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Introduction by the Organisers

The workshop was organized by Karim Johannes Becher (Antwerp), Detlev Hoff-
mann (Dortmund), and Anne Quéguiner-Mathieu (Paris), and was attended by 53
participants. Funding from the Leibniz Association within the grant ‘Oberwolfach
Leibniz Graduate Students’ (OWLG) provided support toward the participation
of seven young researchers. Additionally, the “US Junior Oberwolfach Fellows”
program of the US National Science Foundation funded travel expenses for one
post doc from the USA. Finally, Parimala, from Emory University, was supported
by the Simons Foundation: she benefited from an extended stay in Europe, spend-
ing a month in Paris 13, several days in Lyon, and a week in Dortmund, the first
two weeks being partially supported by the ‘Simons Visiting Professors’ program.

The workshop was the thirteenth Oberwolfach meeting on the algebraic the-
ory of quadratic forms and related structures, following a tradition initiated by
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Manfred Knebusch, Albrecht Pfister, and Winfried Scharlau in 1975. Through-
out the years, the theme of quadratic forms has consistently provided a meeting
ground where methods from various areas of mathematics successfully cross-breed.
Frequently, results on quadratic and hermitian forms served as test case for far-
reaching generalizations. While research emphases have often shifted reflecting
current trends, the theory of quadratic forms has absorbed these developments
ensuring that its study has stayed timely over the years. Its scope now includes
aspects of the theories of algebras with involutions and of linear algebraic groups
and their homogeneous spaces over arbitrary fields as well as geometric methods
stemming from homotopy and cobordism theories. In addition, the study of qua-
dratic and hermitian forms over specific fields, such as function fields over arith-
metic base fields, formally real fields and fields of characteristic 2, has seen quite
a resurgence over the last two decades or so and was also the focus of discussions.

The program consisted of 23 talks, including a number of remarkable talks
by young participants, who presented impressive results. With the exception of
two 30 minute talks, all lectures were scheduled to last 45 minutes. This allowed
ample time for questions after each talk. The schedule also included generous
recess periods meant to provide more time for less formal research interaction.
The participants made full use of this offer by engaging actively in various smaller
and often spontaneously formed discussion groups exchanging ideas and knowledge
on pertinent workshop related topics.

Whenever possible, an attempt was made to group the talks thematically within
a morning or afternoon session. The talks provided an excellent overview of the
many exciting developments, new results and current trends in and around the
workshop themes and they covered a wide range of topics including, among others,
cohomological invariants, local-global principles in various guises, field invariants
pertaining to quadratic and hermitian forms, to central simple algebras or to co-
homology groups, questions concerning isotropy of quadratic forms or of linear
algebraic groups under field extensions, the Grothendieck-Serre conjecture for re-
ductive group schemes over semi-local Dedekind domains, as well as rather novel
topics such as alternative Clifford algebras or supertropical quadratic forms.

Acknowledgment: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Raman Parimala in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Automorphisms of even, unimodular lattices

Eva Bayer-Fluckiger

(joint work with L. Taelman)

A lattice is a pair (L, b), where L is a free Z-module of finite rank, and b : L×L → Z
is a symmetric, bilinear form, with det(b) 6= 0. The lattice is said to be even if
b(x, x) ∈ 2Z for all x ∈ L, and unimodular if det(b) = ±1. It is well-known that if
(r, s) is the signature of an even, unimodular lattice, then we have r ≡ s mod 8.
An automorphism is an element of SO(L, b), in other words an isomorphism of
Z-modules t : L → L such that b(tx, ty) = b(x, y) for all x, y ∈ L, and that
det(t) = 1.

In [5], Gross and McMullen raise the question of characterizing the irreducible
polynomials that can arise as characteristic polynomials of an automorphism of
an even, unimodular lattice. For definite lattices this question was already settled
in [1]. Note that the orthogonal group of a definite lattice is finite, hence only
products of cyclotomic polynomials can occur as characteristic polynomials of
automorphisms. Let us denote by φm the cyclotomic polynomials of the m-th
roots of unity. We have

Theorem ([1]). Let F = φn
m, and assume that m is not a power of 2. Then there

exists a definite, even, unimodular lattice having an automorphism with charac-
teristic polynomial F if an only if F (1)F (−1) is a square.

The case where m is a power of 2 is also settled in [1], and the problem is solved
for some other products of cyclotomic polynomials in [2].

For any irreducible polynomial F ∈ Z[X ], let us denote by m(F ) be the number
of roots z ∈ C of F such that |z| > 1. Let (r, s) be such that r ≡ s mod 8, and set
2n = r + s, and let F ∈ Z[X ] be an irreducible polynomial. Gross and McMullen
prove in [5] that if there exists an even, unimodular lattice of signature (r, s) having
an automorphism with characteristic polynomial F , then the following conditions
hold :

(C1) F (X) = X2nF (X−1);
(C2) (−1)nF (1)F (−1) is a square;
(C3) r ≥ m(F ), s ≥ m(F ), and m(F ) ≡ r ≡ s (mod 2);
(C4) |F (1)| and |F (−1)| are squares.

They also prove the following :

Theorem ([5]). Let (r, s) be such that r ≡ s mod 8, and let F ∈ Z[X ] be an
irreducible polynomial of degree 2n = r+s such that |F (1) = |F (−1)| = 1. Assume
moreover that conditions (C1), (C2) and (C3) hold. Then there exists an even,
unimodular lattice of signature (r, s) having an automorphism with characteristic
polynomial F .
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Another proof of this result is given in [3]. Gross and McMullen speculate that
conditions (C1)-(C4) may be sufficient for the existence of an even, unimodular
lattice as in the theorem; this was recently proved in collaboration with Lenny
Taelman.

Theorem ([4]). Let (r, s) be such that r ≡ s mod 8, and let F ∈ Z[X ] be a power
of an irreducible polynomial with deg(F ) = 2n = r + s. Assume that F satisfies
conditions (C1)-(C4). Then there exists an even, unimodular lattice of signature
(r, s) having an automorphism with characteristic polynomial F .
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Uniform bounds on sums of squares modulo sums of 2 squares in
function fields of curves

David Grimm

(joint work with K. J. Becher)

Witt’s theorem that every sum of squares in a function fields in one variable F/R
is already a sum of 2 squares generalizes to function fields in one variable F/k
where k is a hereditarily Euclidean field (i.e. uniquely ordered Pythagorean and
so are all its finite real extensions). It is a natural question to ask whether k needs
to be uniquely ordered in order for the statement to hold, or whether it is sufficient
to assume that k is hereditarily Pythagorean (i.e. real Pythagorean and so are all
its finite real extensions).

Becker showed that this is indeed the case for k(X), the rational function field
in one variable over a hereditarily Pythagorean field k (see [3]), and his result
was extended to arbitrary real function fields F/k of curves of genus zero in [7].
However, the result does not extend to function fields of higher genus, as Tikhonov
gave the example of the elliptic curve Y 2 = (X2 + 1)(tX − 1) over the real power
series field R((t)) (a typical example of a hereditarily pythagorean field), which
admits a sum of 3 squares of rational functions that cannot be written as a sum of
2 squares. These previous results inspired subsequent works, where sums of squares
in function fields of hyperelliptic (and elliptic) curves over R((t)) were studied. In
[6] the case of good reduction was studied, and it was shown that every sum of
squares is indeed a sum of 2 squares in this case. In the case of bad reduction (like
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the example given by Tikhonov), it was shown in [2] that on the other hand the
discrepancy between sums of squares and sums of 2 squares is not too big. More
precisely, they showed that the quotient of multiplicative groups of nonzero sums
of squares modulo nonzero sums of 2 squares (

∑
F 2)×/(F 2 + F 2)× is finite. In

fact, they give the upper bound 2g, where g is roughly half the degree of a planar
model of the curve Y 2 = f(X) (which also corresponds roughly to the genus of
the desingularized curve), or more generally 2ng when the hyperelliptic curve is
defined over R((t1)) . . . ((tn)).

In [1], we extended the finiteness result for (
∑

F 2)×/(F 2 + F 2)× to function
fields of arbitrary (i.e. not necessarily hyperelliptic) curves over R((t1)) . . . ((tn)).
Extending ideas developed in the research for the previously mentioned article (for
the case n = 1), we are now also able to show the existence of a uniform bound in
terms of the genus of the curve and of the number of “Laurent variables” n:

Theorem. For every n, g ∈ N, there exists Nn,g ∈ N such that for every smooth
geometrically integral projective curve C over R((t1)) . . . ((tn)) of genus g, we have

∣∣∣∣∣

(∑
F 2

)×

(F 2 + F 2)×

∣∣∣∣∣ ≤ 2Nn,g

for the function field F of C. Furthermore, in the case g = 1, the optimal value
is Nn,1 = 2 for all n ∈ N. When only considering elliptic curves (curves of genus
g = 1 with a rational point), the optimal value is Nn,elliptic = 1 for all n ∈ N.

The main ingredient of the proof are on the one hand a local-global princi-
ple for isotropy of quadratic forms of dimension at least 3 over function fields of
curves over a complete discretely valued (see [4]). On the other hand, we rely on
combinatorial descriptions of the special fiber of a minimal arithmetic model over
R((t1)) . . . ((tn−1))[[tn]] of a curve of genus ≥ 2 due to Artin-Winters, the classifica-
tion of minimal elliptic arithmetic surfaces by Kodaira-Néron, as well as a gener-
alization [5] to minimal arithmetic surfaces whose generic fiber has genus 1 but no
rational point. We observe that symmetries in the corresponding reduction graphs
restrict the number of components of the special fiber of an arithmetic model that
are non-split smooth conics over some finite extension of R((t1)) . . . ((tn−1)). A
general result from intersection theory of arithmetic surfaces shows that the num-
ber of components of the special fiber that are not conics over a finite extension
R((t1)) . . . ((tn−1)) is automatically bounded by 2g − 2. Due to Becker’s earlier
mentioned result, the components of the special fiber that either are not conics or
are non-split smooth conics over a finite extension of R((t1)) . . . ((tn−1)) turn out to
correspond to a finite set of discrete valuations S such that the diagonal map

(∑
F 2

)×

(F 2 + F 2)
× −→

∏

v∈S

(∑
F 2
v

)×

(F 2
v + F 2

v )
×

is already an embedding, by virtue of the earlier mentioned local-global principle.
Since the factors on the right-hand side are bounded by twice the order of the
corresponding term for the respective residue field, which is the function field of
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a curve over R((t1)) . . . ((tn−1)) of genus at most g, one is now in the position to
prove the result by induction on n.

Although this process does yield effective bounds, we believe the bounds ob-
tained this way to be far from being optimal (except in the case g = 1).

Support by the Chilean national research grant Fondecyt Iniciacion 11150956
is gratefully acknowledged.
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Local-global Principles for Zero-Cycles

Julia Hartmann

(joint work with J.-L. Colliot-Thélène, D. Harbater, D. Krashen, R. Parimala, V.
Suresh)

Local-global principles study properties of algebraic structures over a field by
studying the behaviour of those structures over completions of the field. Famous
examples over number fields include the theorem of Hasse-Minkowski on isotropy
of quadratic forms and the Albert-Brauer-Hasse-Noether theorem on splitness of
central simple algebras. These and many other local-global principles for alge-
braic structures can be rephrased as local-global principles for rational points on
varieties. More abstractly, one can consider local-global principles with respect to
arbitrary collections of overfields of the given field.

In recent years, the authors and other researchers have studied such local-global
principles over semi-global fields, by which we mean function fields of curves over
complete discretely valued fields. Basic examples of such fields are Qp(x) for p a
prime or k((t))(x) for any field k. Semi-global fields are important and interesting
partially because of their connection to finitely generated fields (the hope is that
understandingQp(x) very well for all p will lead to a better understanding ofQ(x)),
but also because they are amenable to methods such as patching. Moreover, semi-
global fields admit several natural collections of overfields which are motivated
geometrically. Local-global principles with respect to those may be of independent
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interest but often also give information about the more classical case of overfields
which are completions.

In this note, we consider local-global principles for zero-cycles on varieties over
semi-global fields. In fact, we will deduce such local-global principles from corre-
sponding principles for rational points.

We first take a look at various local-global setups over semi-global fields: Given
a semi-global field F over a complete discretely valued field with valuation ring T ,
we may pick a normal model X of F . By this we mean a flat projective T -scheme
with function field F which is normal as a variety. We let k denote the residue field
of T and write X for the closed fiber X ×T k of X . For every point P ∈ X (not
necessarily closed) we let FP denote the fraction field of the complete local ring of
X at P . This gives a collection ΩX of overfields of F . Let ΩF be the collection of
completions of F with respect to discrete valuations.

In [3], the following is shown: Every element of ΩF contains an element of ΩX .
This means that if a variety Z/F has rational points over all fields FP for P ∈ X ,
then it also has points over all completions, i.e., over all elements of ΩF . Hence if
Z satisfies a local-global principle for rational points with respect to ΩF , then it
also satisfies a local-global principle for rational points with respect to ΩX .

There is a third collection of overfields which plays a role over semi-global
fields, coming from patching. Let P be a nonempty finite subset of closed points
of X containing all points where X is not unibranched. Let U be the set of
components of the complement X \ P . For each U ∈ U , we may consider the
fraction field of the t-adic completion of the subring of F consisting of functions
which are regular along U , where t ∈ T is a uniformizer. We let ΩP denote the
set {FP | P ∈ P} ∪ {FU | U ∈ U}.

It is shown in [3] that a local-global principle for rational points with respect
to ΩX implies a corresponding local-global principle with respect to ΩP for any P
as above, and in fact ΩX can be viewed as a limit over all ΩP .

The collection ΩP (for a fixed P) is finite and more accessible than ΩX or ΩF . In
particular, it is often possible to give a combinatorial description of the obstruction
to a local-global principle with respect to ΩP , which can lead to criteria for when
such local-global principles hold. In particular if G is a connected linear algebraic
group over a semi-global field F which is rational as a variety, and Z is a G-torsor,
then Z satisfies a local-global principles for rational points with respect to ΩP (for
any P ⊆ X as above), see [2].

