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Introduction by the Organisers

Four years ago, in March 2014, we (Mireille Bousquet-Mélou (Bordeaux),
Michael Drmota (Vienna), Christian Krattenthaler (Vienna), and Marc

Noy (Barcelona)) had organised a Workshop on “Enumerative Combinatorics”
here at the Mathematische Forschungsinstitut at Oberwolfach. It was apparently
the first of its kind. Now, four years later, it was about time to meet again and
assess the developments which have taken place since then, in particular, to ex-
amine the impact of the previous workshop, and to witness and discuss the recent
trends and most exciting developments in Enumerative Combinatorics. Among
the participants of the two workshops there was of course a non-trivial intersec-
tion. However, many “new” and younger researchers were among us this time, as
particularly “observed” by some of the organisers close to or beyond age 60 . . .
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Indeed, the impact of the last workshop could be felt in several ways. As
expected, the presentations and discussions from 2014 resulted in several new col-
laborations, and in several papers, as could be witnessed on the arχiv. Moreover,
as part of the long-term impact so-to-speak, it was not only once that a speaker of
the present workshop opened her/his talk by saying “Four years ago I learnt about
the problem that I am talking about here; I will now present you the progress that
I made since then.”

This workshop took place May 13–19, 2018. There were over 50 participants
from the US, Canada, Australia, New Zealand, Japan, Korea, India and various
European countries. The program consisted of 11 one hour lectures, accompanied
by 18 shorter contributions and the special session of presentations by three Ober-
wolfach Leibniz graduate fellows. (One more gave a contributed talk.) There was
also an extensive and inspiring problem session extremely efficiently organised and
moderated by Brendan McKay. Three of the one-hour lectures were designated
“keynote lectures” — given by Guillaume Chapuy, Grégory Miermont, and
Igor Pak — which provided overviews of recent exciting developments in prob-
abilistic graph theory, in the theory of random maps, and on linear extensions of
posets, respectively.

In general, the lecturers in this workshop presented the state of the art in various
areas in and/or related to Enumerative Combinatorics, together with relevant
new results. The lectures and short talks ranged over a wide variety of topics
including classical enumerative problems, algebraic combinatorics, asymptotic and
probabilistic methods, statistical physics, methods from computer algebra, among
others. Special attention was paid throughout to providing a platform for younger
researchers to present themselves and their results. This report contains extended
abstracts of the talks and the statements of the problems that were posed during
the problem session.

This was the second workshop held on Enumerative Combinatorics. The goal of
the workshop was to bring together researchers from different fields with a common
interest in enumeration, whether from an algebraic, analytic, probabilistic, geo-
metric or computational angle, in order to enhance collaboration and new research
projects. The organizers believe this goal was amply achieved, as demonstrated
by the strong interaction among the participants and the lively discussions in and
outside the lecture room during the whole week.

On behalf of all participants, the organizers would like to thank the staff and
the director of the Mathematisches Forschungsinstitut Oberwolfach for providing
such a stimulating and inspiring atmosphere.

Mireille Bousquet-Mélou (CNRS, Université de Bordeaux)
Michael Drmota (Technische Universität Wien)
Christian Krattenthaler (Universität Wien)
Marc Noy (Universitat Politècnica de Catalunya, Barcelona)
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Trotignon)
3D positive lattice walks and spherical triangles . . . . . . . . . . . . . . . . . . . . . . 1432

Mathilde Bouvel (joint with Michael Albert and Valentin Féray)
First-order logic for permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1435

Lauren Williams (joint with Sylvie Corteel and Olya Mandelshtam)
Combinatorics of the asymmetric exclusion process on a ring, and
Macdonald polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1435

Olya Mandelshtam (joint with Sylvie Corteel and Lauren Williams)
Tableaux formulae for probabilities of the 2-ASEP on a ring and
Macdonald polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1437

Victor Reiner (joint with Zachary Hamaker)
Weak order on monotone triangles and Terwilliger’s poset . . . . . . . . . . . . 1438

Sergi Elizalde (joint with Ron Adin and Yuval Roichman)
Schur-positive grid classes and cyclic descents of SYT . . . . . . . . . . . . . . . . 1440

Anthony J. Guttmann (joint with Andrew R. Conway and Paul Zinn-Justin)
1324 pattern-avoiding permutations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1442
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Abstracts

From mafia expansion to analytic functions in percolation theory

Agelos Georgakopoulos

(joint work with John Haslegrave and Christoforos Panagiotis)

In [2] we introduced a random graph that admits diverse equivalent definitions.
One of those definitions is as a long range Bernoulli percolation process (see [4]
for definitions) on a group, namely the direct sum

⊕

i∈N
Z2 of infinitely many

copies of the group of two elements. This random graph has only finite clusters
almost surely, thus providing the first example of a long range Bernoulli percolation
process on a group non-quasi-isometric with Z that is subcritical for all values of
the parameter.

The second equivalent definition is given by the following

Proposition 1. For every λ ∈ R+, there is a unique rooted connected random
multi-graph (G(λ), o) with finite average degree which is invariant under the fol-
lowing operation.

(1)

Replace each vertex v of G(λ) (including the root o) by two vertices v1, v2,
and join v1 to v2 with a random number of edges with distribution Po(λ).
Moreover, replace each edge uv of G(λ), with one of the four edges
viuj, i, j ∈ {1, 2}, chosen uniformly at random. All these random ex-
periments are made independently from each other.
Choose the root of the resulting graph to be each of o1, o2 with probability
1
2 .

A third equivalent definition follows the lines of a more general construction of
[1].

In [2] it is proved that the expected size χ(λ) of the component of the root
admits a lower bound exponential in λ and an upper bound doubly exponential in
λ, while simulations suggest that the right order is λcλ.

Trying to understand χ(λ) in this particular random graph lead us to consider
analyticity properties in more general percolation processes. Generalising a result
(and the technique) of Kesten [5], we prove in [3] that the expected size of the
cluster in the subcritical regime of any long- or short-range invariant Bernoulli
percolation model on a countable group is an analytic function of the parameter.

The technique is applicable to other functions than χ(λ), although usually ad-
ditional arguments are needed. The main result of [3] is

Theorem 1. For Bernoulli bond percolation with parameter p on any quasi-
transitive lattice, the percolation density θ(p) is an analytic function in the interval
(pc, 1].

Here, θ(p) is the probability that the component of a fixed vertex is infinite. It
is a well-known question whether θ(p) is analytic above pc for ‘nearest neighbour’
percolation on Zd, see e.g. [4]. Theorem 1 answers this for d = 2.
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Asymptotic number and properties of graphs on surfaces

Mihyun Kang

(joint work with Michael Moßhammer and Philipp Sprüssel)

For g ∈ N∪{0} we let Sg be the orientable surface of genus g and Sg(n,m) be the
class of all graphs with vertex set [n] = {1, . . . , n} andm edges that are embeddable
on Sg without crossing edges. Let Sg(n,m) be a graph chosen uniformly at random
from Sg(n,m). For each i ∈ N let Li = Li(G) denote the i-th largest component
of G = Sg(n,m).

We show that Sg(n,m) undergoes two phase transitions. The first phase tran-
sition mirrors the classical phase transition in the Erdős–Rényi random graph and
it takes place when the giant component emerges.

Theorem 1. Let m =
(

1 + λn−1/3
)

n
2 , where λ = λ(n) = o(n1/3).

(1) If λ → −∞, then for every i ≥ 1 whp Li is a tree of order

(2 + o(1))
n2/3

λ2
log(−λ3).

(2) If λ → c for a constant c ∈ R, then the probability that G has complex
components is bounded away both from 0 and 1. For i ≥ 1, whp the i-th
largest component has order

Θp(n
2/3).

(3) If λ → ∞, then whp L1 has genus g, is complex, and has order

λn2/3 +Op(n
2/3).

The rest G \L1 of the graph is planar whp and has Op(1) complex compo-

nents, each of which has order Op(n
2/3).

For i ≥ 2, we have |Li| = Θp(n
2/3). The probability that G has at least

i complex components is bounded away both from 0 and 1.
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The second phase transition occurs when the giant component covers almost
all vertices of the graph. This kind of phenomenon is strikingly different from the
Erdős–Rényi random graph and has only been observed for graphs on surfaces.

Theorem 2. Let m =
(

2 + ζn−2/5
)

n
2 , where ζ = ζ(n) = o(n2/5). Then whp the

largest component L1 has genus g, is complex, and

n− |L1| =











(1 + o(1)) |ζ|n3/5 if ζ → −∞,

Θ
(

n3/5
)

if ζ → c ∈ R,

Θ
(

ζ−3/2n3/5
)

if ζ → ∞, but ζ = o((log n)−2/3n2/5).

Whp all other components of G are planar and for i ≥ 2, we have

|Li| =















Θp

(

|ζ|2/3 n2/5
)

if ζ → −∞,

Θp

(

n2/5
)

if ζ → c ∈ R,

Θp

(

ζ−1n2/5
)

if ζ → ∞, but ζ = o((log n)−2/3n2/5).

When the number of edges is between the regimes of the two phase transitions,
that is, the average degree of the graph is between one and two, the largest com-
ponent is complex, has genus g, and its order is linear both in n and in the average
degree of the graph.

Theorem 3. Let m = dn
2 , where d = d(n) converges to a constant in (1, 2). Then

whp the largest component L1 has genus g, is complex, and has order

|L1| = (d− 1)n+Op

(

n2/3
)

.

Whp all other components of G are planar and for i ≥ 2, we have |Li| = Θp(n
2/3).

For m = dn
2 with d > 1, the Erdős–Rényi random graph G(n,m) whp has a

largest component of order (1 + o(1))βn, where β is the unique positive solution
of the equation

1− β = e−αβ .

The components of G(n,m) can be explored via a Galton-Watson branching pro-
cess with offspring distribution Po(d); the survival property of such a process is
given by β above, yielding order (1+o(1))βn of the largest component. For graphs
on surfaces, however, there is no such simple approach to explore components.

More precisely, the local structure of G(n, dn
2 ) converges to that of a Galton-

Watson tree with offspring distribution Po(d) in the sense of Benjamini-Schramm
local weak convergence. For Sg(n,m), the additional constraint of the graph being
embeddable on Sg, exploration via a simple Galton-Watson type process is not
possible. This naturally raises the question if the local structure of Sg(n,m) can
be described in terms of the Benjamini-Schramm local weak convergence.

Problem 1. What is the limit of the local structure of Sg(n,m) in the sense of
the Benjamini-Schramm local weak convergence?
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Figure 1. Rescaled order of the largest component of G(n,m)
and of Sg(n,m).

From exact enumeration to asymptotics in Algebraic Combinatorics

Greta Panova

(joint work with Alejandro H. Morales, Igor Pak and Damir Yelliussizov)

The dimension of the irreducible representations of the Symmetric Group (simi-
larly GLn) are given by the hook-length formulas (hook-content formulas), which
as compact explicit product formulas have allowed for extensive both from enumer-
ative/bijective Combinatorics but also asymptotic/probabilistic characterizations
for the ”typical” representations and limit behavior. However, no such explicit
product formulas are known for any other quantities in the world of Algebraic
Combinatorics (skew shape SYTs and SSYTs, Kostka, Littlewood-Richardson and
Kronecker coefficients, Schubert polynomial evaluations etc).

Recently, Ikeda-Naruse discovered a generalization of the hook-length formula
for the number of skew SYTs:

(1) fλ/µ = |λ/µ|!
∑

D∈E(λ/µ)

∏

u∈[λ]\D

1

h(u)
,

where E(λ/µ) is the set of excited diagrams of λ/µ, obtained by pushing the boxes
of the Young diagram of µ along diagonals within the Young diagram of λ.

In a series of papers [1, 2, 3] we developed and generalized this formula further,
giving different proofs (from a purely algebraic, through direct bijection, to lattice-
path LGV formula interpretations), and further used it to observe many interesting
phenomena like explicit product formulas for certain skew SYTs and Schubert
polynomials, lozenge tilings under multivariate weights, etc.

We also used the compact formulation of this formula to derive asymptotics of
the number of skew SYTs in [4]. In particular using the immediate upper and
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lower bounds from equation (1) for the largest term given by

F (λ/µ) := n!
∏

u∈λ/µ

1

hu
,

we obtain that F (λ/µ) ≤ fλ/µ ≤ |E(λ/µ)|F (λ/µ). In various regimes the higher
order term is F (λ/µ) which gives the first order asymptotics of fλ/µ:

Theorem 1. Let ω, π : [0, a] → [0, b] be continuous non-increasing functions, and
suppose that area(ω/π) = 1. Let {λ(n)/µ(n)} be a sequence of skew shapes with
the stable shape ω/π, i.e. [λ(n)]/

√
n → ω, [µ(n)]/

√
n → π. Then

log fλ(n)/µ(n) ∼ 1

2
n logn as n → ∞.

Suppose (
√
N − L)ω ⊂ [λ(n)](

√
N + L)ω for some L > 0, similarly µ(n) wrt π,

then

−
(

1 + c(ω/π)
)

n+ o(n) ≤ log fλ(n)/µ(n) − 1

2
n logn

≤ −
(

1 + c(ω/π)
)

n+ log E(λ(n)/µ(n)) + o(n),

as n → ∞, where

c(ω/π) =

∫∫

ω/π

log h(x, y)dxdy,

where h(x, y) is the hook length from (x, y) to ω.

Similar bounds can be obtained for other regimes: in the Thoma-Vershik-Kerov
limit with linearly growing Frobenius coordinates, then log fλ/µ ∼ Cn, where C
can be computed explicitly from the limit shapes. When the limit shape is “thin”
then log fλ/µ ∼ n log(n).

Skew SYTs are closely related to straight-shape SYTs via the Littlewood-
Richardson rule. The connections prompt an exploration of the next step – the
asymptotics of Littlewood-Richardson and Kronecker coefficients. Stanley used
certain summation formulas to deduce that the maximal Kronecker coefficient
and the maximal Littlewood-Richardson coefficient are asymptotically

max
λ⊢n

max
µ⊢n

max
ν⊢n

g(λ, µ, ν) =
√
n! e−O(

√
n) ,

max
0≤k≤n

max
λ⊢n

max
µ⊢k

max
ν⊢n−k

cλµ,ν = 2n/2−O(
√
n).

In [6] we gave answers to when (for which triples of partitions) these coefficients
are asymptotically maximal, answering Stanley’s conjecture. In particular, using
various different summation formulas involving combinations of dimensions (i.e.
the numbers fλ etc) and these coefficients we conclude:

Theorem 2. Let {λ(n) ⊢ n}, {µ(n) ⊢ n}, {ν(n) ⊢ n} be three partitions sequences,
such that

(2) g
(

λ(n), µ(n), ν(n)
)

=
√
n!e−O(

√
n).
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Then all three partition sequences are Plancherel (i.e. VKLS shape, equivalently

asymptotically maximal dimensions ∼
√
n!). Conversely, for every two Plancherel

partition sequences {λ(n) ⊢ n} and {µ(n) ⊢ n}, there exists a Plancherel partition
sequence {ν(n) ⊢ n}, s.t. (2) holds.

We further determine, in a similar spirit, the families of partitions for which
the Littlewood-Richardson coefficients are asymptotically maximal.

Finally, inspired by Stanley’s ”Schubert Shenanigans”, in [5] also study the
asymptotics of the evaluation at 1s of the Schubert polynomials, in particular
looking for their maximal values and obtain a new lower bound, which is a conjec-
tured maximum. Let Sw(x1, . . .) be the Schubert polynomial for a permutation

w ∈ Sn. Let u(n) := maxw∈Sn Sw(1
n). Stanley conjectured that limn→∞

log2 u(n)
n2

should exist and showed that if it does it is in [1/4, 1/2]. Motivated by a conjec-
ture of Merzon-Smirnov that the asymptotic maximum is achieved at a “layered”
(Richardson) permutation

w(bk, bk−1, . . . , b1) :=
(

w0(bk), bk + w0(bk−1), . . . , n− b1 + w0(b1)
)

,

in [5] we found the sequences (b1, . . .) giving the asymptotic maxima among those
permutations, showing that

lim
n→∞

max
b1+···=n

log2 Sw(b1, . . .)(1
n)

n2
=

γ

log 2
≈ 0.2932362762,

where γ is the root of a given explicit equation. This also improves Stanley’s lower
bound.

This area, of asymptotic study of quantities from Algebraic Combinatorics like
degrees and structure constants, is barely explored and we have just scratched
its mysterious surface. The current findings pose numerous further question and
show a need for new methods allowing us to extract asymptotics without having
explicit formulas.
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Asymptotics of skew standard Young tableaux

Jehanne Dousse

(joint work with Valentin Féray)

The Young diagram of a partition n = λ1 + · · ·+ λs is a diagram made of s rows
of left-justified boxes, the i-th row having λi boxes. A standard Young tableau
(SYT) is a filling of the boxes of a Young diagram of size n with the numbers 1
to n, such that the rows and columns are increasing. The hook-length formula
of Frame, Robinson and Thrall [1] allows one to compute the number of SYTs of
a certain shape. This has many applications in algebraic combinatorics, discrete
probability and representation theory.

SYTs of skew shapes (a diagram obtained by removing a Young diagram of size
k from the top left corner of a larger Young diagram of size n) have also been a
subject of interest, but there is no efficient exact formula for their number. But
it is also interesting to study them from an asymptotic point of view. Recently,
Morales, Pak and Panova [2] have showed that in certain particular cases (with
k of the order of n), the hook-length formula gives a good approximation for the
number of skew-SYTs.

In joint work with Valentin Fray, we used a different approach based on bounds
for characters of the symmetric group to study the asymptotics in other cases.
So far we have been focusing mainly on the case where the Young diagrams are
balanced, i.e. the largest part and number of parts of λ (resp. µ) are at most

L
√
n (resp. L

√
k). Our main result is an asymptotic expansion at any order when

k = o(n
1
3 ):

Theorem 1. Let λ ⊢ n and µ ⊢ k be balanced, with k = o
(

n1/3
)

. Then for any
natural integer r (not depending on k and n), we have as n tends to infinity,

|µ|! f
λ/µ

fλfµ
=
∑

σ∈Sk,
|σ|≤r

χλ(σ)

fλ

χµ(σ)

fµ
+O

(

(

k
3
2n− 1

2

)r+1
)

.

