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Abstract. The aim of the series of Oberwolfach meetings on ‘Explicit meth-
ods in number theory’ is to bring together people attacking key problems in
number theory via techniques involving concrete or computable descriptions.
Here, number theory is interpreted broadly, including algebraic and ana-
lytic number theory, Galois theory and inverse Galois problems, arithmetic
of curves and higher-dimensional varieties, zeta and L-functions and their
special values, modular forms and functions.
The meeting provides a forum for presenting new methods and results on
concrete aspects of number theory. Considerable attention is paid to com-
putational issues, but the emphasis is on aspects that are of interest to the
pure mathematician. In this respect the meetings differ from virtually all

other computationally oriented meetings in number theory (most notably
the ANTS series), which have a tendency to place actual implementations,
numerical results, and cryptographic implications in the foreground.
The 2018 meeting featured a mini-course on nonabelian Chabauty theory, so
several of the talks were on this topic; the other talks covered a broad range
of topics in number theory.
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Introduction by the Organisers

The workshop Explicit Methods in Number Theory was organised by Karim Be-
labas (Talence), Bjorn Poonen (Cambridge, MA), and Fernando Rodriguez Vil-
legas (Trieste), and it took place July 22–28, 2018. Nine previous workshops on
the topic had been held since 1999. The 2018 instance of the workshop featured a
mini-course on nonabelian Chabauty theory, because of the potential for advances
in this field that became apparent in recent years.
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The non-abelian Chabauty program is aimed at determining the rational and
integral points on curves over number fields. It is a conjectural approach and
though the initial theoretical ideas were put forth by Minhyong Kim over a decade
ago, it was unclear for a long time whether they could ever be made practical
enough to solve problems that were inaccessible by other methods. But in the
last few years, new theoretical and computational methods have been developed
(largely by junior mathematicians) which have begun to bear fruit — we note
in particular the recent articles Computing integral points on hyperelliptic curves
using quadratic Chabauty by Amnon Besser, Jennifer Balakrishnan, Jan Steffen
Müller and Quadratic Chabauty and rational points I: p-adic heights by Jennifer
Balakrishnan and Netan Dogra (with an appendix by Müller), the second of which
determines X(Q) for a curve X for which the rank condition necessary for the
classical Chabauty method fails.

The workshop brought such works to the attention of experts in explicit arith-
metic geometry who might be able to contribute ideas towards the project. The
mini-course on the non-abelian Chabauty method consisted of the following talks:

• Explicit aspects of the Chabauty–Kim method by Jennifer S. Balakrishnan;
• p-adic heights and integral points on curves by Amnon Besser;
• Mixed Tate motives and the S-unit equation by David Corwin;
• Overview of the Chabauty–Kim method by Ishai Dan-Cohen; and
• p-adic heights and rational points on curves by Netan Dogra.

Two other talks presented alternative p-adic approaches to rational points:

• Bas Edixhoven presented a geometric approach to the first non-abelian
level of the Chabauty–Kim approach, involving the Poincaré torsor; and

• Brian Lawrence reported on joint work with Akshay Venkatesh using a
p-adic period map and p-adic Hodge theory.

As always in Oberwolfach, the atmosphere was lively and active, providing
an ideal environment for the exchange of ideas and productive discussions. The
meeting was well-attended, with 53 participants from a variety of backgrounds and
seniority. There were 27 talks of various lengths, and ample time was allotted to
informal collaboration.

The remaining abstracts included here cover the following areas:

• Arithmetic statistics: Levent Alpoge on the average number of rational
points on genus 2 curves, Will Sawin on Cohen–Lenstra heuristics, and
Jiuya Wang on Malle’s conjecture.

• Modularity: Frank Calegari on modularity of abelian surfaces, Henri Co-
hen on modular forms in PARI/GP, John Cremona on using Bianchi new-
forms to understand elliptic curves of prime conductor over certain qua-
dratic fields, Paul Gunnells on Siegel modular forms, Adam Logan on
modular Calabi-Yau 5-folds, Bianca Viray on low-degree points on modu-
lar curves, and David Zureick-Brown on rational points on modular curves
associated to nonstandard congruence subgroups.
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• Characteristic p geometry: Rachel Pries on unlikely intersections between
the Torelli locus and Newton polygon strata in the moduli space of prin-
cipally polarized abelian varieties.

• Integral models of curves: Tim Dokchitser on an almost purely combina-
torial approach to understanding regular models of curves, Elisa Lorenzo
Garćıa on models of nonhyperelliptic curves whose special fiber is hyperel-
liptic, and Stefan Wewers on a new software project for calculations with
models of curves.

• Endomorphisms and isogenies of abelian varieties: E. Victor Flynn on
explicit formulas for abelian surfaces with real multiplication by

√
3, John

Voight on computing endomorphism rings, and Isabel Vogt on the failure
of a local-global principle for the existence of isogenies between elliptic
curves.

• Analytic number theory: Michael Bennett on counting primes in an arith-
metic progression, and Mark Watkins on two new analytic approaches to
the solution to the class number 1 problem.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Elisa Lorenzo Garćıa (joint with Reynald Lercier, Qing Liu, and Christophe
Ritzenthaler)
Hyperelliptic reduction of plane quartic curves . . . . . . . . . . . . . . . . . . . . . . . 2052



2038 Oberwolfach Report 34/2018

Paul E. Gunnells (joint with Mathieu Dutour Sikirić)
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Abstracts

The average number of rational points on genus two curves over Q is
bounded

Levent Alpoge

Let f ∈ Z[x] be such that ∆f := disc(f) 6= 0. Let Cf : y2 = f(x). Let

Funiv := {f ∈ Z[x] : ∆f 6= 0, f(x) = x5+a2x
3+· · ·+a5 s.t. n2i|ai∀i =⇒ n = ±1}.

Then Funiv is the “universal family” of genus two curves over Q with a marked
rational Weierstrass point. Let, for f ∈ Funiv,

H(f) := max
i

|ai|
1
i ,

where f(x) =: x5 + a2x
3 + · · ·+ a5. We prove that

lim sup
X→∞

∑
f∈Funiv:H(f)≤X #|Cf (Q)|
∑

f∈Funiv:H(f)≤X 1
<∞.

The techniques include sphere packing bounds in high dimensions, gap principles,
and Vojta’s proof of the Mordell conjecture.
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[11] G. A. Kabatjanskĭı and V. I. Levenštĕın . Bounds for packings on the sphere and in space.
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Explicit aspects of the Chabauty-Kim method

Jennifer S. Balakrishnan

The aim of the Chabauty–Kim method is to compute rational points on a hyperbolic
curve X/Q via a sequence of sets of p-adic points

(1) X(Qp)1 ⊃ X(Qp)2 ⊃ · · · ⊃ X(Qp)n,

where each set X(Qp)k contains the set of rational points X(Q). In particular,
one would like to show that, for a given curve X/Q, there is a computable depth
ℓ at which the set X(Qp)ℓ is finite. Moreover, one would like to compute the set
X(Qp)ℓ, which is described by ℓ-fold iterated Coleman integrals.

For instance, when X/Q is a smooth projective curve of genus g with Jacobian
having Mordell–Weil rank less than g, the set X(Qp)1 is known to be finite and
explicitly computable, by the work of Chabauty [Cha41] and Coleman [Col85a].
This is known as the Chabauty–Coleman method and gives rise to a technique that
works well in practice for computing rational points on curves.

In a series of landmark papers [Kim09, Kim05, KT08, Kim10], Kim proposed
that X(Qp)1 can be further refined by studying Selmer varieties, giving rise to (1).
In particular, the Chabauty–Kim method conjecturally extends the Chabauty–
Coleman method to curves with Jacobians having larger Mordell-Weil rank.
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Here we describe some computational tools that make it possible to carry out
the Chabauty–Kim method for certain classes of curves, as well as some recent
examples where the method has been used to solve new Diophantine equations.

As alluded to above, one technique that plays a key role in the method is an
algorithm for numerical iterated Coleman integration. Coleman [Col82, Col85b]
developed a p-adic theory of line integration based on Dwork’s principle of an-
alytic continuation along Frobenius ; this is now known as Coleman integration.
Coleman [Col82], Coleman and de Shalit [CdS88], and Besser [Bes02] defined it-
erated Coleman integrals

∫ Q

P

ξn · · · ξ1,

which behave formally like iterated path integrals
∫ 1

0

∫ t1

0

· · ·
∫ tn−1

0

fn(tn) · · · f1(t1) dtn · · · dt1.

Besser and de Jeu [BdJ08] were the first to give an algorithm to compute iterated
Coleman integrals, in the case of X = P1 \ {0, 1,∞}. These integrals are defined
by the p-adic differential equations

Li0(z) =
z

1− z

dLin+1(z) = Lin(z)
dz

z
, n ≥ 0.

Dan-Cohen and Wewers [DCW15, DCW16] used the Besser–de Jeu algorithm in
a number of cases for computing S-integral points on P1 \ {0, 1,∞} using the
Chabauty–Kim method.

