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Introduction by the Organisers

About 50 years ago, Richard Thompson discovered three finitely presented groups
F , T , and V . They are subgroups of the homeomorphism groups of the interval,
the circle, and the Cantor set, respectively; and they can serve as discrete approxi-
mations of their ambient groups. The groups T and V were the first known infinite,
finitely presented simple groups. Classical results about F show that it features
a somewhat surprising combination of properties: it is torsion-free, of infinite co-
homological dimension, and of type F∞; similarly, it does not contain non-abelian
free groups and is not elementary amenable (whether it is amenable is a famous
open problem). Investigation of the classical Thompson groups thrives through to
this day. Recently, new constructions of groups, based on Thompson groups, have
provided us with more exciting groups, some of which especially crafted to exhibit
prescribed properties.

The birthday conference Thompson’s group at 40 Years in 2004 (at AIM) es-
tablished Thompson groups as a viable conference topic. Since then, the com-
munity has organized conferences with this focus about every three to four years,
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and this workshop Cohomological and Metric Properties of Groups of Homeomor-
phisms of R, organized by José Burillo (Barcelona), Kai-Uwe Bux (Bielefeld), and
Brita Nucinkis (London), belongs to this sequence. More than 20 participants
from eleven nations on four continents discussed recent developments regarding
the three classical Thompson groups as well as their more recent offspring.

The topics of our 17 talks included decision problems, finiteness properties,
smoothability of actions, and the structure of the class of all finitely generated
homeomorphisms groups of the interval. In addition, we had two discussion ses-
sions. The first concerned the broken Baumslag–Solitar groups. The other was a
session about open problems. In particular, we discussed progress that has been
made since the last Thompson family meeting at St Andrews, May 2014.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Closed subgroups of F

Mark Sapir

The R. Thompson group F can be described as the group of all increasing home-
omorphisms f(x) of [0, 1] ∩Q2 (where Q2 is the set of all binary fractions) which
are locally affine of the form a+ 2nx for some a and n ∈ Z. So it is the “topolog-
ical full group” of the affine group of maps of the form f(x) = a+ 2nx acting on
[0, 1] ∩Q2.

Now given any subgroup H of F we can define its closure H̄ as the group of
all homeomorphisms of F which are locally H . A subgroup H is called closed if
H = H̄ . In the middle of the 90s Guba and I conjectured that H̄ can be described
in a way similar to the Stallings description of subgroups of free groups, using
Stallings cores.

Recall that if a subgroup H of a free group Fn = 〈a1, ..., an〉 is generated by
words w1, .., wm then the Stallings core C(H) is the graph labeled by {a1, ..., an}
obtained as follows. Consider m paths p1, ..., pm labeled by the words w1, ..., wm,
identify the start and end points of these paths to obtain a bouquet of m circles
with a common vertex e. After that do the Stallings foldings: if there is a vertex o
with two edges with the same labels going out of o, we identify the edges of their
end-vertices. The Stallings core C(H) is an automaton (with input=output vertex
e) having the property that it accepts a word w if and only if w ∈ H . Essentially
the whole Nielsen–Schreier–Hall theory of subgroups of free groups follows from
that observation.

Now ifH is a subgroup of the R. Thompson group F generated by tree diagrams
(T+

1 , T
−
1 ), ..., (T+

m , T
−
m) we can obtain the 2-core Core(H) by first identifying the

top vertices of all trees T±
i with a vertex e, and then doing 2-foldings, that is if

we have two carets f → f1, f → f2 and f → f ′
1, f → f ′

2, we identify vertices
f1 ≡ f ′

1, f2 ≡ f ′
2 (and the carets), and if we have two carets f → f1, f → f2 and

g → f1, g → f2 we identify the vertices f and g (and the carets). As a result, we
get an ”automaton” with input=output=e and it is easy to define the meaning of
when the 2-core accepts a tree diagram (T+, T−). Guba and I conjectured that the
subgroup H̄ is precisely the subgroup of all elements of F accepted by Core(H).
That was proved by Gili Golan [18].

There are several unexpected corollaries (the first one was observed by Guba
and myself).

Theorem 1. If H is finitely generated then H̄ has membership problem solvable
in linear time.

Many known subgroups of F are (isomorphic to) closed subgroups: all cyclic
subgroups, Z ≀Z, (...(Z ≀Z) ≀Z)...) ≀Z, F ≀Z, Fp (p ≥ 2), the Brin–Navas subgroup
B, etc.
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Theorem 2 (Golan [18]). The generation problem for F is decidable, that is given
a finite number of elements of F , one can decide if these elements generate F .

Theorem 3 (Golan). For every n ≥ 2, the probability that n elements of F
generate F is > 0.

Theorem 4 (Golan [108]). The generating set {x0, x1, x0x1} of F has the property
that every set of conjugates of these elements {xg10 , x

g2
1 , (x0x1)

g3} generates F .

Theorem 5 (Golan [18]). The closure of every solvable subgroup of F is solvable
of the same degree.

If e1, ..., es are edges of Core(H), then P(H) = 〈e1, ..., es | eiej = ek, where
ek → ei, ek → ej is a caret〉 is a semigroup presentation, and H̄ is the diagram
group of P with the base word e. Thus all properties of diagram groups [93] hold
for closed subgroups ofH . The presentation P has the following tree-like property:
If x = yz, x = y′z′ are relations in P , then y = y′, z = z′ and if x = yz, x′ = yz
are relations of P , then x = x′. Conversely, every diagram group of a tree-like
semigroup presentation is a subgroup of F [18].

There are several open problems related to closed subgroups of F .
By our result with Guba [94], a diagram group DG(P , w) contains a copy of F

if and only if the semigroup given by the presentation P contains an idempotent
dividing w.

Problem 6. If it is decidable whether a semigroup given by a finite tree-like pre-
sentation contains an idempotent. Equivalenly, is it decidable whether the closure
of a finitely generated subgroup of F contains a copy of F?

Problem 7. Is the closure of every finitely generated subgroup of F finitely gen-
erated?

Problem 8. Is every finitely generated closed subgroup of F undistorted?

Golan and I can prove that if a tree-like presentation has a finite confluent
and terminating Knuth–Bendix completion and the completion is ”terminating in
linear time”, then the corresponding closed subgroup of F is undistorted. That
implies all known results about undistorted subgroups of F .

Groups of piecewise isometric rearrangements of tessellations

Robert Bieri

(joint work with Heike Sach)

This is recent joint work with Heike Sach and grew out of her excellent Diploma
Thesis [49] which sadly didn’t make it to a Ph.D. project, as I failed to convince
her that creating and nursing a blooming garden of higher dimensional Houghton
groups is all you need for a happy life.

We consider a tessellated piece S of either Euclidean or hyperbolic n-space X
and are interested in rearranging the tiles of this tessellation by cutting S along
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tile-boundaries into finitely many essentially convex rigid pieces and rearranging
them to a new tessellation of S. Each such rearrangement defines a permutation of
the tile-centers, and we call this a piecewise Euclidean isometric (pei) permutation
(resp. a piecewise hyperbolic isometric (phi) permutation). We are interested in
the corresponding permutation groups: pei(S) and phi(S), and also in subgroups
like pet(S) ≤ pei(S) where the isometries are restricted to translations. All phi-
, pei-, and pet-groups contain the normal subgroup S∞ consisting of all finite
permutations.

1. The case when X is the hyperbolic plane H2

The case when X is the hyperbolic plane H2 endowed with the tessellation ∆
by ideal triangles relates our groups with highly interesting recent developments
in contemporary geometric group theory: the retraction of the hyperbolic plane
through the horoballs at the vertices of ∆ onto the Farey tree T retracts the
tessellation ∆ of the hyperbolic plane to a tessellation ∆ of the Farey tree T by
isometric Y-shaped “tree-tiles”. We observe that the vertices ver(T ) of T can be
used as the mid-points of the tiles of both ∆ and ∆. As rearranging ∆ corresponds
precisely to rearranging ∆ it follows that phi(∆) is isomorphic to what could
be called the group of all piecewise planar tree-isometric (ppti) permutations of
ver(T ). The latter group is obviously the group of all almost isomorphisms of T
(the permutations ver(T ) that tear only finitey many edges apart).

Now it remains to observe that rearranging the infinite pieces of the Farey tree
are precisely the tree-moves that describe the elements of Richard Thompson’s
group V (I am told that Thurston observed that already in the mid sixties). Hence
we have:

Theorem 9. phi(∆)/S∞
∼= V , where S∞ is the finitary symmetric group of infi-

nite degree.

Question 10. Which Thompson-like groups are of the form phi(∆)/S∞ for some
tessellation ∆ of the hyperbolic plane? And what is the group theoretic property
that characterizes them?

Question 11. Is it the case that phi(∆)/S∞ and phi(∆) have the same finiteness
properties?

2. The Euclidean orthogonal case

Our main concern is the case when X is a Euclidean space En, tessellated by unit
cubes, and S ⊆ En is an orthohedral subset (i.e., a polyhedral union of tiles - see
below under B). We obtain rather detailed insight into the structure of the groups
pei(S) and pet(S) and results on their finiteness lengths1.

1The finiteness length of a group G, denoted fl(G), is the maximum n (possibly ∞) with the
property that G is of type Fn but not of type Fn+1; to be of type Fn means that G admits a
finite n-dimensional (n− 1)-connected free G-CW-complex.
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A) Results on finiteness properties. In the special case when S is the union
of the n canonical positive axes, the index of pet(S) in pei(S) is finite and pet(S) is
the Houghton groupHn on n rays. In that case we know by [36] that fl(Hn) = n−1.

Heike Sach’s Diploma thesis [49] was a first step towards our generalization: she
examined the possibilities to extend Brown’s proof to case when S is the union of n
quadrants and proved fl(pet(S)) ≥ n− 1 in that case. Now we consider arbitrary
k-dimensional orthohedral sets and prove the following.

Theorem 12 ([35]). fl(pei(S)) ≥ h(S) − 1, where h(S) is the maximum number
of pairwise disjoint isometric copies of Nk that fit into S.

In particular, fl(Zn) ≥ 2n − 1. And if S consists of h(S) parallel copies of Nk,
then we have:

Theorem 13 ([35]). fl(pet(S)) = h(S)− 1.

B) The structure of pei(S). In order to investigate the structure of pei(S) we
need more vocabulary on orthohedral sets S ⊆ Zn.

Let 0 ≤ k ∈ Z. By a rank-k orthant L ⊆ Zn we mean a subset L isometric
to Nk. An orthohedral set S is a disjoint union of finitely many orthants. The
rank rk(S) is the maximum rank of the orthants in S. Two orthants L,L′ are
commensurable if rk(L) = rk(L ∩ L′) = rk(L′), and the commensurability class
of the orthant L is the germ of L, denoted γ(L). Every element g ∈ pei(S) has
a orthohedral support supp(g) and its rank, denoted rk(g), is the rank of g. An
injective map f : S → S′ between orthohedral sets is piecewise isometric if every
orthant L of S contains a commensurable suborthant K ⊆ L on which f restricts
to an isometric embedding f |K : K → S′ (equivalently: S is the union of a finite
number of orthants on which f restricts to isometric embeddings).

Bijective pei-injections are pei-isomorphisms, and it is not hard to prove: Every
orthohedral set S is pei-isomorphic to {n | 1 ≤ n ≤ h(S)} × Nrk(S).

The finiteness properties that we establish for pei(S) are easier appreciated in
view of the following result on pei(S) for an arbitrary orthohedral set S.

Theorem 14 ([35]). For 0 ≤ k ≤ h(S) the subgroups Gk := {g | rk(g) ≤ k} are
normal in pei(S) and form a series

1 ≤ G0 ≤ G1 ≤ . . . ≤ Grk(S) = pei(S)

whose sections Gk/Gk−1 fit in a short exact sequence

1 → Ak(S) → Gk/Gk−1 → Sh(S) ≀ S∞ → 1,

where Ak(S) is free abelian (of infinite rank when 1 ≤ k ≤ h(S)).
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Smoothability and Property (T ) for group actions on 1-manifolds by
countably singular diffeomorphisms

Yash Lodha

(joint work with Nicolás Matte Bon, Michele Triestino)

We start with two broad questions, which we shall later specialise.

Question 15. Let M be a connected 1-manifold. Let G < Homeo+(M) be a group
action.

(1) Does the underlying group admit a faithful action by Cr-diffeomorphisms
on M?