We also get a sharp asymptotic bound in the case k ≤ C
√
n, where C is some

constant. For k > C
√
n, we obtain an asymptotic bound, but we do not think it

is sharp. Very likely several other techniques will be needed to treat other cases.
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A bijective proof of the hook-length formula for skew shifted shapes

Matjaž Konvalinka

The celebrated hook-length formula gives an elegant product expression for the
number of standard Young tableaux of fixed shape λ:

fλ =
|λ|!

∏

u∈[λ] h(u)

Here h(u) is the hook length of the cell u.

The formula gives dimensions of irreducible representations of the symmetric
group. The formula was discovered by Frame, Robinson and Thrall in [4] based
on earlier results of Young [23], Frobenius [5] and Thrall [22]. Since then, it has
been reproved, generalized and extended in several different ways, and applied in
a number of fields ranging from algebraic geometry to probability, and from group
theory to the analysis of algorithms.

Interestingly, an identical formula (when hook lengths are defined appropri-
ately) also holds for strict partitions and standard Young tableaux of shifted
shape. Even though it was discovered before the formula for straight shapes [22],
it is typically considered the “lesser” of the two: less interesting, and with more
complicated proofs. Shortly after the famous Greene-Nijenhuis-Wilf probabilistic
proof of the ordinary hook length formula [7], Sagan [20] extended the argument to
the shifted case. The proof needs a careful analysis of special cases and a delicate
double induction, and therefore lacks the intuitiveness of the original hook-walk
proof. In 1995, Krattenthaler [13] provided a bijective proof. While short, it
is very involved, as it needs a variant of Hillman-Grassl algorithm, a bijection
that comes from Stanley’s (P, ω)-partition theory, and the involution principle of
Garsia and Milne. A few years later, Fischer [3] gave the most direct proof of
the formula, in the spirit of Novelli-Pak-Stoyanovskii’s [18] bijective proof of the
ordinary hook-length formula. At almost 50 pages in length, the proof is very
involved. Bandlow [1] gave a short proof via interpolation, and there is a variant
of the hook-walk proof in [12]; again, special cases need to be considered, and the
bijection is hard to describe succinctly. There are also many generalizations of
both formulas, such as the q-version of Kerov [9], and its further generalizations
and variations (see [6, 10] and also [2]). There are also a great number of proofs of
the more general Stanley’s hook-content formula (see e.g. [21, Corollary 7.21.4]),
see for example [19, 14, 15]. Morales, Pak and Panova wrote a series of the papers
on the topic of Naruse’s formulas, the most relevant to this paper being [16].

There is no (known) product formula for the number of standard Young tableaux
of skew shape (straight or shifted), even though some formulas have been known
for a long time. In 2014, Hiroshi Naruse [17] presented and outlined a proof of
a remarkable cancellation-free generalization for skew shapes, both straight and
shifted. Here we present one of the (two) formulas for shifted shapes.
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An excited move (of type B) means that we move a cell (i, j) of a shifted diagram
to position (i+1, j+1), provided that the cells (i+1, j), (i, j+1) and (i+1, j+1)
are not in the diagram.

Let E(λ/µ) denote the set of all excited diagrams of shifted shape λ/µ, diagrams
in [λ] obtained by taking the diagram of µ and performing series of excited moves
in all possible ways. They were introduced by Ikeda and Naruse [8].

Naruse’s formula says that

(1) fλ/µ = |λ/µ|!
∑

D∈E(λ/µ)

∏

u∈[λ]\D

1

h(u)
=

|λ/µ|!
∏

u∈[λ] h(u)

∑

D∈E(λ/µ)

∏

u∈D

h(u)

where all the hook lengths are evaluated in the diagram of λ.

Our main result is the following formula, valid for strict partitions λ, µ and for
commutative variables xi:





∑

k∈W(µ,λ)

xk





∑

D∈E(λ/µ)

∏

(i,i)∈D

xi

∏

(i,j)∈D
i<j

(xi + xj)

=
∑

µ⋖ν⊆λ

∑

D∈E(λ/ν)

∏

(i,i)∈D

xi

∏

(i,j)∈D
i<j

(xi + xj),

whereW(µ, λ) is a certain finite subset of positive integers. The formula specializes
to a recursive versions of equation (1).

Like in [11], the proof of the formulas is bijective and uses a simple bumping
algorithm.

The fact that the algorithm is so easy to describe (it takes less than a page!)
is quite remarkable. One would hope that this fact will help the shifted hook-
length formula overcome its “lesser” status; indeed, how can it be lesser if it is a
straightforward generalization with a bijective proof that is not more complicated
in any way?

Of course, simplicity of definition does not imply that an algorithm is computa-
tionally efficient. It can be proved that the number of steps needed can be 2Ω(

√
n)

for partitions λ, µ of size at most n.
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Monotone Triangles and Operator Formulae – A Combinatorial
Approach

Hans Höngesberg

A Gelfand–Tsetlin pattern of order n is a triangular array of integers of the fol-
lowing form

a1,1
a2,1 a2,2

... · · · . . .

an−1,1 · · · · · · an−1,n−1

an,1 an,2 · · · an,n−1 an,n

which is weakly increasing along northeast and southeast diagonals, i.e. ai,j ≤
ai−1,j ≤ ai,j+1 for 1 ≤ j < i ≤ n. Gelfand–Tsetlin patterns were originally
introduced in [5, p. 655] to enumerate the irreducible representations of the general
linear Lie algebra gln(C).

If we fix a sequence (k1, . . . , kn) of weakly increasing integers k1 ≤ · · · ≤ kn,
we denote the number of Gelfand–Tsetlin patterns of order n with bottom row
(k1, . . . , kn) by GT(n; k1, . . . , kn). It is known that these patterns are enumerated
by the following formula:

GT(n; k1, . . . , kn) =
∏

1≤i<j≤n

kj − ki + j − i

j − i
.

This can be shown via a bijection between Gelfand–Tsetlin patterns and certain
semistandard Young tableaux (see [7, pp. 313–314]) or via a translation into a
enumeration problem of non-intersecting lattice paths (see [3, Appendix A]).

We are interested in a special type of Gelfand–Tsetlin patterns, namely mono-
tone triangles. These are Gelfand–Tsetlin patterns with strictly increasing rows
in contrast to weakly increasing rows in ordinary Gelfand–Tsetlin patterns. The
number of monotone triangles of order n with a prescribed bottom row (k1, . . . , kn)
with k1 < · · · < kn is denoted by MT(n; k1, . . . , kn).

Monotone triangles are of special interest since they easily generalise alternating
sign matrices. An alternating sign matrix of order n is a square matrix of order
n with entries -1,0 and +1 such that in each row and each column the entries
sum up to 1 and the non-zero entries alternate in sign. As already shown in [6,
pp. 354–355], alternating sign matrices of order n are in one-to-one correspondence
with monotone triangles of order n and bottom row (1, 2, . . . , n).

Monotone triangles with prescribed bottom row (k1, . . . , kn) can be enumerated
by Fischer’s operator formula (see [1, Theorem 1]):




∏

1≤s<t≤n

(

Exs + E−1
xt

− ExsE
−1
xt

)

∏

1≤i<j≤n

xj − xi + j − i

j − i





∣

∣

∣

∣

∣

∣

(x1,...,xn)=(k1,...,kn)

where Ex denotes the shift operator : Exf(x) := f(x+ 1).
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The proof of the operator formula (as in [1, 2]) is so far by no means combi-
natorial. It is rather computational based on induction. However, the shorthand
notation

MT(n; k1, . . . , kn) =
∏

1≤s<t≤n

(

Eks + E−1
kt

− EksE
−1
kt

)

GT(n; k1, . . . , kn)

suggests that there is a combinatorial argument connecting Gelfand–Tsetlin pat-
terns and monotone triangles via shift operators.

Indeed, using the following local rule (due to the inclusion-exclusion principle)
•

≤ ≤
• < •

=
•

<
≤

• •
+

•
≤ <

• •
-

•
<

<

• •
,

we decompose the monotone triangles of order n into a signed sum of 3(
n
2) Gelfand–

Tsetlin patterns with additional inequality conditions between their entries. In
most cases, we are able to associate a sum of shift operators that enumerate these
arrays if applied to GT(n; k1, . . . , kn). Let us give an example:

All the arrays of the following form with bottom row (k1, . . . , kn) and k1 <
· · · < kn such that

•
<

≤
• •

≤ < ≤ <

• • •
<

≤
<

≤
<

<

k1 k2 k3 k4

are enumerated by E3
k1
E2
k2
Ek3E

−1
k4

GT(n; k1, . . . , kn).
Although we are not able to recover the sought-after operator

∏

1≤s<t≤n

(

Eks + E−1
kt

− EksE
−1
kt

)

in this manner, we can, for instance, combinatorially prove operator formulae like

MT(n; k1, k2, k3) =
(

Ek1 − E2
k1

+ E−1
k3

− E−2
k3

+ Ek1E
−1
k3

)

GT(n; k1, k2, k3).

In fact, we know that there is not only one specific operator but rather an entire
ideal of operators that solve the enumeration problem. This is a consequence of
the following theorem due to Fischer (see [4, Lemma 2.5]):

er(Ek1 − Id, . . . ,Ekn − Id)GT(n; k1, . . . , kn) = 0

for 1 ≤ r ≤ n where er denotes the rth elementary symmetric polynomial.
Hence, in order to obtain a combinatorial proof of the operator formula, it will

be sufficient to find a Laurent polynomial P by combinatorial means such that
MT(n; k1, . . . , kn) = P (Ek1 , . . . ,Ekn)GT(n; k1, . . . , kn). Then it must be shown
that P (Ek1 , . . . ,Ekn)−

∏

1≤s<t≤n

(

Eks + E−1
kt

− EksE
−1
kt

)

lies in the ideal generated

by er(Ek1 − Id, . . . ,Ekn − Id). This project is still work in progress.
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Asymptotic enumeration of 4-regular planar graphs

Clément Requilé

(joint work with Marc Noy and Juanjo Rué)

A graph on n vertices is said to be labelled when its vertex set is {1, . . . , n}, simple
when it has no loop nor multiple edge and planar when it is embeddable on the
plane without any edges crossing. The enumeration of labelled simple planar
graphs has been recently the subject of much research; see [10] for a survey on
the area. The problem of counting planar graphs was first solved by Giménez
and Noy [7], while cubic planar graphs where enumerated by Bodirsky, Kang,
Löffler and McDiarmid in [1] (see also [11] for an update). On the other hand,
the enumeration of simpler classes of planar graphs, such as series-parallel graphs
and, more generally, subcritical classes of graphs is easier and well understood [5].

One of the open problems in this area is the enumeration of labelled 4-regular
simple planar graphs. There are several references on the exhaustive generation
of 4-regular planar graphs. Starting with a collection of basic graphs one shows
how to generate all graphs in a certain class starting from the basic pieces and
applying a sequence of local modifications. This was first done for the class of
4-regular planar graphs by Lehel [8], using as basis the graph of the octahedron.
For 3-connected 4-regular planar graphs a similar generation scheme was shown
by Boersma, Duijvestijn and Göbel [3]; by removing isomorphic duplicates they
were able to compute the numbers of 3-connected 4-regular planar graphs up to 15
vertices. It is also the approach of the more recent work by Brinkmann, Greenberg,
Greenhill, McKay, Thomas and Wollan [2] for generating planar quadrangulations
of several types. The authors of [2] use several enumerative formulas to check the
correctness of their generation procedure. However this does not include the class
of 3-connected quadrangulations, which by duality correspond to 3-connected 4-
regular planar graphs, a class for which no enumeration scheme was known until
now.
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In this talk, we present the first asymptotic estimate of the number of labelled
4-regular planar graphs with n vertices, as n → ∞. As a biproduct, we can also
enumerate 3-connected and 2-connected 4-regular planar graphs, as well as simple
4-regular planar maps. The proof is based on an estimation of the growth of the
coefficients of the associated generating function G(x) =

∑

n gn
xn

n! , where gn is the
number of 4-regular planar graphs with n vertices. To that end, we first derive a
polynomial functionnal equation satisfied by the generating function C•(x), count-
ing connected 4-regular planar graphs rooted at a vertex, via a decompostion of
connected graphs following their 3-connected components. From there and using
classical methods from analytic combinatorics [6], we can deduce the asymptotic
estimate for gn.

The main difficulty resides in that we need to access the generating function of
3-connected 4-regular planar multigraphs with two variables: one marking simple
edges and another double edges. This extra variable marking double edges is
necessary to encode the symmetries inherent to the decomposition. We were able
to obtain it by tracking the second variable all the way from quadrangulations,
thus adapting a scheme of Mullin and Schellenberg in [9], to 4-regular planar maps.
By also decomposing them following their 3-connected components, then using
Whitney’s unique embedding theorem [12], we could finally obtain the bivariate
generating function counting 3-connected 4-regular planar multigraphs rooted at
an edge.

The estimate we obtain is of the form gn ∼ g · n−7/2 · ρ−n · n!, where the ex-
ponential growth ρ is computable explicitly as the root of a univariate polynomial
of degree 14. Our scheme however, does not allow us yet to compute the multi-
plicative constant g. For that, one would need to access the bivariate generating
function counting 3-connected 4-regular planar multigraphs, either unrooted or
rooted at a vertex, to then apply the dissymetry theorem for tree-decomposable
classes (see [4]).
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Random tableaux and sorting networks

Robin Sulzgruber

(joint work with Svante Linusson and Samu Potka)

1 2 3 4 5

6 7 8 11

9 10 13

12 14

15

Figure 1. A shifted SYT of staircase shape.

Shifted diagrams and shifted standard Young tableaux (SYT) appear frequently
in combinatorics and related fields. For example, shifted diagrams correspond to
strict partitions and index irreducible projective representations of the symmetric
group [9]. In the theory of partially ordered sets shifted diagrams appear as an
infinite family of d-complete posets [8]. Moreover, shifted diagrams are order filters
in the root poset of type Bn.

Shifted SYT can be seen as linear extensions of shifted diagrams. They are
enumerated by elegant product formulas, called shifted hook-length formulas, and
can be sampled efficiently using hook-walks or jeu de taquin [4]. Moreover, shifted
SYT are in bijection with chains of maximal length in the Tamari lattice, and play
an important role in the analysis of reduced words in the Coxeter group of type
Bn [5].

In joint work with S. Linusson and S. Potka [6] we prove a limit shape theorem
for shifted SYT of staircase shape chosen uniformly at random. For n ∈ N let
N =

(

n
2

)

, let ∆n denote the shifted staircase with N cells, let Xn denote the set
of shifted SYT of shape ∆n, and let Pn denote the uniform probability measure
on Xn.

Theorem 1. There exists a surface L : [0, 1] × [0, 1] → R given by explicit level
curves such that for all ε > 0 we have

lim
n→∞

Pn

(

T ∈ Xn : max
(i,j)∈∆n

∣

∣

∣

∣

T (i, j)

N
− L

(

i

n
,
j

n

)∣

∣

∣

∣

> ε

)

= 0 .
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The surface L was found by B. Pittel and D. Romik as the limit shape of SYT
of square shape [7]. Our proof uses the ideas and results of [7].

(Non-shifted) SYT of staircase shape are in bijection with sorting networks
(reduced words of the reverse permutation) via the Edelman–Greene correspon-
dence [3]. The set Xn can be viewed as a subset of the set of SYT of staircase
shape. The restriction of the Edelman–Greene correspondence yields a bijection
between Xn and 132-avoiding sorting networks, that is, sorting networks in which
all intermediate permutations are 132-avoiding.

The study of random sorting networks was initiated by O. Angel, A. Holroyd,
D. Romik and B. Virág [1]. Their paper contains several intriguing conjectures on
the limit shapes for intermediate permutations and trajectories. Proofs for these
(and other) conjectures were recently announced by D. Dauvergne [2].

We use the Edelman–Greene bijection and the limit shape for shifted SYT of
staircase shape to derive several results on random 132-avoiding sorting networks,
including limit shapes for intermediate permutations and trajectories. Moreover
we show that on average each row and each column of a shifted SYT of staircase
shape contains precisely one adjacency (that is, entries i and i+1 in neighbouring
cells of the tableau), and we state conjectures on the distribution of adjacencies
in random sorting networks.
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Symbolic evaluation of determinants and rhombus tilings of holey
hexagons

Christoph Koutschan

(joint work with Thotsaporn Thanatipanonda)

The following determinant, that counts descending plane partitions, was famously
evaluated by George Andrews [1]:

det
16i,j6n

(

δi,j +

(

µ+ i+ j − 2

j − 1

))

,

where δi,j denotes the Kronecker delta, i.e., δi,j = 1 if i = j and δi,j = 0 otherwise.
The same determinant is also mentioned in [7, Thm. 32] (where µ was replaced by
2µ). One year later, Andrews [2, page 105] came up with a curious determinant
which is a variation of the above:

D(n) := det
16i,j6n

(

δi,j +

(

µ+ i+ j − 2

j

))

.

There a closed-form formula for the quotient D(2n)/D(2n − 1) was conjectured.
It was mentioned (and popularized) again as Problem 34 in [8, page 47], and
it was proven, for the first time, in [5]. However this shows only “half” of the
formula for D(n). The quotient D(2n + 1)/D(2n) remained mysterious, due to
an increasingly large “ugly” (i.e., irreducible) polynomial factor that is always
shared between two consecutive determinants. Thus the determinant D(n) does
not completely factor into linear polynomials, while many similar determinants do.
Not fully satisfied with this situation, the first-named author made a monstrous
conjecture [5, Conj. 6] of the full formula of D(n). As our main theorem, we
present a nicer formula for D(n).