A zero-cycle on an F -variety Z is a formal Z-linear combination
∑

niPi of
closed points Pi on Z; its degree is

∑
ni deg(Pi). Zero-cycles of degree one may

be considered as a generalization of rational points: It is obvious that if Z has an
F -rational point then it has a zero-cycle of degree one. The converse is false, e.g.,
it fails for curves over finite fields, which always have a zero-cycle of degree one by
a theorem of F. K. Schmidt (but need not have a rational point).

We are interested in local-global principles for zero-cycles of degree one with
respect to collections of overfields as considered above. If E is a finite separable
field extension of a semi-global field F with normal model X , we let XE denote
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the normalization of X in E (this is a normal model for E), and let PE denote the
preimage of P . This gives a collection of overfields ΩPE

of the semi-global field E
as explained above.

Theorem 1 ([1]). Let Z be a smooth variety and fix P ⊆ X as before. Suppose
ZE satisfies a local-global principle for rational points with respect to ΩPE

for all
finite separable field extensions E/F . Then Z satisfies a local-global principle for
zero-cycles of degree one.

The theorem is analogous to a (special case of) a theorem of Liang for varieties
over number fields, see [4]. It may be worth noting that the proof here is much
more involved. A main ingredient is the study of whether finite separable field ex-
tensions of fields of the type FU and FP are induced from extensions of F . In [1],
we prove further local-global principles for zero-cycles, also with respect to ΩF .

Acknowledgement: The speaker was supported in part by NSF Grant DMS-
1463733.
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Duality and local-global principle over two-dimensional henselian local
rings

Diego Izquierdo

According to Sansuc, over number fields, Brauer-Manin obstruction is the only
obstruction to the local-global principle for torsors under linear connected algebraic
groups. In a recent article ([1]), Colliot-Thélène, Parimala and Suresh introduce a
new kind of obstruction to the local-global principle over function fields of regular
integral schemes of any dimension, and they ask whether it is the only obstruction
to the local-global principle for torsors under linear connected algebraic groups
over the Laurent series field C((x, y)). In this talk, I will explain why this question
has a positive answer.
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1. Fields of interest

In this report, we are interested in finite extensions of the Laurent series field in
two variables C((x, y)). More generally, we adopt the following notations:

k: algebraically closed field of characteristic 0.
R: integral, local, normal, henselian, 2-dimensional k-algebra with residue
field k.
X := SpecR.
X := X \ {s} where s is the closed point of X .
X(1): set of codimension 1 points in X .
K: the fraction field of R.

We are interested in the field K.

2. Brauer-Hasse-Noether exact sequence

In this paragraph, we want to understand the Brauer group of K. To do so,
consider a desingularization f : X̃ → X of X such that:

• f is projective and X̃ is an integral, regular, 2-dimensional scheme;
• f : f−1(X) → X is an isomorphism;

• the special fiber Y := f−1(s) is a strict normal crossing divisor of X̃ .

Such a desingularization always exists.
Now observe that Y is a projective k-curve whose irreducible components are

smooth. Let g1, ..., gn be the genera of the irreducible components of Y . Also let
Γ be the graph attached to Y : by definition, this is the graph whose vertices are
the irreducible components of Y and whose edges connect two vertices if, and only
if, the corresponding irreducible components intersect. Denote by c the first Betti
number of Γ.

Theorem 1. There is an exact sequence:

0 → (Q/Z)c+2
∑

gi → BrK →
⊕

v∈X(1)

BrKv → Q/Z → 0

where Kv is the completion of K at v for v ∈ X(1) and the middle map is the
restriction map.

The proof uses the Gersten conjecture for the regular scheme X̃ (such a result
is due to Panin) and requires to carry out a geometrical and combinatorial study

of the desingularization X̃ .

3. Duality theorems

3.1. Duality in étale cohomology. Let j : U →֒ X be an open immersion,
with U non-empty. Let F be a finite étale group scheme over U . By using the
Brauer-Hasse-Noether exact sequence of the previous paragraph, one can define a
natural pairing:

AV : Hr(U, F )×H3−r(X, j!F
′) → H3(X, j!Gm) ∼= Q/Z,
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where F ′ = Hom(F,Gm) is the Cartier dual of F .

Theorem 2. The pairing AV is a perfect pairing of finite groups for each integer
r ∈ {0, 1, 2, 3}.

There are two proofs for this theorem: one can proceed “by hand” by making
quite subtle dévissages to reduce to the case when F is constant and then use the
Brauer-Hasse-Noether exact sequence of the previous paragraph, or one can use
Gabber’s general results on the existence of dualizing complexes ([3]).

3.2. Duality in Galois cohomology. For each Galois module M over K, we
define its Tate-Shafarevich groups by:

X
r(K,M) := Ker


Hr(K,M) →

∏

v∈X(1)

Hr(Kv,M)


 .

By using extensively Theorem 2, one can prove the following duality theorem:

Theorem 3. Let T be a K-torus. Let T̂ be its module of characters. Then there
is a natural pairing:

PT : X1(K,T )×X
2(K, T̂ ) → Q/Z

which is non-degenerate on the left, and whose right-kernel is the maximal divisible
subgroup of X2(K, T̂ ).

4. Obstructions to the local-global principle

Recall the Brauer-Hasse-Noether exact sequence:

BrK →
⊕

v∈X(1)

BrKv
θ
−→ Q/Z → 0.

When Z is a smoothK-variety, one can introduce the set of adelic points Z(AK)
of Z and then define a pairing:

BM : Z(AK)× BrZ → Q/Z, ((pv)v∈X(1) , α) 7→ θ((p∗vα)v).

By using Theorem 3 and by comparing the pairings PT and BM , it is possi-
ble to describe the obstructions to local-global principle for torsors under linear
connected algebraic groups over K:

Theorem 4. Let G be a linear connected algebraic group over K. Let Z be a
K-torsor under G. If the orthogonal of BrZ in Z(AK) for the pairing BM is
non-empty, then Z has a rational point.
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Local-global principle for constant tori over semi-global fields

Raman Parimala

(joint work with J.-L. Colliot-Thélène, D. Harbater, J. Hartmann, D. Krashen,
V. Suresh)

Let K be a complete discrete valued field, R the valuation ring of K and k the
residue field of R. Let X be a smooth geometrically integral projective curve over
K and F = K(X). Let Ω be the set of all discrete valuations of F and for ν ∈ Ω,
let Fν denote the completion of F at ν. Let G be a connected linear algebraic
group defined over F . We say that Hasse principle holds for G if a G-torsor over
F admitting an Fν - rational point for all ν ∈ Ω admits an F -rational point.

Let

X
1(F,G) = ker(H1(F,G) →

∏

ν∈Ω

H1(Fν , G)).

The set X
1(F,G) measures failure of Hasse principle for G. In particular Hasse

principle holds for G if and only if X1(F,G) is trivial.
If G is F -rational and k algebraically closed, Harbater-Hartman-Krashen proved

that X
1(F,G) is trivial ([4]). The first counter examples to failure of Hasse

principle for (non rational) tori were due to Colliot-Thélène, Parimala and Suresh
([2]) and the obstruction to the Hasse principle was detected by Brauer - Manin
like obstruction. We discuss here Hasse principle for connected smooth groups
defined over R which we call the constant groups. We explain examples of constant
groups G for which Hasse principle fails and also show that under some additional
hypothesis on the special fibre of a regular proper model over R of X , X1(F, T )
is trivial for constant tori.

Let X be a smooth geometrically integral curve over K and X a regular proper
model of X over R. Let X0 be the reduced special fibre of X . We define the
notion of a special tree for X0. This notion of special tree is equivalent to X0

being geometrically a tree if char(k) = 0. We show that if X0 is a special tree and
T is a smooth torus over R, then X

1(F, T ) is trivial.
Let k be a field with char(k) = 0, R = k[[t]] and K = k((t)). Suppose G

is a connected linear algebraic group over k which admits an element in G(k)
which is not R-trivial. Let X/K be a smooth geometrically integral curve over K
with a regular proper model X over R whose special fibre X0 admits a rational
triangle with rational nodes. Then we show that X

1(F,G) is not trivial. Using
this method one produces semisimple simply connected linear algebraic groups
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for which Hasse principle fails. There is a conjecture (cf. [1]) which asserts that
X

1(F,G) is trivial if G is semisimple simply connected and k is a finite field. This
conjecture has been proved in several cases for classical groups (cf. [7], [5], [6]).
The methods of proof used tools from class field theory and the question remained
open whether one could have a Hasse principle for semisimple simply connected
groups for semiglobal fields without the assumption that k is a finite field. We
now have a negative answer to this question.

The method of proof is via identifying X
1(F,G) for constant groups with the

patching Sha’s as described in the work of Harbater-Hartmann-Krashen. Given
a regular proper model X of X over K and the reduced special fiber X0 a
union of regular curves with normal crossings, let P be a finite set of closed
points of X0 which contains the nodal points of X0 as well as at least one point
on each component and let U denote the irreducible components of X0 \ P.
Then the overfields {FP , FU , Fb} are defined ([3]) where b denotes the branch
at a pair (P,U) if the point P belongs to the closure of U . The double cosets∏

P G(FP )\
∏

b G(Fb)/
∏

U G(FU ) define elements in X
1(F,G) ([3]) and for con-

stant groups, by varying patches on X , one obtains the entire set X1(F,G).
The examples of the failure of Hasse principle for constant tori lead to examples

where X
1(F,G) is infinite, thereby clarifying speculations about the finiteness of

X
1(F,G).
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Systems of quadratic forms over complete discretely valued fields

David B. Leep

For an arbitrary field F , let ur(F ) denote the supremum of the set of positive
integers n such that there exists an anisotropic system of r quadratic forms defined
over F in n variables. Note that u1(F ) = u(F ), the classical u-invariant of the
field F .
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There has been great interest for a long time to compute ur(F ) for all r ≥ 1.
Particular interest has been paid to the cases where F is a field that arises in
number theory or algebraic geometry. If F is a finitely generated function field
of transcendence degree m over an algebraically closed field, then ur(F ) = 2mr
for all r ≥ 1. This follows from the well known theory of Ci-fields as developed
by Lang [8], and described in [6]. If F is a finite field, then results of Chevalley
[4] and Warning [12] imply that ur(F ) = 2r for all r ≥ 1. This result also holds
because a finite field is a C1-field (see [8] or [6]).

Let K be a p-adic field, which means that K is a finite extension of the field
of p-adic numbers Qp for some prime number p. A consequence of a conjecture
of E. Artin states that ur(K) = 4r for all r ≥ 1. It should be noted that Artin’s
conjecture is false in general. See [6] for a good treatment of this conjecture.
However, we show in this paper that Artin’s conjecture for systems of quadratic
forms over p-adic fields K is valid. Results of Brauer [3] imply that ur(K) is
always finite. Hasse proved that u1(K) = 4 and Birch-Lewis-Murphy [2] proved
that u2(K) = 8. Birch and Lewis [1] proved that u3(K) = 12 as long as the
residue field k of K has odd characteristic and is sufficiently large. Their bound
was |k| > 49. S. Schuur [10] corrected some errors and supposedly lowered the
bound to 11, although some details were left out in the paper. In [11], W. Schmidt
proved that ur(K) ≤ 4r2 + 4r.

For arbitrary fields F , Elman and Lam proved in [5, p.299], that ur(F ) ≤

(2r − 1)u(F ) for all r ≥ 1. Then Leep proved in [9] that ur(F ) ≤ r2+r
2 u(F ) for

all r ≥ 1 and that this bound is optimal for r = 1, 2, 3. Since u(K) = 4 for a
p-adic field K, it follows that for a p-adic field K, we have ur(K) ≤ 2r2 + 2r.
Heath-Brown proved in [7] that ur(K) = 4r for all r ≥ 1 if the residue field k
satisfies |k| > (2r)r .

In this paper we prove that ur(K) = 4r for all r ≥ 1 and all p-adic fields K.
Thus the hypothesis on the size of the residue field k is not needed. This result is
a special case of our main theorem stated in Theorem 1.

Theorem 1. Assume that K is a complete discretely valued field with residue field
k. Assume that ur(k) ≤ Ar for all r ≥ 1 and some positive real number A.

(1) Then ur(K) ≤ 2Ar for all r ≥ 1.
(2) Assume that ur(k) = Ar for all r ≥ 1 and some positive real number A.

Then A = u(k) and ur(K) = 2Ar = 2u(k)r for all r ≥ 1.
(3) ur(K(x1, . . . , xm)) ≤ 2m · 2Ar for all r ≥ 1.
(4) If k is a finite field and thus K is a p-adic field, then

ur(K(x1, . . . , xm)) = 2m+2r for all r ≥ 1 and all m ≥ 0. In particular,
u(K(x1, . . . , xm)) = 2m+2 for all m ≥ 0.
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Linkage in Kato-Milne Cohomology

Adam Chapman

1. Kato-Milne Cohomology

Suppose char(F ) = p for some prime integer p. There is the Artin-Schreier map

℘ : ΩnF → ΩnF/dΩn−1F

α
dβ1

β1
∧ · · · ∧

dβn

βn
7→ (αp − α)

dβ1

β1
∧ · · · ∧

dβn

βn
.

Then νF (n) = ker(℘) and Hn+1
p (F ) = coker(℘). By [3], νF (n) ∼= KnF/pKnF

and as a result ([1] for p = 2, 1992; [7, Page 152] for any p) Hn+1
p (F ) ∼=

H1(ΓF ,KnF
sep/pKnF

sep) ∼= pH
2(ΓF ,KnF

sep), the last isomorphism being a re-
sult of the exact sequence

KnF
sep x 7→p·x

−→ KnF
sep −→ KnF

sep/pKnF
sep.

In particular, we have H1
p (F ) = F/℘(F ) and H2

p (F ) ∼= H1(ΓF , F
×/(F×)p) ∼=

2H
2(ΓF , (F

sep)×) ∼= pBr(F ) given by

α
dβ

β
7→ [α, β)p,F = F 〈x, y : x2 + x = α, y2 = β, yxy−1 = x+ 1〉.

Theorem 1 ([8]). When p = 2,

Hn
2 (F ) ∼= Inq F/I

n+1
q F

α
dβ1

β1
∧ · · · ∧

dβn−1

βn−1
7→ 〈〈bn−1, . . . , b1, α]].
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2. Linkage

We say that Inq F is linked if every two quadratic n-fold Pfister forms have a
common (n − 1)-fold factor. Linked fields have interesting properties. One of
them is the following:

Theorem 2 ([6], char(F ) 6= 2; [4], char(F ) = 2). If I2qF is linked then u(F ) is
either 1,2,4, or 8.