The author, in joint work with Bradshaw and Kedlaya [BBK10], gave an algo-
rithm for computing single Coleman integrals on hyperelliptic curves. This was
extended in two directions, first in [Bal13] to iterated Coleman integrals on hy-
perelliptic curves, and more recently, in joint work with Tuitman [BT17], to single
integrals on smooth curves. The key step in all of these algorithms is to compute
the action of Frobenius on a p-adic cohomology group and use this to relate in-
tegrals pulled back by Frobenius to other simpler integrals that can be computed
without Frobenius. Taking {ω0, . . . , ω2g−1} a basis for H1

dR(XQp
), one computes

the action of p-power Frobenius Fp as

F ∗
p (ωi) = dfi +

2g−1∑

j=0

Φijωj ,

then uses properties of the Coleman integral to deduce the values of integrals on
basis differentials between points P,Q where the fi converge:

2g∑

j=1

(Φ− I)ij

(∫ Q

P

ωj

)
= fi(P )− fi(Q)−

∫ Fp(P )

P

ωi −
∫ Q

Fp(Q)

ωi.
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These Coleman integration algorithms are used in work of the author with
Besser and Müller [BBM16] in computing integral points on affine models of hy-
perelliptic curves having Jacobians with Mordell-Weil rank equal to genus, as well
as work of the author with Dogra, Müller, Tuitman, and Vonk [BDM+17], to
compute rational points on Xs(13), the split Cartan curve of level 13. The curve
Xs(13) is of interest as the last remaining split Cartan case of Serre’s uniformity
problem, after the work of Bilu–Parent–Rebolledo [BPR13]. It has genus 3, and
its Jacobian has rank 3. As such, it was not amenable to standard techniques for
computing rational points.

We compute Xs(13)(Q) using quadratic Chabauty, i.e., functions vanishing on
X(Qp)2. Given a curve X/Q, one computes a quadratic Chabauty function (QCF)
by associating to points x ∈ X(Q) certain p-adic Galois representations A(x), and
then computing their p-adic heights h(A(x)) [Nek93]. This representation depends
on a choice of “nice” correspondence on X , which exists when the rank of the
Néron-Severi group of the Jacobian of X is larger than 1. Moreover, the global
p-adic height can be written as h =

∑
hv, a finite sum of local heights hv. When

X has everywhere potentially good reduction, the local height contributions away
from p are trivial. The local height hp can be computed using p-adic Hodge theory,
using an explicit description of Dcris(A(x)) as a filtered φ-module.

In the case of X = Xs(13), the rank of the Néron-Severi group of its Jacobian
is 3; moreover, X has everywhere potentially good reduction. This allows us to
compute two different QCFs, and we find that Xs(13)(Q) consists of precisely
seven points.
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p-adic heights and integral points on curves

Amnon Besser

We survey quadratic Chabauty, which is a method for getting a Coleman function
on X(Qp) that vanishes on all the integral points of X , assuming that the rank of
the rational points on the Jacobian ofX is the same as the genus ofX . The method
uses p-adic heights, and we explain these in general using work of Nekovar.1

Explicit bounds for primes in arithmetic progressions

Michael A. Bennett

(joint work with Greg Martin, Kevin O’Bryant, and Andrew Rechnitzer)

We derive explicit upper bounds for various counting functions for primes in arith-
metic progressions. By way of example, if q and a are integers with gcd(a, q) = 1
and 3 ≤ q ≤ 105, and θ(x; q, a) denotes the sum of the logarithms of the primes
p ≡ a mod q with p ≤ x, we show that

∣∣θ(x; q, a)− x/φ(q)
∣∣ < 1

160

x

log x

for all x ≥ 8 · 109, with significantly sharper constants obtained for individual
moduli q. We establish inequalities of the same shape for the other standard

1Compiled by the reporter from the hand-written abstract at Oberwolfach
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prime-counting functions π(x; q, a) and ψ(x; q, a), as well as inequalities for the
nth prime congruent to a mod q when q ≤ 1200. For moduli q > 105, we find
even stronger explicit inequalities, but only for much larger values of x. Along
the way, we also derive an improved explicit lower bound for L(1, χ) for quadratic
characters χ, and an improved explicit upper bound for exceptional zeros.

The current literature naturally enough contains a number of explicit bounds
for primes in arithmetic progression. Rather surprisingly, the great majority of
these have the property that, unlike ours, their error terms are the same order
of magnitude as their main terms, i.e. they are of “Chebyshev” type and do not
actually imply the Prime Number Theorem for Arithmetic Progressions. Deriv-
ing good approximations for the classical functions counting primes in arithmetic
progressions ψ(x; q, a), θ(x; q, a), and π(x; q, a) depends upon understanding the
distribution of the zeros of Dirichlet L-functions. As is traditional in this sub-
ject, our approach takes as a starting point von Mangoldt’s formula, and hence
we are led to initially derive bounds for ψ(x; q, a), from which our estimates for
θ(x; q, a) and π(x; q, a) follow. The fundamental arguments providing the connec-
tion between zeros of Dirichlet L-functions and explicit bounds for error terms in
prime counting functions derive from classic work of Rosser and Schoenfeld [7],
as extended by McCurley [3], and subsequently by Ramaré and Rumely [6] and
Dusart [1]. The main ingredients involved include explicit zero-free regions for
Dirichlet L-functions by Kadiri [2] and McCurley [4], explicit estimates for the
zero-counting function for Dirichlet L-functions by Trudgian [8], and the results
of large-scale computations of Platt [5], all of which we cite from the literature.
Other necessary results include lower bounds for L(1, χ) for quadratic characters
χ, upper bounds for exceptional zeros of L-functions with associated character χ,
and explicit inequalities for b(χ), the constant term in the Laurent expansion of
L′

L (s, χ) at s = 0
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Modularity of abelian surfaces

Frank Calegari

(joint work with George Boxer, Toby Gee, and Vincent Pilloni)

I shall discuss some recent progress in modularity lifting [1]. Some applications
include a proof of the Hasse–Weil conjecture for genus two curves X/Q, and the
potential modularity of abelian surfaces over totally real fields.
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Mixed Tate Motives and the S-Unit Equation

David Corwin

(joint work with Ishai Dan-Cohen)

We describe work by the speaker and Ishai Dan-Cohen, building on similar work
of Brown, Dan-Cohen, and Wewers, that computes with Kim’s method in the
case of the S-unit equation, geometrically the projective line minus three points.
For computational purposes, it is best to replace an abstract Galois group by a
Tannakian Galois group, whose category of representations is equivalent (up to
extension of scalars) to the relevant category of Galois representations. Being an
algebraic group, this Tannakian Galois group is described by its Hopf algebra of
regular functions, and this Hopf algebra in fact has the structure of a graded Hopf
algebra. The Hopf algebra can then be abstractly described as a graded Hopf
algebra via the rational algebraic K-theory of the S-integers (which correspond to
the Ext groups in this category of representations). At the same time, one may
define explicit elements of this Hopf algebra as motivic versions of special values
of polylogarithms. In the end, most of the explicit computations have to do with
computing coproducts of these motivic special values to relate them to the abstract
description of the Hopf algebra.

The modular forms package in PARI/GP

Henri Cohen

(joint work with Karim Belabas)

We present the Modular Forms package in the PARI/GP system, which computes
spaces of classical modular forms Mk(Γ0(N), χ), k ∈ 1

2Z, and standard subspaces.
Contrary to most existing implementations, which use modular symbols, the pack-
age relies on trace formulas for integral k > 1. The cases k = 1, respectively k
half-integral, are treated by multiplying by an appropriate fixed Eisenstein series
of weight 1, respectively a theta series of weight 1

2 , and working in the larger space

of integral weight k + 1, respectively k + 1
2 .



2046 Oberwolfach Report 34/2018

Once the space is generated together with a fixed basis, a basic class of func-
tions involves nothing more than linear algebra over cyclotomic fields: e.g., Hecke
operators or splitting the new space. The rest of the package relies on an ex-
plicit rewriting of a given basis in terms of products of the Eisenstein series. This
in particular allows one to recoved the Fourier coefficients of f |γ for arbitrary
γ ∈ PSL2(Z), hence to evaluate forms at arbitrary points in h or to evaluate
Petersson scalar products, including weight 1 and half-integral weight.2

On elliptic curves of prime conductor over imaginary quadratic fields
of class number one

John Cremona

(joint work with Ariel Pacetti)

We extend from Q to each of the nine imaginary quadratic fields of class number
one a result of Serre (1987) and Mestre-Oesterlé (1989), namely that every isogeny
class of elliptic curves over Q of prime conductor p contains a curve of minimal
discriminant ±p. For four of the nine fields the theorem holds with no essential
change, while for the other five fields (those in which 2 is inert) the isogeny class
contains a curve whose minimal discriminant has valuation 1 or 2. The proof is
conditional, and relies on the curves in question being modular (in the sense of
being attached to suitable Bianchi newforms) together with a certain level-lowering
conjecture for Bianchi newforms.3

Overview of the Chabauty-Kim method

Ishai Dan-Cohen

I will discuss (in brief outline) the Bloch-Kato exponential, the unipotent funda-
mental group, Olsson’s nonabelian p-adic Hodge theory, and Kim’s Selmer varieties
and their use in bounding sets of integral points on hyperbolic curves.4

p-adic heights and rational points on curves

Netan Dogra

In this talk we explain some situations in which one can compute finite sets of
p-adic points of a curve over Q containing the set of rational points under certain
conditions on the Mordell-Weil rank and Picard number of the Jacobian. The
finite sets are described in terms of Nekovar p-adic heights.5

2Compiled by the reporter from the hand-written abstract at Oberwolfach
3Compiled by the reporter from the hand-written abstract at Oberwolfach
4Compiled by the reporter from the hand-written abstract at Oberwolfach
5Compiled by the reporter from the hand-written abstract at Oberwolfach
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Regular models of curves

Tim Dokchitser

In this talk I explained how to construct regular models and study invariants of
arithmetic surfaces using a toric resolution derived from the defining equation.

