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Abstract. The Calculus of Variations is at once a classical subject, and a
very modern one. Its scope encompasses a broad range of topics in geomet-
ric analysis, and deep questions about PDE. New frontiers are constantly
emerging, where problems from mechanics, physics, and other applications
introduce new challenges. The 2018 Calculus of Variations workshop reflected
this breadth and diversity.
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Introduction by the Organisers

This Calculus of Variations workshop was organized by Alessio Figalli (Zurich),
Robert Kohn (New York), Tatiana Toro (Seattle), and Neshan Wickramasekera
(Cambridge). It gathered an outstanding group of 47 participants, among them
many PhD students and postdocs.

The workshop’s scope was very broad. The diversity of the topics represented
encouraged scientific cross-fertilization and was a key to the workshop’s success.
To capture the diversity – and coherence – of the workshop’s 24 talks, we shall
organize them into groups.

Three talks discussed free boundary problems. Two speakers addressed
thin obstacle problems: Emanuele Spadaro presented work with M. Focardi about
graphs that minimize surface area subject to the constraint of being above a flat,
lower-dimensional obstacle; the work establishes sharp regularity results for the
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solutions by reducing the question to previously known results on branched mini-
mal graphs. Angkana Rüland presented work with H. Koch and W. Shi concerning
variable-coefficient scalar analogues of the classic Signorini problem. A third talk,
by Charles Smart, presented work with Will Feldman on an evolutionary free
boundary problem modeling the motion of the contact line where a spreading
liquid drop meets a periodically patterned surface. Starting from a discrete Hele-
Shaw-type formulation, Smart discussed its scaling limit and explained why the
solution has facets (a phenomenon also seen experimentally).

Quite a few talks discussed problems from geometric analysis. One thread in-
volved the asymptotic character of solutions near singularities. Nick Edelen
discussed work with M. Colombo and L. Spolaor establishing an asymptotic decay
estimate for stationary varifolds close to an integrable multiplicity 1 polyhedral
cone. Max Engelstein described work with L. Spolaor and B. Velichkov establish-
ing log-epiperimetric inequalities and asymptotic decay results for area minimizers
and energy minimizing free boundaries at strongly isolated singularities. A key
step of the proof involves the use of the classical (finite dimensional) Lojasiewicz
inequality. Brian Krummel described work with N. Wickramasekera establishing
asymptotic decay of a Dirichlet energy minimizing multivalued function to a unique
tangent function a.e. along its branch locus. A key idea in this work is the use of
the Almgren frequency function to classify homogeneous “Jacobi fields” produced
by sequences of minimizers converging to a homogeneous minimzer, even though
these Jacobi fields themselves need not be energy minimizing or even stationary
in the usual sense.

Another thread from geometric analysis was the use of min-max techniques

for constructing and analyzing minimal surfaces. Christos Mantoulidis described
work with O. Chodosh giving a PDE-based proof of regularity of two-dimensional
Allen-Cahn min-max minimal surfaces in 3-manifolds; for generic metrics the re-
sulting solutions surfaces have multiplicity 1. Alessandro Pigati described work
with T. Rivière showing regularity of the “parameterised stationary 2-varifolds”
in arbitrary co-dimension; these arise from a novel min-max construction (due to
Rivière) for a certain perturbation of the mapping area.

A third thread from geometric analysis was the study of geometric flows.
Brian White presented work with D. Hoffman, T. Ilmanen, and F. Mart́ın con-
cerning “translator” solutions of the mean curvature flow (in other words: hy-
persurfaces M such that the translating surface M − ten+1 is a solution of the
mean curvature). Jacob Bernstein described recent progress with L. Wang con-
cerning asymptotically conical self-expanders for the mean curvature flow; the
work adapts global analysis techniques used previously in minimal surface the-
ory to self-expanders, and establishes a certain non-degeneracy property of the
expanders asymptotic to a generic regular cone. Melanie Rupflin presented work
with P. Topping and with C. Robertson describing finite time degeneration of
Teichmüller harmonic map flow.
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There were also talks on other aspects of geometric analysis. One, by
Francesco Maggi, described work with M. Delgadino, C. Mihailia, and R. Neu-
mayer establishing that unions of spheres are the only finite-volume Caccioppoli
sets that are stationary for the isoperimetric problem in Euclidean space. Another,
by Guy David, discussed various notions of a “solution” to the classical Plateau
problem, focusing especially on a definition involving the “sliding boundary con-
dition” and on boundary regularity of the associated class of almost minimal sets.
Antonio De Rosa’s talk presented work with G. De Philippis and F. Ghiraldin giv-
ing an extension of the Allard rectifiability theorem to anisotropic integrands. Dali
Nimer’s talk discussed uniformly distributed measures, presenting new examples
and characterisations of conical 3-uniform measures.

About half the talks were on topics other than geometric analysis. Lower

semicontinuity of functionals and the regularity of minimizers are familiar
topics in the calculus of variations, and three speakers discussed problems of this
type. Yury Grabovsky presented a new example of a variational problem that
is rank-one convex but not quasiconvex, obtained by using connections between
homogenization, optimal design, and quasiconvexity, combined with an algebraic
approach to “exact relations” for polycrystalline composite materials. Connor
Mooney presented new results on the regularity of solutions to elliptic and parabolic
systems; in the parabolic setting, a key idea was to look for a “spiraling self-similar”
solution. Felix Otto presented a new variational approach to regularity for the
Monge-Ampere equation (work with M. Goldman and M. Huesmann); it uses the
connection between Monge-Ampere and optimal transport, and well-chosen test
functions in the Benamou-Brenier variational formulation of optimal transport.

In many physical applications, variational problems must be solved in settings
where the spatial environment is highly heterogeneous; there were four talks of this
type, where the calculus of variations interacted with homogenization. Two (by
Charles Smart and by Yury Grabovsky) were already discussed above. A third,
by Ken Golden, discussed how homogenization is critical to our understanding
of sea ice in the arctic and antarctic, improving our understanding of how global
warming will affect the climate and raise the level of the sea. Another talk, by
Caterina Zeppieri, discussed work with F. Cagnetti, G. Dal Maso, and L. Scardia
on a family of stochastic homogenization problems motivated by the modeling of
fracture.

Another application-driven frontier is the modeling of thin elastic sheets;
there were three talks in this area. Heiner Olbermann discussed this topic’s deep
connections to the Nash embedding theorem, then presented recent results ex-
plaining why a sheet with a conical singularity is rather rigid. Marta Lewicka
discussed work with D. Lucic, using methods from Γ-convergence to see how pre-
strain (due, for example, to growth or thermal expansion) affects the mechanical
behavior of a thin elastic sheet. Ian Tobasco discussed the wrinkling seen when a
piece of a thin spherical shell is forced to be (approximately) flat by putting it on
water, identifying a regime where the energy of the sheet (suitably renormalized)
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Γ-converges to a convex variational problem, and drawing conclusions about the
associated wrinkling patterns.

Yet another application-driven frontier is energy-driven pattern formation,
where complex patterns emerge from the solutions of variational problems. To-
basco’s talk (just discussed) had this character. So did the one by Benedikt Wirth,
who discussed the numerical approximation of “branched transport” problems –
identifying, for a broad class of such problems, a family of diffuse-interface ap-
proximations that are well-suited to numerical minimization.

The diversity of the workshop’s topics was an important element in its success.
Experts in one area enjoyed looking for and finding connections to the others.
A comprehensive list of examples is beyond the scope of this Introduction, but
here are a few examples: (i) some geometric analysts wondered whether Yury
Grabovsky’s rank-one-convex but non-quasiconvex integrand might have a geo-
metric interpretation; (ii) experts in the mean curvature flow were interested to
see self-similarity (or something very close to it) playing a role not only in the
analysis of topological change but also in Connor Mooney’s results on singular
solutions of other parabolic systems; and (iii) people working on steady-state ho-
mogenization problems took great interest in the homogenization-like evolutionary
free boundary problem discussed by Charles Smart.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Space of asymptotically conical self-expanders of the mean curvature

flow

Jacob Bernstein

(joint work with Lu Wang)

The mean curvature flow (MCF) is the flow of hypersurfaces {Σt}t∈I that satisfies
the evolution equation

(

dx

dt

)⊥

= HΣt
.

That is, a point on the flow moves normally to the surfaces with speed given by
the mean curvature. This is a natural geometric flow and arises variationally as
the negative gradient flow of the area functional.

A standard fact in the theory of MCF is that a closed initial surfaces possess a
mean curvature flow that develops a singularity in finite times. Simple examples
show that the flow need not vanish at this first singular time. Hence, for suitable
weak notions of the flow, it becomes possible, and interesting, to “flow through”
singularities.