Theorem 1. Let µ be an indeterminate and let ρk be defined as ρ0(a, b) = a and
ρk(a, b) = b for k > 0. If n is an odd positive integer then D(n) equals

(n+1)/2
∑

k=0

ρk
(

4(µ− 2), 1
(2k−1)!

)

(

µ− 1
)

3k−2

2
(

µ
2 + k − 1

2

)

k−1

×





k−1
∏

j=1

(

µ+ 2j + 1
)

j−1

(

µ
2 + 2j + 1

2

)

j−1
(

j
)

j−1

(

µ
2 + j + 1

2

)

j−1





2

×





(n−1)/2
∏

j=k

(

µ+ 2j
)2

j

(

µ
2 + 2j − 1

2

)

j

(

µ
2 + 2j + 3

2

)

j+1
(

j
)

j

(

j + 1
)

j+1

(

µ
2 + j + 1

2

)2

j



 .
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If n is an even positive integer then D(n) equals

n/2
∑

k=0

ρk
(

4(µ− 2), 1
(2k−1)!

)

(

µ− 1
)

3k−2

2
(

µ
2 + k − 1

2

)

k−1





k−1
∏

j=1

(

µ+ 2j + 1
)

j−1

(

µ
2 + 2j + 1

2

)

j−1
(

j
)

j−1

(

µ
2 + j + 1

2

)

j−1





2

×





n/2
∏

j=k

(

µ+ 2j
)

j

(

µ
2 + 2j + 1

2

)

j−1
(

j
)

j

(

µ
2 + j + 1

2

)

j−1









n/2−1
∏

j=k

(

µ+ 2j
)

j

(

µ
2 + 2j + 3

2

)

j+1
(

j + 1
)

j+1

(

µ
2 + j + 1

2

)

j



 .

The proof of Theorem 1 is based on the Desnanot-Jacobi identity, and of com-
puter proofs of some related determinants (see Definition 2). These computer
proofs follow a strategy proposed by Zeilberger [11], that he called the “holo-
nomic ansatz”. Under certain conditions, the proof of a conjectured determinant
evaluation can be reduced to the proof of several holonomic function identities.
Such identities can be proven automatically by employing specialized computer
programs, such as the author’s HolonomicFunctions package [4]. The detailed
computations can be found in the electronic material [6]. We also showed that
Theorem 1 it is equivalent to our monstrous conjecture.

Definition 2. For n, s, t ∈ Z, n > 1, and µ an indeterminate, we define Ds,t(n)
to be the following (n× n)-determinant:

Ds,t(n) := det
s6i<s+n
t6j<t+n

(

δij +

(

µ+ i+ j − 2

j

))

, n > 1.

Note that Andrews’s determinant is a special case of Ds,t(n), namely D(n) =
D1,1(n). The first observation is that Ds,t(n) can be written as a sum of minors.
For example, by iterated Laplace expansion, on gets that

Ds,t(n) =
∑

I⊆{1,...,n−s+t}
(−1)(s−t)·|I| det

(

M I
I+s−t

)

(s > t),

where I + x = {i+ x | i ∈ I} and where M I
J denotes the matrix that is obtained

by deleting all rows with indices in I and all columns with indices in J from

Bs,t(n) :=

((

µ+ i+ j + s+ t− 4

j + t− 1

))

16i,j6n

i.e., the matrix Ds,t(n) without the Kronecker deltas. For t > s there is an
analogous formula.

The second observation is that, by the Lindström–Gessel–Viennot lemma [10, 3],
det
(

Bs,t(n)
)

counts n-tuples of non-intersecting paths in the integer lattice N2:
the starting points are (0, t), (0, t + 1), . . . , (0, t+ n − 1), the end points are (µ +
s− 2, 0), . . . , (µ+ s+ n− 3, 0), and the allowed steps are (1, 0) and (0,−1). Note
that the number of such paths from (0, t+ j − 1) to (µ+ s+ i − 3, 0) is given by
(

µ+i+j+s+t−4
j+t−1

)

, which is precisely the (i, j)-entry of Bs,t(n) (see Figure 1). Then,

det
(

M I
J

)

with |I| = |J | counts the (n− |I|)-tuples of non-intersecting paths when
the starting points with indices I and the end points with indices J are omitted.
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t

t+1

n+t- 1

✁+s - 2 ✁+n+s - 3

Figure 1. Lattice paths, rhombus tilings, and holey hexagon

In the case s = t, the expression
∑

I⊆{1,...,n} det
(

M I
I

)

counts all tuples of non-

intersecting paths for all subsets of starting points (and the same subset of end
points). If s > t then we count only tuples of non-intersecting paths which include
the first s−t starting points and the last s−t end points (and vice versa for t > s).

Third, one observes that the previously described non-intersecting lattice paths
are in bijection with rhombus tilings of a lozenge-shaped region, where some trian-
gles on the border are cut out. These triangles correspond to the starting and end
points. The two types of steps (right and down) correspond to two orientations of
the rhombi, while rhombi of the third possible orientation fill the areas which are
not covered by paths; see the middle part of Figure 1. Note that a row of small
black triangles induces a larger triangular hole, because the tiling on that large
triangle is uniquely determined and hence may be omitted.

By rotating this lozenge by 120◦ and by 240◦, and by putting the three copies
together in a suitable way, one obtains a region (Figure 1 right) whose cyclically
symmetric rhombus tilings are counted by the determinant Ds,t(n), provided that
s− t is even. In the other case the count is weighted by +1 and −1, according to
the length of the tuples of paths. This combinatorial interpretation is due to [9].
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The Z-Dirac and massive Laplacian operators in the Z-invariant Ising
model.

Béatrice de Tilière

We consider Baxter’s Z-invariant Ising model. We prove that certain key quantities
of the Ising model, i.e., the partition function and probabilities of occurrence of
edges in contour configurations, are explicitly expressed as a function of the Z-
invariant massive Laplacian and its inverse, the massive Green function, introduced
in [1]. This establishes a deep relation between classical models of statistical
mechanics: the Ising model, rooted spanning forests, random walks. In proving
these results, we introduce the Z-Dirac operator and relate it to the Z-massive
Green function, extending to the full Z-invariant case results proved by Kenyon at
criticality [2]. Proofs consist in establishing matrix relations allowing to compare
matrix inverses and also, after extra combinatorial work, determinants.
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Enumeration of cyclic orders and consecutive coordinates polytopes

Matthieu Josuat-Vergès

(joint work with Arvind Ayyer and Sanjay Ramassamy)

Computing the volume of a lattice polytope P ⊂ Rn can be seen as an enumerative
problem. Here lattice polytopemeans that all vertices of P have integer coordinates.
Indeed, we can consider a triangulation of the polytope, if possible with unit
simplices all having volume 1

n! , then computing the volume is done by enumerating
simplices. Numerous examples of polytopes leads to such enumeration problem.
A famous example is the Chan-Robbins-Yuen polytope [2].
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In this work, we are interested in polytopes introduced by Stanley in an exercise
of [3]. They are defined by inequalities: Bk,n is the set of vectors (xi)1≤i≤n ∈ Rn

such that:

• xi ≥ 0 for 1 ≤ i ≤ n (coordinates are nonnegative),
• xi + xi+1 + · · · + xi+k−1 ≤ 1 for 1 ≤ i ≤ n + 1 − k (the sum of any k
consecutive coordinates is less than 1).

It is elementary to check that the vertices of the polytopes are vectors with entries
in {0, 1}, so that this is a lattice polytope.

To describe the combinatorics associated with these polytopes, we need to con-
sider total cyclic orders on the set {0, 1, . . . , n}. These can be seen as permuta-
tions of {0, 1, . . . , n} with only one cycle, or configurations of n+1 points labelled
{0, 1, . . . , n} on a circle (one can find the permutation with one cycle by reading the
labels clockwise). Then, we define a set Ak,n of total cyclic orders on {0, 1, . . . , n}
defined by the condition that for all 0 ≤ i ≤ n− k, the tuple (i, i+ 1, . . . , i+ k) is
an oriented cycle, which means starting from i the other elements appear in this
order when reading labels on the circle in a clockwise manner.

Then our fist result is that the volume of Bk,n is 1
n!#Ak,n.

More generally, we are interested in refinements coming from Ehrhart theory
of counting integer points in lattice polytopes [1, 3]. The Ehrhart polynomial of
Bk,n is defined, for any nonnegative integer t, by:

E(Bk,n, t) = #
(

(t · Bk,n) ∩ Zn
)

where t ·Bk,n is the t-times dilated polytope. It is not completely obvious from the
definition that it is polynomial in t, but it is rather straight forward to see that its
leading coefficient is the volume of the polytope. For example for the hypercube
[0, 1]n we get (t+ 1)n.

The Ehrhart polynomial might have negative coefficients, and in general they
are rational numbers. From the combinatorial point of view, the interesting quan-
tity is the Ehrhart h∗-polynomial, defined as follows:

E∗(Bk,n, z) = (1 − z)n+1
∑

t≥0

E(Bk,n, t)z
t.

Indeed, knowing that E(Bk,n, t) is a polynomial of degree n, the sum gives a
rational function, and (1−z)n+1 clears the denominator so that the result is again
a polynomial. It is known that the coefficients of E∗(Bk,n, z) are nonnegative
integers. So, from the combinatorial point of view it is natural to look for a refined
enumeration of Ak,n giving this polynomial. It turns out that the appropriate
statistic is the number of descents. Reading clockwise the numbers in a total
cyclic order, a descent is a number i followed by j with j < i, then we have

E∗(Bk,n, z) =
∑

σ∈Ak,n

zdes(σ).

There are a number of interesting particular cases of these polynomials:

• For k = 1, B1,n is the n-dimensional hypercube and its h∗-polynomial is
the nth Eulerian polynomial.
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• For k = 2, B2,n can be seen as the chain polytope (see [4]) of the so-called
zigzag poset, so that its h∗-polynomial is a refinement of Euler numbers.

• For i ≥ 0, the polytopes Bn+i,2n+i can be seen again as chain polytopes,
so that their h∗-polynomial are identified as the n-th Narayana polynomial
(in particular it does not depend on i).

Just as the Eulerian and Narayana polynomials, E∗(Bk,n, z) is a palindromic
polynomial for any value of k and n, which can be proved by checking that Bk,n is
a Gorenstein polytope (the dilated and translated polytope (k+1)·Bk,n−(1, . . . , 1)
is reflexive).

In general, proving the combinatorial formula for E∗(Bk,n, z) can be done via
a triangulation of the polytopes: we decompose it as a union of unit simplices,
with possible intersection only at their boundaries. Doing that in an appropriate
manner permits to see that each simplex contribute to some power of z to the
h∗-polynomial.

Let us finish this abstract with an open problem. As a variant of the polytope
B2,n, let us consider the polytope defined by the inequalities 0 ≤ xi ≤ 1, and either
xi+xi+1 ≤ 1 or xi+xi+1 ≥ 1 according to some choice of a map {1, . . . , n− 1} →
{±} (a sign sequence). The problem is to understand what is the combinatorics
of the h∗-polynomial of these polytopes.
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Eumeration of partitions with prescribed successive rank parity blocks

Ae Ja Yee

(joint work with Seunghyun Seo)

A partition of a positive integer n is a weakly decreasing sequence of positive
integers whose sum equals n. Let p(n) be the number of partitions of n for n ≥ 1
with p(0) = 1.

In 1944, F. Dyson defined the rank of a partition as the largest part minus the
number of parts and then conjectured that the rank statistic would account for
the following Ramanujan partition congruences combinatorially [8]:

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7).
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Dyson’s conjecture was proved by A. O. L. Atkin and H. P. F. Swinnerton-Dyer
[6]. In search of the crank statistic for

p(11n+ 6) ≡ 0 (mod 11),

whose existence was conjectured by Dyson, Atkin introduced successive ranks and
showed how they would replace the rank statistic in various algebraic expressions
[5].

Successive ranks of a partition are the difference of the i-th row and the i-th
column in the Ferrers graph [2]. In 70’s, G. E. Andrews introduced the concept
of oscillations of successive ranks to obtain various interesting Rogers-Ramanujan
type partition identities using partition sieves [1]. Andrews’ sieve methods and
results were generalized by many mathematicians including Andrews-Bressoud-
Baxter-Burge-Forrester-Viennot [4], Bressoud [7], and Gessel-Krattenthaler [9].

Recently, in the study of singular overpartitions [3], Andrews revisited succes-
sive ranks and parity blocks, which are equivalent to the concept of oscillations.
Motivated by the work of Andrews, we investigate partitions with prescribed suc-
cessive rank parity blocks. Surprisingly, it turns out that the enumeration of such
partitions involves the enumeration of a certain type of tableaux and lattice paths.

In this talk, I will discuss the following results. This is joint work with S. Seo
from Kangwon National University [10].

For a partition λ, if the i-th rank is positive or nonnegative, we say it has
positive or negative parity, respectively. We now divide the successive ranks of λ
into parity blocks. These are sets of contiguous ranks maximally extended along
the main diagonal, where all the ranks have the same parity. We shall say that a
block is positive or negative if it contains positive or negative ranks, respectively.

For positive integers d and m with d ≥ m, let a+m(n; d) and a−m(n; d) be the
numbers of partitions of n into exactly d successive ranks and m parity blocks,
where the last block is positive and negative, respectively. The our main result is
as follows: For d ≥ m ≥ 1,

∞
∑

n=1

a+m(n; d)qn =
qd

2+d+(m2 )

(q; q)2d

1− qm

1− qd

[

2d
d+m

]

and
∞
∑

n=1

a−m(n; d)qn =
qd

2+(m2 )

(q; q)2d

1− qm

1− qd

[

2d
d+m

]

Here, we employ the customary q-series notation:

(a; q)n := (1 − a)(1− aq) · · · (1− aqn−1),
[

n
k

]

:=

{

(q;q)n
(q;q)k(q;q)n−k

, if n ≥ k ≥ 0,

0, otherwise.
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Random planar maps: peeling, slicing and layering

Grégory Miermont

In the past decade, a lot of effort has been done in trying to understand the
properties of distances in various models of large random planar maps. In this
talk, we survey three different approaches that are relevant to the study of geodesic
distances in random planar maps with controlled degrees (in most of the talk those
are assumed to be even, which simplifies many discussions). Fix a sequence of non-
negative weights q = (q1, q2, . . .) and consider the “Boltzmann measure” [23] on
the set of rooted bipartite maps given by

wq(m) =
∏

f∈Faces(m)

qdeg(f)/2 .

We say that q is admissible if the total mass Z(q) of wq is finite, in which case a
map with distribution Pq = wq/Z(q) is called a q-Boltzmann map. We note that
Z(q), which is the generating series of bipartite maps where each face of degree
2k is counted by qk, is also the partition function of the so-called 1-matrix model
in random matrix theory [20, Chapter 3]. For instance, when qi = aδip for some
p ≥ 2 and a > 0, wq is the measure putting mass an on every 2p-angulation of the
sphere with n faces.

The q-Boltzmann maps form a rich model that is also relevant in the study of
more complicated models of decorated random maps, including O(n) loop models
or FK percolation on random planar maps, [22, 5, 6, 7], for which the determination
of the order of distances is a well-known open problem that takes its origin in work
of Watabiki [28], with interesting recent progress by Gwynne, Holden and Sun
[16, 17]. We note that all three approaches described below play important roles,
in different guises, in the program of Miller-Sheffield to construct the Brownian
map metric from Liouville quantum gravity [25, 26, 27].
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The first approach (“slicing”) allows one to control the usual graph distances
in the map. Using a celebrated generalization by Bouttier-Di Francesco-Guitter
[8] of the bijection of Cori-Vauquelin-Schaeffer [13] between maps and labeled
trees, it is possible to relate geodesic distances (for the usual graph distance) in
a q-Boltzmann map M to spatial branching processes [12, 23, 18]. Depending
on whether the offspring distribution of this branching process has finite variance
(coined the generic case in [5]) or is in the domain of attraction of a stable law of
parameter α ∈ (1, 2) (the non-generic case, with the generic case corresponding to
α = 2), the geometric properties of the map M conditioned on having n vertices
are very different as n → ∞. In the generic case, such a large map with graph
distances renormalized by n1/4 converges in distribution in the Gromov-Hausdorff
topology to the so-called Brownian map [24, 21], while in the non-generic case, the
typical distances are of order n1/2α and one-parameter family of limiting “stable
maps” arises [22]. The slicing approach takes its name from the fact the Bouttier-
Di Francesco-Guitter bijection naturally enumerates slices, that are maps with a
boundary made of two geodesic paths of equal length. It was noted by Bouttier-
Guitter [9] that slices play an important role in the enumeration of planar maps
with a boundary, an idea that was used in [4] to show scaling limit results for
generic q-Boltzmann maps with a boundary of size 2ℓ, with distances renormalized
by

√
ℓ, with a limiting metric space called the Brownian disk.

The second approach (“peeling”) is more directly inspired from the Tutte’s
decomposition (a.k.a. Schwinger-Dyson equation in random matrix theory). It was
introduced by [29, 2], but one had to wait for the more recent work [10, 1, 11, 15]
to realize that peeling process can be mathematically used to get a very precise
estimation of the distances, but in the dual q-Boltzmann maps (equivalently, of the
usual graph distance in a model of random maps with controlled vertex degrees).
This led in particular Bertoin, Budd, Kortchemski and Curien [11, 3] to show that
dual graph distances in a q-Boltzmann map with an order of n vertices converging
to a stable map with exponent α ∈ (3/2, 2] are of order n1−3/2α, while distances
shrink to subpolynomial orders for α ∈ (1, 3/2]. In fact, in this situation, it is more
natural to study maps with a boundary, and one should choose the perimeter of
order n1/α to get a map with an order of n vertices.

