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Introduction by the Organisers

The workshop Topologie (2018) was organized by a team consisting of Mark
Behrens (Notre Dame), Ruth Charney (Brandeis), Peter Teichner (Bonn) and
Michael Weiss (Münster). It was unfortunate that Ruth Charney and Mark
Behrens could not attend this time, but the list of invitees was managed by all four
organizers, and as the meeting progressed the program for each day was decided
on jointly by all four (communicating via skype and email).

The preferred calendar month for this meeting used to be September, but we
moved it to July (beginning with the 2016 meeting) to make it more attractive for
international participants. The list of participants at this workshop indicates that
this goal was achieved. It should also be noted that many of our invitees had to
decide between Oberwolfach and a topology meeting running concurrently at the
Newton Institute, Cambridge. There is no indication that this lowered the stan-
dards, but it may have led to a greater-than-usual emphasis on low-dimensional
topology at this meeting.
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About 50 mathematicians participated in the workshop. Out of 18-19 hours
total speaking time, approximately 5 hours were devoted to algebraic K- and
L-theory including applications to high-dimensional manifolds, 2 hours to other
homotopy theory (some of which related to manifolds), 3-4 hours to geometric
group theory and related aspects of 3-manifold theory, 3 hours to overviews and
applications of Seiberg-Witten theory and Heegaard-Floer homology (tools in low-
dimensional topology), and 2 more hours on other aspects low dimensional topol-
ogy. In addition to that, three 1-hour talks on Triangulation and homology bordism
were delivered by Ciprian Manolescu.

We had invited Manolescu to report on his groundbreaking work (∼ 2012) on
the question of triangulability of high-dimensional manifolds. His first talk was
accessible to all and turned on the history of the triangulation problem as well
as a known reduction (going back to the late 1970s) to questions on the bordism
group Θ3

Z of 3-dimensional homology spheres. The remaining two talks were an
exposition of Heegaard-Floer homology, Seiberg-Witten theory and their uses in
the investigation of Θ3

Z. Some talks by other speakers (e.g. Stipsicz and Hom)
provided additional sketches of the Heegaard-Floer and Seiberg-Witten theories
for non-experts and incentives to learn more about them.

For the Wednesday morning program we selected 7 junior speakers to give
talks of 20 minutes each. This was a slight deviation from the “gong shows”
of previous meetings. Unresolved issues of fairness notwithstanding, these talks
seemed to reach the audience very well and no doubt some of them could have been
expanded into very successful one-hour talks. We mention the talks by Markus
Land on K-theory, by Peter Feller on algebro-geometric aspects of knot theory and
by Arunima Ray on some hitherto neglected issues in 4-dimensional topological
surgery as examples.

To conclude the introduction we give a very brief chronological overview of the
regular talks. More details can be found in the abstracts which form the body of
this report.

Oscar Randal-Williams talked about a novel investigation of E∞-algebras in
terms of cell decompositions and related filtrations, specifically without imposing
group completeness. Applications to algebraicK-theory were given. Akhil Mathew
presented new results on the algebraic K-theory and topological cyclic homology
of henselian pairs, extending an older result by Dundas and McCarthy formulated
for nilpotent ideals. Cornelia Drutu talked about median geometries and proper-
ties of groups acting on such geometries. Andras Stipsicz gave a very accessible
talk on knot concordance invariants based on knot Floer homology. Birgit Richter
reported on a new “strictly commutative” model for the cochain algebra of a
space; she explained this terminology and how it does not contradict the existence
of the Steenrod operations (traditionally known as obstructions to commutativ-
ity). Wolfgang Lück talked about new results related to the Cannon conjecture,
which concerns torsion free hyperbolic groups with boundary homeomorphic to a
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sphere and their realizability as fundamental groups of aspherical closed topologi-
cal manifolds. Jean-Francois Lafont gave a fine overview talk on various methods
to construct aspherical manifolds. Mona Merling gave a talk on the Waldhausen
S• construction (a key tool in the foundations of algebraicK-theory) and prospects
for using variants of it to produce equivariant spectra. Francesco Lin talked on
the length spectrum of hyperbolic 3-manifolds, in relation to the Hodge Laplacian.
Jennifer Hom gave an overview of new results in Heegaard-Floer homology and
homology sphere bordism, emphasizing the more algebraic aspects of the theory.
Alessandro Sisto surprised us with a talk on statistical aspects of 3-manifolds de-
scribed by a Heegaard diagram, and Matthew Hedden gave an overview on knots
in relation to complex algebraic curves (not unrelated to Feller’s 20 minute talk).
Soren Galatius finished with a talk on the action of the absolute Galois group of
Q on the symplectic K-theory of Z.

The calm Oberwolfach atmosphere, good food and good weather helped to
make this meeting highly successful. Our thanks go to the institute for making
this possible and helping so efficiently with the organization.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Cornelia Druţu (joint with Indira Chatterji)
Median geometry for lattices in semisimple Lie groups . . . . . . . . . . . . . . . 1867

Ciprian Manolescu
Homology cobordism and triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1867

András I. Stipsicz
Concordance invariants from knot Floer homology . . . . . . . . . . . . . . . . . . . 1870

Birgit Richter (joint with Steffen Sagave)
A strictly commutative model for the cochain algebra of a space . . . . . . . 1872

Wolfgang Lück (joint with Steve Ferry and Shmuel Weinberger)
The Stable Cannon Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1874

Markus Land (joint with Georg Tamme)
On K-theory of pullbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1876

Daniel Kasprowski (joint with Mark Powell and Peter Teichner)
Four-manifolds up to connected sum with complex projective planes . . . . 1879

Peter Feller (joint with Immanuel van Santen)
Uniqueness of embeddings of the affine line into affine spaces . . . . . . . . . 1881

Lukas Brantner (joint with Akhil Mathew)
Formal Moduli Problems and Partition Lie Algebras . . . . . . . . . . . . . . . . . 1883

Grigori Avramidi
Thickening CW complexes to manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1886

Pedro Boavida de Brito (joint with Pascal Lambrechts, Paul Arnaud
Songhafouo and Dan Pryor)
Smooth embeddings of a triangulated manifold . . . . . . . . . . . . . . . . . . . . . . . 1887

Arunima Ray (joint with Mark Powell and Peter Teichner)
The 4-dimensional sphere embedding theorem . . . . . . . . . . . . . . . . . . . . . . . 1888

Jean-François Lafont
Closed aspherical manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1890



1862 Oberwolfach Report 31/2018

Mona Merling (joint with Cary Malkiewich)
G-manifolds and algebraic K-theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1893

Francesco Lin (joint with Michael Lipnowski)
The Seiberg-Witten equations and the length spectrum of hyperbolic
three-manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1896

Jennifer Hom (joint with Kristen Hendricks and Tye Lidman)
Heegaard Floer and homology cobordism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1898

Alessandro Sisto (joint with Peter Feller, Pierre Mathieu and Samuel Taylor)
What does a generic 3-manifold look like? . . . . . . . . . . . . . . . . . . . . . . . . . . 1898

Matthew Hedden
An overview of knot theory and algebraic curves . . . . . . . . . . . . . . . . . . . . . 1901

Søren Galatius (joint with Tony Feng and Akshay Venkatesh)
Galois action on the symplectic K-theory of Z . . . . . . . . . . . . . . . . . . . . . . . 1905



Topologie 1863

Abstracts

On Rognes’ connectivity conjecture

Oscar Randal-Williams

(joint work with Søren Galatius, Alexander Kupers)

In 1992 Rognes [2] introduced a filtration F•K(R) of the (free) algebraic K-theory
spectrum K(R) of a ring R having the invariant basis number property. He iden-
tified the filtration quotients as the homotopy orbits

FnK(R)

Fn−1K(R)
≃ D(Rn)//GL(Rn)

for a certain GL(Rn)-spectrum D(Rn). The kth space in this spectrum, Dk(Rn),
is called the k-dimensional building. When k = 1 it is the double suspension of
the Tits building of Rn, and if R is a field then it follows from the Solomon–
Tits theorem that D1(Rn) is a wedge of n-spheres, so in particular is (n − 1)-
connected. Based on detailed calculations, Rognes conjectured that D(Rn) is
(2n − 3)-connected when R is either local or Euclidean, and he verified this for
n = 2.

If this property held, then the homotopy orbits D(Rn)//GL(Rn) would also be
(2n−3)-connected. This would mean that the spectral sequence associated to this
filtration would converge rather more quickly than might be expected. While we
are not able to settle Rognes’ conjecture as he stated it, we are able to show that it
holds for infinite fields after taking homotopy orbits: the fast convergence follows.

Theorem A. If R is an infinite field then D(Rn)//GL(Rn) is (2n− 3)-connected.

The majority of this talk was an outline of the proof, which is quite elementary;
from now onwards suppose that R is a field. The k-dimensional buildings Dk(Rn)

are first compared with certain “split” k-dimensional buildings D̃k(Rn), which
relate to direct-sum K-theory as the Dk(Rn) relate to exact-sequence K-theory.
There is a canonical GL(Rn)-equivariant map

D̃k(Rn) −→ Dk(Rn),

arising from the inclusion of split exact sequences into all exact sequences. This
is not an equivalence, but it induces a bijection on GL(Rn)-orbits of simplices in
each degree, and the maps on stabiliser groups are k-fold analogues of inclusions

{block diagonal matrices} −→ {block upper-triangular matrices}.

This is of course not an isomorphism of groups, but it follows from a remarkable
theorem of Nesterenko–Suslin [1] that—as long as R has “many units”, which
an infinite field does—the map induces an isomorphism on integral homology. It
follows that the maps on pointed homotopy orbits

D̃k(Rn)//GL(Rn) −→ Dk(Rn)//GL(Rn)
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are stable homotopy equivalences, so after taking homotopy-orbits the split and
non-split k-dimensional buildings may be freely interchanged.

The advantage of the D̃k(Rn) over the Dk(Rn) is that the (k + 1)-st can
be produced from the k-th by a bar construction. In particular, it is easy to
show that if the D̃k(Rn)//GL(Rn) are (2n − 3 + k)-connected for all n, then the

D̃k+1(Rn)//GL(Rn) are (2n−3+k+1)-connected for all n. To see the required con-
nectivity of D(Rn)//GL(Rn) it therefore suffices to show that D2(Rn) is (2n− 1)-
connected, but this may be shown to be homeomorphic to D1(Rn) ∧D1(Rn), so
a wedge of 2n-spheres by the Solomon–Tits theorem.

References

[1] Yu. P. Nesterenko, A. A. Suslin, Homology of the general linear group over a local ring, and
Milnor’s K-theory, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 121–146.
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p-adic algebraic K-theory and topological cyclic homology

Akhil Mathew

(joint work with Dustin Clausen and Matthew Morrow)

We study the algebraic K-theory K(R) of a ring R via the cyclotomic trace

K(R) → TC(R)

to the topological cyclic homology TC(R). This construction was introduced by
Bökstedt-Hsiang-Madsen [1] in their results on the assembly map for the algebraic
K-theory of group rings. Since then, the cyclotomic trace has been a fundamental
tool for various calculations of algebraic K-theory. One reason for their power is
the following result:

Theorem 1 (Dundas-Goodwillie-McCarthy [3]). Let (R, I) be a pair consisting
of a (not necessarily commutative) ring R and a nilpotent (two-sided) ideal I.
Then the cyclotomic trace induces an equivalence on relative theories K(R, I) ≃
TC(R, I). Equivalently, one has the homotopy cartesian square

K(R)

��

// TC(R)

��

K(R/I) // TC(R/I)

.

In practice, this means that if one knows K(R/I),TC(R/I), then the problem
of computing K(R) is (more or less) reduced to that of computing TC(R). Cal-
culating TC(R) is usually easier than K(R) because the functor TC(·) has more
convenient formal properties (although it is much more difficult to define formally).

Our main result is a strengthening of the Dundas-Goodwillie-McCarthy theorem
to a larger class of pairs, after profinite completion. We use the following definition
from commutative algebra:
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Definition 2. A pair (R, I) consisting of a commutative ring R and an ideal
I ⊂ R is called henselian if for every polynomial f(x) ∈ R[x] and every ᾱ ∈ R/I
such that f(ᾱ) = 0 and f ′(ᾱ) ∈ R/I is a unit, then there exists α ∈ R such that
f(α) = 0 and α lifts ᾱ.

We have the following basic examples of henselian pairs:

(1) Any pair (R, I) such that R is I-adically complete (e.g., I nilpotent) is
henselian.

(2) The subring C {{x}} ⊂ C[[x]] consisting of formal power series over C
which converge in a neighborhood of zero is henselian along its maximal
ideal (x).

