2
y )#µ are equivalent (they

have the same zero measure sets).
(2) For all t 6= s, the measures Σ(t)#µ and Σ(s)#µ are mutually singular.

A natural question is the long time behaviour of the solution to (1). Actually,
using a more quantitative version of Theorem 2, we prove

Theorem 3. Let 3 < p < 5. The solution to (1) constructed in Theorem 1
scatters in the following sense: there exists σ > 0 and there exists µ a.s. states
G± ∈ Hσ(R) so that

‖U(s, ·)− eis∂
2
y (U0 +G±)‖Hσ(R) −→ 0, when s −→ ±∞.

In the case p ≤ 3, Barab [1] showed that a non trivial solution to (1) never
scatters, thus even with a stochastic approach one can not have scattering in this
case. Therefore the condition p > 3 in Theorem 3 is optimal. In [4], Tsutsumi and
Yajima proved a scattering result in L2(R), but assuming additional regularity on
the initial conditions.

In the argument, we use the lens transform which allows to work with the
Schrödinger equation with harmonic potential for finite times, and it is enough to
prove finite time results for this latter equation to infer scattering for (1).

Acknowledgements. It is a pleasure to thank Giuseppe Genovese, Benjamin
Schlein and Vedran Sohinger for organizing the workshop ”Gibbs Measures for
Nonlinear Dispersive Equations” where these results were announced, and the
MFO for its hospitality.
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Ergodicity for Nonlinear Stochastic Hyperbolic Equations with
damping

Leonardo Tolomeo

Consider the equation

(SDNLW) utt + ut + u+ (−∆)
s
2u+ u3 = ξ,

posed on the d-dimensional torus Td, where ξ is the space-time white noise, and
s > d. Our goal is to study the long-time behaviour of the flow of this equation.
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First of all, we notice the existence of an invariant measure, given formally by

(G) exp
(
− 1

2

∫
(u+∆

s
4 u)2 − 1

4

∫
u3
)
du exp

(
− 1

2

∫
u2t

)
dut.

This can be seen formally by dividing the infinitesimal flow of the equation into
the flow of the Hamiltonian equation

utt + u+ (−∆)
s
2u+ u3 = 0,

which is expected to preserve the Gibbs measure (G), and the Ornstein-Uhlenbeck
process

utt + ut = ξ,

which is known to preserve the Gaussian measure

exp
(
− 1

2

∫
u2t

)
dut,

and so, since the flow of this process does not depend on u, preserves the measure
(G) as well.
After proving invariance of the measure with respect to the flow of (SDNLW),
we want to study convergence to equilibrium starting from an arbitrary initial
data. The standard recipe for showing this convergence relies on three ingredi-
ents: Strong Feller property of the flow, good a priori estimates, and irreducibility
of the flow. If all of these ingredients are available, one would hopefully be able
to show a spectral gap property for the flow and exponential convergence to equi-
librium.
In the case of (SDNLW), while we do have good a priori estimates and irreducibil-
ity, we can actually show that the flow is not Strong Feller.
Therefore, we proceed in a different way. We show that the flow of (SDNLW)
is Strong Feller in a much stronger topology, which is not good enough to con-
clude ergodicity of (G). Hence, we mix this property with a completely algebraic
argument, which allows us to show uniqueness of the invariant measure (G). Un-
fortunately, this does not provide convergence to equilibrium of the flow, nor any
quantitative estimate for the convergence of the time averages.
However, this argument has the benefit to be completely local (in time) with re-
gards to showing ergodicity (in the dynamical system sense) of the measure (G), so
it may prove useful in situations for which good long-time estimates are unavailable
and/or finite time blowup is possible.