By Huisken’s monotonicity formula, singularity formation is well modeled by
self-shrinking solutions of MCF. An interesting, and large, class of such singularity
models are those associated to self-shrinkers that are asympototic to some cone.
For such singularities, the way the singularity is “resolved” is modeled, in some
sense, by a self-expander, Γ, that is asympototic to C – here C is the cone asymp-
totic to one of the self-shrinkers modeling the way the singularity forms. Here Γ
is a hypersurface so that {

√
tΓ}t>0 is a MCF and so that limρ→0 ρΓ = C in an

appropriate sense. It follows from the equation for MCF that
√
tΓ is a MCF if

and only if Γ satisfies

HΓ =
x⊥

2
.

It is worth mentioning that, due to the current lack of an appropriate forward
in time analogue of Huisken’s monotonicity formula, this picture of singularity
resolution is more heuristic than it is for self-shrinkers and singularity formation.

As such, it is interesting to study what sorts of asymptotically self-expanders
exist. It turns out that there are a great many such self-expanders – indeed,
modulo regularity issues, any sufficiently regular cone admits at least one self-
expander asymptotic to the cone. In joint work with Lu Wang, we bring ideas
from global analysis to bear on the study the number self-expanders asymptotic
to a given cone and also to properties of self-expanders asymptotic to generic cones.
Specifically, we adapt ideas first introduced by Tomi-Tromba (and expanded on
by Brian White) for minimal surfaces with boundary to show the following:
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Theorem 1. For Γ ∈ ACHk,α
n let

ACEk,αn (Γ) =
{

[f ] : f ∈ ACHk,α
n (Γ) and Σ = f(Γ) a self-expander

}

.

Then the following statements hold:

(1) ACEk,αn (Γ) is a smooth Banach manifold modeled on Ck,α(L(Γ);Rn+1),
with a countable cover by coordinate domains Oi.

(2) The projection map Π: ACEk,αn (Γ) → Ck,α(L(Γ);Rn+1) which assigns to
[f ] the trace at infinity, tr1∞[f ], of f is a smooth map of Fredholm index 0.

(3) Each Π|Oi
has a coordinate representation given by the map (z, κ) 7→

(z, ψi(z, κ)) from a neighborhood of 0 ∈ Zi ⊕ Ki to itself, where Ki is
the kernel of DΠ([fi]) for some [fi] ∈ Oi and Zi is the complement of Ki
in Ck,α(L(Γ);Rn+1).

(4) The kernel of DΠ([f ]) is isomorphic to the space of normal Jacobi fields
of f(Γ) that fix the asymptotic cone.

Here ACEk,αn (Γ) is the space of asymptotically conical self-expanding embed-
dings of Γ. Roughly, speaking these are embeddings of Γ whose images are self-
expanders asymptotic to a Ck,α regular cone and which encode (in a natural way)
a parameterization the asymptotic cone of the image by the asymptotic cone of
Γ, modulo an equivalence relation that identifies parameterizations that param-
eterize the same hypersurface and which have the same parameterizations of the
asymptotic cone. The trace at infinity is just the restriction of the asymptotic
parametrization of the asymptotic cone to the link, L(Γ) of Γ.

An immediate consequence is the following “bumpy cone” result:

Corollary 1. Given Γ ∈ ACHk,α
n there is a nowhere dense set

S ⊂ Ck,α(L(Γ);Rn+1) so that if ϕ ∈ Ck,α(L(Γ);Rn+1)\S and [f ] ∈ ACEk,αn (Γ)
has Π([f ]) = ϕ, then the space of normal Jacobi fields of Σ = f(Γ) that fix the
asymptotic cone of Σ is trivial.

There are number of other interesting consequences, including the existence of
a Z2-degree for the map Π restricted to suitable domains.

Regularity for almost minimal sets near the boundary

Guy David

First a motivation for the sliding almost minimal sets that are at the center of this
lecture.

In its simplest forms, the Plateau problem (say, for 2-dimensional objects in
R3) consists in taking a closed curve Γ ⊂ R3 and asking for a surface “bounded
by Γ” and with minimal area.

In fact there are a lots of ways to formalize all this, and some part of the
lecture consists in giving a few examples, and the concentrating on a special type
of minimal and almost minimal sets. Then only we try to describe attempts to get
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a C1 description, if possible, of sliding almost minimal sets near a simple boundary
(a curve or even a line).

The new results are taken from two long papers by the author, a first one
with general results (“Local regularity properties of almost- and quasiminimal sets
with a sliding boundary condition”, available on arXiv and hopefully soon to be
published, and “A local description of 2-dimensional almost minimal sets bounded
by a curve near some cones” which should have been available this summer but
the author is late again).

So the lecture starts with a few examples of Plateau problem, with different
ways to present matters. For instance, Radó and Douglas use parameterizations
and get nice results but limited to 2-dimensional sets and that maybe do not model
soap films so well when the surface crosses itself.

Then there is the theory of Mass minimizing integral currents (Federer, Fleming,
De Giorgi, and many others), which is very successful in terms of existence and
regularity boundary results, but again fails to give a good representation of soap
films and their singularities. Recall that in this context we take the algebra from
differential geometry and write the boundary condition as ∂T = S, where T is the
minimizing current that we seek and S is a given current, for instance the current
of integration on the given curve Γ.

Recall that soap films exhibit singular sets of dimension 1.
In this respect size minimizers, where one counts the Hausdorff measure of the

support (where the integer multiplicity is nonzero), and not integrated against
multiplicity. But then regularity results become much weaker and existence is not
known in general, even for 2-dimensional currents .

Much closer to the spirit of the lecture are the homology minimizers of Reifen-
berg. He starts from a boundary set Γ (think, of dimension d−1 but any compact
set would do) a group G to compute homology (think about Z but some times
compact is needed), and a subgroup H of the Čech homology group Hd−1(Γ, G)
(of dimension d − 1, on Γ, sorry for the notation). Then say that a set E ⊃ Γ is
bounded by Γ if the image of H by the homology mapping induced by the inclusion
i : Γ → E is {0}. In simple cases, this corresponds to our idea of filling the curve.
And we look for a set E ⊃ Γ that is bounded by Γ and has minimal Hausdorf
measure Hd(E).

The good news are that this describes soap films much better, and in addition
there are good existence results (initially by Reifenberg, then other authors, and
recently a quite general one by Yangqin Fang. The regularity is still quite hard
though.

Finally here is another Plateau problem that the author likes, but which has
neither general existence nor good regularity theory yet, even for 2-dimensional
sets bounded by a smooth curve.

We give the definition for 2-dimensional sets. Again let Γ ⊂ Rn be given. Let
E ⊂ Rn be a closed set. A deformation for E in a compact ball B is a (continuous)
one parameter family of continuous mappings ϕt : E → Rn, such that ϕ0 is the
identity, ϕ1 is Lipschitz (condition added by Almgren, not necessarily needed, but
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we keep it because it does not disturb in general), ϕt(x) = x when x ∈ E \ B,
ϕt(E∩B) ⊂ B (for the moment, nothing surprising I hope!), and finally the sliding
condition

(1) ϕt(x) ∈ Γ when x ∈ E ∩ Γ.

Think about a shower curtain attached to its bar. Pinching is allowed, but not
tearing apart. The sliding version seems recent, but without it the definition
essentially comes from Almgren.

A competitor for E (in B) is a set F = ϕ1(E), where {ϕt} is as above.
A simple Plateau problem (but with no general solution so far) consists in taking

E and Γ as above, say compact, and asking for a competitor F of E (in a large
ball) that minimizes Hd(F ).

A sliding almost minimal set is a set E such that

(2) Hd(E ∩B) ≤ Hd(F ∩B) + h(r)rd

whenever F is a sliding competitor for E in any compact ball B of radius r, where
h : (0,+∞) → [0,+∞] is a given gauge function, i.e., a nondecreasing function
such that limr→0 h(r) = 0 (often h(r) ≤ Crα).

And a sliding minimal set is just a sliding almost minimal set with h(r) ≡ 0 (no
error term). But almost minimal set give a welcome flexibility to our definitions.

We want to study the local regularity of the sliding almost minimal set, in
particular near a point of the boundary set Γ (this is the new part). Concerning
general (or should we say vague) properties, we know that (if the boundary is
essentially as nice as a Lipschitz graph), the reduced (remove the part which is
not in the support of Hd

|E) almost minimal sets are locally Ahlfors regular (strongly

d-dimensional), rectifiable, that limits of almost minimal sets with uniform bounds
on h(r) are rectifiable, and are almost minimal sets with the same function h. Also,
Hd goes to the limit well along such sequences.