(3) The local rings of the Nisnevich topology of a ring R (a topology for which
algebraic K-theory satisfies descent) are henselian local rings.

Next we recall the following classical result.

Theorem 3 (Gabber rigidity [4]). Let (R, I) be a henselian pair and let p be a
prime number invertible on R. Then K(R)/p ≃ K(R/I)/p.

Gabber’s result is preceded by work of Gillet-Thomason [8], and relying heavily
on ideas introduced by Suslin [11]. Our main result generalizes both Gabber
rigidity and the Dundas-Goodwillie-McCarthy theorem.

Theorem 4 (Clausen-M.-Morrow [2]). Let (R, I) be a henselian pair and let p be
a prime number. Then K(R, I)/p ≃ TC(R, I)/p.

Our methods are based on an imitation of several of the steps in Gabber’s
proof in [4], together with heavy use of the work of Geisser-Levine [7] and Geisser-
Hesselholt [5] on the K-theory and topological cyclic homology of smooth Fp-
algebras (in particular calculating it explicitly for local rings). The main new
ingredient is an observation about topological cyclic homology TC. The theory
TC applied to a ring R is defined by constructing first the topological Hochschild
homology spectrum THH(R), and equipping it with the structure of a cyclotomic
spectrum. Then topological cyclic homology is obtained as a suitable inverse limit,
which can also be identified with maps from the unit into cyclotomic spectra.

Theorem 5 ( [2] ). The construction R 7→ TC(R)/p commutes with filtered col-
imits in the ring R.

The result is slightly surprising because of the infinitary processes involved in
defining TC. Our argument for this result (and slightly more) relies on the new
approach to cyclotomic spectra given by Nikolaus-Scholze [10]. In particular, they
show that in the bounded-below case (of interest here), there is much redundancy
in the classical definition of a cyclotomic spectrum. We show further that in
forming TC, there is some additional cancellation.

Our results help clarify the relationship betweenK and TC for p-complete rings.
For instance, we prove the following results:
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Theorem 6 (Clausen-M.-Morrow [2]). (1) For an arbitrary p-complete ring

R, the map K̂(R) → T̂C(R) (from p-adic K-theory to p-adic TC) exhibits
the target as p-adic étale K-theory of R.

(2) Let R be a p-complete ring such that R/p has finite Krull dimension, and
let d ≥ 1 be such that for each x ∈ Spec(R/p), we have [k(x) : k(x)p] ≤ pd.

Then the map from K̂(R) → T̂C(R) is an equivalence in degrees ≥ d.

Note that in the l-adic case, the idea that the map from K-theory to its étale
sheafification should be an equivalence in high enough degrees also holds for rea-
sonably finite rings (and is expressed in the Quillen-Lichtenbaum conjecture). In
both cases, the above result was previously known for smooth algebras over a per-
fect field k of characteristic p > 0 thanks to [7, 5] as well as in some other cases
[6]. For algebras which are finite (as modules) over the ring of Witt vectors over
a perfect field, part 2 is due to Hesselholt-Madsen [9]. The main new contribution
is that one can reduce the general case to the case of fields of characteristic p via
rigidity.
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Median geometry for lattices in semisimple Lie groups

Cornelia Druţu

(joint work with Indira Chatterji)

Median geometry in its various forms is relevant:

• for the recent positive answer to the virtual Haken conjecture;

• in connection with Kazhdan’s property (T) and the Haagerup property
(also called a-T-menability);

• as an asymptotic geometry of important topological objects such as the
mapping class groups of surfaces, and the Teichmüller spaces of surfaces,
endowed with the Weyl-Petersson metric;

• in optimization theory and algorithm design.

Lattices in semisimple Lie groups display various degrees of compatibility with
the median geometry, ranging from the strongest kind of compatibility, the exis-
tence of a cocompact action on a CAT(0) cube complex (fundamental groups of
3-dimensional hyperbolic manifolds have such actions; this allowed I. Agol to prove
the virtual Haken conjecture for such groups, building on work of F. Haglund and
D. Wise) to utter incompatibility, for lattices in higher rank, whose every action
on a median space must have bounded orbits, due to the property (T) that these
lattices have.

In this talk, after overviewing known results, I have explained an interesting
phenomenon that occurs for uniform lattices in higher dimensional rank one real
simple groups and lattices in products of real rank one simple groups. These
are known to be non-cubulable for products (due to work of Chatterji-Fernos-
Iozzi) or presumed to be non-cubulable for some rank one cases (e.g. it is not
known if arithmetic lattices of isometries of rank one real hyperbolic spaces of odd
dimension are cubulable, and for certain examples in dimension 7 it is generally
expected that they will not be cubulable) moreover lattices in products cannot act
properly discontinuously cocompactly on median spaces of finite rank (result of
Elia Fioravanti). On the other hand, all uniform lattices in real rank one simple
groups or products of such groups have properly discontinuous cocompact actions
on median spaces of infinite rank. This is joint work with I. Chatterji.

Homology cobordism and triangulations

Ciprian Manolescu

The study of triangulations on manifolds is closely related to understanding the
three-dimensional homology cobordism group Θ3

Z. In these three lectures, we
summarized what is known about this group, with an emphasis on the local equiv-
alence methods coming from Pin(2)-equivariant Seiberg-Witten Floer spectra and
involutive Heegaard Floer homology.
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The first lecture presented the classical theory of triangulations on manifolds,
starting with the Hauptvermutung and the Triangulation Conjecture. To study
triangulations of high-dimensional manifolds, one considers homology cobordism
relations between the links of simplices. The theory involves replacing the links of
simplices with PL manifold resolutions, inductively on dimension. In the process
we encounter the 3-dimensional homology cobordism group Θ3

Z, defined as follows:

Θ3
Z = {Y 3 oriented homology 3-spheres}/ ∼

where the equivalence relation is given by Y0 ∼ Y1 ⇐⇒ there exists a compact,
oriented, PL (or, equivalently, smooth) manifold W 4 with ∂W = (−Y0) ∪ Y1 and
H∗(W,Yi;Z) = 0. If Y0 ∼ Y1, we say that Y0 and Y1 are homology cobordant.

The easiest way to see that Θ3
Z 6= 0 is to consider the Rokhlin epimorphism

(1) µ : Θ3
Z → Z/2, µ(Y ) = σ(W )/8 (mod 2),

where W is any compact, smooth, spin 4-manifold with boundary Y , and σ(W )
denotes the signature of W . Consider the exact sequence:

(2) 0 −→ ker(µ) −→ Θ3
Z

µ
−→ Z/2 −→ 0.

In the 1970’s, Galewski-Stern [GS80, GS79] and Matumoto [Mat78] showed

• A d-dimensional manifold M (for d ≥ 5) is triangulable if and only if an
obstruction in H5(M ; ker(µ)) vanishes.

• There exist non-triangulable manifolds in dimensions ≥ 5 if and only if
the exact sequence (2) does not split.

• If they exist, triangulations on a manifoldM of dimension≥ 5 are classified
(up to concordance) by elements in H4(M ; ker(µ)).

The above results provide an impetus for further studying the group Θ3
Z, to-

gether with the Rokhlin homomorphism. Some important results, originally ob-
tained via Yang-Mills theory, were that Θ3

Z has a Z∞ subgroup (cf. [FS90], [Fur90])
and a Z summand (cf. [Frø02]). It is still unknown whether Θ3

Z has a Z∞ sum-
mand, or any torsion.

The second lecture was about the Seiberg-Witten equations and their applica-
tions to homology cobordism. In many settings, the Seiberg-Witten equations can
be used as a replacement for the Yang-Mills equations. For example, from the
S1-equivariant structure on Seiberg-Witten Floer homology Frøyshov extracted
an epimorphism

δ : Θ3
Z → Z,

and gave a new proof of the existence of a Z summand in Θ3
Z.

When the Spinc structure comes from a spin structure, the S1 symmetry of
the Seiberg-Witten equations (given by constant gauge transformations) can be
expanded to a symmetry by the group Pin(2), where

Pin(2) = S1 ∪ jS1 ⊂ C⊕ jC = H.

This allows us to define a Pin(2)-equivariant Seiberg-Witten Floer homology. By
imitating the construction of the Frøyshov invariant δ in this setting, we obtain
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three new maps

α, β, γ : Θ3
Z → Z.

These are not homomorphisms, but on the other hand they are related to the
Rokhlin homomorphism:

α ≡ β ≡ γ ≡ µ (mod 2).

Under orientation reversal, the three invariants behave as follows:

α(−Y ) = −γ(Y ), β(−Y ) = −β(Y ).

The properties of β suffice to prove that there are no 2-torsion elements [Y ] ∈ Θ3
Z

with µ(Y ) = 1; cf. [Man16]. Hence, the short exact sequence (2) does not split
and, as a consequence of [GS80, Mat78], non-triangulable manifolds exist in every
dimension ≥ 5.

Even more information can be extracted from the Seiberg-Witten equations by
considering the Floer stable homotopy type from [Man03]. Stoffregen [Sto15b] con-
structed a local equivalence group LE out of certain equivalence classes of Pin(2)-
equivariant spectra, and showed that Floer theory produces a homomorphism

Θ3
Z → LE

through which the maps α, β, γ, δ all factor. One application of LE was a new
proof (due to Stoffregen) that Θ3

Z has a Z∞ subgroup.
The structure of LE is an open problem, but it is hoped that it could be used

to produce further interesting homomorphisms from Θ3
Z to Z.

The third lecture dealt with involutive Heegaard Floer homology. This is an
invariant developed by Hendricks and the author in [HM17]. It is an analogue of
Z/4-equivariant Seiberg-Witten Floer homology, for the subgroup Z/4 = 〈j〉 ⊂
Pin(2). Its construction is based on the Heegaard Floer theory previously built by
Ozsváth and Szabó. Heegaard–Floer theory is a more computable replacement for
Seiberg-Witten theory, based on counting pseudo-holomorphic curves in symmetric
products.

Involutive Heegaard–Floer homology has been computed for various classes of
3-manifolds, such as Seifert fibrations and connected sums of these. This gave
new proofs of some of the results about Θ3

Z mentioned above. Further, there is an
analogue of the local equivalence group, denoted I, which has a simple algebraic
definition; cf. [HMZ16]. There is a homomorphism Θ3

Z → I, which we hope to be
of use in better understanding Θ3

Z.
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Concordance invariants from knot Floer homology

András I. Stipsicz

Knot Floer homology (introduced by Ozsváth and Szabó [7] and independently
by Rasmussen [8]) associates to each knot K ⊂ S3 a finitely generated chain
complex CK = (CFK∞(K), ∂) over the ring of Laurent polynomials F[U,U−1]
(with coefficients taken from the field F of two elements) admitting the following
extra structures and porperties:

• CK admits a grading M (usually called the Maslov grading), and the
boundary operator drops M by one;

• CK admits a filtration A (originating from a grading, the Alexander grad-
ing) respected by the boundary operator ∂;

• an algebraic filtration j (coming from a grading, which simply measures
the exponent of U), also respected by ∂;

• the action of U drops the Maslov grading M by 2 and the two filtrations
A and j by 1;

• the homology of CK satisfies

H∗(CK , ∂) = F[U,U−1].

The chain complex is defined through a number of additional choices: indeed,
we present the knot K with a Heegaard diagram, and then apply a version of
Lagrangian Floer homology in a suitable symmetric power of the Heegaard surface.
According to the main result of [7], the graded, bifiltered chain homotopy type of
CK is an invariant of K.

Indeed, the above construction extends to triples (Y,K, s) where Y is a closed,
oriented 3-manifold with H∗(Y ;Q) ∼= H∗(S

3;Q) (that is, Y is a rational homology
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sphere, a QHS3), s is a spinc structure on Y and K ⊂ Y is a knot with [K] = 0 ∈
H1(Y ;Z). For simplicity, C(Y,K,s) will be denoted by CK .

We say that (Y0,K0, s0) are concordant if there is a rational homology cobordism
W between Y0 and Y1 and a spinc structure t on W extending s0 and s1 and a
smoothly embedded annulus A ⊂ W between K0 and K1.

By an important result of J. Hom [3], if K0 and K1 are concordant (in the
above sense) then there are graded, bifiltered chain complexes A0 and A1 so that
CK0

⊕ A0 and CK1
⊕ A1 are (graded, bifiltered) chain homotopy equivalent and

H∗(A0) = H∗(A1) = 0. (In this case, CK0
and CK1

are stably equivalent.)
Concordance invariants of knots (and of triples (Y,K, s)) from CK can be given

as follows. Notice first that CK can be pictorially presented on the plane R2

by taking an F basis and putting a dot for each generator x of CK to the posi-
tion (j(x), A(x)) ∈ R2. The boundary operator ∂ can be symbolized by arrows,
pointing from x to the components of ∂x.