Say K is a field with a discrete valuation vK and residue field k, and C/K is a
smooth projective curve specified by an affine equation f(x, y) = 0. It turns out
that the Newton polytope ∆v of f with respect to vK , under a ‘generic’ condition
called ∆v-regularity, determines explicitly

— the minimal regular normal crossings model of C over OK ;
— whether C and JacC have good, semistable and tame reduction;
— the action of Gal(K̄/K) on H1

ét(CK̄ ,Ql) when C is tamely ramified, and
the action on its wild inertia invariants in general, for l 6= char k;

— a basis of global sections of the relative dualising sheaf;
— the reduction map on points from the generic to the special fibre.

A regular model is usually constructed by starting with any model over OK , and
repeatedly blowing up at points and components of the special fibre and taking
normalisations. In effect, the toric resolution replaces repeated blow-ups along
coordinate axes, and for ∆v-regular curves one such resolution is enough to get a
good model.

For example, say π ∈ K is a uniformiser, and take a curve (left)

Its Newton polygon ∆v is in the middle. Elementary numerology determines
the shape of the special fibre of the regular model of C over OK with normal
crossings (right). We refer the reader to [1], and Magma implementation [2].
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Quadratic Chabauty and the Poincaré torsor

Bas Edixhoven

In the workshop a minicourse was given on the Chabauty-Kim method, and in
particular on the recent advances in “quadratic Chabauty.” This talk concerned a
recent development in a joint project of Guido Lido (a PhD student of René Schoof)
and me that started only a few months before the workshop. The aim of that
project is to replace everything in quadratic Chabauty by “good old-fashioned”
geometry over Z and over Z/p2Z, not to prove or reprove general finiteness results,
but to find C(Q) for specific curves C over Q.
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Below I briefly describe how we intend to do this. Handwritten notes of the talk
can be found in [1]. A good reference for what we mean by “good old-fashioned”
geometry is [2].

The idea behind this project is very simple: if the Mordell-Weil rank is too
high for ordinary Chabauty, that is, higher than the dimension of the ambient
group, then try to increase the ambient dimension accordingly, while keeping the
dimension of the p-adic closure of the set of rational points the same. In our
project, the ambient variety is not a group, but has a quadratic structure coming
from biextensions, and one has to work over Z because Q× is too big, while Z× is
small.

The insight that the Poincaré torsor plays an important role in quadratic
Chabauty came from my work, joint with Daniel Bertrand, where we heavily
use that, as a complex variety, the Poincaré torsor is the moduli space of mixed
Z-Hodge structures of weights −2, −1 and 0, with Z(1) in weight −2, H1(C(C),Z)
in the middle, and Z(0) in weight 0, that correspond precisely to the kind of p-
adic Galois representations occuring in quadratic Chabauty. Of course, Deligne’s
1-motives give the algebraic description of the Poincaré torsor as a moduli space.

Let C be a curve over Z, proper, regular, flat, with geometrically connected
fibers, of genus g ≥ 2, smooth over Z[1/n] (n ≥ 1), and let J be the Néron model
over Z of the jacobian of XQ. Then we have the Poincaré bundle BQ on JQ × J∨

Q ,

trivialised on the union of the zero sections over JQ and J∨
Q . The Poincaré torsor

is then the Gm-torsor PQ = Isom(O, BQ) (trivial locally for the Zariski topology)
on JQ×J∨

Q . It has a unique biextension structure coming from the theorem of the

square, or, equivalently, from the interpretation of J∨
Q as the base space for the

universal extension of JQ by Gm.
We let J∨,0 be the fiberwise connected component of the Néron model of J∨

Q , and

let Φ := J∨/J∨,0; hence Φ is a finite groupscheme over Z, supported on Z/nZ.
We let m be the smallest positive integer that annihilates all the groups Φ(Fp)
with p dividing n. Then PQ, with its biextension structure, extends uniquely to a
Gm-torsor P on J × J∨,0.

Our next assumption is that we have a b ∈ C(Q) = Csm(Z). That gives us
an immersion jb : C

sm → J , sending P 7→ [P − b]. Picard functoriality applied to
jb gives j∗b = −λ−1 : J∨

Q → JQ, with λ the canonical principal polarisation. Let
NSJQ/Q be the Q-group scheme PicJQ/Q/J

∨
Q . Then ker(j∗b : Pic(JQ) → Pic(CQ)) is

equal to the kernel of j∗b : NSJQ/Q(Q) → Z. Note that NSJQ/Q(Q) = End(JQ)
+,

the ring of symmetric endomorphisms of JQ; as a Z-module it is free of finite rank,
and we denote that rank by ρ. Then ker(j∗b : Pic(JQ) → Pic(CQ)) is free of rank
ρ − 1. And note that the map j∗b : End(JQ)

+ → Z is the trace map (trace on
H1(J(C),Z)).

Let L1, . . . ,Lρ−1 be a Z-basis of the kernel of j∗b : Pic(JQ) → Pic(CQ), with
each Li rigidified at 0. For each line bundle L on JQ, we have the usual morphism
ϕL : JQ → J∨

Q , sending a point x to tr∗xL ⊗ L−1, and

L⊗2 = L⊗ (−id∗L−1)⊗ L⊗ (−id∗L) .
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Here, L ⊗ (−id∗L−1) corresponds to a point c in J∨
Q (Q), and

L ⊗ (−id∗L) = (id, ϕL)
∗BQ .

Then we have (assuming that L is rigidified at 0)

L⊗2 = (id, fL)
∗BQ , with fL = trc ◦ ϕL : JQ → J∨

Q .

The fact that, for each i, L⊗2
i becomes trivial on CQ after pullback by jb means that

the immersion jb : CQ → JQ lifts to the Gρ−1
m -torsor P ′

Q on JQ obained from P ρ−1
Q

via pullback as follows by the morphism (id, fL1
, . . . , fLρ−1

) : JQ → JQ × J∨,ρ−1
Q

P ′
Q

��

// P ρ−1
Q

��
CQ

jb
//

j̃b

??
�
�
�
�
�
�
�
�

JQ // JQ × J∨,ρ−1
Q

The next step is to extend the geometry over Z. Each fLi
extends to fLi

: J →
J∨, and by definition of m, we have

m·fLi
: J → J∨,0 .

For each i we have (id,m·fLi
)∗BQ = L⊗2m

i . The morphism jb extends uniquely to
jb : C

sm → J . The line bundle j∗b (id,m·fLi
)∗B on Csm is trivialisable on CQ, hence

trivialisable (uniquely up to a sign) on any of the finitely many open subschemes
U of Csm obtained by removing all but 1 of the irreducible components of each of
the reducible fibres of Csm. Note that every element of C(Q) extends uniquely to
an element of a U(Z) for a unique U . For such a U , we have the morphism

(id,mfL1
, . . . ,mfLρ−1

) : J → J ×Z J
∨,0,ρ−1

and the diagram

P ′′

��

// P ρ−1

��
U

jb

//

j̃b

>>
⑦
⑦
⑦
⑦
⑦
⑦
⑦
⑦

J // J ×Z J
∨,0,ρ−1

The map P ′′(Z) → J(Z) is a (±1)ρ−1-torsor. Optimistically, we therefore expect
that for each prime p the closure of P ′′(Z) in P ′′(Zp) is a p-adic manifold of
dimension at most r := rank(J(Z)), meeting C(Zp) in only finitely many points.
What we intend to do next is to state and prove a theorem that, for p a prime
of good reduction and for each x ∈ C(Fp), gives sufficient conditions, that one
can check with a computer, in terms of the set P ′′(Z/p2Z)x of the Z/p2Z-valued

points of P ′′ that reduce to j̃b(x) in P
′′(Fp) for concluding that the list of known

elements of C(Q) is all of it, and to carry this out for as many curves as we can.
We also intend to clarify how our approach relates to the usual one. We expect
that, choosing analytic coordinates on P ρ−1 that correspond to the logarithm of
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the biextension, the closure of P ′′(Z) is described by the functions that are used
in the usual approach.

We (Bas and Guido) thank Netan Dogra, Steffen Müller and Jennifer Bala-
krishnan for the encouraging discussions we had with them in Leiden, Groningen
and Oberwolfach.

References

[1] S.J. Edixhoven, Quadratic Chabauty and the Poincaré torsor, Scan of handwritten notes of
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Abelian Surfaces with Multiplication by
√

3.

E. Victor Flynn

(joint work with Nils Bruin, and Ari Shnidman)

We first recall the following result (Theorem 6 in [2]), parametrising curves C of
genus 2 whose Jacobians J admit a (3, 3)-isogeny.

Theorem 1. Let k be a field of characteristic different from 2, 3 and suppose that
(C, T1, T2) consists of a genus 2 curve C over k and T1, T2 ∈ Pic(C/k)[3] such
that #〈T1, T2〉 = 9 and e3(T1, T2) = 1, where e3 is the non-degenerate, bilinear,
alternating Weil pairing e3 : J [3] × J [3] → µ3, and where µ3 is the group scheme
representing the cube roots of unity. If the specified data is sufficiently general then
(C, T1, T2) is isomorphic to a suitable specialization of r, s, t in the family described
by the following data.

H1 = x2 + rx+ t

λ1 = 4s

G1 = (s− st− 1)x3 + 3s(r − t)x2 + 3sr(r − t)x− st2 + sr3 + t

H2 = x2 + x+ r

λ2 = 4st

G2 = (s− st+ 1)x3 + 3s(r − t)x2 + 3sr(r − t)x− st2 + sr3 − t.