In the generic case α = 2, one sees that distances are of similar order both
for usual and dual graph distances, and it is natural to expect that the rescaled
distanes converge in both cases to the Brownian map. This was indeed proved by
Curien and Le Gall [14] (along with other types of local modifications of distances,
including first-passage percolation) in the case of uniform triangulations of the
sphere. The proof builds on the third approach (“layering”), which was initially
due to Krikun [19], and decomposes bi-pointed map into a sequence of independent
layers that can be encoded with a branching process whose offspring distribution
is in the domain of attraction of a stable random variable with exponent 3/2. A
drawback of this approach is that it seems to apply well only for specific models
where the face degrees are small.
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Geometry of large Boltzmann outerplanar maps

Benedikt Stufler

(joint work with Sigurður Örn Stefánsson)

Figure 1. A simulation of the α = 1.25 stable looptree.

We study the phase diagram of random outerplanar maps sampled according to
non-negative Boltzmann weights that are assigned to each face of a map. We
prove that for certain choices of weights the map looks like a rescaled version of
its boundary when its number of vertices tends to infinity. The Boltzmann outer-
planar maps are then shown to converge in the Gromov-Hausdorff sense towards
the α-stable looptree introduced by Curien and Kortchemski [1], with the param-
eter α depending on the specific weight-sequence. See Figure 1 for a simulation
of this random object. This allows us to describe the transition of the asymptotic
geometric shape from a deterministic circle to the Brownian tree [2].

In ongoing joint work with Delphin Sénizergues and Sigurður Örn Stefánsson
we construct novel limit objects that are created by blowing up the branch points
of the stable trees into arbitrary spaces. The universality class of these objects
include Boltzmann outerplanar maps that are equipped with certain block weights.
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Boltzmann outerplanar maps may also be studied from a local point of view
and a complete classification of Benjamini–Schramm limits was given in [3].
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An update on matters discussed at Oberwolfach by Ian Macdonald in
May 1977 and David Robbins in May 1982

Roger Behrend

Oberwolfach Workshop 1820 on Enumerative Combinatorics, at which this talk
was given, ran from 13 to 19 May 2018, almost exactly 41 years after Oberwolfach
Workshop 7719 on Kombinatorik, which ran from 8 to 14 May 1977, and almost
exactly 36 years after Oberwolfach Workshop 8219 on Kombinatorik, which ran
from 9 to 15 May 1982. At the May 1977 workshop, a talk was given by Ian Mac-
donald, with the title Plane partitions, and at the May 1982 workshop, two talks
were given by David Robbins, with titles Proof of the Macdonald conjecture and
Alternating sign matrices and descending plane partitions. The essential contents
of these talks can inferred from several sources, including the workshop reports
and handwritten abstracts in the Oberwolfach Digital Archive [11, 12], citations
to the talks (in particular, those by Andrews [1, 2] for the talk by Macdonald),
papers on which the talks were based (in particular, those by Mills, Robbins and
Rumsey [8, 9] for the talks by Robbins), and first-hand written accounts of the
talks (such as those by Bressoud [4] and Zeilberger [14] for the talks by Robbins).

It is clear that the talks included detailed discussions of cyclically symmetric
plane partitions (CSPPs), descending plane partitions (DPPs) and alternating sign
matrices (ASMs). An n-CSPP is a plane partition whose 3-dimensional Ferrers
diagram is contained in an n × n × n box and is invariant under cyclic rotations

of coordinates. For example, there are five 2-CSPPs: ∅, (1),
(

2 1
1

)

,
(

2 2
2 1

)

and
(

2 2
2 2

)

. An n-DPP is a column strict shifted plane partition in which the largest

part is at most n, and the first part of any row is larger than the number of
parts in that row but (except for the first row) no larger than the number of
parts in the row above. For example, there are seven 3-DPPs: ∅, (2), (3), (3 1),

(3 2), (3 3), and
(

3 3
2

)

. An n-ASM is an n × n matrix for which each entry

is 0, 1 or −1, the sum of entries in each row and column is 1, and the nonzero
entries alternate in sign along each row and column. For example, there are seven
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3-ASMs:

(

1 0 0
0 1 0
0 0 1

)

,

(

0 1 0
1 0 0
0 0 1

)

,

(

1 0 0
0 0 1
0 1 0

)

,

(

0 0 1
0 1 0
1 0 0

)

,

(

0 0 1
1 0 0
0 1 0

)

,

(

0 1 0
0 0 1
1 0 0

)

and

(

0 1 0
1 −1 1
0 1 0

)

. Note that every n× n permutation matrix is an n-ASM.

In Macdonald’s May 1977 talk, he conjectured that the generating function for
CSPPs is given by a simple product formula involving q-numbers and q-factorials:

(1)
∑

n-CSPPs C

q
∑

ij Cij =
n−1
∏

i=0

[3i+ 2]q [3i+ 1]q3 !

[3i+ 1]q [n+ i]q3 !
.

The q = 1 case of Macdonald’s conjecture was proved in [1, 2] by Andrews. In [1, 2],
Andrews also introduced DPPs, conjectured that their generating function is given
by a product formula similar to that for CSPPs, i.e.,

(2)
∑

n-DPPs D

q
∑

ij Dij =

n−1
∏

i=0

[3i+ 1]q!

[n+ i]q!
,

and proved the q = 1 case of this conjecture. Furthermore, in [1, 2], Andrews
defined (in a slightly different form) an (n, k)-column strict shifted plane partition
(CSSPP) to be a column strict shifted plane partition in which the largest part is
at most n+ k, and the first part of any row exceeds the number of parts in that
row by exactly k, and showed that

(3) (# of (n, k)-CSSPPs) = 2

⌊(n−1)/2⌋
∏

i=1

(2i+ k + 2)i (2i+ (k + 3)/2)i−1

(i)i (i + (k + 3)/2)i−1

×
⌊n/2⌋
∏

i=1

(2i+ k)i−1 (2i+ (k + 1)/2)i
(i)i (i+ (k + 1)/2)i−1

,

where the Pochhammer symbol has been used. The definition of CSSPPs was
motivated by the facts that (n, 0)-CSSPPs are in simple bijection with n-CSPPs,
and that (n− 1, 2)-CSSPPs are in simple bijection with n-DPPs. Accordingly,
the q = 1 case of (1) is the k = 0 case of (3), and the q = 1 case of (2) is the
k = 2 case, with n replaced by n− 1, of (3). It was subsequently shown by Ciucu
and Krattenthaler [5] that (n, k)-CSSPPs are in simple bijection with cyclically
symmetric rhombus tilings of a hexagon with alternating sides of lengths n and
n+ k, and a central equilateral triangular hole of side length k.

The general cases (i.e., with q arbitrary) of (1) and (2) were proved in [8] by
Mills, Robbins and Rumsey, with the proofs being discussed by Robbins in his first
May 1982 talk. ASMs were introduced, and various conjectures for their enumer-
ation were made, by Mills, Robbins and Rumsey in [8, 9], with these conjectures
being discussed by Robbins in his second May 1982 talk. In particular, it was
conjectured that

(4) (# of n-ASMs) = (# of n-DPPs),
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and that a refinement of this equality, involving three ASM statistics and three
DPP statistics, also holds.

In my talk, I outlined the matters above, and provided some updates (including
a description of current work in progress), as follows. The conjecture (4) was first
proved in 1996 by Zeilberger [13]. Shortly thereafter, a different proof was obtained
by Kuperberg [7]. The three-statistic refinement of (4) was proved in 2012 by
myself, Di Francesco and Zinn-Justin [3]. All of these proofs are nonbijective.

Despite the confirmation of the validity of (4), several difficult problems remain
unresolved. The most important of these is probably that of finding a bijective
proof of (4). Stanley [10, Prob. 226] described this (together with associated prob-
lems) as “one of the most intriguing open problems in the area of bijective proofs”,
while Krattenthaler [6] (in a Festschrift for Stanley) wrote that “the greatest, still
unsolved, mystery concerns the question of what plane partitions have to do with
ASMs”.

Another open problem is that of finding a natural definition of (n, k)-ASMs, such
that (n−1, 2)-ASMs are the same as, or in simple bijection with, n-ASMs, and
there is equality between the numbers of (n, k)-ASMs and (n, k)-CSSPPs. Hence,
the case k = 2 would be the equality (4). Some work related to this problem is
currently being done by myself and Ilse Fischer. In particular, we have defined an
(n, k)-alternating sign trapezoid (AST) to be an array of n(n+k) entries arranged
in n vertically-centred rows of lengths 2n+k−1, 2n+k−3, . . . , k+3, k+1 (from
top to bottom) such that, for k ≥ 1: (i) Each entry is 0, 1 or −1; (ii) Along each
row, the nonzero entries alternate in sign; (iii) The sum of entries in each row is 1;
(iv) Moving down each column, the nonzero entries (if there are any) alternate in
sign, starting with a 1; and (v) The sum of entries in columns n+1, . . . , n+ k− 1
is 0. For k = 0, (i), (ii) & (iv) should be satisfied, together with: (iii0) The sum
of entries in each row except row n is 1, while row n consists of 0 or 1. Our main
results regarding ASTs, which are proved nonbijectively, are that

(5) (# of (n, k)-ASTs) = (# of (n, k)-CSSPPs),

and that a refinement of this equality, involving certain AST and CSSPP statistics,
also holds. However, the problem stated above has not been completely solved,
since we do not currently have a bijection between (n−1, 2)-ASTs and n-ASMs.
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Enumeration of locally restricted compositions using de Bruijn graph
and covering graph

Zhicheng Gao

(joint work with Andrew MacFie)

Let (Γ,+) be a finite group. Anm-composition over Γ is anm-tuple (g1, g2, . . . , gm)
over Γ. It is called an m-composition of g if

∑m
j=1 gj = g. A family of compo-

sitions over Γ is called locally restricted if there is a positive integer σ such that
any σ consecutive terms in a composition satisfy certain restrictions. Locally re-
stricted compositions over Γ can be defined using walks in a de Bruijin graph.
The de Bruijin graph over Γ with span σ, denoted by B(Γ;σ), is a digraph whose
vertices are σ-tuples such that there is an arc from u := (u(1),u(2), . . . ,u(σ)) to
v := (v(1),v(2), . . . ,v(σ)) if v(j) = u(j + 1), 1 ≤ j ≤ σ − 1. Let D be a sub-
graph of B(Γ;σ). We associate with each directed walk v1,v2, . . . ,vk in B(Γ;σ) a
composition c = (v1(1), . . . ,v1(σ),v2(σ),vk(σ)). That is, c is obtained from the
walk by appending the last components of the subsequent vertices in the walk to
the initial vertex of the walk. We denote this set of compositions by C (D). To
keep track of the net sum of a composition in C (D), we make use of the derived
graph of the voltage graph (D,α), where the voltage of the arc (u,v) is given by
α(u,v) = v(σ). Let D′ denote the derived graph of (D,α). That is, the vertex
set of D′ is V (D)×Γ, and there is an arc from (u, g) to (v, h) if and only if (u,v)
is an arc in D and h = g + v(σ). Let S be the set of vertices in D′ such that
the second component is equal to the sum of the parts of the first component. It
is easy to see that, for m ≥ σ, an m-composition of g in C (D) corresponds to a
walk in D′ from S to a vertex whose second component is g. Fix an ordering of
the vertices of D′ and let T denote the corresponding transfer matrix of D′. That
is, T (i, j) is equal to 1 if there is an arc from vi to vj , and zero otherwise.

Let ~s denote the {0, 1} row vector such that its ith component is equal to 1 if

and only if the corresponding vertex belongs to S . Let ~fg denote the {0, 1} column
vector such that its jth component is equal to 1 if and only if the corresponding
vertex is of the form (∗, g). The following proposition is immediate.
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Proposition 1. For m ≥ σ and g ∈ Γ, the number of m-compositions of g in

C (D) is equal to ~sMm−σ ~fg.

Our main results are

Theorem 2. Suppose D′ is strongly connected and aperiodic. Then the number
of m-compositions of g is equal to, as m → ∞, A × Bm (1 +O(exp(−δm))) for
some positive constants A, B, and δ, which are independent of g.

In this talk, we present some asymptotic results for the number of m-composi-
tions, as m → ∞, associated with some digraphs D and some finite group Γ. It
will also be shown that the distribution of the number of occurrences of a given
subword in a random locally restricted m-composition is asymptotically normal
with mean and variance proportional to m.

The basic tools for deriving these results are covering graphs of de Bruijn graphs,
Perron-Frobenius theorem and transfer matrix method. These results extend pre-
vious results on compositions over a finite abelian group which were obtained by
counting compositions over integers and using the multisection formula.

Lecture hall tableaux

Sylvie Corteel, Jang Soo Kim

Lecture hall partitions are partitions satisfying certain conditions introduced by
Bousquet-Mélou and Eriksson [1, 2]. Anti-lecture hall compositions are compo-
sitions satisfying similar conditions. Lecture hall partitions and anti-lecture hall
compositions have been studied extensively in the last two decades. See the recent
survey written by Savage [3]. In this talk we show that these objects are closely
related to the little q-Jacobi polynomials pLn(x; a, b; q).

For monic univariate orthogonal polynomials pn(x), the mixed moment µn,k

and the (normalized) moment µn are defined by

xn =

n
∑

k=0

µn,kpk(x), pn(x) =

n
∑

k=0

νn,kx
k.

In this talk we show that the mixed moments and the dual mixed moments
of the little q-Jacobi polynomials are generating functions for anti-lecture hall
compositions and lecture hall partitions respectively. We then extend this result
to the multivariate little q-Jacobi polynomials.

Let Pn denote the set of partitions with at most n parts. In many cases, a
family {pn(x)}n≥0 of univariate orthogonal polynomials generalizes naturally to a
family {pλ(x1, . . . , xn)}λ∈Pn of multivariate orthogonal polynomials via

(1) pλ(x1, . . . , xn) =
det
(

pλj+n−j(xi)
)n

i,j=1

∆(x)
,

where
∆(x) = ∆(x1, . . . , xn) =

∏

1≤i<j≤n

(xi − xj).
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Figure 1. On the left is a lecture hall tableau T ∈
LHT(n,≥,>)(λ/µ) for n = 5, λ = (6, 6, 4, 3) and µ = (3, 1). The
diagram on the right shows the number T (i, j)/(n + c(i, j)) for
each entry (i, j) ∈ λ/µ.

Considering sλ(x1, . . . , xn) as a multivariate analog of xi, we define the mixed
moment Mλ,µ(n) and the dual mixed moment Nλ,µ(n) of {pλ(x1, . . . , xn)}λ∈Pn by

sλ(x1, . . . , xn) =
∑

µ∈Pn

Mλ,µ(n)pµ(x1, . . . , xn),

pλ(x1, . . . , xn) =
∑

µ∈Pn

Nλ,µ(n)sµ(x1, . . . , xn).

The multivariate little q-Jacobi polynomials pLλ(x1, . . . , xn; a, b; q) are defined by
the equation (1) using pLn(x; a, b; q). It is known that pLλ(x1, . . . , xn; a, b; q) are mul-
tivariate orthogonal polynomials with explicit linear functional LL related to the
q-Selberg integral. Therefore, we can consider their mixed moments ML

λ,µ(n; a, b)

and the dual mixed moments NL
λ,µ(n; a, b). In this talk we give a combinatorial

interpretation for these quantities using new combinatorial objects called lecture
hall tableaux.

For an integer n and partitions λ and µ with µ ⊆ λ and ℓ(λ) ≤ n, a lecture hall
tableau of shape λ/µ and of type (n,≥, >) is a filling T of the cells in the Young
diagram λ/µ with nonnegative integers satisfying the following conditions:

T (i, j)

n+ c(i, j)
≥ T (i, j + 1)

n+ c(i, j + 1)
,

T (i, j)

n+ c(i, j)
>

T (i+ 1, j)

n+ c(i + 1, j)
,

where c(i, j) = j − i. We denote by LHT(n,≥,>)(λ/µ) the set of such fillings and
by LHT(n,<,≤)(λ/µ) the set of fillings where the inequalities are changed to < and
≤ respectively. See Figure 1 for an example of a lecture hall tableau.

Consider a sequence ~x = (x0, x1, . . . ) of variables. For T in LS
(n,≥,>)
λ/µ or

LS
(n,<,≤)
λ/µ , the weight wt(T ) is defined by

wt(T ) =
∏

s∈λ/µ

xT (s)u
⌊T (s)/(n+c(s))⌋vo(⌊T (s)/(n+c(s))⌋),

where o(m) is 1 if m is odd and 0 otherwise. For example, if T is the lecture hall
tableau in Figure 1, its weight is

wt(T ) = x3
0x

3
1x

2
2x

2
3x

2
4x5x6x9u

3v3.
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We define the lecture hall Schur functions of shape λ/µ and of types (n,≥, >)
and (n,<,≤) by

LS
(n,≥,>)
λ/µ (~x;u, v) =

∑

T∈LHT(n,≥,>)(λ/µ)

wt(T ),

LS
(n,<,≤)
λ/µ (~x;u, v) =

∑

T∈LHT(n,<,≤)(λ/µ)

wt(T ).

These lecture hall Schur functions become the usual Schur functions when n → ∞:

lim
n→∞

LS
(n,≥,>)
λ/µ (~x;u, v) = sλ/µ(~x), lim

n→∞
LS

(n,<,≤)
λ/µ (~x;u, v) = sλ′/µ′(~x),

where λ′ is the conjugate of λ. We show that they also have Jacobi-Trudi type
formulas.

Let ~q = (1, q, q2, . . . ) be the principal specialization of ~x = (x0, x1, x2, . . . ). In
this talk we show that the mixed moments ML

λ,µ(n; a, b; q) and the dual mixed mo-

ments NL
λ,µ(n; a, b; q) for the multivariate little q-Jacobi polynomials

pLλ(x1, . . . , xn; a, b; q) are generating functions for lecture hall tableaux.

