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Introduction by the Organisers

The workshop Matrix estimation meets statistical network analysis, organized by
Florentina Bunea (Ithaca), Angelika Rohde (Freiburg), Patrick Wolfe (London),
and Harrison Zhou (New Haven) was well attended with around 25 participants
with broad geographic representation. In summary, the workshop was devoted to
the problem of developing a coherent mathematical framework within which the
areas of probabilistic network analysis and random matrix theory can be integrated
for a successful analysis of massive and complicated data sets. The workshop was
a nice blend of researchers with the different backgrounds of matrix estimation
and statistical network analysis. Having the two overlapping, but still different,
communities together was crucial and we view the intensive interactions in the
Oberwolfach setting as instrumental in making a synergy happen. Within lively
discussions during and after the talks, and in particular in the evenings, fruit-
ful inspiration for new research topics and directions has developed. Starting on
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Monday morning with Boaz Nadler’s (Rechovot) first talk and the subsequent rep-
resentation of Peter Bickel (Berkeley), a remarkably open atmosphere was already
generated and remained present for the rest of the week.

Whenever we observe entities and relations between them, either directly or
induced from other data as a means of summarizing sparse dependency structure,
we must draw inferences from network data. These datasets are growing so rapidly
in complexity and dimensionality that our statistical analysis methods struggle to
keep pace. For this reason network models have seen a revival in the last decade,
one of the goals being to depart from basic random graph models such as those due
to Erdős & Rényi (1959), which have limited applicability to genetics, neuroscience,
internet networks, astronomy, and other fields where data exhibit a much more
complicated dependence structure. Often networks come without labeled nodes,
and the goal is to infer these labels (e.g., who belongs to which social group,
or which proteins are implicated in what biological processes). At other times we
must infer the network structure itself. More generally, as we encounter bigger and
more heterogenous networks in the real world, understanding the limiting behavior
of networks in the large-sample limit is critical to enabling statistical modeling and
inference algorithms with good theoretical properties. An important problem is
to develop network models that are highly heterogeneous even in the large-sample
limit. By addressing this question, the workshop helped the community to take a
large step forward.

Another important statistical question is that of estimating the network. It is
immediately clear that the term network is ambiguous and needs further clarifi-
cation. Whereas in all cases, the pictorial representation is a graph consisting of
nodes and edges between some of the nodes, the rule according to which an edge
appears in such a graph is crucial in defining a certain type of network. For this
reason, another core area of the workshop was the study of sparse matrix models
and graphs in high dimension.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Nonparametric estimation for linear SPDEs

Randolf Altmeyer

(joint work with Markus Reiß)

It is well-known that parameters in the drift of a stochastic ordinary differential
equation, observed continuously on a time interval [0, T ], can generally only be
estimated consistently, if either T → ∞, the driving noise becomes small or if a
sequence of independent samples is observed. For stochastic partial differential
equations (SPDEs) this is quite different. For example, consider the stochastic
heat equation

(1) dX(t, x) = ∆ϑX(t, x)dt+ dW (t, x), t ∈ [0, T ], x ∈ Ω ⊂ R
d,

where ∆ϑg = div(ϑ∇g) is the weighted Laplace operator for an unknown thermal
diffusivity ϑ and where W is space-time white noise. In the special case when
ϑ > 0 is constant, [1] showed that consistent estimation of ϑ is possible also in
finite time T < ∞, if the Fourier modes 〈X(t, ·), ek〉 are observed continuously on
[0, T ] for k = 1, . . . , N as N → ∞, where the ek are the eigenfunctions of ∆ϑ. This
approach is not feasible, however, when ϑ is not constant, as the eigenfunctions of
∆ϑ depend on ϑ in this case and are thus unknown, as well. We therefore introduce
in this work a different observation scheme. Let Kh,x0(x) = h−d/2K(h−1(x−x0)),
h > 0, x0 ∈ Ω, for a smooth kernelK with compact support and L2-norm ‖K‖ = 1.
Assume that we can observe the linear functionals

(2) Xh(t) = 〈X(t, ·),Kh,x0〉 = X(t, ·) ∗Kh(x0), t ∈ [0, T ].

These local measurements correspond to the intuition that in applications it is
generally not possible to observe the solution X(t, x0) at a point x0, but only a
local average, given by the convolution X(t, ·) ∗Kh(x0). Our goal is to use these
measurements to estimate ϑ(x0). Xh satisfies the equation

(3) dXh(t) = 〈X(t, ·),∆ϑKh,x0〉dt+ dWh(t), t ∈ [0, T ],

for a scalar Brownian motion Wh. Even though this means that Xh is not a
diffusion process, it can be shown that the MLE for constant ϑ is

(4) ϑ̂MLE
h (x0) =

∫ T

0
b(X̄h(t))dXh(t)∫ T

0 b(X̄h(t))2dt

with X̄h(t) = (Xh(r))0≤r≤T and b(X̄h(t)) = E[〈X(t, ·),∆ϑKh,x0〉|X̄h(t)]. Since an
explicit computation of the conditional expectation seems impossible, we consider
instead E[〈X(t, ·),∆ϑKh,x0〉|Xh(t)], which leads for small h and also for general ϑ
to the estimator

(5) ϑ̂s
h(x0) = h2‖(−∆)−1/2K‖2

∫ T

0 Xh(t)dXh(t)∫ T

0
X2

h(t)dt
.



1750 Oberwolfach Report 29/2018

We prove that ϑ̂s
h(x0)−ϑ(x0) = OP(T

−1/2h) which shows that observing only the
local measurement (Xh(t))0≤t≤T for T < ∞ is already sufficient for estimating
ϑ(x0) consistently, as long as h → 0. A key step in the proof is the following
localization property of the semigroup e∆ϑt:

(6) e∆ϑtKh,x0 = (e∆ϑ(h·+x0)t/h
2

K)h,x0 .

This means that the semigroup, applied to the localized function Kh,x0 , corre-
sponds to the semigroup for the localized Laplace operator ∆ϑ(h·+x0) applied to

K and with rescaled time t/h2. In view of this property it follows, in the case of
constant ϑ, that

(7) ϑ̂s
h(x0)

d∼ ‖(−∆)−1/2K‖2
∫ T/h2

0 X1(t)dX1(t)
∫ T/h2

0
X2

1 (t)dt
.

Formally, this is similar to the MLE for the scalar Ornstein-Uhlenbeck process and
therefore demonstrates why the observations contain as h → 0 asymptotically the
same information content as for large-time asymptotics, even when T is fixed.

While ϑ̂s
h(x0) is rate-optimal, it is not efficient. We therefore consider also other

estimators, and provide central limit theorems in some cases, where the bias for
non-constant ϑ can be analyzed precisely.

References

[1] M. Huebner and B.L. Rozovskii, On asymptotic properties of maximum likelihood estimators
for parabolic stochastic PDE’s, Probability theory and related fields, 103, 1995, 143-163.

An issue of large scale networks

Peter Bickel

(joint work with Soumendu Mukherjee, Sharmo Bhattacharyya and Purna
Sarkar)

Networks are a complex type of structure presenting itself in many applications.
They are usually represented by a graph, with possibly weighted edges plus ad-
ditional covariates (such as directions). As usual we focus on probability models
for an unweighted graph without covariates characterized by an n by n adjacency
matrix of 0’s and 1’s whose elements Aij indicate presence or absence of an edge
between i and j and which are independent given unobserved independent latent
variables Z1, . . . , Zn (Aldous-Hoover models). Block models have been studied
for some time as basic approximations to these both from a computational and
inferential point of view. A huge number of fitting methods have been developed
for block models, many based on spectral clustering and SDP relaxations. Among
fitting methods the mean field method is attractive because it can easily be ac-
commodated to the introduction of covariates, dynamics, etc. Unfortunately, it
requires non-convex optimization over spaces of dimension n and if the graph is
too large poor behavior of the method can be seen even in situations where theory
suggests the true behavior of the empirical optimum should be good. This is an
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issue of scale. We have developed and will discuss in this talk divide and conquer
methods for fitting such large graphs by using patches (small subgraphs). These
methods are generic and not limited to mean field. We show computational and,
implicitly, inferential improvement in such situations. The ideas can be applied in
principle to other situations such as topic models for documents and overlapping
block models. Even in our original application stronger theoretical results and and
more extensive simulation is needed. This work is presently on arXiv [1].

References

[1] S. S. Mukherjee, P. Sarkar and P. J. Bickel, Two provably consistent divide and conquer
clustering algorithms for large networks, arXiv preprint, arXiv:1708.05573, (2017).