The crucial part of the theorem in the case of char(F ) = 2 was to show that
I4qF = 0 (which also means that H4

2 (F ) = 0). Similarly one can prove that if Inq F

is linked and F is nonreal then In+2
q F = 0.

3. Triple Linkage

We say that Inq F is triple linked if every three n-fold Pfister forms share a common
(n− 1)-fold factor. The following was recently proved:

Theorem 3 ([2], char(F ) 6= 2; [5], char(F ) = 2). If Inq F is triple linked and F is

non-real, then In+1
q F = 0.

4. Questions

One can define linkage and triple linkage for the groups Hn
p (F ) based on the

generating symbols αdβ1

β1 ∧ · · · ∧ dβn−1

βn−1
. The following questions arise naturally:

Question 4. If Hn
p (F ) is linked, does it follow that Hn+2

p (F ) = 0?

Question 5. If Hn
p (F ) is triple linked, does it follow that Hn+1

p (F ) = 0?

In [4] some efforts were made to answer Question 4, but a positive answer was
obtained only when p = 2.
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Supertropical quadratic forms

Manfred Knebusch

(joint work with Z. Izhakian, L. Rowen)

We initiate the theory of a quadratic form on a module V over a semiring R. As
customary, one can write

q(x+ y) = q(x) + q(y) + b(x, y),

where b is a companion bilinear form. In contrast to the classical theory
of quadratic forms over a field, the companion bilinear form does not need to
be uniquely defined. Nevertheless, if V is free, q can always be written as a
sum of quadratic forms q = qQL + ρ, where qQL is quasilinear in the sense that
qQL(x + y) = qQL(x) + qQL(y), and ρ is rigid in the sense that it has a unique
companion. In the case that the semiring R is supertropical (see [1]), we obtain
an explicit classification of these decomposition q = qQL+ρ and of all companions
b of q, and see how this relates to the tropicalization procedure (see [2]).

All this is of interest for a quadratic form q on a vector space V over a field F
of any characteristic, since after we choose a base L = (vi | i ∈ I) of V and a so
called supervaluation ϕ : F → R, we obtain a quadratic form ϕ∗(q) on the free
module R(I), a supertropicalization of q, which is a very rigid object, amenable to
combinatorics, strange at first glance, but easy to handle. The main point here
is that R(I), up to multiplication by units has only one base, the standard one.
Different bases on V may give different isometry classes [ϕ∗(q)]. Our philosophy is,
that [ϕ∗(q)] is an invariant of the pair (q,L), perhaps too clumsy for computations
when I is big. But by analysing ϕ∗(q), it is possible to detect more amenable
invariants and features of (q,L). For example if F is a field and q is anisotropic,
we can ask, for which non-zero x, y ∈ R(I) the quadratic form ϕ∗(q)|Rx+Ry is
quasilinear. This depends on the the value of the “Cauchy-Schwartz ratio ”

CS(x, y) =
eb(x, y)2

eq(x)q(y)

in the ghost ideal eR, e = 1R+1R, and leads to a kind of supertropical trigonometry
[3].
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Positive cones and gauges on algebras with involution

Thomas Unger

(joint work with V. Astier)

The connections between quadratic forms, orderings and valuations on fields are
well-known [8]. Building on our work on signatures of hermitian forms over alge-
bras with an involution [1, 2], positivity, and our answer to a question of Procesi
and Schacher analogous to Hilbert’s 17th problem [3], we developed a theory of
positive cones on algebras with involution [4].

The canonical “valuations” associated to positive cones turn out to be Tignol-
Wadsworth gauges [9, 10, 11]. There is a natural notion of compatibility between
positive cones and gauges, that can be described in several equivalent ways, rem-
iniscent of the field case, and which also gives rise to a theorem in the style of
Baer-Krull about lifting positive cones from the residue algebra [5].

We present some of our main results on these topics in this note. We refer to
[4], [5] for the details. Let F be a field of characteristic not 2 and let A be an
F -algebra, equipped with an F -linear involution σ.

1. Positive cones

Definition 1. A set P ⊆ Sym(A, σ) is a prepositive cone on (A, σ) if

(P1) P 6= ∅;
(P2) P + P ⊆ P;
(P3) σ(a)Pa ⊆ P, for all a ∈ A;
(P4) PF := {u ∈ F | uP ⊆ P} belongs to XF , the space of orderings of F ;
(P5) P ∩ −P = {0}.

A maximal prepositive cone is called a positive cone. We denote the set of positive
cones on (A, σ) by X(A,σ). For P ∈ X(A,σ), ≤P denotes the partial ordering on
A induced by P.

From now on we assume that (A, σ) is a central simple F -algebra with involution
in the sense of the Book of Involutions [7].

Examples 2. (1) The only two positive cones on (Mn(R), t) are the set of
positive semidefinite matrices and the set of negative semidefinite matrices.

(2) For P ∈ XF , let MP = {a ∈ Sym(A, σ)∩A× of maximal signature at P}∪
{0}. If A is a division algebra, then MP ∈ X(A,σ) if and only if MP 6=
Sym(A, σ).

Theorem 3. If A is division, then X(A,σ) = {MP ,−MP | MP 6= Sym(A, σ), P ∈
XF }. In general, X(A,σ) = {CP (MP ),−CP (MP ) | MP 6= Sym(A, σ), P ∈ XF },
where CP denotes the closure under (P2), (P3) and (P4) with PF = P .

Theorem 4 (“Artin-Schreier”). The following are equivalent:

(1) (A, σ) is formally real, i.e., X(A,σ) 6= ∅;
(2) There exists a ∈ Sym(A, σ) ∩ A× such that 〈a〉σ is strongly anisotropic;
(3) The Witt group W (A, σ) is not torsion.



1254 Oberwolfach Report 21/2018

Theorem 5 (“Artin”, simplified version). Assume that for every P ∈ X(A,σ) we
have 1 ∈ P ∪ −P. Then

⋂
{P ∈ X(A,σ) | 1 ∈ P} = {

s∑

i=1

σ(xi)xi | s ∈ N, xi ∈ A}.

We also use the techniques developed for the proofs of the above theorems to
give a Sylvester decomposition of hermitian forms over (A, σ) with respect to a
positive cone and obtain in this way another description of signatures of hermitian
forms.

Theorem 6. X(A,σ) is a spectral space with respect to the “Harrison” topology
with basis Hσ(a1, . . . , aℓ) := {P ∈ X(A,σ) | a1, . . . , aℓ ∈ P}.

2. Gauges from positive cones

Gauges were defined by Tignol and Wadsworth, cf. [9, 10, 11]:

Definition 7. Let v : F → Γv ∪ {∞} be a valuation of F and let Γ be a totally
ordered abelian group. A map w : A → Γ ∪ {∞} is a v-gauge if

(1) w is a v-value function on A, i.e. for all x, y ∈ A and λ ∈ F , we have

w(x) = ∞ ⇔ x = 0; w(x + y) ≥ min{w(x), w(y)}; w(λx) = v(λ) + w(x);

(2) w is surmultiplicative, i.e., w(1) = 0 and w(xy) ≥ w(x) + w(y), for all
x, y ∈ A.

(3) w is a v-norm, i.e., A has a “splitting basis” {e1, . . . , em} such that

w(

m∑

i=1

λiei) = min
1≤i≤m

(v(λi) + w(ei)), ∀λ1, . . . , λm ∈ F.

(4) the graded algebra grw(A) (with grading determined by w) is a graded
semisimple grv(F )-algebra.

A gauge w is σ-special if w(σ(x)x) = 2w(x) for all x ∈ A. If w is a gauge on A,
we define Rw := {a ∈ A | w(a) ≥ 0} and Iw := {a ∈ A | w(a) > 0}.

Let P ∈ X(A,σ) such that 1 ∈ P (this is always possible after scaling), and
let P = PF . Following the standard definition in the field case, and inspired by
Holland [6], we define for a subfield k of F ,

Rk,P := {x ∈ A | ∃m ∈ k σ(x)x ≤P m},

Ik,P := {x ∈ A | ∀ε ∈ k× ∩ P σ(x)x ≤P ε}.

It is not difficult to see that Rk,P is a subring of A and that Ik,P is a two-sided
ideal of Rk,P . Both are stable under σ. Note that Rk,P is in general not a total
valuation ring, nor a Dubrovin valuation ring.

Theorem 8. Let vk,P be the valuation on F whose valuation ring is {x ∈ F |
∃m ∈ k : −m ≤P x ≤P m}. There exists a vk,P -gauge wk,P on A such that
Rk,P = Rwk,P

and Ik,P = Iwk,P
. Moreover, wk,P is the unique σ-special vk,P -

gauge on A.
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3. Compatibility between gauges and positive cones

Let w be a σ-special v-gauge on A, let σ0 be the induced involution on the residue
algebra A0 := Rw/Iw, and let πw : Rw → A0 be the canonical projection.

Theorem 9. Let P ∈ X(A,σ) such that 1 ∈ P. The following are equivalent:

(1) 0 ≤P a ≤P b ⇒ w(b) ≤ w(a), for all a, b ∈ A;
(2) Rw is P-convex;
(3) 1 + Sym(Iw, σ) ⊆ P.

The above statements imply that πw(P ∩Rw) is a positive cone on (A0, σ0).

Definition 10. We say that w and P (with 1 ∈ P) are compatible if one of the
above equivalent statements holds.

Theorem 11 (“Baer-Krull”). If Q ∈ X(A0,σ0), then there exists P ∈ X(A,σ) such
that P is compatible with w, πw(P ∩Rw) = Q and w = wP . If r := dimΓv/2Γv

is finite, then there are 2r such liftings of Q.
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Residue maps for hermitian Witt groups of Azumaya algebras and/or
maximal orders

Stefan Gille

Let R be a discrete valuation ring with 2 being a unit in R. Denote by K the
fraction- and by k the residue field of R. Then it is a classical result that there is
a short exact sequence of Witt groups of quadratic forms

0 −→ W (R) −→ W (K)
∂π−−→ W (k) −→ 0 ,
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where the homomorphism ∂π , the so called second residue map, depends on the
choice of an uniformizer π.

Using derived or coherent Witt theory one can construct the following hermitian
analog of this complex, and show that it is exact as well. For this set AS := S⊗RA
for an R-algebra S.

Theorem. Let R be a DVR with 2 invertible and (A, τ) an R-Azumaya algebra
with involution. Then there is a short exact sequence of ǫ-hermitian Witt groups
(ǫ ∈ {±1}):

0 −→ Wǫ(A, τ) −→ Wǫ(AK , τK)
∂
−−→ Wǫ(Ak, τk) −→ 0 ,

where τK and τk denote the by τ induced involutions.

In the case R is complete and AK is a division algebra one can describe the
“residue map” ∂, however in general it seems there is no formula similar to the
one for the second residue map for Witt groups of quadratic forms.

A corollary of this theorem is the following purity result.

Corollary. Let R be a regular local ring of dimension ≤ 2 and (A, τ) an R-
Azumaya algebra with involution. Assume that R is quadratic over the fix ring
of the involution if τ is of the second kind. Then the ǫ-hermitian Gersten-Witt
complex of (A, τ) is exact in degree 0, i.e.

Wǫ(A, τ) ≃ Wǫ,unr(A, τ)

for ǫ = ±1.

Remark. In the equicharacteristic case, i.e. R contains a field, and if the involu-
tion τ is of the first kind both results are well known. Actually in this situation
the hermitian Gersten-Witt complex of (A, τ) is exact even if dimR ≥ 2.

There are analogous exact sequences for R-orders in central simple algebras.
Let B be a central simple algebra over the fraction field K of the discrete valuation
ring R, and let ∆ be a maximal R-order in B. Assume that 1

2 ∈ R, and that B
has an involution of the first kind τ which maps ∆ into itself. Then there is an
exact sequence of ǫ-hermitian Witt groups (ǫ ∈ {±1})

0 −→ Wǫ(∆, τ) −→ Wǫ(B, τ)
∂
−→ Wǫ(∆/rad∆, τ̄ ) ,

where τ̄ is the by τ induced involution on ∆/rad∆. In case R is complete the
“residue map” ∂ is onto, and this should hold more general for arbitrary discrete
valuations rings R.
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Isotropy indices of quadratic forms over function fields of quadrics

Stephen Scully

Let F be a field, let p and q be anisotropic quadratic forms of dimension ≥ 2 over
F , and let F (p) denote the function field of the (integral) projective F -quadric
of equation p = 0. A central problem in the algebraic theory of quadratic forms
(upon which many others rest) is that of understanding the extent to which q
can become isotropic after scalar extension to F (p). Let i0(qF (p)) denote the
isotropy index (i.e., the maximum dimension of a totally isotropic subspace) of q
extended to F (p). Since the determination of the precise conditions under which
this integer assumes a given value seems to be rather intractable in general, the
main thrust of the recent research in this direction has focused on identifying
general constraints imposed on i0(qF (p)) by some of the basic invariants of p and
q. Despite the substantial progress which has been made here, particularly with
the advent of strong methods from the theory of algebraic cycles and motives,
many basic questions remain unresolved. In particular, it is already a non-trivial
open problem to determine the constraints on i0(qF (p)) coming from the simplest
invariants of all – the dimensions of p and q. With this in mind, we propose the
following conjecture which predicts a very precise general relationship between
i0(qF (p)), dim(p) and dim(q):

Conjecture 1 ([9, Conj. 1.1]). With notation as above, let s be the unique non-
negative integer such that 2s < dim(p) ≤ 2s+1, and let k = dim(q) − 2i0(qF (p)).

Then k ≥ 0, and we have dim(q) = a2s+1 + ǫ for some non-negative integer a and
some integer −k ≤ ǫ ≤ k.

When dim(q) ≤ 2s, Conjecture 1 simply asserts that q remains anisotropic over
F (p), which is precisely the content of the well-known Separation Theorem origi-
nally discovered by Hoffmann (see [2], [3]). This is merely one extreme, however.
For instance, Corollary 4 below exhibits another special case of the conjecture
where the Separation Theorem (as well as existing extensions of it; see [5, 7]) gives
essentially no information.