Non-equilibrium invariant measures for the resonant NLS

Andrea R. Nahmod

(joint work with Z. Hani, J. Mattingly, L. Rey-Bellet, G. Staffilani)

In this talk we describe joint work with Z. Hani, J. Mattingly, L. Rey-Bellet and
G. Staffilani on the construction of non-equilibrium invariant measures associated
to the resonant cubic nonlinear Schrödinger equation (NLS) on T2.
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There are by now several examples of semilinear Schrödinger and wave equations
defined Rd for which it is mathematically proven that dispersion sets in and, after a
time long enough, solutions settle into a purely linear behavior. This phenomena is
often referred to as scattering (asymptotic stability). For linear solutions, energy
at any given frequency does not migrate to higher or lower frequencies, that is
there is no forward or backward cascade. As a consequence of scattering then,
certain nonlinear solutions in Rd also will avoid these cascades. We also say that
linear solutions are in equilibrium and scattering solutions are asymptotically in
equilibrium. The situation is believed to be different on compact domains, where
dispersion is weak and does not translate into time decay of the solutions, so much
less is known in this regard. For example, on periodic domains Td, d ≥ 2, many
different long-time behaviors can occur; in particular, equilibrium solutions are
not expected to be stable, giving rise to out of equilibrium dynamics. How to
analytically describe this expected out-of-equilibrium behavior is one of the most
intriguing questions in the study of the long time dynamics of dispersive equations
in this case, with only few partial answers given so far, as will be mentioned below.

Wave/weak turbulence theory seeks to obtain a statistical description of the
out-of-equilibrium dynamics for Hamiltonian nonlinear dispersive equations by for
example deriving effective equations that track the long time evolution for the
energy distribution of the system at hand. Putting this theory on a rigorous math-
ematical foundation is a challenging and difficult proposition. There are two main
aspects pertaining a rigorous mathematical study of wave turbulence. One entails
deriving the fundamental equations (wave kinetic equations) governing the dynam-
ics and energy distribution of the dispersive equation under consideration. Some
work in this direction has been done in recent years, see for example works by Faou-
Germain-Hani, Germain-Hani-Thomann, and Buckmaster-Germain-Hani-Shatah.
The other is that of proving some of its dynamical conclusions1 such as the energy
cascade phenomenon2. One approach to the latter is by exhibiting dynamics that
reflect the conclusions of the theory, and by constructing -and proving conver-
gence of the system to- a non-equilibrium invariant measure with positive entropy
production (energy transfer), that the theory predicts. Our work pertains this
approach.

We focus on the 2D periodic cubic NLS equation. The stationary non-equilibri-
um states (SNS)- also known as the Kolmogorov-Zakharov spectra of the wave
kinetic equation (c.f. Nazarenko’s book and reference therein) in the theory of wave
turbulence- correspond to non-equilibrium steady states3 or invariant measures for
NLS in which energy (or mass) cascades through frequency scales at a constant
flux. Such flux of energy through scales cannot be a final steady state for a
Hamiltonian system –without violating the conservation laws– unless there is a

1Independently of a complete justification of the formalism.
2That is, the transfer of energy from low to high modes, or vice-versa as the initial data

evolves.
3The well-known white noise and Gibbs measures are equilibrium steady states (equilibrium

spectra).



Mini-Workshop: Gibbs Measures for Nonlinear Dispersive Equations 1105

source pumping energy into the system at low frequencies and a sink dissipating
energy from it at high frequencies (for forward cascade).

Even for stochastically forced systems, proving the existence and uniqueness of
non-equilibrium invariant measures is very hard in the context of PDEs. However,
we have recent developments on non-equilibrium statistical mechanics of open
classical systems aimed at understanding analogous questions for some ODE sys-
tems modeling heat transfer in a finite chain of anharmonic oscillators with nearest
neighbor couplings. This line of research started with the works of Eckmann, Pillet
and Rey-Bellet, Rey-Bellet and Thomas up to more recent progress by Hairer and
Mattingly. In these works, energy is fed into and dissipated from the system using
so-called heat baths, one at a temperature T1 and another at temperature T2 > T1.
The interaction with heat baths is modeled by standard Langevin dynamics. Nat-
urally, one expects the system to converge to a non-equilibrium invariant measure
in which energy moves at a constant flux from the low-temperature heat bath
towards the high temperature one. This is the content of the works mentioned
above, along with rates on the convergence to those steady states.