(2) Is the original group action smoothable? In other words, does there exist
a homeomorphism φ : M → M such that the action φ−1Gφ is an action
by Cr diffeomorphisms?

(3) What are the obstructions to admitting an action by Cr-diffeomorphisms
on a 1-manifold?

Question 16. Does there exist an infinite Kazhdan group that admit a faithful
action by homeomorphisms on the circle?

Remark 17. Here by a Cr diffeomorphism ν of M we mean that the ⌊r⌋-th deriv-
ative of ν is r − ⌊r⌋-Holder continuous.

A classical obstruction to C1-smoothability is the Thurston stability theorem.

Theorem 18 (Thurston Stability [117]). A group of C1 diffeomorphisms of an in-
terval [a, b] is locally indicable, which means that every finitely generated subgroup
admits a homomorphism onto Z.

An obstruction to admitting C2-actions on the circle is the following result of
Navas.

Theorem 19 (Navas [72]). Let G be an infinite Kazhdan group. Then G does not
admit a faithful action by C2 diffeomorphisms on S1.

Recall that the group PSL2(R) acts in the projective line R∪{∞} by projective
transformations.

Example 20. (Thompson’s group F ) The group of piecewise PSL2(Z) homeo-
morphisms of R with breakpoints in Q.
(Thompson’s group T ) The group of piecewise PSL2(Z) homeomorphisms of R ∪
{∞} with breakpoints in Q ∪ {∞}.

Theorem 21 (Ghys–Sergiescu [67]). The standard actions of F and T are topo-
logically conjugate to an action by C∞ diffeomorphisms of the real line.

Theorem 22 (Thompson). T is a finitely presented, infinite, simple group.

Whether Thompson’s group F is amenable is a well known open problem. A
group G is amenable if it admits a finitely additive, left translation invariant
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probability measure. The original interest in the amenability of F arose due to
the interest in finding examples of groups which are non amenable, despite the
fact that they do not contain non abelian free subgroups. Recently, Monod and
L.–Moore constructed some generalisations of F that are non amenable, despite
the fact that they do not contain non abelian free subgroups.

Example 23. Let A < R be a subring.
(Monod’s groups) Define H(A) as the group of piecewise PSL2(A)-projective
homeomorphisms of the real line with breakpoints in the set QA of fixed points of
hyperbolic elements of PSL2(A).
(L.–Moore) Define

c(t) = t if t /∈ [0, 1] c(t) =
2t

1 + t
if t ∈ [0, 1]

Define the group G0 = 〈F, c〉.

The following holds for these groups.

Theorem 24 (Monod [80]). If A is dense in R, H(A) is non amenable and does
not contain free subgroups.

Theorem 25 (L.–Moore [98]). G0 is nonamenable and does not contain free sub-
groups. It is finitely presented, and admits a presentation with 3 generators and 9
relations.

Recall that a group G is said to be of type F∞ if there is a connected, aspherical
CW complex X such that π1(X) = G. The following holds for G0, thereby making
it the first example of a type F∞ group which is non amenable and does not contain
non abelian free subgroups.

Theorem 26 (L. [97]). G0 is of type F∞.

It is natural to inquire what the Tarski numbers of these groups are. Recall
that the Tarski number of a group is the smallest number of pieces required in a
paradoxical decomposition of the group.

Theorem 27 (L. [68]). G0 and H(A) (for each subring A < R, A 6= Z) admit a
paradoxical decomposition with 25 pieces. It follows that their Tarski numbers lie
in the range [5, 25] ∩N.

Next, we address the following question.

Question 28 (Navas). Are these group smoothable?

We resolve this question in the following manner.

Theorem 29 (Bonatti, L., Triestino [66]). (1) H(A) is not C1-smoothable
for any subring A of Z.

(2) If A contains non-trivial units, then H(A) does not admit a faithful action
by C1 diffeomorphisms on the real line or a closed interval.

(3) The group G0 does not admit a faithful action by C1 diffeomorphisms on
the real line or a closed interval.
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One of the obstructions to smoothability that we discovered is the following
family of abelian-by-cyclic groups.

Example 30. (Broken Baumslag–Solitar groups) For any λ ∈ Q>0, define the
group Gλ = 〈a, b−, b+〉 where

a(t) = t+ 1 b−(t) = λt if t ≤ 0 and t if t ≥ 0 b+(t) = λt if t ≥ 0 and t if t ≤ 0

Theorem 31 (L. [70]). Let S = 〈T, s〉 where

s(t) =



















t if t ≤ 0
2t
1+t

if 0 ≤ t ≤ 1
2

3−t
if 1 ≤ t ≤ 2

t if t ≥ 2

Then S is a finitely presented, infinite, simple group of homeomorphisms of the
circle. However, S does not admit a non-trivial action by C1-diffeomorphisms on
the circle.

Here is a simple argument that shows that S is not Kazhdan. Define a map

φ : S → l2(R ∪ {∞}) φ(g)(r) = Log
g′+(r)

g′−(r)

This map is easily verified to be a cocycle under the natural group action. This
provides an affine isometric action on l2(R ∪ {∞}) without a fixed point.

Definition 32. Let M be a closed manifold. We define ΩDiffr(M) as the group
of homeomorphisms ofM that are Cr in the complement of a countable closed set
of singularities (which depend on the homeomorphism).

Definition 33. Let G be a countable group that acts on a set X . A subset A ⊂ X
is said to be commensurate if for each g ∈ G

|A△(A · g)| <∞

A commensurate set A ⊂ X is said to be transfixed if there a G-invariant set
B ⊂ X such that

|A△B| <∞

A countable group has Property (FW) if for every G-action, each commensurate
set is transfixed.

Property FW is a consequence of Kazhdan’s property (but is strictly weaker).
FW implies Serre’s property FA, hence groups with FW are finitely generatable.

Definition 34. Let G be a countable group. G is said to have property (T ) if
every affine isometric action of G on a real Hilbert space has a fixed point.

To see that (T ) implies (FW ), we shall show the contrapositive. Let G act
on a set X and let A ⊂ X be a commensurated set that is not transfixed. Con-
sider the real Hilbert space l2(X) and let π : G → O(l2(X)) be the left regular
representation. Let

b : G→ l2(X) g 7→ 1B·g\B
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This is a cocycle but not a coboundary, since B is not transfixed. It follows that
the affine isometric action

ρ : G→ Isom(l2(X)) ρ(g) · ψ = π(g) · ψ + b(g)

does not have a fixed point.

Theorem 35 (L.–Matte Bon–Triestino [71]). Let G be an aperiodic action of a
property FW group on a closed manifold M by countably singular Cr-diffeomor-
phisms. Then the action is topologically conjugate to an action by Cr-diffeomor-
phisms on a homeomorphic (but not necesssarily diffeomorphic) manifold N .

Corollary 36 (L.–Matte Bon–Triestino [71]). Let G be an infinite group of piece-
wise C2 diffeomorphisms on S1. Then G does not have (T ).

For higher-rank lattices some of the most interesting (conjectural) rigidity prop-
erties are described by the so-called Zimmer’s program. An important conjecture
in this program states that a lattice in a higher rank simple Lie group has only (vir-
tually) trivial actions on closed manifolds of dimension < d, where d is an explicit
constant depending on the ambient Lie group (bounded below by its real rank).
This conjecture has been (partially) solved recently with the breakthrough work of
Brown, Fisher and Hurtado. It is a well known open problem whether Zimmer’s
conjecture holds for action by homeomorphisms that are not diffeomorphisms.
In combination with the results of Brown–Fisher–Hurtado, our work yields the
following.

Theorem 37 (L.–Matte Bon–Triestino [71]). Let Md be a closed manifold of
dimension d. Let G be a connected Lie group, whose Lie algebra is simple and
with finite centre. Assume that the real rank of G is r > d and let Γ ⊂ G be a
cocompact lattice, or Γ = SL(r+1,Z). For any morphism ρ : Γ → ΩDiff2(M), the
action of ρ(Γ) on M has a finite orbit.

Is F automatic?

Murray Elder

Let G be a group with finite symmetric generating set X = X−1. An automatic
structure for (G,X) is the following collection of finite state automata (FSA):

– an FSA M accepting L ⊆ X∗ in bijection2 with G
– for each x ∈ X ∪ {ǫ} an FSA Mx accepting {u⊗ v | u, v ∈ L, v =G ux}

where the notation u⊗ v means words of the form
(

u1
v1

)

. . .

(

us
vs

)(

$
vs+1

)

. . .

(

$
vt

)

if u = u1 . . . us, v = v1 . . . vt with t > s,
(

u1
v1

)

. . .

(

ut
vt

)(

ut+1

$

)

. . .

(

us
$

)

2Equivalently, L surjects to G.
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if s > t, and $ is a padding symbol3. If such a structure exists then (G,X) is
automatic.

An equivalent, more geometric definition is (G,X) is automatic if there is:

– a regular language L ⊆ X∗ in bijection with G
– a constant k ∈ N such that for each u, v ∈ L with v =G ux for some
x ∈ X ∪ {ǫ}

dX(u(t), v(t)) 6 k.

That is, in the Cayley graph for (G,X) L-words which start at the identity and
end distance at most 1 apart must synchronously k-fellow travel.

Example 38. Z2 = 〈a, b | ab = ba〉, L = {aibj | i, j ∈ Z}. Figure 1 shows the
automaton Ma.

start

ǫǫ
(

$
a

)

(

b
a

)

(

b−1

a

)

(

a
a

)
(

$
b

)

(

b
b

)

(

$
b−1

)

(

b−1

b−1

)

(

a−1

$

)

(

a−1

b

)

(

a−1

b−1

)

(

a−1

a−1

)
(

b
$

)

(

b
b

)

(

b−1

$

)

(

b−1

b−1

)

Figure 1. The FSA Ma for Z2.

Example 39. If G is any δ-hyperbolic group with finite generating set X =
X−1, the set of all shortlex geodesics is regular and satisfies the synchronous
fellow travelling condition for a constant depending on δ. In fact, the set of all
geodesics also gives an automatic structure (replacing bijection by surjection in
the definition), as does the set of all (λ, µ)-quasigeodesics provided λ ∈ Q and
some mild extra conditions [22].

Here are some facts [16]:

– being automatic is independent of the choice of finite generating set
– L-words are quasi-geodesics; this follows easily from the pumping lemma
for regular languages as follows. Let u ∈ L be the L-word for the identity,
|u| = c, m the maximum number of states in any Mx, and consider a
geodesic v = a1 . . . an ∈ X∗. Define a sequence of L-words recursively by
v0 = u, vi =G vi−1ai Then |vi| 6 |vi−1|+m since otherwise one could pump

3Equivalently, (u, v) are accepted by a synchronous 2-tape automaton.
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the suffix containing
(

$
x

)

symbols and obtain infinitely many L-words for
v. Then |vn| 6 mn+ c.

– the word problem for automatic groups can be solved in at most quadratic
time and linear space (use the previous argument to compute the L-words
vi for a given input word v = a1 . . . an)

– automatic implies G has a Dehn function that is at most quadratic
– automatic implies G is type FP∞ [42, 1].

So, is F automatic? Recall that Thompson’s group F has the finite presentation

〈x0, x1 | [x0x
−1
1 , x−1

0 x1x0], [x0x
−1
1 , x−2

0 x1x
2
0]〉.

It is known that F has quadratic Dehn function [20], is type FP∞ [37], has a
quasi-linear (n logn) time word problem (algorithm: draw the tree pair diagram).
So none of the obvious properties rule F out from being automatic.

Guba and Sapir give the following regular normal form for elements of F : L =
all freely reduced words which avoid factors (i > 0):

– x±1
1 xi0x1

– x±1
1 xi+1

0 x−1
1 .

The comparison automaton Mx0
is easy to construct, since multiplying a word

in L on the right by x0 changes the suffix by at most one letter. However multi-
plication by x1 can cause word length to explode: consider wi = x1x

i
0 with i > 0.

Then
x1x

i
0x1 → xi0x1x

−i−1
0 x1x

i+1
0 .

Then the L-words for wi, wix1 have length difference 2i + 3 so when i is greater
than then number of states of Mx1

we can apply the pumping lemma to obtain
infinitely many words u with wi ⊗ u accepted, which is a contradiction.

Note that a weaker version of automatic is to allow words that end at most
an edge apart to asynchronously fellow travel, or equivalently the comparator
automataMx to read words asynchronously. Consider wm,i = xm1 x

i
0 with m, i > 0.