Here Crst : y2 = Frst(x) = G2
i + λiH

3
i , with Jacobian Jrst, and Ti = [{Hi(x) =

0, y −Gi(x) = 0} − κ] for i = 1, 2, where κ is a canonical divisor.

If we let Σ denote 〈T1, T2〉, then Jrst/Σ is the Jacobian of a similar curve, as
described in the following result (which is Theorem 10 in [2]).

Theorem 2. Let Crst be as described by Theorem 1. Then J̃rst = Jrst/Σ is the
Jacobian of the genus 2 curve

C̃rst : − 3y2 = G̃2
4 + λ̃4H̃

3
4 ,
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with

G̃4 = ∆
(
(s− st− 1)x3 + 3s(r − t)x2 + 3rs(r − t)x+ (r3s− st2 − t)

)
,

H̃4 = (r − 1)(rs − st− 1)x2 + (r3s− 2r2s+ rst + r − st2 + st− t)x

− (r2 − t)(rs − st− 1),

λ̃4 = 4∆st,

where

∆ = r6s2 − 6r4s2t− 3r4s+ 2r3s2t2 + 2r3s2t+ 3r3st+ r3s+ r3 + 9r2s2t2 + 6r2st

− 6rs2t3 − 6rs2t2 − 9rst2 − 3rst− 3rt+ s2t4 + 2s2t3 + s2t2 + 2st3

+ 3st2 + t2 + t.

(2)

If we adopt the notation, for any C : y2 = F (x), that C(d) : dy2 = F (x) is the

quadratic twist by d, then we find that the above C̃(−3)
rst is of the form Cr′s′t′ , as

described in the below result (which is Lemma 11 of [2]).

Lemma 1. Let Crst be as in Theorem 1, let C̃rst be as in Theorem 2, and let C̃(−3)
rst

be the quadratic twist of C̃rst by −3. Define ψ0 by

ψ0(r, s, t) =
(−s(r − 1)(r2 − t)(δ5 − r)

(rs − st− 1)2δ4
,
(rs− st− 1)3δ24
st(r − 1)3∆

,
s2(r − 1)3(r2 − t)3

(rs − st− 1)3δ24

)
,

where δ4 = r3 − 3rt + t2 + t and δ5 = r3s − 3rst + st2 + st + t. Then Cr′s′t′ is

birationally equivalent to C̃(−3)
rst , where (r′, s′, t′) = ψ0(r, s, t). Furthermore, as a

rational map we have ψ0(ψ0(r, s, t)) = (r, s, t). The Σ(−3) level structure induced

on J̃rst determines the kernel of the dual isogeny J̃rst → Jrst

We note that, using the above formulas, we find that C̃(−3)
rst is birationally equiv-

alent over k to Crst when g(r, s, t) = 0, where

g(r, s, t) = r6s2t+ r6s2 − 3r5s2t− 3r4s2t2 + r3s2t3 + r6s− 3r4s2t+ 12r3s2t2

− 3r2s2t3 − 3r5s− 3r4st+ r3s2t+ 2r3st2 − 3r2s2t2 − 3rs2t3 + s2t4

+ 12r3st− 6r2st2 + s2t3 + r3t− 3r2st− 3rst2 + 2st3 + r3

− 3r2t+ st2 + t2.

(3)

It can be checked that g(r, s, t) = 0 is geometrically a rational surface.
In this work, we find a change in parameters from r, s, t to u, v, w to obtain

a parametrisation Cuvw for which Juvw [3] has a subgroup of the form Z/3 × µ3.
That is to say: Cuvw : y2 = G2

a + λaH
3
a = −3G2

b + λbH
3
b . We use this to obtain

h(u, v, w) with the property that Juvw has real multiplication by
√
3 over k when

h(u, v, w) = 0, and show this also to be a rational surface. This results in the

parametrisation over k of a family for which Juvw has real multiplication by
√
3

over k.
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We also described work in progress, aiming to generalise ideas in [1] and aiming
to show that, for a large subset of this family there are many quadratic twists with
nontrivial 3-part of the Tate-Shafarevich group.
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Hyperelliptic reduction of plane quartic curves

Elisa Lorenzo Garćıa

(joint work with Reynald Lercier, Qing Liu, and Christophe Ritzenthaler)

Let C : F (x, y, z) = 0 be a plane quartic curve defined over a number field K. Let
p be a prime dividing its discriminant. What can we say about the prime p? For
sure the model given by F = 0 has bad reduction. But is p a prime of geometrically
bad reduction? And if it is not, how can we decide if we have potentially good
non-hyperelliptic reduction or potentially good hyperelliptic reduction?

In this joint work, we answer these questions and we characterize the reduction
type. Among the different characterizations, we get a very convenient one in terms
on the Dixmier-Ohno invariants of the curve C. We also provide, in the potentially
good (hyperelliptic or non-hyperelliptic) reduction case, a explicit description of
the special fiber of the semi-stable model.

Computing Hecke operators on Siegel modular forms

Paul E. Gunnells

(joint work with Mathieu Dutour Sikirić)

Let G = Sp4(R) be the Lie group of 4×4 symplectic matrices and let K = U(2) be
a maximal compact subgroup. The symmetric space H2 = G/K can be identified
with the Siegel upper halfspace of degree 2 (the space of 2× 2 symmetric complex
matrices with positive-definite imaginary part). Let Γ ⊂ Sp4(Z) be a level N
congruence subgroup. The locally symmetric space Γ\H2 is a Siegel modular
threefold, and is a moduli space of abelian surfaces with level structure related to
Γ.

Our main goal is explicitly computing the cohomology spaces H∗(Γ\H2,C), or
more generally H∗(Γ\H2,M), where M ranges over certain complex local sys-
tems on the threefold. We are especially interested in H3(Γ\H2,M), which is
known to be computable in terms of certain (vector-valued) Siegel modular forms.
Furthermore, we want to understand H3 not just as a vector space, but as a
Hecke module. More precisely, for each prime p ∤ N there are two Hecke operators
Tp,1, Tp,2 acting on the cohomology, and we want to understand the decomposition
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into eigenspaces. Such computations are essential to understand the arithmetic
nature of the cohomology. Our eventual application will be to test conjectures of
Harder, which uses the critical values of certain L-functions to predict congruences
between vector-valued Siegel modular forms and elliptic modular forms. For more
details about Siegel modular forms, their relations with cohomology, the Hecke
operators, and Harder’s conjectures, we refer to [Har08, vdG08].

Before describing our techniques, we give a selected overview of prior related
work. Poor–Yuen [PY15], in their computational investigation of
Brumer–Kramer’s paramodular conjecture—which predicts that the L-functions of
certain abelian surfaces should agree with the spinor L-functions of certain Siegel
modular forms of paramodular type—computed weight 2 and 3 Siegel paramodu-
lar forms of prime levels < 600 along with the Hecke operators. We remark that
the weight 2 forms are not cohomological, in that they cannot appear in the co-
homology of the Siegel modular variety. Their techniques use theta series and the
product structure on Siegel modular forms in an essential way. Cunningham–
Dembélé [CD09] use the technique of algebraic modular forms. In particular
they take a real quadratic field F , a quaternion algebra B/F ramified only at
the two real places, and then use the Jacquet–Langlands correspondence to pass
from automorphic forms on the group of unitary similitudes GU2(B) to the forms
on the group of symplectic similitudes GSp4(F ). Finally, Faber–van der Geer
[FvdG04a, FvdG04b] treated the case of full level (N = 1) by using the moduli
space interpretation of Sp4(Z)\H2. In particular they made lists of Fq-isomorphism
classes of genus two curves with their automorphisms, and used this data to com-
pute the traces of the Hecke operators on the cohomology of the Siegel modular
threefold. This enabled them to provide convincing evidence for Harder’s conjec-
tures in many cases [vdG08].

We now turn to our techniques. Our work uses tools similar to those found
in modular symbols calculations [Cre97, Man72]. In particular, (i) we compute
cohomology using an explicit finite cell complex that comes from considering an
infinite cell complex with Γ-action; and (ii) the Hecke operators do not act on the
cells of the complex, but we have an algorithm that allows us to write the Hecke
image of any cycle in terms of cycles supported on the complex.

First we consider the complex. We use the reduction theory for Sp4(R) due
to McConnell–MacPherson [MM93]. This constructs a Sp4(Z)-equivariant cell
decomposition of the symmetric space H2 using Voronoi’s explicit reduction for
positive-definite real quadratic forms. The data indexing the cells, which are lists
of primitive integral vectors in Z4, can be found in [MM93, MM89]. We remark
that the top-dimensional cells in this complex are not fundamental domains for
the action of Sp4(Z) on H2, but are not far from it: the action of Sp4(Z) on the
cells has only finite stabilizers, and one can use the knowledge of the boundary
maps and the stabilizers to compute the cohomology of Γ\H2 with coefficients in
the local systems M. Moreover, the stabilizer subgroups themselves can easily
be computed from the data in [MM93, MM89]. The picture the reader should
keep in mind is the Farey tessellation in the elliptic modular case. The upper half
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plane H1 can be Γ′ = SL2(Z)-equivariantly tessellated by the Γ′ orbit of the ideal
triangle ∆ with vertices at 0, 1,∞. The triangle ∆ is not a fundamental domain
for Γ′, but a subdivision of ∆ into three smaller triangles is.