We follow those developments in order to shed some light on the non-equilibrium
dynamics for resonant NLS. As a first attempt at this, we wish to construct in-
variant measures that correspond to positive and constant energy fluxes for finite
sub-systems of the resonant NLS..

We consider the reduced Toy Model first derived by Colliander-Keel-Staffilani-
Takaoka-Tao whose Hamiltonian H has interactions of N particles depending not
just on their relative distance but also on the momenta of each particle and that of
its neighbors. Colliander-Keel-Staffilani-Takaoka-Tao showed that this toy model
approximates the cubic NLS on the 2D torus over certain timescales (in the weak
nonlinearity regime) and used it to exhibit smooth solutions (to the defocusing
cubic NLS on T2) for which the support of the conserved energy moves to higher
Fourier modes. This behavior is quantified by the growth of higher Sobolev norms
(as suggested by Bourgain). This implies there exist arbitrarily large, but finite,
energy cascades, thus showing ‘weakly turbulent dynamics’.

Together with Z. Hani, J. Mattingly, L. Rey-Bellet and G. Staffilani, we con-
struct a suitable finite dimensional Hamiltonian stochastic ODE model - out of
the toy model- where two heat baths, respectively at temperatures T1 and TN ,
are attached at the first and last mode4. That is, we inject energy into the lowest
mode in the form of dissipation plus fluctuation (white noise) and suitably absorb
it from the last mode. We call this model the stochastic resonant system (SRS)
and its Hamiltonian H . At equilibrium, that is, when the baths temperatures
are equal (T1 = TN = T ), the system has a unique Gibbs (equilibrium) invariant

measure of the form e−
1
T
Hdx.

4This is a mechanism to stochastically add and dissipate energy from the system in a controlled
way.
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In this talk we describe how to then construct a unique ergodic invariant non-
equilibrium measure associated to the system SRS with positive entropy produc-
tion when N = 3. Our aim also entails obtaining estimates on the rate of con-
vergence of the system to such stationary non-equilibrium state (relaxation rate).
This measure correspond to invariant measures for (a finite subsystem of) the res-
onant NLS with positive energy-fluxes. We expect them to give insight into the
non-equilibrium statistics of NLS and be a strong manifestation of the conjectured
cascade phenomena for NLS.

The resolution of our problem entails proving 1) the existence of an invariant
measure, 2) its uniqueness, 3) its ergodicity and finally 4) the positive entropy pro-
duction. Our setting however, is considerably more complex than the anharmonic
chain considered in previous works by J.P. Eckman, M. Hairer, J. Mattingly, C.A.
Pillet, L. Rey-Bellet, L. Thomas, as already seen in step 1), when a suitable contin-
uous and piecewise C2 Lyapunov function V must be constructed, which penalizes
the region where the second mode has small and high energy. Such construction
gives an upper bound on the hitting time of the good region (compact set) where
the dynamics spends most of time. A natural candidate for V is to use a coercive
conserved quantity of the starting Hamiltonian system. But this does not work
in the whole space. We need to chop our phase space in several regions and a
deep/detailed understanding of the dynamics is needed. In fact we need to solve
suitable Poisson equations for V with appropriate boundary conditions and check
a ‘convexity’ condition as in Herzog-Mattingly’a work. We study the behavior of
the phases and in some regions prove that asymptotically they get locked.

As far as we know, these measures are new even from the physics point of view.

Multi-state condensation in Berlin–Kac spherical models

Jani Lukkarinen

In 1952, Berlin and Kac proposed [1] a spherical model as a modification of the Ising
model of a ferromagnet, replacing discrete spin variables by continuum variables,
i.e., by real numbers. Their goal was to find simple models were phase transitions
could be studied fairly explicitly, including also the physically relevant case of three
dimensions. By explicit computation of the large volume limit of the partition
function of their model, they found a phase transition related to the constraint of
fixed total “spin” density. The mechanism behind the phase transition is similar
to Bose–Einstein condensation in quantum statistical mechanics.