A fast algorithm with minimax optimal guarantees for topic models
with an unknown number of topics

Mike Bing

(joint work with Florentina Bunea and Marten Wegkamp)

Topic models have become popular for the analysis of data that consists in a col-
lection of n independent multinomial observations, with parameters Ni ∈ N and
Πi ∈ [0, 1]p for i = 1, . . . , n. The model links all cell probabilities, collected in a
p×n matrix Π, via the assumption that Π can be factorized as the product of two
nonnegative matrices A ∈ [0, 1]p×K and W ∈ [0, 1]K×n. Topic models have been
originally developed in text mining, when one browses through n documents, based
on a dictionary of p words, and covering K topics. In this terminology, the matrix
A is called the word-topic matrix, and is the main target of estimation. It can be
viewed as a matrix of conditional probabilities, and it is uniquely defined, under
appropriate separability assumptions, discussed in detail in this work. Notably,
the unique A is required to satisfy what is commonly known as the anchor word
assumption, under which A has an unknown number of rows respectively propor-
tional to the canonical basis vectors in R

K . The indices of such rows are referred
to as anchor words. Recent computationally feasible algorithms, with theoretical
guarantees, utilize constructively this assumption by linking the estimation of the
set of anchor words with that of estimating the K vertices of a simplex. This
crucial step in the estimation of A requires K to be known, and cannot be easily
extended to the more realistic set-up when K is unknown.

This work takes a different view on anchor word estimation, and on the esti-
mation of A. We propose a new method of estimation in topic models, that is
not a variation on the existing simplex finding algorithms, and that estimates K
from the observed data. We derive new finite sample minimax lower bounds for
the estimation of A, as well as new upper bounds for our proposed estimator. We
describe the scenarios where our estimator is minimax adaptive. Our finite sample
analysis is valid for any n,Ni, p and K, and both p and K are allowed to increase
with n, a situation not handled well by previous analyses. We complement our
theoretical results with a detailed simulation study. We illustrate that the new
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algorithm is faster and more accurate than the current ones, although we start
out with a computational and theoretical disadvantage of not knowing the correct
number of topics K, while we provide the competing methods with the correct
value in our simulations.

Graphons and graphexes as limits and models for sparse graphs

Christian Borgs

Traditionally, the limit theory of dense graphs is cast in terms of convergence
of homomorphism densities, corresponding to subgraph frequencies on one side,
and weighted multi-way cuts (or, equivalently, ground state energies of statistical
physics models) on the other. By contrast, in this talk I stress the relationship
to subsampling and the Aldous Hover Theorem, an approach which gives a tight
conceptional connection between graph limits and models of dense, inhomoge-
neous random graphs (often called exchangeable random graphs in the statistics
literature).

One approach to generalize this theory to sparse graphs is via rescaling [1, 2]:
if we are concerned with graph limits, we rescale the adjacency matrix by dividing
by the edge density before taking the limit, and conversely, if we want to generate
a random graph from a given graphon, we multiply the graphon by the target
density, leading to what is known as inhomogeneous random graphs with a given
target density and their estimation [3, 4, 5].

But the main focus of this talk will be on a different approach to limits and
models for sparse graphs, based again on the notion of sampling. However, in
contrast to the dense theory, where the natural notion of sampling consists of
choosing a fixed number k of vertices at random and then outputting the induces
subgraph, for sparse graphs we choose a random number of vertices which grows
with the number of vertices in the graph we sample from. Specifically, we will take
k to be a Poisson random variable with expectation t/

√
ρ where t is a parameter

and ρ is the edge density, then sample k vertices i.i.d. uniformly at random from
the vertex set, and finally output the induces subgraph after stripping it of isolated
edges and all labels1. Sampling convergence of a sequence of graphs Gn is then
defined by requiring that the distribution of random graphs of Gn thus obtained
is convergent in distribution for all t [6].

This notion of convergence parallels the notion of left convergence for dense
graphs and its relationship to the Aldous Hover Theorem, and provides a dual
view of sparse graph limits as processes and random measures, an approach which
allows for the generalization of many of the well-known results and techniques
for dense graph sequences to sparse graph sequences [7, 6, 8]. In contrast to
the rescaled theory of sparse graph convergence, whose natural limit objects are
unbounded graphons over a probability space, the natural limit objects in this new
theory are graphons over sigma-finite measure spaces, and, more generally, their

1With this choice of k, the expected number of edges in the induced subgraph is equal to t2/2
uniformly in the sparsity of the graph we sampled from.
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extension to graphexes, which form the completion of the space of sparse graphs
under sampling convergence.
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Functional data analysis in the Banach space of continuous functions

Holger Dette

(joint work with K. Kokot and A. Aue)

Most of functional data analysis is based on Hilbert space-based methodology for
which there exists by now a fully fledged theory. Since all functions utilized for
practical purposes are at least continuous, and often smoother we develop in this
talk methodology for functional data in the space of continuous functions.

We concentrate on the spce C(T ), the space of continuous functions on the
compact interval T = [0, 1] equipped with the sup-norm ‖f‖ = supt∈T |f(t)|. If µ1

and µ2 are the mean functions corresponding to two samples we are interested in
testing hypotheses of the form

(1) H0 : ‖µ1 − µ2‖ ≤ ∆ and H1 : ‖µ1 − µ2‖ > ∆,

where ∆ ≥ 0 denotes a pre-specified constant. The classical case of testing perfect
equality, obtained by the choice ∆ = 0, is therefore a special case of (1). It turns
out that from a mathematical point of view the problem of testing relevant (i.e.,
∆ > 0) hypotheses is substantially more difficult than the classical problem (i.e.,
∆ = 0). In particular, it is not possible to work with stationarity under the null
hypothesis, making the derivation of a limit distribution of a corresponding test
statistic or the construction of a bootstrap procedure substantially more difficult.
If X1, . . . , Xm and Y1, . . . , Yn are two independent stationary samples in C([0, 1])
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with mean functions µ1 and µ2 a test for the hypotheses (1) can be based on the
statistic

d̂∞ = ‖X̄m − Yn‖,
which is a natural estimate of the unknown distance

d∞ = ‖µ1 − µ2‖.
One of our main results establishes the asymptotic distribution of d̂∞.

Theorem 1. If X1, . . . , Xm and Y1, . . . , Yn are sampled from independent station-
ary time series (Xj : j ∈ N) and (Yj : j ∈ N) in C([0, 1]) with mean functions µ1

and µ2, respectively. satisfying the conditions

(A1) There is a constant K such that E[‖Xj‖2+ν ] ≤ K and E[‖Yj‖2+ν ] ≤ K for
some ν > 0.

(A2) There is a real-valued random variable M with E[M2] < ∞ such that

|Xj(t)−Xj(t
′)| ≤ M |t− t′| , j = 1, . . . ,m

|Yj(t)− Yj(t
′)| ≤ M |t− t′| , j = 1, . . . , n

holds almost surely for all t, t′ ∈ T .
(A3) (Xj : j = 1, . . . ,m) and (Yj : j = 1, . . . , n) are ϕ-mixing with exponentially

decreasing mixing coefficients, that is, there is a constant a ∈ [0, 1) such that
ϕ(k) ≤ ak for any k ∈ N.

then as m,n → ∞ and m/(m+ n) → λ ∈ (0, 1)

(2) Tm,n =
√
n+m(d̂∞ − d∞)

D−→ T (E) = max
{

sup
t∈E+

Z(t), sup
t∈E−

−Z(t)
}
,

where the centered Gaussian process Z with covariance structure

C(s, t) = Cov(Z(s), Z(t)) =
1

λ
C1(s, t) +

1

1− λ
C2(s, t),

C1(s, t) =

∞∑

i=−∞

Cov(X1(s), X1+i(t)) , C2(s, t) =

∞∑

i=−∞

Cov(Y1(s), Y1+i(t))

and the sets E+ and E− are defined in

E± =
{
t ∈ [0, 1] : µ1(t)− µ2(t) = ±d∞

}

As the asymptotic distribution in Theorem 1 is not distribution free, we also
develop estimates of the extremal sets E+ and E− which are defined by

Ê+
m,n :=

{
t ∈ [0, 1]

∣∣∣ X̄m(t)− Ȳn(t) ≥ d̂∞ − c
log(m+ n)√

m+ n

}

Ê−
m,n :=

{
t ∈ [0, 1]

∣∣∣ X̄m(t)− Ȳn(t) ≤ −d̂∞ + c
log(m+ n)√

m+ n

}

The second main result established consistency of these estimates with respect to
the Hausdorff distance dH .
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Theorem 2. Let the assumptions of Theorem 1 be satisfied, then

dH(Ê±
m,n, E±)

P−→ 0.

The results of Theorem 1 and 2 are used to develop a multiplier bootstrap
procedure, to generate critical values for the test, which rejects the null hypotheses

for large vales the statistic d̂∞. We prove that this test has asymptotic level α and
is consistent.

How well do local algorithms solve semidefinite programs?

Zhou Fan

(joint work with Andrea Montanari)

Semi-definite programming (SDP) relaxations are among the most powerful tools
available to the algorithm designer. However, several probabilistic models such as
planted clique and planted partition reveal an intriguing dichotomy. Either simple
local algorithms succeed in estimating the object of interest, or even sophisticated
SDP relaxations fail. The conjectural picture emerging in many problems is that
SDP relaxations are no more powerful than local algorithms (supplemented with a
small amount of side information to break symmetries), and any information that
is genuinely non-local is not exploited even by sophisticated SDP hierarchies. To
explore this phenomenon, we ask the question:

Can semidefinite programs be (approximately) solved by local algorithms for a
large class of random graph models?