But for more precise results, we are for the moment limited to two-dimensional
sets. The best result for inside regularity (away from Γ or with no Γ) is Jean Tay-
lor’s theorem, which says two things. First there are only three types of minimal
cones (same definition as above, without the sliding condition) of dimension 2 in
R3: the planes, the sets Y composed of three half planes bounded by a same line
and that make 120◦ angles along that line, and the sets T , obtained as the cone
over the union of the edges of a regular tetrahedron centered at the origin. And
then for each point x of a (reduced) almost minimal set of dimension 2 in R3, x has
a neighborhood where E is equivalent to one of the cones above, through a C1+a

diffeomorphism of R3. Provided that h(r) ≤ Crα for some α > 0, for instance.
For almost minimal sets of dimension 2 in Rn, n ≥ 4, there is a similar result

(G. D., Ann. Fac. Sci. Toulouse Math. 2009), but the list of minimal cones is
not known, and maybe there is only a biHölder equivalence near some points with
“bad” blow-up limits.

We would like a similar result near the boundary. Such a result exist (recent
preprint of Yangqin Fang) for 2 dimensional sets bounded by smooth oriented
surfaces Γ ⊂ R3, with the constraint of containing Γ. But when Γ is a nice curve
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(or a line), this is may depend on a blow-up limit of E at the given point, and the
author did not complete the study (by far).

When E is close enough to one of the J. Taylor cones that crosses Γ transversally,
we see nothing and J. Taylor’s theorem holds as before. Not in contradiction with
soap experiments that can be done.

When 0 ∈ E ∩ Γ, Γ is a line, and E is close enough to a half plane, then there
is a full J. Taylor theorem near 0, as above.

When instead E is close enough to a generic set V , composed of two half planes
that meet along Γ with an angle β(V ) ∈ (0, 2π/3), we have a similar result.

More interestingly, when E is close to a plane that contains Γ, E may have a
small flat crease of V -type along a part of Γ, and otherwise leave Γ tangentially.

For a sharp set V , with angle β(V ) = 2π/3, E may also leave Γ in a nice smooth
way, and leave behind a thin “vertical” face that connects a singularity set of R3\Γ
to Γ. Think about taking a V -set and pinching it near Γ.

All these configurations (and a few similar ones) are under control. In all these
cases, the proof is a complicated variant of a proof for Taylor’s theorem, with a
new monotonicity formula.

But unfortunately, when E is close to a Y -set whose singular set coincides with
Γ the methods above, and in particular the adapted monotonicity formula, seem
to fail so far. This is unfortunate because this seems to be the only really difficult
case left, and the ensuing putative regularity should also lead to existence results.

Anisotropic counterpart of Allard’s rectifiability theorem and

applications

Antonio De Rosa

(joint work with Guido De Philippis, Francesco Ghiraldin)

Allard’s rectifiability theorem, [1], asserts that every d-varifold in Rn with locally
bounded (isotropic) first variation is d-rectifiable when restricted to the set of
points in Rn with positive lower d-dimensional density.

We recall that a d-dimensional varifold V ∈ Vd(R
n) is said d-rectifiable if there

exist a d-rectifiable set K and a Borel function Θ : Rn → (0,+∞) such that

(1) V = ΘHd (K ∩ Ω) ⊗ δTxK .

It is a natural question whether Allard’s rectifiability theorem holds for varifolds
whose first variation with respect to an anisotropic integrand is locally bounded.

More specifically, for an open set Ω ⊂ Rn and a positive C1 integrand

F : Ω ×G(n, d) → (0,+∞),

where G(n, d) denotes the Grassmannian of d-planes in Rn, we define the
anisotropic energy of a d-varifold V ∈ Vd(Ω) as

F(V,Ω) :=

∫

Ω×G(n,d)

F (x, T ) dV (x, T ).
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We also define its anisotropic first variation as the order one distribution whose
action on g ∈ C1

c (Ω,Rn) is given by

δFV (g) : =
d

dt
F
(

ϕ#
t V
)

∣

∣

∣

t=0

=

∫

Ω×G(n,d)

[

〈dxF (x, T ), g(x)〉 +BF (x, T ) : Dg(x)
]

dV (x, T ),

where ϕt(x) = x+ tg(x), ϕ#
t V is the image varifold of V through ϕt, BF (x, T ) ∈

Rn ⊗ Rn is an explicitly computable n × n matrix and 〈A,B〉 := tr ATB for
A,B ∈ Rn ⊗ Rn.

We have then the following:

Question 1. Is it true that for every V ∈ Vd(Ω) such that δFV is a Radon
measure in Ω, the associated varifold V∗ defined as1

(2) V∗ := V {x ∈ Ω : Θd
∗(x, V ) > 0} ×G(n, d)

is d-rectifiable?

In a joint work with G. De Philippis and F. Ghiraldin, [7], we prove that this is
true if and only if F satisfies the following atomic condition at every point x ∈ Ω.

Definition 1. For a given integrand F ∈ C1(Ω × G(n, d)), x ∈ Ω and a Borel
probability measure µ ∈ P(G(n, d)), let us define

Ax(µ) :=

∫

G(n,d)

BF (x, T )dµ(T ) ∈ R
n ⊗ R

n.

We say that F verifies the atomic condition at x if the following two conditions
are satisfied:

(i) dim KerAx(µ) ≤ n− d for all µ ∈ P(G(n, d)),
(ii) if dim KerAx(µ) = n− d, then µ = δT0

for some T0 ∈ G(n, d).

Since the atomic condition is essentially necessary to a positive answer to Ques-
tion 1, see Theorem 2, it is relevant to relate it to the previously known notions
of ellipticity (or convexity) of F with respect to the “plane” variable T . For
d = (n−1) we can completely characterize the integrands satisfying the atomic con-
dition. In this case F can be equivalently thought as a positive one-homogeneous
even function G : Ω × R

n → (0,∞) via the identification

(3) G(x, λν) := |λ|F (x, ν⊥) for all λ ∈ R and ν ∈ S
n−1.

The atomic condition then turns out to be equivalent to the strict convexity in the
second variable of G in all but the radial directions, more precisely:

Theorem 1. An integrand F ∈ C1(Ω × G(n, n − 1), (0,∞)) satisfies the atomic
condition at x if and only if the function G(x, ·) defined in (3) satisfies:

G(x, ν) > 〈dνG(x, ν̄), ν〉 for all ν̄, ν ∈ Sn−1 and ν 6= ±ν̄.
1Here Θd

∗
(x, V ) is the lower d-dimensional density of V at the point x.
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The following theorem positively answers Question 1:

Theorem 2. Let F ∈ C1(Ω×G(n, d), (0,+∞)) be a positive integrand and let us
define

VF (Ω) =
{

V ∈ Vd(Ω) : δFV is a Radon measure
}

.

Then we have the following:

(i) If F satisfies the atomic condition at every x ∈ Ω, then for every V ∈
VF (Ω) the associated varifold V∗ defined in (2) is d-rectifiable.

(ii) Assume that F is autonomous, i.e. that F (x, T ) ≡ F (T ): then every V∗
associated to a varifold V ∈ VF (Ω) is d-rectifiable if and only if F satisfies
the atomic condition.

In particular Theorem 2 provides a new independent proof of Allard’s rectifia-
bility theorem for the area integrand, F (x, T ) ≡ 1.

We apply Theorem 2 in [9] to prove an anisotropic counterpart of Allard’s com-
pactness for integral varifolds. A d-rectifiable varifold V is said to be integral
if in the representation (1) the density function Θ is integer valued. In [1, Sec-
tion 6.4], Allard proves that every sequence of rectifiable (resp. integral) varifolds
enjoying a uniform bound on the mass and on the isotropic first variation is pre-
compact in the space of rectifiable (resp. integral) varifolds. This proof relies on
the monotonicity formula for the mass ratio of stationary varifolds. Although the
monotonicity formula is deeply linked to the isotropic case, in [9] we can get the
following integrality theorem for elliptic integrands:

Theorem 3. Let Ω ⊆ Rn be an open set and F ∈ C1(Ω ×G(n, d), (0,+∞)) be a
positive integrand satisfying the atomic condition at every x ∈ Ω. Let (Vj)j∈N ⊆
Vd(Ω) be a sequence of integral varifolds converging to a varifold V . Assume that
V enjoys the density lower bound

Θd
∗(x, V ) > 0 for ‖V ‖-a.e. x ∈ Ω

and that the sequence (Vj)j∈N satisfies

sup
j∈N

|δFVj |(W ) <∞, ∀W ⊂⊂ Ω;

then V Ω ×G(n, d) is an integral varifold.