Theorem 1. We have

NL
λ,µ(n;−uv,−u/v; q) = (−1)|λ/µ|LS(n,<,≤)

λ/µ (~q;u, v),

ML
λ,µ(n;−uv,−u/v; q) = LS

(n,≥,>)
λ/µ (~q;u, v).

Equivalently,

pLλ (x1, . . . , xn;−uv,−u/v; q) =
∑

µ⊆λ

(−1)|λ/µ|LS(n,<,≤)
λ/µ (~q;u, v)sµ(x1, . . . , xn),

sλ(x1, . . . , xn) =
∑

µ⊆λ

LS
(n,≥,>)
λ/µ (~q;u, v)pLµ(x1, . . . , xn;−uv,−u/v; q).

Note that the moments ML
λ (n; a, b; q) := ML

λ,∅(n; a, b; q) and the dual mo-

ments NL
λ (n; a, b; q) := NL

λ,∅(n; a, b; q) are the generating functions for lecture hall

tableaux of a normal shape λ = λ/∅. We prove the following theorem, which shows
that the moments and the dual moments have product formulas.

Theorem 2. Given an integer n and a partition λ into at most n parts,

LS
(n,≥,>)
λ (~q;u, v) =

∏

1≤i<j≤n

qλj+n−j − qλi+n−i

qi−1 − qj−1

n
∏

i=1

(−uvqn−i+1; q)λi

(u2q2n−i+1; q)λi

,

LS
(n,<,≤)
λ (~q;u, v)

= qn(λ)−n(λ′)
∏

1≤i<j≤n

qλj+n−j − qλi+n−i

qi−1 − qj−1

n
∏

i=1

(−uvqn−i+1; q)λi

(u2qn−i+1+λi ; q)n−i+λi

×
∏

1≤i<j≤n

(1− u2q2n+λi+λj−i−j+1),
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where (a; q)n = (1− a)(1− aq) · · · (1− aqn−1) and n(λ) =
∑ℓ(λ)

i=1 (i− 1)λi.
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Slice decomposition of bicolored planar maps

Jérémie Bouttier

(joint work with Marie Albenque)

Figure 1. A rooted bicolored planar map with a white outer face.

A rooted planar map is a connected graph drawn in the plane without edge cross-
ings, considered up to continuous deformation, and with a distinguished corner
incident to the outer face. In this talk we consider Eulerian planar maps: all
vertices have even degrees, or equivalently the faces may be colored in black and
white in such a way that adjacent faces have opposite colors. If we fix the color of
the outer face, then the colors of the all other faces are uniquely determined. We
call bicolored map an Eulerian rooted planar map endowed with such a coloring.

To a bicolored map M , we assign a Boltzmann weight

(1) w(M) = t#vertices
∏

f inner face

t
color(f)
degree(f)

which depends on countably many parameters t, t◦1, t
•
1, t

◦
2, t

•
2, . . .. For p ≥ 1, we

then define the generating function F ◦
p (resp. F •

p ) as the sum of the weights of
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all maps whose outer face is white (resp. black) and of degree p. By convention
F ◦
0 = F •

0 = t.
By specializing the variables we obtain several cases of interest, such as Eulerian

triangulations (take t•k = t◦k = 1 for k = 3 and = 0 otherwise), the Ising model
(as obtained by allowing bivalent faces and “collapsing” them), etc. The general
case is known as the two-matrix model in theoretical physics, and was studied by
several authors including Kazakov, Douglas, Eynard... In enumerative combina-
torics, it was considered in 2002 by Bousquet-Mélou and Schaeffer (who treated
the cases p = 1, 2 using a bijection with so-called blossom trees), then in 2004 by
Di Francesco, Guitter and myself (we introduced another bijection with so-called
mobiles). More recently, Bernardi and Fusy introduced in 2014 a generalized bi-
jection that also handle girth constraints.

In the present work in progress with Marie Albenque [1], our purpose is to give a

combinatorial (bijective) interpretation to some intriguing formulas for F
◦/•
p which

were obtained by Eynard and his collaborators. A good reference for these formulas
is the last chapter of Eynard’s book [2]. Let me state one of the fundamental
results, which require to introduce some notations. We assume that the degrees
are bounded (i.e. we let t◦k = 0 for k > d◦ and t•k = 0 for k > d•) and we introduce
the quantities

(2) Y (x) =

d◦
∑

k=1

t◦kx
k−1 +

∑

p≥0

F ◦
p

xp+1
, X(y) =

d•
∑

k=1

t•ky
k−1 +

∑

p≥0

F •
p

yp+1

which are formal Laurent series in 1/x and 1/y respectively.

Theorem 1. There exists a polynomial E(x, y) such that

(3) E(x, Y (x)) = E(X(y), y) = 0.

Furthermore the algebraic curve {E(x, y) = 0} admits a rational parametrization
of the form

(4)

{

x(z) = a−1z + a0 + a1z
−1 + · · ·+ amz−m, m := d• − 1,

y(z) = z−1 + b0 + b1z + · · ·+ bnz
n, n := d◦ − 1.

where the coefficients ak, bk are series in t, t•1, t
◦
1, t

•
2, t

◦
2, . . . satisfying

ak = tδk,−1+

d•−1
∑

ℓ=0

t•ℓ+1[z
−k]y(z)ℓ (k ≥ −1),

bk =

d◦−1
∑

ℓ=0

t◦ℓ+1[z
k]x(z)ℓ (k ≥ 0).

(5)

In other words we have Y (x(z)) = y(z) and X(y(z)) = x(z), viewing the left-
hand sides as appropriate substitutions of Laurent series. These relations encode
the solution to our counting problem in the following way: note that x(z) admits
a unique compositional inverse z(x) (which is a Laurent series in 1/x). Then, we
have Y (x) = y(z(x)). The relations (5) simply tell that the leading terms of Y (x)
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have their prescribed value as in (2). Then, by pushing the expansion further, the
following terms yield the generating functions F ◦

p for p ≥ 1. We obtain F •
p by

reversing the roles of x and y.
Let me point out that a combinatorial interpretation for the series ak and

bk determined by (5) was already known: they match precisely the generating
functions for blossom trees or mobiles mentioned above. What is missing is a
combinatorial understanding of the substitution formula Y (x) = y(z(x)). For
this we generalize to the bicolored setting the approach of slice decomposition,
introduced by Guitter and myself in 2012 in the uncolored case.
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Exact Enumeration of Planar Eulerian Orientations

Andrew Elvey Price

(joint work with Mireille Bousquet-Mélou)

In 2016, Bonichon, Bousquet-Mélou, Dorbec and Pennarun posed the problem of
enumerating planar rooted Eulerian orientations with a given number of edges [2].
That is, rooted planar maps with directed edges such that each vertex has equal
in and out degree. They also posed the problem in the quartic case, in which
each vertex is restricted to having degree exactly 4. In physics, this problem is
known as the ice model on a random lattice [5, 8]. In 2017, E. and Guttmann
found a structural decomposition for each problem from which they obtained an
elaborate system of functional equations to characterise the ordinary generating
functions G(t), for Eulerian orientations, andQ(t), for quartic Eulerian orientations
[4]. Subsequently, they computed around 100 coefficients of each series. Their
analysis of these terms, using the method of differential approximants, led them
to conjecture that the growth constants for the two problems are 4π and 4π

√
3,

respectively. More specifically, they predicted that the coefficients gn = [tn]G(t)
behave like

gn ∼ κg
(4π)n

n2(logn)2
,

while the coefficients qn = [tn]Q(t) behave like

qn ∼ κq
(4
√
3π)n

n2(logn)2
,

where κg and κq are constants. For qn, this asymptotic form was earlier predicted
by Kostov and Zinn-Justin in the mathematical physics literature [5, 8].

In this work we prove the following two theorems.
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Theorem 1. Let R(t) ≡ R be the unique formal power series with constant term
0 satisfying

t =
∑

n≥0

1

n+ 1

(

2n

n

)(

3n

n

)

Rn+1.

Then the generating function of quartic rooted planar Eulerian orientations,
counted by vertices, is

Q(t) =
1

3t2
(

t− 3t2 − R(t)
)

.

Theorem 2. Let S(t) ≡ S be the unique formal power series with constant term
0 satisfying

t =
∑

n≥0

1

n+ 1

(

2n

n

)2

Sn+1.

Then the generating function of rooted planar Eulerian orientations, counted by
edges, is

G(t) =
1

4t2
(

t− 2t2 − S(t)
)

.

This work was initiated when we conjectured the above Theorems by searching
for an exact form of each series which would match the asymptotic forms predicted
by E. and Guttmann.

To prove the Theorems, we find simpler systems of functional equations to
charaterise the series G(t) and Q(t). The system charaterising Q(t) is shown below

Q(t) = [y]P(t, y)− 1

P(t, y) =
1

y
[x1]C(t, x, y)

D(t, x, y) =
1

1− C

(

t, 1
1−x , y

)

D(t, x, y) = 1 + yD(t, x, y)[y1]D(t, x, y) + y[x≥0]
1

x
P

(

t,
1

x

)

D(t, x, y)

[y1]D(t, x, y) =
1

1− x

(

1 + 2t[y2]D(t, x, y)− t([y1]D(t, x, y))2
)

.

We solve these equations by guessing the exact form of each series, then verifying
that these guesses are consistent with the equations. In each case, the series
involved are all D-algebraic.

For the problem of general planar rooted Eulerian orientations, our solution
utilises a beautiful bijection of Ambjørn and Budd [1] and Miermont [6] between
these orientations (counted by edges) and a subclass of quartic Eulerian orien-
tations (counted by vertices). This bijection is a generalisation of a bijection of
Schaeffer [7]. Finally, we observe that general Eulerian orientations are equinu-
merous with certain bicoloured trees, however, finding a bijective proof of this fact
is an open problem.
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How surprising are Wilf-equivalences?

Michael Albert

(joint work with Mathilde Bouvel, Jinge Li, Vı́t Jeĺınek and Michal Opler)

Two collections of finite structures are said to be Wilf-equivalent if there is a size-
preserving bijection between them. Put another way, they are Wilf-equivalent
if they have the same generating function (counted according to the size of the
structures). Particularly in the area of permutation classes there has been a wide-
spread interest in Wilf-equivalent classes with an implicit implication that such
equivalences are somehow “surprising” and require explanation (or the discovery
of an appropriate bijection in the case where the Wilf-equivalence is observed
based on the equality of two generating functions). But how surprising are these
Wilf-equivalences really?

Let us put the problem into a general context. We work in some universe, U of
finite structures, with a natural substructure relation �. So we tend to think of U
as a ranked poset, with the structures of size n in U denoted by Un (this notation
is also used more generally). For τ ∈ U define the set of τ-avoiding structures to
be:

Av(τ) = {θ ∈ U : τ 6� θ}
(the complement of this set in U is the set of τ-containing structures.)

Now given two structures π, σ ∈ Uk we say that π and σ are Wilf-equivalent
and write π ≡WE σ if for all n, |Av(π)n| = |Av(σ)n|.

To prove that two structures π and σ are Wilf-equivalent it suffices to:

• compute the generating functions of Av(π) and Av(σ) and show they are
the same, or

• exhibit a size-preserving bijection between the sets Av(π) and Av(σ), or
• exhibit a size-preserving bijection between the sets U\Av(π) and U\Av(σ),
or
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• exhibit a size-preserving bijection from U to U which restricts to bijections
of the previous two types.

In practice, any one of these four possibilities may be the most natural way to
pursue such a proof.

We are interested in the behaviour of the sequence wn = |Un/ ≡WE | in relation
to the sequence un = |Un|. If wn = o(un) we say that U exhibits a Wilf-collapse,
and if wn = o(cnun) for some c < 1 we say that U exhibits an exponential Wilf-
collapse. If it turns out to be the case that (exponential) Wilf-collapse is common
behaviour, then we should not be surprised at the discovery of Wilf-equivalences.

In [1] we considered a particular class U enumerated by the Catalan numbers.
This can be thought of as the class of 231-avoiding permutations, of non-crossing
arch systems with n arches, of plane forests with n nodes (where, when a node is
deleted its ordered list of children replace it in the ordered list of children of its
parent), or many other interpretations.

In this case we were able to show by means of bijections that the number of
Wilf-equivalence classes for structures of size n is not greater than the number
of ordinary (i.e., non-plane) forests with n nodes. In particular this implies an
exponential Wilf-collapse since the exponential growth rate for plane forests is 4,
while for ordinary forests it is less than 3. In fact there’s an additional special
rule that allows the replacement of any binary tree (within another tree) by any
other binary tree with the same number of leaves (and the same subtrees attached
to those leaves). This reduces the exponential growth rate of the number of Wilf-
equivalence classes still further to something less than 2.5.

In [3] we considered even smaller universes U – specifically taking the sets of
permutations avoiding two patterns of length three. Ignoring the trivial case of
Av(123, 321) (which is finite) and symmetry, the results for these classes are as
follows:

U un wn

Av(123, 312)
(

n
2

)

2
Av(312, 132) 2n−1 1
Av(231, 312) 2n−1 p1(n) (see below)
Av(312, 321) 2n−1 p2(n) (see below)

where p1(n) is the number of partitions of n having at most one part of size 1, and
p2(n) is the number of two-coloured (say red and blue) partitions of n such that
the number of red parts is not greater than one plus the number of blue parts,
and all the blue parts are at least two. Clearly we have a Wilf-collapse in all four
cases, and exponential Wilf-collapse in the latter three (it being impossible in the
first one of course!)

In forthcoming work ([2]) we will consider a generalisation of the results of [1]
and the third and fourth cases above. In all of these cases the universe U can
be identified with A∗ the set of words over an alphabet A of “indecomposable
structures” and the relation � on U is the transitive closure of the subword order
on A∗ along with some specific relations w � a for certain w ∈ A∗ and a ∈ A.
In this context we are able to demonstrate some quite general criteria sufficient
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for exponential Wilf-collapse. Say that a, b ∈ A are incompatible if ab 6� c for any
c ∈ A. We are in the supercritical domain,if the equation A(t) = 1 (where A is the
ordinary generating function of A) has a solution inside the radius of convergence
of A. If there exists an incompatible pair of letters and we are in the supercritical
domain, then there is an exponential Wilf-collapse in U .

Notably though, every example we have considered of this type (whether the
conditions above are met or not) has exhibited an exponential Wilf-collapse (if
possible). We are led to believe that this really is the normal state of affairs, and
that we should not be surprised at discovering Wilf-equivalences.
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Enumerative parameters of trees

Stephan Wagner

(joint work with Dimbinaina Ralaivaosaona and Matas Šileikis)

We are interested in parameters of trees that have an enumerative flavour. Some
examples of this type are the number of leaves, the number of vertices of a given
degree, the number of fringe subtrees of a given shape (a fringe subtree of a rooted
tree consists of a vertex and all its descendants), the total number of subtrees (all
induced subgraphs that are again trees, not necessarily only fringe subtrees), as
well as the number of independent sets, matchings, linear extensions or automor-
phisms, and there are many more.

Our main interest is in the distribution of such parameters in random trees:
specifically, we would like to obtain (exact or asymptotic) formulas for mean,
variance and higher moments, and also determine—if possible—the limiting dis-
tribution. There are several natural models of randomness in the context of trees,
and there are various results on the aforementioned parameters for different mod-
els. Examples include labelled and unlabelled trees, plane trees, binary trees, and
recursive trees.

For the purpose of this extended abstract, let us specifically mention two general
models of randomness:

Simply generated trees/Galton-Watson trees. Simply generated trees can
be seen as weighted plane trees: on the set of all rooted ordered (plane) trees,
we impose a weight function by first specifying a sequence 1 = w0, w1, w2, . . . and
then setting

w(T ) =
∏

i≥0

w
Ni(T )
i ,
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where Ni(T ) is the number of vertices of outdegree i in T . Then we pick a tree of
given order n at random, with probabilities proportional to the weights.

A different, more probabilistic point of view is that of branching processes. A
classical model to generate random trees is the Galton-Watson tree model : fix a
probability distribution on the set {0, 1, 2, . . .}.

• Start with a single vertex, the root.
• At time t, all vertices at distance t from the root produce a number of
children, independently at random according to the fixed distribution.

A random Galton-Watson tree of order n is obtained by conditioning the pro-
cess. It is well known that simply generated trees and Galton-Watson trees are
essentially equivalent.

Increasing trees. Another random model that produces very different shapes
uses the following simple process, which generates random recursive trees :

• Start with the root, which is labelled 1.
• The n-th vertex is attached to one of the previous vertices, uniformly at
random.

In this way, the labels along any path that starts at the root are increasing.
Clearly, there are (n− 1)! possible recursive trees of order n, and there are indeed
interesting connections to permutations. The model can be modified by not choos-
ing a parent uniformly at random, but depending on the current outdegrees (to
generate, for example, binary increasing trees or plane-oriented recursive trees).

Additive invariants. A very useful concept that covers many different parame-
ters of trees is that of an additive invariant. An invariant F (T ) defined for rooted
trees T is called additive if it satisfies a recursion of the form

F (T ) =

k
∑

i=1

F (Ti) + f(T ),

where T1, . . . , Tk are the branches of the tree and f(T ) is a so-called toll function,
which often only depends on specific aspects of T , such as its size.

Examples that are covered include the number of leaves, more generally the
number of occurrences of a fixed rooted tree as a fringe subtree, and the number of
vertices whose outdegree is a fixed number k. But also more complicated invariants
are covered. In the context of enumeration, one often has to take the logarithm
first. For example, if le(T ) denotes the number of linear extensions of a tree T , then
log(|T |!/ le(T )) becomes an additive invariant with toll function f(T ) = log(|T |).
Similar examples include the number of subtrees that contain the root and the
number of automorphisms.

For additive invariants, rather general results on the distribution can be ob-
tained under different technical assumptions on the toll function f(T ). Typically,
one obtains a statement of the following type:

• There exist constants µ and σ2 such that mean and variance of F (Tn) for
a random tree Tn are µn ∼ µn and σ2

n ∼ σ2n.
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• Moreover, the renormalised random variable

Xn =
F (Tn)− µn√

σ2n

converges weakly to a standard normal distribution (provided σ 6= 0).