We study this in the context of a classical SDP relaxation of the minimum graph
bisection problem, when applied to Erdős-Rényi random graphs and stochastic
block models with bounded average degree. We show that for this problem, near-
optimal SDP solutions may be constructed using a local algorithms approach.

We consider specifically the two-groups symmetric stochastic block model that
has attracted considerable attention in recent years as a model for community
detection in networks. A random graph G over n vertices is generated by parti-
tioning the vertex set into two subsets S+ ∪ S− of size n/2 uniformly at random.
Conditional on this partition, any two vertices i, j are connected by an edge inde-
pendently with probability a/n if {i, j} ⊆ S+ or {i, j} ⊆ S−, and with probability
b/n otherwise. Given a single realization of G, we are requested to identify the
partition.

We focus on the success criterion of weak recovery, i.e., to attribute {+,−}
labels to the vertices so that at least (1/2+ ε)n vertices are labeled correctly with
high probability. It was conjectured in [DKMZ11] that this is possible if and only if

λ > 1, where λ ≡ (a−b)/
√
2(a+ b) parametrizes an effective signal-to-noise ratio.

This conjecture followed from the heuristic analysis of a local algorithm based
on belief propagation, and was subsequently proven in [MNS12, MNS13, Mas14]
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through the analysis of spectral algorithms related to the linearization of belief
propagation around a non-informative fixed point.

Convex optimization approaches for this problem are based on the classical
SDP relaxation of the minimum-bisection problem. Denoting by A = AG the
adjacency matrix of G, the minimum bisection problem is written as

maximize 〈σ,Aσ〉 ,(1)

subject to σ ∈ {+1,−1}n , 〈σ,1〉 = 0 .(2)

The following SDP relaxes the above problem, where d = (a+ b)/2 is the average
degree:

maximize 〈A− (d/n)11T,X〉 ,(3)

subject to X � 0 , Xii = 1 ∀i .

Here, the term −(d/n)11T is a Lagrangian relaxation of the hard constraint
〈σ,1〉 = 0. This SDP relaxation has a weak recovery threshold λSDP that ap-
pears to be very close to the ideal one λ = 1. Namely, Guédon and Vershynin
[GV16] proved λSDP ≤ C for C a universal constant, while [MS16] established
λSDP = 1 + od(1) for large average degree d.

Figure 1. Typical value SDP(AG) of the min-bisection SDP for
large Erdős-Rényi random graphs with average degree d, normal-
ized by the large degree formula 2n

√
d. Circles: Numerical sim-

ulations with graphs of size n = 106. Solid lines: Upper bound
1 − 1/(2d) and random-conductance lower bound for the SDP
value. Lower dashed line: Explicit lower bound 1− 1/(d+ 1) for
the SDP value.

Denoting by SDP(AG) the value of (3), we establish the following results:

Approximation ratio of local algorithms.: For the Erdős-Rényi random graph
G ∼ G(n, d/n) with average degree d, we prove that there exists a simple lo-
cal algorithm that approximates SDP(AG) within a factor 2d2/(2d2 + d− 1),
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asymptotically for large n. In particular, the local algorithm is at most a
factor 8/9 suboptimal, and 1 +O(1/d) suboptimal for large degree.

Typical SDP value.: Our proof provides upper and lower bounds on SDP(AG)
for G ∼ G(n, d/n), showing in particular

2
√
d

(
1− 1

d+ 1

)
≤ 1

n
SDP(AG) ≤ 2

√
d

(
1− 1

2d

)
.

This may be compared with the “Wigner heuristic” for the maximum eigen-
value 2

√
d of the matrix A − (d/n)11T for dense graphs. While the lower

bound is based on the analysis of a local algorithm, the upper bound fol-
lows from a dual witness construction using a generalization of the Ihara-Bass
identity and a centered variant of the non-backtracking matrix of the graph.
Our upper and lower bounds are plotted in Fig. 1 together with the results of
numerical simulations.

A local algorithm based on harmonic measures.: The simple local algo-
rithm above aggregates randomness available at each vertex of G uniformly
within a neighborhood of that vertex. We analyze a different local algorithm
that aggregates information in proportion to the harmonic measure of each
vertex, and we characterize the value achieved by this algorithm in terms of
the conductance of a random Galton-Watson tree. Numerical data (obtained
by evaluating this value and also solving the SDP (3) on large random graphs)
suggest that this lower bound is very accurate, cf. Fig. 1.

SDP detection threshold for the stochastic block model.: We then turn
to the two-group symmetric block model G ∼ G(n, a/n, b/n) and prove a local
algorithms lower bound for SDP(AG) in this model, assuming that a small con-
stant fraction of community vertex labels are revealed as a device for breaking
symmetries. Our results imply, in particular, that SDP succeeds for weak
recovery when λ > λSDP, where

λSDP ≤ min

(
2− 1

d
, 1 +

C

d1/4

)

for C a universal constant (independent of d).
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Testing for Balance in Social Networks

Derek Feng

(joint work with Randolf Altmeyer, Derek Stafford, Nicholas A. Christakis and
Harrison H. Zhou)

Models of social network structure generally build on assumptions about myopic
agents, whereby global network features emerge from the dynamic local decision
rules of individual agents. For instance, if agents tend to attach to more central or
popular actors, scaling emerges in the degree distribution of the graph; if people
generally form connections with those who are similar, social networks exhibit
homophily; if agents form infrequent but random connections with other agents,
the social graph has a small diameter, following the small-world phenomenon.

All of these models, however, are restrictive in that they only apply to positive
ties. Much less is theorized or known about the fundamental properties of negative
ties. In principle, they need not share the same structural properties as their
positive counterparts. Moreover, as most social graphs are signed (i.e. have both
positive and negative ties), this raises the question of how the presence of the
negative ties affects the surrounding positive network structure, and how we should
model them concurrently.

One important theory of negative ties advanced by Heider relates to an agent’s
desire for balance in social relationships. Balance theory postulates that a need
for cognitive consistency leads agents to seek to balance the valence in their local
social systems. Simply stated, friends should have the same friends and the same
enemies. This translates, in graph-theoretic terms, to requiring the product of the
signs on a triangle to be positive. Triangles that violate this property are deemed
unbalanced, and the theory posits that such triangles should be rare compared to
their balanced counterparts.

As it stands, balance theory has received surprisingly little empirical evalua-
tion. Tests of balance theory require the observation of antagonistic connections
between actors, but these ties are often either ignored when the data is gathered,
or simply unavailable due to the unwillingness of the actors themselves to divulge
such information. Those studies which have been able to observe antagonistic ties
have done so in artificial settings – and been very liberal about what constitutes
an antagonistic tie – like nominations to adminship on Wikipedia, and user ratings
of trustworthiness in an e-commerce website, rather than in face-to-face settings,
with few exceptions.

Though the underlying datasets may be vastly different, these studies all resort
to exactly the same statistical test to verify balance in their signed networks: for
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the test statistic, they use the number of balanced triangles as a measure of the de-
gree of balance in a graph; the null model corresponds to a permutation test on the
edge weights of the observed graph. Drawing samples from the null distribution
then reduces to shuffling the signs on the graph. The simplicity of this null model
belies its principal flaw though – namely, that it treats negative and positive ties
as interchangeable. The problem is that, as we shall soon demonstrate, negative
ties behave remarkably like random ties drawn from an Erdős-Rényi graph. Mean-
while, research in social network modeling is predominantly focused on showing
how disparate positive graphs are from independent random graphs. Features like
preferential attachment and clustering are fundamental to our understanding of
positive ties – features that are clearly absent in negative ties. Thus, by treating
positive and negative ties as exchangeable, this null hypothesis creates a test, not
for balance, but for differences in the behavior of positive and negative ties.

The main contribution of this work is to provide a new null model that resolves
the issues raised above. The crux of the solution is the following key observa-
tion: a crucial way in which negative and positive ties differ is through their
embeddedness level (the number of triangles that tie is a member of) – transitiv-
ity and homophily encourage higher levels of embeddedness in positive ties. Our
new method, therefore, is to stratify the permutation across embeddedness levels,
thereby ensuring that the embeddedness profiles of negative and positive ties re-
main invariant. This preserves the fundamental differences between the two kinds
of ties, creating a more accurate null model of a signed social network without
balance. This is supported by both our simulation studies and our theoretical
results, where we show that for a reasonable definition of absence of balance in
a graph, the true type-I error rate of the old test converges to 1 while the type-I
error rate for the new test is consistent with the specified α.

To compare the relative performance of the two tests, we show asymptotic nor-
mality of the test statistic under the two null models. Due to the stratified nature
of the permutation, this is a nontrivial result, and, to the best of our knowledge,
this is the first result showing asymptotic normality of this type of graph statistic
under a stratified permutation model. The key insight is that a distribution de-
rived from a permutation test – even a stratified permutation – can be obtained
as conditional distribution of independent random variables. This is similar to
the dichotomy between the G(n, p) and G(n,m) random graph model. Under cer-
tain conditions, the limit and the conditioning operation may be interchanged,
enabling us to carry the central limit theorem result in the independent case to
the permutation case. This proof technique of Janson has wide applicability, not
least in the nascent field of (nonparametric) inference on random graphs.