The L-word for wm,ix1 is

xi0x1x
−i−1
0 xm1 x

i+1
0

and a careful pumping lemma argument also leads to a contradiction showing that
the language also fails to give an asynchronous automatic structure for F .

Non-automatic groups with quadratic Dehn function. Stallings’ group
〈

a, b, c, d, s [a, c] = [a, d] = [b, c] = [b, d] = 1,
(a−1b)s = a−1b, (a−1c)s = a−1c, (a−1d)s = a−1d

〉

is not type FP3 [52] and has quadratic Dehn function [64]. It can be seen as the
kernel of the map F2 × F2 × F2 → Z which sends words to their exponent sum;
taking n copies of F2 gives the n-th Bieri–Stallings group which is type FPn−1 but
not type FPn [34], and these (for n > 3) were also shown to have quadratic Dehn
function [62].

Another interesting example is
〈

a, b, s, t | ab = ba, as = ab, at = ab−1
〉
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which is type FP∞, not CAT(0) [65], has a quadratic Dehn function [58], has
an asynchronously automatic structure [14], but does not admit an automatic
structure [101]. The proof of non-automatic relies on a direct argument that, if it
were, the set of slopes you would expect to see in the embedded Z2 planes in the
Cayley graph should be finite, which leads to a contradiction. It is possible that
some similar direct argument can be constructed to rule out the possibility that
F is automatic.

Why should F not be automatic? None of the following facts prove that F
cannot have an automatic structure, but they do not bode well.

– F has many “bad” subgroups such as Zd for any d ∈ N ∪ {∞}, and
arbitrary iterated wreath products of Z.

– Cleary, the author and Taback [13] showed that for the standard generating
set, any set of words that contains at least one geodesic for each element
cannot be regular, so (F, {x0, x1}) has no geodesic automatic structure.

– Jeremy Hauze [21] strengthened this to: languages that have at least one
representative of each element of F of word length that is within a fixed
constant of the geodesic length cannot be part of an automatic structure.

Is F graph automatic? Weakening the notion of automatic further we arrive at
the following. A graph automatic structure [24] for (G,X) is:

– a finite symbol alphabet S (not necessarily corresponding to group ele-
ments)

– an FSA M accepting L ⊆ S∗ in bijection4 with G
– for each x ∈ X ∪ {ǫ} an FSA Mx accepting {u⊗ v | u, v ∈ L, v =G ux}.

Example 40. The 3-dimensional Heisenberg group consisting of matrices




1 a c
0 1 b
0 0 1





which correspond to triples (a, b, c) of integers. Writing a, b, c in binary we can
use an alphabet S = consisting of symbols (i, j, k) with i, j, k ∈ {0, 1,+,−}. For
example





1 −3 2
0 1 4
0 0 1





is represented as (−,+,+)(1, 0, 0)(1, 0, 1)(0, 1, 0). It is easy to check that multi-
plication by generators (1, 0, 0), (0, 1, 0) simply adds 1 in one position. Berdinsky
and Trakuldit [8] attribute this observation to Sénizergues.

Other examples of graph automatic groups include include all Baumslag–Solitar
groups, various wreath products, all finitely generated nilpotent groups of nilpo-
tency class at most two [24, 7, 6]. As for automatic groups we have [24]:

– L-words (over symbols) have quasi-geodesic length

4Equivalently, L surjects to G
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– at most a quadratic time word problem
– being graph automatic is invariant under change of finite generating set
– can assume without loss of generality that S is a subset of the generating
set. However, paths in the Cayley graph labeled by S-edges do not nec-
essarily end anywhere near the group element represented by the label of
the path. See [8].

Thompson’s group F seems like a natural candidate for graph automaticity,
since we have many nice ways to represent elements, for example as tree pair
diagrams. However, any encoding of a tree pair using a finite alphabet will require
some memory. This leads to the notion of a C -graph automatic structure where
we replace regular languages by languages in the class C in the definition. This
even weaker notion still implies some nice properties: for counter-graph automatic
with a quasigeodesic normal form we still have a polynomial time algorithm to
compute L-words, which means a polynomial time word problem [15]. In [29]
Taback and Younes constructs a (3-counter)-graph automatic structure based on
tree pair diagrams for F .

Encoding the infinite normal form in a certain way, the author and Taback were
able to lower the complexity to (1-counter)-graph automatic. We write words

xi00 x
i1
1 . . . xirr x

−js
s . . . x−j0

0

as strings over an alphabet {#, a, b} in such a way that the conditions required to
have unique representatives are regular to check. The single counter is needed to
check multiplication by x1. Specifically we represent xi00 . . . xirr x

−js
s . . . x−j0

0 as

ai0bj0# . . .#aimbjm

where m = max{r, s}. The words obtained are quasigeodesic [60].

Final remarks. Another extension of the notion of automatic which I did not
discuss in the talk is autostackable [9] and the weaker notion of algorithmically
stackable [59]. Brittenham, Hermiller and Holt introduced these notions, showing
that they also imply some nice computation properties. Cleary, Hermiller, Stein
and Taback prove that F is algorithmically stackable with respect to a determin-
istic context-free language of normal forms [63, 59].

Whether F is another example of a group with quadratic Dehn function that
is not automatic, or if in fact it admits some nice automatic or graph automatic
structure remains open. Once again F proves itself to be an enigma.

Spraiges, 3-manifolds, and conjugacy for a braided Thompson group

Yuri Santos Rego

(joint work with Kai-Uwe Bux)

The braided version of Thompson’s group V , introduced by M. G. Brin and P.
Dehornoy [88, 92] and denoted Vbr here, is a certain subgroup of the braid group on
a Cantor set of strands. We presented a strategy to solve the conjugacy problem
for Vbr following ideas previously applied to braid groups (by E. Artin [82]) as well
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as to diagram groups (by V. Guba and M. Sapir [93]) and to Thompson’s classical
groups F ⊂ T ⊂ V (by J. M. Belk and F. Matucci [5]). Our methods employ
“split-braid-merge band diagrams” (spraiges [39]) and reformulate the problem
into a question about the algorithmic recognition of certain 3-manifolds.

1. The problem

Since the original triad of groups F ⊂ T ⊂ V was introduced in the sixties by
Richard Thompson [102], one is usually confronted with three basic questions
about a Thompson-like group when it is born. Specifically: what can be said
about its normal subgroup structure, its decision problems, and its homological
and homotopical finiteness properties?

Regarding decision problems for Thompson-like groups, the conjugacy problem
is in general quite challenging; see, for instance, [77, 23, 17, 27, 11, 2, 4], to name
a few. Even for the classical groups F ⊂ T ⊂ V we have a gap of many years
between the first known solutions. Recall the following.

Theorem 41. The conjugacy problem is decidable for F (Guba–Sapir [93]), for T
(Belk–Matucci [5]), and for V (Higman [111] and Barker–Duncan–Robertson [2]).

Inspired by the ideas of Guba–Sapir in the context of diagram groups [93], and
using strand diagrams popularized by Jim Belk in his thesis [57], Belk and Matucci
developed in [5] a strategy that actually works for F, T and V . This provided in
particular a unified proof of the results of Guba–Sapir and Higman. The key
ingredient in Belk–Matucci’s proof is to produce a geometric conjugacy invariant
obtained by “closing” in an annulus the diagrams used to represent elements of the
given groups. This lead Matucci to conjecture in his Ph.D. thesis that their ideas
might work for other Thompson-like groups. In particular, he asked the following.

Question 42 (Matucci [25]). Does a similar strategy work for the group Vbr?

It turns out that Belk and Matucci’s ideas are very similar to what has been
observed over eight decades ago in the theory of knots, links and braids. Recall
the following classical result.

Theorem 43 (Artin [82, 115]). Two braids are conjugate if and only if their
closures in the solid torus are ambient isotopic.

Making use of the strong similarities between knots and links and
Belk–Matucci’s arguments as well as the natural connection between Vbr and braid
groups, we answer Matucci’s question in the afirmative.

Theorem 44. The conjugacy problem for Vbr is decidable.

2. Spraiges

Recall that V is the group given by equivalence classes (under “expansion” and
“reduction”) of tree-paired diagrams with permutations between the leaves of the
given trees [102]. To define the braided variant of V , one allows for braidings
(instead of just permutations) in the diagrams that depict typical elements of V ;
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see Figure 2. We refer the reader to [86] for more on such braided tree-paired
diagrams.

(a) (b)

Figure 2. (a) An element of V ; (b) An element of Vbr.

However, we shall need a concrete geometric version of such diagrams. To
define them, we simply combine the strand diagrams of Belk–Matucci with the
braided band diagrams considered by Bux–Sonkin [12]. Loosely speaking, a split-
braid-merge band diagram, nicknamed spraige by Zaremsky in [39], is a surface
in the solid cylinder which “flows” from top to bottom and is made up of a strip
which (can) split and than merges back before reaching the bottom. Moreover,
the surface keeps track of the relative order in which the splits and merges occur,
and braidings between the strips can occur “in the middle”; see Figure 3 for an
example.

Figure 3. A spraige... Figure 4. ...and its closure.

Spraiges are considered up to ambient isotopy fixing the boundary of the am-
bient cylinder. Defining reduction moves on spraiges similar to “reduction and
expansion” [12, 39], it follows that Vbr is the group of equivalence classes of (iso-
topy classes of) spraiges with operation given by concatenation, i.e. gluing spraiges
on top of each other.

3. Closures and 3-manifolds

Following Artin and Belk–Matucci, we define the closure of a spraige to be the
surface, embedded in the solid torus, obtained by identifying the top and bottom
of the ambient cylinder; see Figure 4. (Here, one has to be a little bit more careful
when defining equivalence of closed spraiges since ambient isotopies in the torus
can produce undesired equivalent surfaces, e.g. by “flipping” a closed spraige.)
We establish a notion of admissible isotopy and reduction moves, and obtain the
desired conjugacy invariants.
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Proposition 45. Two (classes of) spraiges in Vbr are conjugate if and only if
their closures in the solid torus are admissibly equivalent.

This raises the question of how to algorithmically compare two given closed
spraiges. The main challenge in following this line of thought of Belk–Matucci is
the nature of the diagrams employed. In their case, solutions to the graph isotopy
problem in surfaces apply, whereas closed spraiges live in 3-manifolds and thus
comparing them algorithmically is trickier. We then appeal to the similarities
with knot theory as a second step towards our solution. Recall the following.

Theorem 46 (Gordon–Luecke [110]). Two knots in the 3-sphere S3 are ambient
isotopic if and only if their complement spaces are homeomorphic.

The complement of a knot is obtained by removing from S3 an open tubular
neighborhood containing the knot. If we imagine a closed spraige as a flat hose
and fill it up with water, we obtain a handlebody whose boundary contains the
boundary of the underlying closed spraige. The complement of a closed spraige is
the 3-manifold obtained from the solid torus by removing the interior of such a
handlebody. These 3-manifolds already come with nice features, namely, they are
compact (with boundary), oriented, and sufficiently large.

In contrast with Gordon–Luecke’s famous result, however, it is not hard to see
that the homeomorphism type of the complement of a closed spraige does not give
complete information about it. Furthermore, knot complements are “even better”
spaces, namely, they are Haken manifolds. Nevertheless, we can still improve the
complement as to encode more information on the isotopy class of the given closed
spraige and become a “better” space.

More precisely, by removing from the complement small tori around its already
missing tubes yields a Haken manifold. Moreover, we draw certain canonical
graphs on the boundary of the resulting space to obtain a boundary pattern which
essentially determines the underlying closed spraige.

Finally, to obtain Theorem 44, we can make use of the following program to
distinguish Haken manifolds, initiated by Wolfgang Haken in the sixties and com-
pleted by Sergey Matveev in the last decade after fundamental works of Johannson,
Hemion, Bestvina and Handel.

Theorem 47 (Haken–Hemion–Matveev–Thurston [26]). There exists and algo-
rithm that, given two Haken manifolds with boundary patterns, decides whether
there exists a homeomorphism between the manifolds which takes one boundary
pattern isomorphically onto the other.

4. Follow-up questions

After Belk–Matucci and as pointed out by Bleak and Zaremsky, one can state two
natural problems.