In a personal communication, Herbert Spohn pointed out that the Berlin-Kac
spherical model is in fact closely related to a model studied in our earlier joint
work, namely, to the discrete nonlinear Schrödinger equation (DNLS). In [2], we
proved that standard kinetic theory is valid, at least for short kinetic times, for
certain time-correlations of fields following the DNLS evolution assuming that the
initial field values are distributed according to a grand canonical ensemble. The
grand canonical ensembles yield a two-parameter family of probability measures
invariant under the DNLS evolution, and in the weak coupling limit they roughly
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correspond to the “Gaussian models” studied in [1]. The spherical model was
introduced as a generalization of the Gaussian models which allows for arbitrary
initial values of energy and spin density. Analogously, it turns out that the version
of the spherical model involving complex-valued fields allows for more general
DNLS initial data with well-defined weak coupling limits.

We begin by considering a finite d-dimensional periodic lattice ΛL of side length
L, ΛL = {−L/2+1, . . . , L/2}d for even L. The dynamical variables are then given
by the field values ψx ∈ C, x ∈ ΛL, and we determine the initial values of the
fields via randomly distributed Fourier components Φk, k ∈ Λ∗

L = ΛL/L: we set
ψx =

∫
Λ∗

L

dk ei2πx·kΦk, where “
∫
Λ∗

L

dk · · · ” := 1
V

∑
k∈Λ∗ · · · with V = |ΛL| = Ld.

The distribution of the initial data is assumed to be given by the spherical
model. The probability measure for the Fourier modes then reads

µ0[dΦ] :=
1

Zρ
e−H[Φ]δ(N [Φ]− ρV )

∏

k∈Λ∗

[dΦ∗
kdΦk]

where dΦ∗
kdΦk := d

(
ReΦk

)
d
(
ImΦk

)
, Zρ normalizes the integral to one, and

H [Φ] :=

∫

k∈Λ∗

dk ω(k)|Φk|2 , N [Φ] :=

∫

k∈Λ∗

dk |Φk|2 =
∑

x∈Λ

|ψx|2 .

Here ρ > 0 is some given density parameter and, for notational simplicity, we do
not introduce any explicit temperature factors β but rather assume that this has
already been included in the definition of ω(k). Various choices of the “energies”
ω(k) are possible here, but for the measure to be invariant under the DNLS evo-
lution, they need to match with the dispersion relation of its free, wave evolution
part. In practise, one is most often interested in a case where a fixed smooth
dispersion relation ω : Td → R is given and the values of ω(k) are defined by
restriction to k ∈ Λ∗

L.
The original Berlin–Kac paper considers nearest neighbour interactions with

ω(k) = −β∑d
i=1 cos(2πki), β > 0, and their results are consistent with the sce-

nario that for supercritical initial densities the extra mass condenses into the lowest
energy mode with k = 0 as L → ∞. In a forthcoming work [3], more general dis-
persion relations are considered, in particular, allowing for several minima. It is
shown that there is a way of splitting the Fourier modes into “condensate modes”,
k ∈ Λ∗

0, and “normal fluid modes”, k ∈ Λ∗
+ = Λ∗ \Λ∗

0, so that these two collections
become approximately independent random variables. The normal fluid modes
can also be approximated by mean zero, mutually independent, Gaussian random
variables. However, the structure of the fluctuations of the “condensate” can be
fairly complicated and could depend in a nontrivial way on the lattice size L.