Our final contribution is that we are the first to collect and analyze a compre-
hensive dataset capturing both positive and negative ties between individuals in a
social network – namely, the networks of 32 villages in rural Honduras. This novel
dataset provides a first look into the behavior of interaction between negative and
positive human relationships. We find that, unsurprisingly, negative ties behave
very differently from positive ties. Applying our new test of balance to the village
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networks reveals that balance barely registers as an underlying mechanism dictat-
ing the structure of signed networks, which is contrary to the conclusions drawn
from the previous literature.

Partial recovery bounds for clustering with the relaxed Kmeans

Christophe Giraud

(joint work with Nicolas Verzelen)

The problem of clustering is that of grouping similar ’objects’ in a data set. It
encompasses many different instances such as partitioning points in a metric space,
or partitioning the nodes of a graph.

Kmeans and a convex relaxation
When these objects can be represented as vectors in a Euclidean space, some

of the most standard clustering approaches are based on the minimization of the
Kmeans criterion [20]. Observing n objects and writing Xa ∈ Rp for the object
a ∈ {1, . . . , n}, the Kmeans criterion of a partition G = (G1, . . . , Gk) of {1, . . . , n}
is defined as

(1) Crit(G) =

K∑

k=1

∑

a∈Gk

∥∥∥∥Xa −
1

|Gk|
∑

b∈Gk

Xb

∥∥∥∥
2

,

where ‖.‖ stands for the Euclidean norm. This criterion quantifies the dispersion
of each group around its centroid in order to favor homogeneous partitions. A

Kmeans procedure then aims at finding a partition Ĝ that minimizes, at least
locally, the Kmeans criterion. However, solving this problem is NP-hard and it is
even hard to approximate [2].

In general, iterative procedures such as Llyod’s algorithm [20] and its vari-
ants [5] are only shown to converge to a local minimum of the Kmeans criterion.
Alternatively, Peng and Wei [25] have suggested to relax the Kmeans criterion
to a Semi-Definite Program (SDP) followed by a rounding step. The resulting
program is provably solvable in polynomial time. In this talk, we (i) put forward
the versatility of Peng and Wei’s procedure and some of its variants by handling
both vector and general graph clustering problems and (ii) explain its near-optimal
performances.

SubGaussian Mixture Models (sGMM) and Stochastic Block Models
(SBM)

In the computer-science and statistical literature, the most popular approach to
assess the performances of a procedure is the ’model-based’ strategy. It assumes
there exists a true unknown partition G of the ’objects’ and that the data have
been randomly generated from a probability distribution rendering this partition.
Then, one can assess the performances of a clustering procedure by comparing the
partition estimated from the data to G.

For vector clustering, it is classical to assume that the vectorsXa are distributed
according to a SubGaussian Mixture Model (sGMM). In a sGMM with partition
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G, the random variables Xa are assumed to be independent and for a ∈ Gk, the
random variable Xa is assumed to follow a subGaussian distribution centered at
µk ∈ R

p and with covariance matrix Σk. In other words, variables Xa whose
indices a belongs to the same group are identically distributed and variables Xa

and Xb whose indices belong two different groups have different means.
Node clustering in a network has been widely investigated within the framework

of Stochastic Block Models (SBM) [17] and its variants. According to a SBM with
partition G, the network edges are sampled independently and the probability of
presence of an edge between any two nodes a ∈ Gk and b ∈ Gl is equal to some
quantity Qkl ∈ [0, 1] only depending on the group. In other words, two nodes
a and b belonging to the same group in G share the same probability of being
connected to any other node c.

These two random models have attracted a lot of attraction in the last decade.
See e.g. [1, 22] for two recent reviews on SBM and [9, 24, 21, 27] for recent con-
tributions on sGMM. A large body of the literature on these two models focuses
on pinpointing the right scaling between the model parameters allowing to recover
the partition G from the data. For sGMM, this translates into identifying the
minimal distance mink 6=l ‖µk − µl‖ within the mixtures means, such that, there
exists a clustering procedure, if possible running in polynomial time, that recovers
G with high probability. Most of the works concentrate on two types of recovery:
perfect recovery, where one wants to recover exactly the partition G with high

probability and weak-recovery where the estimated partition Ĝ is only required to
be more accurate than random guessing. The goal is then to identify the precise
threshold at which perfect or weak recovery can occur. We refer to [1] for a review
of these questions in SBM. Between these two extreme regimes, when the best
possible classification is neither perfect nor trivial, the objective is to maximize

the proportion of well-classified data. Given two partitions Ĝ = (Ĝ1, . . . , ĜK) and
G = (G1, . . . , GK) of {1, . . . , n} into K non-void groups, we define the proportion
of non-matching points

(2) err(Ĝ, G) = min
π∈SK

1

2n

K∑

k=1

∣∣∣Gk △ Ĝπ(k)

∣∣∣ ,

where A△ B represents the symmetric difference between the two sets A and B

and SK represents the set of permutations on {1, . . . ,K}. When Ĝ is a partition

estimating G, we refer to err(Ĝ, G) as the misclassification proportion (or error) of
the clustering. The problem of minimizing this error has attracted less attention
but see [4, 15, 10, 28, 3, 12, 9, 14, 13] for some related contributions.

Among the polynomial-time clustering procedures, Semi-Definite-Programs
(SDP) have proved to be versatile and they have been investigated in a large range
of clustering problems, including clustering in SBM [11, 15, 26, 19, 18, 13], sGMM
[9, 24, 27] or in block covariance models [7, 8]. While not always reaching the exact
threshold for weak/perfect clustering in several cases [19, 26], SDP algorithms are
versatile enough in order to enjoy some robustness properties [26, 23, 13], which
are not met by more specialized algorithms (see [23] for more details). However,
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most SDPs require the partition to be balanced or that, at least, the size of each
group is known in advance. Besides, all SDPs studied for SBM clustering arise
as convex relaxations of min-cut optimization problems [11, 15, 26, 19, 18, 13]
and therefore only fall within the framework of assortative SBM where within
group probabilities of connection are larger than between group probabilities of
connection. In other words, the diagonal entries of Q have to be larger than its
off-diagonal entries.

Our Contribution
We provide misclassification error bounds for the relaxed Kmeans of Peng and

Wei [25] both in the sGMM and the SBM frameworks. Compared to other SDPs,
this convex relaxation ofKmeans has the nice feature to only require the knowledge
of the number of groups (which can sometimes be estimated, as in [7]). Hence,
there is no need to know the size of the clusters, nor the parameters of the model.

Let us give a glimpse of our results on sGMM, by specifying it to the special
case of Gaussian mixture models, with K groups of equal size m = n/K and equal
covariance Σ. The general statement of the results for possibly unbalanced groups
in sGMM is available in [16]. Write ∆ = mink 6=l ‖µk − µl‖ for the minimal Eu-
clidean distance between the means of the components and write RΣ = |Σ|2F /|Σ|2op
for the ratio between the square Frobenius norm of Σ and the the square operator
norm of Σ. This ratio can be interpreted as an effective rank of Σ. In the sequel,
c stands for a positive numerical constant. Then, with high probability, when ap-
plying the relaxed Kmeans, the proportion of misclassified observations decreases
exponentially fast with the signal to noise ratio

(3) s2 =
∆2

|Σ|op
∧ n∆4

K|Σ|2F
,

at least, as long as the condition s2 ≥ cK, or equivalently

(4) ∆2 ≥ c|Σ|op
(
1 ∨

√
RΣ

n

)
K

is met. Since err(Ĝ, G) ≤ 1/n, implies that the partition Ĝ is equal to G, this
result ensures perfect recovery of the clustering with high-probability when s2 ≥
c(K ∨ log(n)), recovering the results of [27]. It also ensures a better than random
guess clustering when (4) is met, which improves, in high-dimensional setting,
upon state-of-the art results in [24, 21]. We also point out that the right SNR
to look at in this setting is s2 defined by (3) and not s̃2 = ∆2/|Σ|op previously
considered in the literature.

