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Abstract. Techniques and concepts from differential geometry are used in
many parts of applied mathematics today. However, there is no joint commu-
nity for users of such techniques. The workshop on Nonlinear Data assembled
researchers from fields like numerical linear algebra, partial differential equa-
tions, and data analysis to explore differential geometry techniques, share
knowledge, and learn about new ideas and applications.
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Introduction by the Organisers

Differential geometry appears in a variety of fields of applied mathematics today.
Various linear algebra problems can be written as minimization problems on Rie-
mannian manifolds. Partial differential equations with values in nonlinear spaces
appear in physical applications. The analysis of shapes in geometry processing
and computer graphics involves analysis on infinite-dimensional nonlinear shape
spaces. However, no real community exists for these aspects of applied mathemat-
ics, and there is little exchange on techniques from differential geometry between
the different fields.

Setting out to change this, the workshop “Nonlinear Data” gathered people
from several different fields, involving nonlinear data analysis, numerics of partial
differential equations, numerical linear algebra, and geometric analysis. This was
a great success, with many participants stating how much they enjoyed meeting so



1162 Oberwolfach Report 20/2018

many new people. There was lots of interaction between the different communities,
and a very fruitful exchange of ideas.

At the workshop there were 45 participants from 11 different countries, 5 par-
ticipants even from overseas. 24 talks were given, which could be loosely grouped
as follows:

• Shape analysis: Problems involving optimal shapes or matching of
shapes are typically formulated in nonlinear Shape Space.
• Image processing: Several talks considered processing of manifold-valu-
ed images, which is receiving more and more interest.
• Partial differential equations for manifold-valued functions: Equa-
tions from continuum mechanics, micromagnetics, and general relativity
were investigated both from the analytical as well as from the numerical
side.
• Non-Euclidean Data analysis: Various kinds of real-life data naturally
live in nonlinear spaces, and data analysis techniques have to take this
nonlinearity into account.
• Linear algebra: Problems involving subspaces can sometimes be refor-
mulated in terms of Grassmann and Stiefel manifolds. A number of talks
therefore explained the geometry of these and related spaces.

Plenty of room was left in between sessions for further discussions. After the
traditional Wednesday afternoon excursion, a problem session was held in the
evening. There, several participants gave short informal presentations of open
problems that they considered interesting and relevant. This included better de-
scription of certain manifold cut loci, and a nonlinear variant of Rippa’s theorem.

The workshop was very successful because it established various new connec-
tions between different communities, and we expect interesting new advances as a
result from this in the future.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Geometric Statistics for Computational Anatomy - Overview & recent

advances

Xavier Pennec

The talk presents the general setting of Geometric Statistics (statistics on ob-
jects with a geometric structure) with and emphasis on the Riemannian and affine
connection spaces. At the interface of geometry, statistics, image analysis and
medicine, computational anatomy aims at analyzing and modeling the biological
variability of the organs shapes and their dynamics at the population level. The
goal is to model the mean anatomy, its normal variation, its motion / evolution
and to discover morphological differences between normal and pathological groups.
Since shapes and deformations live in non-linear spaces, this requires a consistent
statistical framework on manifolds and Lie groups, which has motivated the de-
velopment of Geometric Statistics during the last decade. The reformulation of
the notion of mean as a minimization (Fréchet or Karcher mean) or as an implicit
locus (exponential barycenter) has allowed the extension to Riemannian manifolds
of a number of statistical methods (Gaussian distributions, tangent PCA, Maha-
lanobis distance, . . . ) and image processing algorithms (interpolation, filtering,
restoration of missing data).

A recent advance in geometric statistics focuses on sequences of properly nested
subspaces (flags) for generalizing PCA to Riemannian manifolds [2]. Barycentric
subspaces and affine spans, defined as the (completion of the) locus of weighted
means to a number of reference points, can be naturally nested by defining an or-
dering of the reference points. This allows the construction of forward or backward
nested sequence of subspaces. However, optimizing for one subspace at a time can-
not optimize the unexplained variance simultaneously for all the subspaces of the
flag. In order to obtain a global criterion, PCA in Euclidean spaces was rephrased
as the optimization on the flags of linear subspaces of the accumulated unexplained
variance criterion. This generalizes nicely to flags of affine spans in Riemannian
manifolds to realize a particularly appealing generalization of PCA on manifolds:
Barycentric Subspaces Analysis (BSA).

The second part of the talk partially extends the statistical Riemannian frame-
work to affine connection spaces and more particularly to Lie groups provided
with the canonical Cartan-Schouten connection (a non-metric connection). This
provides strong theoretical bases for the use of one-parameter subgroups and this
allows to define bi-invariant means on Lie groups even in the absence of a bi-
invariant metric [4]. This is an important achievement since bi-invariant metrics
only exists on the direct product of compact and Abelian groups. Lie groups can
also be considered as globally affine symmetric space structure thanks to the sym-
metry sp(q) = pq−1p. The symmetric Cartan-Schouten connection turn also to be
the canonical connection associated with this symmetric structure. This notably
simplifies some algorithms like parallel transport: we could prove that the pole
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ladder algorithm, previously introduced in [1], is actually a third order scheme
in general affine connection spaces and is even an exact scheme in one step only
in symmetric spaces [3]. These properties make pole ladder a very attractive al-
ternative to other methods for parallel transport along geodesics in general affine
manifolds.

References

[1] M. Lorenzi and X. Pennec. Efficient Parallel Transport of Deformations in Time Series of
Images: from Schild’s to Pole Ladder. Journal of Mathematical Imaging and Vision, 50(1-
2):5–17, Oct. 2013.

[2] X. Pennec. Barycentric Subspace Analysis on Manifolds. Annals of Statistics, 2017.
http://arxiv.org/abs/1607.02833v2

[3] X. Pennec. Parallel Transport with Pole Ladder: a Third Order Scheme in Affine Connection
Spaces which is Exact in Affine Symmetric Spaces. working paper or preprint, May 2018.
http://hal.archives-ouvertes.fr/hal-01799888/

[4] X. Pennec and V. Arsigny. Exponential Barycenters of the Canonical Cartan Connection and
Invariant Means on Lie Groups. In F. Barbaresco, A. Mishra, and F. Nielsen, editors, Matrix
Information Geometry, pages 123–168. Springer, May 2012.

Morphing of Manifold-Valued Images

Gabriele Steidl

(joint work with Sebastian Neumayer, Johannes Persch)

Smooth image transition, also known as image morphing, is a frequently addressed
task in image processing and computer vision, and there are various approaches to
tackle the problem. For example, in feature based morphing only specific features
are mapped to each other and the whole deformation is then calculated by inter-
polation. This talk is related to a special kind of image morphing, the so-called
metamorphosis introduced by Miller, Trouvé and Younes [5,6]. The metamorpho-
sis model can be considered as an extension of the flow of diffeomorphism model
and its large deformation diffeomorphic metric mapping framework in which each
image pixel is transported along a trajectory determined by a diffeomorphism path.
As an extension the metamorphosis model allows the variation of image intensities
along trajectories of the pixels.

This talk builds up on a time discrete geodesic paths model by Berkels, Effland
and Rumpf [1], but considers images in L2(Ω,H), where Ω ⊂ Rn, n ≥ 2, is an open,
bounded connected domain with Lipschitz boundary and H a finite dimensional
Hadamard manifold. Hadamard manifolds are simply connected, complete Rie-
mannian manifolds with non-positive sectional curvature. Typical examples are
hyperbolic spaces and symmetric positive definite matrices with the affine invari-
ant metric. As an important fact we will use that the distance in Hadamard spaces
is jointly convex which will imply weak lower semicontinuity of certain functionals
involving the distance function.

http://arxiv.org/abs/1607.02833v2
http://hal.archives-ouvertes.fr/hal-01799888/
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Figure 1. Illustration of the time discrete morphing path.

We aim in finding a minimizing sequence I = (I1, . . . , IK−1) ∈
(
L2(Ω,R)

)K−1

of the discrete path energy

J (I) :=

K∑

k=1

inf
ϕk∈A

∫

Ω

W (Dϕk(x)) + γ|Dmϕk(x)|2 dx+
1

δ

∫

Ω

d2(Ik ◦ ϕ−1
k , Ik+1)

2 dx,

subject to I0 = T, IK = R,(1)

where δ, γ > 0, d2 denotes the distance in L2(Ω,H),

A := {ϕ ∈
(
Wm,2(Ω)

)n
: det(Dϕ) ≥ ǫ, ϕ(x) = x for x ∈ ∂Ω}, m > 1 +

n

2

is an admissible set of deformations and the function W has to satisfy certain
properties. A particular choice of W is given by the linearized elastic potential.
We prove that a minimizer of (1) exists.

Dealing with digital images we have to introduce a space discrete model. We
establish a finite difference model on a staggered grid together with a multiscale
strategy. We have used this discretization already for gray-value images in [2].
For finding a minimizer, we also propose an alternating algorithm fixing either the
deformation or the image sequence:

i) For a fixed image sequence, we have to solve certain registration problems
for manifold-valued images in parallel to get a sequence (ϕ1, . . . , ϕK) of
deformations. Necessary interpolations were performed via Karcher means
computation.

ii) For a fixed deformation sequence, we need to find a minimizing image
sequence (I1, . . . , IK−1) of

K∑

k=1

d22(Ik ◦ ϕ−1
k , Ik+1) subject to I0 = T, IK = R

where d2 denotes the distance in L2(Ω,H).

In the second part of the talk we turn to real-valued image processing. In certain
applications it makes sense to account for qualitative prior image information to
improve the image reconstruction. Typical examples are tomographic imaging
problems with sparsely or limited angle sampled sinogram data. One possibili-
ty to incorporate a reference images into the reconstruction process is to take
its deformation towards the image of interest, which is only indirectly given by
measurements, into account. We enlarge the above ideas to the solution of inverse
problems with a given reference image. To this end, we combine the discrete
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geodesic path model with a variational model, actually the L2-TV model. We
minimize

J (I,ϕ) := F(I,ϕ) + βE(I0;B) subject to IK = R,

where β > 0,

E(I;B) := ‖AI −B‖2Y + αTV (I), α ≥ 0.

and

F(I,ϕ) :=
K−1∑

k=0

∫

Ω

W (Dϕk) + ν|Dmϕk|2 + |Ik ◦ ϕ−1
k − Ik+1|2 dx.

We prove that the space continuous model has a minimizer and propose a mini-
mization procedure which alternates over the involved sequences of diffeomorphism
and images. The minimization with respect to the image sequence exploits recent
algorithms from convex analysis to minimize the L2-TV functional.

For further information we refer to [2–4].
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Spectral Partial Shape Matching

Alex Bronstein

(joint work with O. Litany, E. Rodolà, and M. Bronstein)

The main drawback of partial functional maps [4] and the follow-up works [1,2] is
their explicit model of the part, requiring a somewhat cumbersome solver alternat-
ing between optimization in the spatial domain (over the part indicator function)
and in the spectral domain (over the correspondence matrix). Furthermore, the
complexity of the spatial domain optimization depends on the number of mesh
vertices and scales poorly. One of the main contributions of our paper is a simple
observation allowing to formulate the partial functional maps problem entirely in
the spectral domain. Our method bears resemblance to joint approximate diago-
nalization.
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Figure 1. Examples of dense correspondence computed with our
method on real 3D scans (left pair, the areas of contact are glued
together), missing parts (middle) and strong topological artifacts
(right, touching parts are glued together). Corresponding points
are encoded with the same color.

A key feature of partial functional maps lies in their spatially localized behavior,
that is, its describes a map T : L2(M)→ L2(N) that is supported on some region
N′ ⊆ N of the full model, meaning that for all y ∈ N \N′ the approximate equality
(Tf)(y) ≈ 0 holds for any f ∈ L2(M). This can be easily seen by noting that the
image of A under C must be localized to the region indicated by v in order for
the data term ‖CA − B(v)‖ to reach a minimum; in other words, the functional
map C must localize the correspondence.

This localization property comes at the price of modeling the region N′ ⊆ N

explicitly. Here we propose to absorb the spatial mask into a new basis {ψ̂j}
for L2(N); in doing so, we dispose of the explicit part v and obtain a simpler
optimization problem, as we elucidate in the following.

Assume C, v describe a partial functional map, such that CA = B(v) holds
approximately, and consider two functions f ∈ L2(M), g ∈ L2(N) whose spectral
representations are columns of A and B respectively. In the spatial domain, the
equality becomes

k∑

ij

〈f, φi〉Mcjiψj =

k∑

i=1

〈v · g, ψi〉Nψi ≈ v · g ,(1)

where the approximation is due to truncation to the first k terms. By defining a

new basis ψ̂i =
∑k

j=1 cjiψj , we get to

k∑

ij

〈f, φi〉Mψ̂j ≈ v · g ,(2)

in other words, the modified basis {ψ̂j} induces the sought localization. Impor-
tantly, in order for (2) to hold for general f and g, the new basis functions them-

selves must be localized, i.e., ψ̂i = v · ψ̂i for all i.
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Using the fact that orthogonal C implies orthogonal {ψ̂j}, we can phrase (2) in
the spectral domain as:

A ≈ CTB(v) = CTB ;(3)

in the last equality, we absorbed the indicator function v into the new basis func-

tions {ψ̂j}.
We consider the following manifold optimization problem:

(4) min
Q∈S(k,r)

off(Q⊤ΛNQ) + µ‖Ar −Q⊤B‖2,1 ,

where S(k, r) is the Stiefel manifold of orthogonal k × r matrices (ortho-project-
ions), and Ar = WrA with Wr = (Ir×r 0r×k−r) denotes the r × k matrix con-
taining the first r rows of A. The value of r is directly related to the rank of
the partial functional map C, and can be estimated simply from the area ratio θ,
or optimized for explicitly by solving (4) for a range of r’s. The rank r and the
orthogonality of Q act as partiality priors, since they are related to the underlying
map being area-preserving [3, 4].

The optimization problem (4) models partial correspondence as the search for
a new basis that is localized to a latent part of the full shape. In this view,
the matrix Q is not regarded as a functional map between shapes, but rather as a
matrix of transformation coefficients for the basis (the off-diagonal regularity term
ensures that the transformation is smooth). This interpretation will allow us to
tackle part-to-part settings as a simple modification to (4).

The first r functions {ψ̂1, . . . , ψ̂r} of the new orthogonal basis ψ̂i =
∑k
j=1 qjiψj

obtained as the result of such a transformation would be approximately orthogonal
to {φ1, . . . , φr} under the functional correspondence,

〈Tφi, ψ̂j〉N ≈ δij ; i, j = 1, . . . , r .

It is important to remark that, while the correct partial correspondence is a
solution to our problem by Eq. (1–3), this is not necessarily unique as it directly
depends on the input data. Not all such optima are localized to the correct region,
and some might even have global support. The choice of the input corresponding
functions {fi, gi} ultimately determines the quality of the localization. In practice,
it is enough to employ dense descriptor fields that are sufficiently similar on the
corresponding regions in order to drive the optimization to the correct solution.

References
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Variational Discretizations of Gauge Field Theories using

Group-equivariant Interpolation

Melvin Leok

(joint work with Evan Gawlik, James Hall, Joris Vankerschaver)

Variational integrators [4] are geometric structure-preserving numerical methods
that preserve the symplectic structure, satisfy a discrete Noether’s theorem, and
exhibit exhibit excellent long-time energy stability properties. The exact discrete
Lagrangian,

LEd (q0, q1;h) ≡ ext
q∈C2([0,h],Q)
q(0)=q0,q(h)=q1

∫ h

0

L(q(t), q̇(t))dt,

arises from Jacobi’s solution of the Hamilton-Jacobi equation, and it generates
the exact flow of a Lagrangian system. By approximating the exact discrete La-
grangian using an appropriate choice of interpolation space and quadrature rule,
we obtain a systematic approach for constructing variational integrators. It was
established in [2, 3] that the convergence rates of such variational integrators are
related to the best approximation properties of the interpolation space.

One particularly important class of Lagrangian field theories is that of gauge
field theories, where the Lagrangian density is equivariant under a gauge symmetry,
which is a local symmetry action. Examples include electromagnetism, Yang–
Mills, and general relativity. A consequence of gauge symmetries is that when the
field theory is formulated as an initial-value problem, the evolution of the field
theory is not uniquely specified by the initial conditions, that is to say that they
are underdetermined. In particular, the fields can be decomposed into dynamic
fields, whose evolution is described by well-posed equations, and kinematic fields
which have no physical significance. In relativity, the former are the metric and
extrinsic curvature on a spatial hypersurface, and the latter are the lapse and
shift. Besides the indeterminacy in the evolution equations, there are initial-value
constraints (typically elliptic) on the Cauchy data. Noether’s first theorem applied
to the nontrivial rigid subgroup of the gauge group implies that there exists a
Noether current that obeys a continuity equation, and integrating this over a
Cauchy surface yields a conserved quantity called a Noether charge. What is more
interesting for gauge field theories is Noether’s second theorem, which can recover
some of the equations of motion automatically from the gauge symmetry, and this
is particularly important for covariant field theories, such as general relativity.