Suppose that D ⊂ R2 is a closed, non-empty subset on the plane, which is not
the entire plane and is of SW type, meaing that if (a, b) ∈ D and a′ ≤ a, b′ ≤ b
then (a′, b′) ∈ D. To normalize matters, suppose that (0, 0) ∈ ∂D. Finally let

Dr = {(a, b) ∈ R2 | (a− r, b − r) ∈ D}.

The subcomplex CK(Dr) (which is not a sub-F[U,U−1]-module, only a sub-
F[U ]-module of CK) is generated by those F-generators of CK for which
(j(x), A(x)) ∈ Dr. The inclusion of CK(Dr) into CK is denoted by ιr.

Then the following quantity is a concordance invariant of (Y,K, s):

ΥD
K = −2 inf{r ∈ R | (ιr)∗ : Hd(Y,s)(CK(Dr)) → Hd(Y,s)(CK) is onto}

Applying this construction for the half-planes Ht = {y ≤ t
t−2x} for t ∈ [0, 2]

(so that Ht is of SW -type) we get a function ΥK(t) = ΥHt

K .
The resulting function is continuous and piecewise linear, and can be effectively

used to show that certain families of knots are linearly equivalent in the smooth
concordance group C. (This version of the definition was given by Livingston in
[5].) Most of these results are summarized in [6], see also [1, 3, 5]; for further
variants and similar invariants see [4].

As a sample of results one can show:

• There are iterated torus knots which are linearly independent of the sub-
group spanned by algebraic knots in the smooth concordance group C
(Wang [10, 9]).

• The pretzel knots P (−2, 3, q) for q ≥ 7 and odd are not concordant to
positive linear combinations of algebraic knots [1].

• The subgroup of topological slice knots of C contains a Z∞ direct summand
[2, 6].
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A strictly commutative model for the cochain algebra of a space

Birgit Richter

(joint work with Steffen Sagave)

For a simplicial set X and an arbitrary commutative ring k, the cochain algebra
on X is given by the cochain complex C∗(K; k) whose cochain module in degree n
is Cn(X ; k) = Sets(Xn, k). As the coboundary map one takes the alternating sum
of the coface maps. The cup-product of two cochains is induced by restricting
along front and back inclusions. In particular, the cup-product is not graded-
commutative on cochain level, but it induces a graded commutative k-algebra
structure on homology. The cup-i-products witness the non-commutativity on
cochain level, for instance

δ(f ∪1 g) = f ∪ g − (−1)|f ||g|g ∪ f,

so we get a homotopy that compares f ∪g and (−1)|f ||g|g∪f . The full structure is
rather involved: C∗(X ; k) is an E∞-algebra, i. e., its multiplication is commutative
up to all higher homotopies. Mike Mandell showed that for nilpotent spaces of
finite type the E∞-algebra of the integral cochains determines the homotopy type
[2].

Over the rationals the situation is drastically different. The Sullivan algebra
of polynomial differential forms, A∗

PL(X), is a differential graded commutative
model of C∗(X ;Q) and rational spaces can be classified using rational commutative
differential graded algebras.

Our project replaces the E∞-algebra of cochains over an arbitrary commutative
ring k by a suitable commutative monoid. We know that there exists such a model
because in joint work with Brooke Shipley [4] we proved that there is a chain of
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Quillen equivalence between E∞-algebras over k and commutative monoids in the
category of I-chain complexes.

Here, I is the category of finite sets and injections with objects n = {1, . . . , n}
for n ≥ 0 with 0 = ∅. Morphisms are injective functions. Note that 0 is an
initial object in I and that I(n, n) is the symmetric group Σn. In addition, I
is a permutative category via n ⊕ m = n+m. An I-chain complex is a functor
from the category I to the category Ch of unbounded chain complexes over k and
the corresponding category ChI has natural transformation as morphisms. An
I-chain complex X can be viewed as a coaugmented cosimplicial chain complex
with additional symmetries.

For every object m of I there is an evaluation functor that sends an I-chain
complex X to the chain complex X(m). This functor has a left adjoint F I

m : Ch →

ChI with

F I
m(C∗)(n) =

⊕

I(m,n)

C∗

for C∗ ∈ Ch.
The category ChI is symmetric monoidal via the Day convolution product, so

for X,Y in ChI we obtain a product X ⊠ Y in ChI . The unit for this product is
U I := F I

0 (S
0) where S0 is the chain complex whose only non-trivial chain module

is k in degree zero. We denote by C(ChI) the category of commutative monoids

in ChI and call its object commutative I-chain complexes.
For I-chain complexes there is a Bousfield-Kan type model of the homotopy

colimit: if X is an I-chain complex, then there is a chain complex, hocolimIX ,
that is the total complex associated to a simplicial chain complex built out of the
nerve of I and the values of X . We show that for every X in C(ChI) the chain
complex hocolimIX is an E∞-algebra over k. The proof uses an action of the
Barratt-Eccles operad on the nerve of the category I – a fact that was established
by Peter May in the 80’s.

We construct an I-version of the polynomial forms, AI(X), for every simplicial

set X as an object in C(ChI), by defining

AI
• = B(U I

0 , C(F I
1 (D

0)), U I
1 )

as a two-sided bar construction. Here D0 is the disc complex concentrated in
degrees 0 and −1 with value k and with the identity map as the only non-trivial
differential and C(F I

1 (D
0)) denotes the free commutative I-chain complex gen-

erated by F I
1 (D

0). It acts on U I
0 = U I via the augmentation to zero and on

U I
1 = U I via the augmentation to 1. Placing D0 in I-level 1 turns AI(n)•,q into

a contractible simplicial k-module for all n > 1 and all chain degrees q [3]. Note
that AI

• is a simplicial object in commutative I-chain complexes.
We then define

AI(X) := sSets(X,AI
•).

For every commutative ring k and for every simplicial set X this is a commutative
I-chain complex.
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We show that hocolimIA
I(X) is weakly equivalent to Sullivan’s APL(X) if k

is a field of characteristic zero and we prove that for every commutative ring k
X 7→ hocolimIA

I(X) is a cochain theory in the sense of Mike Mandell [1]. As a
corollary we obtain that hocolimIA

I(X) is weakly equivalent to C∗(X ; k) as an
E∞-algebra [3].
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The Stable Cannon Conjecture

Wolfgang Lück

(joint work with Steve Ferry and Shmuel Weinberger)

The following conjecture is taken from [2, Conjecture 5.1].

Cannon Conjecture.

Let G be a hyperbolic group. Suppose that its boundary is homeomorphic to S2.
Then G acts properly cocompactly and isometrically on the 3-dimensional hy-

perbolic space.

If G is torsionfree, then the Cannon Conjecture reduces to

Cannon Conjecture in the torsionfree case.

Let G be a torsionfree hyperbolic group. Suppose that its boundary is homeo-
morphic to S2.

Then G is the fundamental group of a hyperbolic closed 3-manifold.

We explain and present the proof of the following result taken from [3].

Theorem: The stable version of the Cannon Conjecture is true.

LetG be a hyperbolic 3-dimensional Poincaré duality group. LetN be any smooth,
PL or topological manifold respectively which is closed and whose dimension is
≥ 2. Suppose that π1(N) is a Farrell-Jones group, i.e., satisfies both the K-
theoretic and the L-theoretic Farrell-Jones Conjecture for coefficients in additive
equivariant categories.



Topologie 1875

Then there is a closed smooth, PL or topological manifold M and a normal
map of degree one

TM ⊕ Ra

��

f
// ξ × TN

��

M
f

// BG×N

satisfying

(1) The map f is a simple homotopy equivalence;

(2) Let M̂ → M be the G-covering associated to the composite of the isomor-

phism π1(f) : π1(M)
∼=
−→ G× π1(N) with the projection G× π1(N) → G.

Suppose additionally that N is aspherical and dim(N) ≥ 3.

Then M̂ is homeomorphic to R3 × N . Moreover, there is a compact

topological manifold M̂ whose interior is homeomorphic to M̂ and for

which there is a homeomorphism of pairs (M̂, ∂M̂) → (D3 ×N,S2 ×N).

For information about the class of Farrell-Jones groups we refer for instance
to [1]. It contains all hyperbolic groups, finite-dimensional CAT(0)-groups, lat-
tices in locally compact second countable Hausdorff groups, arithmetic groups
and fundamental groups of (not necessarily compact) 3-manifolds (possibly with
boundary).

Its proof is based on the following input:

• Existence of normal maps with a given finite 3-dimensional Poincaré com-
plex X as target.

• The definition of the total surgery obstruction for closed aspherical
Poincaré complexes using Ranicki’s algebraic surgery theory.

• Surgery for closed ANR-homology manifolds.
• Technique of pulling back the boundary.
• Quinn’s obstruction and its relation to the total surgery obstruction.
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On K-theory of pullbacks

Markus Land

(joint work with Georg Tamme)

The aim of this talk was to report on a new excision result in algebraic K-theory
which contains various previously known results as simple special cases. The setup
is as follows. Assume that

(1)

A B

A′ B′

is a pullback diagram in E1-ring spectra. A basic question in algebraic K-theory
then asks whether the induced square obtained by applying algebraic K-theory
is again a pullback, and if not, how well we understand the failure of it being a
pullback. It is precisely this question that we shall address.

To state our main theorem, we recall that there is a functor

AlgE1
(Sp) −→ Catex∞

from the category of E1-ring spectra to the category of small stable ∞-categories
given by sending a ring to its category of perfect modules. Furthermore, non-
connective algebraic K-theory extends to a functor K : Catex∞ → Sp and as such it
is a particular instance of what is called a localizing invariant, i.e. it sends Verdier
quotient sequences to fibre sequences of spectra and is invariant under idempotent
completions. Our main result concerns general such localizing invariants, further
examples of which include topological cyclic homology TC and the various forms
of (topological) Hochschild homology taking the T-action on (T)HH into account.

Theorem A. Assume that the diagram (1) is a pullback diagram. Then there
exists a natural E1-ring structure on the spectrum A′⊗AB and we will denote this
E1-ring by A′ ⊠A B. It is such that the canonical maps from A′ and B, and the
canonical map to B′ all canonically refine to E1-ring maps. If E : Catex∞ → Sp is
any localizing invariant, then the induced diagram

E(A) E(B)

E(A′) E(A′ ⊠A B)

is a pullback diagram.

Particular instances of such pullback diagrams are Milnor squares. These are
those squares for which all rings are discrete and the map A′ → B′ is surjective.
We obtain the following theorem.

Theorem B. Suppose that TorAi (A
′, B) = 0 for i = 1, . . . , n− 1. Then there is a

long exact Mayer-Vietoris sequence in algebraic K-theory of the form

Kn(A) Kn(A
′)⊕Kn(B) Kn(B

′) Kn−1(A) . . .
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Proof. The vanishing of the Tor groups together with the surjectivity assumption
imply that the map A′ ⊠A B → B′ is n-connective. Applying algebraic K-theory
raises the connectivity of maps by one, so the claim follows from the long exact
sequence in K-groups obtained from Theorem A. �

Given a Milnor square, let us denote the kernel of the map A′ → B′ by I and its
unitalization by I+, so that Z is a bimodule over I+. It is a direct calculation that if

TorI
+

i (Z,Z) = 0 for i = 1, . . . , n−1, then also TorAi (A
′, B) = 0 for i = 1, . . . , n−1.

Combining this observation with Theorem B yields a result of Suslin, see [11,
Theorem A].

To state the next result, we will need the notion of truncating invariants. Those
are localizing invariants E : Catex∞ → Sp which satisfy the following additional
property: For every connective E1-ring A, the canonical map E(A) → E(π0(A))
is an equivalence.

Theorem C. Assume that diagram (1) is a pullback diagram, that all rings
are connective, and that the map π0(A

′) → π0(B
′) is surjective. Let E be any

truncating invariant. Then there is a pullback diagram

E(A) E(B)

E(A′) E(B′).

Thus, truncating invariants satisfy excision.

Proof. The conditions ensure that the map A′ ⊠A B → B′ is an isomorphism on
π0 and that both spectra are connective. The claim then follows directly from
Theorem A. �

Corollary. The following invariants satisfy excision:

(1) the fibre of the cyclotomic trace K → TC, denoted by K inv; this recovers
and extends work of Geisser–Hesselholt and Dundas–Kittang, see [6, 7, 4,
5].

(2) the fibre of the rational Goodwillie–Jones Chern character
KQ → HN(−/Q), denoted by K inf

Q ; this recovers work of Cortinas, see

[1]
(3) periodic cyclic homology over Q, denoted by HP(−/Q); this recovers work

of Cuntz–Quillen, see [2].