Next we consider the Hecke operators. For simplicity we discuss how the al-
gorithm computes on H4, which is considerably simpler than H3. We also dis-
cussing only the case of trivial coefficients, so that we can focus on the geometry
of the problem. This is the direct analogue of the classical modular symbols case
for SL2(Z); our techniques now are already significantly different from the usual
modular symbol algorithm (continued fractions), which was worked out for the
symplectic group in [Gun00].

Let x0 ∈ H2 be the basepoint corresponding to the maximal compact subgroup
K, and let T be the standard maximal torus in Sp4(R). The orbit T · x0 is
a 2-dimensional subset in H2, and by duality represents a cohomology class in
H4(Γ\H2;C). Under a Hecke operator, the orbit T · x0 is taken to a finite set of
orbits {Ti ·yi}, where each Ti is now a rational conjugate of T and yi is some other
point in H2. We must find a homology between each of these new subsets and
cycles supported on Sp4(Z)-translates of T · x0, because it is these translates that
form the 2-cells of our cell complex.

To do this, we work in a certain Satake (partial) compactification H∗
2 of H2

[BJ06]. This enlarges H2 by adjoining copies of the upper half plane H1 and
points at infinity, much in the same way that the upper half plane is enlarged by
adding cusps. Indeed, the construction is hereditary, in that the single points we
add to H2 are actually the cusps of the upper half planes we add at infinity. The
cell decomposition of H2 extends to H∗

2, and on the boundary components one sees
the Farey tessellation. Let O be a Hecke image Ti · yi and let Ō be its closure in
H∗

2. Then the “edges” ∂O := Ō r O appear in certain boundary components as
ideal geodesics going from cusp to cusp, and cutting across the edges of the Farey
tessellation. As a first step in finding a cellular representative for the class of Ō,
we “fix” the edges of ∂O: we apply the classical modular symbol algorithm for
SL2(Z) to first write the boundary ∂O as a 1-cycle η =

∑
niγi, where the γi are

edges in the boundary tessellation.
Next we must fill in the 1-cycle: we must find a 2-chain ξ supported on the

cells of our complex such that ∂ξ = η. Such a 2-chain is exactly our representative
for the class of our Hecke image. To do this, we simply take a large set of top-
dimensional cells C1, . . . , Ck that covers Ō and the support of η. We then attempt
to solve the equation (∗) ∂ξ = η with a 2-cycle supported on the 2-faces of the Ci.

Any such solution is exactly what we need, as it gives a representative for the
class of our Hecke image supported on the complex. Moreover, we are guaranteed
to succeed: if we have sufficiently many Ci, we know that a solution exists. Note
that there is no complicated geometry needed to find ξ as in [Gun00]; it is simply
a problem in numerical linear algebra. We take many Ci and try to solve (∗); if we
are unsuccessful, we add more top cells and try again. Eventually we will succeed.

We remark that for practical computations it is not enough to simply solve (∗).
We need to find a solution to (∗) supported on as few 2-cells as possible. This can
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be done using a tool from applied mathematics, namely compressed sensing. Com-
pressed sensing is a signal processing technique for acquiring and reconstructing
a signal by finding solutions to underdetermined linear systems. The underly-
ing problem of finding sparse solutions of linear systems is called basis pursuit ;
in our application we solve this problem using the approximate message passing
algorithm proposed in [DMM09].
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[FvdG04b] , Sur la cohomologie des systèmes locaux sur les espaces de modules des
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Diophantine Problems and a p-adic Period Map

Brian Lawrence

(joint work with Akshay Venkatesh)

We discuss new proofs of the S-unit theorem and Mordell’s conjecture, using p-
adic Hodge theory to study the global Galois representations coming from a family
of varieties over a number field. The same methods also give a new result of Sha-
farevich type for hypersurfaces. Everything is joint work with Akshay Venkatesh.
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Let K be a number field.

Theorem 1. Let S be a finite set of places of K, and let OK,S be the ring of
S-integers of K. Then

{(a, b) ∈ O2
K,S |a+ b = 1}

is finite.

Theorem 2. Let Y be a curve over K, of genus at least 2. Then Y (K) is finite.

Theorem 3. Let Y be the moduli space of smooth hypersurfaces of dimension n
and degree d in Pn+1, with n and d sufficiently large. Fix S a finite set of primes
of Z. Then Y (Z[S−1]) is finite.

Here “sufficiently large” means that n is chosen first, and d is taken sufficiently
large with respect to n. The condition on n and d is effective: it is an explicit
bound on the Hodge numbers of the relevant hypersurfaces.

The proof has five main steps.

(1) Build a smooth proper family X → Y of varieties over Y . If (a, b) is a
solution to the S-unit equation, then

y2 = x(x − a)(x+ b)

is an elliptic curve with good reduction outside S. For Mordell, we use a
variant of the Kodaira–Parshin construction, which gives a family X → Y
of curves over Y . In the hypersurface case we take X the universal family
of hypersurfaces.

A lemma of Faltings shows that for a fixed family X → Y as above,
there are only finitely many possibilities for the semisimplified Galois rep-
resentation H1

et(Xy,Qp)
ss, for y ∈ Y (Z[S−1]). Our goal is to study how

this Galois representation varies with y.
(2) We use p-adic Hodge theory to study the local Galois representation

H1
et(Xy,Qp)|Kv

= H1
et((Xy)Kv

,Qp)|Kv
,

where v is a place of K lying above p. Under the correspondence of p-
adic Hodge theory, this local representation corresponds to the de Rham
cohomology of (Xy)Kv

. This de Rham cohomology is a Kv vector space,
equipped with a Hodge fitration and (by crystalline cohomology) a Frobe-
nius endomorphism. The Hodge filtration is known to vary with y ∈ Y (Kv)
by the theory of the Gauss-Manin connection.

(3) De Rham cohomology defines a v-adic analytic period map

Φp : Y → h

from Y to a period domain, analogous to the classical complex-analytic
period map, and in fact given by the same formal power series over K. We
show that Φp has Zariski-dense image in h by a topological monodromy
calculation in the complex setting.
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(4) We need to translate our results about the period map to a statement
about the semisimplified global Galois representationH1

et(Xy,Qp)
ss. First

of all, the Frobenius centralizer acts algebraically on h, and points in
the same orbit correspond to isomorphic Galois representations. Under
suitable conditions, no orbit is Zariski dense, so the period map Φp does not
land in any single Frobenius-centralizer orbit. When Y is one-dimensional,
this implies that the inverse image of any orbit under Φp is finite: only
finitely many y ∈ Y (K) can give rise to a single isomorphism class of
Galois representation.

Faltings’ finiteness lemma applies to semisimple representations. In the
case when the map X → Y has dimension 1, the representations that arise
are known to be semisimple by Faltings’s work. Since we wish to provide
an independent proof of Mordell’s conjecture, we argue as follows.

Typically the local Galois representations that arise are not semisim-
ple. But by considerations involving weights, we can show the following:
A generic point in h corresponds to a local Galois representation, no sub-
representation of which can come from a global representation arising from
geometry. Therefore, there is a proper Zariski-closed subset Z ⊆ h such
that, if y ∈ Y (K) is such that Φ(y) 6∈ Z, then the corresponding Galois
representation is simple.

When Y is one-dimensional, this implies that all but finitely many
points y ∈ Y (K) give rise to simple global Galois representations. This
proves the S-unit theorem and Mordell’s conjecture.

(5) When dimY > 1, the inverse image Φ−1(Z) of a Zariski-closed subset of
h need not be a finite set. A priori, it could be an arbitrary closed subset
for the p-adic analytic topology on Y (Kv). A recent transcendence result
of Bakker and Tsimerman guarantees that Φ−1(Z) lies inside a proper
algebraic subset of Y , under suitable dimension conditions. This is enough
to deduce Theorem 3.

Three modular fivefolds of level 8

Adam Logan

We will say that a variety V/Q is modular if there is a formula valid for all but
finitely many p that expresses the number of points of V over Fp in terms of
powers of p, Artin symbols at p, and the pth coefficients of Hecke eigenforms. The
eigenforms involved are said to be realized by V ; if only one is needed, it is strongly
realized by V . The most famous theorem on modularity and realization is due to
Eichler-Shimura, Wiles, Taylor-Wiles, et al., and can be stated as follows:

Theorem. Every eigenform of weight 2 with rational coefficients is strongly
realized by an elliptic curve overQ. Conversely, every elliptic curve overQ strongly
realizes an eigenform of weight 2.

Elkies and Schütt proved a similar result [3, Theorem 1] relating eigenforms of
weight 3 and certain K3 surfaces. The flavour is quite different, however; there
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are only finitely many eigenforms of weight 3 up to quadratic twist, since by a
result of Schütt they arise from imaginary quadratic fields whose class group has
exponent dividing 2. There has also been extensive work on eigenforms of weight
4 and rigid Calabi-Yau threefolds (see [5] for the state of the art in 2005) but it
is not clear whether to expect finitely many or infinitely many such eigenforms up
to twist, nor whether they can all be strongly realized on a Calabi-Yau threefold.
Dieulefait-Manoharmayum and Gouvêa-Yui have shown that every rigid Calabi-
Yau threefold over Q strongly realizes a rational eigenform of weight 4.