Many gauge field theories can be formulated variationally using a multisymplec-
tic Lagrangian formulation, and we will present a characterization of the exact gen-
erating functionals [5] that generate the multisymplectic relation. By discretizing
these using group-equivariant spacetime finite element spaces, we obtain methods
that exhibit a discrete multimomentum conservation law. We will then briefly
describe an approach for constructing group-equivariant interpolation spaces [1]
that take values in the space of Lorentzian metrics that can be efficiently computed
using a generalized polar decomposition. This relies on the observation that the
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space of Lorentzian metrics is a symmetric space, which is endowed with a general-
ized polar decomposition. This decomposition induces the Cartan decomposition
at the Lie algebra level,

g = p⊕ k,

and the following diagram commutes,

G

G/GσGσ Sp

g = p⊕ k

k Gσ

π
ϕ

ϕ̄ψ

ι

exp

ι

exp
ι

exp

ι

Critically, the maps along its bottom row are local diffeomorphisms, which allow
the symmetric space S to be identified with the Lie triple system p, which is a linear
space. This local diffeomorphism allows a symmetric space valued interpolant to
be constructed from a linear space valued interpolant.

The goal is to eventually apply this to the construction of variational discretiza-
tions of general relativity, which is a second-order gauge field theory whose con-
figuration manifold is the space of Lorentzian metrics.
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Analysis of Geometric Shapes in a Riemannian Setting

Philipp Harms

This is a summary of some results and open questions in infinite-dimensional
Riemannian shape analysis. Results which are cited in the survey article [4] are
not cited here.

1. Geometric data

A key paradigm of shape analysis and, more generally, functional data analysis is
that geometric data should be seen as infinite-dimensional and nonlinear. This
should be contrasted with the alternative point of view, which is sometimes taken
in numerical applications, where geometric data is represented in coordinates and
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seen as an element of a high-dimensional linear space. Riemannian geometry has
established itself as a successful tool for dealing with both the non-linearity and
infinite-dimensionality of geometric data.

2. Shape spaces

A first step towards a Riemannian setting for shape analysis is the definition of
shape manifolds. This is achieved in great generality in the following theorem.

Theorem. LetM and N be manifolds, M compact. Then the spaces C∞(M,N),
Emb(M,N) and Diff(M) are Fréchet manifolds, and the projection from
Emb(M,N) to the quotient space B(M,N) := Emb(M,N)/Diff(M) defines a
principal fiber bundle of Fréchet manifolds.

One may consider larger spaces of mappings such as immersions or mappings of
finite degrees of smoothness, but this leads to singularities in the quotient space.
Note that the quotient space B(M,N) is nonlinear even if N is linear.

3. Riemannian metrics

Riemannian geometry formalizes an intuitive notion of similarity between shapes:
two shapes are regarded as similar if they differ by a “small” deformation. A
deformation between two embeddings f0 and f1 is a smooth path f in Emb(M,N)
which connects f0 to f1. The distance between f0 and f1 is the infimal length of
all such deformations, i.e.,

dist(f0, f1) = inf
f

∫ 1

0

‖ḟ(t)‖dt.

Here ḟ(t) belongs to the tangent space at f(t), which consists of all vector fields

along f , and the length of ḟ(t) is measured using a Riemannian metric. The
following is a rich and widely applicable class of Sobolev-type Riemannian metrics
on Emb(M,N).

Definition. Let M be a compact manifold and (N, g) a Riemannian manifold.
Then the Hℓ metric at f ∈ Emb(M,N) and h, k ∈ Tf Emb(M,N) is defined as

Gf (h, k) =

∫

M

g
(
(1 + ∆g)ℓh, k

)
vol(g),

where g = f∗g.

It is crucial that g = f∗g is not fixed but depends on the foot point f . This
implies that the metric is Diff(M)-invariant, i.e., Gf◦φ(h ◦ φ, k ◦ φ) = Gf (h, k).
This in turn implies the existence of a unique Riemannian metric on B(M,N) such
that the projection from Emb(M,N) to B(M,N) is a Riemannian submersion.
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4. Geodesic distance

The geodesic distance functional is called non-degenerate if it separates points,
degenerate otherwise, and vanishing if it is zero everywhere.

Theorem. The geodesic distance functional of the Sobolev metric of order ℓ is
degenerate on Emb(M,N) for each ℓ ≤ 1

2 , vanishes on Diff(M) for each ℓ ≤ 1
2 ,

and is non-degenerate on Emb(M,N) and Diff(M) for each ℓ ≥ 1.

These statements follow from a couple of simple observations:

• The H0 distance on B([0, 1],R2) is degenerate: a straight line can be de-
formed into a shifted straight line at almost no H0 cost if the intermediate
shapes have many steep zig zags.

• The H
1

2 distance on Diff(R) is degenerate: the identity can be deformed

into a shift by 1 at almost no H
1

2 cost using a shock wave traveling at
constant speed with very steep slope.
• The H1 distance in B([0, 1],R2) is non-degenerate: the H1 energy of a
deformation is bounded from below by the area swept out.

The case 1
2 < ℓ < 1 on general spaces of embeddings and diffeomorphisms

remains open.

5. Geodesics

The geodesic equations of Sobolev metrics are in many cases well-known PDEs
from mathematical physics and, in particular, hydrodynamics. For example, the
SQG, Euler, Burger, KdV, mCLM, Camassa–Holm, and Hunter–Saxton equations
are of this type.

Theorem. [3,5,6] Local well-posedness of the initial value problem for geodesics
holds on Emb(S1,R2) for each ℓ ≥ 1

2 , on Diff(Rm) for each ℓ ≥ 1
2 , and on

Emb(M,N) for each ℓ ∈ N≥1. Global well-posedness of the initial value prob-
lem for geodesics holds on Emb(S1,R2) for each ℓ ∈ N≥2 and on Diff(Rm) for each
ℓ > m

2 + 1. Existence of solutions of the boundary value problem for geodesics

on the metric completion of the respective spaces holds on Emb(S1,R2) for each
ℓ ∈ N≥2 and on Diff(Rm) for each ℓ > m

2 + 1.

Here well-posedness is understood in the sense of Hadamard. The method for
establishing local well-posedness goes back to Ebin and Marsden: one verifies
that the geodesic spray extends to a smooth vector field on a suitable Sobolev
completion of T Emb(M,N). The cases which are not mentioned in the theorem
remain open. This includes foremost non-natural orders ℓ. Some aspects of the
boundary value problem are discussed in the following section.

6. Numerics

For some H1 metrics the geodesic equation on B(S1,R2) can be solved explicitly
using isometries to spheres or solitons [1], but not for general metrics. For H2

metrics we implemented the initial and boundary value problems using spline
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discretizations [2]. The code is available on github.com/h2metrics. Solving
a boundary value problem with a spatial resolution of 100 points and a time
resolution of 10 points takes under 5 seconds. Convergence is guaranteed by the
following result.

Theorem. [2] The closure of B(S1,R2) with respect to the geodesic distance of
the H2 metric is a complete length space. Discrete minimizers converge weakly to
minimizers, up to the selection of a subsequence.

An analysis of the convergence rate and an extension to more general shape
spaces remain open.

7. Applications and extensions

The above-mentioned results form a basis for statistical and machine learning
frameworks. Conceptually, they extend to many other shape spaces such as spaces
of Riemannian metrics or densities.
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Distances in Cones

Rodolphe Sepulchre

(joint work with Giacomo Baggio, Augusto Ferrante)

This talk draws from recent results presented in [1]. The main question is how
to select a distance to process a specific type of nonlinear data. The design of
distances with the aim of solving computational engineering problems is a rich topic
because of the interplay between mathematical, modelling, and computational
considerations. It has received far less attention for intensities nonlinear data
than for spherical nonlinear data. The paper presents new results for spectral
densities by acknowledging that those data lie in a cone. It generalises Thompson
and Hilbert metric to the space of spectral densities. The resulting complete metric
space has the differentiable structure of a Finsler manifold with explicit geodesics.
The resulting distances are filtering invariant, can be computed efficiently, and
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admit geodesic paths that preserve rationality; these are properties of fundamental
importance in many engineering applications.

References

[1] Giacomo Baggio, Augusto Ferrante, Rodolphe Sepulchre, Conal Distances Between Rational
Spectral Densities, arXiv:1708.02818, 2017.

Orientation-Field Based Phase-Field Models for Solidification –

Mathematical and Topological Challenges

Tamás Pusztai

(joint work with László Gránásy, Bálint Korbuly, James A. Warren, Mathis
Plapp, Hervé Henry)

Introduction

The phase-field method is a versatile tool for modelling pattern formation, such
as microstructure evolution during solidification [1–7]. Depending on the problem
addressed, the material is described with one or more continuous order parameters
and other fields. The most important one is the phase-field, φ(r, t), which repre-
sents the local phase state of the the matter (φ=0 and 1 in the bulk liquid and
solid, respectively, and has intermediate values in phase boundaries), but often
other fields, such as the chemical composition is also required. In the variational
approach of the phase-field method, we start from a thermodynamic potential such
as the total free energy of the system, which is expressed as the functional of the
selected fields. The time evolution of these fields are then governed by the minimi-
sation of the total free energy, a principle which translates to partial differential
equations that can be derived from the free energy functional.

A very important class of materials are the polycrystals, which consist of small
single-crystal grains with different crystallographic orientation. As opposed to
assigning a separate phase field to each grain [4,8–11], an efficient way of modelling
these materials is introducing a new field, the orientation field, which represents
the local crystallographic orientation [12–20]. One must, however, be careful when
working with the orientation field. Due to its special properties, problems that are
unknown with the other fields appear.

The first difficulty is already with the representation of orientations in 2D and
3D. In contrast to the other fields, where going from 2D to 3D is only a matter of
using the higher dimensional form of the spatial differential operators, the orien-
tation fields are fundamentally different. In the following two chapters I will give
an overview of the special mathematical/physical problems that we, as material
scientists, face when working with orientation fields in 2D and 3D.
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Orientation field in 2D

Given a reference orientation of a system, any of its possible orientations can
be defined as the rotation that transforms the system to this orientation from
the reference one. In 2D, rotations can be represented by their angle, thus the
orientation field is a simple scalar field θ(r, t). Since orientations are equivalent up
to rotations by 2π, orientations can be uniquely defined by a cyclic field θ ∈ [0, 2π),
the two ends of the interval being equated [12].

Special requirements and properties of the θ field:

• Rotational invariance requires that the free energy of the system does not
depend directly on θ, only via its gradient ∇θ [12].
• The usual (∇θ)2 term leads to grain boundaries that spread out. Localised
grain boundaries require either a term proportional to |∇θ| [12, 13], or a
singular g(φ) multiplier of the term (∇θ)2 [20].
• The gradient term requires the calculation of orientational differences. For
any pair of orientations two differences exist. Physically, the one with
a smaller absolute value should be considered [16]. This can be easily
handled in custom finite difference codes, but rules out the use implicit or
spectral codes or ready-made solvers.
• Between any two orientations, two different continuous paths exist. This
means that between any two grains, there are two different grain boundary
solutions [16, 21].
• The possible values of the orientation field, i.e., its order parameter space
is the circumference of the unit circle, which is not simply connected. This
means, that the two different solutions mentioned above cannot transform
to one another continuously [16, 21].
• If these two different solutions meet on the same grain boundary, a topo-
logical defect must exists between them. We consider them unphysical
and therefore to be eliminated. To achieve this, two new orientation fields
are proposed which extend the order parameter space from the unit circle
(a) to the surface of the 3D unit sphere, or (b) to the whole 2D plane, but
with the addition of a new potential [21].
• Crystallographic symmetries are easily handled. In case of a k-fold symme-
try, the unique values of the orientation field are limited to
θ ∈ [0, 2π/k) [22]. This does not affect the topological properties of the
field.

Orientation field in 3D

Orientations in 3D can be represented in different ways. The Euler angle de-
scription is problematic because of its singularity at the poles. Other possibilities
include the rotation matrix representation [23] and the Rodrigues vectors. Our
approach, however, was the use of quaternions [24], which provides a simple and
elegant way to extend the orientation field to 3D.
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• When using the 4D unit sphere representation of quaternions, the orien-
tational difference between two orientations is the distance between the
respective two points on the 4D unit sphere through its 3D surface. For
small angles, it can be well approximated by the Euclidean distance of
these points. This approximation gives a particularly simple formulation
of the free energy, similar to the 2D case [24].
• Handling symmetries is troublesome. Supposing e.g. the rotational sym-
metry group of a cube, all 24 equivalent orientations has to be considered
when calculating the orientational difference. This slows down the simu-
lations significantly [24].
• Two order parameter space of the 3D orientations is not simply connected,
either. The two different grain boundary solutions and the associated
topological defects seen in 2D also exist in 3D [21].
• Due to the higher dimensional order parameter space and the higher di-
mensional real space the topological properties are more complicated. Are
there other types of topological defects in these systems?

The above points give a list of problems and challenges that had to be solved
to use the orientation field with phase-field models successfully. Most of them are
already handled at a certain level - in a way physicists would/could solve them.
It might, however, be beneficial to see these topics through a mathematician’s
eye. It may turn out that better, more elegant or more efficient solutions to these
problems exist. In addition to show a practical use of the orientation field model
in materials science, my goal is to stimulate discussions on these topics.
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Endpoint Geodesics on Graßmannians

Knut Hüper

In recent years an extrinisic point of view, here we mean embedding Riemannian
manifolds isometrically into some Euclidean space, has offered the opportunity to
derive explicit formulas for certain differential geometric constructions, such as
e.g. geodesics and parallel transport of tensor fields. The approach is based on
considering isometrically embedded submanifolds as rigid bodies rolling without
twist or slip along an affine tangent space. The rolling map considered as a smooth
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curve in the isometry group of the embedding space then allows for the derivation
of the above explicit formulas. This has turned out to be pretty useful for com-
puter implementations in connection with optimization, interpolation, computer
graphics and computer vision, and control theoretic applications, to mention just
a few. One reason why this approach turns out to be rather attractive in engi-
neering applications in particular, is that often evaluating closed formulas seems
more attractive than a purely numerical approach. Last but not least a closed
formula might serve as an ansatz for a new competitive numerical algorithm as
well. It seems needless to mention that working with explicit coordinates instead
of equivalence classes is often much better suited to numerical implementations.

After quickly recalling the concept of rolling maps, cf. [4], we focus on the
Graßmann manifold following our earlier approach [3]. We consider the Graßman-
nian Gn,k of all k-planes in Rn as a Riemannian submanifold of the vector space
of n × n-symmetric matrices Symn by identifying a k-plane with its orthogonal
projection operator.

Gn,k := {P ∈ Symn | P 2 = P, rk(P ) = k}.

Whereas closed formulas for geodesics on Gn,k through P emanating in direction

Ṗ ∈ TPGn,k are well known to be of the form, cf. [2],

γ : R→ Gn,k,

t 7→ et[Ṗ ,P ]P e−t[Ṗ ,P ],

with [·, ·] denoting the matrix commutator, more recently a formula for so called
endpoint geodesics has been found. Consider two elements P,Q ∈ Gn,k being not
conjugate points. Then the unique geodesic connecting P with Q is described (up
to reparametrization) by the equation

(1) Q = eXP e−X .

Clearly, solving for anX ∈ son in (1) could be hard, as it is not unique. However, it
becomes unique if we restrict our search space to the subspace [TPGn,k, P ] ⊂ son.
A closed formula for computing such an X was presented in [1]:

(2) X =
1

2
log(I − 2Q)(I − 2P ).

As usual log denotes the matrix logarithm, being unique under the above assump-
tions. It is remarkable to verify here that formula (2) is related to the fact that
the Graßmann manifold Gn,k can be embedded into the orthogonal group On via

µ : Gn,k → On,

P 7→ I − 2P,

its image being the isospectral manifold

µ(Gn,k) =

{
X ∈ On

∣∣∣X = Q

[
−Ik

In−k

]
Q⊤, Q ∈ SOn

}
.
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A result interesting in its own right, not only because

dimOn =

(
n

2

)
≤ dimSymn =

(
n+ 1

2

)
.

For k even, we get an embedding even into SOn = O+
n rather than into the

nonconnected component O−
n of On.

Moreover, in this talk we give a geometric interpretation of the formula

(3) (I − 2P )e−[Ṗ ,P ](I − 2P ) = e+[Ṗ ,P ]

for all P ∈ Gn,k and all Ṗ ∈ TPGn,k in terms of reflections on the tangent space
TPGn,k ⊂ Symn. Equation (3) is a key to find an explicit formula for the inverse
of the Riemannian exponential on Gn,k.

As our approach does not exploit the fact that Graßmannians are symmetric
spaces, to generalize the methodology to Stiefel manifolds and other homogeneous
spaces of orthogonal group actions which are not symmetric spaces, is currently
under consideration.
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Numerical Analysis for Maps into a Riemannian manifold

Hanne Hardering

(joint work with Oliver Sander, Philipp Grohs)

We analyze finite element methods that are designed for maps that take their
values in a Riemannian manifold. In particular, we develop W 1,2- and L2- a
priori error estimates for elliptic second order energy minimization problems. Our
model problem is the Dirichlet problem for the harmonic map energy J(v) :=
1
2

∫
Ω
|dv(x)|2g(v(x)) dx:

u = argmin
w∈W 1,2

φ
(Ω,M)

J(w),

where W 1,2
φ (Ω,M) consists of Sobolev maps from a domain Ω ⊂ Rd into a Rie-

mannian manifold (M, g) with boundary and homotopy data φ. We assume that
the manifold M and the data φ is such that there exists a locally unique local
minimizer in Wm+1,2(Ω,M) to the problem.
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We consider discretizations by geometric finite elements. By this we mean a
finite-dimensional submanifold Smh of W 1,2 ∩ C(Ω,M), that is defined element-
wise on a shape-regular, affine-equivalent, quasi-uniform mesh Gh, and reduces to
Euclidean Lagrangian finite elements of m-th order if M = Rn.