Explicitly, define ω0 := mink∈Λ∗ ω(k) and ek := ω(k) − ω0 ≥ 0, k ∈ Λ∗. In [3],
the aim is to prove that if the measure µ0 is supercritical, ρ > supL ρc(L), where
ρc(L) :=

∫
k∈Λ∗

+
dk e−1

k , and the dispersion relation ω : Td → R has only finitely

many non-degenerate minima (i.e., with an invertible Hessian), then the Wasser-
stein distance between µ0 and a measure µ1 with the above stated fluctuation
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properties satisfies

W2(µ0, µ1) = O(L
d
2−κ) , L→ ∞ ,

for some κ > 0. The condensate wave number set Λ∗
0 will consist of a certain

number of modes which have the lowest excess energies ek, and their number |Λ∗
0|

remains bounded as L→ ∞. In the special case where all k ∈ Λ∗
0 have the minimal

energy, i.e., if ek = 0 for all k ∈ Λ∗
0, the measure µ1 has a simplified form given by

µ1[dΦ] :=
1

Z1

∏

k∈Λ∗
+

[dΦ∗
kdΦk] e

−E+[Φ]
∏

k∈Λ∗
0

[dΦ∗
kdΦk] δ(ρ0[Φ]−∆) ,

where E+[Φ] :=
∫
k∈Λ∗

+
dk ek|Φk|2 and ρ0[Φ] := V −1

∫
k∈Λ∗

0
dk |Φk|2.

The proof is based on a construction of a suitable coupling between the two
measures, proving the stated Wasserstein distance bound. This will turn out to
be sufficient for the error between expectations of any finite moments of the field
ψx to vanish as L → ∞. The construction of the coupling is a generalization of
the one used by Saksman and Webb in Appendix B of [4].
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Gibbs measures of nonlinear Schrödinger equations as limits of
many-body quantum states in dimensions d ≤ 3

Antti Knowles

(joint work with Jürg Fröhlich, Benjamin Schlein, Vedran Sohinger)

An invariant Gibbs measure P of a nonlinear Schrödinger equation (NLS) is, at
least formally, defined as a probability measure on the space of fields ϕ that takes
the form

(1) P(dϕ) =
1

Z
e−H(ϕ) dϕ ,

where Z is a normalization constant, H is the Hamilton function, and dϕ is the
(nonexistent) Lebesgue measure on the space of fields. Here the field ϕ is a function
on T

d or Rd, for d = 1, 2, 3. We are interested in Hamilton functions of the form

(2) H(ϕ) :=

∫
dx
(
|∇ϕ(x)|2+V (x)|ϕ(x)|2

)
+
1

2

∫
dxdy |ϕ(x)|2 w(x−y) |ϕ(y)|2 ,

where V ≥ 0 is a one-body potential and w is a repulsive interaction potential.
The Hamiltonian dynamics associated with (2) is the time-dependent nonlinear
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Schrödinger equation (NLS). At least formally, the Gibbs measure (1) is invariant
under the flow generated by the NLS.

Our goal here is to obtain Gibbs measures of the form (1), (2) as limits of
quantum many-body thermal states. In order to construct the classical field ϕ
with law given by (1), we use the spectral decomposition of h := −∆ + V =∑

k∈N
λkuku

∗
k, and set ϕ =

∑
k∈N

ωk√
λk
uk, where (ωk) is a family of i.i.d. standard

complex normal random variables. It is easy to see that, in an appropriate Sobolev
space, the series converges almost surely. Defining the classical interaction

(3) W :=
1

2

∫
dxdy |ϕ(x)|2 w(x − y) |ϕ(y)|2 ,

we introduce the classical state (or expectation)

(4) ρ(X) :=

∫
X e−W dµ∫
e−W dµ

,

where X is a random variable.
The quantum many-body problem is formulated on Bosonic Fock space F :=⊕
n∈N

H(n), where F (n) is the Hilbert space of wave functions of n variables that

are symmetric under permutation of the variables. On the sector H(n), the Hamil-
tonian reads

(5) H(n) :=

n∑

i=1

hi + λ
∑

1≤i<j≤n

w(xi − xj) .

We introduce the temperature τ , and define the Hamiltonian divided by the tem-
perature as

Hτ :=
1

τ

⊕

n∈N

H(n) =

∫
dxdy ϕ∗

τ (x)h(x; y)ϕτ (y)

+
1

2

∫
dxdy ϕ∗

τ (x)ϕ
∗
τ (y)w(x − y)ϕτ (x)ϕτ (y) ,

(6)

where we introduced the bosonic canonical annihilation and creation operators ϕτ

and ϕτ , which have been rescaled by τ−1/2 so that [ϕτ (x), ϕ
∗
τ (y)] =

1
τ δ(x − y).