Proof. All of the invariants are known to be localizing. By Theorem C it thus
suffices to argue that they are in addition truncating. For K inv this is a special
case of [3, Theorem 7.0.0.2], for K inf

Q see [9, Main theorem], and for HP(−/Q) see
[8, Theorem II.5.1]. �

In fact, from Theorem A we can deduce more properties of truncating invariants:

Theorem D. Let E be a truncating invariant. Then
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(1) E is nil invariant, i.e. for every unital ring A and every two-sided nilpotent
ideal I EA, the canonical map E(A) → E(A/I) is an equivalence.

(2) E satisfies cdh-descent.

The proof of cdh-descent goes along the reduction steps of [10, Section 5] but
becomes easier because of the following reason: Given any derived scheme X with
underlying ordinary scheme X , then the canonical map E(X ) → E(X) is an
equivalence if E is truncating.

From Theorem A we can furthermore deduce the following strengthening of a
result of Geisser–Hesselholt, see [7, Theorem 3.1], about pro-excision for algebraic
K-theory.

Theorem E. Let f : A → B a map of simplicial rings and assume that f sends
a 2-sided ideal I EA to a 2-sided ideal J EB. Assume that

(1) f induces a weak equivalence of pro-spectra {In}
≃
−→ {Jn}, i.e. a pro-

isomorphism on all homotopy groups, and

(2) f induces a weak equivalence of pro-spectra {A/In ⊗A B}
≃
−→ {B/Jn}.

Then the diagram of pro-spectra

K(A) K(B)

{K(A/In)} {K(B/Jn)}

is a weak pullback diagram, i.e. it induces a long exact Mayer-Vietoris sequence of
pro-homotopy groups.

We remark that in the case where both A and B are ordinary commutative and
noetherian, condition (2) of the theorem is always fulfilled.

We end with an example that shows that the ring structure on A′ ⊠A B is in
general non-commutative, even if all rings in the diagram (1) are commutative.

Theorem F. Consider the diagram

k k[x]

k[x−1] k[x±1]

Then the ring k[x]⊠k k[x
−1] provided by Theorem A is isomorphic to

k〈x, y〉/(yx− 1),

where k〈x, y〉 denotes the free k-algebra on two (non-commuting) variables.
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Four-manifolds up to connected sum with complex projective planes

Daniel Kasprowski

(joint work with Mark Powell and Peter Teichner)

We study the diffeomorphism classification of orientable, closed, connected, smooth
4-manifolds up to connected sum with complex projective planes. More pre-
cisely, two such manifolds M1,M2 are CP 2-stably diffeomorphic if there exist

k1, k2, n1, n2 such that M1#k1CP
2#n1CP

2
and M2#k2CP

2#n2CP
2
are diffeo-

morphic. Note that we do not fix orientations on M1 and M2 and hence do not
assume the diffeomorphism to respect any orientations.

Stabilizing a manifold with CP 2 does not change the fundamental group. Hence
two manifold can only be CP 2-stably diffeomorphic if they have isomorphic fun-
damental groups. We restrict our study to manifolds with fundamental group
isomorphic to a given group π. We will denote the classifying map by c : M → Bπ.

Theorem 1 (Kreck [Kre99]). Two orientable, closed, connected, smooth 4-mani-
folds M1 and M2 are CP 2-stably diffeomorphic if and only if they have the
same fundamental group and the images of the fundamental classes (c1)∗[M1]
and (c2)∗[M2] coincide in H4(π;Z)/ ±Aut(π).

Here the quotient by Aut(π) takes care of the different choices of identifications
c∗ of the fundamental groups with π, and the sign ± removes dependency on the
choice of fundamental class.

The 2-type of a connected manifold M consists of its fundamental group π1(M)
together with the second homotopy group π2(M) as a Z[π]-module and the k-
invariant k(M) ∈ H3(π1(M);π2(M)) that classifies the fibration

K(π2(M), 2) → P2(M) → K(π1(M), 1)

corresponding to the second stage P2(M) of the Postnikov tower for M .
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Our main theorem says that this 2-type (π1π2, k), considered up to stable iso-
morphism as discussed below, classifies 4-manifolds up to CP 2-stable diffeomor-
phism in many cases.

Theorem 2 ([KPT, Theorem A]). Let π be a group that is

(1) torsion-free; or
(2) infinite with one end; or
(3) finite with H4(π;Z) annihilated by 4 or 6.

Then two closed, connected, smooth 4-manifolds with fundamental group π are
CP 2-stably diffeomorphic if and only if their 2-types (π, π2, k) are stably isomor-
phic.

Remark 3. The statement of Theorem 2 also holds for non-orientable manifolds
if the orientation character is added to the 2-type. It also holds in the topo-
logical category if either the Kirby-Siebenmann invariant is added or if one also
allows connected sum with the Chern manifold ∗CP 2 which has non-trivial Kirby-
Siebenmann invariant.

A connected sum with CP 2 changes the second homotopy group by adding a free
summand π2(M#CP 2) ∼= π2(M) ⊕ Z[π]. The k-invariant k(M) ∈ H3(π;π2(M))
maps via (k(M), 0) to k(M#CP 2) under the composition

H3(π;π2(M)) → H3(π;π2(M))⊕H3(π;Z[π])
∼=
−→ H3(π;π2(M#CP 2)).

This leads to the notion of stable isomorphism of 2-types: a pair (ϕ1, ϕ2) consisting
of an isomorphism ϕ1 : π1(M1) → π1(M2), together with an isomorphism, for some
r, s ∈ N0,

ϕ2 : π2(M1)⊕ Z[π]r
∼=
−→ π2(M2)⊕ Z[π]s satisfying ϕ2(g · x) = ϕ1(g) · ϕ2(x)

for all g ∈ π1(M1) and for all x ∈ π2(M1) ⊕ Z[π]r. We also require that (ϕ1, ϕ2)
preserves k-invariants in the sense that

(ϕ−1
1 , ϕ2) : H

3(π1(M1);π2(M1)⊕ Z[π]r) → H3(π1(M2);π2(M2)⊕ Z[π]s)
(k(M1), 0) 7→ (k(M2), 0).

A consequence of Theorem 2 is that, under the above assumptions, the stable
2-type of a 4-manifold determines the isometry class of its equivariant intersection
form up to stabilisation by standard forms (±1) on Z[π]. In the simply connected
case, this follows from the classification of odd indefinite forms by their rank and
signature, since for two given simply connected 4-manifolds, the rank and signa-
tures of their intersection forms can be equalised by CP 2-stabilisation. For general
fundamental groups, the underlying module does not algebraically determine the
intersection form up to stabilisation, but Theorem 2 says that equivariant intersec-
tion forms of 4-manifolds with the appropriate fundamental group are controlled
in this way.

The following example demonstrates that the hypotheses of Theorem 2 are
necessary. We consider a class of infinite groups with two ends, namely π =
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Z×Z/p. In this case the 2-type does not determine the CP 2-stable diffeomorphism
classification, as the following example shows.

Example 4. Let Lp1,q1 and Lp2,q2 be two 3-dimensional lens spaces, which are
closed, oriented 3-manifolds with cyclic fundamental group Z/pi and universal
covering S3. Assume that pi ≥ 2 and 1 ≤ qi < pi. The 4-manifolds Mi :=
S1×Lpi,qi , i = 1, 2 have π2(Mi) = {0}. Whence their 2-types are stably isomorphic
if and only if π1(Lp1,q1)

∼= π1(Lp2,q2), that is if and only if p1 = p2. However, the 4-
manifolds M1 and M2 are CP

2-stably diffeomorphic if and only if Lp1,q1 and Lp2,q2

are homotopy equivalent.
It is a classical result that there are homotopically inequivalent lens spaces with

the same fundamental group. In fact it was shown by J.H.C. Whitehead that Lp,q1

and Lp,q2 are homotopy equivalent if and only if their Q/Z-valued linking forms
are isometric.
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Uniqueness of embeddings of the affine line into affine spaces

Peter Feller

(joint work with Immanuel van Santen)

Intrigue. A topological perspective on the embedding problem in affine geometry.

In [6], Kraft described challenging problems on affine space such as the following.

Embedding Problem. Fix integers n > d > 0. Given embeddings f and g of Cd

into Cn, does there exist an automorphism Ψ: Cn → Cn such that Ψ ◦ f = g?

Here an automorphism is a polynomial self-map that has a polynomial inverse
and an embedding is a polynomial map that has a polynomial left-inverse. In
full generality, the embedding problem is open. The only general result concerns
the case of large codimension: If n ≥ 2d + 2, then for all pairs of embeddings
f, g : Cd → Cn, there exists an automorphism Ψ: Cn → Cn such that Ψ ◦ f = g;
see [2, 4, 5, 10]. This result (and its proof) can be understood as an analogue of
the weak Whitney isotopy theorem: For a d-dimensional smooth closed manifold
M , if n ≥ 2d+2, then all smooth embeddings of M into Rn are ambient isotopic.

From now on we specialize to d = 1. The story starts with a result by Abhyankar
and Moh [1] and Suzuki [11]: if a polynomial map C → C2, t 7→ (p(t), q(t)) is an
embedding, then deg(p(t))| deg(q(t)) or deg(q(t))| deg(p(t)). A short argument
shows that the Abhyankar-Moh-Suzuki result resolves the embedding problem for
d = 1 and n = 2 in the positive. Thus (together with the above mentioned result
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for large codimension), the embedding problem for d = 1 and n 6= 3 is solved.1

The case n = 3 remains open. We consider three examples of embeddings C → C3:

f0 : t 7→ (t, 0, 0), f1 : t 7→ (t3, t4, t5 + t), and f2 : t 7→ (t3 − 3t, t4 − 4t2, t5 − 10t).

The embedding f1 stands in contrast to the strong restrictions on degrees for
embeddings C → C2; however, Craighero explicitly described an automorphism Ψ
such that Ψ◦f0 = f1 [2]. Shastri discovered f2 through knot theory considerations
(the restriction of f2 to R → R3 is knotted) and asked (the still open) question,
whether there exists an automorphism Ψ such that Ψ ◦ f0 = f2; see [9].

Question. Do classical knot invariants, such as the knot group or knot polyno-
mials, have analogues in the setting of embeddings C → C3 which establishes that
there does not exists an automorphism Ψ such that Ψ ◦ f0 = f2?

In a different direction, we generalized the resolution of the embedding problem
for d = 1 and n 6= 3 to embeddings of C into more general varieties.

Theorem ([3]). Let X be the underlying variety of a connected affine algebraic
group. Then two embeddings of the affine line C into X are the same up to an
automorphism of X provided that X is not isomorphic to a product of a torus
(C∗)k and one of the three varieties C3, Sl2(C), and PSl2(C).

For the proof, the main technic available to treat embeddings into Cn—generic
projections to linear subspaces—is replaced with the study of projections to quo-
tients by unipotent subgroups.
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Formal Moduli Problems and Partition Lie Algebras

Lukas Brantner

(joint work with Akhil Mathew)

Overview. If k is a field of characteristic zero, a theorem of Lurie–Pridham asserts
an equivalence between formal moduli problems and d.g. Lie algebras over k.
We generalise this equivalence to arbitrary fields by using “partition Lie alge-
bras”. These new gadgets are intimately related to the equivariant topology of
the partition complex, which allows us to access the operations acting on their
homotopy groups.
An introduction to formal moduli problems. In order to study a given kind
of algebro–geometric object over a ground field k in families (e.g. elliptic curves
or GLn-bundles), it is desirable to construct a representing geometric object X
satisfying the following informal identity for all k-algebras R:

Map(Spec(R), X) ≃ { Spec(R)-families of objects of the given kind }.

Usually, we cannot find a variety or scheme with this property due to the pres-
ence of automorphisms. This obstacle can be circumvented by passing to stacks,
i.e. functors X : {Commutative k-algebras} → {Groupoids} satisfying suitable
geometricity conditions. By definition, we have X(R) = Map(Spec(R), X).

Recent advances in distinct branches of mathematics (e.g. [3],[6],[8]) have high-
lighted the importance of “homotopical enhancements” of algebraic geometry. Fol-
lowing Toën–Vezzosi [10] and Lurie [5][7], one can proceed in two ways: derived al-
gebraic geometry replaces commutative k-algebras with simplicial commutative k-
algebras, whereas spectral algebraic geometry is based on connective E∞-k-algebras.
The former theory seems more suitable for algebro–geometric applications, whereas
the latter applies in homotopical contexts. If char(k) = 0, the two theories agree.
We shall focus on the derived case, but will comment on how our results can be
modified to apply in the spectral setting. Families of derived algebro–geometric
objects of a given kind can often be represented by derived stacks, i.e. functors
X : SCRk → S, from the ∞-category of simplicial commutative k-algebras to the
∞-category S of spaces, satisfying suitable geometricity conditions.