Examples of “suitable technical conditions” include the following for simply
generated trees/Galton-Watson trees (assuming that the offspring distribution has
finite variance), where Tn always denotes a random tree with n vertices:

• f is bounded and E |f(Tn)| = O(cn) for some c < 1 (see [6]).
• E |f(Tn)| = O(1), E(f(Tn)

2) = o(1), and

∑

n≥1

√

E f(Tn)2

n
< ∞,

see [3].
• f is bounded and “local” (determined by a fixed neighbourhood of the
root, see [3]).

• f(T ) ≤ C deg(T )α (where deg denotes the root degree and α is a positive
real number for which the (2α+1)-th moment of the offspring distribution
exists) and f is “almost local”, which intuitively means that the values of
the toll function can be approximated well (at least with high probability)
if a fixed neighbourhood of the root is known (see [4] for details).

These schemes cover, among other things, the number of fringe subtrees of a
given type, the number of vertices whose outdegree is a prescribed number, but
also more complicated examples such as the number of subtrees or the number of
matchings.

For increasing families of trees, analogous results under similar conditions are
known as well:

• f is bounded and E |f(Tn)| = O(cn) for some c < 1 (for recursive trees
and binary increasing trees, see [6]).

• V f(Tn) = o(n),

∑

n≥1

√

V f(Tn)

n3/2
< ∞,

∑

n≥1

(E f(Tn))
2

n2
< ∞,

again only for recursive and binary increasing trees (see [1]).
• f is finitely supported, for d-ary increasing trees, recursive trees and gen-
eralised plane-oriented recursive trees (see [2]).

• f is bounded, E|f(Tn)| = o(1) and

∑

n≥1

√

E|f(Tn)|
n

< ∞,

for d-ary increasing trees and generalised plane-oriented recursive trees
(see [5]).
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Again, these conditions cover many natural examples, such as again the number
of fringe subtrees of a given type, but also for instance the number of subtrees or
the number of automorphisms of d-ary increasing trees.
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3D positive lattice walks and spherical triangles

Kilian Raschel

(joint work with Beniamin Bogosel, Vincent Perrollaz and Amélie Trotignon)

The enumeration of lattice walks is an important topic in combinatorics. In ad-
dition to having various applications, it is connected to other mathematical fields
such as probability theory. Recently, lots of consideration has been given to the
enumeration of walks confined to cones, in particular to N = {0, 1, 2, . . .}, N2 and
N3. Positive walks in 1D and 2D are now well understood, see [2, 6]. On the other
hand, much less is known on 3D lattice walks confined to the non-negative octant
N3. An intrinsic difficulty lies in the number of models to handle: more than 11
millions of small step models (see [4])! (Compare with 79 quadrant models [6].)

We assume that the step set S ⊂ {−1, 0, 1}3, which describes the set of possible
jumps of the walk, is not included in any half-space {y ∈ R3 : 〈x, y〉 ≥ 0}, with
x ∈ R3 \ {0}. Introduce oA→B(n), the number of n-step walks in the octant
starting (resp. ending) at A ∈ N3 (resp. B ∈ N3). It is proved in [7] that if A and
B are far enough from the boundary, as n → ∞,

(1) oA→B(pn) = κ(A,B) · ρpn · n−λ · (1 + o(1)),

where κ(A,B) > 0 is some constant, ρ ∈ (0, |S|] is the exponential growth, λ > 0
is the critical exponent and p = gcd{n ∈ N : oA→B(n) > 0} is the period of the
model.
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Applying the results of [7] (see in particular Equation (12) there) readily shows
the following expression for the critical exponent:

(2) λ =

√

λ1 +
1

4
+ 1,

where λ1 is the smallest (or principal) eigenvalue of the Dirichlet problem

(3)

{

∆S2m = −Λm in T,
m = 0 in ∂T,

∆S2 being the Laplace-Beltrami operator on the sphere and T = T (α, β, γ) being
a spherical triangle, which can be computed algorithmically (and easily) in terms
of the model S.

Our main objective is to relate combinatorial properties of the step
set (structure of the so-called group of the walk, existence of a Hadamard factor-
ization, existence of differential equations satisfied by the generating functions) to
geometric or analytic properties of the associated spherical triangle (re-
markable angles, tiling properties, existence of an exceptional closed-form formula
for the principal eigenvalue). Let us now detail our main contributions.

• We give the exact value of the angles α, β, γ, which are arccosines of alge-
braic numbers. We prove that the cosine matrix of the angles is strongly
related to the Coxeter matrix of the group, and can also be interpreted as
a Gram matrix.

• We then show that the spherical triangle captures a lot of combinatorial
information about the model from which it is constructed, in the following
sense:

– Finite group models correspond to triangular tilings of the sphere S2.
The simplest example is the so-called simple walk

S = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}.
Its triangle has three right angles, namely α = β = γ = π

2 . A second
example is 3D Kreweras model, with step set

S = {(−1, 0, 0), (0,−1, 0), (0, 0,−1), (1, 1, 1)}.
The associated triangle is also equilateral, with angles 2π

3 ; this corre-
sponds to the tetrahedral tiling of the sphere.

– By definition, Hadamard models are those whose jump polynomial
∑

(i,j,k)∈S xiyjzk may be composed as

U(x) + V (x)T (y, z) or U(x, y) + V (x, y)T (z).

These models are quite special for combinatorial reasons, as explained
in [4]. We prove that Hadamard models have birectangular triangles
(i.e., with two right angles). Finite group (resp. infinite) Hadamard
models correspond to angles β such that π

β ∈ Q (resp. π
β /∈ Q).

– We can also see the dimensionality of the model on the triangle. In
the case of 2D models, the triangles degenerate into a spherical digon.
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• Our next result is the study of Hadamard models (mostly with infinite
group, as finite group Hadamard walks are solved in [4]). They are special
not only for combinatorial reasons, but also for the Laplacian: to the best
of our knowledge, their birectangular triangles are the only ones (with the
exception of a few tiling triangles) for which one can compute in closed-
form the first eigenvalue!

We deduce the critical exponent λ and show that (most of the) infinite
group Hadamard models are non-D-finite. This is the first result on the
non-D-finiteness of truly 3D models.

• We classify the models with respect to their triangle and the associated
principal eigenvalue, and compare our results with the classification in
terms of the group and the Hadamard property obtained in [4, 8]. We
exhibit some exceptional models, which do not have the Hadamard prop-
erty but for which, remarkably, one can compute an explicit form for the
eigenvalue; this typically leads to non-D-finiteness results.

• Our last result is about generic infinite group models. Even if no closed-
form formula exists for λ1, we may consider λ1 as a special function of
the triangle T (or equivalently of its angles α, β, γ), and with numerical
analysis methods (finite element method), obtain approximations of this
function when evaluated at particular values. The techniques developed
here are completely different from the rest of the paper.

Notice that for some cases, approximate values of the critical exponents
have been found by Bostan and Kauers [5], Bacher, Kauers and Yatchak
[1]. In these articles the method is to compute a certain amount of terms
of the generating function and then to estimate the exponents via different
ideas. Our technique has the advantage of being applicable to any spherical
triangle, not necessarily related to a 3D model.
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First-order logic for permutations

Mathilde Bouvel

(joint work with Michael Albert and Valentin Féray)

In the combinatorics literature, there are two different ways of defining a permu-
tation (say, of size n). One is as a bijection from {1, 2, . . . , n} to itself, or as an
element of the permutation group Sn. The other is as a word containing exactly
once each letter in {1, 2, . . . , n}, or as a diagram (i.e., an n × n grid containing
one element per row and per column). Depending on the definition that is chosen,
the results that are proved are usually of different nature, and these two points
of view are believed to be rather opposite. The purpose of this talk is to provide
mathematical evidence of this “belief”.

For each of these points of view, we define a first-order logical theory, whose
models are the permutations seen as bijections in one case, as words in the other
case. We then investigate which properties of permutations are expressible in each
of these theories. It is no surprise that the theory associated with permutations
seen as bijections (called TOOB – the Theory Of One Bijection) can express state-
ments about the cycle decomposition of permutations, while the theory associated
with permutations seen as words (called TOTO – the Theory Of Two Orders) is
designed to express pattern-related concepts. This can be illustrated with many
examples.

But we are also interested in describing which properties are not expressible
in each of these theories. For instance, we prove that TOTO cannot express that
an element of a permutation is a fixed point, while TOOB cannot express that a
permutation contains the pattern 231.

The result that we put forward in the talk is that we completely characterize
the properties that are expressible in both theories. As “expected” based on the
“belief” explained earlier, these properties are trivial in some sense. More precisely,
such a property is either identically true on all permutations of sufficiently large
support, or identically false on all permutations of sufficiently large support. In
the proofs, a key tool that we use is the theory of Ehrenfeucht-Fräıssé games.

Additional results that we provide are a characterization of permutation classes
where TOTO can express (unlike in the general case) some information on the
cycle-types, and a proof that TOTO is more suited than excluded patterns to
express sortability by stacks in the sense of West.

Combinatorics of the asymmetric exclusion process on a ring, and
Macdonald polynomials

Lauren Williams

(joint work with Sylvie Corteel and Olya Mandelshtam)

The asymmetric simple exclusion exclusion process (ASEP) is a model of particles
hopping on a one-dimensional lattice of n sites. It was introduced around 1970
[1, 2], and since then has been extensively studied by researchers in statistical
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mechanics, probability, and combinatorics. Recently the ASEP on a lattice with
open boundaries has been linked to Koornwinder polynomials [3, 4], and the ASEP
on a ring has been linked to Macdonald polynomials [5].

0

2
1

0

1

2
2

0

1

t
t

Figure 1. The two-species ASEP on a lattice with 8 sites. There
are three holes (0’s), two light particles (1’s), and three heavy
particles (2’s).

In joint work with Sylvie Corteel and Olya Mandelshtam, we study the two-
species asymmetric simple exclusion process (ASEP) on a ring, in which two kinds
of particles (“heavy” and “light”), as well as “holes,” can hop both clockwise and
counterclockwise (at rates 1 or t depending on the particle types) on a ring of
n sites. We introduce some new tableaux on a cylinder called cylindric rhombic
tableaux (CRT), and use them to give a formula for the stationary distribution of
the two-species ASEP – each probability is expressed as a sum over all CRT of a
fixed type. When λ is a partition in {0, 1, 2}n, we then give a formula for the non-
symmetric Macdonald polynomial Eλ and the symmetric Macdonald polynomial
Pλ by refining our tableaux formulas for the stationary distribution.

3

1

2 1

Figure 2. A cylindric rhombic tableau T of type 0212201022
with a chosen arrow ordering σ.
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Tableaux formulae for probabilities of the 2-ASEP on a ring and
Macdonald polynomials

Olya Mandelshtam

(joint work with Sylvie Corteel and Lauren Williams)

The multispecies ASEP on a ring is a model describing particles of different species
hopping right and left on a 1D lattice with n sites with periodic boundary condi-
tions, at rates 1 and t respectively. In the 2-ASEP, particles can be of types 1 or
2 (with 2 having priority over 1).

Figure 1. All five multiline queues of type 12020. By the result
of [1], the stationary probability of the state 12020 is proportional
to the number of corresponding multiline queues.

The well-known multiline queues of Ferrari and Martin give formulae for the
steady state probabilities of the multispecies ASEP on a ring at t = 0: there is
a Markov chain on the multiline queues which projects to the ASEP [1] (such
a formula exists for any number of species of particles). In the 2-species case,
each multiline queue is some placement of “balls” on a 2 by n lattice, and there
is a unique way of associating every such placement to a particular state of the
2-ASEP by forcing each ball on the top row to pair with the first unpaired ball
below and weakly to its right (with wrapping allowed if necessary), such as in
Figure 1. The probability of each state is proportional to the number of multiline
queues associated to it.

In joint work with Sylvie Corteel and Lauren Williams, we introduce new
tableaux on a cylinder which we call cylindric rhombic tableaux. By enumerat-
ing all tableaux corresponding to a given state, we obtain a formula for steady
state probabilities for the 2-ASEP on a ring for general t. Each tableau is some
placement of arrows and some ordering σ chosen for those arrows. The weight of
a tableau is a generating function in t that depends on σ, as in Figure 2.
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Figure 2. A cylindric rhombic tableau of type 2010021200
(read from the thickened path) and enhanced weight

t12q3

[7]qt[6]qt[5]qt[4]qt
x2x3x

2
4x5x6x7x8x

2
9x

2
10 where [j]qt = (1− qtj)/(1−

t).

Using recent results of [2], we further enhance these tableaux by associating to
each one a weight in q and x1, . . . , xn, from which we obtain formulae for non-
symmetric Macdonald polynomials Eλ (where λ is a partition) and for symmetric
Macdonald polynomials Pλ (from summing over all cylindric rhombic tableaux
corresponding to some permutation of λ), when λ is a partition in {0, 1, 2}n.

At t = 0, we show a bijection from the multiline queues to cylindric rhombic
tableaux (with a trivial arrow ordering). Through a natural extension, we obtain
a bijection from cylindric rhombic tableaux with an arrow ordering σ to multiline
queues in which there is now some choice σ for the pairing of balls between rows.
From this bijection, we obtain multiline queues whose weights are functions of t,
q, x1, . . . , xn.
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Weak order on monotone triangles and Terwilliger’s poset

Victor Reiner

(joint work with Zachary Hamaker)

Let ASMn denote the set of n × n alternating sign matrices, that is, matrices
whose rows are alternating {0,±1}n-vectors, in the sense that their non-zero values
alternate in sign, beginning and ending with 1. These matrices have been an object
of intense study since their introduction by Mills, Robbins, and Rumsey [2]; see
also Bressoud [3] for details and history.

There is an easy bijection between ASMn and the set MTn ofmonotone triangles
of size n, which are the triangular arrays whose rows are subsets of {1, 2, . . . , n}
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of each cardinality 1, 2, . . . , n and which weakly interlace– the bijection sends the
alternating sign matrix to the triangle whose mth row from the top is the subset
whose {0, 1}n-characteristic vector is the sum of the first m rows of the matrix.

For example, the matrix





0 +1 0 0 0 0
0 0 0 1 0 0
+1 −1 +1 −1 0 1
0 0 0 1 0 0
0 +1 0 −1 +1 0
0 0 0 0 +1 0



 in ASM6 corresponds to the tri-

angle
2

2 4
1 3 6

1 3 4 6
1 2 3 5 6

in MT6.

We use this identification with MTn to introduce a weak order on the set ASMn,
extending the weak order on permutations Sn, and having several properties:

• The weak order on Sn is a principal order ideal inside the weak order on
ASMn.

• This weak order on ASMn is weaker than the componentwise order on
ASMn arising naturally as the Dedekind-MacNeille completion of the
strong Bruhat order on Sn.

• Linear extensions of weak order on ASMn all give shelling orders on the
maximal chains in Terwilliger’s recently introduced [1] poset Φn extend-
ing the Boolean algebra of subsets of {1, 2, . . . , n}. Among these linear
extensions are a family of shellings arising from an EL-labeling of Φn.

• These shellings all give rise to the same notion of descent set for elements
of ASMn.

• The weak order on ASMn encodes an action of the 0-Hecke monoid of type
A.

To illustrate some of this for n = 3, we depict here the Boolean algebra of
subsets of {1, 2, 3}, together with the one extra order relation in Φ3 shown dotted,
then the order complex for the proper part of Φ3 with the one extra facet shown
dotted, and finally the weak order on MT3, with the one extra monotone triangle
outside S3 related to others by dotted edges:

{1, 2, 3}

{1, 2}

③③③③③

{1, 3} {2, 3}

❉❉❉❉❉

{1}

③③③③③

{2}

③③③③③

❉❉❉❉❉

{3}

❉❉❉❉❉

∅

①①①①①

❋❋❋❋❋

{3}
3

2 3 {2, 3}
3

2 3

❂❂
❂❂

❂❂
❂❂

❂❂

{1, 3}
2

1 3

3
1 3

✁✁✁✁✁✁✁✁✁✁

1
1 3

❂❂
❂❂

❂❂
❂❂

❂❂
{2}

{1}
1

1 2

{1, 2}
2

1 2

✁✁✁✁✁✁✁✁✁✁

Terwilliger’s Φ3 Order complex of Φ3 \ {0̂, 1̂}
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Weak order on MT3
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Schur-positive grid classes and cyclic descents of SYT

Sergi Elizalde

(joint work with Ron Adin and Yuval Roichman)

To each set of permutations one can associate a quasisymmetric function by adding
the fundamental quasisymmetric functions indexed by the descent sets of the per-
mutations in the set. A long-standing problem in algebraic combinatorics is to
characterize sets of permutations whose associated quasisymmetric function is
symmetric and Schur-positive [7].

Classical Schur-positive sets include Knuth classes, conjugacy classes, and in-
verse descent classes. We give a general method to construct new Schur-positive
(multi)sets of permutations [5]. The method relies on pattern-avoiding sets called
geometric grid classes [3]. We also show that horizontal rotations of Schur-positive
sets of permutations are always Schur-positive, by applying a cyclic action on
standard Young tableaux (SYT) of certain skew shapes and a jeu-de-taquin type
straightening algorithm [6]. As a byproduct, we obtain a notion of cyclic descents
on these tableaux, in analogy to Cellini’s definition of cyclic descents of permuta-
tions [4].
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6
1 3 5
2 4 φ7→

1
2 4 6
3 5 φ7→

2
1 3 5
4 6 φ7→

3
1 2 4
5 6 φ7→

4
1 3 5
2 6 φ7→

5
1 2 4
3 6

φ

{1, 3, 6} {1, 2, 4} {2, 3, 5} {3, 4, 6} {1, 4, 5} {2, 5, 6}

This motivates the question of whether a well-behaved notion of cyclic descents
exists for SYT of arbitrary shape. Adin, Reiner and Roichman have recently
proved that such a notion exists for SYT of any skew shape that is not a connected
ribbon, using nonnegativity properties of Postnikov’s toric Schur polynomials [2].
Unfortunately, the proof does not provide an explicit definition of the cyclic descent
set for a specific tableau.