In the joint work [10] with G. De Philippis and F. Ghiraldin, we apply Theorem 2
to get a compactness principle for the set theoretical formulation of the anisotropic
Plateau problem in any codimension, extending the previous results proved in
[6, 8, 5]. In particular, we perform a new strategy for the proof of the rectifiability
of the minimal set, based on Theorem 2. Given a closed subset H ⊂ R

n, which will
denote the boundary, and prescribed a class P(H) of relatively closed d-rectifiable
subsets K of Rn \H , we can formulate the anisotropic Plateau problem by asking
whether the infimum

(4) m0 := inf

{

F(K) :=

∫

K

F (x, TxK) dHd(x) : K ∈ P(H)

}
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is achieved by some set, which should be a suitable limit of a minimizing sequence.
We say that a sequence (Kj)j∈N ⊂ P(H) is a minimizing sequence if F(Kj) → m0.
Under suitable conditions on F and under the assumption that the class P(H) is
(roughly speaking) closed by Lipschitz deformations which are the identity on the
boundary H , we can prove the following:

Theorem 4. Assume that m0 < ∞ and let (Kj)j∈N ⊂ P(H) be a minimizing
sequence. Then, up to subsequences,

F (·, T(·)Kj)Hd Kj ⇀
⋆ F (·, T(·)K)Hd K =: µ

in the sense of measures in R
n \H,

where K = sptµ \ H is a d-rectifiable set. Furthermore, the integral varifold
naturally associated to µ is F -stationary in Rn\H. In particular, lim infj F(Kj) ≥
F(K) and if K ∈ P(H), then K is a minimum for (4).

Corollaries of Theorem 4 are the solutions to three formulations of the Plateau
problem: one introduced by Reifenberg in [12], one proposed by Harrison and
Pugh in [11] and another one studied by David in [4] (and inspired by Almgren’s
(M, 0,∞)-minimal sets in [3]).

To conclude, we combine Theorem 2 and Theorem 3 in [9] to extend Theorem 4
to the minimization of anisotropic energies in classes of rectifiable varifolds in any
dimension and codimension, in the spirit of the existence and regularity theorem for
homological boundary constraints achieved by Almgren in [2]. We prove that the
limit of a minimizing sequence of varifolds with density uniformly bounded from
below is rectifiable. Moreover, with the further assumption that the minimizing
sequence is made of integral varifolds with uniformly locally bounded anisotropic
first variation, the limiting varifold turns out to be integral.
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The structure of minimal surfaces near polyhedral cones

Nick Edelen

(joint work with M. Colombo, L. Spolaor)

Let us call a 2-dimensional stationary cone C2
0 ⊂ R2+k polyhedral if its link with

the sphere is an equiangular geodesic net, in the sense that every junction consists
of precisely three geodesics meeting at 1200 degrees. Three basic examples are R2,
Y × R consisting of three half-planes meeting at 1200, and the tetrahedral cone
T, which is the cone of the 1-skelaton of a regular tetrahedron. These cones arise
naturally as singularity models for soap bubbles.

In this paper, with Maria Colombo and Luca Spolaor, we a prove C1,α-regularity
theorem for minimal varifoldsM (or varifolds with bounded mean curvature) which
weakly resemble polyhedral cones C0. For varifolds which additionally admit a
kind of “no hole” condition on the singular set, we establish a C1,α-regularity for
M near C2

0 × Rn−2, for C0 polyhedral.
In general, a tangent cone of M may gain symmetries not seen in M – in fact,

it is an open question whether or not an isolated singularity can admit a tangent
with a line of symmetry. For this reason, to establish a C1-type regularity of M
near a cone like C0 × Rn−2, one must know (or prove) that “lots” of singular
points are present in M near the spine {0} × Rn−2. Simon [4] was the first to
consider regularity near a general cone of the form C0 × Rm, for C0 smooth, and
he established a dichotomy of the form: either there is a “gap” in the singular set,
or the excess decays to one scale.

Our main result builds on the seminal results of Simon, extending this di-
chotomy to polyhedral cones of the form C2

0 × Rn−2.

Theorem 1. Suppose M is an integral stationary n-varifold in Rn+k, and C2
0 is

an integrable polyhedral cone (e.g., if C0 is contained in an R3). There are ε and
θ, so that: if 0 ∈M , |M ∩B1| ≤ (3/2)|C0 ∩B1|, and

∫

M∩B1

dist(x,C2
0 × R

n−2)2 < ε2,

then either there is a “gap” in the singular set:

Bε(X) ∩ {Y : θM (Y ) ≥ θC0
(0)} = ∅ for some X ∈ {0} × R

n−2,
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or there is an excess decay:

θ−n−2

∫

M∩Bθ

dist(x, q(C0 × R
n−2))2 ≤ (1/2)

∫

M∩B1

dist(x,C0 × R
n−2)2,

for some rotation q.

Here θM (X) = limr→0 r
−n|M ∩Br(X)| is the density of M at X .

In certain important circumstances, we can deduce the presence of singularities,
and then by iterating the above excess decay, we get C1,α regularity. For example,
if M is sufficiently weakly close to Y×Rn−1, then M must have “lots” of singular
points of the type Y. In this case, proven by Simon [4], M is a C1,α perturbation
of the Y × Rn−1.

Our main Corollary is that, for C0 = T, and when M has a “cycle structure,”
then we can deduce a no holes condition, and thereby establish C1,α-regularity.
We say M has a cycle structure if the following holds: there are countably many
integral currents Ti, with ∂Ti = 0, so that writing

Ti(ω) =

∫

MTi

< ξTi
, ω > θTi

dHn

for MTi
rectifiable, then M = Hnx∪iMTi

. In other words, M is supported on the
union of rectifiable sets, each arising from a current with zero boundary.

Corollary 1. There is an ε(n) so that the following holds. Let Mn be a stationary
integral varifold in Rn+1, such that

0 ∈M, |M ∩B1| ≤ (3/2)|T ∩B1|,
∫

M∩B1

dist(x,T× R
n−2)2 < ε2,

and M has an associated cycle structure. Then M ∩ B1/2 is a C1,α-perturbation

of T× Rn−2.

Here is a neat application of our result. A cluster minimizer is a solution to the
problem: find a partition E0 ∪E1 ∪ · · · ∪EN = Rn+1 minimizing the perimeter

P = (1/2)

N
∑

i=0

|∂∗Ei|,

subject to the restraints E1 = m1, . . . , EN = mN , for specified volumes
m1, . . . ,mN > 0. In other words, we find the least area for a multiply-constrained
volume problem. Almgren [2] has shown existence of cluster minimizers, for any
n, N , and choice of m1, . . . ,mN , and moreoever proved that the underlying var-
ifold M = Hnx∪i∂∗i Ei has bounded mean curvature, and the support of M is
(M, ε, δ)-minimizing.

A beautiful theorem of Taylor [5] implies that if n = 2, then M is locally C1,α

equivalent to either R2, Y×R, or T. By combining our result with results of Allard
[1], Simon [4], and Naber-Valtorta [3], we obtain the following generalization:

Theorem 2. Let M be the support of a cluster minimizer. Then M decomposes
as M = Mn ∪Mn−1 ∪ Mn−2 ∪Mn−3, where Mn,Mn−1,Mn−2 are locally C1,α



Calculus of Variations 2093

manifolds, near which M is locally diffeomorphic to R
n,Y×R

n−1,T×R
n−2 (resp),

and Mn−3 is closed, locally finite, (n− 3)-rectifiable.
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An epiperimetric approach to isolated singularities

Max Engelstein

(joint work with Luca Spolaor, Bozhidar Velichkov)

We present a new technique for studying the infinitesimal behavior of energy min-
imizers near the points where the minimizer exhibits non-smooth behavior. To
avoid further vaguaries, we focus our attention on minimizers to the functional,

(1)

∫

|∇u|2 + χ{u>0},

though the technique described below is quite general and has yielded similar
results in the setting of (almost-)area minimizing currents (c.f. [7]) .

We are interested in what is called the “free boundary”, ∂{u > 0}. In [2], Alt
and Caffarelli proved the following dichotomy; let x0 ∈ ∂{u > 0}, then either the
free boundary in a neighborhood of x0 can be written as the graph of an analytic
function, or there is no r > 0 such that Br(x0) ∩ ∂{u > 0} is contained in a δr-
neighborhood of an (n− 1)-plane (for some δ > 0). The former points are called
regular, and the latter, singular.

We can rephrase this result in terms of parameterization; the free boundary
near regular points is parameterized over an (n − 1)-plane by a smooth function.
The long-term goal of our investigation (and a central problem in the subject of
regularity theory) is to extend this parameterization to singular points. The main
theorem of this talk does this for a class of singular points:

Theorem 1. [Main Theorem in [6]] Let b ∈ W 1,2(B1) be a 1-homogenous min-
imizer to (1), such that ∂{b > 0} is smooth away from 0. Assume that u is a

minimizer and rj ↓ 0, x0 ∈ ∂{u > 0} are such that ∂{u>0}−x0

rj
→ ∂{b > 0}.