Conjecture 1 is optimal, in the sense that there are simple examples showing
that there are no further gaps in the possible values of dim(q) determined by s
and i0(qF (p)) alone (see [8, Ex. 1.5], [9, Ex. 4.5]). Although it is not yet proved
in general, we can nevertheless show that the statement holds in a large number
of cases (see [8, 9] for a complete list). In particular, we have the following result:

Theorem 2 ([8, Thm. 1.3], [9, Thm. 1.3]). Conjecture 1 holds if k < 2s−1 and
either

(1) char(F ) 6= 2, or
(2) char(F ) = 2 and q is quasilinear (i.e., diagonalizable).

Remark 3. Note that Conjecture 1 is trivially true if k ≥ 2s − 1, so it suffices to
consider the case where k ≤ 2s − 2.

The proofs of the two cases of Theorem 2 are entirely separate from one another:
In characteristic 6= 2, the approach is algebraic-geometric, and makes use of results



1258 Oberwolfach Report 21/2018

of Vishik on the descent of mod-2 algebraic cycles on algebraic varieties over
function fields of quadrics ([10]). The action of the Steenrod operations of Brosnan-
Voevodsky on Chow groups modulo 2 is essential here, so this approach cannot
be extended to characteristic 2 at the present time.1 It is for this reason that we
must limit our considerations to the quasilinear case in characteristic 2. Here we
build upon the previous works [6, 7] in which quasilinear analogues of some of the
major results in the characteristic 6= 2 theory were established using more direct
algebraic arguments.2

Assume now that char(F ) 6= 2. In this case, q is non-degenerate, and so i0(qF (p))
coincides with theWitt index of qF (p). In particular, in the statement of Conjecture
1, we have k = 0 if and only if q becomes hyperbolic over F (p), i.e., if and only
if q represents an element in the kernel W (F (p)/F ) of the scalar extension map
W (F ) → W

(
F (p)

)
on the Witt ring. Theorem 2 therefore yields the following

discrete information pertaining to arbitrary elements of this Witt kernel:

Corollary 4 ([8, Cor. 1.4]). Suppose that char(F ) 6= 2, and let s be as in Con-
jecture 1. If q becomes hyperbolic over F (p), then dim(q) is divisible by 2s+1.

A few low-dimensional cases aside, this seems to have been unknown, even
conjecturally. In fact, we can say rather more here:

Theorem 5 ([8, Thm. 3.4]). Suppose that char(F ) 6= 2, and let s be as in Con-
jecture 1. If q becomes hyperbolic over F (p), then all higher Witt indices of q, with
the possible exception of the last, are divisible by 2s+1.

Theorem 5 refines Corollary 4 and gives a new lower bound for the dimension
of an anisotropic element of the Witt kernel W (F (p)/F ) in terms of its height
(as defined by Knebusch). This, in particular, gives a satisfying explanation of
a classic result of Fitzgerald ([1]) asserting that the “low-dimensional” part of
W (F (p)/F ) consists of scalar multiples of Pfister forms (see [8, Cor. 3.10, Cor.
3.11]).

Finally, it is also shown in [8] that the characteristic 6= 2 case of Conjecture 1
may be deduced from Corollary 4 modulo a deep conjecture of B. Kahn on the
descent of quadratic forms over function fields of quadrics ([4]). Kahn’s conjecture
remains wide open, but the known partial results permit to establish Conjecture
1 in the case where char(F ) 6= 2 and k ≤ 7 (see [8, §5]).

References

[1] R.W. Fitzgerald, Function fields of quadratic forms, Math. Z. 178 (1981), no. 1, 63–76.
[2] D.W. Hoffmann, Isotropy of quadratic forms over the function field of a quadric, Math. Z.

220 (1995), no. 3, 461–476.
[3] D.W. Hoffmann, A. Laghribi, Isotropy of quadratic forms over the function field of a quadric

in characteristic 2, J. Algebra 295 (2006), no. 2, 362–386.

1It is not yet known how to define these operations in characteristic 2.
2In characteristic 2, it is only in the quasilinear case where analogues of many of the deepest

results on the splitting of quadratic forms over function fields of quadrics in characteristic 6= 2
are currently known.



Quadratic Forms and Related Structures over Fields 1259

[4] B. Kahn, A descent problem for quadratic forms, Duke Math. J. 80 (1995), no. 1, 139–155.
[5] N. Karpenko, A. Merkurjev, Essential dimension of quadrics, Invent. Math. 153 (2003),

no.2, 361–372.
[6] S. Scully, Hoffmann’s conjecture for totally singular forms of prime degree, Algebra Number

Theory 10 (2016), no. 5, 1091–1132.
[7] S. Scully, A bound for the index of a quadratic form after scalar extension

to the function field of a quadric, J. Inst. Math. Jussieu, to appear, DOI:
https://doi.org/10.1017/S1474748018000051, https://doi.org/10.1017/S1474748018000051.

[8] S. Scully, Hyperbolicity and near hyperbolicity of quadratic forms over function fields of
quadrics, preprint (2017), http://arxiv.org/abs/1609.07100v2, arXiv:1609.07100v2.

[9] S. Scully, Quasilinear quadratic forms and function fields of quadrics, preprint (2017),
http://arxiv.org/abs/1710.09692v1, arXiv:1710.09692v1.

[10] A. Vishik, Generic points of quadrics and Chow groups, Manuscr. Math. 122 (2007), no. 3,
365–374.

Does isomorphism over a field imply isomorphism over its valuation
rings?

Uriya A. First

Let R be a discrete valuation ring with fraction field F and 2 ∈ R×. The following
results, all sharing a common flavour, are well known:

(1) Two nondegenerate quadratic forms over R which become isomorphic over
F are already isomorphic over R.

(2) Two Azumaya R-algebras which become isomorphic over F are already
isomorphic over R.

(3) Two Azumaya algebras with involution over R which become isomorphic
over F are already isomorphic over R.

These results are in fact special cases of the famous Gorthendieck–Serre conjec-
ture: For every regular local ring R and every (connected) reductive group scheme
G → SpecR, the restriction map H1

ét(R,G) → H1
ét(F,G) has trivial kernel. This

conjecture is now a theorem when R contains a field thanks to Panin and Fedorov
([5], [6]), and many other cases are known.

In two recent works with Eva Bayer-Fluckiger and Mathieu Huruguen ([2], [3]),
we consider “nearly nondegenerate” versions of (1)–(3) above in the case R is a
DVR, or more generally, a semilocal Dedekind domain.

To make this precise, recall that an R-orderA in F -algebra E is called hereditary
if its one sided ideals are projective. If τ : A → A is an involution, and h :
P × P → A is a hermitian form, then h is said to be nondegnerate or unimodular
if the induced map x 7→ h(x,−) : P → HomA(P,A) is an isomorphism. We
call h nearly nondegenerate if the cokernel of the latter map is a semisimple A-
module. Informally, nearly nondegenerate hermitian forms (resp. hereditary R-
orders, hereditaryR-orders with involution) can be regarded as degenerate versions
of nondegenerate hermitian forms (resp. Azumaya R-algebras, Azumaya algebras
with involution over R) in which the degeneration is “very small”. Alternatively,
the group R-schemes of automorphisms of these objects are “very close” to being
reductive, while not being reductive in general.
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The motivation for considering nearly degenerate objects as above comes from
the fact that given a corresponding object over F , one can always extend it to
a nearly nondegenerate object defined over R, while this may be impossible to
accomplish with a nondegenerate object. Specifically:

(1′) (Exercise) For every nondegenerate quadratic form Q over F , there exists
a nearly nondegenerate quadratic form q over R with Q ∼= qF .

(2′) (Auslander, Goldman) Every central simple F -algebra E contains a hered-
itary R-order A (e.g. take any maximal order) and E ∼= A⊗R F .

(3′) (W. Scharlau) For every central simple algebra with involution (E, σ),
there exists a hereditary R-order A ⊆ E with σ(A) = A. In particular,
(E, σ) = (A, τ)F , where τ := σ|F .

(4′) (Bayer-Fluckiger, F.) In the notation of (3′), for every nondegenerate her-
mitian form H over (E, σ), there exists a nearly unimodular hermitian
form h over (A, τ) such that H ∼= hF .

When considering degenerate objects, one should also take into account the
“type of degeneration”. In the context of nearly nondegenerate hermitian forms
h : P × P → A, this datum is the isomorphism classes of the A-modules P
and coker(x 7→ h(x,−) : P → HomA(P,A)). In general, though, it is more
convenient to say that two nearly degenerate objects defined over R have the same
degeneration if they become isomorphic over some faithfully flat étale algebra.

We now come to the main results. Firstly, Auel, Parimala and Suresh [1, §3]
showed that (1) above remains true in a nearly nondegenerate context. Rephrased
and slightly strengthened, their result reads as:

(1-d) If q and q′ are nearly nondegenerate quadratic forms over R with same
degeneration, then qF ∼= q′F implies q ∼= q′.

We stress that this statement is false for arbitrary degenerate forms.
We strengthened (1-d) to hermitian forms and also established a version for

hereditary orders:

(2-d) (Bayer-Fluckiger, F., Huruguen) Let A and A′ be two hereditary R-orders
in central simple F -algebras such that A and A′ become isomorphic over
some faithfully flat étale R-algebra. Then AF

∼= A′
F implies A ∼= A′.

(4-d) (Bayer-Fluckiger, F.) Let (A, τ) be a hereditary R-order with involution.
If h and h′ are nearly nondegenerate hermitian forms over (A, τ) with the
same degeneration, then hF

∼= h′
F implies h ∼= h′.

However, in contrast to these positive results, we showed with Bayer-Fluckiger
and Huruguen that the analogous statement (3-d) is false. That is, there exist a
DVR R and two hereditary R-orders with involution (A, τ), (A′, τ ′) which become
isomorphic over F and over a finite étale R-algebra, but which are nevertheless
nonisomorphic over R.

The reason for the failure of (3-d) seems to be the fact that the involutions τ
and τ ′ become isotropic modulo the radical of A. That is, writing A to denote the
quotient of A by its Jacobson radical and τ : A → A for the involution induced
by τ , there exists 0 6= x ∈ A with τ(x)x = 0. We conjecture that if τ and τ ′
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are assumed to be anisotropic, then (3-d) should hold. More generally, we believe
that this holds under the milder assumption that each closed fiber of the group
scheme U(A, τ) → SpecR is almost anisotropic in the sense that it has no proper
parabolic subgroups. We also believe that every central simple F -algebra with
involution (E, σ) is extended from an order with involution (A, τ) satisfying the
latter condition, or in other words, an appropriate modification of (3′) holds.

We finally comment that the group R-schemes of automorphisms of the nearly
degenerate objects considered above are strongly related to group schemes defined
by Bruhat and Tits in [4] when R is henselian. The previous conjectures are
inspired from this connection. Furthermore, the relation with Bruhat–Tits theory
shows that, loosely speaking, the nearly nondegenerate objects considered above
are different manifestations of a single construction, and not just handy picks for
which theorems happen to work. This construction can be used to associate with
any connected reductive algebraic group over F a family of “nearly reductive”
extensions over R. More details about this are given in [2, §6], [3, §5].
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On the Grothendieck–Serre conjecture for semi-local Dedekind
domains

Ivan A. Panin

(joint work with A. Stavrova)

Let R be a commutative unital ring. Recall that an R-group scheme G is called
reductive, if it is affine and smooth as an R-scheme and if, moreover, for each
algebraically closed field Ω and for each ring homomorphism R → Ω the scalar
extension GΩ is a connected reductive algebraic group over Ω. This definition of
a reductive R-group scheme coincides with [2, Exp. XIX, Definition 2.7].

A well-known conjecture due to J.-P. Serre and A. Grothendieck [12, Remarque,
p.31], [5, Remarque 3, p.26-27], and [6, Remarque 1.11.a] asserts that given a
regular local ring R and its field of fractions K and given a reductive group scheme
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G over R the map

H1
ét(R,G) → H1

ét(K,G),

induced by the inclusion of R into K, has trivial kernel.
The Grothendieck–Serre conjecture holds for semi-local regular rings containing

a field. That is proved in [3] and in [8]. The first of these two papers is heavily
based on results of [11] and [9]. For the detailed history of the topic see, for
instance, [3]. Assuming that R is not equicharacteristic, the conjecture has been
established only in the case where G is an R-torus [1] and in the case where G is a
reductive group scheme over a discrete valuation ring R [7, Theorem 4.2]. In [10]
the latter result is extended partially to the case of semi-local Dedekind domains.
Namely, the following theorem is proved there.

Theorem 1. Let R be a semi-local Dedekind domain and let K be the field of
fractions of R. Let G be a reductive simple simply connected R-group scheme
containing a split R-torus Gm,R. Then the kernel of the map

H1
ét(R,G) → H1

ét(K,G)

induced by the inclusion of R into K, is trivial.

Question. Is the kernel of the map H1
ét(R,G) → H1

ét(K,G) trivial for any semi-
local Dedekind domain R and any reductive R-group scheme G?

Firstly, the positive answer on this Question will extend the Nisnevich’s result [7,
Theorem 4.2] to semi-local Dedekind domain case. Secondly, the positive answer
on this Question will be a first step towards a proof of the following new

Assertion. Let A be a discrete valuation ring and p : X → Spec(A) be a smooth
projective morphism with an irreducible X . Let G be a reductive A-group scheme
and E be a principal G-bundle on X . Suppose E is trivial over the generic point
of X . Then E is Zarisky locally trivial.

Let X0 be the closed fibre of p and {η1, ..., ηn} be the set of all generic points
of X0. If there is a closed subset Z in X such that Z does not contain any of the
points ηi’s and the restriction of E to X−Z is trivial, then one could try to prove
the Assertion following the strategy from [8].