On the SBM side, the relaxedKmeans procedure can be applied to general SBM
to cluster nodes presenting similar connectivity profiles. Instead of the previously
discussed SDPs that look for a partition with maximal within-group connectivity,
this allows us to handle general unknown connection matrices Q and thereby going
far beyond the assortative case. Denoting by m the size of the smallest group in
G, we prove that, with high probability, the misclassification proportion decreases
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exponentially fast with the signal-to-noise ratio

(5) s2 = m ·min
j 6=k

‖Qj: −Qk:‖2
|Q|∞

,

at least as long as the condition s2 ≥ cn/m is met. Here, Qj: stands for the j-th
column of Q and |Q|∞ denotes the supremum norm. Note that this result en-
compasses sparse graph, where the connection probability may scale as a constant
divided by n. Our results are (i) the first results about clustering with an SDP
in non-assortative cases and (ii) the only known exponential bounds for partial
recovery in general SBM are those of [3] which handle the sparse setting where the
matrix Q scales as Q = Q0/n, with Q0 fixed and n → ∞. Their results are optimal
in the vicinity of the weak recovery threshold. Our results cover a setting with
slightly more signal (the missclassification error has to be smaller than e−cK), and
the results do not overlap. In particular, our exponential rate (5) is faster by at
least a factor K than the exponential rate involved in [3]. Hence both results are
more complementary than comparable. When specified to the classical case with
all within-group probabilities equal to p and all between-group probabilities equal
to q, with q < p, and groups with the same size, we recover the results obtained by
[13] for a relaxed version of the MLE, but without knowledge of the group sizes.
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Statistical estimation for age-structured models in a large population
limit

Marc Hoffmann

(joint work with A. Boumezoued and P. Jeunesse)

Motivated by improving mortality tables from human demography databases, we
investigate statistical inference of a stochastic age-evolving density of a population
alimented by time inhomogeneous mortality and fertility. Asymptotics are taken
as the size of the population grows within a limited time horizon: the observation
gets closer to the solution of a PDE (a inhomogeneous version of the Von Foerster
Mc Kendrick equation) and the difficulty lies in controlling simultaneously the
stochastic approximation to the limiting PDE in a suitable sense together with an
appropriate parametrisation of the anisotropic solution. In this setting, we prove
new concentration inequalities that enable us to implement the Goldenshluger-
Lepski algorithm and derive oracle inequalities. Minimax adaptation under local
Hölder smoothness constraints are also investigated.

Optimal hypothesis testing for stochastic block models with growing
degrees

Zongming Ma

(joint work with Debapratim Banerjee)

We consider optimal hypothesis testing for distinguishing a stochastic block model
from an Erdős–Rényi random graph. Let A denote an n× n adjacency matrix of
a random undirected graph, we are interested in testing

H0 : A ∼ G1

(
n,

pn + qn
2

)
vs. H1 : A ∼ G2 (n, pn, qn) .

Here the null model is Erdős–Rényi random graph with edge probability (pn+qn)/2
and the alternative the balanced stochastic block model with two blocks where
the within block connection probability is pn and the between block connection
probability is qn. For simplicity assume that pn > qn, though all the results
generalize naturally to the case of pn < qn. We are interested in the asymptotic
regime where n → ∞, pn, qn → 0, n(pn + qn) → ∞ while

t =

√
n(pn − qn)2

2(pn + qn)

remains a constant. We derive central limit theorems for a collection of linear spec-
tral statistics under both the null and local alternatives. In addition, we show that
linear spectral statistics based on Chebyshev polynomials can be used to approxi-
mate signed cycles of growing lengths which in turn determine the likelihood ratio
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test asymptotically when the graph size and the average degree grow to infinity
together. For example, let p̂n,av = 1

n(n−1)

∑
i6=j Aij ,

Ares =

(
Aij − p̂n,av1i6=j√
np̂n,av(1− p̂n,av)

)
,

and Pm(x) = 2Tm(x/2) form = 0, 1, 2, . . . , where Tm is the Chebyshev polynomial
of degree m. We showed that if as n → ∞, np2n → ∞ and t ∈ (0, 1) is known,
then for any kn → ∞ such that kn = o(min(

√
logn, log(np2n))), a test that rejects

for large values of

La =

kn∑

i=3

ti

2i
Tr(Pi(Ares))

achieves the same asymptotic power as the likelihood ratio test which is optimal by
the Neyman–Pearson lemma. Therefore, one achieves sharp asymptotic optimal
power of the testing problem within polynomial time complexity provided that the
average degree grows sufficiently fast.
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Nonparametric inference for continuous-time event counting and
link-based dynamic network models

Enno Mammen

(joint work with Alexander Kreiß and Wolfgang Polonik)

In this talk we consider a model for a time series of random networks. We denote
by Vn = {1, . . . , n} the set of nodes (actors, agents) of the network. We will discuss
models for two types of data:

• Counting of interaction events:

Nn,ij(t) = #{interaction events between i and j before or at t}

for a pair of actors (i, j). Examples for this model are data of e mails or
of phone calls between persons i, j ∈ Vn.

• Dynamic networks:

Zn,ij(t) =

{
1, if there is a link between i and j
0, if there is no link

for a pair of actors (i, j). Here an example is a network of friendships
between persons i, j ∈ Vn.
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In this note, we only discuss models for interaction events. The results for these
models can be easily also applied to dynamic networks. All results are formulated
for undirected interactions, i.e., we assume that Nn,ij = Nn,ji for all pairs (i, j).
This assumption is made for simplicity. All results can be formulated for the
directed case as well.

Our basic assumption is that for all (i, j), the processes Nn,ij are one-dimensio-
nal counting processes with respect to an increasing, right continuous filtration Ft,
t ∈ [0, T ]. The σ-field Ft contains all information available up to the time point t.
The intensities of the counting processes Nn,ij are modelled by

λn,ij(θ, t) := exp(θT (t)Yn,ij(t)), if Cn,ij(t) = 1,

for i, j = 1, ..., n,

• where θ(t) is an unknown function,
• where Yn,ij(t) are Ft-predictable co-variates,
• and where the functions Cn,ij(t) are Ft-predictable indicator functions
only taking values in {0, 1}.

This model is very flexible:

• We do not assume that θ is a fixed parameter. We allow that it is a
parameter that develops in time.

• The variables Yn,ij(t) can contain information about the global and local
history of the network and external information.

• Inference will be based on the truncated process NC
n,ij with intensity func-

tion

λn,ij(θ, t) := Cn,ij(t) exp(θ
T (t)Yn,ij(t))

for i, j = 1, ..., n. This means that we do not model the dynamics of Nn,ij

in case that Cn,ij(t) = 0. The presence of the function Cn,ij(t) enhances
the modelling flexibility significantly. For instance, we can model them
as being equal to zero for a certain subset of edges (i, j) not possessing a
certain property at time t. One example is, to set Cn,ij(t) equal to zero, if
there was no event between i and j for a certain period. In this case our
model is only fitted to ”active” pairs.

Our approach is an adaptation from methods of classical survival analysis to net-
work analysis:

• An edge (i, j) compares to a patient i.
• An interaction on the edge (i, j) at time point t compares to the death of
a patient i at t.

Our network/interaction model differs from classical survival analysis in the fol-
lowing points:

• – Survival analysis: the intensity/hazard function depends on the his-
tory of a patient i.

– Interaction analysis: the intensity/hazard function depends on the
history of the whole network.
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• – Survival analysis: the hazard λi(θ, t) = λ0(t)Cn,i(t) exp(θYn,i(t)) con-
tains a baseline hazard λ0(t)

– Interaction analysis: choice of Yn,ij1(t) ≡ 1 and of time-dependent
parameters θ(t) makes introduction of baseline hazard/intensity su-
perfluous.

• – Survival analysis: Cn,i(t) is determined by the data: it is equal to
zero if patient i is dead at t or if he has left the study at t.

– Interaction analysis: Cn,ij(t) is defined by the statistician: e.g. it is
defined to be equal to zero if λn,ij(θ, t) is very small.

There is an active literature on dynamic networks. This includes discrete time
models based on Markov processes, on dynamic latent space models, on dynamic
exponential random graph models, on dynamic block models or on dynamic multi-
group membership models. Furthermore, time-continuous models have been pro-
posed based on link-based or actor-based continuous-time Markov processes. Our
model is most closely related to Butts (2008), and Perry and Wolfe (2013), where
also models based on counting processes have been proposed.

For the estimation of θ0 we use a local likelihood criterion at points t0:

ℓT (θ; t0) =
∑

(i,j)

∫ T

0

1

h
K

(
s− t0
h

)
logλi,j(θ, s)dN

C
i,j(s)

−
∑

(i,j)

∫ T

0

1

h
K

(
s− t0
h

)
λi,j(θ, s)ds.

Here, inference is based on the truncated process NC
n,ij . The local MLE is defined

as

θ̂(t0) = argmax
θ∈Θ

ℓT (θ, t0),

where Θ is the assumed range of the parameter functions. For the estimator θ̂(t0)
we have developed asymptotic theory at a fixed point t0. Our main result is that
with probability tending to one, the derivative of the local log-likelihood function

ℓT (θ, t0) has a root θ̂n(t0), satisfying

√
lnh

(
θ̂n(t0)− θ0(t0)− bias+ oP (h

2)
)
→ N(0,

∫
K(u)2du · Σ−1),

in distribution, as n → ∞, where

bias = bias1 + bias2.

Here, we have put

g(θ, t) := E(eθ
TYn,12(t) − θTYn,12(t)e

θ0(t)
TYn,12(t)|Cn,12(t) = 1)

Σ := ∂θ2g(θ0(t0), t0)

ln :=
n(n− 1)

2
P(Cn,12(t0) = 1)
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The bias terms are defined as follows:

bias1 :=
1

2
h2

∫
K(u)u2du · Σ−1∂θ∂t2g(θ0(t0), t0),

bias2 :=
h

ln
2

n∑

i,j=1

∫ T

0

1

h
K

(
s− t0
h

)
(1 − Cn,ij(t0))Cn,ij(s)

Yn,ij(s)Yn,ij(s)
T exp(θT0 (s)Yn,ij(s))θ

′
0(t0)

t0 − s

h
ds.