The framework we introduce for the analysis directly translates ideas from the
linear theory to manifolds without resorting to Nash embeddings or coordinate
charts.

In particular, for u ∈W k,p ∩C(Ω,M) we use covariant derivatives of the differ-
ential du based on homogeneous spaces W k,p ∩W 1,kp to define the homogeneous
smoothness descriptor as a generalization of Sobolev semi-norms by

θ̇k,p,Ω(u) =

(∫

Ω

(
|∇ku|pg + |du|kpg

)
dx

) 1

p

,

and the full inhomogeneous smoothness descriptor by

θk,p,Ω(u) =

(
k∑

l=0

θ̇pl,p,Ω(u)

) 1

p

,

where θ̇p0,p,Ω(u) := infP∈M
∫
Ω
dp(u(x), P ) dx, and we make the usual modifications

for p =∞.
In order to locally characterize differences of two maps u, v ∈ C(Ω,M) we use

the point-wise inverse of the exponential map onM . This yields a vector field along
one of the maps —w.l.o.g. we choose u— denoted by logu v ∈ C(Ω, u−1TM).
We introduce a notion of W 1,2-error that uses the covariant derivative of this
vector field along the map u, yielding a quasi-infra-distance —i.e. a distance with
relaxed symmetry and triangle inequality— in aW 1,q(Ω,M)-ball around u, where
q > max{d, 2}, with the size of the ball depending on u and the curvature of M .
When we consider a geodesic homotopy Γ within this ball starting at Γ(0) = u,
we can show that given a vector field V0 along the map u, we can use point-wise
parallel transport to obtain a vector field Vt along each map Γ(t), maintaining a
bound on the W 1,2-norm, i.e.,

1

1 + Ct
‖V0‖W 1,2(Ω,u−1TM) ≤ ‖Vt‖W 1,2(Ω,Γ(t)−1TM) ≤ (1 + Ct)‖V0‖W 1,2(Ω,u−1TM).

This result also holds for higher order Sobolev-norms, when we consider balls in
correspondingly higher Sobolev-norms.

This crucial tool particularly allows for the transport of vector fields from the
discrete minimizer to the continuous minimizer and thus for the compatibility of
test vector fields in the variational formulation of both problems. This is used
for the generalization of Céa’s Lemma for energy functionals that are elliptic
along geodesic homotopies starting in the continuous minimizer. As long as best-
approximation error estimates for Smh apply, one then obtains W 1,2-discretization
error estimates. However, as the lemma applies only in a ball around the con-
tinuous function u, one has to prove a priori bounds on the discrete solution. A
possible way to derive these is via inverse estimates.
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L2-error estimates rely on a generalization of the Aubin–Nitsche-Lemma. To
apply this lemma, we need to assume that the problem is semi-linear, which is
phrased in terms of bounds on the third variation of the energy. Using the vari-
ational formulations of the continuous and the discrete problems, and point-wise
parallel transport of discrete test vector fields, one obtains an integral version of
Galerkin orthogonality

0 =

∫ 1

0

δ2J(Γ(t))(Vh(t), Γ̇(t)) dt ∀Vh(1) ∈ Sh0 (Ω, u−1
h TM),∇tVh(t) ≡ 0.

A dual problem defined by linearization is given by

W ∈W 1,2
0 (Ω, u−1TM) :

δ2J(u)(W,V ) = −(V, logu uh)L2 ∀V ∈ W 1,2
0 (Ω, u−1TM).

In order to obtain the L2-estimates, one then needs to assume best-approximation
error estimates on vector fields, as well as second-order Sobolev bounds on the
discrete solution, as W 2,2-norms of vector fields have to be transported.

Therefore, we assume semi-linearity and regularity of the dual problem (an
assumption on the energy), as well as best-approximation errors of the variations
of discrete maps (an assumption on the discretization). Further one needs second-
order bounds on the discrete solution, which may be obtained by certain types of
inverse estimates.

These results are independent of the specific approximation method used, and
specify the kind of best-approximation errors a given method has to fulfill in order
for the discretization errors to be derived in this manner. We give two specific
examples for such interpolation methods, namely geodesic finite elements [3] and
projection-based finite elements [1]. It can be shown that both methods fulfill the
best-approximation error estimates as well as the inverse estimates to obtain H1-
and L2-error estimates.

These ideas can be combined with techniques from the theory of surface finite
elements in order to obtain discretization errors for maps from a hypersurface in
Rd+1 into a Riemannian manifold. This relies on a generalization of the previously
described framework to perturbed energies, which leads to a generalization of the
Strang Lemmas.
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Simulations of Cosserat materials and Dynamic Recrystallisation

Thomas Blesgen

(joint work with Stephan Luckhaus and Günther Gottstein)

A non-linear finite-strain Cosserat theory of crystal plasticity, [10], is studied which
provides a detailed description of the behaviour of a material subject to mechanical
forces. In contrast to the classical Prandtl-Reuss theory it is a gradient model

giving rise to a length scale.
Typical of the Cosserat model is the multiplicative decomposition of the defor-

mation tensor F = Dφ in an elastic part Fe and a plastic part Fp, combined with
the decomposition Fe = ReUe in a stretching part Ue ∈ GL(3) and a rotation part
Re ∈ SO(3).

In the rate-independent case, the plastic dissipation can be computed analyt-
ically with the help of the Legendre-Fenchel dual Q∗ analogous to the methods
in [6], where Q is the plastic potential, for instance given by the von Mises condi-
tion.

Restricting the plastic slip to a-priori given material-dependent slip systems,

Fp = Fp(γ) := Id +
∑

a

γama ⊗ na,

and parametrising Re by Euler angles α, the complete mechanical description is
obtained by the iterated minimisation of a time-discrete mechanical energy func-
tional E , see [3, 4, 7, 11],

E(φ, α, γ) =
∫

Ω

Wst(R
t
e (α)DφFp(γ)

−1) + 2µ2|∇α|22 − fext · φ−Mext : Re(α)

+ ρ
(∑

a

|γa − γ0a|
)2

+
∑

a

|γa − γ0a|(σY − 2ρ
∑

a

κ0a

)
dx→ min

subject to φ|∂Ω = gd, α|∂Ω = αD, where gd and αD are given. As shown in [4], E is
non-convex in α with several competing local minima. Minimising E leads to the
formation of sub-domains with constant rotations and interfacial layers, similar
to phase transitions. The occurrence of several local minima (’lack of compact-
ness’) constitutes a major challenge to the algorithm as the simulations may get
stuck without reaching the sought global minimiser. Currently, possible remedies
are being investigated such as efficient preconditioning (e.g. by BPX along with
extending the local basis to a suitable Haar basis) or initialising the numerical
scheme with analytically-computed rotations which are optimal in special cases.

One possible important application of the Cosserat theory is the simulation of
dynamic recrystallisation (DRX). DRX is a key mechanism to alter and manipulate
the microstructure of a poly-crystal, especially a steel. Apart from the chemical
composition, the mechanical history of the material is decisive for its properties.

In industrial processing, steels undergo hot and cold rolling to obtain the desired
dislocation structure (and thus hardness). However, reliable predictions as well as
a correct understanding of the physical effects within the material are lacking for
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decades, despite intense research. The dislocation structure is mechanically sta-
ble at low temperatures, but thermodynamically unstable. Hence, during plastic
deformations, new nuclei essentially free of dislocations are formed, leading to soft-
ening and recovery of the material. DRX is a true multiscale process and growing
nuclei may range from the nanometer to the centimeter scale.

In [2], a variational model for DRX is proposed. Key components are:

• Hardening of the material by employing the afore-mentioned finite-strain
Cosserat theory. The local rotations Re are identified with the local rota-
tions of the subgrains in the poly-crystal.
• (Sub-)Grain identification by a modified Ambrosio-Tortorelli functional
from image analysis, [1], applied to the dislocation structure.
• Front-tracking and front propagation of the grain walls by a level-set al-
gorithm, [12].
• Modeling of climbing dislocations as well as the permanent creation/ anni-
hilation of new nuclei on small length scales by a stochastic Kolmogorov-
Johnson-Mehl-Avrami equation, [9].

During the simulations, the material undergoes a cyclic uni-axial compression.
Gradually, a dynamic equilibrium is generated between the hardening due to stored
immobile dislocations and softening due to DRX. The simulated dislocation struc-
ture permits the computation of hysteresis and flow curves.
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Elastic Distance Between Curves under the Metamorphosis Viewpoint

Laurent Younes

There has been, over the past twenty years, a sizable amount of work explor-
ing elastic distances between plane curves and their computation using a square-
root transformation mapping the space of curves into some standard infinite-
dimensional Riemannian manifold. In [1, 22, 24] a distance between parametrized
plane curves was introduced, in which a transformation of the pair (φ, θ) (in-
volving a square root) placed the metric in a Hilbert space context, where φ is
the parametrization and θ is the tangent angle (as functions of the arc-length).
This distance can then be optimized with respect to φ to yield a metric between
curves modulo reparametrization (a.k.a. unparametrized curves). Existence re-
sults for minimizers were then provided in [17,18]. Further analysis were made in
the smooth case, with isometries with Stiefel and Grassman manifolds for closed
curves and closed curves modulo rotations [23]. A different (but similar) ap-
proach was introduced in [6,11] and further developed in numerous papers, among
which [5,7,14–16,21], to provide a metric between curves, also using a square root
to reduce to a Hilbert case. More recently, the authors in [3] designed a different
isometry applicable to a family of distances that includes the previous two.

In this talk, we reinterpret this line of work under the viewpoint of metamor-
phosis, which is described and developed in [4,10,12,13,19,20]. This reformulation
will allow us to generalize previous results on the subject by placing them in a
unified context.

What we mean by elastic distances between curves are Riemannian metrics in
spaces of parametrized curves that is, when evaluated at a smooth vector field
along a curve, equivalent to the square norm of the derivative of this vector field
with respect to the arc length. This is a small part of the range of Riemannian
metrics that were considered in the literature. We refer to [8, 9] for an extensive
catalog and properties and to [2, 3] for more recent developments.

Metamorphosis describes a general approach to build new Riemannian metrics
on Riemannian manifolds acted upon by Lie groups [4, 10, 19, 20]. We consider a
special case where curves are compared based on the orientation of their tangent.
If m : [0, L]→ Rd is parametrized with arc length, its normalized tangent is

Tm : [0, 1]→ Rd

s 7→ ∂sm(Ls).

The function Tm characterizesm up to translation and scaling and the pair (L, Tm)
characterizes m up to translation. In the following discussion, functions will de-
pend on time t ∈ [0, 1] and normalized arc length s, also in [0, 1]. For clarity, we
will let Ω = [0, 1] for the arc length, i.e., write t ∈ [0, 1], s ∈ Ω. Given a function

h(t, s), (t, s) ∈ [0, 1]×Ω, we will denote ḣ = ∂th for derivatives with respect to the
time variable, and dh for derivatives with respect to the parameter.
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We consider the group of diffeomorphisms G of Ω, which acts on the set M of
measurable functions a : Ω→ Sd−1 (the unit sphere in Rd) by φ ·a = a ◦φ−1 (and
the group product is φψ = φ ◦ψ). “Tangent vectors” to G at φ = id are functions
v : Ω → R, with v(0) = v(1) = 0, and “tangent vectors” to M at α are functions
ξ : Ω→ Rd such that ξ(s)Tα(s) = 0 almost everywhere on Ω. We also consider a
Hilbert space V of continuous functions v : Ω → R (satisfying v(0) = v(1) = 0),
with norm denoted ‖ · ‖V . We then define the “metamorphosis energy”:

∫ 1

0

‖φ̇ ◦ φ−1(t)‖2V dt+
1

σ2

∫ 1

0

∫

Ω

|α̇ ◦ φ−1|2 dt,

which must be be minimized in (φ, α) with α(0) = a0 and α(1) = a1 ◦ φ(1).
We take

‖v‖2V =

∫

Ω

dv(s)2 ds,

which implies that functions v ∈ V are continuous and satisfy a Hölder condition
of order q for any q < 1/2, but are not necessarily Lipschitz continuous. An
elementary computation followed by a change of variable in both integrals provides
our final expression of the metamorphosis energy, namely

Uσ(φ, α) =

∫ 1

0

∫

Ω

(dφ̇)2

dφ
ds dt+

1

σ2

∫ 1

0

∫

Ω

|α̇|2dφ ds dt

which needs to be minimized over all trajectories t 7→ φ(t) and t 7→ α(t), such
that φ is at all times an increasing diffeomorphism of Ω and α a function from
Ω→ Sd−1, with boundary conditions α(0) = a0 and α(1) = a1 ◦φ(1). This energy
coincides (up to a multiplicative constant) with the one introduced in [11]. We
prove the following theorem.

Theorem 1. Assume that 2σ ≥ 1, and let φ1 : Ω→ Ω satisfy φ1(0) = 0, φ1(1) = 1
and dφ1 > 0. Then

inf {Uσ(φ, α) : φ(1) = φ1, α(0) = a0, α(1) = a1 ◦ φ1}

= 4 arccos2
∫

Ω

√
dφ1(s) cos

(
arccos(a0(s)

T a1 ◦ φ1(s))
2σ

)
ds.

Moreover, if 2σ > 1, the minimum is achieved and can be deduced from for a
geodesic curve γ on the unit sphere of L2(R).

This induces a distance on M , given by

dσ(a0, a1) = 2 inf
φ1

(
arccos

∫

Ω

√
dφ1(s) cos

(
arccos(a0(s)

T a1 ◦ φ1(s))/2σ
)
ds

)

minimized over all strictly increasing diffeomorphisms of Ω.
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Generation of Frame Fields for Hexahedral Meshing

Edward Chien

(joint work with David Palmer, Paul Zhang, Justin Solomon, Heng Liu, David
Bommes)

Figure 1. Hex mesh example. Credit: Heng Liu from [3].

A hexahedral mesh of a compact 3-dimensional manifold with boundary Ω ⊂ R3

is a cell decomposition where each 3-cell is of hexahedral type. Such meshes (hex
meshes, for short) are preferred in industry finite element (FEM) simulations, and
a simple example is shown in Fig. 1. The colored interior/boundary edges and
vertices indicate those for which the nearby cell structure is irregular, i.e., unlike
the neighborhood of an interior/boundary edge or vertex in the regular Z3-based
cell decomposition of the upper half-space {(x, y, z) | z ≥ 0} ⊂ R3. These edges
and vertices are referred to as singular, and sparse singular structure for a mesh is
desired, as this typically leads to lower geometric distortion of mesh elements and
higher simulation fidelity.

Frame Fields. Currently, there are no automatic methods that can generate
hex meshes with relatively simple singular structure. A parametrization-based
approach has had success in the 2-dimensional analogue of this problem, generating
a simple quad mesh of a surface by first generating a smoothly varying field of two
orthogonal axes [1]. To generalize this to the 3-dimensional case, a frame field
is needed, which is a specification of three orthogonal axes throughout Ω. These



1190 Oberwolfach Report 20/2018

axes guide the creation of a hex mesh by roughly specifying the orientation of
mesh elements nearby.

An element R ∈ SO(3) specifies three orthogonal axes via its column vectors:
Span(Re1), Span(Re2), and Span(Re3). However, the same set of axes is specified
by the coset R(Oct), where Oct ∈ SO(3) is the group of orientation-preserving
isometries of [−1, 1]3 (or its dual polytope, the octahedron). Thus, the space of
frames may be characterized as the quotient SO(3)/Oct, where the quotient is by
the right action.

Figure 2. Wigner rotation of spherical harmonic coefficients.
Image from [5].

Computation of smooth maps into this quotient space is a challenging task.
The most successful approach to date relies on mapping into the space of l = 4
spherical harmonics, an idea first introduced in [4]. This is a 9-dimensional vector
space of real-valued functions on S2, given by restriction of homogeneous degree 4
polynomials p(x, y, z) satisfying Laplace’s equation ∆p(x, y, z) = 0. The spherical
harmonics of all degrees define a Fourier basis for L2(S2), and the lower degree
members are often used to illustrate atomic orbitals. We use the standard basis
for the real spherical harmonics, denoted by {Y m4 }4m=−4.

Within this space, frames are represented by functions peaked in three orthogo-
nal directions. A canonical example is given by f0 = x4 + y4 + z4 =

√
7/12(Y 0

4 )+√
5/12(Y 4

4 ), peaked along the standard Cartesian axes. A frame specified by R ∈
SO(3) is represented by f0 ◦ RT . Letting a0 = (0, 0, 0, 0,

√
7/12, 0, 0, 0,

√
5/12)T ,

Fig. 2 illustrates that composition by RT changes the spherical harmonic coeffi-
cients by application of the Wigner D-matrix, W4(R), associated with R. Let us
use Γ to denote the set of spherical harmonic coefficients that represent frames:

Γ := {a ∈ R9 | a =W4(R)a0 for some R ∈ SO(3)}.