Then limr↓0
∂{u>0}−x0

r = ∂{b > 0} and there exists some r0 > 0 such that

∂{u > 0} ∩Br0(x0) can be written as the C1,log image of Br0(0) ∩ ∂{b > 0}.
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Let us make three quick remarks; first if ∂{u>0}−x0

rj
→ S for some set S, we call S

a blow-up of ∂{u > 0} at x0. Alternatively, we can examine urj,x0
(x) ≡ u(rjx+x0)

rj

and refer to limj urj,x0
= v(x) as the blowup. Note that S = ∂{v > 0} in this

scenario. The theorem above is an example of a “uniqueness of blow-ups” result,
more on this below. Second, the assumption that b is 1-homogeneous is redundant;
it is a result of Weiss [15] that if b is a blowup of a minimizer, then b must be
1-homogenous. The final remark is that the regularity of the parameterization
depends on the “symmetries” of the cone b. Imprecisely, if the only deformations of
b which preserve the energy (1) to second order are given by ambient isometries of
the space, then we call b integrable through rotations and the parameterization
given by Theorem 1 is C1,α. Otherwise, the stated C1,log regularity is optimal.
We note that the only known one-homogenous minimizers to (1) were constructed
by De Silva and Jerison [5] and each of these are integrable through rotations.

As mentioned above, a central question is the uniqueness of blow-ups; the limit
u(rjx+x0)

rj
exists up to subsequence by compactness, but in order to parameterize

the free boundary over the blow-up it must be the case that the limit is independent
of the subsequence rj ↓ 0. Theorem 1 is the only known uniqueness of blowups
result in the setting of (1), but similar questions have been investigated for obstacle
problems ([14], [9]), harmonic maps ([12]) and minimal surfaces ([12], [1], [13]).
Uniqueness of blow-ups is not always true; Brian White constructs harmonic maps
from R4 → N where N is a C∞ four-manifold such that there is an isolated critical
point with a continuum of blow-ups at that point, see [17].

The main tool in proving Theorem 1 is what is called an epiperimetric inequality.
In [15], Weiss proved that

W (u, x0, r) ≡
1

rn

∫

Br(x0)

|∇u|2 + χ{u>0}dx− 1

rn+1

∫

∂Br(x0)

u2dσ,

is monotone increasing in r as long as u is a minimizer to (1) and that the differ-
ence, W (u, x0, r)−W (u, x0, s), measures how far u is from being one-homogeneous
in the annulus Br(x0)\Bs(x0). Thus to prove a uniqueness of blowups result like
Theorem 1, it suffices to bound the growth of r 7→W (u, x0, r) from above. This is
the role of an epiperimetric inequality (see Theorem 2 below), which says, roughly,
that the difference in energy between the one-homogeneous and minimizing exten-
sions of a trace, c ∈ L2(∂B1), is proportional to the gap between c and the “closest”
trace of a one-homogeneous minimizer (where the gap is measured by W ).

Epiperimetric inequalities have been used to prove uniqueness of blow-ups and
regularity in minimal surfaces [11, 13, 16] and free boundary problems [14, 8, 10].
Recently, the second and third authors, with Maria Colombo [3, 4], have pioneered
the concept of a log-epiperimetric inequality, in which the gap (alluded to above)
has non-linear dependence, which in turn gives a C1,log rate of blow-up.

Before we state our epiperimetric inequality, let us briefly outline one critical
way in which ours differs from those mentioned above. Our epiperimetric inequal-
ity is the first to treat blow-ups which are not integrable through rotations. In
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order for the minimizing extension to be quantitatively better than the homoge-
neous one, one often needs to identify which trace of a homogeneous minimizer
is “closest” to the given trace. The condition of being integrable through rota-
tions means that all the “nearby” traces of homogeneous minimizers are simply
rotations of each other, which makes it easier to find the closest one through an
implicit function theorem argument (see [16]).

In order to prove a log-epiperimetic inequality at singularities which are not
integrable through rotations, we had to find nearby problematic traces by hand.
To do so, we borrowed a powerful idea from L. Simon [12], and used a Lyaponov-
Schmidt reduction to identify the closest “problematic” trace and used gradient
flow to improve its energy. We then invoked the  Lojasiewicz inequality to show
that this energy improvement was quantitative.

Let us end with a statement of our epiperimetric inequality. For space consid-
erations we take x0 = 0 and r = 1 and refer to W (f, x0, r) simply as W (f):

Theorem 2. [Epiperimetric inequality in [6]] Let b ∈ H1(B1) be a one-homogene-
ous minimizer of (1) with an isolated singularity at the origin. There exist con-
stants ǫ = ǫ(d, b) > 0, γ = γ(d, b) ∈ [0, 1) and δ0 = δ0(d, b) > 0, depending on b
and on the dimension d, such that the following holds.

If c ∈ H1(∂B1,R+) is such that there exists ζ ∈ C2,α(∂{b > 0} ∩ Sn−1) such
that ∂{c > 0} is the graph (in the sphere) of ζ over ∂{b > 0} ∩ Sn−1 and

(2) ‖ζ‖C2,α ≤ Cd‖ζ‖L2 < δ , and ‖c− b‖L2(∂B1) < δ ,

then there exists a function h ∈ H1(B1,R+) such that h = c on ∂B1 and

(3) W (h) −W (b) ≤
(

1 − ǫ
∣

∣W (z) −W (b)
∣

∣

γ
)

(

W (z) −W (b)
)

,

where z is the 1-homogeneous extension of c to B1.
In the case where b is integrable through rotations, we can take γ = 0 in (3)

above.
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Homogenization, random matrices, and integral representations for

transport in composite materials: how can studies of sea ice and its

role in the climate system help advance variational analysis?

Kenneth M. Golden

(joint work with Elena Cherkaev, Ben Murphy, Noa Kraitzman, Rebecca
Hardenbrook, Christian Sampson, and Huy Dinh)

The analytic continuation method for two phase composite media [15] provides
Stieltjes integral representations for the effective or homogenized transport pa-
rameters, such as effective conductivity, complex permittivity, or diffusion coeffi-
cent. The method was developed independently by Bergman and Milton [3, 13]
in the late 1970’s, and yields rigorous bounds on the effective properties under
constraints on the composite geometry. Subsequently a mathematical formula-
tion of this approach was given by Golden and Papanicolaou [6], and extended to
multicomponent media [7, 5, 14]. The mixture geometry of the phases is incor-
porated into the Stieltjes integral for the effective parameter through the spectral
measures of a self-adjoint operator involving the characteristic function of one of
the phases. A resolvent representation for the local field in the problem involves
this operator, and is the key analytic step in this approach. From the point of
view of the calculus of variations, the analytic continuation method yields rigorous
bounds that do not rely on variational principles. Instead, bounds are obtained
by extreme points of appropriate sets of measures, such as Dirac point masses.
Classical bounds for real parameters, such as the Wiener and Hashin-Shtrikman
bounds based on energy variational principles [15], can then be extended to the
complex case.
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Figure 1. Multiscale structure of sea ice. From left to right:
Sub−millimeter scale brine inclusions form the porous microstruc-
ture of sea ice [22]. When the temperature exceeds a critical value,
the brine phase percolates enabling fluid flow, which mediates a
broad range of key climatological and biological processes. The
centimeter scale polycrystalline structure of sea ice [1] helps de-
termine its strength and fluid flow properties. Decimeter to me-
ter scale pancakes forming in a wave field in the Southern Ocean
(Golden). Wave−ice interactions have historically been important
in the Southern Ocean, and have become increasingly significant
in the Arctic Ocean with receding sea ice and larger fetch. Meter
to kilometer scale melt ponds on the surface of Arctic sea ice in
late spring and summer (Perovich) determine the albedo of sea
ice, a key parameter in climate modeling. Kilometer scale (and
smaller) floes in the Arctic sea ice pack (Perovich) exhibit local
diffusion in interacting with other floes and are advected in larger
scale wind and current fields.

There have been significant advances in applying the analytic continuation
method - and the bounding procedure - to important classes of composite materi-
als, such as matrix-particle composites [4], and in extending the method to other
transport problems, such as the advection diffusion equation [2]. In our work
we have been interested in using the ideas of the analytic continuation method
to address problems in linking scales in the polar sea ice system and its role in
Earth’s climate [9] (see Figure 1 above). That is, we are developing methods to
relate behavior and structure on small scales, such as the sub-millimeter scale
brine inclusions in a pure ice host, to effective or homogenized behavior on larger
scales [8], and the inverse problem of estimating parameters controlling small scale
processes from large scale observations [10, 20]. We have also been working to ex-
tend the method to related transport problems on length scales larger than the
brine inclusions, such as its polycrystalline structure [11], advection diffusion pro-
cecesses [18, 19, 12], and waves in the Marginal Ice Zone [21]. For example, we
have developed the first rigorous theory for thermal conduction through sea ice
in the presence of a convective flow field, and the first bounds on the complex
viscoelasticity for waves propagating through the sea ice pack.