The first step in an approach to prove the Assertion. Let L be the field of
rational functions on X . Regarding points {η1, ..., ηn} as points of X consider the
semi-local ring O := OX,{η1,...,ηn}. Clearly, it is a semi-local Dedekind domain.
If the Question has the positive answer, then the restriction of E to Spec(O) is
trivial. Hence there is a closed subset Z in X such that Z does not contain any of
the points ηi’s and the restriction of E to X − Z is trivial. Now one could try to
prove the Assertion using the strategy from [8].
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Spinor Groups with good reduction

Vladimir Chernousov

(joint work with A. Rapinchuk, I. Rapinchuk)

1. The main conjecture

Let K be a field and v a discrete valuation of K. If G is an absolutely almost
simple linear algebraic group defined over K, we say that G has good (or smooth)
reduction at v if there exists a reductive group scheme Gv over the valuation ring
Ov of the completion Kv of K whose generic fiber Gv ⊗Ov

Kv is isomorphic to
GKv

= G⊗K Kv. One can show that this is equivalent to saying that there exists
a reductive group scheme G over the valuation ring O ⊂ K of v whose generic
fiber is isomorphic to G.

Example. Let G = Spin(f). Then G has good reduction if and only if f has a
diagonalization f = a〈a1, . . . , an〉 over K where a, a1, . . . , an ∈ K and all the ai
are v-adic units.

Our goal is to discuss the following general problem.
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Question 1. Let K be a field. (When) can one equip K with a natural set V of
discrete valuations such that for a given absolutely almost simple simply connected
(or adjoint) algebraic K-group G, the set of K-isomorphism classes of (inner)
K-forms of G having good reduction at all v ∈ V \ S where S ⊂ V is an arbitrary
finite subset is finite?

We conjecture that Question 1 has the positive answer for all finitely generated
fields of good characteristic.

2. Motivation

2.1. Borel-Serre theorem. We first mention the following result which is due
to A. Borel and J.-P. Serre [1].

Theorem. Let k be a number field and G be an affine (not necessary connected)
algebraic group over k. Let V be the set of all places of k. Then for an arbitrary
finite set S ⊂ V the canonical map

ωS,G : H1(k,G) −→
∏

v 6∈S

H1(kv, G)

is proper, i.e. the pre-image of any finite set is finite. In particular, the corre-
sponding Tate-Shafarevich set X(G)S := Ker ωS,G is finite.

It is natural to ask if this result can be generalized to the case of arbitrary fields.

Question 2. Let K be a field. (When) can one equip K with a natural set V of
discrete valuations such that for a given absolutely almost simple adjoint algebraic
K-group G, the natural map ωS,G is proper for any finite set S ⊂ V ?

We conjecture that Question 2 has the positive answer for all finitely generated
fields of good characteristic; in particular the corresponding Tate-Shafarevich set
X(G)S is finite.

To provide a different perspective on the Borel-Serre theorem, we recall that
if an absolutely simple k-group G where k is a number field has good reduction
at a non-archimedean place v, then it becomes quasi-split over the completion kv.
Combining this with the properness of ωS,G one concludes that for an absolutely
almost simple simply connected k-group G, the set of k-isomorphism classes of
k-forms of G having good reduction at all v ∈ V K \S is finite, for any finite subset
S ⊂ V k containing all archimedean places. (With some additional efforts, this
result can be extended to all reductive groups.) Conversely, this property implies
the properness of ωS,G for adjoint semi-simple groups defined over number fields.

Thus we arrive in a natural way to the question on finiteness of the set of groups
defined over an arbitrary field K and having good reduction. It is worth noticing
that the affirmative answer on Question 1 immediately implies the affirmative
answer on Question 2.
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2.2. Genus of a simple group. Recall that given an absolutely almost simple
simply connected algebraic K-group G, its genus genK(G) is defined to be the set
of K-isomorphism classes of K- forms G′ of G that have the same isomorphism
classes of maximal K-tori as G (the latter means that every maximal K-torus T
of G is K-isomorphic to some maximal K-torus T ′ of G′, and vice versa). It was
proved by A. Rapinchuk and G. Prasad that if K is a number field, then genK(G)
is finite for any G. For applications in geometry it is important to consider groups
defined arbitrary fields and we put forward the following question.

Question 3. When genK(G) is finite?

The case of number fields was studied by G. Prasad and A. Rapinchuk in [2].
We conjecture that genK(G) is finite for any absolutely simple simply connected
group G and any finitely generated field K of good characteristic.

To connect Question 3 with Question 1 we mention the following result which
is due to V. Chernousov, A. Rapinchuk and I. Rapinchuk.

Theorem. Let G be an absolutely simple simply connected algebraic group defined
over a finitely generated field K of good characteristic. Let G′ ∈ genK(G) and let
v be a discrete valuation of K. If G has a good reduction with respect to v then so
is G′. In particular, the affirmative answer on Question 1 implies the affirmative
answer on Question 3.

3. Inner forms of type An and Spinor groups

3.1. Choice of V . We now come back to Question 1. Assume that K is a finitely
generated field. Then one can presentK as the function fieldK = k(C) of a smooth
geometrically integral projective curve C over a field k where k = l(x1, . . . , xm)
is a pure transcendental extension of either a number field or a finite field l. Let
V0 be the set of discrete valuations on K associated to closed points of C. Next,
we take the set of discrete valuations on k corresponding to all divisors on the
corresponding projective space Pm together with all non-archimedean places on l
and take their extensions on K. If V1 is the resulting set of such discrete valuations
on K we let V = V0 ∪ V1.

3.2. Inner forms of type An. An evidence that Question 1 can have the positive
answer for all finitely generated fields is provided by the Borel-Serre theorem in
the case of number fields and the following result.

Theorem. Let G be an inner form of type An defined over a finitely generated
field K of good characteristic and let V be as above. Then Question 1 has the
affirmative answer. In particular, for an arbitrary central simple algebra A over
K the Tate-Shafarevich set X(PGL(A))S is finite.

3.3. Spinor groups. The case of the function field K = k(C) of a smooth ge-
ometrically connected projective curve C over a number field k is widely open
and not much is known. The following result deals with the case of spinor groups
defined over such fields. As above denote by V0 the set of discrete valuations of K
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associated to closed points of C. Furthermore, pick a finite subset S ⊂ V k that
contains all archimedean places and all places of bad reduction for a certain model
of C. Then every v ∈ V k \ S has a canonical extension to a discrete valuation ṽ
of K. We set V1 = { ṽ | v ∈ V k \ S }, and V = V0 ∪ V1.

Theorem. Keep the above notation. The number of K-isomorphism classes of
spinor groups G = Spinn(q) of nondegenerate quadratic forms in n ≥ 5 variables
over K that have good reduction at all v ∈ V is finite.

Corollary 1. Let K,V be as above and S ⊂ V be any finite subset. Let q be a qua-
dratic form in n ≥ 5 variables over K. Then the Tate-Shafarevich set X(SO(q))S
is finite.

Remark. The similar result holds for groups of typeG2 and special unitary groups
SU(L/K, f) where L/K is a quadratic extension and f is a hermitian form over
L.

Corollary 2. Let K,V be as above. Then Question 1 has the affirmative answer
for all groups of type Bn.

References

[1] A. Borel, J.-P. Serre, Théorèmes de finitude en cohomologie galoisienne, Comm. Math. helv.
39 (1964), 111–164.

[2] G. Prasad, A. Rapinchuk, Weakly commensurable arithmetic groups and isospectral locally

symmetric spaces, Publ. Math. Inst. Hautes Études Sci. 109 (2009), 113–184.

Degree three invariants for semisimple groups of types B, C, and D

Sanghoon Baek

Let G be a (split) semisimple group over an algebraically closed field F . Consider
the degree 3 cohomological invariant of G with values in Q/Z(2), i.e., a natural
transformation G-torsors → H3, where G-torsors(K) is the set of isomorphism
classes of G-torsors over a field extension K/F and H3(K) = H3(K,Q/Z(2)). Let
T ∗ be the character group of a maximal torus T of G and let W be the Weyl group
of G. Then, by [13] the group of normalized invariants of G, denoted by Inv3(G),
can be identified with the factor group S2(T ∗)W /〈12

∑
λ∈W (χ) λ

2 |χ ∈ T ∗〉, where

W (χ) denotes the W -orbit of χ.
Let Gred be a reductive group over F such that the derived subgroup of Gred is

G and the center Z(G) is a torus. Then by [12] the restriction map Inv3(Gred) →
Inv3(G) is injective and its image is independent of the choice of Gred. This image
is called the subgroup of reductive invariants of G and is denoted by Inv3(G)red.
For instance, for G = Spinn (n ≥ 7), we have Gred = Γn, where Γn is the even
Clifford group, and Inv3(G) = Inv3(G)red = Z/2Z. This invariant is induced by

the Arason invariant e3 : Spinn-torsors → Γn-torsors
e3→ H3.

The group Inv3(G) has been completely determined for all simple groups in
[13, 4, 8] and for some semisimple groups in [11, 2, 3]. In particular, in [11] the
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group Inv3(G)red was obtained by Merkurjev for all semisimple groups of type A.
The purpose of this talk is to classify the degree 3 (reductive) invariants of all
semisimple groups of types B, C, D, which completes the invariants of classical
groups. For simplicity we only present the case of type B. Similar results hold for
types C and D [1]. A basic question motivating the work is as follows:

Question 1. Let G =
(∏3

i=1 Spin2ni+1

)
/µ with ni ≥ 2, where we say µ =

〈(−1,−1,−1)〉 ⊂ µ3
2. What would be the degree 3 invariants of G?

By a simple calculation, we see that Inv3(G) = Inv3(G)red = (Z/2Z)2. In
general, we have the following result for type B:

Theorem 1 ([1]). Let G = (
∏m

i=1 Spin2ni+1)/µ, m,ni ≥ 1, where µ ≃ (µ2)
k

is a central subgroup. Let R be the subgroup of (µm
2 )∗ =

⊕m
i=1(Z/2Z)ei whose

quotient is the character group µ∗. Let R′
1 = 〈ei ∈ R |ni ≤ 2〉 with l1 = dimR′

1

and R′
2 = 〈ei + ej ∈ R | ei, ej 6∈ R, ni = nj = 1〉 with l2 = dimR′

2 be subspaces of

R. Then, we have Inv3(G)red = (Z/2Z)m−k−l1−l2 . In particular, if ni ≥ 2 for all
i, then Inv3(G) = Inv3(G)red.

To describe the invariants of G, let us consider the corresponding reductive
group Gred = (

∏m
i=1 Γ2ni+1)/µ. Then, we have the following description of torsors

in terms of m-tuples of quadratic forms:

H1(K,Gred) ≃ {φ := (φ1, . . . , φm) | dimφi = 2ni + 1, discφi = 1, φ[r] ∈ I3(K)}

for all r = (ri) ∈ R, where

φ[r] :=

{
⊥m

i=1 riφi if
∑m

i=1 ri ≡ 0 mod 2,

(⊥m
i=1 riφi) ⊥ 〈1〉 otherwise.

For each r ∈ R, we define the invariant e3[r] : Gred-torsors → H3 by φ 7→
e3(φ[r]). In [1] it is shown that the invariant e3[r] is nontrivial for any r ∈
R\(R′

1 + R′
2). Hence, Theorem 1 can be restated as follows: let R → Inv3(G)red

be the homomorphism given by r → e3[r]. Then, this morphism is surjective and
its kernel is the subspace R′

1 +R′
2.

The main result in [1] tells us that for all semisimple groups of types B, C,
D there are essentially two types of degree three reductive invariants given by
the Arason invariant and the Garibaldi-Parimala-Tignol invariant [7] and no other
invariants exist.

Let V be a generically free representation of G, i.e., there exists a G-torsor
U → U/G for some G-invariant open subset U ⊆ V . We write BG for U/G.
A generalized Noether’s problem asks whether the classifying space BG is stably
rational or retract rational and it is still open for a connected algebraic group G
over an algebraically closed field. By [6, 10] the retract rationality of BG implies
the triviality of unramified cohomology group Hd

nr(F (BG)) for any degree d. For
d ≤ 2, we have Hd

nr(F (BG)) = 0 [5]. Recently, it was shown that the group
H3

nr(F (BG)) is trivial if G is a simple group [12] or a semisimple group of type A
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[9, 11]. Note that BG is stably birational to BGred. Using a complete description
of the invariants obtained in Theorem 1 we show (see [1] for details):

Theorem 2. Let G = (
∏m

i=1 Spin2ni+1)/µ (ni ≥ 1) or (
∏m

i=1 Sp2ni
)/µ (ni ≥

1) or (
∏m

i=1 Spin2ni
)/µ (ni ≥ 3) defined over an algebraically closed field F of

characteristic 0, m ≥ 1, where µ is an arbitrary central subgroup. Then, there are
no nontrivial unramified degree 3 invariants for G, i.e., H3

nr(F (BG)) = 0.

Using a similar method developed in [1] we expect that the same result as in the
Theorem 2 holds for all exceptional types and we propose the following question:

Question 2. Let G be a semisimple group of mixed Dynkin types (i.e., each com-
ponent of the Dynkin diagram is of an arbitrary type) over an algebraically closed
field. Is H3

nr(F (BG)) trivial?
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Critical varieties for higher isotropy of semi-simple groups

Charles De Clercq

Deep conjectures in the algebraic theory of quadratic forms lie in the study of
isotropy and higher isotropy of quadratic forms, i.e. the splitting behaviour of
quadratic forms over field extensions. The recent introduction of Chow-motivic
techniques lead to important progresses in this study: the proof of Hoffmann’s
conjecture by Karpenko [6] and the construction of fields of odd u-invariant by
Vishik [10] rely on computations of Chow motives of projective quadrics.

Let us get back to the beginning of the story: in his work towards a proof of
Milnor’s conjecture, Rost studied in [8] Chow motives of Pfister quadrics, introduc-
ing the celebrated Rost motive. Rost also shows that the isotropy of a quadratic
form (namely its Witt index) can be directly read on the motivic decomposition
of the associated projective quadric. The uniform study of motivic properties of
projective quadrics was then carried on wonderfully in [9]. One of the most beau-
tiful properties envisioned by Vishik relies on the fact that motives of projective
quadrics actually control higher isotropy of quadratic forms. More precisely the
following result is obtained.

Theorem 1. Let q and q′ be two quadratic forms of the same dimension over a
field F , and denote by Q and Q′ the associated projective quadrics. The (integral)
Chow motives of Q and Q′ are isomorphic if and only if for any field extension
E/F , the Witt indices iw(qE) and iw(q

′
E) are equal.

This results raises several questions:

(1) How restrictive the condition on Witt indices of Theorem 1 is? Is this
condition equivalent to the fact that q and q′ are similar?