Question 48. Is the conjugacy problem decidable for the groups Fbr [86] and Tbr
[55]? (These are the braided variants of F and T , respectively.)
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It is unclear how to adapt the strategy presented here to the subgroups Fbr ⊂ Tbr
of Vbr—the former is constructed using pure braids, and the latter might need more
complicated diagrams (or surfaces) to produce the desired conjugacy invariants;
compare [5].

Question 49. What other kinds of information do closed spraiges give for the
group Vbr?

In [85, 5], for example, similar diagrams are used to obtain information on the
dynamics of Thompson-like groups.

Lastly, one may also repeat Matucci’s question in broad generality: for which
Thompson-like groups does a similar strategy to check decidability of the conjugacy
problem work?

Groups of fast homeomorphisms of the interval and the ping-pong
argument

Collin Bleak

(joint work with Matthew G. Brin, Martin Kassabov, Justin T. Moore, Matthew
C. B. Zaremsky)

This extended abstract of the talk of C. Bleak in the 2018 Oberwolfach work-
shop “Cohomological and Metric Properties of Groups of Homeomorphisms of R”
details work on a large set of subgroups of the group Homeo+(I); the group of
the orientation preserving homeomorphisms of the unit interval. It represents
work in an article to appear in the International Journal of Combinatorial Alge-
bra (and in some places, shamelessly steals the text of that article) which is joint
with Matthew G. Brin, Martin Kassabov, Justin Tatch Moore, and Matthew C.
B. Zaremsky. There will be two further extended abstracts of talks representing
more of our work in the area (the second by Moore will more specifically be on the
complexity classes of the elementary amenable subgroups of F , representing a joint
paper under review of Bleak, Brin, and Moore, and the final extended abstract
will be by Brin, where he will discuss the limits of our current knowledge on the
subject).

1. Introduction

The ping-pong argument was first used in [112, §16] and [107, §II,3.8] to analyze
the actions of certain groups of linear fractional transformations on the Riemann
sphere. Later distillations and generalizations of the arguments (e.g., [114, The-
orem 1]) were used to establish that a given group is a free product. We adapt
the ping-pong argument to the setting of subgroups of Homeo+(I) with the mo-
tivation of developing a better understanding of the finitely generated subgroups
of the group PL+(I) of piecewise linear order-preserving homeomorphisms of the
unit interval. The analysis described resembles the original ping-pong argument in
that it establishes a forest structure (instead of a tree structure) on certain orbits
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of a group action, and uses this to determine algebraic properties of the acting
group.

The focus of this extended abstract is on subgroups of Homeo+(I) which are
specified by what we term geometrically fast generating sets. A geometrically fast
set X of generators admits a setM of markings (finite in the subcase of piecewise-
linear generators), and the set M〈X〉 is the orbit upon which we establish a forest
structure. Our main result shows that the isomorphism type of a group specified
by a “geometrically fast” generating set is determined by its “dynamical diagram,”
a finite directed labelled graph which encodes the qualitative relative dynamics of
the generators.

Theorem 50. If two geometrically fast sets X,Y ⊆ Homeo+(I) have only finitely
many transition points and have isomorphic dynamical diagrams, then the induced
bijection between X and Y extends to an isomorphism of 〈X〉 and 〈Y 〉 (i.e. 〈X〉
is marked isomorphic to 〈Y 〉). Moreover, there is an order preserving bijection
θ :M〈X〉 →M〈Y 〉 such that f 7→ fθ induces the isomorphism 〈X〉 ∼= 〈Y 〉.

We will give the definitions of the various undefined terms from the statement
of Theorem 50 later. For now, we simply mention that a dynamical diagram is
small a combinatorial object describing the relative dynamics of a set of elements
of Homeo+(I), and that any set of elements of Homeo+(I) satisfying some mild
technical conditions can be made into a “geometrically fast” set by raising the
individual generators to powers, without changing the related dynamical diagram.
Thus, our theorem represents a form of stable rigidity for subgroups of Homeo+(I).
We also mention that all groups satisfying the conditions of the theorem can
actually be embedded in R. Thompson’s group F.

2. Drawing comparison with the classical Ping-Pong Lemma

First recall the classical Ping-Pong Lemma (see [118, Prop. 1.1]):

Lemma 51 (Ping Pong). Let S be a set and A be a set of permutations of S
such that a−1 6∈ A for all a ∈ A. Suppose there is an assignment a 7→ Da ⊆ S of
pairwise disjoint sets to each a ∈ A± := A ∪ A−1 and an x ∈ S \

⋃

a∈A± Da such

that if a 6= b−1 are in A±, then

(

Db ∪ {x}
)

a ⊆ Da.

Then A freely generates 〈A〉.

(We adopt the convention of writing permutations to the right of their arguments.)
In the current discussion, we will relax the hypothesis so that the containment

Dba ⊆ Da is required only when Db is contained in the support of a; similarly
xa ∈ Da is only required when xa 6= x.

Consider the three functions (bi | i < 3) in Homeo+(I) whose graphs are shown
in Figure 5.
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b0

b2
b1

Figure 5. Three homeomorphisms

A schematic diagram (think of the line y = x as drawn horizontally) of these
functions might be:

b0 b1

b2

◦
S1

◦
S2

•
D1

◦
D3 •

D2
•
S3

In this diagram, we have assigned intervals Si and Di to the ends of the support to
each bi so that the entire collection of intervals is pairwise disjoint. Our system of
homeomorphisms is assumed to have an additional dynamical property reminiscent
of the hypothesis of the Ping-Pong Lemma:

• Sibi ∩Di = ∅;
• bi carries supt(bi) \ Si into Di;
• b−1

i carries supt(bi) \Di into Si for each i.

A special case of our main result is that these dynamical requirements on the bi’s
are sufficient to characterize the isomorphism type of the group 〈bi | i < 3〉: any
triple (ci | i < 3) which produces this same dynamical diagram and satisfies these
dynamical requirements will generate a group isomorphic to 〈bi | i < 3〉. In fact
the map bi 7→ ci will extend to an isomorphism. In particular,

〈bi | i < 3〉 ∼= 〈bki

i | i < 3〉

for any choice of ki ≥ 1 for each i < 3.

3. Definitons and further results

We will now formalise the general discussion above.
In this abstract, recall that we use right actions. For instance, tg will denote

the result of applying a homeomorphism g to a point t. Recall that from the
introduction that if f is in Homeo+(I), then its support is defined to be supt(f) :=
{t ∈ I | t 6= tf}. The support of a subset of Homeo+(I) is the union of the supports
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a0

a1

p

q

r

s

t

Figure 6. A geometrically fast set of bumps

of its elements. A left (right) transition point of f is a t ∈ I\ supt(f) such that for
every ǫ > 0, (t, t+ ǫ)∩ supt(f) 6= ∅ (respectively, t− ǫ, t)∩ supt(f) 6= ∅. An orbital
of f is a component its support. An orbital of f is positive if f moves elements
of the orbital to the right; otherwise it is negative. If f has only finitely many
orbitals, then the left (right) transition points of f are precisely the left (right)
end points of its orbitals. An orbital of a subset of Homeo+(I) is a component of
its support.

An element of Homeo+(I) with one orbital will be referred to as a bump function
(or simply a bump). If a bump a satisfies that ta > t on its support, then we say
that a is positive; otherwise we say that a is negative. If f ∈ Homeo+(I), then
b ∈ Homeo+(I) is a signed bump of f if b is a bump which agrees with f on
its support. If X is a subset of Homeo+(I), then a bump a is used in X if a
is positive and there is an f in X such that f coincides with either a or a−1 on
the support of a. A bump a is used in f if it is used in {f}. We adhere to the
convention that only positive bumps are used by functions to avoid ambiguities in
some statements. Observe that if X ⊆ Homeo+(I) is such that the set A of bumps
used in X is finite, then 〈X〉 is a subgroup of 〈A〉.

If (gi | i < n) and (hi | i < n) are two generating sequences for groups, then we
will say that 〈gi | i < n〉 is marked isomorphic to 〈hi | i < n〉 if the map gi 7→ hi
extends to an isomorphism of the respective groups.

A precursor to the notion of a geometrically fast generating set is that of a
geometrically proper generating set. A set X ⊆ Homeo+(I) is geometrically proper
if there is no element of I which is a left transition point of more than one element
of X or a right transition point of more than one element of X. Observe that any
geometrically proper generating set with only finitely many transition points is
itself finite.

If X is a finite geometrically proper subset of Homeo+(I), then we will often
identify X with its enumeration in which the minimum transition points of its
elements occur in increasing order. When we write 〈X〉 is marked isomorphic to
〈Y 〉, we are making implicit reference to these canonical enumerations of X and
Y.
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• • •

f

aa •

f

!!
•

g

ee • • • •

f

f

•

g

•

Figure 7. The dynamical diagram for the Brin–Navas genera-
tors, with an illustration of the contraction convention

Before turning to the definition of geometrically fast in the context of finite
subsets of Homeo+(I), we first need to develop some further terminology. A
marking of a geometrically proper collection of bumps A is an assignment of a
marker t ∈ supt(a) to each a ∈ A. If a is a positive bump with orbital (x, y)
and marker t, then we define its source to be the interval src(a) := (x, t) and its
destination to be the interval dest(a) := [ta, y). We also set src(a−1) := dest(a)
and dest(a−1) := src(a). The source and destination of a bump are collectively
called its feet.

A collection A of bumps is geometrically fast if it there is a marking of A for
which its feet form a pairwise disjoint family (in particular we require that A is
geometrically proper). This is illustrated in Figure 6, where the feet of a0 are
(p, q) and [r, s), and the feet of a1 are (q, r) and [s, t). Being geometrically fast
is precisely the set of dynamical requirements made on the set {ai | i < 3} of
homeomorphisms mentioned earlier.

Notice that, since pairwise disjoint families of intervals in I are at most count-
able, any geometrically fast set of bumps is at most countable.

We now generalise further. A set X ⊆ Homeo+(I) is geometrically fast if it is
geometrically proper and the set of bumps used in X is geometrically fast.

Observe that if X is geometrically proper, each of its elements uses only finitely
many bumps, and the set of transition points of X is discrete, then there is a
map f 7→ k(f) of X into the positive integers such that {fk(f) | f ∈ X} is
geometrically fast, as raising elements to large powers reduces the size of the feet
appearing in each bump. Also notice that if {fk(f) | f ∈ X} is geometrically fast
and if k(f) ≤ l(f) for f ∈ X, then {fll(f) | f ∈ X} is geometrically fast as well.

If X is a geometrically fast generating set with only finitely many transition
points, then the dynamical diagram DX of X is the edge labeled vertex ordered
directed graph defined as follows:

• the vertices of DX are the feet of X with the order induced from the order
of the unit interval;

• the edges of DX are the signed bumps of X directed so that the source
(destination) of the edge is the source (destination) of the bump;

• the edges are labeled by the elements of X that they come from.

The dynamical diagram of a generating set for the Brin–Navas group B of
[76, 81] and first called B in [73] is illustrated in the left half of Figure 7; the
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Figure 8. A point is tracked through a fast transition chain

generators are f = a−1
0 a2 and g = a−1

1 , where the (ai | i < 3) is the geometrically
fast generating sequence illustrated in Figure 8. We have found that when drawing
dynamical diagramDX of a givenX, it is more aesthetic whilst being unambiguous
to collapse pairs of vertices u and v of DX such that:

• v is the immediate successor of u in the order on DX ,
• u’s neighbor is below u, and v’s neighbor is above v.

Additionally, arcs can be drawn as over or under arcs to indicate their direction,
eliminating the need for arrows. This is illustrated in the right half of Figure 7.
The result qualitatively resembles the graphs of the homeomorphisms rotated so
that the line y = x is horizontal.

An isomorphism between dynamical diagrams is a directed graph isomorphism
which preserves the order of the vertices and induces a bijection between the edge
labels (i.e. two directed edges have equal labels before applying the isomorphism
if and only if they have equal labels after applying the isomorphism). Notice that
such an isomorphism is unique if it exists.

Supposing X ⊆ Homeo+(I) is geometrically fast and has a finite dynamical
diagram. Then, we can find ε-close elements of R. Thompson’s group F, so that
the components of support of these new elements overlap each other with the same
relative structure as the components of support of the elements of X. Raising these
elements to sufficiently high powers results in a geometrically fast set in f with a
dynamical diagram isomorphic to that of X. Thus, we have the following.