Finally, by focusing on computations of the spectral measure for discretizations
of images of sea ice structures [17], where the key self adjoint operator becomes
a random matrix, we made an unexpected discovery [16]. Anderson transitions,
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such as the metal-insulator transition where electronic wave functions become lo-
calized with sufficient disorder in the system, have been observed throughout the
physics of waves in solids, optics, acoustics, and fluids. We recently uncovered the
hallmarks of the Anderson transition for classical homogenized transport coeffi-
cients in two phase composite materials, such as the effective thermal conductivity
or complex permittivity, without wave interference or scattering effects. As one
of the phases in a composite becomes connected and develops long range order,
such as the brine phase in sea ice forming channels through which fluid can flow,
we observe striking transitional behavior. The eigenvalues of the random ma-
trix governing effective transport undergo a transition from uncorrelated Poisson
statistics to universal Wigner-Dyson statistics with replulsion, and the field eigen-
vectors become delocalized with the appearance of mobility edges as in quantum
mechanics.
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Construction of rank-one convex, non-quasiconvex functions via

nonreflexive representations of Jordan multialgebras in the theory of

exact relations for effective tensors of composite materials

Yury Grabovsky

This extended abstract is an update of OWR-33/2017 (Vol. 14, No. 3, pp. 2063-
2065).

A central concept in modern Calculus of Variations is quasiconvexity, introduced
by C.B. Morrey [10] as a criterion of sequential weak-* lower semi-continuity. The
same condition is also a necessary condition for a C1 vector field u0(x) to be a
strong local minimizer of the energy functional

E[u] =

∫

Ω

W (∇u)dx.

Indeed, using uǫ = u0(x) + ǫφ((x− x0)/ǫ) as a competitor, we compute

δE[φ] = lim
ǫ→0+

E[uǫ] − E[u0]

ǫd
=

∫

Rd

{W (∇u(x0) + ∇φ) −W (F )}dx

Quasiconvexity condition at F ∈ Rm×d can be regarded as the Jensen’s inequality
restricted to gradients:

∫

Rd

{W (F + ∇φ) −W (F )}dx ≥ 0

for every φ ∈ C∞
0 (Rd;Rm).

An early attempt to understand the true meaning of this concept was to decide
if it was equivalent to rank-one convexity (convexity along all rank-one lines).
The question remained opened until Šverák settled it [11], giving an example of a
Lagrangian defined on 3x2 matrices, that is rank-one convex, but not quasiconvex.
The example is a polynomial function with no apparent symmetries. For any
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function W (F ) its quasiconvex envelope (the largest quasiconvex function that
does not exceed W (F )) is given by Dacorogna’s formula [2]

(1) QW (F ) = inf
φ:[0,1]d-periodic

∫

[0,1]d
W (F + ∇φ)dx

There is also a parallel question about the effective behavior of composite mate-
rials. A periodic (for simplicity) composite material is described by a Q = [0, 1]d-
periodic tensor of local material properties L : Q → U ⊂ Sym+(Rm×d), where
U is a set of constituent materials. The effective tensor L

∗ ∈ Sym+(Rm×d) of a
composite with period cell properties L(x) is defined via a variational principle [8]

(2) 〈L∗F ,F 〉 = inf
φ:Q-periodic

∫

Q

〈L(x)(F + ∇φ),F + ∇φ〉dx

The main problem in the theory of composites is computation of the G-closure
set G(U)—the set of effective tensors of periodic composites made with materials
from U . Now if we define

WU (F ) = inf
L∈U

〈LF ,F 〉,

then, combining (1) and (2), we have a link between quasiconvexification and
G-closure:

(3) QWU (F ) = WG(U)(F ).

The analog of rank-one convexity on the composites side is a laminate—a compos-
ite made by alternating layers of two given materials. We note that if U contains
effective tensor of every laminate of two materials from U , then WU (F ) is rank-
one convex. One can therefore ask whether every composite can be mimicked by
an iterated laminate made with the same set of constituent materials. This ques-
tion has also been answered in the negative, by Milton [9, Sections 31.8–9], who
exploited Šverák’s construction and a well-known connection between G-closed
sets and quasiconvex functions and L-closed sets (sets containing effective tensors
of all laminates made from materials taken from that set) and rank-one convex
functions.

Exploiting the relation with the theory of composites in the opposite direction
is seemingly more difficult, as we restrict the set of possible integrands to WU (F ).
The idea is to first find U , stable under lamination and therefore generating the
rank-one convex WU , such that it is not G-closed. We will then need to obtain
just enough information about G(U) to conclude that WG(U)(F0) < WU (F0) at
a particular F0. Such an example comes from the theory of exact relations—
formulas that hold for effective tensors of all composites made with a given set
of materials, regardless of the microstructure [5, 3]. The theory identifies sub-
manifolds of Sym+(Rm×d) that are stable under lamination. According to the
theory all such submanifolds are diffeomorphic images1 of convex subsets of Jor-
dan multialgebras—subspaces of Sym(Rm×d) closed with respect to a family of

1With a completely explicit diffeomorphism.
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Jordan multiplications

(4) K1 ∗A K2 =
1

2
(K1AK2 + K2AK1),

parametrized by A ∈ A = Im ⊗ A, where A = {A ∈ Sym(Rd) : TrA = 0}. The
strategy for finding the desired example was inspired by understanding the alge-
braic properties of all subspaces of Sym(Rn) that are closed with respect to the
symmetrized product X ∗Y = (XY +Y X)/2 [1]. All such subspaces are represen-
tations of formally real Jordan algebras characterized by Jordan, von Neumann
and Wigner [7] for the purposes of building quantum mechanics on an axiomatic
foundation. While their effort had ultimatley failed, the work marked the begin-
ning of systematic study of Jordan algebras.

The example is based on the observation that the multiplication of quaternions
(a number system invented by W. R. Hamilton [6]) gives rise to a linear map
Q(h) : R4 → R4, if we make a natural identification between R4 and the algebra
of quaternions H, via Q(h)q = hq. In order to simplify notation we denote by h
the 4 × 4 matrix of Q(h). Then

U =

{

L =

[

λ h

h µ

]

∈ H+(H2) : detH L = λµ− |h|2 = 1

}

is the desired set of materials. We then compute [4]

(5) WU (F ) =

√

detH(F TF )

Using quaternions a function u : R2 → R8 will be represented by u : R2 → H2.
Then

(6) WU (∇u) =

√

∥

∥

∥

∥

∂u

∂x

∥

∥

∥

∥

2

H2

∥

∥

∥

∥

∂u

∂y

∥

∥

∥

∥

2

H2

−
∣

∣

∣

∣

(

∂u

∂x
,
∂u

∂y

)

H2

∣

∣

∣

∣

2

,

is rank-one convex, but not quasiconvex: QW (I2) < W (I2), where I2 is the
quaternionic 2× 2 identity matrix. This beautiful function has a very large group
of symmetries

• W (λF ) = λ2W (F ), ∀λ ∈ R

• W (FR) = W (F ) ∀R ∈ O(2,R)
• V (GQ) = V (G) ∀Q ∈ Sp(2) ∼= U(2,H) = {Q ∈ H2×2 : QQH = I2}

For full discussion see [4].
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Fine structure of branch sets of Dirichlet energy minimizing

multi-valued functions

Brian Krummel

(joint work with Neshan Wickramasekera)

We consider the structure of singularities for multi-valued Sobolev functions which
minimize Dirichlet energy. Dirichlet energy minimizing multi-valued functions
were introduced by Almgren [Alm83] as part of his monumental work showing
that the singular set of an n-dimensional area minimizing submanifold (i.e. inte-
gral current) of a smooth Riemannian manifold has Hausdorff dimension at most
n− 2 (also see [DeLSpa14, DeLSpa16a, DeLSpa16b]). Let M be an n-dimensional
singular submanifold of a Riemannian manifold which is a critical point of area
(i.e. let M be an area stationary integral varifold). The singular set singM is
the set of points p ∈ M for which there is no δ > 0 such that M ∩ Bδ(p)
is a smoothly embedded submanifold (with constant integer multiplicity). For
general n-dimensional area stationary submanifolds M , it is unknown whether
Hn(singM) = 0. This is precisely due to the presence of branch point singular-
ities, at which at least one tangent cone to M is an n-dimensional plane with
integer multiplicity ≥ 2. When M is codimension one and area minimizing, De
Giorgi [DG61] showed that branch point singularities of M do not occur and thus
by [SJ68, Fed69] dimH(singM) ≤ n− 7. When M is an area minimizing subman-
ifold of higher codimension, branch point singularities do occur; for instance, the
holomorphic variety M = {(z, w) ∈ C

2 : w2 = z3} has a branch point at the origin.
Almgren argued that at a branch point ofM at whichM is tangent to a multiplicity
q plane P , M can be approximated by the graph of a Dirichlet energy minimizing
q-valued function over P . Almgren developed a theory of Dirichlet energy mini-
mizing q-valued functions on domains in Rn, including existence of solutions to the
Dirichlet problem, interior Hölder continuity of Dirichlet energy minimizers, and
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optimal dimension bound for the singular set of dimH(singu) ≤ n − 2. He then
used this in an intricate blow-up method to deduce that dimH(singM) ≤ n − 2
for an n-dimensional area minimizing submanifold M .