Then the quantum state is given by

(7) ρτ (A) :=
Tr(APτ )

Tr(Pτ )
, Pτ := e−Hτ .

It was proved by Lewin, Nam, and Rougerie [2] that for d = 1 the correlation
functions of the state (7) converge (in trace norm) to those of (4) as τ → ∞. Our
first result [1] is another proof of this theorem using a completely different method.

For d > 1, the situation becomes more complicated. This is manifested by the
fact that the classical field ϕ is almost surely not a function but a distribution of
negative regularity. Hence, already the definition (3) does not make sense. The
remedy is well known: one has to perform a renormalization by Wick ordering,
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formally replacing (3) with

W =
1

2

∫
dxdy (|ϕ(x)|2 −∞)w(x − y) (|ϕ(y)|2 −∞) ,

where the infinities are carefully chosen using a truncation procedure of the field
ϕ.

On the quantum many-body side, the singularity for d ≥ 2 is manifested by the
fact that the particle number grows much faster than the temperature τ . Again,
one has to renormalize by replacing the interaction term in (6) with

(8)
1

2

∫
dxdy

(
ϕ∗
τ (x)ϕτ (x)− ̺τ (x)

)
w(x − y)

(
ϕ∗
τ (y)ϕτ (y)− ̺τ (y)

)
,

where ̺τ (x) is the expected quantum density, defined as the expectation of the
density operator ϕ∗

τ (x)ϕτ (x) in the free (i.e. w = 0) quantum state.
Our second, and main, result is that, for d = 2, 3, the quantum correlation

function converge again (in Hilbert-Schmidt norm) to the classical ones, provided
all interactions are appropriately renormalized. For technical reasons, instead of
using the thermal state Pτ = e−Hτ = e−Hτ,0−Wτ , we use a modified thermal state

P η
τ := e−ηHτ,0e−(1−2η)Hτ,0−Wτ e−ηHτ,0

for some fixed η > 0.
For d = 2, 3, the relationship between the physical many-body Hamiltonian (6)

and its renormalized version with interaction (8) is nontrivial; it is governed by
the so-called counterterm problem, which can be formulated as a nonlinear integral
equation

(9) u = V + w ∗ (̺κ+u
τ − ¯̺κτ ) ,

for the dressed one-body potential u. Here ̺κ+u
τ is the free quantum density asso-

ciated with the one-body Hamiltonian h = −∆+ κ+ u. In [1], we formulate this
problem precisely and solve the resulting equation using a fixed point argument.

The proof of our main theorem, the convergence of correlation function for
d = 2, 3, is based on ideas from field theory, using a perturbative expansion in
the interaction, organized by using a diagrammatic representation, and on Borel
resummation of the resulting series.
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Quasi-invariance of Gaussian measures under the ∂NLS gauge

Giuseppe Genovese

(joint work with R. Lucà, D. Valeri)

The derivative nonlinear Schrödinger equation (∂NLS, see R. Lucà’s talk) admits a
one-parameter group of gauge transformation Gα : L2(T) → L2(T), α ∈ R, which
in the periodic setting (i.e. t ∈ T) reads as [1]
(1)

(Gαy)(t) := eiαI(y(t))y(t), I(y(t)) := 1

2π

∫ 2π

0

dθ

∫ t

θ

(
|y(s)|2 −

‖y‖2L2(T)

2π

)
ds .

The gauge can be equivalently defined in terms of the Cauchy problem

(2)
d

dα
(Gαy)(t) = iI[(Gαy)(t)](Gαy)(t) , (G0y)(t) = y(t) .