Theorem 52. For each finite dynamical diagram D, there is a geometrically fast
XD ⊆ F such that if X ⊆ Homeo+(I) is geometrically fast and has dynamical
diagram D, then there is a marked isomorphism φ : 〈X〉 → 〈XD〉 and a continuous

order preserving surjection θ̂ : I → I such that f θ̂ = θ̂φ(f) for all f ∈ 〈X〉.

Since by [77] F does not contain nontrivial free produces of groups, subgroups of
Homeo+(I) which admit geometrically fast generating sets are not free products.
It should also be remarked that while our motivation comes from studying the
groups F and PL+(I), the results here are much broader: for instance, one can
re-state the Theorem 52 using Diff∞

+ (I) instead of F.
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It is natural to ask how restrictive having a geometrically fast or geometri-
cally proper generating set is. The next theorem makes use of the main result
of [1] to show that many finitely generated subgroups of PL+(I) have at least a
geometrically proper generating set.

Theorem 53. Every n-generated one orbital subgroup of PL+(I) either contains
an isomorphic copy of F or else admits an n-element geometrically proper gener-
ating set.

Notice that every subgroup of Homeo+(I) is contained in a direct product of
one- orbital subgroups of Homeo+(I). Thus if one’s interest lies in studying the
structure of subgroups of PL+(I) which do not contain copies of F, then it is
typically possible to restrict one’s attention to groups admitting geometrically
proper generating sets.

Finitely generated elementary amenable subgroups of F

Justin Tatch Moore

(joint work with Collin Bleak, Matthew G. Brin)

This extended abstract is essentially part of the introduction of [75] which is cur-
rently submitted for publication. It has been lightly edited and truncated to fit the
present context.

Our aim is to initiate a program to classify the finitely generated subgroups of
Richard Thompson’s group F . While we are far from completing this program, we
isolate a class S of finitely generated subgroups of F which exhibits a high degree
of complexity, but which admits a complete structural analysis and seems likely
to play a central role in the classification of all finitely generated subgroups of F .

The groups in S all have generating sets with simple descriptions in the lan-
guage of [74]. Using [74] one can specify certain subgroups of Homeo+(I), the
group of orientation preserving self homeomorphisms of the unit interval I, by
the qualitative dynamics of their generating sets. All groups given in this way
embed homomorphically into F . The groups in S provide simple and natural ex-
amples of elementary amenable groups of high EA-class that we feel are of interest
independent of being subgroups of F .

There are two main features of our work. The first is the shift of attention away
from the usual “isomorphism type and containment relation” (the Hasse diagram)
of subgroups, and toward the coarser “biembeddability class and embeddability
relation” where two groups are biembeddable if each embeds in the other. A finer
analysis of the isomorphism types of subgroups of F does not seem feasible at this
time.

The second feature is the discovery of a rich arithmetic that lives on S that
greatly facilitates transfinite induction and recursion. The usual ingredients of
transfinite recursion are base, successor, and limit stage: a base object A0 must
be built, an object Aα+1 must be built from the object Aα, and for a limit α,
an object Aα must be built from the objects Aβ with β < α. We show that S
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Figure 9. Gτ4 := 〈f4, g4〉 and Gτ5 := 〈f5, g5〉. The EA-classes of
these groups are ωω + 2 and ωωω

+ 2, respectively.

can be equipped with arithmetic operations that allow us to easily build from
Bα ∈ S not only Bα+1, but also Bα·ω and even Bωα with equal ease. This has two
consequences. First, our groups are remarkably easy to “write down.” Second,
the bulk of the work in the paper is shifted from construction to analysis. In fact,
it is still a wonder to the authors that these groups can be analyzed at all.

Elementary amenable groups form a class EG and are those groups that can
be built from finite and abelian groups by a (possibly transfinite) process using
extension and directed union. The EA-class of a group G in EG is a measure
of the complexity of the construction process for G. Thompson’s group F is not
elementary amenable (EA) — it cannot be built from the class of amenable and
finite groups by using the operations of extensions and direct limits. Matt Brin
and Mark Sapir have made the following conjecture, to the effect that F is the
only obstruction the elementary amenability among its subgroups:

Conjecture 54 ([76, 116]). If G is a subgroup of F , then either G is elementarily
amenable or else G contains a copy of F .

Our basic thesis is that this conjecture will eventually be a corollary of a more
complete understanding of the partial order (F, →֒) where F is the set of biem-
beddability classes of finitely generated subgroups of F and A →֒ B asserts that
members of the class A embed into members of the class B.

The complex nature of (F, →֒) is demonstrated by our main result:

Theorem 55 ([75]). There is a transfinite sequence (Gξ | ξ < ǫ0) of finitely
generated elementary amenable subgroups of F such that:

• G0 is the trivial group and Gξ+1
∼= Gξ + Z;

• Gξ embeds into Gη if and only if ξ ≤ η;
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• Given 0 ≤ α < ǫ0 and n < ω, let ξ = ω(ωα)·(2n). If α > 0, then the
EA-class of Gξ is ω ·α+n+2. If α = 0, then the EA-class of Gξ is n+1.

In particular, for each α < ǫ0, there is a ξ such that the EA-class of Gξ is α + 2.
(If the EA-class of a finitely generated group is infinite, it is always of the form
α+2.) Thus Theorem 55 improves previous work of Brin [76], who demonstrated
that there are finitely generated subgroups of F in EG of class ξ+2 for each ξ < ω2.
With ω the smallest infinite ordinal, the ordinal ǫ0 is the smallest ordinal solution
to the equation ωx = x. If we define a sequence (τk)k∈ω of ordinals recursively by
τ0 := 2, τ1 := ω and τk+1 := ωτk for k > 1, then ǫ0 can be described as

ǫ0 = sup{τk | k ∈ ω} = ωωω
ω
··
·

.

The groups in S := {Gξ | ξ < ǫ0} are built from Z using certain familiar
group-theoretic operations — direct sums and wreath products — as well as a
new operation which is analogous to ordinal exponentiation base ω. Whether this
new operation is meaningful in a broader setting is unclear but even in our rather
restrictive setting, it already yields a wealth of examples. The operations also
make the construction of the groups in S straightforward and highly analogous
to the construction of ordinals below ǫ0 from 0 using exponentiation base ω and
addition. Specifically, given the Cantor normal form for an ordinal ξ < ǫ0 there
is an efficient algorithm that lets one write down a finite number of generators
(explicitly as words in the generators of F if desired) for a group with EA-class
ω · ξ + 2.

While the results of this paper concern groups, the focus of the analysis is on
generating sets. The groups in S are specified by a family of generating sets S.
This collection has the property that A is in S if and only if each of its two element
subsets is in S. The 2-element sets in S generate precisely the groups Gτk in the
family S = {Gξ | ξ < ǫ0}; this is the reason for setting τ0 := 2. Theorem 55
implies, in particular, that the Gτk are an infinite family of elementary amenable
2-generated subgroups of F which are not pairwise biembeddable. Two of these
generating pairs are illustrated in Figure 9.

The isomorphism types of the Gτk are parametrized by the nonnegative integer
k which we refer to as the oscillation of the generating pair from S. Figure 9
illustrates pairs with oscillation 4 and 5. The function giving the oscillations of
the pairs from an A ∈ S is the signature of A. Each generating set in S is equipped
with a total order, and the signature serves as a complete invariant for all of S.

Theorem 56 ([75]). If A,B ∈ S have the same signature, then the order preserv-
ing bijection from A and B extends to an isomorphism from 〈A〉 to 〈B〉.

Thus one may analyze S by analyzing the set S of all signatures of S. We also
algebraically characterize the relation≤ on S which comes from the embeddability
relation on S.

The family S is robust at a group-theoretic level: if A ∈ S, then 〈A〉 is an
HNN extension of a group which is itself an increasing union subgroups of the
form 〈B〉 for B ∈ S. On the other hand, while the closure properties of S — and
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thus of S — are important in the group-theoretic analysis of S, they introduce
redundancies which obscure the structure of the order on these classes. This is
resolved by introducing algebraic operations +, ∗, and exp on S and using them
to define a subclass R of S . The next theorem is at the core of the proof of
Theorem 55. It shows that R provides a notion of “normal form” for S and
consequently for S (here A ≡ B denotes A ≤ B ≤ A).

Theorem 57 ([75]). For each A is in S there is a unique B in R such that A ≡ B.
Moreover there is a natural isomorphism

(R, <,+, exp) ∼= (ǫ0,∈,+, ζ 7→ ω−1+ζ)

provided + is restricted to those pairs in R for which the sum remains in R.

Thus each biembeddability class in S has a distinguished representative — unique
up to marked isomorphism — identified by the form of its signature. Moreover,
this representative can be viewed as being built up from Z using simple arithmetic
operations which are analogs of the fundamental operations of ordinal arithmetic.

Is Thompson’s group F the only interesting subgroup of PLo(I)?

Matthew G. Brin

(joint work with Collin Bleak, Justin Tatch Moore)

We review what is known and not known about the subgroup structure of PLo(I).
The summary below uses vocabulary from the talks of Collin Bleak and Justin
Moore that were given at this workshop.

1. Introduction

The diagram below is a picture of the universe under discussion.
Our universe is the set X of all finitely generated subgroups of PLo(I), and

the ambition is to understand its structure. As a limit on the ambition, we look
for structure using the relation →֒ on X , where G →֒ H means that there is a
homomorphic embedding of G into H . The biembeddability class [G] of G consists
of all those H for which G →֒ H and H →֒ G.

The relation →֒ induces partial order (that we also denote by →֒) on the biem-
beddability classes of X and we use [X ] to denote the set of such classes. The
central class that others are compared to is the class [F ] of Thompson’s group
F . To facilitate the discussion, the set [X ] is broken down as shown in the di-
agram below. Whether a group is EA (elementary amenable) or not will figure
prominently in the discussion.

The breakdown creates six regions and we discuss which groups might belong
in each region. We talk of individual groups belonging to a region even though
technically, the region is a set of classes. We will not agonize over this inconsistency.
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Finitely generated subgroups of PLo(I)
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1 '!&"%#$

Groups in which F embeds
but which do not embed in F

2 '!&"%#$

EA groups
incomparable to F

3 '!&"%#$

[F ]

4 '!&"%#$

non EA groups
incomparable to F

Subgroups of F
in which F does not embed

5 '!&"%#$

EA subgroups of F

6 '!&"%#$

non EA subgroups of F
in which F does not embed

ooEA groups // non EA groups

In the following, we list some facts that are known and raise questions whose
answers are not yet known.

2. On the title

We place some groups in the diagram above.

Fact 58. (Lodha) The Stein groups Fp1,...,pn
with n > 1 are in Region 1 '!&"%#$, and

Fp1,...,pm
cannot embed in Fp1,...,pn

if m > n.

Fact 59. For each integer n ≥ 2, the Thompson group Fn that uses slopes integral
powers of n with breaks in Z[1/n] is in Region 3 '!&"%#$.

Fact 60. The solvable subgroups as analyzed by Bleak, and the chain of elementary
amenable subgroups Gξ, ξ < ǫ0 introduced by Bleak–Brin–Moore are in Region 5 '!&"%#$.

Our main question and the reason for the title is the following.

Question 61. Are Regions 2 '!&"%#$, 4 '!&"%#$, 6 '!&"%#$ empty?

Our impression of the relation →֒ is that it has behavior similar to the relation
| (divides) on the positive integers. We have G →֒ H and m|n if H has all the
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complexity of G (and possibly more) and if n has all the complexity of m (and
possibly more). In the case of the integers the complexity refers to the details of
the prime factorization, while in the case of groups we have no strict definition.

With this view in mind, a group in Region 1 '!&"%#$ would be elementary amenable
but of a complexity not reflected in the complexity of any subgroup of F . This
would be an interesting group.

A group G in Region 4 '!&"%#$ or 6 '!&"%#$ would be interesting for a different reason. Such
a group would have no subgroup isomorphic to F (would be “F -less”) and as such
would have finite generating set where the interior of the closure of the support of
one generator (the “top” generator) contains the closures of support of all other
generators (the “bottom” generators). With N the normal closure in G of the
bottom generators, this gives G a preferred structure as G = N ⋊ Z. Writing
G→ H if H is a finitely generated subgroup of N with connected support defines
a “simplification” relation →. If this relation is well founded, then G will be
elementary amenable, so this relation cannot be well founded for a G in Region

4 '!&"%#$ or 6 '!&"%#$. An infinite descending chain under → starting from G would have to
rely on a complexity of G that does not arise from the presence of a copy of F .