Let n,m ≥ 1 and q ≥ 2 be integers. We let Aq(R
m) denote the space of all sums

a =
∑q
i=1JaiK of q Dirac point masses JaiK at points ai ∈ Rm, where the points ai

are unordered and may repeat. We equip Aq(R
m) with the metric G defined by

G(a, b) = min
σ

(

q
∑

i=1

|ai − bσ(i)|2
)1/2

for all a =
∑q

i=1JaiK, b =
∑q
i=1JbiK ∈ Aq(R

m), where the infimum is over all
permutations σ of {1, 2, . . . , q}. A q-valued function u : Ω → Aq(R

m) is a map
from a domain Ω ⊂ Rn into Aq(R

m). Since (Aq(R
m),G) is a metric space, we

may define the spaces of continuous, Hölder continuous, and Lp (1 ≤ p ≤ ∞) q-
valued functions in the usual way and we may define the space of Sobolev q-valued
functions W 1,2(Ω,Aq(R

m)) via theory of Sobolev functions taking values in a
metric space as independently developed by [Amb90] and [Res04], see [DeLSpa11].
The Dirichlet energy of u ∈W 1,2(Ω,Aq(R

m)) over the domain Ω is given by

∫

Ω

q
∑

i=1

|Dui(Z)|2 dZ

where X 7→∑q
i=1Jui(Z) +Dui(Z) · (X −Z)K is the q-valued affine approximation

of u at Ln-a.e. Z ∈ Ω (see [DeLSpa11, Definition 2.6, Corollary 2.7]). We say the
q-valued Sobolev function u ∈W 1,2(Ω,Aq(R

m)) is Dirichlet energy minimizing if

∫

K

q
∑

i=1

|Dui(Z)|2 dZ ≤
∫

K

q
∑

i=1

|Dvi(Z)|2 dZ

for all v ∈ W 1,2(Ω,Aq(R
m)) such that u = v in Ω \K for some compact subset

K ⊂ Ω.
The singular set Σu of a Dirichlet energy minimizing function

u ∈ W 1,2(Ω,Aq(R
m)) is the set of all points Y ∈ Ω such that there is no δ > 0

such that u(X) =
∑q
i=1Jui(X)K on Bδ(Y ) for some single-valued harmonic func-

tions ui : Bδ(Y ) → Rm such that for each i 6= j either ui ≡ uj on Bδ(Y ) or
ui(X) 6= uj(X) for all X ∈ Bδ(Y ). We let

Σu,q = {Y ∈ Σu : u(Y ) = qJu1(Y )K for some u1(Y ) ∈ R
m}.

Define ua : Ω → Rm and uf : Ω → Aq(R
m) by

ua(X) =
1

q

q
∑

i=1

ui(X), uf(X) =

q
∑

i=1

Jui(X) − ua(X)K.

Since u is Dirichlet energy minimizing, ua is a single-valued harmonic function and
uf is a q-valued Dirichlet energy minimizing function with zero average. Moreover,
Σu,q = Σuf ,q. Thus to study the local structure of Σu,q, it suffices to assume that
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u is average-free, i.e. ua ≡ 0 on Ω. If u is average-free and not identically zero,
then

Σu,q = {Y ∈ Ω : u(Y ) = qJ0K}.
To each average-free, Dirichlet energy minimizing, q-valued function u : Ω →

Aq(R
m) and each Y ∈ Σu,q we associate the frequency function Nu,Y defined by

Nu,Y (ρ) =
ρ2−n

∫

Bρ(Y )

∑q
i=1 |Dui|2

ρ1−n
∫

∂Bρ(Y )

∑q
i=1 |ui|2

for each 0 < ρ < dist(Y, ∂Ω). Almgren’s fundamental observation was that
Nu,Y (ρ) is monotone nondecreasing as a function of ρ. Consequently, we can
define the frequency Nu(Y ) of u at Y by

Nu(Y ) = lim
ρ↓0

Nu(Y ).

We know that there exists at least one nonzero, average-free, Dirichlet energy
minimizing, homogeneous degree Nu(Y ), q-valued function ϕ : R

n → Aq(R
m),

called a tangent function, such that

u(Y + ρjX)

ρ−n/2‖u‖L2(Bρj
(Y ))

→ ϕ(X)

uniformly on compact subsets of Rn for some ρj → 0+. It is open whether in
general ϕ is unique independent of the sequence (ρj). Using tangent functions in a
dimension reduction argument, Almgren showed that dimH(sing u) ≤ n− 2. One
can further show that for Hn−2-a.e. Y ∈ Σu,q there is at least one tangent function
ϕ which is translation invariant along an (n− 2)-dimensional linear subspace and
thus after an orthogonal change of coordinates takes the form

(1) ϕ(X) = m0J0K +

N
∑

j=1

mjJRe(cj(x1 + ix2)k0/q0)K

where m0 ≥ 0 and mi ≥ 1 (1 ≤ j ≤ N) are positive integers such that
∑N

i=0mi =
q, k0 ≥ 1 and q0 ∈ {1, 2, . . . , q} are relatively prime integers, and cj ∈ C

m. We

call the functions 0 and Re(cj(x1 + ix2)k0/q0) components of ϕ. Whenever after an
orthogonal change of coordinates ϕ takes the form (1), we say that ϕ is cylindrical.

In [KrumWic-1], we show that for each nonzero, average-free, Dirichlet energy
minimizing u ∈ W 1,2(Ω,Aq(R

m)) on a domain Ω ⊆ Rn, Σu,q is countably (n −
2)-rectifiable and u has a unique cylindrical tangent function at Hn−2-a.e. Y ∈
Σu,q. It then follows by induction on q and continuity that for each Dirichlet
energy minimizing u ∈ W 1,2(Ω,Aq(R

m)), the singular set Σu is countably (n− 2)-
rectifiable. Our approach involves a blow-up method of L. Simon [Sim93], which
was initially applied to multiplicity one classes of minimal submanifolds. We apply
L. Simon’s blow-up method in the higher multiplicity setting of Dirichlet energy
minimizing functions and introduce several new ideas to accomplish this.
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Let us consider an average-free Dirichlet energy minimizing function
u ∈ W 1,2(B1(0),Aq(R

m)) which is close to a homogeneous degree α cylindri-
cal function ϕ. We want to show that if u is sufficiently close to ϕ and u has
a high concentration of points of frequency ≥ α along the axis of ϕ, then the
L2-distance of u to homogeneous degree α cylindrical functions is decaying. Our
argument proceeds in four steps. In Step 1, we express graphu has the graph
of an appropriate multi-valued function over each of the components of ϕ. For
this to hold true, we must assume that u is much closer to ϕ than u is to any
cylindrical function with the same axis as ϕ and fewer components than ϕ, much
like was previously assumed in [Wic14]. Step 2 is to use the monotonicity for-
mula for frequency functions to obtain various L2 estimates for u and ϕ much like
in [Sim93], including an estimate showing that u cannot concentrate near the axis
of ϕ. Step 3 involves taking an appropriate sequence of Dirichlet energy mini-
mizers u(ν) and cylindrical function ϕ(ν) converging to a fixed cylindrical function
ϕ(0) and “blowing up” u(ν) with respect to ϕ(ν). Then we do an analysis of the
blow-ups, based on [Sim93], in order to show that the L2-distance of the blow-ups
to a homogeneous degree α blow-up is decaying. This requires rephrasing cer-
tain arguments of [Sim93] as blow-up arguments so that they apply in the higher
multiplicity setting. This also requires introducing a new estimate for u which
was obtained via a comparison argument and implies that the blow-ups satisfy
the inner variational formula (see [DeLSpa11, Section 3.1]) for variations of the
form ζ(X) (X − Z), where ζ ∈ C1

c (B1(0)) and Z is a point on the axis of ϕ(0).
Step 4 involves using a blow-up argument to show that the L2-distance of u to
homogeneous degree α cylindrical functions is decaying. Finally, the rectifiability
of Σu,q and a.e. uniqueness of cylindrical tangent functions follows by iteratively
applying the excess decay lemma like in [Sim93].
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Models for thin prestrained structures

Marta Lewicka

(joint work with Danka Lučić)

We report on our work concerned with the analysis of thin elastic films exhibiting
residual stress at free equilibria. Examples of the prestrained structures and their
actuations include: plastically strained sheets, swelling or shrinking gels, growing
tissues such as leaves, flowers or marine invertebrates, nanotubes, atomically thin
graphene layers, etc. Motivated by the idea of imposing and controlling the pre-
strain (or “misfit”) field in order to cause the plate to achieve a desired shape,
with study the forward problem based on the minimisation of the elastic energy
with incorporated inelastic effects.