The formal neighbourhood of a k-valued point x ∈ X(k) in a derived stack X is
then described by the functor SCRart

k → S given by R 7→ X(R)×h
X(k) {x}. Here,

SCRart
k denotes the ∞-category of all A ∈ SCRk such that π0(A) is local Artinian

with residue field k and dimk(π∗(A)) < ∞. If X represents some family of derived
algebro–geometric objects, then a point x ∈ X(k) corresponds to a specific object
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defined over Spec(k), and X∧
x is the space of its infinitesimal deformations.

In sufficiently geometric situations, the functorX∧
x satisfie the following conditions:

Definition 1. A formal moduli problem is a functor X : SCRart
k → S such that

X(k) ≃ ∗ and whenever A ≃ B×h
DC is a pullback in SCRart

k with π0(B) ։ π0(D),
π0(C) ։ π0(D) surjective, applyingX gives a pullbackX(A) ≃ X(B)×h

X(D)X(C).

Write Modulik ⊂ Fun(SCRart
k ,S) for the ∞-category of formal moduli problems.

If char(k) = 0, then formal moduli problems are controlled by d.g. Lie al-
gebras. More precisely, let D : (SCRaug

k )op → DGLAk be the right adjoint to
the Chevalley-Eilenberg cochains functor from the ∞-category of d.g. Lie alge-
bras to the ∞-category of augmented simplicial commutative k-algebras. The
underlying chain complex of D(R) is the linear dual of the cotangent fibre cot(R),
which can be computed explicitly as cot(R) = |Bar•(1, Sym

∗,mR)| for mR the
augmentation ideal of R and Sym∗ the monad parametrising nonunital simpli-
cial commutative k-algebras. The following theorem of Lurie [7] and Pridham [9]
clarifies previous seminal work of Deligne, Drinfel’d, Feigin, Hinich, Kontsevich-
Soibelman, Manetti, and others:

Theorem 2. (Lurie , Pridham) If k is a field of characteristic zero, the functor
DGLAk → Modulik given by g 7→

(
R 7→ MapDGLAk

(D(R), g)
)
is an equivalence.

Partition Lie Algebras. We generalise Theorem 2 to arbitrary fields k and thus
give a Lie–algebraic description of the infinitesimal structure of moduli stacks.

To construct our equivalence, we want to define a functor D : (SCRaug
k )op → Λ

to some ∞-category Λ of generalised Lie algebras in a way that makes the induced
functor Λ → Modulik given by g 7→ (R 7→ MapΛ(D(R), g)) an equivalence.

In a first attempt to define D and Λ, we observe that the tangent fibre func-
tor cot∨ : (SCRaug

k )op → Modk admits a left adjoint. Writing L for the monad
associated with this adjunction, we obtain a functor (SCRaug

k )op → AlgL(Modk).
Unfortunately, this very natural functor does not allow us to establish an equiv-
alence between AlgL(Modk) and Modulik. Roughly speaking, the monad L fails
to preserve sifted colimits because it involves a double dualisation, which in turn
prohibits us from using Lurie’s ∞-categorical version of the Barr-Beck theorem.
Even though AlgL(Modk) is therefore the wrong target category, the assignment
(A 7→ cot(A)∨) is still the correct functor whenever A ∈ SCRart

k is Artinian. We
therefore want to replace L with a sifted-colimit-preserving monad Lπ that agrees
with L on some full subcategory of Modk containing cot(A)∨ for all Artinian A.

Indeed, let Coh≤0
k be the full subcategory of Modk spanned by all coconnective

k-module spectra with finite-dimensional homotopy groups in all degrees. Any
Artinian A ∈ SCRart

k has cot(A)∨ ∈ Coh≤0
k . In fact, the monad L from above pre-

serves Coh≤0
k (cf. [5, Proposition 3.2.14.]) and is well-behaved on this subcategory:

if X• is a simplicial diagram in Coh≤0
k with |X•| ∈ Coh≤0

k , then |L(X•)| ≃ L(|X•|).
From this, we can show that L |

Coh
≤0

k

lies in the image of the fully faithful monoidal

restriction functor End
Coh≤0

k

Σ (Modk) → End(Coh≤0
k ). Here, End

Coh≤0

k

Σ (Modk) is
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the ∞-category of sifted-colimit-preserving endofunctors of Modk which preserve
Coh≤0

k . Let Lπ be the unique monad lifting L |
Coh

≤0

k

under the above restriction

functor.

Definition 3. A partition Lie algebra is an algebra over the monad Lπ on Modk.

If M ∈ Mod≤0
k is represented by a cosimplicial k-module, Lπ(M) is given by

Lπ(M) =
⊕

n≥1(C̃
•(Σ|Πn|

⋄, k)⊗M⊗n)Σn .

Here, Σ|Πn|
⋄ denotes the reduced-unreduced suspension of the nth partition com-

plex |Πn|, i.e. the realisation of the poset of proper nontrivial partitions of

{1, . . . , n}. The functor C̃•(−, k) sends a space X to the cosimplicial set of re-
duced k-valued singular cochains onX , and the functor (−)Σn takes strict Σn-fixed
points.

Since Lπ and L agree on Coh≤0
k , we have a functor cot(−)∨ from finitely pre-

sented simplicial commutative k-algebras to partition Lie algebras. Extending in a
filtered-limit-preserving way, we obtain a functor D : (SCRaug

k )op → AlgLπ(Modk).
This assignment is not fully faithful; for example, k[x] → k[[x]] gives an equivalence
after applying D. However, it becomes fully faithful on a suitable subcategory:

Definition 4. An augmented simplicial commutative k-algebra A ∈ SCRaug
k is

complete Noetherian if π0(A) is Noetherian and complete with respect to m =
ker(π0(A) → k) and πi(A) is finitely generated over π0(A) for all i.

Theorem 5. The functor D restricts to an equivalence between the ∞-category

SCRcNoet
k of complete Noetherian A ∈ SCRaug

k and the ∞-category AlgLπ(Coh≤0
k )

of partition Lie algebras whose underlying module lies in Coh≤0
k .

Using this equivalence and an analysis of the functor D on “π0-surjective pull-
backs”, we can prove that D defines a deformation theory in the sense of Lurie
(cf. [7, Definition 12.3.3.2.]), which in turn implies our generalisation of Theorem
2:

Theorem 6. For any field k, the functor AlgLπ (Modk) → Modulik given by
g 7→ (R 7→ MapAlgLπ (Modk)

(D(R), g)) establishes an equivalence between the ∞-
category of partition Lie algebras and the ∞-category of formal moduli problems.

Remark 7. There is a parallel equivalence between formal moduli problems based
on connective E∞-k-algebras and an ∞-category of spectral partition Lie algebras.

Remark 8. Relying on the connection between partition complexes and parti-
tion Lie algebras (or spectral partition Lie algebras), we compute the homotopy
groups of free objects (thus extending computations in [1],[2],[4]). These groups
parametrise operations acting on the homotopy groups of partition Lie algebras.

Remark 9. Our equivalence generalises to mixed characteristic contexts, where
we can describe infinitesimal deformations of Spec(A)-valued families for A Noe-
therian with a map to a field k such that π0(A) is local with residue field k and
complete with respect to the augmentation ideal.
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Thickening CW complexes to manifolds

Grigori Avramidi

A thickening of a finite complex X is a manifold homotopy equivalent to it.

Question. What is the minimal dimension of a thickening of X?

In this talk I explained the relation between thickening obstructions and classi-
cal embedding obstructions [2], as well as the relation between thickening obstruc-
tions and the following basic conjecture about L2-Betti numbers:

Conjecture 1 (Singer). The L2-Betti numbers of a closed aspherical
n-manifold are concentrated in dimension n/2.

The relation to thickening obstructions is via a recent result of Okun and
Schreve [4] who showed that the Singer conjecture is equivalent to the following

Conjecture 2 (Davis-Okun[3]). If a finite aspherical complex X has non-vanish-
ing k-th L2-Betti number, then X does not have a thickening of dimension < 2k.

In other words, the Singer conjecture predicts that L2-Betti numbers give as-
pherical thickening obstructions. Moreover, this latter version of the conjecture
puts the focus squarely on the fundamental group Γ := π1X . It has been verified
for many, but not all, of the groups studied by geometric group theorists.

At the end of the talk I outlined a construction showing that thickening obstruc-
tions often vanish rationally. More precisely, say that a manifold M is a rational
thickening of X if there is a π1-isomorphism X → M that induces a rational

homology isomorphism of universal covers H∗(X̃;Q) ∼= H∗(M̃ ;Q).

Theorem 3 ([1]). Suppose X is a finite aspherical complex whose fundamental
group is a d-dimensional duality group, d ≥ 3. Then X has a (d+ 3)-dimensional
rational thickening.
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Since L2-Betti numbers cannot tell the difference between rational thickenings
and genuine thickenings, it follows from this theorem that there can be no rational
analogue of the Davis-Okun conjecture. Using the method of [4], one gets from this
that there is no rational analogue of the Singer conjecture. Say that a manifold is
rationally aspherical if its universal cover has the rational homology of a point.

Theorem 4 ([1]). There is a closed, rationally asphrical n-manifold M whose
L2-Betti numbers are not concentrated in dimension n/2.
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Smooth embeddings of a triangulated manifold

Pedro Boavida de Brito

(joint work with Pascal Lambrechts, Paul Arnaud Songhafouo and Dan Pryor)

I reported on work in progress whose goal is to describe the space of smooth
embeddings between smooth manifolds in terms of a triangulation of the source
manifold. Our main result is the following:

Let Mm and Nn be smooth manifolds, and let X be a simplicial set with a
homeomorphism |X | ∼= M . Then there is a cosimplicial space Z• such that

(i) the homotopy limit of Z• computes the space of smooth embeddings of M
in N when n−m ≥ 3,

(ii) for each integer p ≥ 0, the space Zp has the weak homotopy type of
emb(Xp × Rm, N), the space of framed configurations of Xp points in N .

WhenM is the interval, a relative (with boundary) version of this theorem recovers
Sinha’s cosimplicial models for knot spaces [2]. There is also a dual statement, de-
scribing the factorization homology overM as the homotopy colimit of a simplicial
space with p-simplices given by the factorization homology over Xp × Rd.

The proof uses manifold calculus [1]. It proceeds by carefully gluing Weiss
covers of the simplices of the triangulation in order to obtain a Weiss cover of
|X |, along with a judicious use of the isotopy invariance properties of the functors
involved.

A clarification is due (thanks to Oscar Randal-Williams for bringing this to my
attention after the talk): while Zp does not depend on the smooth structure of M
for each p, the smooth structure is implicitly used to define the cosimplicial maps.



1888 Oberwolfach Report 31/2018

References

[1] T. Goodwillie and M. Weiss. Embeddings from the point of view of immersion theory: Part
II. Geometry & Topology 3 (1999), 103-118.

[2] D. Sinha, The Topology of Spaces of Knots: Cosimplicial Models, American Journal of
Mathematics, 131 (2009), 945-980

The 4-dimensional sphere embedding theorem

Arunima Ray

(joint work with Mark Powell and Peter Teichner)

In 1982, Mike Freedman proved the 4-dimensional topological disc embedding the-
orem, which he used to prove the topological h-cobordism theorem and the topo-
logical Poincaré conjecture [2], both in dimension four. He also outlined a proof for
4-dimensional topological surgery, which implies the classification of simply con-
nected 4-manifolds. Briefly, in order for the surgery sequence to be exact in high
dimensions, one needs to realize half of a hyperbolic basis for the kernel onH2 of an
(n−1)-connected normal map M → X for a 2n-manifold M and a 2n-dimensional
Poincaré complex X , with the goal of then performing surgery on these embedded
spheres to kill the kernel. Freedman’s outline succeeds in constructing such em-
bedded spheres for a 4-manifold. However, in this dimension, we additionally need
to arrange for geometrically transverse spheres for these embedded spheres, since
otherwise performing surgery might result in a non-simply connected outcome.
Such geometrically transverse spheres can be produced using an improved version
of the disc embedding theorem, which we give below. The symbols λ and µ refer to
the homological intersection pairing and the self-intersection number respectively
(see [1, 3] for detailed definitions).