For more details on the theoretic result, see Kreiß et al. (2017).
In the talk the methods were illustrated by a data set on bike sharing in Wash-

ington D.C., where the vertices i are the bike stations and where an interaction
on the edge (i, j) is a person renting a bike at station i and returning it at station
j or vice versa. As covariates we use the numbers of tours between i and j in the
recent past, the numbers of stations to which tours were undertaken from or to
i or j and the numbers of joint destinations among others. For details see again
Kreiß et al. (2017).
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Strong Gaussian approximation of the mixture Rasch model

Alexander Meister

(joint work with F. Liese and J. Kappus)

We consider the famous Rasch model, which is applied to psychometric surveys
when n individuals under test answer m questions. The score is given by a re-
alization of a random binary matrix. Its (j, k)th entry indicates whether or not
the answer of the jth person to the kth question is correct. In the mixture Rasch
model one assumes that the individuals are chosen randomly from a huge popu-
lation. We prove that the mixture Rasch model is asymptotically equivalent to a
Gaussian observation scheme in Le Cam’s sense as n tends to infinity and m is al-
lowed to increase slowly in n. For that purpose we show a general result on strong
Gaussian approximation of the sum of independent high-dimensional binary ran-
dom vectors. As a first application we construct an asymptotic confidence region
for the difficulty parameters of the questions. Moreover we discuss nonparametric
estimation of the ability density. This talk is based on a joint work with F. Liese
(1944-2018) and J. Kappus (Univ. Rostock).
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Learning binary latent variable models: A tensor eigenpair approach

Boaz Nadler

(joint work with Ariel Jaffe, Roi Weiss, Yuval Kluger and Shai Carmi)

Latent variable models with hidden binary units appear in various applications.
A common model is of the form

x = WTh+ σξ

where x ∈ R
m is the observed vector, h ∈ {0, 1}d is the latent unobserved vector

with d ≤ m, W ∈ R
d×m is an unknown mixing matrix of rank d, ξ ∈ R

m is a
zero mean noise vector with i.i.d. entries of unit variance, and σ is the noise level.
Given n i.i.d. samples xi of this model the problem is to estimate the number
of latent variables d and the unknown matrix W . Without making simplifying
assumptions, estimating W, in particular in the presence of noise, is a challenging
computational problem. In this work we propose a novel spectral approach to this
problem, based on the eigenvectors of both the second order moment matrix and
third order moment tensor of the observed data. We prove that under mild non-
degeneracy conditions, our method consistently estimates the model parameters
at the optimal parametric rate. Our tensor-based method generalizes previous
orthogonal tensor decomposition approaches, where the hidden units were assumed
to be either statistically independent or mutually exclusive. The complexity of our
approach is polynomial in the observed dimension m and number of samples n,
but exponential in the number of hidden variables d. The reason for the latter
is that our approach computes all O(2d) eigenvectors of a suitable tensor, and
then extracts from them only the d relevant ones. An interesting open question is
whether there exist statistically consistent procedures to estimateW under general
identifiability conditions which have polynomial run-time in d. We illustrate the
consistency of our method on simulated data and demonstrate its usefulness in
learning a common model for population mixtures in genetics.
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Choice of network motif in network analyses

Sofia Olhede

(joint work with Patrick Wolfe)

Designing the basic building blocks of network analysis is complicated by the
fact that many networks are not labelled–e.g. when comparing two networks we
cannot use statistics that depend on the choice of labelling of nodes [1, 4, 3]. The
theory of exchangeable graphs is naturally matched to this lack of labelling [3].
For this reason, when analysing networks, often statistics are therefore used that
intrinsically do not depend on the node labelling. Counts of isomorphic copies
of shapes present in a graph, or motifs, are a concrete example of this approach.
Subsequent analysis are often implemented that is permutation invariant [2].

There are many outstanding questions remaining before counts of motifs can be
used routinely to make better supported inferences of networks. The answers to
these questions depend on the modelling assumptions that we are ready to make of
the underlying network we are seeking to analyse. Understanding has traditionally
been developed for Erdos–Renyi graphs. But many real-world graphs have more
complex characteristics than Erdos–Renyi graphs, requiring us to develop more
general methods.

Some properties of counts of small graphs are already well–known under the
assumption of exchangeability [2]. This however, does not answer what small
graphs we should be counting. Ideally they should either be related to the inference
problem we are seeking to address or how we think the data might have been
generated.

We then seek to answer, what makes certain counts more important? Our
argument is that those which contribute more or are more numerous, are more
important. Starting from simple assumptions we show that eventually if we con-
sider shapes that can be mapped out by “walking” each edge, and having a limited
budget of steps, only cycles, trees, and uni–cyclic graphs are of any great signifi-
cance [5].

We explore this realisation, and its practical utility, by redefining a summary
that has been normalized to reflect departures from Erdos–Renyi graphs. We
further explore the variation in the graph by using sub sampling methods. This
produces a tool able to characterise the tree like properties versus the cycles in the
studied networks. A number of well-studied examples demonstrate the practical
usage of counts of subgraphs, when renormalized.
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Estimation and clustering in the Dynamic Stochastic Block Model

Marianna Pensky

(joint work with Teng Zhang)

In the talk, we consider a dynamic network defined as an undirected graph with
n nodes with connection probabilities changing in time. Assume that we observe
the values Bi,j,l ∈ {0, 1} of a tensor B ∈ {0, 1}n×n×L at times tl where 0 < t1 <
· · · < tL = T . For simplicity, we assume that time instants are equispaced and the
time interval is scaled to one, i.e. tl = l/L. Here Bi,j,l = 1 if a connection between
nodes i and j is observed at time tl and Bi,j,l = 0 otherwise. We set Bi,i,l = 0 and
Bi,j,l = Bj,i,l for any i, j = 1, · · ·n and l = 1, · · · , L, and assume that Bi,j,l are
independent Bernoulli random variables with Λi,j,l = P (Bi,j,l = 1) and Λi,i,l = 0.
In the talk, we examine a Dynamic Stochastic Block Model (DSBM) which can
be viewed as a natural extension of the Stochastic Block Model. In a DSBM, all
n nodes are grouped into m classes Ω1, · · · ,Ωm, and probability of a connection
Λi,j,l is entirely determined by the groups to which the nodes i and j belong at
the moment tl. In particular, if i ∈ Ωk and j ∈ Ωk′ , then Λi,j,l = Gk,k′,l. Here,
G is the connectivity tensor at time tl with Gk,k′,l = Gk′,k,l. We assume that the
connection probabilities as functions of time have low complexity in the sense that
they allow a sparse representation in some standard orthonormal basis H . If those
functions are smooth, then one can choose H to be the Fourier transfrom while
if they can be functions with jumps, a kind of wavelet transfrom will satisfy the
requirement. The objective is estimation of the tensor of connection probabilities
Λ and clustering of the nodes into m clusters.

In the first part of the talk, in order to construct an estimator of Λ, we derive a

penalized least squares estimator Λ̂ and show that Λ̂ satisfies an oracle inequality
and also attains minimax lower bounds for the risk. The estimators constructed
in the paper are adaptive to the unknown number of blocks and to the sparsity
of the connection probabilities as functions of time. The technique relies on the
vectorization of the model and leads to much simpler mathematical arguments
than the ones used previously in the stationary set up. In addition, all results are
non-asymptotic and allow a variety of extensions.

In the second part of the talk we consider clustering of the DSBM under the
assumptions that the connection probabilities, as functions of time, are smooth and
that at most s nodes can switch their class memberships between two consecutive
time points. We estimate the edge probability tensor by a kernel-type procedure
and extract the group memberships of the nodes by spectral clustering. The
procedure is computationally viable, adaptive to the unknown smoothness of the
functional connection probabilities, to the rate s of membership switching and to
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the unknown number of clusters. In addition, it is accompanied by non-asymptotic
guarantees for the precision of estimation and clustering.
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On the reconstruction error of PCA

Markus Reiß

(joint work with Martin Wahl)

We identify principal component analysis (PCA) as an empirical risk minimisation
(ERM) problem with respect to the reconstruction error. By applying the usual
machinery of ERM techniques in combination with the Davis-Kahan inequality
for matrices we are able to bound the excess risk in the reconstruction error of
PCA by the minimum of a global rate (of order n−1/2 in the sample size n) and a
local rate (of order n−1, but depending on a spectral gap condition). These results
extend or complement previous result by Blanchard, Bousquet and Zwald [1].

In Reiß andWahl [2] it is then argued that these upper bounds are still too crude
because they do not catch the zero reconstruction error in the isotropic case of the
identity as covariance matrix. To tighten the bounds, spectral projector calculus
and local eigenvalue concentration results have to be developed and applied. The
new bounds give for standard examples from functional data analysis and learning
an excess risk smaller than the oracle risk and thus good oracle inequalities. A
CLT in the parametric case exemplifies the inhomogeneity of the error with respect
to the eigenvalue spacings.