Beyond dimension 3, little is known about modularity; there are a few general
constructions (notably that of Kuga-Sato, considering the k− 1-fold fibre product
of the universal curve over E0(N), when dimS(N, k) = 1) and almost no examples
beyond these. Using a criterion of Cynk and Hulek [2, Proposition 5.6] for the ex-
istence of a crepant resolution of a singular double cover, I searched for collections
of 12 hyperplanes in P5 such that the double cover branched along their union
is a candidate to have a rigid Calabi-Yau resolution. I found several interesting
examples of level 8:

(1) The fivefold defined by t2 =
∏5

i=0 xi(xi + xi+1) is modular of level 8. It
does not satisfy the Cynk-Hulek criterion, but it is close enough to doing
so that the existence of a crepant resolution can be proved (details will
appear in [4]). It admits a map to P1 whose general fibre is of the form
(K×Kσ)/± 1, where K is a K3 surface isogenous to the Kummer surface
of E × E, where E is defined by y2 = x(x − 1)(x − λ) and σ indicates a
quadratic twist. So the number of points on it is related to hypergeometric
functions over finite fields; modularity can then be proved as an application
of results of Frechette-Ono-Papanikolas.

(2) The fivefold defined by t2 =
∏5

i=0 xi(xi + xi+1 + xi+2) also appears to be
modular of level 8, and does satisfy the Cynk-Hulek criterion. It turns
out that this collection of hyperplanes has S5 as its automorphism group.
As a result, there are only a few orbits of singularities, and it should be
practical to construct the crepant resolution explicitly enough to count the
points for enough small primes to prove the modularity, although I have
not yet finished doing so.

(3) A third fivefold defined by a less elegant equation

t2 = (x0 − x1)x1x4(x4 − x5)(x1 − x4 + x5)(x0 − x1 + x4)×
x2x3(−x2 + x3)(x3 + x5)(x0 − x2)(x0 − x3)

again satisfies the Cynk-Hulek criterion and appears to be modular of
level 8. Its group of symmetries is small and it would be quite painful to
describe the resolution sufficiently explicitly to count the points. However,
like the first example, this one admits a potentially useful fibration; in this
case, the general fibre is of the form (K × L)/ ± 1, where both K and L
can be related to the Kummer surfaces of squares of elliptic curves, but
K to the family with full level-2 structure and L to those with a single
point of order 2. So the number of points can be described in terms of
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hypergeometric functions over finite fields, but the formula mixes them in
a way that appears to be new. It is a very interesting problem to try to
prove the modularity and to prove an analogous identity of hypergeometric
functions over C.

In addition, there are examples in other levels, such as 4 (studied by Ahlgren [1]),
32, and 256. One example in level 32 is related to a form with complex multipli-
cation and is thus particularly simple. Work on these examples is in progress.
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Special Shimura varieties and Newton polygons of cyclic covers of the
projective line

Rachel Pries

(joint work with Wanlin Li, Elena Mantovan, and Yunqing Tang)

For g ≥ 9, it is unexpected for the Torelli locus to intersect all Newton polygon
strata in the modular space of principally polarized abelian varieties of dimension
g. This means that there are symmetric Newton polygons of height 2g that are not
expected to occur for the Jacobian of a smooth curve in characteristic p, for some
p. Currently, no Newton polygons have been excluded from occurring, but it is
known that some unexpected Newton polygons do occur for some p, using Artin-
Schreier and complex multiplication theory. By studying Moonen’s 20 special
Shimura varieties, we demonstrate many more Newton polygons that occur for the
Jacobians of curves. We develop an inductive method for studying the Newton
polygon stratification on Hurwitz spaces for cyclic covers of the projective line. As
an application, we prove that unlikely intersections occur for all g and all p ≡ 2
(mod 3).6

6Compiled by the reporter from the hand-written abstract at Oberwolfach
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New invariants on class groups and Cohen-Lenstra heuristics in the
presence of roots of unity

Will Sawin

(joint work with Jacob Tsimerman, and Michael Lipnowski)

This talk discusses work in progress.
Let F be a number field and ℓ an odd prime. Given a “reasonable” set of exten-

sions K/F , for instance all quadratic extensions (with specified splliting behavior
at real places of F ), we can ask for the distributions of the ℓ-parts of the relative
class groups of K/F . Malle gave numerical evidence suggested that the answer
should depend on the number of ℓ-power roots of unity within F [6]. A random
matrix method to predict the correct distribution was developed by Friedman and
Washington [3].

This method is best justified using the function field model. The function
field Fq(T ) contains exactly the q − 1st root of unity. If we are interested in
modeling number fields which contain µℓn but not µℓn+1 , we should consider q
with vℓ(q− 1) = n. A quadratic extension of Fq(T ) corresponds to a hyperelliptic
curve, say of genus g. Its class group is equal to the cokernel of 1− F where F is
the action of Frobenius on the Tate module of its Jacobian. Here the Tate module
is isomorphic to Z2g

ℓ , and admits a natural symplectic form, the Weil pairing,
on which F acts by a symplectic similitude, multiplying it by q. The heuristic
says we should assume F is a random element in the set GSpq2g(Zℓ) of symplectic
similitudes with similitude character q. The predicted distribution over number
fields is then the large g limit of the distribution of cokernels of such random F
(which must be verified to be independent of the choice for q, except for the ℓ-adic
valuation of q − 1). In addition, the cokernel must be quotiented by a number of
random elements equal to the difference in unit ranks of K and F .

This random heuristic has been verified by Achter in the suitable large q limit
[1]. We will not dispute it. Instead, the flaw we wish to rectify is that it is not
obvious how to compute the probability of a given group appearing in a nice way, as
is possible for the original Cohen-Lenstra heuristics. For instance, Garton was only
able to calculate the distribution in some special cases [4]. We fix this. Specifically,
we find that the distribution becomes easier to calculate when suitable invariants
are added to the class group. Moreover, by doing so we obtain slightly more
information, at least conjecturally, because we obtain a distribution of the class
group together with these new invariants. The first invariant was already defined
by Lipnowski and Tsimerman over function fields using the Weil pairing [5], and
can be transferred to number fields using the cup product in the cohomology of
group schemes. I was alerted to the existence of the second product after trying
to understand the Cassels-Tate pairing on the class group over function fields, but
it is easier to define by using class field theory and Kummer theory to compare
the class group and its dual.

Both these invariants can be defined for symplectic similitude matrices in the
random matrix model. We calculate the joint distribution of the cokernel together
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with these invariants in the large g limit, in particular verifying that it is inde-
pendent of q. After modifying it to account for the unit group, we conjecture this
as the joint distribution of these invariants over number fields. Dropping the new
invariants, we have a calculation of the previously-conjectured distribution. We
verify our new conjectures over function fields by using the bounds on cohomol-
ogy proved by Ellenberg, Venkatesh, and Westerland [2] (up to a small error term
depending on q, just as in the main result of [2]). The only subtlety is how to
handle the new invariant, as how the Weil pairing relates to [2] was already de-
scribed in [5]. However, it can be viewed as arising from a covering of the Hurwitz
space which is itself covered by a further Hurwitz space, allowing its cohomology
to be bounded. We also have numerical data consistent with the conjectures for
quadratic extensions of Q(µ3).
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On the level of modular curves that give rise to sporadic j-invariants

Bianca Viray

(joint work with Abbey Bourdon, Özlem Ejder, Yuan Liu, Frances Odumodu)

We study so-called sporadic points on X1(n), i.e. closed points such that the curve
has only finitely many points of that degree or less. We show that a non-CM non-
cuspidal sporadic point on X1(n) pushes down to a sporadic point on a lower level
modular curve. This lower level is bounded depending on the set of non-surjective
primes of the curve and on the level of an associated Galois representation. If
we assume a folklore conjecture on uniform bounds on the primes for which the
Galois representation is non-surjective, then we also obtain a uniform bound on
this lower level.7

7Compiled by the reporter from the hand-written abstract at Oberwolfach
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A local-global principle for isogenies of composite degree

Isabel Vogt

Let E be an elliptic curve over a number field K. If for almost all primes p of
K, the reduction Ep has a rational cyclic isogeny of fixed degree, we ask if this
forces E to have a cyclic isogeny of that degree over K. Building on work of
Sutherland, Anni, and Banwait-Cremona in the case of prime degree, we prove
finiteness results for exceptions to this local-global principle for cylic isogenies of
arbitrary degree.8

Rigorous computation of the endomorphism ring of a Jacobian

John Voight

(joint work with Edgar Costa, Nicolas Mascot, and Jeroen Sijsling)

We report on joint work [1]. Let F be a number field with algebraic closure F al.
Let X be a nice curve over F of genus g ≥ 1, let A be its Jacobian, and Aal be
its base change to F al. Write End(A) for the ring of endomorphisms of A defined
over F . Let X be given in bits as the vanishing set of a system of equations in
projective space.

To compute the geometric endomorphism ring of A we mean: given as input
X (over F ), to compute as output a (minimal, Galois) finite extension K ⊇ F
with End(AK) = End(Aal), and a multiplication table for End(AK) in a Z-basis
together with a Gal(K |F )-action.

For example, the curve X : y2 = x5 − x4 + 4x3 − 8x2 + 5x− 1 over F = Q has
End(Aal) defined over K = Q(ζ8); we have End(AK) = O ⊆ B a maximal order
in a quaternion algebra B over Q with discriminant discB = 6, and End(A) is
generated by endomorphisms α, β satisfying

α2 = 3, β2 = −β + 1, αβ + (1 + β)α = 3.

Lombardo [2, §5] has shown that the geometric endomorphism ring can be
computed in principle using a day-and-night algorithm—but this algorithm would
be hopelessly slow in practice. We compute the endomorphism ring by saturating a
subring of endomorphisms given the endomorphism algebra, and for this purposes
we work by day computing lower bounds and by night computing upper bounds
on the dimension of End(AK)⊗Q until these bounds meet.