Theorem 1 (Disc embedding theorem with transverse spheres). Let W be a com-
pact 4-manifold with π1(W ) good. Let f1, . . . , fk be a collection of immersed discs
in W , that is,

fi : (D
2, S1) # (W,∂W ),

for all i, such that the collection of fi : S
1 → ∂W is pairwise disjoint. Suppose

there are framed immersions

g1, . . . , gk : S
2 # W

such that λ(fi, gj) = δij, λ(gi, gj) = µ(gi) = 0 for all i, j = 1, . . . , k.
Then there exist disjointly embedded locally flat discs f ′

1, . . . , f
′
k : D

2 →֒ W ,
with geometrically transverse spheres g′1, . . . , g

′
k, such that f ′

i and fi have the same
framed boundary.

Recall that a good group is one for which the π1-null disc lemma holds [1, 3]. In
particular, the trivial group is good. Since W is merely claimed to be a topological
manifold, we are using the notion of topological transversality [1], whose known
proofs rely on the original disc embedding theorem (without transverse spheres).
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The above statement appears in [1], but no construction for the claimed ge-
ometrically transverse spheres is given. We give the construction of these geo-
metrically transverse spheres, thereby completing the proof of the disc embedding
theorem with transverse spheres. We follow the proof outlined in [1], and given in
greater detail in the upcoming book [3]. The first step consists of constructing a
4-dimensional object called a 1-storey capped tower. Then one shows that certain
1-storey capped towers contain an infinite iterated 4-dimensional object, which we
call a skyscraper. Both 1-storey capped towers and skyscrapers are built using
layers of surfaces and discs. Lastly, techniques from decomposition space theory
are used to show that any skyscraper is homeomorphic to a 2-handle, relative to
the attaching region. The following proposition is the key tool in our construction,
where we utilise the power of having a transverse capped surface.

Proposition 2. Let W be a compact 4-manifold with π1(W ) good. Let f1, . . . , fk
be a collection of immersed discs in W , that is,

fi : (D
2, S1) # (W,∂W ),

for all i, such that the collection of fi : S
1 → ∂W is pairwise disjoint. Suppose

that {Σc
i} is a collection of transverse capped surfaces for {fi} such that

λ(Cℓ, Cm) = µ(Cℓ) = 0

for every pair of caps Cℓ and Cm of {Σc
i}. Assume in addition that each Σi,

namely the body of Σc
i , is contained in a neighbourhood of ∂W .

Then there exists a collection of 1-storey capped towers {T c
i } with arbitrarily

many surface stages, such that T c
i and fi has the same framed boundary, with a

collection of transverse spheres {Ri}. Moreover, each Ri is obtained from Σc
i by

contraction.

With our methods, we prove the following theorem for (topologically) embed-
ding spheres in 4-manifolds.

Theorem 3 (Sphere embedding theorem with transverse spheres). Let W be a
compact 4-manifold with π1(W ) good. Suppose there exist immersions

f1, . . . , fk : S
2 # W,

with λ(fi, fj) = µ(fi) = 0 for all i, j = 1, . . . , k. Suppose moreover that there exist
algebraically transverse spheres for the fi, that is, there are framed immersions

g1, . . . , gk : S
2
# W

with λ(fi, gj) = δij . Then there exist topologically embedded disjoint framed spheres

f ′
1, . . . , f

′
k : S

2 →֒ W,

with each f ′
i regularly homotopic to fi, with geometrically transverse spheres,

g′1, . . . , g
′
k : S

2 # W.

In other words, for each i, f ′
i and g′i intersect at a single point transversally, and

f ′
i and g′j are disjoint for i 6= j.
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The above theorem can be directly applied to show that the surgery sequence
is exact in dimension four for manifolds with good fundamental group.
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Closed aspherical manifolds

Jean-François Lafont

This talk was focused on constructions of closed aspherical manifolds, with an
emphasis on geometric methods. A manifold M is aspherical if its universal cover
is contractible, or equivalently, if the only non-trivial homotopy group is π1(M). It
is closed provided it is compact with no boundary. There are three basic methods
for producing closed aspherical manifolds: (i) take a quotient of a contractible
Lie group by a discrete cocompact subgroup, (ii) use some version of non-positive
curvature, or (iii) assemble it by gluing together pieces that are aspherical. We
will focus on methods (ii), and to a lesser extent (iii).

For geometric constructions of aspherical manifolds, the key result is the Cartan-
Hadamard theorem, which states that a complete, simply-connected Riemannian
manifold of non-positive sectional curvature has to be contractible.

Within the class of closed aspherical manifolds, there are various flavors of
non-positive curvature, giving rise to the following subclasses:

(1) closed locally CAT(0) manifolds,
(2) closed Riemannian manifolds of non-positive sectional curvature, and
(3) closed locally symmetric manifolds of non-compact type.

Each class is successively more specialized, with strict containments (3) ⊂ (2) ⊂
(1). I will outline the known constructions of manifolds in each of these three
subclasses – and specialize a bit further to focus on the negatively curved examples.
We will be interested in manifolds up to finite covers, or equivalently, to groups
up to commensurability (two groups are commensurable if they have finite index
subgroups that are isomorphic to each other).

1. Locally symmetric manifolds

Going back to Cartan, we have a complete classification of non-positively curved
symmetric manifolds. The negatively curved spaces fall into three families (real
hyperbolic space Hn

R, complex hyperbolic space Hn
C, and quaternionic hyperbolic

space Hn
O) and one exceptional space (the Cayley hyperbolic plane H2

Cay of real

dimension 16). In addition to these, there are a number of higher rank examples,
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which contain totally geodesic isometric embeddings of flat planes, and hence have
some zero curvature.

The basic construction of lattices is number theoretic. Let us illustrate this for
the special case of (real) hyperbolic manifolds. In this case, we have Isom(Hn

R)
∼=

SO(n, 1;R), so we want to produce a lattice inside this Lie group. Choose a totally
real number field K of degree k over Q, and a (n+1)-dimensional K-vector space
V equipped with a quadratic form Q of signature (n, 1). With some hypotheses on
σ, the group SO(σ;OK) of linear maps of V , preserving σ with entries in the ring
OK ⊂ K of algebraic integers, defines a lattice in Isom(Hn

R). When n is odd, there
is another possible arithmetic construction that relies on division algebras. Any
lattice that is commensurable to one of these is called arithmetic. In these types
of arithmetic hyperbolic manifolds, any (k+1)-dimensional subspace W ≤ V with
the property that σ|W has signature (k, 1) will give rise to a closed, immersed,
k-dimensional hyperbolic submanifold. Thus such totally geodesic submanifolds
are very abundant.

In the higher rank case, Margulis showed that all lattices are arithmetic. Cor-
lette showed this is also true for lattices in Isom(Hn

O)
∼= Sp(n, 1) as well as in

Isom(H2
Cay)

∼= F4,−20. In contrast, Gromov–Piatetski-Shapiro gave constructions

of non-arithmetic lattices in Isom(Hn
R)

∼= SO(n, 1). They take two arithmetic
lattices constructed as above, which contain embedded totally geodesic separating
codimension one submanifolds. Cutting the two arithmetic hyperbolic manifolds
along the submanifolds, they then glue together half of one manifold with half of
the other manifold. When the original arithmetic lattices are non-commensurable,
the resulting hyperbolic manifold is non-arithmetic. Non-arithmetic lattices are
also known in SU(2, 1) and SU(3, 1). Whether or not non-arithmetic lattices exist
in Isom(Hn

C)
∼= SU(n, 1), n ≥ 3 is a well-known open problem.

2. Riemannian manifolds

More general than the locally symmetric manifolds, we have the Riemannian man-
ifolds of negative (or non-positive) curvature. Other than the locally symmetric
examples, there are only two other known constructions of negatively curved Rie-
mannian manifolds: the Gromov–Thurston branched coverings, and the Ontaneda
smooth hyperbolization (discussed in the next section).

To describe the Gromov–Thurston manifolds, consider a closed hyperbolic n-
manifold M , and assume that it contains a totally geodesic codimension two sub-
manifold N with the property that [N ] ∈ Hn−2(M ;Z) is an s-divisible class, i.e.
the equation s · x = [N ] has a solution x ∈ Hn−2(M ;Z). Then one can form M ,
an s-fold branched cover of M , ramified over N . Pulling back the Riemannian
metric from M to M , we obtain a metric on M which is hyperbolic almost ev-
erywhere. The only exception is along the branching locus N →֒ M where the
metric has a singularity – orthogonal to the branching locus, one has total angle
2sπ > 2π. Gromov–Thurston showed that this singularity can be smoothed out,
while maintaining strictly negative curvature.
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To produce these examples, one needs to find totally geodesic codimension two
submanifolds, satisfying the s-divisibility condition. Generalizing what we saw in
the last section, these are easy to find inside arithmetic hyperbolic manifolds: one
first finds a totally geodesic codimension one submanifold Y n−1 ⊂ Mn that sepa-
rates, and then a further codimension two submanifold N ⊂ Y n−1 that separates
Y . Since [N ] = 0, it is s-divisible for all s.

3. CAT(0) and CAT(-1) examples

The CAT(0) (or CAT(-1)) condition is a metric analogues of non-positive (or neg-
ative) curvature. It requires that every geodesic triangle inside the space is thinner
than a comparison triangle inside Euclidean (or hyperbolic) space. Generalizing
the Cartan–Hadamard theorem, one knows that simply connected geodesic spaces
that are CAT(0) are contractible. There is also a local-to-global principal: a space
is locally CAT(0) if and only if its universal cover is CAT(0). Thus any closed
manifold with a locally CAT(0) (or CAT(-1)) metric is automatically aspherical.

A space is piecewise Euclidean or piecewise hyperbolic if it is assembled by
gluing together tiles, where each tile is either a Euclidean or hyperbolic mani-
fold with piecewise geodesic boundary. For such spaces, it is easy to determine
whether or not the glued up space is locally CAT(0) or CAT(-1). At each point
in the space, one can look at the space of unit tangent vectors. This naturally in-
herits a piecewise spherical metric, and one merely needs to check Gromov’s large
link condition – that the links do not contain any geodesic loop of length < 2π.
With this criterion in hand, constructing locally CAT(0) or CAT(-1) manifolds
turns into a problem of identifying the “building blocks” to glue together, and
specifying the gluing instructions in order to obtain large links (method (iii) from
our introduction).

One basic method for producing CAT(0) examples is the Davis complex for
certain Coxeter groups. This starts with a triangulation of the (n − 1)-sphere,
and produces a closed n-manifold with a locally CAT(0) cubulation (each cube
isometric to [0, 1]n). The triangulation of the sphere specifies the instructions for
how the cubes should be glued together, and all vertex links are combinatorially
a copy of the triangulated sphere.

Another basic method is the Charney–Davis strict hyperbolization. This builds
on a non-strict hyperbolization process by Gromov, which inputs a simplicial com-
plex, and outputs a locally CAT(0) cube complex. Gromov’s process preserves the
topology of the links, so hyperbolizing a manifold produces a locally CAT(0) man-
ifold. Charney–Davis explain how to change the building blocks from Euclidean
cubes to hyperbolic manifolds with boundary. Their pieces are obtained from the
arithmetic hyperbolic manifolds described earlier, by cutting them along a col-
lection of totally geodesic codimension one submanifolds which pairwise intersect
orthogonally, and have the same symmetries as that of a cube. Replacing the
cubical building blocks in Gromov’s hyperbolization by these hyperbolic building
blocks does not change the vertex links, so maintains Gromov’s large link condi-
tion, and hence produces a locally CAT(-1) space. Notice that this metric is a
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priori non-Riemannian, as near the gluing locus you again have “too much angle”.
A remarkable recent result of Ontaneda shows that the building blocks can be cho-
sen so that the singularities can be smoothed away, while still preserving negative
curvature (producing new examples of negatively curved Riemannian manifolds).

4. Conclusion

As we saw, all the methods above rely on finding totally geodesic submanifolds
within arithmetic hyperbolic manifolds. In trying to extend these various con-
structions, one is naturally led to studying totally geodesic submanifolds in other
locally symmetric manifolds. A key problem is to identify the possible homology
classes represented by such submanifolds.

G-manifolds and algebraic K-theory

Mona Merling

(joint work with Cary Malkiewich)

Waldhausen’s celebrated construction of A(X), the algebraic K-theory spectrum
of a space X , introduced in [10], provides a critical link in the chain of homotopy
theoretic constructions that show up in the classification of manifolds and their
diffeomorphisms. The “stable parametrized h-cobordism theorem” [9] [12] gives a
decomposition

(1) A(X) ≃ Σ∞X+ ×Wh(X),

whereWh(X) is a spectrum with the property that for a smooth compact manifold
M , the underlying infinite loop space of ΩWh(M) is equivalent to the stable h-
cobordism space

H∞(M) = colim H(M × [0, 1]k),

and Weiss and Williams show that H∞(M) provides the information that accesses
the diffeomorphism group of M in a stable range [13].