Here γk denotes the Gaussian measure on L2(T) with covariance (1+(−∆)k)−1

and γk,α := γk ◦ Gα and it is interesting to study the absolute continuity of these
two measures. The main difficulty is that the gauge is anticipative, i.e. (Gαy)(t)
is computed using the values y(s) also for s > t (see (1)). However in [2] the exact
change of variable formula under Gα for γ1 was established. The typical process
under γ1 is the complex Brownian bridge and the proof of for k = 1 relies crucially
on the conditional independence of modulus and phase of the complex Brownian
bridge after a time-change. Since the gauge is a good phase-shift (in the sense of
[2]) depending only on the modulus, Girsanov theorem and the change of time
formula yield the correct Jacobi formula. This nice trick does not generalise for
k ≥ 2 as the typical processes for γk get more correlated and a functional analytic
proof seems to be more viable. Anticipative transformations with Hilbert-Schmidt
differentials have been widely studied [3]. However a direct computation shows the
gauge not to belong to this class, therefore the classical results do not apply. Even
though the determination of the correct density in the Jacobi formula is still an
open problem, one can use a soft argument introduced by Tzvetkov [4] to prove
the quasi-invariance of γk under the action of {Gα}α∈R, i.e. γk ≪ γk,α for any
α ∈ R. The main interesting consequence of this result is the absolute continuity
of the invariant measure associated to the k-th integral of motion of ∂NSL w.r.t.
γk [5]. Of course one would expect the invariant measure to be the Gibbs measure,
but to prove it one really needs the precise form of the density w.r.t. γk of γk,α.

The form (2) is particularly suitable to define for N ∈ N a truncated gauge-
group G N

α : EN → EN (here EN := spanC{eint : |n| ≤ N} ⊂ L2(T)) by

(3)
d

dα
(G N

α y)(t) = iPNI[G N
α y](t)(G N

α y)(t) , (G N
0 y)(t) = y(t) ,

where PN is the projector on EN . {G N
α }α∈R is still a one-parameter group of

transformations and it approximates {Gα}α∈R as N → ∞ in the topology of Hs,
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s ≥ 0. The finite-dimensional change of variables hence reads as
∫

A

γk(dG
N
α x) =

∫

A

| detDG
N
α (y)| exp

(
1

2
‖y‖2Hk − 1

2
‖GN

α y‖2Hk

)
γk(dy) .

Since one can show G N
α to be asymptotically divergence-free, from now on the

determinant will be neglected. The group property gives for ᾱ ∈ R

d

dα
γα,k(A)

∣∣∣
α=ᾱ

=
d

dα

∫

G N
α (A)

γk(dy)
∣∣∣
α=ᾱ

=
d

dα
γα,k(G

N
ᾱ (A))

∣∣∣
α=0

.

for any measurable A ⊂ EN . Differentiating in α the term to estimate is thus

d

dα

1

2
‖GN

α y‖2Hk

∣∣∣
α=0

and a fundamental observation is that

d

dα
‖GN

α y‖Hk

∣∣∣
α=0

=
d

dα
‖Gαy‖Hk

∣∣∣
α=0

.

This identity is important in view of the following formula (see [5, Lemma 2.9])

‖Gαy‖2Ḣk

= ‖y‖2
Ḣk + 2ikαµ[y]

∫
y(k−1)ȳ(k) + i(k + 1)α

∫
|y2|

(
y(k)ȳ(k−1) − y(k−1)ȳ(k)

)
,

(4)

plus remeinders
∫
rk. Here rk ∈ Vk−1 and µ[y] := ‖y‖L2(T)/(2π), where V =

[ψ(n), ψ̄(n) | n ∈ N0] denotes the algebra of differential polynomials in the variables

ψ and ψ̄ and Vn = {f ∈ V | ∂f
∂u(m) = 0, for every m > n, u = ψ or ψ̄}. Formula

(4) provides a tight control on the growth of the Sobolev norms under the gauge
evolution, allowing one to compute explicitly the derivative in α = 0 and to prove
the necessary estimates in order to apply the argument of [4].
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A microscopic derivation of time-dependent correlation functions of
the 1D cubic nonlinear Schrödinger equation

Vedran Sohinger

(joint work with J. Fröhlich, A. Knowles, B. Schlein)

1. Setup of the problem

In [2] we give a microscopic derivation of time-dependent correlation functions of
the 1D cubic nonlinear Schrödinger equation (NLS) from many-body quantum
theory. This is a time-dependent extension of 1D results in [1, 4]. On Λ = T or
Λ = R, we study the NLS

(1)

{
i∂tϕt(x) +

(
∆− κ

)
ϕt(x) = v(x)ϕt(x) +

∫
dy w(x − y) |ϕt(y)|2 ϕt(x)

ϕ0(x) = Φ(x) ∈ Hs(Λ) .