3. On a conjecture of Brin and Sapir

The conjecture states that every subgroup of PLo(I) either contains a copy of F
or is elementary amenable. This is equivalent to asking if Regions 4 '!&"%#$ and 6 '!&"%#$ are
empty. A positive answer to the next two questions would imply the conjecture.
These questions are likely to be harder then the conjecture itself.

Question 62. If the above relation → is restricted to groups G with connected
support and with finite, fast generating set with a “top” element, then is the relation
well founded?

Question 63. Given a finitely generated, F -less group H in PLo(I), is there a
finite, fast generating set A with 〈A〉 ∈ [H ]?

Related to Questions 62 and 63 is the following.

Question 64. Can one usefully characterize fast, F -less subgroups of PLo(I).

4. Order

Question 65. Are the biembeddability classes in [F ] well quasi-ordered?

A partial order < is well quasi-ordered (WQO) if there is no infinite descending
(under >) sequence and no infinite antichain. Equivalently, every sequence (ai |
i > 0) has some ai ≤ aj with i < j.

WQO is likely to fail when not restricted to subgroups of F , so we ask:

Question 66. Are there examples that violate WQO in PLo(I)?
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5. Subgroups of direct products

The introduction of subgroups of direct products gives behavior that might be
unexpected. To give the examples, we say that a1 < a2 < · · · an generates the
n-fold wreath product of Z to mean that each ai is a 1-bump function, the support
of ai has closure in the support of ai+1 and the set of the ai is fast. For convenience
our examples are given the unified setting (Z ≀ Z ≀ Z)3 where the three factors are
generated by a < b < c, a′ < b′ < c′, and a′′ < b′′ < c′′, respectively.

First we have that while {[Gξ] | ξ < ǫ0} ∪ {[F ]} is a chain, it is not a maximal
chain.

Fact 67. The interval
[

[Z ≀ Z], [(Z ≀ Z)2]
]

of the above chain consists of all (Z ≀

Z) + Zn, n ≥ 0, and (Z ≀ Z)2. With H = 〈ab′, ba′〉, then for all n ≥ 0, we have
(Z ≀ Z) + Zn →֒ H →֒ (Z ≀ Z)2 and the reverse embeddings are not possible.

Even among the solvable subroups of PLo(I), the order →֒ is not a linear order.

Fact 68. The groups H = 〈ab′c′′, a′b′′c, a′′bc′〉 and G = (Z ≀ Z ≀ Z)2 are not
comparable under →֒.

There is an inherently slow group.

Fact 69. The group H = 〈c, bac〉 is not isomorphic to any 〈A〉 with A fast and
finite.

6. Isomorphisms

For each n > 1 let Cn be the set of groups G generated by n fast, 1-bump functions
so that G is not a non-trivial direct sum and G is not a non-trivial wreath product.

Fact 70. For each n > 1, the elements of Cn are easily detected from the graphs
of their generators; all elements of Cn are finitely presented; and Fn is an element
of Cn.

Question 71. For each n > 1, are all the groups in Cn of type F∞?

Question 71 will have a positive answer if the next question does.

Question 72. For each n > 1 are all the groups in Cn isomorphic?

The answer to Question 72 is “yes” for n = 2 and n = 3 and is suspected to be
“no” for n > 3. Assuming fast sets of bumps, the following shows two generating
sets in C4. The set on the left generates a group isomorphic to F4.

The next question depends on a coloring of the infinite binary tree. The nodes
of the tree are colored from {R,G,B} so that the root of the tree is colored R
and every caret is colored so that as one goes around the three nodes of the caret
counterclockwise from its root, one reads the colors as one of RGB, GBR or



Cohomological and metric properties of groups of homeomorphisms of R 1611

BRG. That is, one gets one of the three cyclic rotations of RGB. We consider
the subgroup H of F represented by pairs of trees (S, T ) so that the colors of the
leaves of S read left-to-right are the same as the colors of the leaves of T read
left-to-right. There are non-trivial elements in H and we ask the following.

Question 73. What is the structure of the group H?

It is known that H is a diagram group that is closed from the point of view of
Golan–Guba–Sapir. Calculations indicate that it has 8 orbits in Z[1/2] and it is
reasonable to guess that H is isomorphic to5 F9.

7. General and specific

One can ask the following general question.

Question 74. Can one add to the knowledge of the structure of [X ]?

It has been suggested that Cleary’s golden ratio group Fτ , discussed in the
talk by Lawrence Reeves, belongs in Region 1 '!&"%#$. The group Fτ has torsion in
its abelianization. It was suggested at the workshop that perhaps every finitely
generated subgroup of F has torsion free abelianization, but evidence was later
produced that this is not the case. We are left with the following specific question.

Question 75. Does Fτ embed in F?

Simple groups separated by finiteness properties

Stefan Witzel, Matthew C. B. Zaremsky

(joint work with Rachel Skipper)

We gave a pair of talks, about our positive answer in [50] to a question asked by
Bertrand Rémy during a workshop on Thompson groups in St. Andrews in 2014:

Question 76. Do there exist infinitely many quasi-isometry classes of finitely
presented simple groups within the realm of Thompson groups?

This question implicitly refers to a result of Rémy together with
Pierre-Emmanuel Caprace, which gives a positive answer to the question in the
realm of Kac–Moody groups:

Theorem 77 (Caprace–Rémy [103, 104]). If G is an irreducible, 2-spherical, non-
affine Kac–Moody functor and Fq is a sufficiently large finite field then G(Fq) is
finitely presented and virtually simple. There are infinitely many quasi-isometry
classes among these groups.

5Added in proof: Question 73 above has since been answered by Victor Guba with the
result that the group described is, in fact, isomorphic to F9.
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Figure 10. The tree T2 and its boundary C2.

In answering Question 76 we use topological finiteness properties as our quasi-
isometry invariants. A group is of type Fn if it acts freely and cocompactly on an
(n− 1)-connected CW-complex, and of type F∞ if it is of type Fn for all n. Each
of the properties of being of type Fn is a quasi-isometry invariant. Using these
invariants for groups in the Thompson realm did not seem like a promising idea
at first because of the following:

Meta Theorem 78. Relatives of Thompson groups are of type F∞.

Instances where Meta Theorem 78 holds can be found for example in [37, 36,
53, 40, 41, 32, 39, 47, 54, 56, 51, 83, 55].

Despite this we use Thompson groups to prove:

Theorem 79. [50] For every n ∈ N>0 there exists a simple group of type Fn−1

but not Fn.

Corollary 80. The answer to Question 76 is “yes”.

The basic idea is to blend the Higman–Thompson group Vd, which is simple
and of type F∞, with a self-similar group G that is not of type Fn, to obtain a
Röver–Nekrashevych group Vd(G) that is simple but not of type Fn.

1. Ingredients

Higman–Thompson groups. Write [d] = {1, . . . , d} and let Td be the infinite
rooted d-ary tree whose vertex set is the set of finite words [d]∗ and whose boundary
is the Cantor space Cd = ∂Td = [d]ω of infinite words (see Figure 10).

If F+ and F− are finite rooted subtrees of Td with (the same number of) leaves
u1, . . . , uk and v1, . . . , vk and if σ ∈ Sk is a permutation there is a homeomorphism
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of Cd given by

[F+, σ, F−] : Cd → Cd

uiw 7→ vσ(i)w

for w ∈ [d]ω . The d-ary Higman–Thompson group is the group

Vd = {[F+, σ, F−] | F+, F− < Td, σ ∈ Sn}

consisting of such homeomorphisms.
Self-similar groups. If g ∈ Aut(Td) is a tree automorphism and v ∈ [d]∗ is

a vertex, the state gv of g at v is defined by the equation g(vw) = g(v)gv(w). A
group G < Aut(Td) is self-similar if every state of every element of G is itself in G.
It is finite state if every element has only finitely many states. Every g ∈ Aut(Td)
is determined by the permutation g(∅) ∈ Sd it induces on the set of level-1 vertices
of Td, together with the tuple (g1, . . . , gd) of its level-1 states. With this in mind
we will often write things like g = σ(g1, . . . , gd) with σ = g(∅).

Example 81 (Grigorchuk’s group). The self-similar group G generated by the
recursively defined tree-automorphisms a = (1 2)(1, 1), b = ()(a, c), c = ()(a, d),
d = ()(1, b) is Grigorchuk’s group.

Röver–Nekrashevych. Given a self-similar group G < Aut(Td) one can form
the Röver–Nekrashevych group

Vd(G) = {[F+, σ(g1, . . . , gk), F−] | [F+, σ, F−] ∈ Vd, (g1, . . . , gk) ∈ Gd}

where the homeomorphism is given by

[F+, σ(g1, . . . , gk), F−] : Cd → Cd

uiw 7→ vσ(i)gi(w)

The first example, developed by Röver in [100] and now called the Röver group,
was V2(G) for G Grigorchuk’s group. In [99] Nekrashevych developed the general
theory for groups of the form Vd(G), and proved a variety of results, in particular
that the commutator subgroup Vd(G)

′ is simple.

2. Proof sketch

The proof of Theorem 79 is modular and decomposes into four parts. Let G <
Aut(Td) be a self-similar group.

Proposition 82. The commutator subgroup Vd(G)
′ is simple, and if G is coarsely

diagonal then Vd(G)
′ has finite index in Vd(G).

Proposition 83. If G is of type Fn−1 then Vd(G) is of type Fn−1.

Proposition 84. If G is finite state, persistent and not of type Fn then Vd(G) is
not of type Fn.

Proposition 85. For every n ∈ N>0 and every d ≥ 3 there exists a coarsely
diagonal, persistent, finite-state self-similar group G < Aut(Td) that is of type
Fn−1 but not of type Fn.
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Here G is coarsely diagonal if for any g ∈ G and any vertex v the element
(gv)

−1g has finite order. It is persistent if for any g ∈ G the wreath recursion
g = σ(g1, . . . , gd) satisfies gd = g.

The proof of Proposition 82 is straightforward; we know Vd(G)
′ is simple, so it

is just a computation showing the abelianization is finite.
The proof of Proposition 83 is done using an established strategy involving

Brown’s Criterion [36] and Bestvina–Brady Morse theory [33]. This strategy builds
on work of Brown [36], Stein [53] and Farley [40], and more recently has been
used in a variety of contexts to prove various Thompson-like groups satisfy Meta
Theorem 78. A streamlined framework is given in [55].

The most novel proof is the one for Proposition 84. The fact that G is persistent
ensures that the map

ρ : Vd(G) → G

[F+, σ(g1, . . . , gk), F−] 7→ gk

is well-defined and the fact that G is finite state implies ρ is a quasi-retract. Then
a result of Alonso [31] implies the proposition. This type of approach is quite
different from previously utilized tools in the world of Thompson groups, and our
hope is that it finds further uses in the future.

To provide the groups requested in Proposition 85 we use groups of the form
O×

S ⋉OS where OS is the ring of S-integers in a rational function field of positive
characteristic. These are known to be of type F|S|−1 but not of type F|S| by work of
Bux [38] and Kochloukova [44] using the action on Bruhat–Tits trees corresponding
to places in S. We show that the action on a Bruhat–Tits tree corresponding to
a place not in S gives rise to a coarsely diagonal, persistent, finite-state and self-
similar action. Finite-state self-similar actions of these and related groups were
also recently produced by Kochloukova and Sidki [46] and our investigation of the
groups was inspired by theirs.

Rational Embeddings of Hyperbolic Groups

Francesco Matucci

(joint work with James Belk, Collin Bleak)

Let {0, 1}ω denote the Cantor set of all infinite binary sequences. A homeomor-
phism of {0, 1}ω is said to be rational if there exists an asynchronous trans-
ducer that implements the homeomorphism on infinite binary strings. In [19],
Grigorchuk, Nekrashevych and Sushchanskĭı observe that the set of all rational
homeomorphisms of {0, 1}ω forms a group R under composition, which they refer
to as the rational group. They also observe that the group of rational homeo-
morphisms of Aω is isomorphic to R for any finite alphabet A with at least two
elements.

The word asynchronous refers to transducers that can output a finite binary
sequence of any length each time they take a digit as input. This is a generalization
of synchronous transducers, which are required to output a single binary digit
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each time they take a digit of input. The asynchronous rational group R contains
the group of synchronous rational homeomorphisms corresponding to any finite
alphabet.