We present explicit combinatorial descriptions of cyclic descent sets of SYT of
rectangular shape (due to Rhoades [8]), two-row SYT (both straight and skew),
and SYT consisting of a hook plus an additional cell. In some cases, we also
describe an action on SYT that shifts the cyclic descent set. Detailed descriptions
of these constructions are given in [1].

It remains an open problem to find an explicit combinatorial description of the
cyclic descent set of a SYT of arbitrary non-ribbon shape, as well as a explicit
cyclic action on SYT of given shape that shifts the cyclic descent set.

1 3 5
2 4

1 2 4
3 5

1 2 3
4 5

1 3 4
2 5

1 2 5
3 4

∧
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1324 pattern-avoiding permutations

Anthony J. Guttmann

(joint work with Andrew R. Conway and Paul Zinn-Justin)

In an earlier paper [4], ARC and AJG gave five new coefficients and a detailed
analysis of the generating function for 1324 pattern-avoiding permutations (PAPs).
That analysis led them to conjecture that, unlike the known length-4 PAPs, no-
tably the classes Av(1234) [8] and Av(1342) [2], the OGF for Av(1324) included
a stretched exponential term. That is to say, if pn denotes the number of n-

step Av(1324) permutations, then pn ∼ B · µn · µ
√
n

1 · ng, where estimates of the
parameters were given.

In this talk, we give a new, substantially improved algorithm that allows us to
give 14 further terms1.

This stretched exponential behaviour is not without precedent. There are a
number of models in mathematical physics whose coefficients possess this more
complex asymptotic structure. In particular, Duplantier and Saleur [6] and Du-
plantier and David [5] studied the case of dense polymers in two dimensions, and
found the partition functions had the asymptotic form const · µn · µnσ

1 · ng. In
[9], Owczarek, Prellberg and Brak investigated an exactly solvable model of inter-
acting partially-directed self-avoiding walks (IPDSAW), and found the coefficients
behaved with this asymptotic form, and estimated σ = 1/2, g = −3/4, while
the sub-exponential growth constant µ1 was found to more than 5 digit accuracy.
From [3] the value of µ is exactly known. For self-avoiding walks and polygons
attached to a surface and pushed toward the surface by a force applied at their
top vertex, Beaton et al [1] gave probabilistic arguments for stretched exponential

behaviour, but with growth µn3/7

1 .

1. The algorithm

The algorithm like many is based upon recursive solution of a set of equations

f(S) =
∑

s∈n(S)

f(s)

where n(S) is a set (or possibly multiset if the same s appears with multiplicity)
of possible substates of S, culminating in some final states for which f(S) = 1.
These states correspond to the build up of permutations one entry at a time, with
each pass through the equation corresponding to adding one extra entry.

As an example, one could use this formalism to enumerate all n length per-
mutations, saying the state is the number n of as yet unchosen elements. Then
state n would have n substates, each n− 1. This reduces to the normal factorial
recurrence f(n) = nf(n−1). To enumerate PAPs, a more complex state is needed.

In the prior paper [4], the state consisted of a series of numbers being the
length of contiguous series of unchosen elements of the permutation, together with

1The principal limit to obtaining additional terms is computer memory. The present calcula-

tion required about 4.2TB of (distributed) memory.
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brackets to store sufficient information to prevent a 1324 pattern. For instance,
the state 4(2)1 means that there are four contiguous numbers left to be chosen,
then two contiguous numbers that may not be chosen until all numbers after them
have been chosen, then 1 number. Each pass through the equation reduced the
sum of the available numbers by one.

The big insight is that this is unnecessarily fine grained. If one adds together all
states with a given pattern of brackets and numbers, ignoring what the numbers
actually are other than their total sum, the equations still work. The start state
and end state only contain a single slot containing a number, so summing the
contents of that one slot has no effect, so the equations involving them can safely
be summed over. This significantly reduces the total number of states, and thus
the running time and memory use of the enumeration.

A second insight is that by tracking states by what is taken rather than by
what is available, the states can be represented by Dyck paths, or link patterns,
or by any set in bijection with these, and enumerated by the Catalan numbers
[11]; here we choose to use link patterns, as they provide a convenient graphical
description of the algorithm. Since explicit bijections of these objects in length

say 2k to {1, . . . ,Catalank = (2k)!
k!(k+1)!} are known, we can encode them as integers.

The reader should be warned that k here is not the length of the permutation; it
can vary from state to state, with the upper bound 2k ≤ n.

The intuitive motivation of this way of tracking states comes from considering a
prefix P of a 1324 avoiding permutation of 1 . . . n, and considering what constraints
it puts on subsequent elements of the permutation. If P contains n, then this
cannot be part of a 1324 pattern where the 4 is in the suffix, so the n is irrelevant
as a constraint on the future, and can be safely ignored, turning the problem into
a permutation of 1 . . . n − 1. This process is repeated until all numbers in P are
lower than the largest number remaining in the suffix. The remaining numbers in
P must be 132 avoiding, as otherwise the largest number, now in the suffix, would
cause a 1324 pattern. 132 PAPs of a given length are enumerated by the Catalan
numbers, and are readily bijectable to link patterns.

1.1. Running. We wrote a C program using message passing to run on a dis-
tributed system, and ran it in the Spartan [10] cluster at the High Performance
Computing Centre at the University of Melbourne on 168 cores with 20GB per
core. The computation was performed nine times, each with computations per-
formed modulo a number close to 216, so that only 16 bits of storage were needed
for each state. Each run took several hours. The actual answers were then re-
constituted using the Chinese remainder theorem. This produced the series up to
length 50 permutations.

2. Ratio analysis

Our primary tool is based on the behaviour of the ratio of successive coefficients.
We also make use of the approximate ratios and coefficients, as calculated by the
method of series extension.
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In the case of a simple power-law singularity with the asymptotic form of the
coefficients given by an ∼ const. · µn · ng, the ratio of the coefficients is

(1) rn =
an

an−1
= µ

(

1 +
g

n
+O(

1

n2
)

)

.

If on the other hand the coefficients behave as

bn ∼ B · µn · µnσ

1 · ng,

then the ratio of successive coefficients rn = bn/bn−1, is

(2) rn = µ

(

1 +
σ logµ1

n1−σ
+

g

n
+

σ2 log2 µ1

2n2−2σ
+

(σ − σ2) logµ1 + 2gσ logµ1

2n2−σ

+
σ3 log3 µ1

6n3−3σ
+O(n2σ−3) + O(n−2)

)

.

In order to determine the nature of the asymptotic form of the coefficients of
the Av(1324) OGF, we first plot the ratios of successive coefficients rn = pn/pn−1

against 1/n. In this and subsequent plots we have used the first 50 exact ratios
and the subsequent 200 predicted ratios. Significant curvature is observed. This is
inconsistent with an algebraic singularity, as can be seen from eqn. (1). We next
plot the same ratios against 1/

√
n, and the plot is then visually linear, implying,

from eqn. (2) that σ ≈ 1/2. Linear extrapolation implies a limiting value as n → ∞
around 11.60.

We can significantly improve on this estimate by considering the sequence of
extrapolants defined by successive pairs of points. That is to say, one can simply
linearly extrapolate successive pairs of ratios (rk, rk+1) with k increasing up to
240. A plot of successive extrapolants against 1/n appears to be approaching a
limit of around 11.60, or slightly below. We also take σ = 1/2 as our (initial)
conjectured value.

In order to more accurately estimate the value of the exponent σ, we note from
(2) that

(rn/µ− 1) ∼ const.nσ−1.

A log-log plot of (1− rn/µ) against logn, where we have taken 11.60 as the value
of µ, is an uninteresting linear plot. However if we calculate the gradient from
successive pairs of points, then the negative of this gradient is an estimator of the
exponent 1 − σ. We plotted these estimators against 1/n, which gave compelling
evidence that σ = 1/2. In subsequent analysis, we assumed this value. Repeating
this analysis with various values of µ around 11.60, we find that a value slightly
below this, around µ ≈ 11.598 is most consistent with σ = 1/2.

Assuming then that σ = 1/2, from (2) it follows that

rn/µ = 1 +
logµ1

2
√
n

+
g + 1

8 log
2 µ1

n
+O(n−3/2).

In order to estimate µ1 and g, we solve, sequentially, the equations

(3) rj/µ = 1 +
c1√
j
+

c2
j

+
c3
j3/2

,
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for j = k − 1, j = k and j = k + 1, with k ranging from 3 up to 49.
These, and more elaborate numerical methods, allowed us to conjecture that

sn(1324) ∼ B · κn · µ
√
n

1 · ng,

where κ = 11.600± 0.003, µ1 = 0.0400± 0.0005, g = −1.1± 0.1.

3. Conclusion

Our strongest conclusion is the conjecture that the Av(1324) generating function
has a stretched exponential term in the asymptotics. As the coefficients are inte-
gers, it follows [7] that the generating function cannot be D-finite.
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Universal limits of substitution-closed classes

Valentin Féray

(joint work with F. Bassino, M. Bouvel, L. Gerin, M. Maazoun and A. Pierrot)

Introduction: The general problem we are interested in is the following: consider
a permutation class C, and take, for each n ≥ 1, a random permutation σn,
uniformly among permutations of C of size n, i.e. σn ∈u (C ∩ Sn). We aim at
describing the asymptotic properties of σn when n tends to infinity.

This is a very vast question, and the kind of answer we might expect depends
very much on the class and on the asymptotic properties we are considering. In
this work:
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(1) we do not focus on a single permutation class (as in many previous works),
but consider a family of classes defined by a closure property, namely
classes closed by substitution. These classes (there are uncountably many
of them) are solvable models, giving a starting point for the asymptotic
analysis of random elements.

(2) rather than considering a specific parameter (fixed points, probability that
σn(in) = jn for given in and jn, number of occurrences of patterns) as
often done in the literature, we study the scaling limit of σn, in the sense
of permutons.

Informally, our main result is that, under a quite general analytic assumption, a
uniform random permutation σn in a substitution-closed class converges towards
a universal limit, which is a random permuton constructed from the Brownian
excursion.

Substitution-closed classes: In the permutation literature, a permutation class
is a set of permutations defined by the avoidance of a given set B of patterns
(possibly infinite), or equivalently a set stable by taking patterns.

The substitution operation consists in replacing each dot of the diagram of a
permutation by the diagram of another permutation. This is better understood
on a picture, rather than with a formal definition.

2413[132,21,1,12]=
12

= =24387156

132

21

1

All permutations can be obtained by iterating substitutions operations, starting
from “indecomposable elements”, which are called simple permutations in this
context [1]. This allows to represent permutations as substitution trees, whose
internal nodes are labelled by simple permutations. Again, we prefer to show an
example rather than to give a formal statement.

=243978156

2413

132 - +

+

For a substitution-closed class C, a permutation is in C if and only if all simple
permutations in its substitution tree are in C. This allows to relate in a simple
way the generating series C(z) of the class to that S(z) of simple permutation in
the class.
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Permutons: To study limits of combinatorial objects, we need to embed them
in some natural way in a (Polish) metric space. For permutations (which we want
to identify with their diagrams), it is natural to associate a measure on the unit
square [0, 1]2. On an example of size n = 5:

π = 5 2 4 1 3 = 7→ µπ =

(Each gray square on the right has a total weight 1/n, i.e. density n.) The
limiting objects are then some probability measures on [0, 1]2 (with an additional
property, namely having uniform marginals), called permutons. This notion was
first considered by Hoppen and coauthors, in [3], in analogy with graphons, aka
dense graph limits considered by Borgs and co-authors..

We then say that a sequence of (random) permutations converge if the asso-
ciated (random) measures converge (in distribution) for the weak topology. The
following criterion makes this convergence more concrete.

Proposition 1 (BBFGMP, building on a result of Hoppen et al. in the deter-
ministic case). Let σn be a sequence of random permutations. Then the following
assertions are equivalent:

(1) There exists a random permuton µ such that σn converges to µ;
(2) For each k ≥ 2, and each pattern τ of size k, the following sequence has a

limit:

E

(

#occurrences(τ,σn)
(

n
k

)

)

.

This turns a statement of convergence of random measures into convergence of
numbers! Moreover, in the case we are interested in, these expectations can be
studied by combinatorial means (counting permutations in the class with a marked
occurrence of a given pattern).

Our main result:

Theorem 1. Let C be a substitution-closed class and take σn ∈u (C ∩ Sn) (for
each n ≥ 1). Assume S′(RS) > 2

(1+RS)2
− 1, where S is the OGF of simple

permutations in C and RS its radius of convergence. Then σn tends to the biased
Brownian separable permuton µ(p) for some p in (0, 1).

The limit only depends on the class C through a parameter p that can be com-
puted from some associated generating series. We do not present the construction
of the limit object here, but it can be obtained from a Brownian excursion or from
the Brownian continuum random tree [4]. (which is the limit of the substitution
tree of σn). We also have some results in the so-called stable and condensation
regimes.
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Final comments: Most substitution-closed classes we have considered fulfill
our analytic assumption, with the notable exception of Av(2413). The proof of
Theorem 1 uses the above convergence criterion and analytic combinatorics. Here
are some pictures of large permutations in substitution-closed classes, given by
their set S of simple permutations.

Simulation of σn with
S = ∅

(separable permutations)

Simulation of σn with
S = {2413, 3142, 24153}
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Complex Martingales and Asymptotic Enumeration

Brendan D. McKay

(joint work with Mikhail Isaev)

Consider a martingale Z0, Z1, . . . , Zn of complex-valued random variables. We
give several explicit bounds on E eZn .

An important special case is given by the Doob martingale of a complex function
f(X1, . . . , Xn) of independent random variablesX1, . . . , Xn. For 1 ≤ k ≤ n, define

αk(f) = sup |f(xk)− f(x)|,

where the supremum is over x,xk that differ only in the k-th coordinate. Similarly,
for j 6= k, define

∆jk(f) = sup |f(x)− f(xj)− f(xk) + f(xjk)|,



Enumerative Combinatorics 1449

where the supremum is over x,xk,xj,xjk such that x,xk differ only in the k-th
component, x,xj differ only in the j-th component, xj ,xjk only in the k-th compo-
nent, and xk,xjk only in the j-th component. Define vectors X = (Xj), α = (αj)
and the matrix ∆ = (∆jk).

For any complex random variable U , define VU = E (U−EU)2 (which is usually
called the pseudovariance in distinction to the variance E |U − EU |2). Then we
have

E ef(X) = eE f(X)+ 1
2V f(X)

(

1 + Le
1
2Vℑf(X)

)

where

|L| ≤ exp

(

1
6

n
∑

k=1

α3
k +

1
6
αT∆α+ 5

8

n
∑

k=1

α4
k +

5
16
αT∆2α

)

.

An example of a complex Doob martingale is provided by the variable-by-
variable integration of a multivariable complex function. In many examples that
occur in the asymptotic enumeration of combinatorial objects, the dominant part
of such integrals can be written as the integral over an axis-aligned cuboid of the
exponential of a polynomial in independent truncated normal random variables.
See [1] for a long list of published examples.

As first applications, we considerably strengthen the results of Barvinok and
Hartigan [2] regarding the distribution of edges within a graph of given degrees
and count subgraphs isomorphic to a given graph in a graph with given degrees [3].
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Open Problem Session

Brendan McKay

(joint work with the many authors who presented open problems)
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A curious determinantal identity

Authors: Jérémie Bouttier, Mark Bowick, Emmanuel Guitter and Monwhea Jeng

For n a positive integer, let us consider a square grid of size (n+ 1)× n to which
we add n winding oriented edges connecting, for each k = 1, . . . , n, the (k + 1)-th
vertex on the bottom row (numbered starting from left) to the k-th vertex on
the left row (numbered starting from bottom). We also add an extra phantom
vertex i0 connected to the bottom-left vertex. Let us denote by Gn the resulting
(multi)graph, G4 being displayed on Figure 1(b).

i0

(a)

i

(b)

0

Figure 1. The graph (b) is obtained from the square grid of odd
size (a) by identifying the vertices that differ by π/2 rotations.

For two vertices i, j of Gn distinct from i0, we set

nij :=

{

1 if there is a normal (non-winding) edge between i and j,

0 otherwise,

wij :=











α if there is a winding edge oriented from i to j,

α−1 if there is a winding edge oriented from j to i,

0 otherwise.

We then define the square matrix ∆̄(n) of size n(n+ 1) by

∆̄
(n)
i,j :=

{

deg(i) for i = j,

−nij − wij for i 6= j,

where deg(i) denotes the degree of i in Gn (note that the two leftmost vertices on
the bottom row are connected by two edges, one normal and one winding, and it
is important that we sum their both contributions in ∆̄). Finally, we set

Pn(α) := det ∆̄(n).

For α = 1, ∆̄(n) is the minor of the Laplacian matrix ofGn obtained by removing
the row and column of index i0. By the matrix-tree theorem, Pn(1) counts the
number of spanning trees of Gn. The first values of Pn(1) read

2, 60, 21112, 81608976, 3376585316896, 1476304297181272000, . . .
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This sequence does not appear in the Online Encyclopedia of Integer Sequences
(OEIS) and does not seem to admit a nice product formula due to large prime
factors.

For general α, Pn(α) is a polynomial in α+α−1, and is known to count so-called
spanning webs [1]. We computed it up to n = 60 and the first values read

P1(α) = 4−
(

α+
1

α

)

, P2(α) = 178− 60

(

α+
1

α

)

+

(

α2 +
1

α2

)

,

P3(α) = 82128− 31667

(

α+
1

α

)

+ 1160

(

α2 +
1

α2

)

−
(

α3 +
1

α3

)

.