In existing works on frame field generation, an initial map into R9 is projected
onto this set in an unprincipled fashion. In an attempt to ameliorate this, we have
characterized the cone over Γ, denoted C(Γ), as a projective variety:

C(Γ) = {a ∈ R9 | xTPix = 0 for i = 1, . . . , 5},
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where the matrices Pi ∈ R9×9 are symmetric. These matrices are listed below:

P1 = LxLx − LyLy P3 = LxLy

P2 = LyLy − LzLz P4 = LyLz

P5 = LzLx

where Lx, Ly, Lz denote elements of so(9). These are the images of the standard
Lie algebra basis of so(3) under the Lie algebra homomorphism induced by the
Wigner representation R → W4(R). They represent the infinitesimal changes
to the spherical harmonic coefficients under rotations of the function about the
x, y, z-axes. The argument proceeds by first proving rotational invariance of the
conditions, and then performs differential analysis on critical points of the func-
tions in Γ. It is our hope that such a characterization will allow for direct mapping
without projection, and suggestions and input are welcome.

Topological Investigations. We also present two additional topological facts,
for discussion. Through a search of the 3-manifold literature, we have found that
SO(3)/Oct is a spherical 3-manifold, and admits a Seifert-fibering with base space
S2, with orbifold structure (2,3,4) [2]. It would be interesting to find a method for
computing frame fields which utilizes this fact.

Additionally, first steps have been made towards characterizing the possible
singular structures for a hexahedral mesh. Let S = (VS , ES) denote the singu-
larity graph of a hexahedral mesh, consisting of the singular vertices and edges,
respectively. Let valh(p) denote the number of hexahedral 3-cells that contain p
as an edge or vertex. In an upcoming work [3], we demonstrate an analogue to the
Hopf-Poincaré formula, which must hold for any singularity graph of a hexahedral
mesh:

∑

v∈∂VS

1

2

(
1− valh(v)

4

)
−
∑

e∈∂ES

(
1

2
− valh(e)

4

)

+
∑

v∈ intVS

(
1− valh(v)

8

)
−

∑

e∈ intES

(
1− valh(e)

4

)
= 0.

In the above expression, the ∂ and int prefixes denote boundary and interior
vertices/edges, respectively. The result follows by a combinatorial argument, and
is necessary, but not sufficient, for a singularity graph to be induced by a hex mesh
of a volume Ω. Additional local characterizations are present in [3], but further
results will be needed to determine the set of such singularity graphs entirely.
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[1] D. Bommes, B. Lévy, N. Pietroni, E. Puppo, C. Silva, M. Tarini, D. Zorin, Quad-Mesh
Generation and Processing: A Survey, Computer Graphics Forum 32(6) (2013), 51–76.

[2] W. Jaco, Lectures on Three-Manifold Topology, American Mathematical Society (1980),
Providence, R.I.

[3] H. Liu, P. Zhang, E. Chien, J. Solomon, D. Bommes. Singularity-Constrained Octahedral
Fields for Hexahedral Meshing, ACM Trans. Graph. 37(4) (2018).



1192 Oberwolfach Report 20/2018

[4] J. Huang, Y. Tong, H. Wei, H. Bao, Boundary-Aligned Smooth 3D Cross-Frame Field, ACM
Trans. Graph. 30(6) (2011), 1–8.

[5] J. Solomon, A. Vaxman, D. Bommes, Boundary Element Octahedral Fields in Volumes,
ACM Trans. Graph. 36(4) (2017).

Estimation of Nonlinear Single Index Models

Timo Klock

(joint work with Zeljko Kereta, Mauro Maggioni, Valeriya Naumova)

In this work we propose an efficient method for estimating a generalisation of the
single index model, which we call the nonlinear single index model. We begin by
describing the problem.

Let (X,Y ) ∼ ρ be a random vector in RD×R that obeys the model Y = f(X)+
ε, where f and ρ are unknown and ε represents noise. A common task in regression

problems is to learn an estimator f̂(· ;SN ) of f(·) using a random data set SN =
{(X1, Y1), . . . , (XN , YN )} ∼ ρN , where the performance is measured in terms of the

mean-square error E[(f̂(X ;SN )− f(X))2|SN ], and should improve as the sample
size N grows. It is known that, without imposing any additional assumptions, the
best possible rate of estimating a Cs-function f is N−2s/(2s+D). In other words, the
rate deteriorates exponentially as the ambient dimension D increases, thus making
the task of learning f intractable in high dimensions due to the demand on the
number of samples. However, it has been observed that the relation between f(X)
and X is intrinsically low-dimensional (at least approximately) when considering
real-world data sets. This lead to an increasing number of methods and models
that attempt to exploit various structural assumptions to beat this so-called curse
of dimensionality.

A popular choice is the single index model (SIM)

(1) f(x) = g (〈a, x〉) , a ∈ SD−1, x ∈ RD,

that has been a subject of an enormous body of research. Assuming the direction
a is known, estimating f is a univariate regression for which the learning rate
N−2s/(2s+1) can be achieved. In practice though, a is often unknown and thus has
to be estimated from data. Recently, [2–4] considered (1) for a monotonic g, and
proposed estimators that are guaranteed to achieve D-independent, but also sub-
optimal, learning rates. In [1] an approach is investigated that is promising, and
seems to achieve the optimal rate N−2s/(2s+1). Although the SIM model might
seem restrictive, it includes the important class of generalized linear models with
an arbitrary monotone link function g.

A natural generalisation of (1) with strictly monotonous g is to assume that
the feature weighting a varies as different regimes of Y are explored. This can be
observed in some typical data sets where (1) is used, and naturally leads us to
define the nonlinear single index model (NSIM)

(2) f(x) = g(πγ(x)).
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Here γ : I → RD is an arc-length parametrisation of a simple, smooth curve, and
πγ is the orthogonal projection

πγ(x) := argmin
z∈Im(γ)

‖x− z‖2.

Provided γ is known and that the composition g ◦πγ is Cs-smooth, we expect that,
similarly to SIM, the NSIM function model can be learned at the univariate rate
N−2s/(2s+1).

In the talk we present preliminary results on the estimation of (2). Standard
manifold-estimation and -regression techniques are, to the best of our knowledge,
consistent only if the marginal distribution ρX is supported on Im(γ). Namely, if
σ := E‖X −πγ(X)‖2 is positive, standard estimators will fail to resolve regression
tasks beyond the geometrical limit imposed by σ. Our method on the other hand,
is specifically tailored to such data and makes explicit use of the assumption that
ρX is supported in a thick tube around Im(γ).

In order to estimate f we follow a two step method. First, we compute a discrete
approximation of the tangent field γ̇(t) (which is a topic of independent interest),
and second, we use the tangent approximations to find a proxy for the geodesic

metric on Im(γ) and construct an estimator f̂ .

Tangent estimation. Our approach resembles the one used in [1] and is based
on inverse regression. We begin by dividing [minY,maxY ] into small intervals
[cl, cl+1] (e.g. using a dyadic decomposition) and define level sets

Dl := {X ∈ {X1, . . . , XN} : cl ≤ Y < cl+1} .
Provided that (cl+1 − cl)/σ and ‖ε‖/σ are sufficiently small, the variance of Dl

will be small in the tangential direction, but large in any orthogonal direction.
Moreover, the convex hull Il = Conv(γ−1 ◦ πγ(Dl)) is a thin subinterval of I. We
can prove that the smallest singular vector âl of the sample covariance matrix of
Dl satisfies

(3) ‖âl − γ̇(t)‖2 ≍
(

1√
Nl

+ cκ

)
|Il|, t ∈ Il, Il := Length(Il),

with high probability on a draw of SN , provided that the number of samples
Nl = #Dl is sufficiently large. In the special case where γ is linear (i.e. in the
SIM case), we can show cκ = 0, and thus âl is a consistent estimator of the
direction a.

Out of sample prediction and the construction of f̂ . To facilitate out-of-
sample prediction we adhere to a modified version of the knn estimator, which
means that for any new X we first need to identify data samples Xi ∈ SN that are
close to X in the geodesic metric. Note now that if σ > 0 the Euclidean distance
‖X−Xi‖2 is locally a poor substitute for the geodesic distance (once the geodesic
distance is comparable with σ). We circumvent this issue by leveraging tangential
field approximations.
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It is useful to consider a simpler class of curves first. Assume γ satisfies
〈γ̇(ti), γ̇(tj)〉 > λ for some 0 < λ < 1, and all ti, tj ∈ I, which is a property
we refer to as λ almost linearity. For such curves, the quantity

∆(X,Xi) = |
〈
âl(Xi), X −Xi

〉
|, Xi ∈ Dl(Xi), X ∼ ρX ,

is a proxy for the geodesic distance, and we can prove

∣∣∣∆(X,Xi)− |γ−1(πγ(X)− γ−1(πγ(Xi))|
∣∣∣ ≍ max

l
|Il|, if κσ < λ.

Thus, in case of a λ almost linear curve, we can choose k closest neighbors through
the proxy metric ∆(X,Xi), and estimate f(X) by averaging the corresponding
function values f(Xi). If k is chosen according to k ≍ O(N2α/(2α+1)), such an
estimator reaches optimal convergence rates for α-Hölder functions, α ≤ 1, up to
an error in O(|Il|).

Since a typical curve will globally not be λ almost linear, we re-partition the
curve into λ almost linear segments before performing the prediction step. This
is done by passing through all level sets {Dl}l=1,2... (on which we can established

an ordering using the monotonicity of the corresponding Y -values), and collecting
them into larger families sequentially, i.e. as long as 〈âl, âl′〉 > λ holds for all
elements of the family. Once the condition is violated, 〈γ̇(ti), γ̇(tj)〉 > λ is likely
to be violated as well for some ti, tj along the corresponding stretch of the curve
(due to (3)). Thus, the current level set family is marked as finished and we start
creating a new one. We continue this process until we pass through all Dl, and
by that induce a coarser re-partition of SN where each element contains a union
of contiguous level sets, and the part of the curve restricted to any element of the
partition is roughly λ almost linear. Once a point has been assigned to the correct
member of the partition we can again use the distance proxy ∆(X, ·) to identify k
nearest neighbours.

We are currently investigating under which conditions the assignment to the
correct almost linear element of the partition is guaranteed to yield optimal per-
formance. Empirically, conventional classification methods such as linear SVMs
show promising results to discrimante between elements of the coarser partition.
We note that the number of λ almost linear subpieces of the curve depends only
λ and γ and as such, the number of elements in the coarse partition is (virtually)
independent of the fineness of {Dl}l=1,2,.... Thus, the learning complexity of clas-
sifiers used to discrimante between two segments does not increase as we strive for
higher accuracy through finer level set partitioning.

We emphasize that our method has a polynomial computational complexity
O(DN2 + ND2). In the talk, we have shown results with synthetic data that
support the claims made. Moreover, we also identify an open problem: in the
current form the estimator is not consistent if ε 6= 0 because |Ik| 6→ 0, even if
ck+1−ck is chosen arbitrarily close to zero. Thus, we need to modify our approach
to achieve consistent estimation in that case.
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The Existence Problem of Cubic Spline Interpolation on Riemannian

Manifolds

Benedikt Wirth

(joint work with Behrend Heeren, Martin Rumpf)

A classical data processing tool in Euclidean space Rn is spline interpolation.
Given (pairwise disjoint) time and data points

t1, . . . , tm ∈ [0, 1], x1, . . . , xm ∈ Rn,

an interpolating degree-l-spline is an (l−1) times continuously differentiable curve
γ with

γ(ti) = xi , i = 1, . . . ,m,

such that the restriction of γ to any time interval [ti, ti+1] is a polynomial of
degree l (these conditions have to be complemented with appropriate boundary
conditions, where we shall assume natural boundary conditions throughout).

Euclidean spline interpolation enjoys several nice properties. In particular, for
m > l there always exists a unique interpolating degree-l-spline, the interpolation
smoothness can be readily controlled by adjusting the degree l, and perturbations
of data points show a rather localized influence on the interpolating curve. Fur-
thermore, the most widely used spline interpolations obey a variational principle:
Linear spline interpolation can be expressed as the interpolating curve minimizing
the average squared velocity,

γlin = argmin {E[γ] | γ(ti) = xi, i = 1, . . . ,m} with E[γ] =

∫ 1

0

|γ̇|2 dt ,

while cubic spline interpolation minimizes the average squared acceleration,

γcub = argmin {F [γ] | γ(ti) = xi, i = 1, . . . ,m} with F [γ] =

∫ 1

0

|γ̈|2 dt .

Applications such as keyframe animation in computer vision require interpola-
tion in non-Euclidean spaces such as Riemannian manifolds. Spline interpolation
can be generalized to data in a Riemannian manifold (M, g) in several ways:
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• ParameterizingM via a chart, classical Euclidean spline interpolation can
be applied. For instance, M can be parameterized by its tangent space
TxM in x ∈M using the Riemannian exponential so that the interpolation
problem reduces to calculating the Euclidean spline interpolation of the
Riemannian logarithms logx xi in TxM.
• Degree-l-splines can be characterized as Cl−1-curves with vanishing
(l + 1)th derivative on each time interval [ti, ti+1]. Replacing derivatives
with covariant derivatives, this translates toM.
• Geometric spline constructions such as de Casteljau’s algorithm can be
generalized by replacing line segments with geodesics.
• From t1, . . . , tm one can compute coefficients αi(t) such that Euclidean
spline interpolation reads

γ(t) =

m∑

i=1

αi(t)xi = critical point of λ 7→
m∑

i=1

αi(t)|λ− xi|2

in which |λ−xi| can be replaced with the Riemannian distance dist(λ, xi).
• Exploiting the variational principle, linear and cubic splines onM can be
defined as minimizers of generalized energies E and F .

We follow the latter approach: The velocity γ̇(t) of a curve γ : [0, 1] → M lies
in the tangent space Tγ(t)M. Furthermore, the (intrinsic) acceleration of γ is the
covariant derivative of γ̇ along the curve, which for a parameterized manifold can
be defined as

D

dt
γ̇(t) = γ̈(t) + Γγ(t)(γ̇(t), γ̇(t)) ∈ Tγ(t)M

with the Christoffel operator Γx : TxM× TxM→ TxM defined via

2gx(Γx(v, w), z) = (Dxgx)(w)(v, z) − (Dxgx)(z)(v, w) + (Dxgx)(v)(w, z) .

Finally, the squared norm of tangent vectors v ∈ TxM can be expressed as gx(v, v),
hence we arrive at the generalized energies

E[γ] =

∫ 1

0

gγ(t)(γ̇(t), γ̇(t)) dt , F [γ] =

∫ 1

0

gγ(t)(
D
dt γ̇(t),

D
dt γ̇(t)) dt

and define the linear and cubic spline interpolation of data x1, . . . , xm ∈ M as the
interpolating curves γ : [0, 1]→M minimizing E and F , respectively.

Linear spline interpolation on a Riemannian manifold M in the above sense
turns out to equal piecewise geodesic interpolation and is well-understood. Ex-
istence holds under mild, standard conditions on M, while uniqueness is lost in
general due to nonuniqueness of shortest geodesics. We shall instead discuss the
more interesting question of existence of cubic spline interpolations onM.

Consider a minimizing sequence γ1, γ2, . . . : [0, 1] →M with γj(ti) = xi for all
i = 1, . . . ,m and j ≥ 1 such that

lim
j→∞

F [γj ] = inf {F [γ] | γ : [0, 1]→M, γ(ti) = xi, i = 1, . . . ,m} .

Following the direct method of the calculus of variations, the existence analysis
typically requires two properties: Compactness of the minimizing sequence (or
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equivalently coercivity of F ) and lower semi-continuity of F . As it turns out, both
properties seem to get lost in general when passing from Euclidean space to a
Riemannian manifold.
Lack of compactness . The functional F controls the acceleration of a curve γ in
an L2-sense. Likewise, the curve location is controlled by the interpolation data.
In Rn, this implies control of the curve velocities via the Gagliardo–Nirenberg
inequality; as a result, the sequence γj is bounded in W 2,2((0, 1);Rn) and thus
precompact with respect to weak convergence. However, on a general manifold
M, the curve velocity is not controlled at all: As an example, considerM to be a
cylinder with interpolation times t1 = 0, t2 ∈ (0, 1), t3 = 1 and data x1 = x3 and
x2 lying exactly opposite of x1. For given integers a, b ≥ 0 it is straightforward
(since the cylinder is developable so that calculations can be reduced to Euclidean
space) to calculate

min{F [γ] | γ(t1) = γ(t3) = x1 = x3, γ(t2) = x2, γ|[t1,t2] and γ|[t2,t3]
wind a+ 1

2 and b+ 1
2 times roundM} ∼ (a+ 1

2 − (a+ b+ 1)t2)
2 .

Thus, for any t2 = a+1/2
a+b+1 with integers a, b ≥ 0 there is an interpolating curve

γ with F [γ] = 0, a minimizer. However, for t2 /∈ Q, Dirichlet’s approximation
theorem implies that large enough a and b (resulting in arbitrarily high curve
velocities) can make F [γ] arbitrarily small, but never zero. Hence there is no
minimizer.