For lower bounds, we proceed as follows. Following van Wamelen [3] (who
worked out methods in genus 2), we compute the numerical endomorphism ring
in the following way. First, we embed F into C and by numerical integration we
compute a period matrix for X . Second, we find putative endomorphisms of A by
computing integer matrices (with small coefficients) that preserve the lattice gen-
erated by these periods, up to the computed precision. Finally, from the tangent
representation of such a putative endomorphism, we compute a correspondence
on X whose graph is a divisor Y ⊂ X ×X ; the divisor Y may then be rigorously

8Compiled by the reporter from the hand-written abstract at Oberwolfach
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shown to give rise to an endomorphism α ∈ End(AK) over an extension K ⊇ F by
exact computation. From this computation, we can also recover the multiplication
law in End(Aal) and its Galois action.

We say that α ∈ End(AK) is nondegenerate (with respect to an embedding
AJ: X →֒ A) if α(AJ(X)) is not in the locus of indeterminancy of the Mumford
map A→ Symg(X).

Theorem. There exists a deterministic algorithm that, given input α ∈ Mg(K)
the tangent representation of α as above, returns as output true if α ∈ End(AK)
is nondegenerate and false if either α 6∈ End(AK) or α is degenerate.

The algorithm in this theorem happens to be quite practical.
By night, we compute upper bounds as follows. Let AK ∼ ∏t

i=1A
ni

i be the
decomposition of AK up to isogeny as the product of pairwise nonisogenous simply
abelian varieties. Let Bi := End(Ai)⊗Q, let Li := Z(Bi) be their centers, and let
e2i := dimLi

Bi. Then

dimQ(End(AK)⊗Q) =

t∑

i=1

e2in
2
i [Li : Q].

Theorem. If the Mumford–Tate conjecture holds for A, we can effectively compute
the following quantities:

(i) t;
(ii) the multiset {(eini, ni dimAi)}i=1,...,t; and
(iii) the fields Li.

This theorem originally had a hypothesis that was removed by contributions of
Zywina and Lombardo. It works by counting points onA over finite fields and using
the characteristic polynomial of Frobenius to pin down the center. This method
also works quite well in practice, requiring relatively few primes before a sharp
upper bound is deduced (then proven to be correct by certifying endomorphisms).
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Inductive Methods for Proving Malle’s Conjecture

Jiuya Wang

(joint work with Robert J. Lemke Oliver, and Melanie Matchett Wood)

1. Introduction

A natural counting question people study about number fields is:
Question: Given G ⊂ Sn, denote

Nk(G,X) := {K/k | Gal(K/k) = G,Disc(K/k) < X},
what is the asymptotic behavior of Nk(G,X) as X goes to infinity?

Malle [Mal02, Mal04] has given a conjectural answer to this question:
Malle’s Conjecture Given G ⊂ Sn and k a number field, there exists a constant
C(G, k) such that

Nk(G,X) ∼ C(G, k)X1/a(G) lnb(G,k)−1X,

where a(G) and b(G, k) are both integers.
On one hand, the question is indeed natural in the sense that it is a refined

question of inverse Galois problem. More interestingly, accompanied by discoveries
in Malle’s conjecture, it has been found to be closely related to studying class
numbers, in both determining asymptotic average and point-wise upper bound.

Malle’s conjecture has been verified in some cases. Aside from all abelian groups
proved in [Mäk85, Wri89], a list of non-abelian groups are also proved for Malle’s
conjecture: S3(3) in [DH71], D4(4) in [CyDO02], S4(4) in [Bha05], S3(6) in [BW08,
BF10], S5(5) in [Bha10], C2 ≀H with mild conditions on H in [Klü12] and Sn ×A
for n = 3, 4, 5 with most abelian groups in [Wan17]. There has also been counter-
examples by [Klü05] where the predicted b(k,G) does not hold.

A natural question one could ask is: whether we could inductively prove more
examples of Malle’s conjecture? In particular, current results [Klü12] and [Wan17]
are some successful trials in this direction.

2. Methods

In this paper, we give a general framework to universally consider different ways
of inductions. Our approach is to consider number fields constructed via taking
towers. Given a base field k, and two permutation groups T and B (meaning top
and bottom), we consider those number fields that are constructed by taking a
T -extension L/F over a B-extension F/k. By taking such a tower of fields, many
possible groups could arise for Gal(L/k). We fix a group G that is possible.

The first challenge is to determine, for a fixed B-extension F/k, the number
of T -extensions L/F with Gal(L/k) ≃ G and with relative discriminant bounded
Disc(L/F ) < X . We will denote this number NF/k(T,G,X). The key idea for
this step is to use local conditions of L/F to detect Gal(L/k). For example,
if G = S3(3) ≀ B where B is an arbitrary permutation group, then given a B-
extension F/k and a prime p that splits in F , if a T -extension L/F is exactly
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partially ramified at one of the primes above p and is unramified at all other
primes above p, then Gal(L/F ) = G. Therefore it suffices to count T -extensions
with such local conditions. If counting T -extensions is multiplicative with respect
to taking local conditions, then we could show for G = T ≀ B wreath product,
one hundred percent of T -extensions over F has Gal(L/k) = G. There has been
extra difficulties for general permutation group T when counting T -extensions is
not multiplicative. Indeed, this happens a lot. For example, if T is a general
abelian group like Z/4Z. For such cases, we would need to determine a minimal
subgroup E of T where counting T -extensions with a fixed T/E-quotient becomes
multiplicative. For non-multiplicative abelian group T , we would heavily employ
class field theory to carry out the counting.

The second challenge is to add up NF/k(T,G,X) over all B-extensions F . If
we could do the first step, then

Nk(G,X) =
∑

F,Disc(F/k)|T |<X

NF/k(T,G,
X

Disc(F/k)|T |
).

To get an asymptotic counting of Nk(G,X), we define the truncated sum at Y to
be

Nk(G,X)Y =
∑

F,Disc(F/k)|T |<Y

NF/k(T,G,
X

Disc(F/k)|T |
).

If we could show for certain integers a and b such that the following two limit
process commute and converge to a positive number

(4) 0 < lim
Y→∞

lim
X→∞

Nk(G,X)Y

X1/a lnb−1X
= lim

X→∞
lim

Y→∞

Nk(G,X)Y

X1/a lnb−1X
<∞,

then we finish proving the asymptotic main term of the distributionNk(G,X). The
key input we need here is an upper bound on NF/k(T,G,X) uniformly depending
on Disc(F/k).

3. Results

Firstly, we prove uniform upper bound for relative S3(3) extensions and all abelian
extensions.

Lemma 1. (1) The number of S3-cubic extensions over k is uniformly
bounded by

Nk(S3(3), X) = O(Disc(k)t+ǫX)

with t = 16/9.
(2) The number of A-extensions over k is uniformly bounded by

Nk(A,X) = O(Disc(k)ǫhk(A)X
1/a(A) lnb(k,A)−1X).

where hk(A) = |Hom(ClK , A)|.

Secondly, we prove Malle’s conjecture or give precise main term (when Malle’s
conjecture does not hold) for many different groups. In particular, we reproduce
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[CyDO02] and [Klü12]. As an example to show what we could prove when G is in
the form of a wreath product, we prove

Theorem 2. Given a permutation group B with Nk(B,X) ≤ O(Xu) where u+t <
3, then Malle’s conjecture holds for G = S3 ≀B ⊂ S3|B|.

Similar theorems are also obtained for all abelian T , and for more types of
inductions.
Concrete Examples for Malle :

(1) S3 ≀ S3, S3 ≀ · · · ≀ S3

(2) S3 ≀G with G in regular representation and |G| > 4
(3) S3 ≀ Cp ≀G with arbitrary permutation group G and big enough p
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Two new proofs of class number one

Mark Watkins

Gauss (1801) conjectured that there are exactly 9 imaginary quadratic fields of
class number one. This was proven independently by Heegner (1952), Baker (1966),
and Stark (1967). The proof of Baker used transcendence theory, while the proofs
of Heegner and Stark used modular functions, eventually reducing to finding all
rational points on a finite list of genus 2 curves. Later works by various authors
used different modular curves to give alternate proofs in this genre.
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A third type of proof was proposed by Goldfeld (1976), involving the central
vanishing of the L-function of a suitable elliptic curve. Indeed, given an elliptic
curve with analytic rank 3 or more (again satisfying various technical conditions), it
would be possible to show that the class number diverged effectively. Moreover, the
famed conjecture of Birch and Swinnerton-Dyer suggested that such an L-function
should in fact exist. The (difficult) work of Gross and Zagier (1986) then showed
that such a triple central vanishing of an elliptic curve L-function did indeed occur.

1

Our work herein takes an opposite point of view, desiring to prove the class number
one result via the use of an elliptic curve of analytic rank 2. This is much easier to
verify than analytic rank 3, requiring only a modular symbols calculation rather
than the Gross-Zagier theorem.