Our conjecture concerns the special value α = i (imaginary unit). The first
values of Pn(i) read

(1) 4, 176, 79808, 372713728, 17931360207872, 8887976555024756736, . . .

In [1], we remarked that these numbers seem to count the number of perfect match-
ings of the graph C2n+1 × P2n (i.e. a cylindrical square grid with circumference
2n+1 and height 2n). This is the conjecture that I presented during the problem
session.

After the problem session I was led to check again my numbers. Then, I realized
that the sequence (1) actually appears in the OEIS under the reference A127606,
which we did not notice when writing our article. It was added in April 2007,
probably after we made our conjecture1. Sequence A127606 is defined through the
formula

an = 22n
2

n
∏

k=1

n
∏

ℓ=1

(

cos

(

kπ

2n+ 1

)2

+ sin

(

ℓπ

2n+ 1

)2
)

and the entry does not mention a combinatorial interpretation (yet), but it may
be checked using the Kasteleyn Pfaffian method (which I did not know that well
in 2007) that an indeed counts perfect matchings of C2n+1 × P2n. The conjecture
can be then reformulated as the fact that Pn(i) = an for all n ≥ 1. After I
brought this fact to Emmanuel Guitter’s attention, he made the observation that

the individual eigenvalues of ∆̄(n) at α = i seem to be 4 cos
(

kπ
2n+1

)2

+4 sin
(

ℓπ
2n+1

)2

for k = 1, . . . , n and ℓ = 0, . . . , n. This may be checked by explicitly constructing
the eigenvectors, a moderately difficult exercise (as a bonus we obtain similar
product formulas for Pn(1) and Pn(−1)). In this sense my conjecture can be
regarded as solved. It would be however interesting to have a more combinatorial
proof of it. Guillaume Chapuy and Matjaž Konvalinka informed me that they
have made some progress in this direction.

1We made our conjecture because the numbers in (1) appear individually in other OEIS
sequences – namely A0284(78,80,...,86) – that count perfect matchings of C2m+1 × P2n with
fixed m and varying n.
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Voronoi-like decomposition of S1 with randomness

Author: Agelos Georgakopoulos

Pick k points p1, . . . , pk on the unit circle S1 uniformly at random (or equidis-
tantly), and start an independent Brownian motion at each pi. Let Bi ⊂ S1 be
the set of points x ∈ S1 such that the first particle that visited x was the one
started at pi, and let |Bi| denote its Lebesgue measure.

Problem 1. Determine the probability distribution of the vector (|B1|, . . . , |Bk|).
This problem is unpublished, and nothing is known.

Rank sizes of Differential Posets

Author: Pritam Majumder

A poset P is said to be r-differential if it satisfies the following conditions
- P is graded, locally finite and has a unique minimal element
- |C+(x)| = |C−(x)|+ r for all x ∈ P
- |C+(x) ∩ C+(y)| = |C−(x) ∩ C−(y)| = 1 for all x, y ∈ P and x 6= y,

where C+(t) is the set of elements in P covering t and C−(t) is the set of elements
in P covered by t.

Now let pn be the size of the nth rank of a r-differential poset P . Then we have
the following conjecture due to Stanley: For every n ≥ 2,

pn ≤ rpn−1 + pn−2.

Note that the above conjecture implies that pn ≤ Fr(n), where Fr(n) is the
r-Fibonacci number, which are recursively defined by Fr(0) = 1, Fr(1) = r, and
Fr(n) = rFr(n− 1)+Fr(n− 2). This was proved by P. Byrnes in [1] (see Theorem
1.2 and its proof in Chapter 5). For proving this, he also proved the following
inequality

pn ≤ 1 + r
n−2
∑

k=0

pk + (r − 1)pn−1.

We ask whether the above inequality can be improved to get us closer towards
the inequality of Stanley’s conjecture, which is still open.

Our next problem is about the strict rank growth of differential poset. In [2],
A. Miller proved that the rank sizes of differential posets are strictly increasing,
i.e. pn > pn−1 for every n. This was proved by computing the last smith entry of
the Smith Normal Form of DU + kI (where D and U are the usual up and down
operators). But a combinatorial proof of this fact is open.



Enumerative Combinatorics 1453

References

[1] P. Byrnes, Structural Aspects of Differential Posets, PhD thesis, University of Minnesota
(2012).

[2] A. Miller, Differential posets have strict rank growth: a conjecture of Stanley, Order, 30 (2)
(2013), 657–662.

Matrices over finite fields and Higman’s conjecture

Author: Alejandro H. Morales

A problem relating matrices over finite fields and polynomiality is the celebrated
Higman’s conjecture from 1960 [2]:

Conjecture 1 (Higman [2]). The number k(Un(Fq))of conjugacy classes of the
group Un(Fq) of n×n upper triangular matrices over a finite field Fq is a polynomial
in q.

This conjecture came from Higman’s study of p-groups and small calculations
and was verified up to n ≤ 13 by Vera-López and Arregi [7] and recently up to
n ≤ 16 by Pak and Soffer [4]. Also, Halasi and Pálfy [1] showed that Higman’s
conjecture fails for other classes of groups defined from partially ordered sets.

Kirilov [3] conjectured that for q = 2, 3 the sequence {k(Un(Fq))}n≥1 is at least
the Euler numbers En [5, A001111] and the Springer numbers Sn [5, A001586]
respectively. Soffer [6] used the exact values of these sequences and improvements
on a lower bound of k(Un(Fq)) by Higman to show these conjectures hold for
n ≥ 43 and n ≥ 30, respectively. Computations with data in [4, Appendix A]
suggest the following more general conjecture.

Conjecture 2. Let T = q − 1 and An(T ) be defined as the coefficients of the

generating function
∑∞

n=0 An(T )
xn

n! = (1− sin(Tx))
−1/T

, (An(1) = En, An(2) =
Sn) then for an infinite family of primes such that k(Un(Fq)) is a polynomial in q
then k(Un(FT+1))−An(T ) ∈ N[T ].

This conjecture has been verified up to n = 16.

Acknowledgements: We thank Matthieu Josuat-Vergès, Joel Lewis, and Igor
Pak for comments and suggestions on the formulation of the conjecture.
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3-cores of random planar graphs

Authors: Marc Noy and Lander Ramos

The k-core of a graph G is obtained by repeatedly removing vertices of degree less
than k. It is well defined, as the k-core is the largest subgraph of G with minimum
degree at least k.

It is shown in [2] that the 2-core of a random planar graph (or map) has linear
expected size. It can be shown that the 3-core of a random planar graph has also
linear expected size. The question is whether it has a connected component of
linear size. We consider labelled planar graphs with the uniform distribution on
graphs with n vertices.
Problem. Show that the 3-core of a random planar graph has a connected compo-
nent of size cn, for some constant c > 0, with high probability (probability → 1
as n → ∞).
Comments. Simulations using the random generation algorithm of Fusy [1], strong-
ly indicate that the 3-core of a random planar graph has a unique connected
component of linear size. The same problem can be posed for planar maps. The
main difficulty is to analyze the dynamic process of repeatedly deleting vertices of
degree 2.
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Nick Early’s conjecture for the h∗-vector of the hypersimplex

Author: Vic Reiner

Recall for a d-dimensional polytope P in Rn with vertices in some lattice Λ ⊂ Rn,
the Ehrhart function Ehr(P,m) := mP ∩ Λ is a polynomial in m of degree d, and
one can uniquely express its Ehrhart series

∑

m≥0

Ehr(P,m)tm =
h∗(P, t)

(1− t)d+1
for some polynomial h∗(P, t) =

d
∑

i=0

h∗
i (P )ti.

In arXiv:1710.09507, Nick Early conjectures the form for h∗(P, t) for a hyper-
simplex

P =

{

x ∈ [0, 1]n :
∑

i

xi = r

}

= conv

(

eS : S ∈
(

[n]

r

))

,
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where e1, . . . , en are standard basis vectors in Rn, and eS :=
∑

i∈S ei for S ⊆
[n] := {1, 2, . . . , n}. His conjecture is stated in terms of the following class of
objects. A decorated set partition of [n] = {1, 2, . . . , n} is an ordered sequence

π = ((L1)ℓ1 , (L2)ℓ2 , . . . , (LN)ℓN )

in which

• the L1, L2, · · · , LN are subsets of [n] that disjointly partition [n] = ⊔N
i=1Li,

• the ℓ1, ℓ2, · · · , ℓn are positive integers,
• the sequence π is considered only up to cyclic equivalence, that is,

π = ((L1)ℓ1 , (L2)ℓ2 , . . . , (LN )ℓN )

= ((LN )ℓN , (L1)ℓ1 , (L2)ℓ2 , . . . , (LN−1)ℓN−1)

= · · ·
= ((L2)ℓ2 , . . . , (LN )ℓN , (L1)ℓ1)

If one draws the blocks L1, L2, . . . , LN clockwise around a circle, then one de-
fines the winding number wind(π) is the number of times in π that one winds
around the circle when proceeding clockwise from 1 to 2, then 2 to 3, ..., then
n− 1 to n, and finally n to 1.

Conjecture 1. The hypersimplex P = ∆(n, r) has

(2) h∗(P, t) =
∑

π

twind(π)

where in the sum, π runs over the decorated set partitions of [n] satisfying

• ∑N
i=1 ℓi = r, and

• 1 ≤ ℓi ≤ |Li| − 1 for all i.

A simple (?) problem in Permutation Patterns

Author: Andrea Sportiello

This problem is in the realm of “Permutation Patterns” (PP), that is, the counting
of permutations σ ∈ Sn which behave in some specific way w.r.t. the number of
occurrences of certain patterns π ∈ Sk (typically, they have no occurrences at all
of the pattern). We say that π occurs in σ at positions (i1, . . . , ik) if (σi1 , . . . , σik)
is sorted by the permutation π−1.

Normally, problems in PP are made “difficult” by the introduction of asymptotic
notions: one wants to establish properties which hold in the limit n → ∞, for
example one wants to establish that, for a certain value α ∈ R, the number of
permutations inSn avoiding a pattern π grows as exp(αn+o(n)), Here we present a
conjecture which is conceptually simpler: we present two families of configurations,
namely {Aλ}λ and {Bλ}λ, and we conjecture that their cardinalities Aλ and Bλ

satisfy Bλ ≥ Aλ for all λ. The problem is: prove this conjecture.
However, at difference with most (but not all!) of the works in PP, here we

have two small extra ingredients:
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(1) we count permutations contained in some (digitally-convex) shape λ of
side n, instead of just in the n× n square;

(2) one of the two families is a family of ‘coloured’ permutations.

These notions are elementary but messy to define, so I will just define them in a
sketchy way (and “by examples” in figure), and then pass to the definition of the
two families in the conjecture.

Definitions. q-coloured permutations. S
(q)
n is the set of size-n permutations

in which each entry is coloured in one of q colours, thus S
(q)
n ≃ Sn × {1, . . . , q}n.

Here we only use ordinary (1-coloured) permutations, and 2-coloured ones, so that
we just use “blue” and “red” instead of the set {1, 2}.
Permutations in a shape λ. A shape λ is a finite subset of Z2. It has side
n = n(λ) if it is boxed in a square of side n, but not in one of side n − 1. It is
digitally convex if for all x, y ∈ λ there exists a directed walk on the grid that
connects x to y,2 and is contained in λ. We use Sλ for the set of permutations
σ ∈ Sn(λ) such that all points (i, σi) are in λ.
Patterns within a shape. Let π be a k × k matrix filled with k ‘bullets’,
forming a permutation in Sk, and possibly some ‘crosses’. For σ ∈ Sλ we say
that π occurs in σ at positions (i1, . . . , ik) if it occurs as a permutation, and, for

all cross positions (i, j) ∈ {1, . . . , k}2, the position (i, σj) is in λ. We call Aν
(q)
λ (π)

the set of σ ∈ S
(q)
λ avoiding π, and Av

(q)
λ (π) its cardinality (superscript ·(q) is

omitted in the uncoloured case, q = 1). We call Aν
(q)
λ (π1, . . . , πs) the analogous

notion in which none of the patterns πa occurs in σ.

The conjecture. Call Aλ = Aνλ







 and Bλ = Aν
(2)
λ

(

,

)

.

Conjecture: For all digitally-convex shapes λ, Bλ ≥ Aλ.

Remark: If true, this is not completely trivial. Indeed it is not true that for every
σ ∈ Aλ there exists at least one 2-colouring such that the coloured permutation

σ′ is in Bλ. The following configuration is a counterexample: . Indeed,

it is easily seen that a good colouring must alternate red and blue, however none
of the two possibilities is valid.

2I.e. a walk that uses at most two out of the four “north”, “south”, “east” and “west” types
of steps.
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A digitally-convex
shape λ π :

A permutation σ ∈ Sn, which is also
in Sλ, and in Aλ.

Occurrence of a
pattern π in σ.

A 2-coloured permutation σ′ ∈ S
(2)
n ,

which is also in S
(2)
λ , and in Bλ.

A determinant related to set partitions

Authors: Elmar Teufl and Stephan Wagner

In the enumeration of spanning trees of ladder-like graphs, one naturally encoun-
ters certain transfer matrices whose determinants exhibit a strange pattern. They
can be described in terms of set partitions.

Let P be a set partition of the set of vertices X = {x1, x2, . . . , xn} and Q a
set partition of the set of vertices Y = {y1, y2, . . . , yn}. A subset S of the set
{xiyj : 1 ≤ i, j ≤ n} of edges between X and Y is a transition from P to Q if the
following holds:

If we take (arbitrary) spanning trees on all blocks P1, P2, . . . , Pk of P and add
the edges in S to their union, we obtain a spanning forest of X ∪ Y such that
each component of this spanning forest contains at least one vertex of Y and the
components of the spanning forest induce the partition Q on Y .

The weight of a transition S is w(S) =
∏

xiyj∈S aij . We define a square matrix

T whose dimension is the n-th Bell number Bn by its entries tP,Q associated to
pairs of set partitions (rows and columns are ordered in the same way):

tP,Q =
∑

S: transition from P to Q
w(S).

For example, when n = 2, we have

T =

[

a11a22 + a11a21 + a12a22 + a12a21 a11a12a21 + a11a12a22 + a11a21a22 + a12a21a22

a11 + a12 + a21 + a22 a11a22 + a11a12 + a12a21 + a21a22

]

The first row corresponds to the partition {x1}, {x2}, the first column to the partition
{y1}, {y2}.



1458 Oberwolfach Report 23/2018

If A denotes the matrix whose entries are aij , then we notice that detT = (detA)Bn

for n = 1, 2, 3; for example,

detT = (a11a22 − a12a21)
2 = (detA)2

in the case n = 2 shown above. The pattern does not continue, however: for n = 4, we
have

detT = (detA)14 · perA.

For n = 5, it seems (experimentally) that

detT = (detA)42 · P1 · P2,

where P1, P2 are homogeneous polynomials whose total degrees are 20 and 30 respectively.

Problem 1. Is it true that (detA)Cn is always a factor of detT , where Cn is the Catalan

number 1

n+1

(

2n

n

)

?

We have experimental evidence that this is true for n = 6, but nothing beyond this
point (since the matrices get too big).

Conjectured Uniform Presentation for Pure Braid Groups

Authors: Jon McCammond and Nathan Williams

Notation: given a set X , let X be the relation expressing the equality of all
elements of X .

Braid Groups: Fix a finite Coxeter group W with simple reflection S and
longest element w◦. Write RedS(w◦) for the set of reduced words in simple reflec-
tions for w◦. Then results of Brieskorn-Saito and Deligne (independently) show
that the braid group for W has presentation

B(W ) = 〈S : RedS(w◦)〉.
Dual Braid Groups: On the other hand, building on work of Birman-Ko-Lee,

Bessis and Brady-Watt (also independently) both gave a different presentation of
the braid group. Let T be the set of reflections of W , and fix a Coxeter element c
(a product of the simple reflections, in some order). Write RedT (c) for the set of
reduced words in reflections for c. Then associated to W and c is the dual braid
group, with presentation

Bc(W ) = 〈T : RedT (c)〉.
Pure Braid Groups: The pure braid group Pc(W ) is generated by T—the

squares of the generators of Bc(W ). To my knowledge, no uniform presentation
has been written down. Write  for the generator of the center of Pc(W ), which
is known as the full twist. Let RedT() be the set of reduced words in the squares
of the reflections for .

Conjecture 1.

Pc(W ) = 〈T : RedT()〉.
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The conjecture is easily generalized to well-generated finite complex reflection
groups.

We also have an explicit conjectural description of RedT(). The choice of
c cyclically orients the reflections of the rank 2 parabolic subgroups of W—we
believe that the reduced words in T for  are exactly those permutations of T that
respect this orientation for each rank 2 parabolic subgroup.

Reporter: Robin Sulzgruber
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Universitat Politecnica de Catalunya
c/Pau Gargallo 14
08034 Barcelona, Catalonia
SPAIN



Enumerative Combinatorics 1463

Prof. Dr. Igor Pak

Department of Mathematics
UCLA
405, Hilgard Avenue
Los Angeles, CA 90095-1555
UNITED STATES

Prof. Dr. Konstantinos Panagiotou

Mathematisches Institut
Universität München
Theresienstrasse 39
80333 München
GERMANY

Prof. Dr. Greta C. Panova

School of Mathematics
Institute for Advanced Study
1 Einstein Drive
Princeton, NJ 08540
UNITED STATES

Dr. Kilian Raschel
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Laboratoire de Mathématiques et
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Théorique; Federation Denis Poisson
Bâtiment E2, Bureau 3020
37200 Tours Cedex
FRANCE

Prof. Dr. Victor Reiner

Department of Mathematics
University of Minnesota
127 Vincent Hall
206 Church Street S. E.
Minneapolis, MN 55455
UNITED STATES

Dr. Clément Requilé
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U. Politècnica de Catalunya
C3 Building (EETAC), Office 003
C. Esteve Terradas, 5
08860 Castelldefels
SPAIN

Dr. Bruno Salvy
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