In this talk, taking G to be a finite group, I described a joint project with
Malkiewich, which is motivated by Goodwillie’s vision that for a compact smooth
G-manifold M , there should exist a G-equivariant extension AG(M) of A(M) that
satisfies a splitting

(2) AG(M) ≃ Σ∞
G M ×WhG(M)

analogous to the nonequivariant one from equation (1), and where the factorWhG

is expected to encode information about equivariant h-cobordisms of M . It is
worthwhile to notice that in a program aimed at establishing a chain of homotopy-
theoretic constructions that relate the behavior of compact G-manifolds to that
of their underlying equivariant homotopy types, “genuine” stable equivariant ho-
motopy theory, i.e., the need to stabilize with respect to G-representations, comes
in at the very first step. The first obstruction to a CW -complex being homotopy
equivalent to a smooth manifold is Poincaré duality, and in order to talk about
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Poincaré duality for G-manifolds one needs to consider RO(G)-graded homology
and cohomology. The homotopy theoretic obstructions in the equivariant classi-
fication story should live in the genuine G-equivariant stable homotopy category;
in particular the terms in (2) are supposed to be genuine G-equivariant spectra.

In order to illustrate why one should expect that the stabilization of equivari-
ant h-cobordisms that shows up in the definition of WhG(M) should also be
with respect to representations, we go on to describe an equivariant version of
the classical h-cobordism theorem due to Araki and Kawakubo [AK88]. The clas-
sical h-cobodism and s-cobordism theorems due to Smale, and Barden, Mazur
and Stallings, respectively, say that the Whitehead torsion of an h-cobordism
M →֒ W is the trivial element of the Whitehead group Wh(M) if and only if the
h-cobordism is trivial. Now suppose (W ;M,N) is an equivariant h-cobordism,
namely W is a compact G-manifold which is a cobordism between G-manifolds
M and N , and the inclusions M →֒ W and N →֒ W are G-homotopy equiva-
lences. An equivariant h-cobordism W is trivial if W is G-homotopy equivalent
to M × [0, 1]. Araki and Kawakubo show that the equivariant Whitehead torsion
of an equivariant h-cobordism M →֒ W is the trivial element of the equivariant
Whitehead group WhG(M) if and only if there exists a G-representation V such
that the equivariant h-cobordism (W × D(V );M × D(V ), N × D(V )) is trivial,
where D(V ) is the unit disk in the representation V .

A thorough treatment of equivariant Whitehead groups and equivariant White-
head torsion is given in [1]. In particular, Lück proves that the equivariant White-
head group of a G-space X splits as

WhG(X) ∼=
⊕

(H)≤G

Wh(XH
hWH)

where WK is the Weyl group NHK/K, and (H) ≤ G denotes conjugacy classes
of subgroups. This splitting is reminiscent of the tom Dieck splitting for genuine
G-suspension spectra

(Σ∞
G X+)

G ∼=
∨

(H)≤G

Σ∞
+ XH

hWH

and suggests that the variant of A-theory that will fit in equation (2) should in
fact be a genuine G-spectrum, whose fixed points have a similar splitting. In [4],
using the newly developed technology of spectral Mackey functors as a model of
G-spectra [6, 8, 7, 5, 3], we give such a construction.

Theorem 1. For G a finite group, there exists a functor AG from G-spaces to
genuine G-spectra whose fixed points exhibit a “tom Dieck style” splitting

AG(X)G ≃
∏

(H)≤G

A(XH
hWH),

and a similar formula for the fixed points of each subgroup H.
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Badzioch and Dorabiala study our fixed points in [2], and they show that the
inclusion (Σ∞

G X+)
G → AG(X)G respects the splittings. Also, in forthcoming

work, Goodwillie and Igusa define a space H∞(M)G of equivariant h-cobordisms
on a compact smooth G-manifold M , stabilized not only with respect to intervals,
but with respect to representation disks, which exhibits a similar tom Dieck style
splitting. Our work in progress is to combine these results to show that there is a
fiber sequence of G-spectra

HG(M) → Σ∞
G M+ → AG(M)

where the underlying infinite loop space of the fixed point spectrum HG(M)G

is the stable space of equivariant h-cobordisms H∞(M)G, stabilized with respect
to representation disks. The next step will be to show that the map Σ∞

G M+ →
AG(M) is split injective, so that we get the desired splitting displayed as (2).

We end with a remark on a different definition of equivariant A-theory. The
Waldhausen category whose K-theory has the tom Dieck style splitting exhibited
by AG(X)H is the category of finite retractiveH-spaces and H-maps with H-weak
equivalences (i.e., H-maps that induce equivalences on all fixed points). When X
is a G-space, the category R(X) of all retractive spaces over X inherits a G-action
by conjugation (precomposing the inclusion map with g−1 and postcomposing the
retraction map with g). In [4] we identify the homotopy fixed point category
R(X)hH with the category of retractive H-spaces with equivariant inclusion and
retraction maps. However, the weak equivalences in the H-fixed point subcat-
egories are coarse: they are nonequivariant equivalences that are H-equivariant
maps. This motivates us to give the name Acoarse

G to the version of equivariant A-
theory whose H-fixed points are the K-theory of R(X)hH . Although Acoarse

G (X)
does not match our expected input for the h-cobordism theorem, it does have a
surprising connection to the bivariant A-theory of Williams [11], which is studied
in [4].
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[8] Anna Marie Bohmann and Angélica Osorno, Constructing equivariant spectra via cate-
gorical Mackey functors, Algebraic & Geometric Topology 15 (2015), no. 1, 537–563.



1896 Oberwolfach Report 31/2018

[9] Friedhelm Waldhausen, Algebraic K-theory of topological spaces I, Proc. Symp. Pure
Math, vol. 32, 1978, pp. 35–60.

[10] , Algebraic K-theory of spaces, Algebraic and geometric topology (New
Brunswick, N.J., 1983), Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985,
pp. 318–419. MR 802796 (86m:18011)

[11] Bruce Williams, Bivariant Riemann Roch theorems, Geometry and topology: Aarhus
(1998), Contemp. Math., vol. 258, Amer. Math. Soc., Providence, RI, 2000, pp. 377–393.
MR 1778119 (2002c:57052)

[12] Friedhelm Waldhausen, Bjørn Jahren, and John Rognes, Spaces of PL manifolds and
categories of simple maps, Annals of Mathematics Studies, vol. 186, Princeton University
Press, Princeton, NJ, 2013. MR 3202834

[13] Michael Weiss and Bruce Williams, Automorphisms of manifolds and algebraic K-theory.
I, K-Theory 1 (1988), no. 6, 575–626. MR 953917 (89h:57012)

[AK88] Shoro Araki and Katsuo Kawakubo, Equivariant s-cobordism theorems, J. Math. Soc.
Japan 40 (1988), no. 2, 349–367.

The Seiberg-Witten equations and the length spectrum of hyperbolic

three-manifolds

Francesco Lin

(joint work with Michael Lipnowski)

While in the last three decades both Floer homology and geometrization have
been extremely successful when addressing problems in three-dimensional topol-
ogy, their interplay (if any) is still extremely mysterious. Geometrization implies
that Seifert and hyperbolic three-manifolds are the protagonists of topology in
three-dimensions; and while gauge-theoretic equations are very well-understood
on the former class (see for example [4], [8] for a complete description of the set of
solutions), essentially nothing is known about the latter class. By Mostow rigid-
ity the geometric invariants of a hyperbolic three-manifold Y are also topological
invariants, so the following is a natural question.

Question. For a hyperbolic three-manifold Y , is there any relationship between
the topological invariants arising from the hyperbolic geometry of Y (e.g. the
volume, injectivity radius, lengths of geodesics, etc.) and the invariants arising
from Floer homology?

In this direction, in work in preparation joint with M. Lipnowski [7], we discuss
for a hyperbolic-three manifold Y with b1(Y ) = 0 a relationship between the
following:

• on the hyperbolic geometry side, the volume vol(Y ) and the complex
length spectrum L(Y ), i.e. the set of lengths and holonomies of closed
geodesics in Y (with multiplicities) [9];

• on the Floer-theoretic side, the existence of irreducible solutions to the
Seiberg-Witten equations on Y [5].

Our main result is the following.



Topologie 1897

Theorem 1. For several hyperbolic three-manifolds in the Hodgson-Weeks cen-
sus (including for examples the manifolds labeled 0, 2, 3, 15, 25, 31, 39 and 44) the
Seiberg-Witten equations do not admit any irreducible solutions.

These are the first examples of hyperbolic three-manifolds on which the set of
solutions to the Seiberg-Witten equations is determined explicitly. As a direct
consequence, their reduced monopole Floer homology HM is trivial (this was pre-
viously shown by Dunfield [3] using surgery exact triangles and the Geometrization
theorem).

Our approach to the main theorem exploits in an essential way the underlying
hyperbolic metric, and uses as stepping stone the spectral geometry of the Hodge
Laplacian ∆ = (d + d∗)2 acting on coexact 1-forms. Here, the key role is played
the least eigenvalue λ∗

1 (which is also a topological invariant by Mostow rigid-
ity). Its relation with Floer homology comes from the fact that, as a special case
of the main result of [6], for a hyperbolic rational homology sphere the estimate
λ∗
1 ≤ 4 holds when there are irreducible solutions to the Seiberg-Witten equations.

On the other hand, we relate λ∗
1 to the volume and geodesic spectrum of Y via

representation-theoretic techniques by using a specialization of the Selberg trace
formula to the case hyperbolic three-manifolds and coclosed 1-forms. To prove
our main result, we perform numerical computations that take as input geometric
data from built-in functions in SnapPy [2]. Our method is inspired by the work
[1] on the Selberg eigenvalue conjecture.

As another application of this interaction between Seiberg-Witten theory, hy-
perbolic geometry and spectral theory we have the following.

Theorem 2. For several hyperbolic three-manifolds in the Hodgson-Weeks census
(including for examples the manifolds labeled 1, 4, 6 and 7) we can provide precise
numerically certified bounds for λ∗

1. For example, for the manifold 1 (also known
as the Meyerhoff manifold), we have 0.337 < λ∗

1 < 0.339.

The key observation here is that for the manifolds in the list the reduced mono-
pole Floer homology group HM is non-trivial, which implies the existence of an
irreducible solution to the Seiberg-Witten equations.
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Heegaard Floer and homology cobordism

Jennifer Hom

(joint work with Kristen Hendricks and Tye Lidman)

We use Heegaard Floer homology to define an invariant of homology cobordism.
This invariant is isomorphic to a summand of the reduced Heegaard Floer homol-
ogy and is analogous to Stoffregen’s connected Seiberg-Witten Floer homology.
The definition relies on the involutive Heegaard Floer package of Hendricks and
Manolescu. We discuss applications to the homology cobordism group and the
relationship with the involutive correction terms d and d.
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What does a generic 3-manifold look like?

Alessandro Sisto

(joint work with Peter Feller, Pierre Mathieu and Samuel Taylor)

By “generic” 3-manifold we mean a manifold obtained randomly choosing the
gluing map of a Heegaard splitting. This construction will be discussed and made
precise below, and it was first considered by Dunfield and Thurston [3]. One can
similarly consider generic fibred 3-manifolds, obtained, in this case, as mapping
tori of randomly chosen mapping classes. In both cases one obtains hyperbolic
3-manifolds (with high probability), and describing features of their hyperbolic
metrics is the main goal of this report.
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1. Basic notations and definition

Let use denote by Σg the (closed connected orientable) surface of genus g, and we
will always assume g ≥ 2 in what follows.

Given a handlebody H and a self-homeomorphism φ : ∂H → ∂H , one can form
a closed 3–manifold, which we denote by Hφ, by gluing two copies of H along their
boundaries using φ as gluing map. Heegaard proved that all (closed connected
orientable) 3–manifolds can be obtained in this way. Such decompositions of 3–
manifolds into handlebodies are called Heegaard splittings.

Since isotopic gluing maps give rise to homeomorphic manifolds, we can de-
fine Hφ for φ a mapping class, i.e. an isotopy class of an orientation preserving
homeomorphism of Σg.

Another important construction of 3–manifolds is that ofmapping tori of surface
homemorphisms. Given φ a self-homeomorphism of Σg, the mapping torus Mφ is
obtained from Σg × [0, 1] by gluing Σg × {0} to Σg × {1} using φ. 3-manifolds
obtained this way are exactly the 3-manifolds that fibre over S1.

Once again, it turns out that isotopic gluing maps give rise to homeomorphic
manifolds, so that the gluing map is best thought of as a mapping class.