(2) Can this result be also obtained replacing projective quadrics by, say,
Grassmannians of q-isotropic subspaces?

(3) Can this result be extended to all semi-simple groups, i.e. can we en-
close (higher) isotropy of semi-simple groups in the motives of projective
homogeneous varieties?

Question (1) was addressed in [4], where Izhboldin shows that motivic equiva-
lent quadratic forms of odd dimension are similar and produces counterexamples
for even-dimensional quadratic forms. It was also shown in [3] that motivic equiv-
alent quadratic forms are similar over local and global fields in. The answer of
Question (2) is “no” in general - considering for instance Borel varieties associated
to quadratic forms - but requires further developments of Question (3) to get finer
results.

Question (3) is at the heart of the notion of motivic equivalence for semi-simple
groups, which was introduced in [1]. Note that isotropy of semi-simple algebraic
groups over fields is controlled by quite classical invariants: the Tits indices. More
precisely Borel-Tits classification asserts that to any subset Θ of the Dynkin dia-
gram of G can be associated a (isomorphism class of) twisted flag G-variety XΘ,G.
The Tits index of a semisimple group G is then the data of its Dynkin diagram, on
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which a vertex i is colored if the G-variety X{i},G is rational. The main result of
[1] asserts that higher isotropy of semi-simple groups is controlled by all motives
of twisted flag G-varieties:

Theorem 2. Two semi-simple groups G and G′ of the same type are motivic
equivalent (modulo a prime p) if and only if their Tits (p-)indices coincide over
any extension of the base field.

Note that in the case of orthogonal groups O+(q) and O+(q′) associated to
quadratic forms of the same dimension, one then sees that the isotropy condition
appearing in Vishik’s theorem is in fact equivalent to the fact that the motives
twisted flag varieties for G and G′ of fixed type are all isomorphic.

The notion critical variety is introduced in [2]. A twisted flag G-variety XΘ,G is
critical if XΘ,G is a test-variety for motivic equivalence, i.e. if motivic equivalence
between G and another group G′ can be checked only through the motives XΘ,G

and XΘ,G′ . We construct in [2] critical varieties for all classical groups, as well as
in many exceptional cases.

Theorem 3. All semi-simple groups of classical type admits a critical variety
modulo 2. More precisely the following twisted flag G-varieties are critical:

(1) If G is of type An (with n ≥ 2), X{1,n},G is critical.
(2) If G is of type Bn, X{1},G is critical.
(3) If G is of type Cn (with n ≥ 2), X{2},G is critical.
(4) If G is of type Dn (with n ≥ 3), X{1},G is critical.

The proof of this result relies on the main theorems of [1] and makes an essential
use of the anisotropy theorems for algebras with involutions produced by Karpenko
and Karpenko-Zhykhovich [5],[7]. One may deduce from Theorem 3 complete gen-
eralizations of Vishik’s criterion to all classical groups.

Theorem 4. If (A, σ) and (B, τ) are of the same orthogonal or symplectic type
over F , the involutions σ and τ are motivic equivalent if and only if we have

A ≃ B and iw,2(σM ) = iw,2(τM ) for all field extensions M/F.

References
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[2] C. De Clercq, A. Quéguiner, M. Zhykhovich, Critical varieties and motivic equivalence for
algebras with involution, preprint (2018).

[3] D. Hoffmann, Motivic equivalence and similarity of quadratic forms, Doc. Math., Extra vol.:
Alexander S. Merkurjev’s sixtieth birthday (2015), 265-275.

[4] O. Izhboldin, Motivic equivalence of quadratic forms, Doc Math. 3 (1998), 341-351.
[5] N. Karpenko, Isotropy of orthogonal involutions. With an appendix by J.-P. Tignol, Amer.

J. Math. 135 (2013), no. 1, 1-15.
[6] N. Karpenko, On the first Witt index of quadratic forms, Invent. Math. 153 (2013), no. 2,

455-462.
[7] N. Karpenko, M. Zhykhovich, Isotropy of unitary involutions, Acta Math. 211 (2013), no.

2, 227-253.
[8] M. Rost, Some new results on the Chow groups of quadrics, preprint (1990).



Quadratic Forms and Related Structures over Fields 1271

[9] A. Vishik, Motives of quadrics with applications to the theory of quadratic forms, Lecture
Notes in Math. 1835, Proceedings of the Summer School “Geometric Methods in the Alge-
braic Theory of Quadratic Forms” Lens 2000 (2004), 25–101.

[10] A. Vishik, Fields of u-invariant 2r + 1, Algebra, Arithmetic and Geometry - In Honor of
Yu. I. Manin, Birkhauser (2010), 661-685.

The alternative Clifford algebra

Uzi Vishne

(joint work with A. Chapman, I. Rosenbaum)

This talk is based on a paper titled “The Alternative Clifford Algebra of a Ternary Quadratic

Form”, which was written with ADAM CHAPMAN and is submitted for publication elsewhere;

and on joint work with my Master’s student ITAY ROSENBAUM.

1. The problem

The classical Clifford algebra of a quadratic form q : V → F is the free associa-
tive algebra generated by V , modulo the relations x2 = q(x) for x ∈ V . It is
an important invariant of quadratic forms, essentially the second cohomological
invariant.

In her recent PhD thesis, Stacy Marie Musgrave, working under Danny Krashen,
suggested that one should consider the Clifford algebra in other varieties of alge-
bras, in particular alternative algebras. By definition, Calt(q) is the free alternative
algebra generated by V , modulo the same relations as in the associative case. This
is a new algebraic invariant of quadratic forms.

Recall that the associator in a nonassociative algebra is defined by (a, b, c) =
(ab)c− a(bc); and the algebra is alternative if the form (a1, a2, a3) alternates. We
denote a ◦ b = ab+ ba.

We give a complete description of Calt(q) when dim(q) = 3, and give some
details on the structure in higher dimension.

2. Ternary forms

Theorem 1. Let q be a nondegenerate ternary quadratic form over an arbitrary
field F . Then Calt(q) is an octonion algebra over a ring of polynomials in one
variables.

In fact:

(1) When charF 6= 2, Calt(〈α1, α2, α3〉) ∼= (α1, α2, λ
2 + 4α1α2α3)F [λ].

(2) When charF = 2, Calt([α1, α2] ⊥ 〈α3〉) ∼= [α1α2, α2, λ
2 + α3)F [λ].

The proof when charF 6= 2 is based on properties of the element xi ◦ (xjxk)
where {x1, x2, x3} form an orthogonal basis; which is well-defined up to scalars.
Similar ideas, somewhat more elaborate, work when charF = 2.

Clearly, the only simple associative quotient of Calt(q) is the (simple quotients
of the) associative Clifford algebra.
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Let a = (x1, x2, x3) denote the associator of basis elements. It is known that
the square of associators is central in the free alternative algebra on 3 generators,
hence a2 is central in Calt(V ).

Proposition 2. The algebra Calt(q)[a−2] is “alternative Azumaya”, in the sense
that all the simple quotients are octonion algebras.

3. Four dimensional forms

Our observation on the alternative Clifford algebra for a nondegenerate form q =
〈α1, α2, α3, α4〉 is based on computer computation.

Let x1, x2, x3, x4 be an orthogonal basis for which x2
i = αi.

Lemma 3. (1) The element

c′ = x1(x2(x3x4))+2[x1x2, x3x4]−3 [(x1x2)(x3x4) + x3((x1x2)x4)− x4((x1x2)x3)]

is central in Calt(q);
(2) Let

c′′1 =
∑

(ijk)=(234)

xi[x1(xjxk)x1] + x1((xjxk)(x1xi))− 3α1(x2 ◦ (x3x4));

then c′′σ(i) = sgn(σ)c′′i defines a 4-dimensional representation of S4, which

is contained in the center of Calt(q).

Proposition 4. The nonzero element g =
∑

α−1
i c′′

2
i − c′

2
is central, and satisfies

g2 = 0.

Since g generates a nilpotent ideal, we have that:

Corollary 5. The alternative Clifford algebra in dimension ≥ 4 is not semiprime.

4. The octonionic quotient

We assume charF 6= 2. Let q = 〈α1, . . . , αn〉 be a nondegenerate form in dimension
n ≥ 4. Let x1, . . . , xn form an orthogonal basis with x2

i = αi. The elements

wijk = xi ◦ (xjxk)

are not central in Calt(q), but w2
ijk is central; furthermore, wijk is central in any

octonion quotient, but in no associative quotient.
Let Coct(q) be the maximal quotient of Calt(q) all of whose simple quotients are

octonion algebras.

Theorem 6. When dim(q) > 3, Coct(q) is the quotient of Calt(q) obtained by
forcing the wijk to be central.

Let Z = Z(Coct(q)).

Proposition 7. Coct(q) is a finite module over Z, contained in a standard octo-
nion algebra over Z.
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Theorem 8. The transcendence degree of Z is as in the following table:

dim q 3 4 5 6 7 ...
tr deg Z 1 4 6 7 7 0

.

Indeed, when dim(q) > 7 we have that Coct(q) = 0.

Octonion Algebras with Isometric Quadratic Forms over Rings, via
Triality

Seidon Alsaody

(joint work with P. Gille)

This is a report on the paper [1], where we give a description, over any commutative
unital ring, of all octonion algebras having isometric quadratic forms.

1. Introduction

A composition algebra over a field k is a k-algebraC endowed with a non-degenerate
quadratic form q : C → k that is multiplicative, i.e. permits composition in the
sense that

q(x · y) = q(x)q(y)

for all x, y ∈ C, whence the name. In the definition of an algebra we neither require
associativity nor commutativity, but we will here always assume the existence of
a unity, although various classes of non-unital composition algebras have been
studied by several authors.

It is known that composition algebras only exist in dimensions 1, 2, 4 and 8;
those of dimension 4 are the quaternion algebras and those of dimension 8 are
known as octonion algebras. The quadratic form of a composition algebra over a
field is a Pfister form, and is determined by the algebra structure via its minimal
polynomial. Conversely, it determines the algebra in the sense that two algebras
are isomorphic if and only if their quadratic forms are isometric. This reduces the
classification of composition algebras over fields to a question of quadratic forms.

The definition of a composition algebra can be generalized, replacing the field
by a ring. In this setting, the quadratic form is still determined by the algebra,
but the converse fails for octonion algebras, as was proved by P. Gille in [3] using
cohomological arguments.

2. Torsors, Twists and Triality

An octonion algebra over a (unital, commutative) ring R is an R-algebra C, the
underlying module of which is projective of constant rank 8, endowed with a non-
degenerate, multiplicative quadratic form q = qC : C → R, known as the norm.
Our aim is to understand the class KC of all octonion algebras C′ with qC ∼ qC′ .
The automorphism group Aut(C) of C is an affine group of type G2, which is a
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closed subgroup of the orthogonal group O(q). The set KC is in bijection with
the kernel of the cohomology map

H1(R,Aut(C)) → H1(R,O(qC))

induced by the inclusion Aut(C) → O(qC). (All sheaves and cohomology sets in
this talk are with respect to the fppf-topology.) As detailed in [4], this implies
that the algebras in KC are obtained as twists of C by the Aut(C)-torsor

O(qC) → O(qC)/Aut(C),

and twists corresponding to two fibres are isomorphic precisely when the fibres
are in the same orbit of the natural O(qC)-action. In order to understand these
twists explicitly, we proceed in several steps, in which triality plays a key role.
This phenomenon, going back to the work of É. Cartan on isometries of real
octonion algebras, has been generalized to arbitrary fields (see e.g. [2] and [5]).
We generalize this over rings in the following way (a different genralization was
given in [6]): define the closed subgroup scheme RT(C) of SO(qC)

3 of related
triples by setting, for each commutative, unital R-algebra S,

RT(C)(S) = {(t1, t2, t3) ∈ SO(qC)(S)
3|t1(x · y) = t2(x) · t3(y)}

where x and y run through C ⊗R S. The octonionic involution z 7→ z serves the
purpose of simplifying the following result, which also shows that these triples are
essentially determined by either of their components.

Proposition 1 ([1], 3.6 and 3.9). Let C be an octonion algebra over R.

(1) The group RT(C) is a semisimple simply connected group of type D4, and
the assignment (t1, t2, t3) 7→ t1 is a universal cover of SO(qC).

(2) The cyclic group C3 acts on RT(C) by automorphisms of order 3, and
Aut(C) embeds in RT(C) as the fixed subgroup of this action.

The first step of our simplification of the torsor is the following.

Proposition 2 ([1], 6.6). The set KC is in bijection with

H1(R,Aut(C)) → H1(R,RT(C)).

Thus we are led to studying the torsor

RT(C) → RT(C)/Aut(C),

where we are able to describe the quotient using two copies of the octonionic unit
sphere SC (defined by the equation qC(x) = 1 in C).

Proposition 3 ([1], 4.1). The map RT(C) → SC × SC sending (t1, t2, t3) to
(t3(1), t2(1)) identifies the quotient RT(C)/Aut(C) with SC×SC , on which RT(C)
acts by (t1, t2, t3) · (a, b) = (t3(a), t2(b)).

This defines an Aut(C)-torsor over SC×SC . We denote the fibre over the point
(a, b) by Ea,b

Having described the torsor explicitly, we can now determine the twists them-
selves. These turn out to be given by a classical construction, namely that of
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isotopes. For our purposes, if a, b ∈ C are elements of norm 1, the isotope Ca,b is
the algebra with underlying module C, and with multiplication x◦y = (x·a)·(b·y).
It is an octonion algebra with the same norm as C.

Theorem 4 ([1], 4.6). The twist of C by Ea,b is naturally isomorphic to Ca,b.

Thus all octonion algebras with norms isometric to qC are isotopes of C.