Noting that E controls curve velocities, compactness can be regained by replac-
ing F with

Fε = F + εE

for a small regularization parameter ε > 0. Under the simplifying assumptions of
M ≡ X for a Hilbert space X and the (spatially varying) Riemannian metric g
being equivalent to the inner product on X , the argument is as follows. Since E[γ]
behaves like the Sobolev semi-norm |γ|W 1,2 , we already know uniform boundedness
of |γj |W 1,2 (and by Poincaré’s inequality of the full Sobolev norm). Now, can it
happen that ‖γj‖W 2,2 diverges? This would require ‖γ̈j‖2L2 →∞, while at the same
time ‖γ̇j‖2L2 and ‖γ̈j+Γγj (γ̇j , γ̇j)‖2L2 ∼ F [γj ] are uniformly bounded. However, this

implies that ‖γ̈j‖2L2 and ‖Γγj (γ̇j , γ̇j)‖2L2 ∼ ‖γ̇j‖4L4 must diverge at the same rate

which one can show contradicts boundedness of ‖γ̇j‖2L2. Thus we have boundedness
of ‖γj‖W 2,2 , and we can extract a weakly converging subsequence γj ⇀ γ in W 2,2.

Lack of lower semi-continuity. F [γ] is quadratic in the intrinsic acceleration D
dtγ.

Hence, for lower semi-continuity of F along γj ⇀ γ it is natural to require weak

convergence of D
dtγj = γ̈j + Γγj(γ̇j , γ̇j) to

D
dtγ in L2. In both a finite-dimensional

space and in (potentially infinite-dimensional) Euclidean space this is implied by
γj ⇀ γ in W 2,2: Indeed, in Euclidean space the Christoffel operator is uniformly
zero,

Γ ≡ 0 ,

implying automatically the desired convergence. Similarly, in a finite-dimensional
manifold, the weak convergence γj ⇀ γ in W 2,2 implies by Sobolev embedding
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strong convergence γj → γ in a Hölder space C1,α, from which one can deduce

Γγj (γ̇j , γ̇j)→ Γγ(γ̇, γ̇) in C0 .

However, in an infinite-dimensional manifold, the above Sobolev embedding no
longer holds (one only has W 2,2((0, 1);X) →֒ C1([0, 1];Y ) for some space Y into
which X compactly embeds), and Γγj (γ̇j , γ̇j) as a quadratic form of a weakly
converging sequence cannot be expected to converge to Γγ(γ̇, γ̇) even in a weak
sense, which prevents lower semi-continuity.

A remedy is to restrict to appropriate manifolds M. Considering the above,
lower semi-continuity is valid on flat manifolds and locally compact manifolds
(which is required for the strong Sobolev embedding). It is possible to combine
both settings to arrive at a more general class of manifolds: F is lower semi-
continuous on manifoldsM = X whose Riemannian metric g decomposes,

gx(v, w) = Q(v, w) + gcx(v, w) for v, w ∈ TxM ,

into a flat, spatially constant metric Q and a spatially varying metric gcx with
respect to which the manifoldM is locally compact.
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An Observation Concerning the Parallel Transport Variant of Total

Generalized Variation for Manifold-Valued Data

Andreas Weinmann

(joint work with Kristian Bredies, Martin Holler, Martin Storath)

Total variation type approaches for regularizing manifold valued data and im-
ages have gained a lot of interest in recent years [1, 2, 5, 6, 8–10]. To overcome
drawbacks from staircasing and oversmoothing, we have introduced the total gen-
eralized variation (TGV) functional for regularizing manifold-valued data in [3].
More precisely, we have considered the variational problem

(1) argmin
u∈MK

dist(u, f)2 + TGVλ(u),

where f denotes the given data, dist denotes the distance on the product manifold
MK , induced by a Riemannian metric onM, and u is the argument to optimize
for. The idea is to find an estimate u which both approximates the data f well
and is more regular than f. Here, the regularity of u is measured by the total
generalized variation TGVλ(u). In the univariate setting,

TGVλ(u) = argmin
v

λ0
∑

i

dist(ui+1, vi) + λ1
∑

i

D([ui, vi], [ui−1, vi−1]),

where λ1, λ2 are positive parameters, and whereD generalizes the distance between
difference vectors to the manifold setting. We here represent difference vectors as
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tuples [ui, vi] of points ui, vi in the manifoldM. One instantiation of D employed
in [3] uses the parallel transport inM; it reads

D([ui, vi], [ui−1, vi−1]) = ‖ logui
vi − ptui−1,ui

logui−1
vi−1‖ui

.(2)

Here log denotes the inverse of the Riemannian exponential mapping, the symbol
ptui−1,ui

denotes the parallel transport along a shortest geodesic connecting ui−1

and ui such that logui
vi−ptui−1,ui

logui−1
vi−1 is a tangent vector sitting in ui, and

‖ · ‖ui
denotes the norm induced by the Riemannian metric in ui. In [3] we have

taken an axiomatic point of view and formulated requirements for a reasonable
generalization of D to the manifold setting, and we have considered a further
instantiation of D based on the Schild’s ladder; in the multivariate setup, we have
introduced an additional term based on a symmetrized gradient for manifold valued
data in the regularizing term; for details, we refer to [3]. We here concentrate
on the parallel transport variant. Most algorithms dealing with problems of the
form (1), require the computation of the (sub)gradients of (2) w.r.t. the variables
ui, ui−1, vi, vi−1; in [3], we have derived rather explicit representations of these
(sub)gradients. More precisely, we have observed that the problem is symmetric
w.r.t. interchanging [ui, yi] and [ui−1, yi−1] and so reduces to finding the gradients
w.r.t ui and yi. W.r.t. yi we have obtained expressions in terms of Jacobi fields
which, in symmetric spaces, results in solving eigenvalue problems and systems of
equations of typically small size. Computing the gradient w.r.t. ui again involves
computing Jacobi fields, and essentially the derivatives of sections of the form

(3) q 7→ Vq = ptp,q vp

fromM to the tangent bundle T M. Here vp denotes a tangent vector at p ∈ M
and the vector field V (which is almost everywhere defined onM) is given by the
parallel transport ptp,q along the shortest geodesic joining p and the argument q.

The purpose of this note is to derive expressions which are more general than
the ones in [3] for the covariant derivative of the section Vq in a nondegenerate
point q, (i.e., q is not in the cut locus of p, for details see [4,7].) In particular, the
derived expressions result in eigenvalue problems and linear systems of equations
in the setup of general symmetric spaces.

Observations for the parallel transport variant of TGV. In the following
we let γ : [0, 1]→M be a geodesic connecting the points p = γ(0) and q = γ(1).
We assume that γ is a shortest geodesic and notice that, as such, γ is unique
(up to parametrization) for almost all input p, q ∈ M. We consider a tangent
vector yq ∈ TM with base point q. We use yq to define the geodesic variation
c : [0, 1]× (−ε, ε)→M along γ by

c(t, s) = [p, expq(syq)]t.

Here the bracket [x, y]t := expx(t logx y) denotes the point on the geodesic joining
x and y at time t. We note that c(t, 0) = γ(t) for all t ∈ [0, 1]. Then we define the
Jacobi field Y (t, s) corresponding to this geodesic variation by

Y (t, s) = d
ds [p, expq(syq)]t.
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We recall that the Riemannian curvature tensor R is defined by R(X,Y )Z =
∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z for vector fields X,Y, Z. Here [X,Y ]f = XY f −
Y Xf denotes the Lie bracket of vector fields. Further, the sectional curvature

K(X,Y ) is given by K(X,Y ) = 〈R(X,Y )X,Y 〉
‖X‖2‖Y ‖2 .

Lemma 1. LetM be a Riemannian manifold. Then the covariant derivative of the
vector field ∇Y V, V given by (3), along γ is given by ∇γ̇(t)∇Y V = R(γ̇(t), Y )V.
Further, the covariant derivative ∇yqV of the vector field V in the point q in
direction yq is given by

(4) 〈∇yqV, Z〉 =
∫ 1

0

〈R(γ̇(t), Y )V, Zγ(t)〉 dt,

where Zr = ptq,r zq for a test vector zq at the point q.

Proof. We consider the vector field V along the geodesic variation c, i.e., the
mapping V ′(t, s) := Vc(t,s). Using the symbols D

dt ,
D
ds , for the covariant derivative

w.r.t. the arguments t, s, we have ∇γ̇(t)∇Y V = D
dt
D
ds |s=0V

′(t, s). Then,

(5) D
dt
D
dsV

′(t, s) = D
ds
D
dtV

′(t, s) +R( ddtc(t, s),
d
dsc(t, s))V

′(t, s).

By the construction of c(t, s) we have that D
dtV

′(t, s) = 0 since the covariant

derivative of a parallel field equals zero. This yields the equality D
dt
D
dsV

′(t, s)

= R( ddtc(t, s),
d
dsc(t, s)) V

′(t, s). Hence, ∇γ̇(t)∇Y V = R(γ̇(t), Y )V. Concerning (4)
we have

〈∇yqV, Z〉 = 〈Dds |s=0Vc(1,s), Z〉 =
∫ 1

0

d
dt 〈Dds |s=0Vc(t,s), Zγ(t)〉 dt

=

∫ 1

0

(
〈Ddt Dds |s=0Vc(t,s), ptq,γ(t) zq〉+ 〈Dds |s=0Vc(t,s),

D
dt ptq,γ(t) zq〉

)
dt.

We have D
dt ptq,γ(t) zq = 0 which makes the second summand in the bracket van-

ish. By (5), D
dt
D
ds |s=0Vc(t,s) = R(γ̇(t), Y (t, 0))V (t, 0) from which we conclude the

validity of (4). �

In a symmetric space this expression can be made more explicit.

Theorem 2. LetM be a Riemannian symmetric space. Let yq be an eigenvector
of the Riemannian curvature operator X 7→ R(γ̇(1), X)γ̇(1). Then, the covariant
derivative ∇yqV of the parallel transport along γ is given by

(6) ∇yqV = F
(
K‖yq‖2

)
R (γ̇(1), yq)Vq

where K = K(γ̇(1), yq) denotes the sectional curvature of the submanifold spanned

by γ(1), yq and the function F is given by F (λ) = 1−cos
√
λ√

λ sin
√
λ
, if λ > 0, F (λ) =

cosh(
√
−λ)−1√

−λ sinh
√
−λ if λ < 0, and by F (λ) = 1/2 if λ = 0.

Proof. We start from (4) and first invoke the fact, that, in a symmetric space, the
Jacobi field Y (t, 0) is given by

(7) Y (t, 0) = f(λq, t) ptq,γ(t) yq
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where λq = K(γ̇(1), yq)‖yq‖2 denotes the eigenvalue of the curvature operator
X 7→ R(γ̇(1), X)γ̇(1) for the eigenvector yq; further, the function f is, depend-

ing on the sign of λ, given by f(λ, t) = sin(
√
λt)/ sin

√
λ, if λ > 0, f(λ, t) =

sinh(
√
−λt)/ sinh

√
−λ if λ < 0, f(λ, t) = t if λ = 0. Now, using (7) in (4), we get,

for an arbitrary tangent vector zq at the point q,

〈∇yqV, zq〉 =
∫ 1

0

〈R(γ̇(t), f(λq, t) ptq,γ(t) yq)V, ptq,γ(t) zq〉 dt

=

∫ 1

0

f(λq, t)〈R(ptγ(t),q γ̇(t), yq)Vq, zq〉 dt = 〈R(γ̇(1), yq)Vq , zq〉 F (λq).

The second equality is a consequence of the invariance of the curvature tensor R
under parallel transport in a symmetric space. Hence, the scalar product in the
second integral is constant which implies the last equality together with noting
that F is the integral w.r.t. f on [0, 1]. �

Remark 3. Concerning the implementation of Formula (6), we note that the
time consuming part for computing F

(
K‖yq‖2

)
is computing K ‖yq‖2. Since these

arguments are also needed in other parts of the scheme of [3], they may be reused.
For the computation of R(γ̇(1), yq)vq there are explicit formulas available in many
symmetric spaces; further, it does not have to be carried for each yq of a basis of
TMq; a related computation is needed only once by linearity.
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Friends of Grassmannians

Lek-Heng Lim

We discuss various objects connected to the Grassmannian – Schubert varieties,
Sato Grassmannians, doubly-infinite Grassmannian, affine Grassmannians, and
flag manifolds. We show how the first three objects may be used to define natural
distances on subspaces of different dimensions and how the last two objects could
serve as immensely useful platforms for problems in multivariate statistical analysis
and signal processing.

Local and Non-Local Shape Analysis

Julie Digne

(joint work with Sébastien Valette, Raphaëlle Chaine, Yohann Béarzi)

In this talk we explore two contributions for shape analysis. In a first case, we
consider surfaces and how local analysis of the angular oscillations and polynomial
radial behavior around surface points leads to accurate normal estimation and new
integral invariants. A direct application of these integral invariants is geometric
detail exaggeration. This however assumes that the surface can be represented as
a height function over some parameterization plane in a neighbourhood of fixed
radius that is the same for all the surface.

In many cases, however, shapes, as they are acquired by laser scanners, might
not fulfill this hypothesis: they can have isotropically sampled areas or curve
parts. For example, street cables can be considered as curves, depending on the
acquisition accuracy. We call this case the mixed dimension case. Armed with a
well-defined probing operator associating a point of the ambient space to a point on
the shape, we define Local Probing Fields, and analyze them in a non-local manner.
Hence, we are able to extract and describe data self-similarities. Exploiting these
allows us to revisit various surface processing tasks such as denoising, compression
and shape resampling.

Let us first consider the first case, and assume we have a smooth surface S.
Many shape processing methods need accurate surface derivatives estimates. Sur-
face derivatives are indeed useful to estimate important shape features such as
normals or curvatures. The signal processing viewpoint is slightly different: in-
stead of analyzing signal derivatives, signals are often processed using a frequency
analysis and by devising filters operating on the Fourier coefficients. To bring
together these two trends, we describe a function basis taking into account both
the local surface derivatives and the angular oscillations around each point of the
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surface [2]. This formulation, which we term Wavejets, in reference to their fully
polynomial counterpart, the Osculating Jets [1], gives valuable information on the
shape.

Given a local polar coordinate system (r, θ) in the tangent plane of a sample p
of a smooth surface, a Wavejet is the set of complex coefficients φk,n such that the
height field describing the surface around p is written as follows:

f(r, θ) =
∞∑

k=0

k∑

n=−k
rkφk,ne

inθ =
∞∑

n=−∞

∞∑

k=|n|
rkφk,ne

inθ

Wavejets require a local parameterization. We demonstrate theoretically that
if this parameterization is not done over the tangent plane but over a parameteri-
zation plane with a small angle to the true tangent plane, it is possible to correct
the plane. It is also possible to correct the coefficients to those computed over
the tangent plane. Furthermore, Wavejets coefficients can be used to compute
interesting indicators of differential volumes that can be an alternative to using
curvatures and further surface derivatives (see Figure 1), those indicators are new
integral invariants that can be efficiently computed.

From a practical point of view, given a point set acquired from an object surface,
it is possible to estimate Wavejets coefficients by least squares regression. The new
integral invariants are then used to filter the shapes. We show two applications
of these filters working directly on point sets, shape detail exaggeration, either by
working on point positions or by working on points normals.

Figure 1. Wavejets decomposition around a point of a sur-

face. Left: approximated 9-Wavejets surface. Let φ̃k,n(r, θ) =

rk
(
φk,ne

inθ + φk,−ne−inθ
)
and φ̃n =

∑∞
k=0 φ̃k,n.

The second part of this talk deals with the mixed dimension case [3]. Mixed
dimension shapes cannot be described everywhere via local height maps over some
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parameterization plane [4]. We introduce a different type of descriptor that can
reliably represent curves or isotropic shape parts while mimicking a height map in
areas where the surface assumption holds. By analyzing jointly these vector fields
through a nonlocal similarity optimization process, the descriptors of similar areas
tend to align and reveal the similarity, if any.

Let us consider a probing operator P mapping a point p in the ambient space to
a point q on the shape (P can be the nearest point projector for example). Given
a generic pattern of points (ui)i=1···M parameterized by a local coordinate frame
and located at an anchor point s in the ambient space but close to the shape,
we encode the set of deformation vectors vi = P(s + ui) − (s + ui) as a vector
V ∈ R3M . The following process then aims at enhancing the similarities between
the descriptors by optimizing the positions of the anchors and orientations of the
sampling pattern:

min
V,D,α

N−1∑

j=0

‖Vj −Dαj‖22 + λ‖α‖1

s.t. {Vj}j∈0···N−1 cover the whole shape

D ∈ R3M×d, Vj ∈ R3M

In a nutshell, we optimize the positions and orientations of the sampling pat-
tern so that the local probing fields Vj are efficiently encoded on a dictionary D
with d atoms. λ is a parameter giving a loose control over the sparsity of the
decomposition coefficients α. From this optimized dictionary decomposition, the
shape can then be resampled, or denoised.
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Efficient Deformable Shape Correspondence via Kernel Matching

Amit Boyarski

(joint work with Matthias Vestner, Zorah Lähner, Or Litany, Ron Slossberg, Tal
Remez, Emanuele Rodolà, Alex Bronstein, Michael Bronstein, Ron Kimmel,

Daniel Cremers)

The correspondence problem is a fundamental problem lying at the heart of com-
puter vision, graphics and pattern recognition, with applications including shape
comparison, texture transfer, and shape interpolation just to name a few. Given
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two three-dimensional objects X and Y, modeled as compact two-dimensional Rie-
mannian manifolds, a correspondence is a map ϕ : X → Y assigning points from
one domain to points from the other. ϕ should ideally satisfy a few properties: It
should be bijective, continuous in both directions in the sense that nearby points
on X should be mapped to nearby points on Y (and vice versa), and map be-
tween similar points. For the simplicity of the introduction, we assume the two
shapes X and Y to be sampled at n points each. The proposed framework can be
easily extended to handle the case of a different number of samples. Assuming a
consistent sampling (e.g. via farthest point sampling with a sufficiently large num-
ber n of points), the discrete counterpart to the correspondence ϕ is a mapping
π : {x1, . . . xn} → {y1, . . . yn}, which admits a representation as a permutation
matrix Π ∈ {0, 1}n×n satisfying Π⊤1 = Π1 = 1 with 1 being a column vector of
ones. We henceforth denote the space of n× n permutation matrices by Pn.