A conjecture about the decision-theoretic optimality of PCA is formulated:
Conjecture. For any given dimension p consider an i.i.d. sample X1, . . . , Xn ∼
N(0,Σ) where Σ ∈ R

p×p is a covariance matrix with known eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λp ≥ 0, but unknown eigenvectors. The PCA spectral projector P̂≤d onto the
first d < p principal components (eigenvectors of the empirical covariance matrix)
is non-asymptotic minimax and admissible with respect to reconstruction error
R(P̂d,Σ) = E[trace((I − P̂d)Σ)] among all orthogonal projectors P̂d on subspaces
of dimension d.

It is discussed how this conjecture follows from the Bayesian conjecture that
the PCA spectral projector is the Bayes-optimal estimator when we assume that
the eigenspaces of Σ are generated by the Haar measure on the orthogonal group
O(Rp). It is then proved that the Bayes-optimal estimator is diagonal in the
eigenbasis of the empirical covariance matrix. It seems, however, non-trivial to
prove or disprove whether it always projects onto the subspace of the d largest
empirical eigenvalues.
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Geometrizing rates of convergence under local differential privacy

Lukas Steinberger

(joint work with Angelika Rohde)

In [1], we study the problem of estimating a functional θ(P) of an unknown prob-
ability distribution P ∈ P in which the original iid sample X1, . . . , Xn ∼ P is
kept private even from the statistician via an α-local differential privacy con-
straint. That is, the statistician only gets to see a privatized version of observa-
tions Z. The conditional distribution of Z given X = (X1, . . . , Xn)

′ is denoted
by Q and referred to as a channel distribution or a privatization scheme, i.e.
Pr(Z ∈ A|X = x) = Q(A|x). For α ∈ (0,∞), the channel Q is said to provide
α-differential privacy if

(1) sup
A

sup
x,x′:d0(x,x′)=1

Pr(Z ∈ A|X = x)

Pr(Z ∈ A|X = x′)
≤ eα,

where the first supremum runs over all measurable sets and d0(x, x
′) := |{i : xi 6=

x′
i}| denotes the number of distinct entries of x and x′. This definition is due to

[4]. In this work, we consider only the local paradigm of differential privacy. A
channel Q is said to provide α-local differential privacy if it satisfies (1) and it is
such that every individual i can produce a private version Zi of its original data
Xi ‘on its local machine’ without having to know any of the confidential data Xj ,
j 6= i.

Suppose now that we want to estimate a real parameter θ(P) based on the priva-
tized observation vector Z, whose unconditional distribution is equal to
QP

⊗n(dz) :=
∫
Q(dz|x)P

⊗n(dx), where P
⊗n is the n-fold product measure of

P. The Q-privatized minimax risk of estimation under a loss function l : R → R is
therefore given by

(2) Mn(Q,P , θ) := inf
θ̂n

sup
P∈P

EQP⊗n

[
l(|θ̂n − θ(P)|)

]
,

where the infimum runs over all estimators θ̂n taking Z as input data. Note that
if the channel Q is given by Q(A|x) = Pr(Z ∈ A|X = x) = 1A(x), then there is no
privatization at all and the Q-privatized minimax risk reduces to the conventional
minimax risk of estimating θ(P). If we want to guarantee (local) α-differential
privacy, then we may choose any channel Q that satisfies (1) and we will try to
make (2) as small as possible. This leads us to the α-private minimax risk

Mn,α(P , θ) := inf
Q∈Qα

Mn(Q,P , θ),
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where Qα is some set of α-local differentially private channels. It is this additional
infimum over Qα that makes the theory of private minimax estimation deviate
fundamentally from the conventional minimax estimation approach. A sequence
of channels Q(n) ∈ Qα, for which Mn(Q

(n),P , θ) is of the order of Mn,α(P , θ),
is referred to as a minimax rate optimal channel and may depend on the specific
estimation problem under consideration, i.e., on θ and P . We write Mn,∞(P , θ)
for the classical (non-private) minimax risk.

Our contribution is to characterize the rate at which Mn,α(P , θ) converges to
zero as n → ∞, in high generality, and to provide concrete minimax rate optimal
α-locally differentially private channel distributions. To this end, we utilize the
modulus of continuity of the functional θ : P → R with respect to the total
variation distance dTV(P0,P1), that is,

ωTV (ε) := sup{|θ(P0)− θ(P1)| : dTV(P0,P1) ≤ ε,P0,P1 ∈ P},
and we show that under some regularity conditions, and for any fixed α ∈ (0,∞),

(3) Mn,α(P , θ) ≍ l
(
ωTV

(
n−1/2

))
.

Here, an ≍ bn means that there exist constants 0 < c0 < c1 < ∞ and n0 ∈ N, not
depending on n, so that c0bn ≤ an ≤ c1bn, for all n ≥ n0.

It is important to compare (3) to the analogous result for the non-private min-
imax risk. This was established in the seminal paper by [2], who, under regularity
conditions similar to those imposed here, showed that

(4) Mn,∞(P , θ) ≍ l
(
ωH

(
n−1/2

))
,

where ωH(ε) = sup{|θ(P0) − θ(P1)| : dH(P0,P1) ≤ ε,P0,P1 ∈ P} and dH is the
Hellinger distance. Comparing (4) to (3), we notice that the Hellinger modulus
ωH of θ is replaced by the total variation modulus ωTV . This may, and typically
will, lead to different rates of convergence in private and non-private problems.
Note that even in cases where we do or can not compute the moduli ωTV and ωH

explicitly, we always have the a priori information that

ωH(ε) ≤ ωTV (ε) ≤ ωH(
√
2ε),

because dTV ≤ dH ≤
√
2dTV. This means that the private rate of estimation is

never faster than the non-private rate and is never slower than the square root of
the non-private rate.

That differential privacy leads to slower minimax rates of convergence was al-
ready observed by [3], for specific estimation problems. Here, we develop a unifying
general theory to quantify the privatized minimax rates of convergence in a large
class of different estimation problems, including (even irregular) parametric and
non-parametric cases. This is also the first step towards a fundamental theory of
adaptive estimation under differential privacy that will be pursued elsewhere.

We also exhibit a general construction scheme for minimax rate optimal α-
locally differentially private channels that applies in many classical estimation
problems. Suppose that for some s ≥ 0, t > 0, there is an estimator of the form
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1
n

∑n
i=1 ℓh(Xi) in the direct (non-private) estimation problem, that has a bias

which decays at least as fast as ht, as the tuning parameter h → 0, and such that

‖ℓh‖∞ . h−s. If ωTV (ε) ≍ ε
t

s+t as ε → 0, and the regularity conditions on θ
and P are satisfied, then generating Zi independently and binary distributed on
{−z0, z0}, with

Pr(Zi = z0|Xi = xi) =
1

2

(
1 +

ℓhn
(xi)

z0

)
, hn =

(
eα + 1√
n(eα − 1)

) t
s+t

and z0 = ‖ℓhn
‖∞ eα+1

eα−1 , yields an α-locally differentially private channel that at-

tains the minimax rate in (3). We also treat the anisotropic multivariate case,
where hn may be a vector of tuning parameters. The conditions on ℓh are satisfied
in many classical moment or density estimation problems. We point out that there
are cases where the estimator 1

n

∑n
i=1 ℓh(Xi) in the direct problem has the prop-

erties required above, even though a minimax optimal estimator in that problem
is not of linear form.

Finally, we illustrate the general theory by a number of examples. Our theory
allows to quantify the price to be paid for local differential privacy in a large class
of estimation problems.
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Does data interpolation contradict statistical optimality?

Alexandre B. Tsybakov

(joint work with Mikhail Belkin and Alexander Rakhlin)

We show that the classical Nadaraya-Watson estimator with an appropriately cho-
sen kernel interpolates the data, yet achieves optimal rates of convergence for the
problems of nonparametric regression and prediction with square loss. This curi-
ous observation goes against the usual intuition that a good statistical procedure
should forego the exact fit to data in favor of a more smooth representation. The
family of estimators we consider do exhibit a bias-variance trade-off with a tuning
parameter, yet this “regularization” co-exists in harmony with data interpolation.

Let (X,Y ) be a random pair on R
d × R with distribution PXY , and let f(x) =

E[Y |X = x] be the regression function. A goal of nonparametric estimation is
to construct an estimate fn of f , given a sample (X1, Y1), . . . , (Xn, Yn) drawn
independently from PXY . A classical approach to this problem is kernel smoothing.
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In particular, the Nadaraya-Watson estimator [Nadaraya(1964), Watson(1964)] is
defined as

fn(x) =

∑n
i=1 YiK

(
x−Xi

h

)
∑n

i=1 K
(
x−Xi

h

) ,(1)

where K : R
d → R is a kernel function and h > 0 is a bandwidth and we assume

that the denominator does not vanish. Appropriate choices of K and h lead to
optimal rates of estimation, under various assumptions, cf. [Tsybakov(2009)] and
references therein.