2. What does a generic 3–manifold look like?

Given a class of mathematical objects, it is natural to ask what a “generic” one
looks like. In order to make this question precise in the case of 3–manifolds, we
will use random walks on mapping class groups.

A (simple) random walk (wn) on a finitely generated group G is obtained as
follows. Given a fixed finite symmetric generating set S of G, wn is the group
element corresponding to a word in S of length n chosen uniformly at random.
Our G will be the mapping class group of Σg, and the results we discuss hold for
any choice of finite symmetric generating set S.

We will call “random 3-manifold” the 3–manifold Hwn
obtained from a Hee-

gaard splitting where the gluing map is chosen using a random walk on the mapping
class group of Σg. Similarly, we will call Mwn

“random fibred 3–manifold”.
In what follows, we discuss a few of the known results about random 3–manifolds

and random fibred 3–manifolds. Mapping tori are much better understood than
Heegaard splittings, and hence much more is known about random fibred 3–
manifolds than about random 3–manifolds. Hence, we start by discussing the
former.

Random fibred 3–manifolds. We will say that a statement about wn holds
asymptotically almost surely (a.a.s) if the probability that it holds tends to 1 as
n tends to infinity.

First of all, Mwn
a.a.s. admits a hyperbolic metric, that is a metric of constant

sectional curvature −1. Just like the other results below, this follows combining a
3-manifold/hyperbolic geometry theorem and a random walk theorem, namely in
this case:
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(1) a theorem of Thurston that says that Mφ is hyperbolic if and only if φ is
a so-called “pseudo-Anosov” (meaning that no power of it preserves the
isotopy class of a non-trivial simple closed curve), and

(2) the fact that wn is a.a.s. pseudo-Anosov.

The latter result was proven independently by Maher and Rivin [7, 9].
There can only be one hyperbolic metric on a given 3–manifold by Mostow’s

rigidity theorem, so the next natural question is how to describe the hyperbolic
metric on Mwn

. A few geometric properties of the metric are known; we will briefly
discuss 2 of them.

The first one is that a.a.s. we have vol(Mwn
) ≍ n, where vol denotes the

volume (more precisely, there exists a constant C so that a.a.s. we have vol(Mwn
) ∈

[n/C,Cn]). The 3-manifold part of this theorem is a result of Brock [1], which
gives an estimate for the volume of Mφ in terms of φ. Namely, the theorem says
that the volume is roughly proportional to the translation distance τWP (φ) of
φ with respect to the Weil-Petersson metric on Teichmüller space. In a sense,
the knowledge about random walks is more refined than the knowledge about
hyperbolic volume, meaning that there is a central limit theorem for τWP (wn) (as
well as several other related quantities), which I proved with Mathieu [8]. So not
only we have a.a.s. vol(Mwn

) ≍ n, but one might hope for a central limit theorem
for vol(Mwn

). However, it is not clear whether this holds.
The second result, conjectured by Rivin and proved by Taylor and myself [10],

is that a.a.s. we have inj(Mwn
) ≍ 1/ log2 n, where inj denotes the injectivity

radius. This relies on deep work of Brock-Canary-Minsky, culminating in [2],
that, in particular, gives a concrete biLipschitz model of Mφ in terms of φ. The
biLipschitz model can also be used to describe several other features of Mwn

, but
in the interest of conciseness we will stop here.

Random 3–manifolds. Once again, Hwn
a.a.s. admits a hyperbolic metric, that

is to say “random 3–manifolds are hyperbolic”. This was shown by Maher [6], and
the proof relies on a criterion due to Hempel [5] and the geometrisation theorem
for 3-manifolds, proven by Perelman.

Unfortunately, there is no analogue of the biLipschitz model for Heegaard split-
tings. However, in work in progress with Feller we use topological and hyperbolic-
geometry techniques, including the work of Brock-Canary-Minsky, to give a partial
description of the hyperbolic metric on 3-manifolds admitting Heegaard splittings
under certain rather natural conditions. Roughly, the first condition is admitting
a simple closed curve on the Heegaard surface at sufficiently large curve-graph
distance from the disk sets, and the second condition (that allows for more precise
results) is that the subsurface projection of the disk sets on the complement of the
curve are far apart. I would like to remark that we do not rely on the geometri-
sation theorem, so that part of our work is a geometrisation theorem for random
3-manifolds.

The main point is that due to (essentially) known random-walk results, these
conditions hold a.a.s., and from the partial description of the hyperbolic metric
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we conclude that the volume of Hwn
grows at least linearly, while the injectivity

radius goes to 0.
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An overview of knot theory and algebraic curves

Matthew Hedden

Low-dimensional topology has often borne witness to the beautiful phenomenon
whereby a rigid analytic or geometric object can be characterized topologically.
Mostow rigidity stands out in three dimensions, while dimension four calls to
mind the work of Donaldson [5] and Gompf [7] equating Lefschetz pencils with
symplectic structures. My talk explored the interaction between a fundamentally
topological concept: the knot theory of embedded curves in 3-manifolds, and an
analytic concept: the geometry of algebraic curves in Stein surfaces. I gave a
survey of this area, guided by the following question

Question: Which link types arise as the intersection of an algebraic curve V ⊂ C2

with the unit sphere S3 = {(z, w) ∈ C2| |z|2 + |w|2 = 1}?

I’ll call a link as above a C-link. I’m particularly interested in how to detect if a
given link type can be realized as a C-link. Are there topological obstructions or
characterizations of these links?

The history of this question has roots in Newton, who proposed an algorithm
to solve a polynomial equation p(z, w) = 0 [1]. In the case that the polynomial has
a non-trivial partial derivative, this is possible by the implicit function theorem.
When the gradient vanishes, Newton’s insight was that he could algorithmically
solve for one variable as a fractional power series in the other (in today’s language).
The pertinence of this algorithm is that it allows one to parametrize an algebraic
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curve near a singular point, a procedure which would connect algebraic curves to
knot theory some 250 years later.

Indeed, in the early twentieth century algebraic geometers were attempting
to employ branched covering techniques, so successful in the study of algebraic
curves, to the classification of algebraic surfaces. Here, they were met with the
problem of understanding the topology of the complement of an algebraic curve
(the branch locus) near a singular point. They realized that this was equivalent
to understanding the topology of the complement of the intersection of the curve
with a small radius sphere. This intersection is the link of the singularity, and the
knots arising are often called algebraic knots. Newton’s parametrization allowed
a complete topological classification of these by Brauner in 1928 terms of iterated
torus knots [4] c.f. [6].

Forty years later, Milnor’s treatise on singular points of complex hypersurfaces
[11] elucidated the fundamental fibration structure present on the complement of
an algebraic knot, and in that book he asked the question - later referred to as the
“Milnor Conjecture” - as to whether the genus of the fiber of the aforementioned
fibration coincides with the “Überschneidungszahl” or unknotting number of the
algebraic knot. This question had a profound impact on low-dimensional topology,
and continues to offer guidance to the area despite its resolution by Kronheimer
and Mrowka in the early 90’s using gauge theory [10]

Rudolph was the first to treat the general question above, and in the early
eighties he examined what link types arise when one looks at an algebraic curve
from afar [12]. Indeed, even in the case of smooth algebraic curves, he showed
that one can get very interesting links by intersecting with a fixed radius sphere,
thereby enclosing more of the global topology of an affine curve. To state his
result, let Bn denote the braid group on n strands, generated by elements σi,
i = 1, .., n− 1 subject to the braid relations. Call an element β ∈ Bn quasipositive
if it can be written as a product of conjugates of the positive generators:

β = Πm
k=1wkσikw

−1
k .

Rudolph showed that the closure of a quasipositive braid is a C-link. In my talk
I sketched a more constructive proof of his result which I recently used to extend
his theorem to subcritical Stein domains (see below).

Kronheimer and Mrowka’s resolution of the Milnor conjecture proved the
stronger result that a smooth complex curve bounded by a knot realizes the smooth
4-genus i.e. is of minimal genus amongst all smooth surfaces in the 4-ball bounded
by the knot. This drew attention to Rudolph’s work as it allowed him to produce
many examples of knot types whose smooth 4-genus can be computed. For in-
stance, he quickly produced many examples of knots which are topologically slice
yet smoothly non-slice [13]. Moreover, he was able to connect quasipositivity to
contact geometry and proved a general bound on the smooth 4-genus of an arbi-
trary knot in these terms, nowadays referred to as the slice-Bennequin inequality
[14].
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The fundamental importance of quasipositivity was driven home in the work
of Boileau and Orevkov, who used the deep work of Gromov on the genericity of
foliations of S2 ×S2 by J-holomorphic spheres to prove the converse of Rudolph’s
theorem, arriving at the following characterization of C-links.

Theorem (Rudolph 1983 [12], Boileau and Orevkov 2001 [3]) A link L ⊂ S3 is a
C-link if and only if L can be represented as the closure of a quasipositive braid.

Inspired by the beauty of their characterization, it is natural to wonder if such
descriptions extend to the study of C-links in other 3-manifolds. I recently gave a
similar characterization of C-links in the next simplest Stein domains: the 4-ball
with a collection of Stein 1-handles attached (called subcritical Stein domains).
The boundary of the ball with k Stein 1-handles is #kS1 × S2, and the charac-
terization of C-links is in terms of the braid group of a k-punctured disk, denoted
Bk

n.

Theorem [9] Let L ⊂ #kS1 × S2 be a link. Then L bounds a complex curve in
a subcritical Stein filling if and only if L can be represented as the closure of a
quasipositive braid in the kernel of φtw : Bk

n → Zk.

Here, quasipositive is exactly as above - a conjugate of positive generators - and
the homomorphism φtw counts the signed number of times the braid goes around
the punctures.

Even more recently, work of Hayden [8] proved an analogue of Boileau and
Orevkov’s result which holds in complete generality:

Theorem [8] Every C-link in the boundary of a Stein domain is Stein quasiposi-
tive.

In his theorem, Stein quasipositivity means that the link can be represented by
an element in the braid group of a punctured surface which (identifying the braid
group with the appropriate mapping class group) can be expressed by a product
of right-handed half-twists and Dehn twists.

With Baykur, Etnyre, Hayden, Kawamuro, and Van Horn-Morris, we proved:

Theorem [2] Every Stein quasipositive braid bounds a complex curve in some
Stein filling of the open book.

Together with Hayden’s result, this gives a topological characterization of C-knots
in any 3-manifold.
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Galois action on the symplectic K-theory of Z

Søren Galatius

(joint work with Tony Feng and Akshay Venkatesh)

Symplectic K-theory KSp(Z) is defined from the symplectic groups Sp2g(Z) in the
same way as K(Z) is defined from GLn(Z). There is an expected value of the
homotopy groups KSp∗(Z) in terms of ordinary K-theory as well as L-theory, at
least away from 2. In degree 4i+2 it is the direct sum of an infinite cyclic group and
a finite group of known order. Taking this expected value for granted, we study the
action of the absolute Galois group of Q on the p-completion of KSp∗(Z), arising
from Ag, the moduli space of genus g principally polarized abelian varieties. We
find that the action is a highly non-trivial extension of a cyclotomic character by
a trivial representation; in fact the universal such extension in a sense that I will
explain. Time permitting, I will speculate on a possible upgrade from homotopy
groups to a spectrum or space level statement.

Reporter: Grigori Avramidi
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Geometria e Sistemas Dinâmicos
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Prof. Dr. Angélica M. Osorno

Department of Mathematics

Reed College, L305

3203 SE Woodstock Blvd.

Portland, OR 97202-8199

UNITED STATES

Dr. Irakli Patchkoria

Mathematisches Institut

Universität Bonn

Endenicher Allee 60

53115 Bonn

GERMANY

Dr. Mark A. Powell

Department of Mathematical Sciences

Durham University

Science Laboratories

South Road

Durham DH1 3LE

UNITED KINGDOM

Dr. Oscar Randal-Williams

Department of Pure Mathematics and

Mathematical Statistics

University of Cambridge

Wilberforce Road

Cambridge CB3 0WB

UNITED KINGDOM

Dr. Jacob A. Rasmussen

Department of Pure Mathematics

and Mathematical Statistics

University of Cambridge

Wilberforce Road

Cambridge CB3 0WB

UNITED KINGDOM

Dr. Arunima Ray

Max-Planck-Institut für Mathematik

Vivatsgasse 7

53111 Bonn

GERMANY

Prof. Dr. Birgit Richter

Fachbereich Mathematik

Universität Hamburg

Bundesstrasse 55

20146 Hamburg

GERMANY

Prof. Dr. Alessandro Sisto

Departement Mathematik

ETH-Zentrum

Rämistrasse 101

8092 Zürich
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