Groups of synchronous transducers have received much attention in the litera-
ture, primarily as this class of groups contain numerous ‘exotic’ groups providing
examples of unusual or unexpected behaviour. While these groups do provide
counterexamples to various forms of the Burnside conjecture and Milnor’s conjec-
ture, they also remain natural in many ways. Indeed, this class houses well known
foundational groups which arise in other circumstances, including free groups [30],
GLn(Z) and its subgroups [10], the solvable Baumslag–Solitar groupsBS(1,m) [3],
and the generalized lamplighter groups (Z/nZ) ≀ Z [28].

On the other hand, less is known about the more complex class of groups gen-
erated by asynchronous transducers, and the full asynchronous rational group R
of Grigorchuk, Nekrashevych, and Sushchanskĭı. It is known that R is simple and
not finitely generated [84]. Also, while the word problem is solvable in finitely
generated subgroups of R [19], the periodicity problem for elements of R has no
solution [4]. Finally, the group R houses ‘exotic’ groups of another type: the R.
Thompson groups F , T , and V all embed into R [19], as do the Brin–Thompson
groups nV (see [4] for the embedding of the group 2V ) and groups such as the
Röver group VΓ. Any group of synchronous automata embeds into R, so R also
contains the groups mentioned earlier.

Our main focus is on embedding questions for a different class of groups.

Theorem 86. Any δ-hyperbolic group that acts faithfully on its Gromov boundary
embeds into R.

A δ-hyperbolic group is a finitely generated group G whose Cayley graph
satisfies Gromov’s thin triangles condition. This is a vast class of finitely presented
groups: in a precise sense, “generic” finitely presented groups are hyperbolic.

Every hyperbolic group G has a horofunction boundary ∂G, which is a
compact metrizable space. Such a group G acts on ∂G by homeomorphisms, and
the kernel of the action is always a finite normal subgroup of G. This gives us the
following result.

Corollary 87. Every torsion-free hyperbolic group embeds into R.

The proof of Theorem 86 is dynamical as opposed to algebraic. Indeed, there
is a general dynamical procedure for showing that a group embeds into R. For
each natural number n, we construct a partition of the Cayley graph Γ in a union
of a finite set and a finite number of infinite sectors Si,n. Each of these infinite
sectors is a disjoint union of a finite set and a finite number of infinite sectors
Si,n+1. This construction effectively builds an infinite rooted tree TΓ whose nodes
represent such sectors. The tree TΓ is self-similar in the following sense:

(1) It has a partition of Vert(TΓ) into finitely many types.
(2) For every u, v ∈ Vert(TΓ) of the same type, a nonempty, finite set Mor(u, v)

of isomorphisms Tu → Tv, each of which maps every vertex of Tu to a
vertex of Tv of the same type.
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(3) The collection of all morphisms forms an inverse semigroup of isomor-
phisms between subtrees of TΓ

We recall that an inverse semigroup is a semigroup S in which for every x ∈ S
there is a unique y ∈ S such that x = xyx and y = yxy. It can be shown that the
action of a hyperbolic group on the leaves of TΓ is rational in a sense similar to
the one defined above and that allows one to embed any hyperbolic group in the
rational group R.

We observe that the realizations arising in this study of embedded copies of
hyperbolic groups in the rational group are generally not synchronous. Because of
this, we obtain no immediate information towards the old question of whether all
hyperbolic groups are residually finite.

It is of interest to determine whether one can see structural features of the
Gromov boundary (such as local cut points) reflected in the structure of transduc-
ers representing these group elements: we expect future work may explore these
interactions with the theory of the structure of the Gromov boundary.

Decision Problems on Homeomorphism Groups

Altair Santos de Oliveira Tosti

(joint work with Francesco Matucci)

We consider the group of piecewise projective orientation-preserving homeomor-
phisms ofR∪{∞} that stabilize infinity with a finite number of breakpoints which
are fixed points of hyperbolic elements of PSL2(R), introduced in [80]. This group
is called Monod’s group and is denoted by H := H(R). We also consider the
subgroups H(A) of H which consist of all elements that are piecewise in PSL2(A)
with breakpoints in PA, the set of fixed points of hyperbolic elements of PSL2(A),
where A is any subring of R.

These groups are interesting because H does not contain non-abelian free sub-
groups and, for any non-trivial subring A 6= Z of R, H(A) is non-amenable. These
properties provide us a collection of counterexamples to the von Neumann–Day
conjecture, stating that a group is non-amenable if and only if it contains a non-
abelian free subgrop. The group H also contains a finitely presented subgroup,
called the Lodha–Moore group. See [79] for more properties.

We regard H as the group of homeomorphisms of R: an element f is in H if
there are finitely many points t1, t2, . . . , tn such that, on each interval [ti, ti+1],

f : t 7→
ait+ bi
cit+ di

, where aidi − cibi = 1, for suitable ai, bi, ci, di ∈ R

and f : t 7→ (a0t+b0)/d0 on (−∞, t1] and f : t 7→ (ant+bn)/dn on [tn,+∞), where
a0d0 = andn = 1, for a0, an, b0, bn ∈ R.

We discuss the current progress on the study of the conjugacy problem and
centralizers in H and its subgroups by generalizing techniques developed in [23,
11]. In this direction we present the Stair Algorithm developed by Kassabov and
Matucci in [23] and our basics definitions and results.
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We start by defining what we call the affine group of R as follows.

A(R) := (R>0, ·)⋉ (R,+),

where the operation is given by (a, b) · (c, d) := (ac, b + ad) for all (a, b), (c, d) ∈
A(R). With this group in mind we define the initial germ of an element g ∈ H .
If g(t) = a20t + a0b0 on its first piece, then its initial germ is defined as g−∞ :=
(a20, a0b0). Similarly we define the final germ g+∞ of g. Notice that the initial and
final germs of all element of H lie in A(R). We also define the conjugacy class of
an initial germ:

y
A(R)−∞

−∞ =
{(

a20, a0b0a
−2 +

(

a20 − 1
)

a−1b
)

| g−∞ = (a2, ab)
}

.

An analogous definition for conjugacy classes of final germs y
A(R)+∞

+∞ exists. Fi-
nally, we present the following partial results towards the construction of a conju-
gacy invariant.

Lemma 88. For any y, z ∈ H such that yg = z for some g ∈ H, it holds that

y
A(R)−∞

−∞ = z
A(R)−∞

−∞ and y
A(R)+∞

+∞ = z
A(R)+∞

+∞ .

Lemma 89 (Initial and Final Boxes). For any y, z ∈ H such that yg = z for
some g ∈ H, there exists a constant L ∈ R such that g is affine on the initial box
(−∞, L]

2
. Similarly for a final box [R,+∞)

2
.

Lemma 90 (Identification Lemma). Let y, z ∈ H< and g ∈ H be maps such that
yg = z and g defined on (−∞, L]. Then g is determined on

(

−∞, z−1(L)
]

.

Proposition 91. Let y, z ∈ H< and g ∈ H be functions such that yg = z. Then
the conjugator g is uniquely determined by its initial germ.

An irrational-slope Thompson group

Lawrence Reeves

(joint work with José Burillo, Brita E. A. Nucinkis)

We present some results on Fτ , the irrational slope Thompson group introduced
by Cleary [91]. We give presentations (both infinite and finite), show that its
commutator subgroup is simple and show that several natural embeddings of F in
Fτ are undistorted [90].
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On presentations and cohomological finiteness properties of
generalizations of Thompson–Higman groups

Conchita Mart́ınez-Pérez

(joint work with Francesco Matucci, Brita E. A. Nucinkis)

In this note we consider a family of generalizations of Higman-Thompson group
V that can be defined using Universal Algebra and which share the main cohomo-
logical finiteness properties of V such as being of type F∞.

To define these groups, consider first a finite set of colours S = {1, . . . , s} and
associate to each i ∈ S an integer ni > 1, called arity of the colour i. An Ω-algebra
is a set U together with an ni-ary operation called contraction λi : Uni → U
and an operation called expansion αi : U → Uni for each 1 ≤ i ≤ s such that
λiαi = 1U and αiλi = 1Uni (we use right notation). We also refer to the λi’s
as ascending operations and to the αi’s as descending operations and in the case
when a set B is obtained from a set A by descending operations only we put
A ≤ B. Moreover, we consider a series of laws which are identifications between
sets which are obtained from compositions of two different descending operations.
We say that Σ is complete if these identifications occur between pairs so that the
composition λiλj is identified in certain way with the composition λjλi for all the
possible pairs i 6= j. (For details, see [48], [47].)

We consider the free object Ur(Σ) on a set X of r elements where Σ refers to
all the identifications or laws above. Moreover, we say that Σ is valid if for any set
Y that can be obtained from X by a series of ascending or descending operations
there are no identifications between elements of Y . In this case one can show that
the sets Y as before are precisely the (free) basis of the algebra Ur(Σ) and we
define:

Definition 92. Assume Σ is valid. The group Vr(Σ) is the group of algebra
automorphisms of Ur(Σ), and each element g ∈ Ur(Σ) is given by a bijection
g : Y1 → Y2 between two basis.

For example, if we have two colours both of arity 2 and the laws in Σ are
represented as follows:

1 23 4 1 32 4

where one colour corresponds to dashed and the other to bold lines, then the
associated group V1(Σ) is precisely the two-dimensional Brin-Higman group 2V .

We also say that Σ is bounded if given basis A,B,C such that A ≤ B,C there
is a least upper bound for B and C, i.e., there is some basis D such that B,C ≤ D
and for any other basis Z with B,C ≤ Z we have D ≤ Z.

As examples of algebras for which Σ is valid, bounded and complete, we have all
the Higman groups Vn,r, Stein groups and also Brin–Higman groups sV . All these
groups are known to be of type F∞ ([36], [53], [45], [41]) and there are known
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explicit presentations for them ([36], [61], [43]). Here, we propose a common
framework to prove these results and others at once for all the groups in this
family. For example

Theorem 93 ([47]). Let Σ be valid, bounded and complete. Then the group Vr(Σ)
is of type FP∞.

The proof uses the action of the group on certain complexes associated to the
set of basis in Ur(Σ). Observe first that this set is a poset with the order ≤
defined above. Associated to this poset there is a simplicial complex on which
the group Vr(Σ) acts with finite stabilizers. However, it is convenient to work
with a reduced version of this complex, the so called Stein complex Str(Σ) first
defined in [53]. This complex has the set of basis as 0-skeleton and a k-simplex
of vertices A0, . . . , Ak whenever we have A0 < . . . < Ak and in the expansion
A0 < Ak there is no element of A0 such that in the process to obtain Ak we apply
twice the same colour. One shows that Str(Σ) is contractible too and admits an
action of Vr(Σ) with finite stabilizers. This action is not cocompact but filtering
Str(Σ) according to the cardinality of the basis one gets a sequence of spaces whose
connectivity tends to infinity all of them with a cocompact action of Vr(Σ) with
finite stabilizers. Then, using a criterium by Brown, one deduces that Vr(Σ) is in
fact of type F∞.

Recall that for a (discrete) group G, a G-CW-complex Z is a classifying space

for proper actions if for any subgroup H of G, the fixed points subcomplex ZH is
contractible if H is finite and empty otherwise. We have

Theorem 94 ([48, 47]). The Stein complex Str(Σ) is a model for EVr(Σ).

There is an analogous of the property FP∞ for proper actions: namely, we say
that a group G is of type FP∞ if it has a model for EG with cocompact k-skeleton
for any k. By a Theorem by Lück a group has type FP∞ if and only if the two
following properties hold:

i) G has finitely many conjugacy classes of finite subgroups,
ii) for any finite subgroup H ≤ G, the centralizer CG(H) is of type FP∞.

As any Vr(Σ) contains a copy of every finite subgroup, i) can never hold and the
best cohomological finiteness properties for proper actions that these groups may
have is being of type quasi FP∞ which we define as having ii) above and i’) instead
of i) where

i’) G has finitely many conjugacy classes of finite subgroups of each isomor-
phism type.

Theorem 95 ([47]). Let Σ be valid, bounded and complete. Then the group Vr(Σ)
is of type quasi-FP∞.