We consider singular kernels that approach infinity when their argument tends
to zero. It has been observed, at least since [Shepard(1968)], that the resulting
function in (1) interpolates the data. We will focus on the particular kernel

K (u) = ‖u‖−a
I{‖u‖ ≤ 1},(2)

for some a > 0. Here, ‖·‖ denotes the Euclidean norm and I{·} stands for the
indicator function. Our results can be extended to other related singular kernels,
for example, to

K (u) = ‖u‖−a
[1− ‖u‖]2+(3)

where [c]+ = max{c, 0}, and

K (u) = ‖u‖−a
cos2(π ‖u‖ /2)I{‖u‖ ≤ 1},(4)

considered in [Lancaster and Salkauskas(1981), Katkovnik(1985)]. Also, ‖·‖ can
be any norm on R

d, not necessarily the Euclidean norm.
To state the results, we use the following definition.

Definition 1. For L > 0 and β ∈ (0, 2], the (β, L)-Hölder class, denoted by
Σ(β, L), is defined as follows:

• If β ∈ (0, 1], the class Σ(β, L) consists of functions f : R
d → R satisfying

∀x, y ∈ R
d, |f(x)− f(y)| ≤ L ‖x− y‖β .(5)

• If β ∈ (1, 2], the class Σ(β, L) consists of continuously differentiable func-
tions f : R

d → R satisfying

∀x, y ∈ R
d, |f(x)− f(y)− 〈∇f(y), x− y〉 | ≤ L ‖x− y‖β(6)

where 〈·, ·〉 denotes the inner product.

We assume the following.

(A1) For any x ∈ R
d, the expectation E[Y |X = x] = f(x) exists and E[ξ2|X =

x] ≤ σ2
ξ < ∞, where ξ = Y − E[Y |X ] = Y − f(X).

(A2) The marginal density p(·) of X exists and satisfies 0 < pmin ≤ p(x) ≤ pmax

for all x on its support.
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The Nadaraya-Watson estimator for a singular kernel K is defined as

fn(x) =





Yi if x = Xi for some i = 1, . . . , n,

0 if
∑n

i=1 K
(
x−Xi

h

)
= 0,

∑
n
i=1 YiK(x−Xi

h )
∑

n
i=1 K(x−Xi

h )
otherwise.

(7)

We show that this estimator has the properties stated in the next two theorems.

Theorem 1. Assume that f ∈ Σ(β, Lf ) for β ∈ (0, 1], Lf > 0. Let Assumptions
(A1) and (A2) be satisfied, and 0 < a < d/2. Then for any fixed x0 ∈ R

d in the

support of p the estimator (7) with kernel (2) and bandwidth h = n− 1
2β+d satisfies

E[(fn(x0)− f(x0))
2] ≤ Cn−

2β
2β+d

where C > 0 is a constant that does not depend on n.

Theorem 2. Assume that f ∈ Σ(β, Lf ) for β ∈ (1, 2], Lf > 0. Let Assumptions
(A1) and (A2) be satisfied, and 0 < a < d/2. Assume in addition that, for all x, y

in the support of p, we have |p(x)− p(y)| ≤ Lp ‖x− y‖β−1
, Lp > 0. Then for any

fixed x0 ∈ R
d such that the Euclidean ball of radius h centered at x0 is contained

in the support of p, the estimator (7) with kernel (2) and bandwidth h = n− 1
2β+d

satisfies

E[(fn(x0)− f(x0))
2] ≤ Cn−

2β
2β+d

where C > 0 is a constant that does not depend on n.

In particular, the pointwise mean squared error (MSE) bound of Theorem 1
immediately implies that the integrated MSE with respect to the marginal distri-
bution of X satisfies

E

∫

Rd

(fn(x)− f(x))2p(x)dx ≤ Cn−
2β

2β+d ,

assuming that f is bounded on the support of the marginal density p.
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Gaussian network reconstruction using prior information

Aad van der Vaart

(joint work with Gino Kpogbezan, Stéphanie van der Pas, Botond Szabó, Mark
van der Wiel and Wessel van Wieringen)

We introduced a Bayesian model based on the horseshoe prior to fit a coupled col-
lection of high-dimensional regression models, allowing for a soft incorporation of
prior information on the regression parameters. A main application is to recovery
of the partial correlation network based on the observation of a sample of Gaussian
vectors, where the coordinates of the vectors correspond to, say, observations of
gene expression. This problem can be reduced to a set of regression models that
explain the collected observations on a given gene by a linear regression on the
other genes. The analysis then should borrow information between the different
regression models. We used the horseshoe prior to model sparsity of the regressions
and couple the regression models by setting joint hyperparameters. Furthermore,
since the number of observations is typical small, we allow for a soft encoding of
prior information on the network, by modelling the hyperparameters in groups. If
the prior information happens to be wrong, then the data can estimate as equal
and not much is lost, but it turns out that correct prior information can make the
results much more accurate.

Implementation of the model is through a variational Bayesian approximation
to the posterior distribution.

Our talk had a practical part, explaining the preceding modelling procedure
in some detail, and showing it in action on simulated and real datasets, and a
theoretical part. In the latter part we study the frequentist properties of credible
intervals obtained from the horseshoe prior, which underly the model selection
procedure.

Sharp sinΘ theorems under a relative rank condition

Martin Wahl

(joint work with Moritz Jirak)

The study of general perturbation bounds has a long tradition in matrix analysis,
functional analysis, and operator theory. A basic problem is to estimate how a
small perturbation effects the eigenvalues and eigenvectors of a self-adjoint com-
pact operator. Classical perturbation bounds include the Weyl inequality and
the Davis-Kahan sinΘ theorem. Due to its importance in many areas of pure
and applied mathematics, generalizations and refinements have been intensively
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investigated in the literature, see e.g. Bhatia [1]. A powerful machinery to derive
perturbation bounds is given by the holomorphic functional calculus for linear
operators, see e.g. the monograph by Kato [5].

In many situations, the perturbation is random and the unperturbed operator
has certain structural properties. In such scenarios, classical perturbation results,
such as Weyl and Davis-Kahan, are often far from optimal, see e.g. Jirak and
Wahl [3, 4] and O’Rourke, Vu, and Wang [6]. A main example is given by the
empirical covariance operator, a central object in high-dimensional probability due
to its importance for statistics and machine learning. Another example is given
by random perturbations of low-rank matrices and the matrix recovery problem.

The objective of relative perturbation bounds is to improve upon absolute
bounds by exploiting certain structure of the perturbation. For instance, there
are relative versions of the Weyl inequality and the Davis-Kahan sinΘ theorem
which benefit from considering relative errors and relative spectral gaps. Relative
bounds are a well-studied object in other branches of mathematics, see e.g. the
review paper by Ipsen [2]. On the other hand, this appears to be a rarely studied
topic in probability theory and statistics. Only recently, it has been shown in
problems related to empirical covariance operators that relative techniques may
lead to substantial improvements.

In this talk, we derive sinΘ theorems, taylored for relative perturbations. We
show that a sharp bound can be achieved under a relative rank condition. As a
main example, we apply our results to empirical covariance operators. Besides,
we demonstrate that our general result also applies to other structured random
perturbations. The proof is based on a novel contraction phenomenon, contrasting
previous spectral perturbation approaches.
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Detecting relevant changes in the mean of non-stationary processes - a
mass excess approach

Weichi Wu

This paper considers the problem of testing if a sequence of means (µt)t=1,...,n of
a non-stationary time series (Xt)t=1,...,n is stable in the sense that the difference
of the means µ1 and µt between the initial time t = 1 and any other time is
smaller than a given threshold, that is |µ1 − µt| ≤ c for all t = 1, . . . , n. A test for
hypotheses of this type is developed using a bias corrected monotone rearranged
local linear estimator and asymptotic normality of the corresponding test statistic
is established. As the asymptotic variance depends on the location of the roots
of the equation |µ1 − µt| = c a new bootstrap procedure is proposed to obtain
critical values and its consistency is established. As a consequence we are able to
quantitatively describe relevant deviations of a non-stationary sequence from its
initial value. The results are illustrated by means of a simulation study and by
analyzing data examples.

Reporter: Lukas Steinberger



1782 Oberwolfach Report 29/2018

Participants

Randolf Altmeyer

Fachbereich Mathematik

Humboldt Universität Berlin

Unter den Linden 6

10099 Berlin

GERMANY

Prof. Dr. Peter J. Bickel

Department of Statistics

University of California, Berkeley

367 Evans Hall

Berkeley CA 94720-3860

UNITED STATES

Mike Bing

Department of Statistical Science

Cornell University

1188 Comstock Hall

Ithaca, NY 14853-2601

UNITED STATES

Prof. Dr. Christian Borgs

Microsoft Research

1 Memorial Drive

Cambridge, MA 02142

UNITED STATES

Prof. Dr. Florentina Bunea

Department of Statistical Science

Cornell University

Comstock Hall

Ithaca, NY 14853-2601

UNITED STATES

Prof. Dr. Holger Dette

Fakultät für Mathematik

Ruhr-Universität Bochum

44780 Bochum

GERMANY

Dr. Zhou Fan

Department of Statistics

Stanford University

390 Serra Mall

Stanford, CA 94305-4065

UNITED STATES

Derek Feng

Department of Statistics

Yale University

P.O. Box 208290

New Haven, CT 06520-8290

UNITED STATES

Prof. Dr. Christophe Giraud
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