Here κ > 0, v : Λ → [0,+∞), w is either in L∞(Λ) and pointwise nonnegative
or w = δ. Assume that h := −∆ + κ + v, has a compact resolvent and satisfies
Trh−1 <∞. On H(n) := L2

sym(Λ
n) we consider the n-body Hamiltonian

H(n) :=
n∑

i=1

(
−∆xi

+ κ+ v(xi)
)
+

1

n

∑

1≤i<j≤n

w(xi − xj) .

For fixed τ > 0 (temperature), consider

Hτ :=
1

τ

⊕

n∈N

H(n) , Pτ := e−Hτ ,

acting on the bosonic Fock space F :=
⊕

n∈N
H(n). Given A a closed operator on

F , we define its expectation in the quantum state by ρτ (A) := TrF (APτ )/TrF (Pτ ).
Given ξ a closed linear operator on H(p), we define the lift of ξ to F by

(2) Θτ (ξ) :=

∫
dx1 · · · dxp dy1 · · ·dyp ξ(x1, . . . , xp; y1, . . . , yp)

× ϕ∗
τ (x1) · · ·ϕ∗

τ (xp)ϕτ (y1) · · ·ϕτ (yp) ,

where ϕτ := τ−1/2b, ϕ∗
τ := τ−1/2b∗, for the standard annihilation and creation op-

erators b, b∗ on F . Furthermore, Ψt
τΘτ (ξ) := eitτHτΘτ (ξ)e

−itτHτ . In the classical
problem, ϕ ≡ ϕ(ω) denotes the free classical field

ϕ :=
∑

k∈N

ωk√
λk

uk , ωk are i.i.d. complex Gaussians ,

where h =
∑

k∈N λkuku
∗
k for uk ∈ L2(Λ) normalized. We define Θ(ξ) similarly

as in (2) by replacing occurrences of ϕτ , ϕ
∗
τ with ϕ, ϕ̄ respectively. We also define

ΨtΘ(ξ) by evolving ϕ, ϕ̄ up to time t according to (1). Finally, let ρ(·) := Eµ(·),
for dµ the Gibbs measure corresponding to (1). We can now state our main result.
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Theorem 1. Let w ∈ L∞(Λ) and w ≥ 0 pointwise. For m ∈ N, p1, . . . , pm ∈ N,
ξ1 ∈ L(H(p1)), . . . , ξm ∈ L(H(pm)) and t1, . . . , tm ∈ R, we have

lim
τ→∞

ρτ

(
Ψt1

τ Θτ (ξ
1) · · · Ψtm

τ Θτ (ξ
m)
)

= ρ
(
Ψt1 Θ(ξ1) · · · Ψtm Θ(ξm)

)
.

2. Ideas of the proof

We apply a series expansion similar to that used in the work [3, Section 3.4] on
the lattice. Let N := ‖ϕ‖2L2,Nτ :=

∫
dxϕτ (x)ϕ

∗
τ (x). We reduce to proving that

for suitable F ∈ C∞
c (R) and ξ ∈ L(H(p)) we have

(3) lim
τ→∞

ρτ
(
Θτ (ξ)F (Nτ )

)
= ρ

(
Θ(ξ)F (N )

)
.

The presence of F in (3) does not allow us to directly apply the methods from [1].
We overcome this difficulty by complex analytic methods. When w = δ, we obtain
a partial analogue of Theorem 1 by using Xs,b spaces.
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