As the groups Vr(Σ) have the property i’) above, the proof relies on a description
of centralizers that can be found in [85] for the group V and in various degrees
of detail in [48] and [47] in the general case. According to these descriptions one
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sees that if H ≤ Vr(Σ) is finite then CVr(Σ)(H) is a direct product of finitely many
copies of a group of the form

T = K ⋊ Vr′(Σ)

where K is certain locally finite group. Then one can use the conjugation action
of Vr′(Σ) on K to define for any m > 0 an action of T on the m-fold join of the
discrete set K with itself, i.e. on

Y m = K⋆ m. . . ⋆K.

We prove that this action is cocompact and then as the connectivity of Y m tends
to infinity as m→ ∞, using Brown’s criterium we deduce that T is F∞.

We also provide a common framework to obtain explicit finite presentations for
our groups. To do that, we construct a model for the classifying space for each
Vr(Σ) as follows. Consider the set having as elements ordered tuples A with a basis
of Ur(Σ) as underlying set. We denote by u(A) the underlying set of A. Given
two tuples A and B we say that A � B if u(A) ≤ u(B) in the Stein complex. We
make this set a (non simplicial) complex that we denote Z by gluing a k-simplex
of vertices A0, . . . , Ak whenever

A0 � . . . � Ak.

Taking underlying sets gives us a map

u : Z → Str(Σ).

One can check that for any basis Y , u−1(Y ) is contractible, in fact it it is the
complex associated to the bar resolution of the finite symmetric group Sn where
n is the order of the set Y . Using this and a version of Quillen’s poset lemma one
deduces that u is a homotopy equivalence and therefore that Z is contractible. On
the other hand the group Vr(Σ) acts freely on Z so we have a model for EVr(Σ).

Using this model we show how to construct explicit presentations for Vr(Σ).
Moreover this construction works for Σ valid and bounded and produces a finite
generating system without the assumption that Σ is complete. In the case when
Σ is moreover complete we get a finite presentation.

The Lodha–Moore groups

José Burillo

This talk was an introduction to the Lodha–Moore groups [98] following the au-
thor’s expository notes [89].

We give the definition using generators as homeomorphisms of R, as well as
the interpretation of elements using tree-pair diagrams. We detail an algorithm
to multiply elements and finally give a proof of the presentation using the crucial
property of potential cancellations.
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Odd remarks on Thompson’s groups, almost automorphisms, and
braids

Vlad Sergiescu

We will be mainly concerned with Thompson’s group T , acting on S1. However, it
also “acts” on a binary tree by almost (simplicial) automorphisms (closely related
to partial bijections/symmetries, near bijections, quasi-automorphisms...).

This viewpoint [96] leads to a geometric connection with the infinite braid group
B∞ as an exact sequence

1 → B∞ → AT → T → 1.

The group AT is homologically equivalent to S3 × CP∞. We will give also an
elementary approach to H2(T ) involving a presentation of the F subgroup which
stabilizes a point, and a combinatorial version of the Bott–Virasoro [109, 67, 95]
class in H2(Diff(S1)).

Finally, we mention that a related construction involves the pure mapping class
group of genus zero and Thompson’s group V ⊂ T . This, in turn, naturally
connects to the Brin–Dehornoy group Vbr [88, 92] which surjects onto V with a
certain subgroup (constructed using pure braids) as kernel.

Coherent group actions on the real line or an interval

Yash Lodha

We introduce a new class of group actions on the real line (or an interval). One is
able to use this framework to produce non-embeddability results for Thompson’s
group F that answer recently raised problems in the field.

A group action G < Homeo+(R) is said to be coherent if:

(1) The action is minimal, i.e. the orbits are dense.
(2) The groups of germs at ±∞ are solvable.
(3) There exists an element that has a trivial germ at −∞ and does not fix

any point in some interval (r,∞).
(4) There exists an element that has a trivial germ at +∞ and does not fix

any point in some interval (−∞, s).

(A similar definition is prescribed for a group action G < Homeo+([0, 1])). These
conditions are satisfied by a rich class of group actions by homeomorphisms, such
as groups of piecewise linear and projective homeomorphisms. The class of groups
that admit such actions is denoted by C. The class contains continuum many
isomorphism classes of finitely generated groups, and any group that admits a
faithful action on the real line by homeomorphisms embeds in some group in this
class. Groups in C have interesting algebraic and dynamical features, and I showed
[69] the following:

Theorem 96. Let G ∈ C. Then G satisfies the following:

(1) G contains a subgroup isomorphic to Thompson’s group F . Therefore G
is non elementary amenable (in particular, G is non solvable).
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(2) There exists an n ∈ N (which depends on G) such that every proper quo-
tient of G is solvable of degree at most n.

(3) There exists an n ∈ N (which depends on G) such that the n-th derived
subgroup G(n) is simple.

I demonstrate [69] that coherent group actions are rigid :

Theorem 97. Consider two coherent actions G,H < Homeo+(R) such that the
underlying groups G,H are isomorphic. Then for each isomorphism ν : G → H
there is a homeomorphism φ : R → R such that ν(f) = φ−1fφ for each f ∈ G.

Using this framework, I am able to produce non embaddability results such as
the following for Thompson’s group F [69].

Theorem 98. Let G < Homeo+(R) be a coherent group action which produces a
non µ-amenable equivalence relation (with respect to the Lebesgue measure). Then
the underlying group G does not embed in Thompson’s group F .

Theorem 99. Let G = F (2, p1, ..., pn) for n ≥ 1 and p1, ..., pn distinct odd primes
be a Brown-Stein-Thompson subgroup of PL+([0, 1]). Then G does not embed into
Thompson’s group F . The Bieri-Strebel group G(I;A,P ) does not embed into F
provided P < R∗

+ has abelian rank greater than one.

Open problems on Thompson-like groups

The workshop also featured two discussion sessions, one on the recently introduced
broken Baumslag–Solitar groups (see Example 30) and the other on open problems
and further questions on Thompson-like groups.

Problem sessions are becoming traditional in the series of conferences on Thomp-
son groups, with proposed questions stimulating a lot of research in the following
years. Among important questions that circulated around the community, we high-
light the problem lists from the conference Thompson’s group at 40 years [105],
held in January 2004 at the American Institute of Mathematics, and from the
Workshop on the extended family of R. Thompson groups [113], held in May 2014
at the University of St Andrews.

Among the topics and results presented at this Oberwolfach Workshop, we
observe that many questions from the St Andrews list [113] were addressed, some
of the problems having in fact being solved. Many other important questions from
that list, however, remain open, and other problems were introduced or brought
back to light during our stay at the MFO. Besides all the open questions already
stated at the extended abstracts presented in this report, we compile6 in this
section some other problems that remain unsettled. We hope that the current

6Thanks are due to Justin Moore, Francesco Matucci, Matt Zaremsky, Yash Lodha, Claas
Röver and Yuri Santos Rego for their help on conducting the discussions or collecting some of
the questions.
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report as well as the old problem lists help promote further research on (and
attract other mathematicians to) the realm of Thompson groups.

The names attached to the questions below might have suggested the problems
or expressed interest in them.

1. Coarse geometry

Question 100 (Zaremsky). It seems quasi-isometry questions about F are too
hard, so as a first step, does F have any interesting quasi-retracts? E.g., any
proper non-abelian ones? Is F a quasi-retract of T? Is F × F a quasi-retract of
F?

Question 101 (Zaremsky). The sprawl of a group G with respect to a finite
generating set S is

E(G,S) := lim
n→∞

1

|Sn|2

∑

(x,y)∈S2
n

dS(x, y)

n
.

Here Sn is the sphere of radius n in Cay(G,S) and dS is the word metric with
respect to S. Sprawl was introduced by Duchin, Lelièvre and Mooney, who proved
that hyperbolic groups have sprawl 2 for any finite generating set. A group G
is said to be statistically hyperbolic if it has sprawl 2 (this can depend on the
generating set). The question then is, for some natural finite generating sets, what
is the sprawl of F , and is it statistically hyperbolic?

2. Group-theoretic questions

Question 102 (Brin). Is Vbr, the braided variant of V , a hopfian group? What
about Fbr?

Question 103 (Various). Is Vbr acyclic? What about the Brin–Thompson groups
nV ?

Question 104 (Geoghegan, probably others). Can one use the Stein–Farley cube
complex for T to recover Ghys–Sergiescu’s computation of H∗(T ;Q)?

3. Amenability-related questions

Question 105 (Gromov by way of Lodha). Does there exist a non-amenable group
G (not necessarily in the realm of Thompson groups) with a finite K(G, 1) such
that G contains no free subgroups? (Weakened version: what if we just require
finite virtual cohomological dimension instead of finite K(G, 1)?)

Question 106 (Moore, Zaremsky). Can the fact that the amenable Brin–Navas
group B admits Wajnryb–Witowicz-regular relations be used to show that F does
as well?
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Consider the following elements of Monod’s group H(R).

α(t) = t+
1

2
and β(t) =



















t if t ≤ 0
t

t−1 if 0 ≤ t ≤ 1
2

3− (1
t
) if 1

2 ≤ t ≤ 1

t+ 1 if 1 ≤ t.

Question 107 (Moore, broad problem). The subgroup 〈α, β〉 of Monod’s group
is very close to F . Is this the simplest example that goes slightly beyond F and is
non-amenable? Why is the 1/2 important?

Note that PSL2(Z) is discrete, but any proper overgroup isn’t (e.g. PSL2(Z[
1
2 ])).

So the orbit structure changes drastically.

4. Subgroup structure

Question 108 (Brin). Among fast systems of 4 one-bump functions, there are
at most two isomorphism classes of groups that do not non-trivially decompose
as wreath products or direct products. One class is represented by F4 and one by
“pseudo-F4”. So, how many classes are there, one or two? That is, is pseudo-F4

isomorphic to F4?

Question 109 (Brin, Zaremsky (more?)). Is every finitely presented subgroup of
PLo(I) with a fast set of one-bump generators of type F∞? Much stronger, are
they all just isomorphic to the Fn’s? (Related to the question about pseudo-F4.)

Question 110 (Zaremsky). Does the Higman group

〈a, b, c, d | ba = b2, cb = c2, dc = d2, ad = a2〉

embed into the Lodha–Moore groups? Or at least into Monod’s H(R)? It’s built out
of copies of the Baumslag–Solitar BS(1, 2), so this seems like a natural question
following the broken Baumslag–Solitar discussion.

Recall that Question 75 asks whether Cleary’s group Fτ embeds into F . Re-
garding this problem, it was asked during the workshop whether every finitely
generated subgroup of Thompson’s group F has torsion-free abelianisation. The
motivation was that an affirmative answer would imply that Fτ does not embed
into F , as Fτ has non-trivial torsion in its abelianisation; see [90]. However, the
answer is negative as the following example by C.E. Röver shows.

Let W = Z ≀ Z, the standard restricted wreath product of two infinite cyclic
groups. It is well known that W is a subgroup of F and has presentation

W = 〈a, t | [at
k

, a] = 1, k ≥ 1〉.

As usual we define ai = at
i

for i ∈ Z. Let H be the subgroup of W generated by
r = [a, t] = a−1

0 a1, s = a20 and t. Then H ′ is the normal closure (in H , and even in
W ) of the two basic commutators c = [r, t] = a0a

−2
1 a2 and d = [s, t] = a−2

0 a21, as
[r, s] = 1. Since r2 = d, it remains to show that r /∈ H ′. In fact, it suffices to prove
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this modulo N , the normal closure of a2. Note that d ∈ N and cN = a0a2N .

Put ci = ct
i

for i ∈ Z. Then, modulo N , every element of H ′ is of the form
h = ci1ci2 · · · cim with i1 < i2 < . . . < im. Since h = ai1ℓaim+2 for some element ℓ
whose non-trivial components lie between i1 + 1 and im + 1, the assumption that
r = h implies i1 = 0 and im + 2 = 1, i.e. im < i1, a contradiction. Thus r /∈ H ′

and H/H ′ is not torsion-free.

Question 111 (Röver, Sapir). Does every finitely presented subgroup of F have
torsion-free abelianisation?

5. Finiteness properties

Question 112 (Zaremsky). The various Lodha–Moore groups each have a natural
map to Z that, to use the model with tree pairs with black and white dots, can be
viewed as, “total number of black minus white dots.” The kernel of this map is
finitely presented. Is it in fact of type F∞? (If so, it would finish the computation
of all the Bieri–Neumann-Renz–Strebel sigma invariants for these groups.)

Question 113 (Zaremsky). In the family of Thompson-like groups, can one find
non-finitely presentable groups of type FP2?
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