A common way to approach the correspondence problem is by phrasing it as a
score maximization problem (e.g. [8, 9])

Π∗ = argmax
Π∈Pn

E(Π) ,

where E(Π) is usually a weighed aggregate of two terms

E(Π) = αg(Π) + h(Π) .

The first term g(Π) is a fidelity term trying to align a set of pointwise descriptors
encoding the similarity between points, while the second term h(Π) is a regular-
ization term promoting the continuity of the correspondence by aligning a set of
pairwise descriptors encoding global/local relations between pairs of points. The
parameter α governs the tradeoff between the two terms. The constraint Π ∈ Pn
guarantees bijectivity of the correspondence, and together with the two terms h
and g, provide a trade-off between complexity, fidelity and regularity. To that end,
we aim at maximizing the following functional over Pn,

argmax
Π∈Pn

E(Π) = argmax
Π∈Pn

α〈Π,FYF
⊤
X 〉+ 〈Π,KYΠKX 〉,(1)

where FX ,FY are matrices of point-wise descriptors and KX ,KY are kernel ma-
trices defined on X and Y, respectively. We advocate the use of heat kernels,
motivated by the fact that they are positive-definite, easy to approximate, and
admit an interesting physical interpretation (see below). Similar results can be
obtained using geodesic Gaussian kernels [1].

A popular technique to handle problems like (1) is via relaxation. The discrete
set Pn is replaced by a larger continuous set, i.e., the set of doubly-stochastic
matrices Bn, and the solution of the relaxed problem is later projected on Pn,
possibly using Euclidean projection. The choice of the relaxation and projection
is usually related to the properties of the optimization problem (i.e., a quadratic
assignment problem) rather than the particular choice of descriptors. This leads to
poorly understandable algorithms whose justification remains elusive. We stress
in our work that taking into account the choice of descriptors can lead to a simpler
relaxation scheme, as simple as linear filtering.



1206 Oberwolfach Report 20/2018

Due to the heat kernels being (strictly) positive-definite, (1) is equivalent to the
relaxed problem

argmax
P∈Bn

E(P).

Our algorithm consists of the following projected gradient iteration

Pk+1 = argmax
P∈Bn

〈
P,∇E(Pk)

〉
,

where for our choice of E(P), the gradient is given by

∇E(P) = αFYF
⊤
X +KYPKX .

Since Pk is guaranteed to be a permutation matrix, we henceforth use Πk to
denote the iterates themselves, yielding the following step

Πk+1 = argmax
Π∈Pn

〈Π, αFYF
⊤
X +KYΠ

kKX 〉(2)

that is guaranteed to produce a series on increasing values of E(Π). In the ex-
periments presented in [2], we use the data fidelity term 〈Π,FYF⊤

X 〉, mainly to
initialize the process:

Π0 = argmax
Π∈Pn

〈Π,FYF
⊤
X 〉.

Algorithm (2) neatly extends to the partial case by replacing the row-sum con-
straint Π1 = 1 with Π1 ≤ 1 and using slack variables. For more information
and proofs of the claims presented here, see [2]. Some results obtained with our
algorithm are presented in Figures 1 and 2.

To intuitively understand the efficacy of kernel alignment for the purpose of
finding correspondences, consider the k-th iteration (for simplicity, without the
data term):

max
Π∈Pn

tr
(
Π⊤KYΠ

kKX
)
.

Let us denote by δj the discrete indicator function of vertex j on shape X ,
representing initial heat distribution concentrated at vertex j. This heat is propa-
gated via the application of the heat kernel KX to the rest of the vertices, resulting
in the new heat distribution on X given by k

j
X = KXδj . This heat distribution,

whose spread depends on the time parameter t, is mapped via Πk onto the shape
Y, where it is propagated via the heat kernel KY . The ij-th element of the matrix
KYΠkKX ,

(KYΠ
kKX )ij = (kiY)

⊤Πkk
j
X =

∑

m

(KY)i,πk(m)(KX )jm,

represents the probability of a point i on Y being in correspondence with the point
j on X . This is affected by both the distance between i and πk(m) on Y for every
m on X , encoded in the entries of (KY)i,πk(m), and by the distance between m and
j on X , encoded in the entries of (KX )jm. This process, as illustrated in Figure 3,
resembles the alternating diffusion process described in [4]. Its success in uncover-
ing the latent correspondence is based on the following statistical assertions on the
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Figure 1. Correspondence accuracy on FAUST (template sub-
set). The dashed curves indicate the raw performance of re-
cent deep learning methods, while solid curves are the results
obtained after using our method as post-processing. Our method
based on handcrafted descriptors (SHOT [3]) is denoted as ‘Hand-
crafted+Ours’.

Figure 2. Qualitative examples on FAUST [5] models (left),
SHREC’16 [6] (middle) and SCAPE [7] (right). In the SHREC
experiment, the green parts mark where no correspondence was
found. Notice how those areas are close to the parts that are hid-
den in the other model. The missing matches (marked in black)
in the SCAPE experiment are an artifact due to the multiscale
approach.
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Figure 3. Illustration of the alternating diffusion pro-

cess initialized with a noisy correspondence that wrongly maps
π(8) = 16 and π(16) = 8 but correctly maps π(x) = x else-
where. Top left: Indicator functions on the source shape, one on
a point with a wrong correspondence (red) and one with a cor-
rect correspondence (blue). Top right: Both indicator functions
are diffused. Bottom left: The diffused functions are transported
to the target shape via π. Notice how the red maximum is in
the wrong position. Bottom right: Diffusion on the target shape.
Now the maximum of the previously wrong matched point (red)
is at the correct position.

distribution of correspondences in the initial assignment: we tacitly assume that
a sufficiently large number of (uniformly distributed) points are initially mapped
correctly while the rest are mapped randomly, such that when averaging over their
“votes” they do not bias towards any particular candidate. These concepts will
be presented more rigorously in future research.
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Structural Optimization with Cosserat Phase Field Modeling

Ingo Muench

We present a continuum-type optimality algorithm for the evolution of load-
bearing solid structures with linear Cosserat theory. The model combines two
sensitivity functions to homogenize equivalent stress and equivalent couple stress,
too. The phase field variable ϕ defines the density and stiffness of the substance

f(ϕ) =
eαϕ

eαϕ + 1
, ρϕ = f(ϕ) ρ0 , Cϕ = f(ϕ)C0 , CCoss

ϕ = f(ϕ)CCoss
0 ,(1)

where ρ0, C0, and CCoss
0 represent material and f(ϕ) → 0 yield voids. The con-

tinuous function f(ϕ) increases monotonously with lower and upper limits

lim
ϕ→−∞

eαϕ

eαϕ + 1
= 0 , lim

ϕ→+∞
eαϕ

eαϕ + 1
= 1 , forα > 0 .

We allocate the interval [−1, 1] for the phase field variable ϕ to describe the
transition from void to material and choose the exponent α = 14 to obtain
f(−1) ≈ 1 · 10−6, and f(1) ≈ 1. Double-well potential and gradient energy

ψw = ϕ6 − ϕ4 − ϕ2 + 1 , ψg =
1

2
Lc ||Grad[ϕ]||2 dV ,(2)

specify the phase field part of the model. The standard kinematical equations for
the linear Cosserat model are given via displacements u and rotations α reading

ε = Grad[u] + ǫ · α , κ = Grad[α] .

The inner strain and curvature energy of material are considered by

ψs = µ || sym ε||2 + µc || skew ε||2 +
λ

2
(tr[ε])2 , ψc = µXc|| dev symκ||2 .
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Therefore, the inherent stiffness of the substance in eq.(1) is given by

C0 =
∂2ψs

∂ε2
, CCoss

0 =
∂2ψc

∂κ2
.

The overall inner energy of the system is considered

Πi =

∫

B

ψw + ψg −
1

2
f(ϕ) (ψs + ψc)

︸ ︷︷ ︸
ψ

dV .(3)

In accordance to elasticity we define stress and couple stress by

σ = −∂ψ
∂ε

= f(ϕ)C0 : ε , m = −∂ψ
∂κ

= f(ϕ)CCoss
0 : κ .(4)

Phase field sensitivities read

η =
∂ψ

∂ϕ
= −1

2
f ′(ϕ)︸ ︷︷ ︸
> 0

[ε : C0 : ε+ κ : CCoss
0 : κ]︸ ︷︷ ︸

> 0

+ 6ϕ5 − 4ϕ3 − 2ϕ︸ ︷︷ ︸
ηϕ

,(5)

ξ =
∂ψ

∂Grad[ϕ]
= Lc Grad[ϕ] .

The derivative of the double well potential in eq.(2)1 concerning ϕ is defined as
ηϕ in eq.(5). For −1 < ϕ < 0 one obtains ηϕ > 0. It indicates that η > 0 yields
the evolution of voids. Therefore, we have designed the first term in eq.(5) such
that substance generate in regions with eminent stress or couple stress. Finally, it
motivates our definition of ψ in eq.(3), and the unusual sign in eq.(4).

The outer work of our model includes volume forces ρϕ b, volume couples ρϕ c,
and a source of material γ within the body. Such a source of material implies that
we do not conserve mass. However, this is inspired by bio-mechanical processes,
e.g., the formation of bones. Within a phenomenological formulation, the variation
of mineral material in the periosteum may be captured by such a source term γ.
Further, we consider the injection or rejection of material y on the surface ∂B of
the design space B. Similarly, mechanical loading on ∂B is given by tractions t
and surface couples d. In summary, we define

Πa =

∫

B

ρϕ b · u+ ρϕ c · α+ γ ϕdV +

∫

∂B

t · u+ d · α+ y ϕdV .(6)

From the principle of virtual work one can derive the Euler equations of the model.
It is the balance of linear momentum

Div σ + f(ϕ) ρ0 b = 0 ,

the balance of angular momentum

Divm− σ : ǫ+ f(ϕ) ρ0 c = 0 ,

and the balance equation for the phase field parameter

η −Div ξ + f ′(ϕ) ρ0 b · u+ f ′(ϕ) ρ0 c · α+ γ = 0 .(7)
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Generally, the phase field parameter does not satisfy eq.(7) in the initial configu-
ration of a system. Allen and Cahn [1] suggested to extend such balance equations
by the rate of ϕ yielding

η −Div ξ + f ′(ϕ) ρ0 b · u+ f ′(ϕ) ρ0 c · α+ γ + β ϕ̇ = 0 .

We use Galerkin’s method to set up

G =

∫

B

− (Div σ + f(ϕ) ρ0 b) · δu− (Divm− σ : ǫ+ f(ϕ) ρ0 c) · δα

+ (η −Div ξ + f ′(ϕ) ρ0 b · u+ f ′(ϕ) ρ0 c · α+ γ + β ϕ̇) δϕ dV .

Linearization of G = 0, backward Euler time integration, and the standard finite
element method yield a linear system of equation for increments ∆u, ∆α, and ∆ϕ
for the Newton-Raphson scheme. More information about numerical aspects are
given in [2]. In the context of a linear Cosserat model the update of rotations is
additive.

Generally, one has to consider an initial distribution of substance within the
design space B to set up the boundary value problem. In our case it is the specifi-
cation of the phase field variable ϕ = ϕ0. Obviously, ϕ0 ≡ 0 within B is a neutral
choice. Then, we obtain f(0) = 1/2 and begin the evolution of a structure with
homogeneously distributed substance having 50% density and stiffness compared
to the material phase. Let us define the filling level

K =

∫
B f(ϕ) dV∫

B dV
∈ [0, 1] .(8)

In case of ϕ0 ≡ 0 we obtain the initial filling level K0 = 0.5. Since we do not
conserve mass the first in term in eq.(5) will lead to K > K0 if there is mechanical
deformation within B. To control the filling level within B we need to introduce a
side condition into our formulation. Therefore, we couple γ in eq.(6) to the desired

filling level K̂ of the system. Since the filling level is given as global quantity by
eq.(8) we resign consistent variation and linearization of γ in the above equations.
Thus, the material source γ becomes a deterministic variable. Further, we account
for scalar norms of stress and couple stress, which we denote σV and mV . Then,
we define thresholds σ̄V and m̄V with help of the following algorithm: σV and mV
in all integration points nGP at position xGP are stored into arrays

gi = σV (xGP ) , hi = σV (xGP ) , i = 1 . . . nGP .

Then, the components of gi and hi are sorted in ascending order, e.g.,

gi 7→ gj , gj+1 ≥ gj , i, j = 1 . . . nGP .

With help of the rounded index

k = int
[(

1− K̂
)
· nGP

]
,
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2n+ 1 components of gj and hj are used to define

σ̄V :=

j=k+n∑

j=k−n

gj
2n+ 1

, m̄V :=

j=k+n∑

j=k−n

hj
2n+ 1

.

We found that n = int[0.001nGP ] reduces random noise in σ̄V and m̄V during
the evolution process to an acceptable level. We treat σ̄V and m̄V as constants
within each time step. It is computationally expensive and even unfavorable to
update these thresholds after each Newton-Raphson iteration step. We use both
thresholds to define the objective function

F =

∫

B
γs
σ̄V − σV
σ̄V

+ γm
m̄V −mV

m̄V︸ ︷︷ ︸
= γ

ϕ dV → min w.r.t. u , α , ϕ .

In the following example we show the effect of couple stresses onto the evolution
of topologies. Let us consider a rectangular design space of length 40, height 20,
numerically treated as plate of thickness 1. It is clamped at the left border and
loaded by a single force P = 20 at in the mid of the left border. We fix the
constitutive parameters Lc = 1, µ = µc = 5000, λ = 0, Xc = 1 and vary the
weight of σV and mV onto the source of material γ by factors γs and γm. For
the variant γs = 10, γm = 0 we obtain a framework with 12 straight-lined trusses.
The equivalent stress field is almost homogeneous. However, one can find minor
stress concentrations at intersections. Further, major stress concentrations are at
the point of loading and at the boundary. For γs = 5, γm = 5 the number of
trusses is reduced to 8 and we observe curved bars. The stress concentrations
at intersections have almost vanished. Actually, the stress concentrations at the
loading and at the boundary become weaker. Considering γs = 2, γm = 8 the
homogenization of the equivalent stress becomes less important than the homoge-
nization of the equivalent couple stress. Therefore, the structure is not a classical
framework but a combination of bars and plates. Finally, for γs = 0, γm = 10
the algorithm evolves a cantilever beam, where the equivalent stress is inhomoge-
neous. However, it is obvious that the proposed algorithm yields a wide spectrum
of structural solutions, which cannot be found without the Cosserat continuum
modeling.
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Riemannian Optimization with Low-Rank Tensors

Daniel Kressner

(joint work with Michael Steinlechner, Bart Vandereycken)

A very active research area during the last decade, optimization on matrix mani-
folds [1] has been applied to a wide variety of applications. Recently, optimization
on tensor manifolds has been considered and is increasingly applied in settings
where existing algorithms based, e.g., on alternating optimization exhibit limita-
tions.

A tensor is a multivariate array X ∈ Rn1×···×nd . For various low-rank tensor
formats, including the Tucker, tensor train, and hierarchical Tucker format, it has
been shown that the set of tensors of fixed ranks (with respect to the corresponding
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format) forms a smooth embedded submanifold of Rn1×···×nd ; see [5, 7, 13, 14].
Combined with the highly compressed representation in such a format, this yields
efficient Riemannian optimization algorithms.

1. Ingredients of Riemannian optimization

To illustrate the ingredients needed for Riemannian optimization, let us consider
a tensor in Tucker decomposition:

(1) X = C ×1 U1 ×2 U2 · · · ×d Ud,
where C ∈ Rk1···kd is the core tensor, U1 ∈ Rn1×k1 , . . . , U1 ∈ Rn1×kd , and ×µ
denotes µ-mode matrix multiplication [8]. The multilinear rank is the smallest
possible tuple k = (k1, . . . , kd) for which X admits a representation of the form (1).
The fact that kµ equals the rank of the matricization

X(µ) ∈ Rnµ×
∏

ν 6=µ
nν

is essential in showing thatMk, the set of tensors of fixed multilinear rank, forms
an embedded submanifold.

Because of the multilinearity of the format (1), the tangent space ofMk at X
takes the form

TXMk =

{
G ×dµ=1 Uµ +

d∑

µ=1

C ×µ Vµ ×ν 6=µ Uν
∣∣∣∣ V

T
µ Uµ = 0

}
,

where G ∈ Rk1×···×kd and Vµ ∈ Rnµ×ki are the free parameters [7]. Among others,
this allows to conveniently express PTXMk

, the orthogonal projection onto the
tangent space.