3. Final Remarks

The key idea of the proof is that if (t1, t2, t3) is a related triple, then t1 is an
isomorphism C → Ca,b with a = t3(1) and b = t2(1). This illustrates in a precise
way how the pair of spheres (each of dimension 7) bridges the gap between the
automorphism group of C (of dimension 14) and the orthogonal group of qC (of
dimension 28 = 14 + 7 + 7). The advantage of the explicit description is that
under certain circumstances (for example, when the ring is a (Laurent) polyno-
mial ring over a field), one can in many cases determine when two isotopes are
isomorphic, using algebraic manipulations. While such manipulations in general
provide sufficient conditions for isotopes to be isomorphic, the problem of finding
explicit conditions that are both necessary and sufficient seems still open. A wider
open problem is that of describing the behaviour, over rings, of certain non-unital
composition algebras. Most prominent among these are the so-called symmetric
ones, some of which were first studied by Okubo in work on particle physics.
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Affine quadrics and the Picard group of the motivic category

Alexander Vishik

It was observed for a long time that quadratic forms play a fundamental role in
many branches of mathematics. I would like to discuss still another point of view
on this rich subject. In the last 30 years the algebraic theory of quadratic forms
is more and more supplemented by geometric and motivic methods. These are
visible already in the works of M. Knebusch, and were extensively developed by
M. Rost, V. Voevodsky, the author, N. Karpenko, A. Merkurjev and other people.
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Traditionally, one assigns to a quadratic form the associated projective homoge-
neous varieties (quadratic Grassmannians), in particular, the respective projective
quadric. This permits to introduce many powerful invariants of quadratic forms
which allow to distinguish them in many cases. At the same time, there is another
geometric object one can assign to a form q. It is the affine quadric {q = 1}. The
study of motivic properties of such objects was initiated by Po Hu in [3] in the con-
text of stable homotopic category of Morel-Voevodsky with the aim of describing
the Picard group of invertible objects there, and then expanded by T. Bachmann
in the context of motivic category of Voevodsky. It is the latter strand which I
would like to develop.

Let k be a field of char(k) 6= 2 and q be some n-dimensional (non-degenerate)
quadratic form over k. We can assign to it the affine quadric Aq = {q = 1}. It is
nothing else but the complement Q′\Q of a codimension one smooth subquadric
in a smooth projective quadric, where q′ = 〈1〉 ⊥ −q and we denote by the capital
letter the projective quadric corresponding to a given quadratic form.

Consider the motive M(Aq) of this affine quadric in the Voevodsky’s motivic
category (with Z/2-coefficients) DM(k,Z/2). Affine quadric plays a role of a
(not necessarily split) sphere, and over algebraic closure, its motive splits into
a sum of two Tate-motives: M(Aq|k) = T ⊕ T ([n/2])[n − 1]. In particular, the
(shifted) “reduced motive” eq of Aq we introduce below is a “form” of a Tate-

motive T ([n/2])[n], and so is invertible over k.

Definition 1. eq := Cone(M(Aq) → T ) ∈ DM(k,Z/2).

It was shown by T. Bachmann in [1] that eq is ⊗-invertible already over the
ground field. Moreover, as was proven in [2], eq is a complete invariant of q (so,
affine quadrics behave in this respect better than the projective ones, as the latter
are not determined by their motives). We get an embedding

GW (k) →֒ Pic(DM(k,Z/2))

where [q] − r[H] 7→ eq(−r)[−2r]. Due to the famous result of F. Morel, the left
group can be identified with πst

(0)[0](S). The topological analogue

πst
0 (S) → Pic(Db(Z/2))

of this map is an isomorphism. In algebraic geometry it is not even a group
homomorphism. In a sense, it is even better as we can describe more elements
using the operation of Pic.

Definition 2. Picqua = subgroup of Pic generated by eq, for all q/k.

We would like to describe the structure of this subgroup. Picqua contains
the “split” subgroup T = {T (i)[j]} consisting of Tate motives, and it is enough
to describe the quotient group Picqua/T. We first observe ([4, Prop.2.1]) that

our set of generators is stable under inverses: (eq)−1 = eq
′

in Picqua/T, where
q′ = 〈1〉 ⊥ −q. It appears that our group is really large.
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Theorem 1. [4, Thm 3.1] Let {qi} be a set of quadratic forms s.t.: 1) q′i is
anisotropic, ∀i; 2) q′i is not stably birationally equivalent to q′j, for i 6= j. Then

the collection {eqi} is linearly independent in Picqua/T.

Example. Let {〈〈α〉〉} be the collection of all anisotropic Pfister forms (of any
foldness) over k. Then {e〈〈α〉〉} is linearly independent in Picqua/T.

In order to describe the group Picqua, we need to introduce the new set of
generators.

Definition 3. Let Q be a smooth projective quadric with a complete flag Q =
Qm ⊃ Qm−1 ⊃ . . . ⊃ Q1 ⊃ Q0 of smooth subquadrics. Define:

det(Q) := eQm\Qm−1 · eQm−1\Qm−2 · . . . · eQ1\Q0 · eQ0 ∈ Pic.

By [4, Prop.3.6], det(Q) is well-defined (doesn’t depend on the choice of a
flag) and, actually, depends on M(Q) only. Clearly, {det(Q)} is another set of
generators of Picqua. We can describe the relations among them.

Theorem 2. [4, Thm 3.11] TFAE:

(1)
∏

i det(Qi) =
∏

j det(Pj) in Picqua/T

(2) ⊕iM(Qi)
Tates
∼ ⊕jM(Pj), where in the latter equivalence we ignore Tate-

summands and Tate-shifts.

Thus, the question about Voevodsky’s triangulated category and ⊗ operation
is reduced to the one about Chow motivic category and ⊕ operation. The above
result implies that Picqua is a free abelian group (previously, it was known by T.
Bachmann [1] that it has no torsion).

Example. Since all anisotropic indecomposable direct summands of real quadrics
are Rost motives, for k = R we get:

(Picqua/T)(R) = ⊕r∈NZ · e〈〈−1〉〉r .

I’m unaware of any examples of elements of Pic(DM(k,Z/2)) outside Picqua,
so there is still hope that the group we study is the whole Picard group (note, that
with the odd coefficients, such examples are known).

As a bi-product we obtain an extension of the criterion of motivic equivalence
of projective quadrics.

Corollary. [4, Cor.3.12] Let P,Q be smooth proj. quadrics. TFAE

(1) M(P ) ∼= M(Q);
(2) det(P ) = det(Q) in Picqua.

All the above results can be obtained either with the help of functors of Bach-
mann [1], or alternatively, using the projectors in Voevodsky category correspond-
ing to Čech symplicial schemes [4]. The latter method permits to study the whole
Picard group.
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On generic quadratic forms

Nikita A. Karpenko

Let k be a field of characteristic different from 2 and let Fg = k(t1, . . . , tn) be
the field of rational functions over k in variables t1, . . . , tn for some n ≥ 2. We
call generic the diagonal quadratic form qg := 〈t1, . . . , tn〉 over Fg. Thus qg is
the n-dimensional quadratic form Fn

g → Fg on the vector space Fn
g given by the

formula

qg : (x1, . . . , xn) 7→
∑

1≤i≤n

tix
2
i .

The Chow ring of the projective quadric defined by qg has been computed in
[2, Corollary 2.2]. The Chow ring of the highest orthogonal Grassmannian of a
generic quadratic form has been computed in [5] (see also [6]), but this was done
for a different notion of generic, which we call here standard generic. As shown in
[1, §3], the n-dimensional standard generic quadratic form q lives over the field of
rational functions F = k(tij)1≤i≤j≤n in n(n+1)/2 variables tij and can be defined
(in arbitrary characteristic including characteristic 2) by the formula

Fn → F, (x1, . . . , xn) 7→
∑

1≤i≤j≤n

tijxixj .

In the present paper we determine the Chow ring CHX of all orthogonal Grass-
mannians X associated with the generic and the standard generic quadratic forms.
(The characteristic 6= 2 assumption is removed in the latter case; the characteristic
2 analog for the first case is provided in [1, §9].) Namely, our Main Theorem ([1,
6.1], see also [1, Corollary 8.2 and Proposition 9.2]) affirms that the ring CHX is
generated by the Chern classes of the tautological vector bundle of X . A complete
list of relations satisfied by these Chern classes (in general, not only in the generic
situation) is provided in [1, Theorem 2.1]. All the (well-known) relations that hold
over an algebraic closure of the base field actually already hold over the base field
itself. This way we obtain a description of the ring CHX in terms of generators
and relations. It also follows that the additive group of CHX is torsion-free (see
[1, Corollary 6.2]).

Proving Main Theorem, we use computation of the Chow ring of classifying
spaces for orthogonal groups O(n) performed in [4] as well as in [7] over the field
of complex numbers and later in [3] over an arbitrary field of characteristic not
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2. We actually need only a piece of this computation which is made in [7] over
arbitrary field (of arbitrary characteristic), see [1, §5].

Note that the algebraic group O(n) over a field k is not connected if n is
even or char k 6= 2. In the remaining case (when n is odd and char k = 2) the
algebraic group O(n) is not smooth. In contrast, the special orthogonal group
O+(n) is always smooth and connected. But since O(n)-torsors correspond to all
non-degenerate n-dimensional quadratic forms while O+(n)-torsors correspond to
quadratic forms of trivial discriminant, it is more appropriate to work with O(n)
for the question raised in this paper. On the other hand, since orthogonal Grass-
mannians depend only on the similarity class of the quadratic form in question
and any odd-dimensional quadratic form is similar to that of trivial discriminant,
O(n) can be replaced by O+(n) for odd n.
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Cohomological invariants of Witt classes and algebras with involution

Nicolas Garrel

Context

We work over a base field k of characteristic not 2, and K denotes any field
extension of k. If one wants to study cohomological invariants of algebraic groups,
one is led to invariants of Quad2r ∩ In (meaning non-degenerate quadratic forms
in dimension 2r whose Witt class is in In) for n = 1 (for orthogonal groups), n = 2
(special orthogonal groups) and n = 3 (spin groups). The cases n = 1, 2 have been
treated by Serre, but the case n = 3 is very much open except for small r.

On the other hand, the Milnor conjecture provides a natural cohomological
invariant en of In. One may then try to identify invariants of Witt classes in In,
instead of isometry classes in fixed dimension, since In is much easier to describe
than Quad2r ∩ In (which has no description already for n = 3).
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This is related to the question of operations on cohomology: it is well-known
that

∑
xi 7→

∑
i1<...<id

xi1 ∪ · · · ∪ xid , where xi are Galois symbols, is not a well-
defined operation. On the other hand, Rost constructed such an operation for
d = 2 on In, where the xi are Pfister forms.

1. Operations on Witt classes

The basis of our work is that we may define natural operations πd
n : In(K) →

Ind(K) for any d ∈ N, such that:

• π0
n = 1, π1

n = Id ;

• ∀q, q′, πd
n(q + q′) =

∑d
k=0 π

k
n(q)π

d−k
n (q′) ;

• ∀ϕ ∈ Pfn(K), ∀d ≥ 2, πd
n(ϕ) = 0.

In particular, this ensures that if q =
∑r

i=1 ϕi where the ϕi are n-fold Pfister

forms, then πd
n(q) =

∑
i1<···<id

ϕi1 · · ·ϕid .
These operations can be constructed as functions on the Grothendieck-Witt

ring, and then restricted to În(K) ≃ In(K) where Î(K) is the kernel of the degree

map; more precisely, πd
n can be taken of the form

∑d
k=1 akλ

k, where λk is the usual
exterior power on quadratic forms and ak ∈ Z. The existence of appropriate ak
can be proved formally using the fact that a 1-fold Pfister form ϕ satisfies ϕ2 = 2ϕ
and λd(ϕ) = ϕ for d ≥ 1.

Theorem 1. Any natural operation In(K) → W (K) can be written as a unique
combination α =

∑
d∈N

adπ
d
n with ad ∈ W (k).

Sketch of proof: Fixing q ∈ In(K), we get an invariant of Pfn over K by ϕ 7→
α(q+ϕ). Using a result of Serre, it follows that there is a uniquely defined invariant
α+ such that α(q + ϕ) = α(q) + ϕ · α+(q). This operator satisfies (πd

n)
+ = πd−1

n ,
which allows us to proceed by induction.

Such an infinite combination will a priori take values only in the I-adic com-
pletion of W . If k is not formally real, no such problem arises and any such sum
really takes values in W . In any case, it is actually possible to find another set of
generators for which we can always take infinite combinations.

2. Cohomological invariants of Witt classes

We now define a cohomological invariant u
(n)
nd = end ◦ πd

n (in particular, u
(n)
n =

en). If q =
∑r

i=1 ϕi where the ϕi are n-fold Pfister forms, then u
(n)
nd (q) =∑

i1<···<id
en(ϕi1) ∪ · · · ∪ en(ϕid).

We can prove a similar theorem to that of Witt invariants, with a similar proof.

Theorem 2. Any cohomological invariant α of In can be written as a unique

combination α =
∑

d∈N
ad ∪ u

(n)
nd with ad ∈ H∗(k, µ2).

With an eye towards algebras with involution, we are interested in the behaviour
of cohomological invariants with respect to similitudes and ramification.
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For any cohomological invariant α of In, we can define an invariant α̃ such
that α(〈λ〉q) = α(q) + (λ) ∪ α̃(q). In particular, α̃ = 0 iff α is invariant under

similitudes. We may prove that ˜̃α = 0.
If K is endowed with a k-valuation v, discrete of rank 1, then for any invariant

α of In, if q ∈ In(K) is non-ramified, then α(q) is non-ramified.

3. Cohomological invariants of algebras with involutions

3.1. Generic splitting. Let (A, σ) be an algebra with involution over K, of or-
thogonal type and with ind(A) = 2. We set Md

A(K) to be the 2-torsion part of

Hd(K,µ
⊗(d−1)
4 )/[A] ·Hd−2(K,µ2). Following an idea of Berhuy, we use a theorem

of Kahn, Rost and Sujatha which implies that the natural restriction map induces
an isomorphism Md

A(K) ≃ Hd(K(A), µ2) where K(A) is the generic splitting field
of A.

We show that if α is an invariant of In such that α̃ = 0, and if after generic
splitting of A, σ becomes adjoint to a quadratic form in In, then there is a natural

way to define an invariant α(A, σ) ∈ Md
A(K). Furthermore, since ˜̃α = 0, we can

always define α̃(A, σ) ∈ Md−1
A (K), and if α̃(A, σ) = 0 then we may define an

appropriate α(A, σ) ∈ Md
A(K).

In particular, we can define invariants en for algebras of index 2. The fact that
they are only defined modulo [A] is a familiar obstruction for e2.