Let −q be a negative fundamental discriminant and χ its character. Given
a weight 2 Hecke newform F =

∑
n c(n)e

2πinz of level N with gcd(N, q) = 1,
we let Λ(s) = (Nq/4π2)s−1Γ(s)2LF (s)LFχ(s) be the scaled and completed prod-
uct L-function for F and Fχ, satisfying a functional equation Λ(s) = ǫΛ(2 − s).
Goldfeld’s argument starts from Cauchy’s residue theorem, noting that

Λ(l)(1)

l!
=

(∫

(2)

−
∫

(0)

)
Λ(s)

(s− 1)l+1

∂s

2πi
= (1 + ǫl)

∫

(2)

Λ(s)

(s− 1)l+1

∂s

2πi
,

and then expands the Dirichlet series in terms of a Mellin transform to get

Λ(l)(1)

l!
= (1 + ǫl)

∞∑

n=1

c(n)Rχ(n)Wl

( n

Nq

)
with Wl(x) =

∫

(2)

Γ(s)2

(4π2x)s
∂s/2πi

(s− 1)l+1
,

while Rχ(n) is half the number of representations of n by reduced binary quadratic

forms (A,B,C) of discriminant −q. Expanding this definition gives Λ(l)(1)/l! as

1 + ǫl

2

∑

(A,B,C)

∑∑

(X,Y ) 6=(0,0)

c
(
AX2 +BXY + CY 2

)
Wl

(AX2 +BXY + CY 2

Nq

)
.

The main term comes from the Y = 0 contributions, which are given in terms of
the symmetric square L-function for F (with Euler adjustments for p|N included),
while the error term can be bounded crudely for each form as O(

∑
A 1/A) using

nothing more than the density 1/
√
q of represented integers and the length Nq of

the approximate functional equation, in conjunction with Deligne’s bound on c(n)
and/or the Hasse bound for elliptic curves.

Under suitable technical conditions so that ǫ(Fχ) = −1, we take l + 1 = r to
be the analytic rank of F , and writing h for the class number the above gives

Λ(r−1)(1)

(r − 1)!
= 0 = 2L

[N ]
S2F (2)

(log q)r−2

(r − 2)!

∑

A

c(A)

A
+OF

(
h
∑

A

1

A

)
.

The symmetric-square evaluation at the edge of its critical strip is nonzero, and
so the effective divergence of the class number then follows when taking a suitable
elliptic curve of analytic rank r = 3, such as the −139th quadratic twist of 37b.
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Perhaps initially as a curiousity, given an elliptic curve with analytic rank 2 we
find that h ≫ 1. However, a numerical computation with 446d (the first curve
to meet the technical conditions regarding root number variation) obtains roughly
only h ≥ 2/3 as q → ∞, indicating that more work must be done if this is to
achieve a useful result.

We instead show that for n represented by the principal form there is suitable
cancellation in the c(n), so that when h = 1 the error term is negligible as q → ∞.

2

We have two different methods to show such cancellation in the c(n) when n is
restricted to representations by the principal form.

2.1. The first method is applicable for elliptic curves with complex multiplication
by Q(

√
−1), with an example of analytic rank 2 being the 136th quadratic twist

of 32a. Here we recall that c(n) can be written in terms of representations of n as
a sum of two squares as

c(n) = θ(n)

∞∑

a=−∞

∞∑

b=−∞

(4a+1)2+(2b)2=n

(4a+ 1)(−1)b

where θ is either quadratic character of conductor 136.
We then write n = X2+XY + q+1

4 Y 2 as a representation by the principal form

with Y ≥ 1, and upon completing the square we have 4n = (2X+Y )2+qY 2. This
then gives the error term as a sum similar to

1

q

∞∑

Y =1

∑

X

∑

a

∑

b
n=(4a+1)2+(2b)2

4n=(2X+Y )2+qY 2

(4a+ 1)(−1)bθ(n)W
( n

Nq

)
.

The Y -sum can be truncated at small height by the decay of the Mellin transform.
Upon equating the n-expressions we get 4(4a+1)2−(2X+Y )2 = −4(2b)2+qY 2,

where we can factor the left-side as tu with t and u as 2(4a+ 1)± (2X + Y ), and
switch variables from (a,X) to (t, u). Furthermore, we can then implicitly have
the u-variable occur via a congruence of −4(2b)2 + qY 2 modulo t. Splitting into
congruence classes modulo 272, an analysis of 2-adic and 17-adic conditions leads
us to consider

34∑

rb=1

272∑

rt=1

z(Y, rb, rt)
∑

t≡rt (16·17)

∑

b̃

−4(68b̃+2rb)2+qY 2≡0 (t)

t+ u

4
W
( n

Nq

)

where |z(Y, rb, rt)| ≤ 4, while u and n are derived from t as above.

Here we wish to show that the inner double sum over t and b̃ has some cancel-
lation. Let us note that its crude bounding would be ≪ q, coming from noting
that |t| and |u| can be curtailed at size around

√
q by the W -decay, while the

expectation is that there are a constant number of b̃-roots of the congruence on
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average. Thus (roughly) the double sum over (t, b̃) has ≪ √
q members, each of

size ≪ |t+ u| ≪ √
q.

In order to rigidify the contributions from (t+ u)/4 and the W -term, we split t

and b̃ into intervals of size Z (slightly smaller than
√
q), in practice using a smooth

partition of unity on b̃. We are essentially left to consider for various (T,B) the
expressions

G(T,B)

4
×

∑

|t−T |<Z/2

t≡rt (272)

∑

|b̃−B|<Z/2

−4(68b̃+2rb)2+qY 2≡0 (t)

1,

where

G(T,B) =

(
T +

qY 2 − 1362B2

T

)
W

(
1

Nq

[
1

4

(
T − qY 2 − 1362B2)

T

)2
+ qY 2

])

is an odd function of T .
We then recall a result of Hooley (1964) regarding equi-distribution of roots of

a polynomial congruence to varying moduli. Our adaptation therein then gives an
equi-distribution of the roots of the congruence −4(68b̃+ 2rb)

2 + qY 2 ≡ 0 (t) as t

varies, implying the above double sum over (t, b̃) is sufficiently well-approximated
as proportional to Z2/|T |. This then shows the necessary cancellation, e.g. via
pairing T with −T .

This proof rather crucially exploits the principal form in achieving the bene-
ficial factorization of the difference of squares into tu. More generally such a
factorization is plausible when the binary quadratic form represents a square (i.e.,
is in the principal genus), though some consideration must be given to uniformity
considerations therein.

2.2. Our second method of proof codifies various work over the last decade con-
cerning Hecke eigenvalues over quadratic sequences. This was studied by Blomer
(2008), and then Templier and Tsimerman (2010). Indeed, we can almost read the
desired result from the latter, though in practice (as they go rather in a different
direction) it seems better to re-derive our needed estimate from their methods.

We first note that, following Selberg (1965) and Sarnak’s work (1984) with
Goldfeld, the method of unfolding gives that

∞∑

X=−∞

c(X2 + qY 2)

(X2 + qY 2)s
=

Γ(s)

(4π)s
〈P qY 2

s̃ , F θ̄〉

as an inner product involving a Poincaré series at the parameter s̃ = s − 1/4,

where here the standard θ-function is given by θ(z) =
∑

n e
2πin2z and an analogous

formula (involving the θ-series for the odd squares) is applicable more directly to
the principal form. Here the mth Poincaré series for weight 3/2 and congruence
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subgroup Γ is defined as

Pm
s =

∑

γ∈Γ∞\Γ

ν̄(γ)e(mγz)
( cz + d

|cz + d|
)−3/2

Im(γz)s,

where ν is the standard θ-multiplier system.
We then use the spectral decomposition for Maass forms of level 4N to write

〈P qY 2

s̃ , F θ̄〉 =
∞∑

j=1

〈P qY 2

s̃ , φj〉〈φj , F θ̄〉+
∑

a

∫

( 1
2
)

〈P qY 2

s̃ , Ea

w〉〈Ea

w , F θ̄〉
∂w

4πi
.

Considering the discrete spectrum, the first inner product can be written (again by
an unfolding argument via the Poincaré series) in terms of the qY 2-th Fourier coef-
ficient of φj , and this coefficient can in turn be bounded by a result of Duke (1988),
which generalizes the bound of Iwaniec (1987) for coefficients of holomorphic forms
of half-integral weight. For our application, the second inner product 〈φj , F θ̄〉 can
be bounded almost trivially (unlike Templier and Tsimerman who in fact show
the expected exponential decay in the eigenvalue parameter), while the continu-
ous spectrum can again be handled by Duke’s result.

This proof also exploits the principal form, though in general we could perhaps
work at a level depending on the minimum A, and upon taking level-uniformity into
account, we should be able to obtain a result when A is smaller than some explicit
(small) power of q. In any case, the main difficulty in class number problems is
when the minima are of size

√
q, and our methods do not avail for such.

Hooley’s result only saves a small power of logarithm, while the use of the
Iwaniec-Duke bound saves 1/28 in the q-exponent.
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MCLF: a toolbox for computations with Models of Curves over Local
Fields

Stefan Wewers

(joint work with Julian Ruth)

We present a software project, MCLR, whose general goal is to make computations
with integral models of curves over local fields easy and accessible. It is written in
Sage/Python and builds on Julian Ruth’s implementation of valuations, following
work of MacLane.

In this preliminary stage, we focus on implementing methods to compute semi-
stable reduction of curves over p-adic fields, and use this to compute arithmetic
invariants, e.g. Euler factors and the conductor.

In the talk, I demonstrated the computation of semistable reduction and con-
ductor exponents of Picard curves.9

Progress on Mazur’s “Program B”

David Zureick-Brown

We discuss progress on Mazur’s “Program B”.

Reporter: Levent Alpoge

9Compiled by the reporter from the hand-written abstract at Oberwolfach
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I. R. M. A. R.
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