Consider an optimization problem of the form

(2) min
X∈Mk

f(X )

with a smooth function f : Rn1×···×nd → R. A basic first-order method for
solving (2), Riemannian steepest descent aims at improving an iterate Xi by taking
a step in the direction of the Riemannian gradient, which equals the orthogonal
projection of the Euclidean gradient onto TXMk:

Xi + αiPTXMk
(∇f(Xi)).

Such a step, in general, leaves the manifold. While the exponential map is the
canonical way of mapping from a tangent space back to the manifold, it is often
computationally too expensive. The more general class of retractions [1] is equally
suitable in the context of optimization and often includes significantly cheaper
alternatives. In [9], we have proven that the higher-order SVD (HOSVD), an SVD-
based quasi-optimal compression [3], yields a retraction. Letting the HOSVD-
based compression to multilinear rank k be denoted by Tk, one step of Riemannian
steepest descent becomes

(3) Xi+1 ← Tk
(
Xi + αiPTXMk

(∇f(Xi))
)
.
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As demonstrated in [9], the standard Armijo backtracking scheme for choosing
αi > 0 greatly benefits from being initialized with the step size obtained from a
linearized line search procedure.

More complex first-order Riemannian optimization methods may require ad-
ditional ingredients. In particular, Riemannian conjugate gradient (CG) requires
the combination of elements from different tangent spaces, which in turn requires
to transport elements from one tangent space to another. For the Tucker format,
such a vector transport can be implemented efficiently [9].

The convergence analysis (3) is complicated by the fact that the method may
converge to a tensor of lower multilinear rank. This can be avoided, e.g., by a
suitable regularization of f . In practice, such a regularization is not needed and
also in theory this can be circumvented more elegantly by considering instead of
Mk the algebraic variety of tensors of multilinear rank at most k; see [11].

The discussion above focuses on the Tucker format but it extends in a seamless
manner to the hierarchical Tucker [2] and the tensor train [12] formats.

2. Application to tensor completion

The goal of tensor completion is to fill in missing entries of a partially known
tensor under a low-rank constraint. When considering tensors of multilinear rank
k, one can formulate tensor completion as the Riemannian optimization problem

(4) min
X∈Mk

1

2
‖ΠΩX −ΠΩA‖2,

where A contains the known entries and

ΠΩX :=

{
Xi1i2...,id if (i1, i2, . . . , id) ∈ Ω,

0 otherwise,

with the sampling set Ω ⊂ [1, n1]× · · · × [1, nd]. Riemannian optimization applies
in a straightforward manner to (4). In particular, the Riemann gradient at Xi
is obtained by projecting ΠΩX − ΠΩA onto the tangent space. In [9], we have
demonstrated for a variety of applications, including the recovery of multidimen-
sional images and the approximation of multivariate functions, that Riemannian
CG performs very well in this context, in terms of recovery, robustness, and ef-
ficiency. More recent developments include an effective preconditioned quotient
manifold approach [6] and a Riemannian trust-region method [4] for low-rank ten-
sor completion.

3. Application to large linear systems

The numerical solution of partial differential equations on high-dimensional do-
mains gives rise to computationally challenging linear systems. When using stan-
dard discretization techniques, the size of the linear system grows exponentially
with the number of dimensions, making the use of classic iterative solvers unfea-
sible. Under certain conditions, e.g., when using tensorized FEM on a hypercube,
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this linear system can be rephrased as

(5) A(X ) = B,

for a given linear operator A : Rn1×···×nd → Rn1×···×nd and right-hand side B. Re-
formulating (5) as an optimization problem and restricting the set of admissible
X to low-rank tensors potentially mitigates the curse of dimensionality. Com-
pared to tensor completion, additional complications arise because A is usually
ill-conditioned and plain first-order methods can therefore be expected to exhibit
unsatisfactory converge rates. In [10], we propose two preconditioned gradient
methods on low-rank tensor manifolds: A Riemannian version of the precondi-
tioned Richardson method as well as an approximate Newton scheme based on
the Riemannian Hessian. For the latter, considerable attention is given to the
efficient solution of the resulting Newton equation. In numerical experiments,
we compare the efficiency of our Riemannian algorithms with other established
tensor-based approaches such as a truncated preconditioned Richardson method
and the alternating linear scheme. The results show that our approximate Rie-
mannian Newton scheme is significantly faster in cases when the application of the
linear operator is expensive. For the special case of approximating the discretized
d-dimensional Laplace equation in the Tucker format, we obtain a direct extension
of an existing low-rank solver for Lyapunov matrix equations [15].
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A Note on Rank-One Subspace Modifications and some Remarks on

the Canonical Stiefel Logarithm

Ralf Zimmermann

As with the corresponding talk, this extended abstract is divided into two vir-
tually independent parts. The first part is on a geometric approach to rank-one
subspace modifications while the second part reports on a recent development in
computing the Riemannian logarithm map on the Stiefel manifold with respect to
the canonical metric.

1. Part: Rank-one subspace updates

Introduction. Investigations on the behaviour of matrix decompositions under
perturbations of restricted rank have a long tradition [2–5, 7, 9]. Of special im-
portance in many applications are rank-one modifications Xnew = X + abT of a
given matrix X ∈ Rn×p with either known (thin) singular value decomposition
(SVD) or known (compact) QR-decomposition. In the former case, the matrix X
is factorised as X = UΣV T , where U ∈ Rn×p is column-orthogonal, Σ ∈ Rp×p is
diagonal and V ∈ Rp×p is orthogonal. In the latter, the matrix X is factorised as
X = QR, where Q ∈ Rn×pis column-orthogonal and R ∈ Rp×p is upper triangular.

Observe that in both cases, the matrix decomposition is of the form X = UW ,
with a column-orthogonal matrix U such that UTU is the p-by-p identity matrix
Ip. Hence, the SVD and the QR-decomposition provide an orthonormal basis
(ONB) for the range of X , i.e., the subspace X = colspan(X). From an abstract
perspective, U and Q are to be considered as points on the Stiefel manifold

St(n, p) = {U ∈ Rn×p| UTU = Ip}

that represent subspaces [U ] = colspan(X) = [Q] on the Grassmann manifold

Gr(n, p) = {X ⊂ Rn| X subspace, dim(X ) = p},

where we consider the Grassmannian as a quotient of the Stiefel manifold under
actions of the orthogonal group Op in the following sense:

Gr(n, p) = St(n, p)/Op =
{
{UR|R ∈ Op}| U ∈ St(n, p)

}
= {[U ]| U ∈ St(n, p)}.

For more details, see [1, 6].
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Rank-one subspace updates. Let X = UW , where U ∈ St(n, p) is an ONB for
X = [U ]. The classical approach [3–5] to the rank-one update problem

UnewWnew = Xnew = X + abT = UW + abT

is via writing the update in factorised form as

UW + abT = (U | q)K, (U | q) ∈ St(n, p+ 1), K ∈ Rp+1×p.

Here, the component q of the vector a that is orthogonal w.r.t. U is appended as an
extra column and the update problem reduces to computing the SVD or the QR-
decomposition of the matrix K. If K = ŨW̃ is established, then Unew = (U | q)Ũ
is the updated subspace representative. Neglecting the costs of the decomposition
of K, this requires a matrix product of O(n(p+ 1)p) = O(np2) FLOPS.1

Our contribution is a method that provides the subspace [Unew] together with
an ONB at a reduced cost of O(np) FLOPS and in closed form. This is achieved
via a geometric approach [11]. One can show that the modified subspace Xnew =
colspan(X+abT ) can be reached via a geodesic path starting in [U ] = colspan(X)
with a suitable tangent velocity vector ∆

t 7→ ExpGr[U ](t∆),

where ExpGr[U ] denotes the Riemannian exponential on the Grassmann manifold.

In this way, the rank-one update problem is reduced to the problem of finding a
suitable starting velocity ∆ ∈ T[U ]Gr(n, p). The following theorem provides both
∆ and [Unew]. For details and proofs, see [11].

Theorem 1 ( [11]). Consider the rank-one update problem Xnew = X + abT =
UW + abT . From this data, compute the following quantities:

q̃ = (I − UUT )a, q =
q̃

‖q̃‖ , w̃ = −W−T b, w =
w̃

‖w̃‖ , ω =
1

‖q̃‖(1 − a
TUw̃),

g = (w̃, ω)T , α =
|ω|
‖g‖ − 1, β = −sign(ω)‖w̃‖‖g‖ .

Then, the unit tangent vector ∆ := qwT is such that the geodesic that starts at
[U ] with velocity ∆ meets the point [Unew] = colspan(Xnew). In particular,

[Unew] = ExpGr[U ](t
∗∆) = [U + (αUw + βq)wT ] ∈ Gr(n, p),

where t∗ = arccos
(

|ω|
‖g‖

)
is the Riemannian distance between [Unew] and [U ].

2. Part: Some remarks on the canonical Stiefel logarithm

Introduction. Many data processing methods on Riemannian manifolds make
use of local normal coordinates for mapping data back and forth between the
curved manifold and its flat tangent space. This is via the Riemannian logarithm

1floating point operations
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and the Riemannian exponential, which depend on the chosen metric. On the
Stiefel manifold, the tangent space at U ∈ St(n, p) is

TUSt(n, p) = {∆ ∈ Rn×p|∆ = UA+ U⊥B, a ∈ Rp×pskew, B ∈ Rn−p×p}.

The Euclidean metric on TUSt(n, p) is the one inherited from the ambient Rn×p:

gE(∆,∆) = trace(∆T∆) = trace(ATA) + trace(BTB).

The canonical metric arises from intrinsic considerations, see [6], and reads

gC(∆,∆) = trace(∆T (I − 1/2UUT )∆) =
1

2
trace(ATA)) + trace(BTB).

An algorithm for computing the exponential w.r.t. the canonical metric was de-
rived in [6] and proceeds as follows.

• Input: U ∈ St(n, p), ∆ ∈ TUSt(n, p).
– QR := (I − UUT )∆, (QR of normal component)
– A := UT∆, (horizontal component)

–

(
M
N

)
:= expm

((
A −RT
R 0

))(
Ip
0

)
∈ R2p×p

• Output: Ũ := ExpStU (∆) = UM +QN ∈ St(n, p)

The Riemannian logarithm. It turns out that the essential building block for
computing the associated Riemannian logarithm is solving the following nonlinear
matrix equation [8, 10]:

(1) (0 | Ip) logm
((

M X0

N Y0

)(
Ip 0
0 Φ

))(
0
Ip

)
=: (0, | Ip) logm(VW )

(
0
Ip

)
!
= 0.

The matrix blocks M,N are obtained from the input data and X0, Y0 constitute

a suitable orthogonal completion such that V =

(
M X0

N Y0

)
∈ O2p. The unknown

variable is Φ ∈ Op. Note that (1) asks us to find Φ such that the lower p-by-p
diagonal block of the matrix logm(VW ) cancels. In [10], I introduced an algorithm
based on the Baker–Campbell–Hausdorff(BCH) series for the matrix logarithm

logm(VW ) = logm(V ) + logm(W ) +
1

2
[logm(V ), logm(W )]

+
1

12

([
logm(V ), [logm(V ), logm(W )]

]
+
[
logm(W ), [logm(W ), logm(V )]

])
+ . . .

Write logm(V ) :=

(
A −BT
B C

)
, logm(W ) :=

(
0 0
0 X

)
. The algorithm [10, Alg.

1] and the associated convergence analysis rely on the observation that with the
choice of X = −C and the corresponding Φ = expm(X), the lower p-by-p block of
logm(VW ) cancels up to terms of third order in the BCH series.
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Towards an improved algorithm. A closer look at the BCH series reveals that
when X is chosen to satisfy the Sylvester equation

C =

(
1

12
BBT − Ip

)
X +X

(
1

12
BBT

)
,

then the third-order terms in the BCH series of the lower p-by-p block cancel
up to terms that are quadratic in C and X . Preliminary experiments show that
this choice of X at every iteration step of [10, Alg. 1] improves the iteration
count by a factor of 2 and accelerates the algorithm by a factor of 1.5. For
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Figure 1. Performance of the canonical Stiefel logarithm with
and without solving a Sylvester equation to obtain the next iterate
for input data on St(n, p), n = 100, 000, p = 500.

random data U0, U1 ∈ St(n, p), n = 100, 000, p = 500, with Euclidean distance
‖U0 − U1‖2 = 0.4734, the original algorithm [10, Alg. 1] takes 8 iterations and
ca. 16.3s while the Sylvester-enhanced version converges to the same accuracy in
4 iterations and 10.5s, see Figure 1.

This observation will be the starting point for further investigations on the
convergence domain and the convergence rate of the Sylvester-enhanced Stiefel
log algorithm.

Remark: A brute-force solution of the non-linear matrix equation (1), say,
via MATLAB’s pre-installed ‘fsolve’-function is non-competitive. For the case at
hand with n = 100, 000, p = 500 it is even unfeasible. For a case with n = 10, 000,
p = 100, it is 2000 times slower. (less than 0.3s vs. 576s≈ 10min)
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Optimal Sensor Selection Using Reduced Models

Olga Mula

(joint work with P. Binev, A. Cohen, J. Nichols)

1. Setting

We consider the recovery problem introduced in [1,2] whose setting is the following
(see also [3,4] for very closely related formulations). Let V be a Hilbert space over
a domain Ω ⊂ Rd with inner product 〈·, ·〉 and norm || · ||. We want to approximate
an unknown function u ∈ V for which we observe m measurements

zi := ℓi(u), i = 1, . . . ,m,

where the ℓi are independent continuous linear functionals over V . The knowledge
of z = (zi)

m
i=1 is equivalent to that of the orthogonal projection

w = PWm
u,

where Wm := span{ω1, . . . , ωm} and ωi are the Riesz representers of the linear
functionals ℓi. Since there are infinitely many v ∈ V such that PWm

v = w, the
only way to recover u up to a guaranteed accuracy is to combine the measurements
with some a-priori information on u. Our additional assumption is that u belongs
to a manifoldM of functions from V . This hypothesis is relatively natural in the
sense that, if we interpret our setting from a physical point of view, our goal is to
recover from m measures a function u ∈ V which is the state of a physical system.
In general, the system may present different working conditions so the manifoldM
is the set of all possible states. Also, note that the ℓi (or their Riesz representers
ωi) can be seen as the mathematical model for the sensor devises that are placed
in the experiment.
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Since in general M does not have a simple geometry (lack of convexity, for
instance), it is not simple to recover u by working on this set. For certain relevant
types of manifolds like the ones given by the set of solutions of elliptic PDEs, it is
possible to build linear spaces Vn ⊂ V of dimension n such that

sup
u∈M

||u− PVn
u|| ≤ ε(n)

where ε(n) decays at a comparable rate to the optimal one given by the Kol-
mogorov n-width [5]. Therefore, for a given target accuracy ε, one can work with
subspaces Vn of moderate dimension when the width presents a fast decay and this
element is an important ingredient to build recovery schemes that are both accu-
rate, easy and quickly computable. These subspaces are usually called reduced
models.

Given a reduced model Vn and the observation w from the measurements, the
optimal recovery solution u∗(w) is

u∗(w) := argmin{‖v − PVn
v‖ : PWm

v = w}.
It can be computed from the data w by solving a finite set of linear equations.
The worst case performance for this reconstruction is given by

(1) sup
u∈M

‖u− u∗(PWu)‖ =
1

β(Vn,Wm)
εn,

where

β(Vn,Wm) := inf
v∈Vn

‖PWm
v‖

‖v‖ ∈ [0, 1]

plays the role of a stability constant. Note that β(Vn,Wm) > 0 requires that
m ≥ n.

In the rest of this short note, we recall some recent results on optimal sensor
selection that use the above methodology (see [6] for the details) and mention
some connections of the present setting with different fields.

2. Greedy algorithms for optimal sensor placement (see [6])

For a given reduced model space Vn with accuracy εn, it follows from the perfor-
mance formula (1) that one natural objective is to ensure β(Vn,Wm) ≥ β > 0, with
a number of measurements m ≥ n as small possible. Note that taking Wm = Vn
would automatically give the maximal value β(Vn,Wm) = 1 with m = n. How-
ever, in a typical data acquisition scenario, the sensors ωi that span the basis of
Wm are chosen from within a limited class. This is the case for example when
placing m pointwise sensors at various locations within the physical domain Ω.

We model this restriction by asking that the ℓi are picked within a dictionary
D of V ′, that is a set of linear functionals normalized according to

‖ℓ‖V ′ = 1, ℓ ∈ D,
which is complete in the sense that ℓ(v) = 0 for all ℓ ∈ D implies that v = 0. With
an abuse of notation, we identify D with the subset of V that consists of all Riesz
representers ω of the above linear functionals ℓ.
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Our task is therefore to pick {ω1, . . . , ωm} ∈ D in such a way that

(2) β(Vn,Wm) ≥ β > 0,

for some prescribed 0 < β < 1, with m larger than n but as small as possible. In
particular, we may introduce

m∗ = m∗(β,D, Vn),
the minimal value of m such that there exists {ω1, . . . , ωm} ∈ D satisfying (2).