As a further example, for α = u
(1)
4 , this is related to a result of Rost, Serre and

Tignol: they had constructed what we call α(A, σ) (but with values in H4(K,µ2)
instead of M4

A(K)) when A is of degree 6 and −1 is a square in k, which actually
implies that α̃ = 0.

3.2. Mixed Witt ring. There are many hints that we should be able to carry
out the operations πd

n directly at the level of the base field for algebras with
involution, instead of going to a splitting field. This would require some kind of
λ-ring structure on hermitian forms, imitating the structure of GW (K).

Indeed, we may define a graded λ-ring structure on G̃W
ε
(A, σ) = GW (K) ⊕

GW ε(A, σ), as well as a filtering In(A, σ) of this ring, such that πd
1(I(A, σ)) ⊂

Im(A, σ) with m = ⌈d/ ind(A)⌉. The quotients Id(A, σ)/Id+1(A, σ) should have
close links with mod 2 cohomology, allowing to define invariants of more or less
cohomological nature for algebras with involution of any type in any index. We
should at the very least find actual cohomological invariants in index 2, and relative
invariants in any index.
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Splitting Families in Galois Cohomology

Mathieu Florence

(joint work with C. Demarche)

Let k be a field, assumed to be infinite for simplicity. Let

S : {Fields/k} −→ {∗ − Sets}

be a functor, from the category of field extensions of k, to that of pointed sets.
A typical example is the functor of isomorphism classes of algebraic structures of
a given type. For instance, S(l/k) can be the set of isomorphism classes of non-
degenerate quadratic forms over l, of a given dimension- the distinguished element
being the class of a split quadratic form. More generally, if G/k is an algebraic
group, we can take S(l/k) to be the pointed set H1(l, Gl), of isomorphism classes
of G-torsors over l. If G is commutative, and n ≥ 2 is an integer, the (fppf)
cohomology groups Hn(l, Gl) give rise to such a functor as well. Note that there
is, in general, no description of this group as the set of isomorphism classes for a
“nice” algebraic structure.

Given S as above, and given an element s ∈ S(k), we address the following
Problem.

P (= P (S, s)): Build a (smooth, geometrically integral) k-variety X , such that,
for any field extension l/k, we have

sl = ∗ ∈ S(l)

if, and only if,

X(l) 6= ∅.

Moreover, in that case, we require that X(l) is Zariski-dense in X .
In other words, for any field extension l/k, the presence of (a Zariski-dense set

of) l-rational points in X is equivalent to the triviality of s over l.

Example 1. Assume that S is the set of isomorphism classes of regular quadratic
forms, of given even dimension 2d, and of trivial discriminant. Let s ∈ S(k) be
the class of such a form q. We can then take X to be the maximal orthogonal
Grassmannian of q; it is a projective variety. We can also take X to be the SO2d-
torsor associated to q; it is an affine variety.

Example 2. Assume that S is the set of isomorphism classes of central simple
algebras of given degree d. Let s ∈ S(k) be the class of such an algebra A. We
can then take X to be the Severi-Brauer variety SB(A); it is a projective variety.
Another available choice for X is the PGLd-torsor associated to A; it is an affine
variety.

Example 3 (more elaborate). Assume that S(l) is the Galois cohomology group
Hn(l, µ⊗n

p ), where n ≥ 2 is an integer, and where p is a prime number, invertible
in k. Assume further that

s = (x1) ∪ (x2) ∪ . . . ∪ (xn),
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with xi ∈ l∗, is a pure symbol in S(l). Then, Markus Rost constructed a norm
varietyX(s), which -almost- satisfies the requirements of Problem P (S, s) (cf. [2]).
More precisely, one has to replace “l-rational point” by “zero-cycle of degree prime
to p, over l”.
Note that these norm varieties are a main ingredient in Vladimir Voevodsky’s
proof of the Bloch-Kato conjecture.

In this talk, we give a complete answer to a weaker version of Problem P , as
follows.

Definition 4. A (smooth, geometrically integral) ind-variety X over k is the data
of a sequence of (smooth, geometrically integral) k-varieties (Xi)i∈N, together with

closed embeddings Xi
fi
−→ Xi+1. We write

X (k) :=
⋃

i∈N

Xi(k).

The goal of my talk was to prove the following result.

Theorem 5 ([1]). Let n ≥ 2 be an integer. Let M be a finite étale group
scheme over k. In other words, M is a finite discrete Gal(ksep/k)-module. Let
s ∈ Hn(k,M) be a (Galois) cohomology class. Then, there exists a (smooth, geo-
metrically integral) ind-variety X = (Xi)i∈N over k, such that the following holds.

• For every field extension l/k, the restriction of s in Hn(l,M) vanishes if,
and only if, X (l) 6= ∅.

• Moreover, for each index i, the set Xi(l), when nonempty, is Zariski-dense
in Xi.

Note that, if n = 2, there is such an X which is actually a variety.
For n ≥ 3, we do not know whether we can also pick X to be a variety. We

believe this likely to be possible.
The proof we offer is a combination of two ingredients.

(a) A lifting result for the cohomology of linear algebraic groups, following
from Hilbert’s Theorem 90 for GLn.

(b) Homological algebra in the category of Yoneda extensions (or in the derived
category) of finite Gal(ksep/k)-modules.
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Cohomological invariants mod 2 of Weyl groups

Jean-Pierre Serre

Let G be the Weyl group of a root system, i.e., a crystallographic finite Cox-
eter group, cf. [1], chap.VI, §4.1. Let k0 be a field of characteristic 6= 2, let
H•(k0) = ⊕n>0 Hn(k0,F2) and let IG = Invk0(G) be the ring of cohomological
invariants mod 2 of G, as defined in [2], §4; it is a graded H•(k0)-algebra. When
G is of type A, it is isomorphic to a symmetric group Symn, and IG is H•(k0)-free
of rank 1 + [n/2], with an explicit basis w0 = 1, w1, ..., w[n/2], cf. [2], chap.VII.

In order to extend this description of IG to the general case, define SG to be the
set of elements g ∈ G with g2 = 1; an element of SG shall be called an involution
of G. Let ΣG be the set of conjugation classes of elements of SG.

Theorem 1. There exists a natural injection e : ΣG → IG whose image is an
H•(k0)-basis of IG.
[Equivalently: the H•(k0)-module IG is canonically isomorphic to the set of all
maps ΣG → H•(k0).]

The map e is compatible with the grading of IG: if g ∈ SG, define the degree
of g to be be the multiplicity of −1 as an eigenvalue of g in the standard linear
representation of G as a Coxeter group; let ΣG,n be the set of involution classes
of degree n. If σ ∈ ΣG,n, then e(σ) belongs to the n-th component InG of IG.

Examples.

(1) When G = Symn, the elements of ΣG are the conjugation classes of the
products of i disjoint transpositions, with 2i 6 n, and we recover the fact
that H•(k0)-free of rank 1 + [n/2], with a basis made up of elements of
degree 0, 1, ..., [n/2]. In that case the canonical basis is made up of the

wgal
i , which are closely related to the wi mentioned above, cf. [2], §25.

(2) When G = Weyl(E8), we have |ΣG,n| = 1 for 0 6 n 6 8, with the only
exception of n = 4 where |ΣG,n| = 2; and, of course, ΣG,n = ∅ for n > 8.
Hence IG is a free H•(k0)-module of rank 10, with a basis made up of
elements of degree 0, 1, 2, 3, 4, 4, 5, 6, 7, 8.

(3) For E7 and E6, the degrees are 0, 1, 2, 3, 3, 4, 4, 5, 6, 7 and 0, 1, 2, 3, 4.

Definition of the map e : ΣG → IG

Let a be an element of IG and let g be an involution of G of degree n. We
first define a “scalar product” 〈a, g〉, which is an element of H•(k0). To do so,
choose a splitting g = s1 · · · sn, where the si are commuting reflections (recall
that a reflection is an involution of degree 1); such a splitting always exists. Let
C = 〈s1, ..., sn〉 be the group generated by the si, and let aC ∈ IC be the image
of a by the restriction map IG → IC . The algebra IC has a natural basis (αI)
indexed by the subsets I of [1, n], cf. [2], §16.4. Let λC ∈ H•(k0) be the coefficient
of α[1,n] in aC ( “top coefficient” ). One can show that λC is independent of the
chosen splitting of g, i.e., that it only depends on a and g. We then define the
scalar product 〈a, g〉 as λC ; we have 〈a, g〉 = 〈a, g′〉 if g and g′ are conjugate in G;
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this allows us to define 〈a, σ〉 for every σ ∈ ΣG. For a given σ, the map a 7→ 〈a, σ〉
is H•(k0)-linear; if a has degree m, then 〈a, σ〉 has degree m − n (one may view
a 7→ 〈a, σ〉 as an n-th fold residue map).

Example. Choose for a a Stiefel-Whitney class wgal
i (Cox) of the Coxeter repre-

sentation of G. One has 〈a, σ〉 = 0 if i 6= deg(σ) and 〈a, σ〉 = 1 if i = deg(σ).

Theorem 2.

(i) If a ∈ IG is such that 〈a, σ〉 = 0 for every σ, then a = 0.
(ii) Let n be an integer. For every σ ∈ ΣG of degree n, there exists e(σ) ∈ InG

such that 〈e(σ), σ〉 = 1 and 〈e(σ), σ′〉 = 0 for every σ′ 6= σ.

[Note that by (i), such an e(σ) is unique.]

It is clear that Theorem 2 implies Theorem 1.

Indications on the proof of part (i) of Theorem 2.
An induction argument shows that, if 〈a, σ〉 = 0 for every σ, then the restriction

of a to every “cube” (i.e., subgroup generated by commuting reflections) is 0. In
that case, if the characteristic of k0 is good for G, the arguments of [2], §25, show
that a = 0. This already covers the case where the irreducible components of G
are of classical type, since every characteristic 6= 2 is good. The exceptional types
can be reduced to the classical ones, thanks to the fact that, if G is such a Weyl
group, there exists a subgroup G′ of G, generated by a subset of SG (hence also
a Weyl group), which is of classical type, and has odd index in G: for G of type
E6,E7,E8,F4,G2, one takes G′ of type D5,A1 × D6,D8,B4,A1 × A1, respectively;
one has (G : G′) = 27, 63, 135, 3, 3.One then uses the fact that the restriction map
IG → IG′ is injective, cf. [2], prop. 14.4, and that every cube of G is conjugate to
a cube of G′.

Indications on the proof of part (ii) of Theorem 2.
We need to construct enough cohomological invariants. For most Weyl groups,

this is done by using Stiefel-Whitney classes. For instance, for Weyl(E6), one takes

the wgal
i (Cox), i = 0, 1, 2, 3, 4. There are however three cases where we have to

do otherwise. For each one, there are two distinct classes of involutions σ, σ′ of
the same degree n for which it is hard to find a ∈ InG with 〈a, σ〉 = 0, 〈a, σ′〉 = 1.
These cases are: D2n , n > 3; E7, n = 3 and 4; E8, n = 4.

For those, we use the relation given by Milnor’s conjecture (now Voevodsky’s the-
orem) between Witt invariants and cohomological invariants mod 2. The method
applies to every linear group G over k0. The ring Invk0(G,W ) of Witt invariants
of G (as defined in [2], §27.3) has a natural filtration: an invariant h has filtration
> n if, for every extension k/k0 and every G-torsor t of G over k, the element h(t)
of the Witt ring W (k) belongs to the n-th power of the canonical ideal of W (k);
in that case, h defines (via the Milnor construction) an element ah of Invnk0

(G,F2)
which is 0 if and only if the filtration of h is > n. We thus get an injective map
grn Invk0(G,W ) → Invnk0

(G,F2).

We apply this to G = G, where G is as in the three cases above. One can
find a linear orthogonal representation of G whose Brauer character χ is such
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that χ(σ) − χ(σ′) = 2n. This gives a G-quadratic form, hence an element of
Invk0(G,W ); one modifies slightly that element to make it of filtration > n, so
that it gives a cohomological invariant a of G of degree n, and one checks that
〈a, σ〉 − 〈a, σ′〉 = 1; that information is enough to conclude the proof.

Dependence of Invk0(G) on H•(k0) - Universal objects.

(i) Additive structure

For the additive structure, InvC(G) is a universal object, i.e., there is natural
isomorphism of F2-vector spaces : Invk0(G) ≃ InvC(G) ⊗F2 H

•(k0).

(ii) Ring structure

For the ring structure, it is InvR(G) which is a universal object: there is a natural
graded-F2-algebra isomorphism: Invk0(G) ≃ InvR(G) ⊗H•(R) H

•(k0).

[In this formula, H•(k0) is viewed as an H•(R)-algebra via the unique homomorphism
H•(R) → H•(k0) which maps the class of −1 in H1(R) ≃ R×/(R×)2 onto the class of
−1 in H1(k0) ≃ k×

0
/(k×

0
)2.]
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Note. After my lecture, Stefan Gille has pointed out to me that, using a different
method (based on a theorem of Totaro, but not involving involutions), Christian
Hirsch had already computed in 2009 the structure of the cohomological invariants
of all the finite Coxeter groups, under some mild hypotheses on the ground field;
his method also applies to other types of invariants. Reference:

Christian Hirsch, Cohomological invariants of reflection groups, Diplomarbeit
(Betreuer: Prof. Dr. Fabien Morel), Univ. München, 2009; available on
arXiv:1805.04670[math.AG].

Reporter: Marco Sobiech



Quadratic Forms and Related Structures over Fields 1287

Participants

Dr. Seidon Alsaody

Institut Camille Jordan
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Université Paris Nord (Paris XIII)
99, Avenue J.-B. Clement
93430 Villetaneuse Cedex
FRANCE

Dr. Stephen Scully

Department of Mathematical and
Statistical Sciences
University of Alberta
Edmonton AB T6G 2G1
CANADA

Prof. Dr. Nikita Semenov

Mathematisches Institut
Universität München
Theresienstrasse 39
80333 München
GERMANY

Prof. Dr. Jean-Pierre Serre

6, Avenue de Montespan
75116 Paris
FRANCE

Dr. Marco Sobiech

Fakultät für Mathematik
Technische Universität Dortmund
Vogelpothsweg 87
44227 Dortmund
GERMANY



Quadratic Forms and Related Structures over Fields 1291

Prof. Dr. Jean-Pierre Tignol

ICTEAM Institute
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