Since finding the optimal measurements from D is in general an np-hard combi-
natorial problem, we explore in [6] two greedy algorithms that are more amenable
for computation. We recall briefly the main results for one of them in the follow-
ing. One important point is to compare the quality of the selected measurements
with respect to the optimal choice. In [6], this is done for simple cases where the
optimal selection is a priori known.
A collective Orthogonal Matching Pursuit algorithm:
Setting W0 := {0}, we iteratively select for k ≥ 1

(3) ωk = argmax
ω∈D

max
v∈Vn,‖v‖=1

|〈ω, v − PWk−1
v〉| = argmax

ω∈D
‖PVn

(ω − PWk−1
ω)‖,

where Wk−1 := span{ω1, . . . , ωk−1}. Note that in the case n = 1, we obtain the
original OMP algorithm applied to a single function v ∈ V .

As to the implementation of this algorithm, we take (φ1, . . . , φn) to be any
orthonormal basis of Vn. Then

‖PVn
(ω − PWk−1

ω)‖2 =

n∑

i=1

|〈ω − PWk−1
ω, φi〉|2 =

n∑

i=1

|〈φi − PWk−1
φi, ω〉|2

Therefore, at every step k, we have

ωk = argmax
ω∈D

n∑

i=1

|〈φi − PWk−1
φi, ω〉|2,

which amounts to a stepwise optimization of a similar nature as in the standard
OMP. Note that, while the basis (φ1, . . . , φn) is used for the implementation, the
actual definition of the greedy selection algorithm is independent of the choice of
this basis in view of (3). It only involves Vn and the dictionary D. Similar to
OMP, we may weaken the algorithm by taking ωk such that

n∑

i=1

|〈φi − PWk−1
φi, ωk〉|2 ≥ κ2 max

ω∈D

n∑

i=1

|〈φi − PWk−1
φi, ω〉|2,

for some fixed 0 < κ < 1. For such a basis, we introduce the residual quantity

rm :=
n∑

i=1

‖φi − PWm
φi‖2,

which is, like before, independent of the choice of the basis. This quantity allows
us to control the validity of (2) since we have

1−β2(Vn,Wm) = sup
v∈Vn,‖v‖=1

‖v−PWm
v‖2 = sup

∑
n
i=1

c2
i
=1

∥∥∥
n∑

i=1

ci(φi−PWm
φi)
∥∥∥
2

≤ rm,
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and therefore (2) holds provided that rm ≤ 1 − β2. In [6], the following conver-
gence result is proven for (rn)n.
Theorem: Let Φ = (φ1, . . . , φn) be an orthonormal basis of Vn and
Ψ = (ψ1, . . . , ψn) ∈ V n be arbitrary. Then the application of the collective OMP
algorithm on the space Vn gives

rm ≤ 4
‖Ψ‖2ℓ1(D)

κ2
(m+ 1)−1 + ‖Φ−Ψ‖2, m ≥ 1.

where ‖Φ−Ψ‖2 := ‖Φ−Ψ‖2V n =
∑n

i=1 ‖φi − ψi‖2.

3. Connections of the present setting with different fields

The recovery of a function u ∈ V from a measurement w belonging to a sampling
spaceWm and using a well-chosen approximation space Vn arises in many different
applications. A non exhaustive list comprises the sampling of bandlimited func-
tions, Fourier sampling or data assimilation combined with reduced models. The
table below lists relevant choices of spaces Vn and Wm.

Some choices for Vn Some choices for Wm

• Polynomial subspaces
• Trigonometric polyno-
mials
• Wavelets
• Reduced models built
from a parametrized
PDE

• Fourier samples
• Convolutions
• Local averages
• Pointwise evaluations

We next give a connection of our setting with subspace distances on Grassmanian
manifolds that was discussed during the workshop. Denoting (ϕj)

n
j=1 and (ωi)

m
i=1

two orthonormal bases of Vn and Wm respectively, we define the m × n cross-
Gramian matrix

G = (〈ωi, ϕj〉)1≤i≤m
1≤j≤n

,

Denoting 0 ≤ σn ≤ σn−1 ≤ · · · ≤ σ1 ≤ 1 its singular values, we have that
β(Vn,Wm) = σn and θn = cos−1 σn is the so-called Asimov principal angle in the
literature about subspace distances on Grassmanian manifolds.

Finally, the topic of optimal sensor placement in the particular setting where
the linear functionals are point evaluations or local averages has been extensively
studied since the 1970’s in control and systems theory. In this context, the state
function to be estimated is the realization of a Gaussian stochastic process and
the error is measured in the mean square sense, rather than in the worst case
performance sense (1) which is the point of view adopted in our work. The function
to be minimized by the sensors locations is then the trace of the error covariance,
while we target at maximizing β(Vn,Wm).
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Some Uniqueness Results for Minimisers of Ginzburg–Landau

Functionals

Radu Ignat

(joint work with Luc Nguyen, Valeriy Slastikov, Arghir Zarnescu)

Model. This report is based on the article [3] where we consider the following
Ginzburg-Landau type energy functional

Eε(u) =

∫

Ω

[1
2
|∇u|2 + 1

2ε2
W (1− |u|2)

]
dx,

with ε > 0 being a fixed parameter, Ω ⊂ Rm (m ≥ 1) is a bounded domain
(i.e., open connected set) with smooth boundary ∂Ω and the potential W ∈
C1((−∞, 1];R+) satisfies

W (0) = 0, W (t) > 0 for all t ∈ (−∞, 1] \ {0}, W is strictly convex.

(The prototype of the nonlinear potential isW (t) = t2/2.) We focus on minimisers
of the energy Eε over the following set

A := {u ∈ H1(Ω;Rn) : u = ubd on ∂Ω}, n ≥ 1,

consisting of H1 maps with a given boundary data (in the sense of H1/2-trace on
∂Ω):

ubd ∈ H1/2 ∩ L∞(∂Ω;Rn).

The direct method in the calculus of variations yields existence of minimizers
uε of Eε over A for all range of ε > 0; moreover, any minimizer uε belongs to
C1 ∩ L∞(Ω;Rn) and satisfies the system of PDEs

(1) −∆uε =
1

ε2
uεW

′(1− |uε|2) distributionally in Ω.

https://hal.archives-ouvertes.fr/hal-01638177
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Aim. We are interested in the question of uniqueness (or its failure) for the
minimisers of Eε in A for all range of ε > 0. If ε is large (i.e., ε ≥ ε0 :=
(|W ′(1)|/λ1(Ω))1/2 where λ1(Ω) is the first eigenvalue of (−∆) on Ω with zero
Dirichlet data), then Eε is strictly convex and thus, there exists a unique solution
uε ∈ A of (1) which is the minimizer of Eε over A. If ε < ε0, the problem is
more delicate. We provide results for this problem in the special case where the
boundary data is non-negative in a (fixed) direction e ∈ Sn−1, i.e.,

(2) ubd · e ≥ 0 Hm−1-a.e. in ∂Ω.

Example 1. In the scalar case n = 1 with zero boundary data ubd = 0 on ∂Ω, if
ε ≥ ε0, then ũε = 0 is the unique solution of (1) in A (so, the unique minimizer
of Eε over A). If ε < ε0, then there exists a unique positive solution uε ∈ A
(i.e., uε > 0 in Ω) of (1) with zero boundary data, see e.g. [1]; as a consequence
of Theorems 1 and 3 (see below), we have that uε and −uε are the only two
minimizers of Eε over A and moreover, the trivial solution ũε = 0 is unstable (i.e.,
the second variation of Eε at ũε is negative in a certain direction).

Example 2. For m = 2 and n = 3, we consider the unit disk Ω ⊂ R2 and the
boundary data carrying a given winding number k ∈ Z \ {0} on ∂Ω:

ubd(cosϕ, sinϕ) = (cos(kϕ), sin(kϕ), 0) ∈ S1 × {0} ⊂ R3, ∀ϕ ∈ [0, 2π).

(Note that ubd satisfies (2) in the vertical direction e3.) As a consequence of
Theorem 1 (see below), there exists εk > 0 such that
a) if ε ≥ εk, the unique minimizer of Eε over A is given by

ũε := f̃ε(r)(cos(kϕ), sin(kϕ), 0), r ∈ (0, 1), ϕ ∈ [0, 2π),

where the radial profile f̃ε is the unique solution of the ODE (see e.g. [2])
{
−f̃ ′′

ε − 1
r f̃

′
ε +

k2

r2 f̃ε =
1
ε2 f̃εW

′(1− f̃2
ε ) in (0, 1),

f̃ε(0) = 0, f̃ε(1) = 1;

b) if ε < εk, then Eε admits exactly two minimizers u±ε over A that have the form

u±ε := fε(r)(cos(kϕ), sin(kϕ), 0)± gε(r)(0, 0, 1), gε(r) > 0, r ∈ (0, 1), ϕ ∈ [0, 2π),

where the couple (fε, gε) of radial profiles is the unique solution of the system




−f ′′
ε − 1

r f
′
ε +

k2

r2 fε =
1
ε2 fεW

′(1− f2
ε − g2ε) in (0, 1),

−g′′ε − 1
r g

′
ε =

1
ε2 gεW

′(1 − f2
ε − g2ε) in (0, 1),

fε ≥ 0, gε > 0 in (0, 1),

fε(0) = 0, fε(1) = 1, g′ε(0) = 0, gε(1) = 0.

Moreover, the solution ũε of (1) (given at point a) above) is unstable if ε < εk.

These examples suggest the following phenomenology: if V = Spanubd(∂Ω)
has co-dimension ≥ 1 in Rn, then non-uniqueness of minimizers of Eε over A is
equivalent with the existence of “escaping” solutions uε ∈ A of (1) (i.e., uε(Ω) 6⊂
V ). This is highlighted by the following result:
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Theorem 1 ( [3]). Let uε ∈ H1 ∩ L∞(Ω;Rn) be an “escaping” critical point of
the energy Eε over A such that uε · e > 0 a.e. in Ω in some direction e ∈ Sn−1

for some ε > 0. Then uε is a minimiser of Eε over A and we have the following
dichotomy:
a) If ubd(x0) · e > 0 for some Lebesgue point x0 ∈ ∂Ω, then uε is the unique
minimiser of Eε over A.
b) If ubd(x) · e = 0 for Hm−1-a.e. x ∈ ∂Ω, then all minimisers of Eε in A are
given by Ruε where R ∈ O(n) is an orthogonal transformation of Rn satisfying
Rx = x for all x ∈ Spanubd(∂Ω).

Using the above theorem, we prove the following result which completely char-
acterises uniqueness and its failure for minimisers of the energy Eε over A under
the assumption (2) for the boundary data ubd.

Theorem 2 ( [3]). Let ε > 0. If (2) holds in direction e ∈ Sn−1 and V =
Spanubd(∂Ω), then there exists a unique minimiser uε of the energy Eε over A
unless both following conditions hold:

i) ubd(x) · e = 0 Hm−1-a.e. x ∈ ∂Ω,
ii) the functional Eε restricted to the set

Ares := {u ∈ A : u(x) ∈ Span(V ∪ {e}) a.e. in Ω}
has an “escaping” minimiser ǔε with ũε(Ω) 6⊂ V .

Moreover, if uniqueness of minimisers of Eε in A does not hold, then all minimis-
ers of Eε in A are given by Rǔε where R ∈ O(n) is an orthogonal transformation
of Rn satisfying Rx = x for all x ∈ V .

The “escaping” phenomenon is closely related to stability properties of critical
points if codimRn(V ) ≥ 1 with V = Spanubd(∂Ω). Indeed, by Theorem 1, every
“escaping” critical point uε of Eε over A is in fact a minimiser and there are mul-
tiple minimisers as one can reflect uε about the orthogonal space to the escaping
direction (so, non-uniqueness holds in this case). On the contrary, we show in the
following that for a “non-escaping” critical point uε of Eε over A (i.e., uε(Ω) ⊂ V ),
its stability is equivalent with its minimality and therefore, by Theorem 2, uε is
the unique minimiser.

Theorem 3 ( [3]). Assume that V = Spanubd(∂Ω) ⊂ e⊥ = {v ∈ Rn : v · e = 0}
for a direction e ∈ Sn−1. For any fixed ε > 0, if uε is a bounded critical point of
Eε in A confined in e⊥, i.e., uε ∈ L∞(Ω; e⊥) and uε is stable in direction e, i.e.,

d2

dt2
∣∣
t=0

Eε(uε+ tϕe) =

∫

Ω

[
|∇ϕ|2− 1

ε2
W ′(1−|uε|2)ϕ2

]
dx ≥ 0 for all ϕ ∈ H1

0 (Ω),

then uε is a minimiser of Eε in A. Moreover, if uε is “non-escaping”, i.e., uε(Ω) ⊂
V , then uε is the unique minimiser of Eε in A.

Our results hold true also for the harmonic map problem, thus covering the
well-known result of Sandier and Shafrir [4] on the uniqueness of minimising har-
monic maps into a closed hemisphere. In fact, our argument does not assume the
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smoothness of boundary data and does not use the regularity theory of minimising
harmonic maps, which appears to play a role in the argument of [4].
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Variational Convergence of Discrete Minimal Surfaces

Max Wardetzky

(joint work with Henrik Schumacher)

Consider a finite set Γ = {Γ1,Γ2,Γ3, . . . } of closed embedded curves in Rm. Among
all surfaces of prescribed topology spanning Γ find those with least (or more pre-
cisely critical) area. Solutions of this problem are known as minimal surfaces—an
extensively studied problem. In the 1930s, Radó and Douglas independently solved
the least area problem for the special case of disk-like, immersed surfaces. To date,
though, less is known about the existence of minimisers for the general case.

A natural question is how to compute minimal surfaces using finite dimensional
approximations. Already Douglas followed this approach using finite differences.
A more flexible option is to consider a given finite set Γ of embedded boundary
curves in R3, followed by spanning a triangle mesh into Γ and moving the positions
of interior vertices such that the overall area of the triangle mesh is minimised.
Following this approach, several authors have applied Newton-like methods for
finding critical points of the area functional and gradient descent (the discrete
mean curvature flow) in order to produce discrete minimisers. With these tools at
hand, the question remains whether the so obtained discrete minimisers converge
to smooth minimal surfaces and if so in which sense?

One approach for which such convergence of discrete minimisers could be estab-
lished is based on adapting Douglas’ existence proof for disk-like minimal surfaces:
Instead of the area of (unparameterised) surfaces, the Dirichlet energy of confor-
mal surface parameterizations is minimised under the constraint of the so-called
three point condition. Several authors have utilised this idea in order to compute
numerical approximations of minimal surfaces via finite element analysis. How-
ever, these energy methods (which are based on minimising the Dirichlet energy
instead of the area functional) face certain difficulties. E.g., in dimension greater
than two, Dirichlet energy is no longer conformally invariant and minimisers of
the Dirichlet energy need not minimise area.
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In contrast, the Ritz method, i.e., the approach of minimising area (or volume)
among simplicial manifolds, is in principle capable of treating any dimension, co-
dimension, and topological class with a single algorithm. This is the approach we
follow here. Even non-manifold examples can be treated with this method. These
advantages come at a cost, though, since showing convergence of the Ritz method
is hampered by several difficulties, including that (i) simplicial manifolds capture
smooth boundary conditions only in an approximate sense; hence, they cannot
be utilised to minimise area (or volume) in the space of surfaces with smooth
prescribed boundaries, (ii) smooth minimal surfaces are known to satisfy strong
regularity properties (e.g., they are analytic for sufficiently nice boundary data),
leading to the question in which space and topology smooth and simplicial area
minimisers ought to be compared, (iii) the general least area problem is far from
being convex, and (iv) area minimisers need neither be unique nor isolated; rather,
they are sets in general. These obstacles render the use of convex optimisation
approaches and monotone operators inappropriate (if not impossible) for showing
convergence of discrete (i.e., simplicial) area minimisers.

For these reasons, we suggest a different route for exploring convergence of
discrete minimisers, which in particular is capable of dealing with convergence
of sets. Building on variational analysis, our main result is to prove Kuratowski
convergence of discrete area (and volume) minimisers to their smooth counterparts.
While Kuratowski convergence is weaker than Hausdorff convergence in general,
both notions coincide in compact metric spaces. Kuratowski convergence is related
to the perhaps more familiar notion of Γ-convergence: A sequence of functionals
Γ-converges if and only if their epigraphs converge in the sense of Kuratowski.

We establish Kuratowski convergence by adopting the notions of consistency
and stability, following the often repeated mantra from numerical analysis that
consistency and stability imply convergence. In our setting, consistency refers to
the existence of sampling and reconstruction operators that take smooth manifolds
to simplicial ones and vice-versa, respectively, such that the discrete and smooth
area functionals stay close to one another. Stability refers to a notion of growth
of sublevel sets of the smooth area functional near its (set of) minimisers. Addi-
tionally, we require the notion of proximity, which is motivated by finding a space
in which discrete and smooth minimisers can be compared. Showing consistency,
stability, and proximity is somewhat technically involved and constitutes our main
technical contribution.

As a consequence of Kuratowski convergence we obtain that every cluster point
of discrete area minimisers is a smooth minimal surface and every smooth minimal
surface that globally minimises area is the limit of a sequence of discrete (almost)
minimisers of area. For details, please refer to [1].
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