0.1. The set-up. Let ω ⊂ R2 be an open, bounded, connected set with Lipschitz
boundary. We consider a family of thin hyperelastic sheets occupying the domains:

Ωh = ω ×
(

− h

2
,
h

2

)

⊂ R
3, 0 < h≪ 1.

A typical point in Ωh is denoted by x = (x′, x3). For h = 1 we use the notation
Ω = Ω1 and view Ω as the referential rescaling of each Ωh. We study the singular
limit behaviour, as h → 0, of the following energy functionals defined on vector
fields uh ∈ W 1,2(Ωh,R3), that are interpreted as deformations of Ωh:

(1) Eh(uh) =
1

h

∫

Ωh

W
(

∇uh(x)Gh(x)−1/2
)

dx,

The films are characterized by smooth incompatibility (Riemann metric) tensors
Gh, satisfying the structure assumption, referred to as “oscillatory”:

(O)



















Oscillatory case :

Gh(x) = Gh(x′,
x3
h

) for all x = (x′, x3) ∈ Ωh,

Gh(x′, t) = Ḡ(x′) + hG1(x′, t) +
h2

2
G2(x′, t) + o(h2) ∈ C∞(Ω̄,R3×3

sym,pos),

where
∫ 1/2

−1/2 G1(x′, t) dt = 0 for all x′ ∈ ω̄.

The requirement of Ḡ being independent of the transversal variable t ∈ (−1/2, 1/2)
is essential for the energy scaling order: inf Eh ≤ Ch2. The zero mean requirement

on G1 can be relaxed to requesting that
∫ 1/2

−1/2 G1(x′, t)2×2 dt be a linear strain
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with respect to the leading order midplate metric (Ḡ1)2×2 or it can be removed
altogether (which will be the content of future work).This set-up includes a subcase
of a single metric Gh = G, upon taking: G1(x′, t) = tḠ1(x′), G2(x′, t) = t2Ḡ2(x′).
We refer to this special case as “non-oscillatory’’:

(NO)











Non-oscillatory case :

Gh = G|Ω̄h for some G ∈ C∞(Ω̄,R3×3
sym,pos),

Gh(x) = Ḡ(x′)+x3∂3G(x′, 0)+
x23
2
∂33G(x′, 0)+o(x23) for all x =∈ Ωh.

Mechanically, the assumption (NO) describes thin sheets that have been cut out
of a single specimen block Ω, prestrained according to a fixed (though arbitrary)
tensor G. The general case (O) can be reduced to (NO) via the following:

(EF)



















Effective non-oscillatory case :

Ḡh(x) = Ḡ(x) = Ḡ(x′)+x3Ḡ1(x′)+
x23
2
Ḡ2(x′) for all x = (x′, x3) ∈ Ωh,

where: Ḡ1(x′)2×2 = 12
∫ 1/2

−1/2
t(G1))2×2 dt, Ḡ1(x′)e3 = −60

∫ 1/2

−1/2
(2t3 −

1
2 t)G1e3 dt, Ḡ2(x′)2×2 = 30

∫ 1/2

−1/2(6t2 − 1
2 )(G2)2×2 dt.

0.2. Singular energies in the non-oscillatory case.
0.2.1. Kirchhoff scaling regime. In the setting of (NO), the Γ-limit of 1

h2 Eh is:

I2(y) =
1

2

∥

∥Tensor2
∥

∥

2

Q2
=

1

2

∥

∥x3
(

(∇y)T∇~b
)

sym
− 1

2
x3∂3G(x′, 0)2×2

∥

∥

2

Q2

=
1

24

∥

∥

(

(∇y)T∇~b
)

sym
− 1

2
∂3G(x′, 0)2×2

∥

∥

2

Q2
.

Above, ‖ · ‖Q2
is a weighted L2 norm on the space E of R2×2

sym -valued tensor fields
on Ω. The weights are determined by the density W and the leading order metric
coefficient Ḡ. The functional I2 is defined on the set of isometric immersions {y ∈
W 2,2(ω,R3); (∇y)T∇y = Ḡ2×2}; each such immersion generates the corresponding

Cosserat vector ~b, uniquely given by requesting:
[

∂1y, ∂2y, ~b
]

∈ SO(3)Ḡ1/2 on ω.
The energy I2 measures the bending quantity Tensor2, linear in x3 and result-

ing in its reduction to the single nonlinear bending term, that equals the difference

of the curvature form
(

(∇y)T∇~b
)

sym
from the preferred curvature 1

2∂3G(x′, 0)2×2.

We then identify the necessary and sufficient conditions for min I2 = 0, in terms
of the vanishing of the Riemann curvatures R1212, R1213, R1223 of G at x3 = 0. In
this case, it follows that inf Eh ≤ Ch4.

0.2.2. Von Kármán scaling regime. We derive the Γ-limit of 1
h4 Eh, which is:

I4(V, S) =
1

2

∥

∥Tensor4
∥

∥

2

Q2
,

defined on the spaces:

Sy0 = {S = lim
n→∞,L2

(

(∇y0)T∇wn
)

sym
; wn ∈W 1,2(ω,R3)}
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and Vy0 = {V ∈ W 2,2(ω,R3);
(

(∇y0)T∇V
)

sym
= 0} on the deformed midplate

y0(ω) ⊂ R3. Here, y0 is the unique smooth isometric immersion of Ḡ2×2 for which
I2(y0) = 0. The expression in Tensor4 is quite complicated but it has the structure
of a quadratic polynomial in x3. A key tool for identifying this expression, also
in the general case (O), involves the subspaces {En ⊂ E}n≥1 consisting of the
tensorial polynomials in x3 of order n. The bases of {En} are then naturally given
in terms of the Legendre polynomials {pn}n≥0 on (− 1

2 ,
1
2 ). Since Tensor4 ∈ E2,

we write the decomposition:

Tensor4 = p0(x3)Stretching4 + p1(x3)Bending4 + p2(x3)Curvature4,

which results in:

I4(V, S) =
1

2

(

∥

∥Stretching4
∥

∥

2

Q2
+
∥

∥Bending4
∥

∥

2

Q2
+
∥

∥Curvature4
∥

∥

2

Q2

)

=
1

2

∥

∥S +
1

2
(∇V )T∇V +

1

24
(∇~b0)T∇~b0 −

1

48
∂33G(x′, 0)2×2

∥

∥

2

Q2

+
1

24

∥

∥

[

〈∇i∇jV,~b0〉
]

i,j=1,2

∥

∥

2

Q2
+

1

1440

∥

∥

[

Ri3j3(x′, 0)
]

i,j=1,2

∥

∥

2

Q2
.

Above, ∇i denotes the covariant differentiation with respect to the metric Ḡ and
Ri3j3 are the potentially non-zero curvatures of G on ω at x3 = 0.

The necessary and sufficient conditions for having min I4 = 0 are precisely
that Rijkl ≡ 0 on ω × {0}, for all i, j, k, l = 1 . . . 3. In that case, we show
that inf Eh ≤ Ch6 and also identify the curvature term that will be present
in the corresponding decomposition of Tensor6; it is

[

∂3Ri3j3(x′, 0)
]

i,j=1,2
=

[

∇3Ri3j3(x′, 0)
]

i,j=1,2
which in view of the second Bianchi identity carries the

only potentially non-vanishing components of the covariant gradient ∇Riem(x′, 0).
This finding is consistent with analyzing the conformal non-oscillatory metric
G = e2φ(x3)Id3, where different orders of vanishing of φ at x3 = 0 correspond
to different even orders of scaling of Eh as h→ 0, together with the lower bound:

inf Eh ≥ cnh
n
∥

∥

[

∂
(n−2)
3 Ri3j3(x′, 0)

]

i,j=1,2

∥

∥

2

Q2
.

0.3. Singular energies in the oscillatory case. The analysis in the general case
(O) may follow a similar procedure, where we first project the limiting quantity
TensorO on an appropriate polynomial space and then decompose the projection
along the respective Legendre basis. For the Γ-limit of 1

h2 Eh, we write:

TensorO2

= x3
(

(∇y)T∇~b
)

sym
− 1

2
(G1)2×2 = p0(x3)StretchingO2 + p1(x3)BendingO2

+ Excess2, with Excess2 = TensorO2 − P1(TensorO2 ).

Consequently:

IO2 (y) =
1

2

(

∥

∥StretchingO2
∥

∥

2

Q2
+
∥

∥BendingO2
∥

∥

2

Q2
+
∥

∥Excess2
∥

∥

2

Q2

)

=
1

24

∥

∥

(

(∇y)T∇~b
)

sym
− 1

2
(Ḡ1)2×2

∥

∥

2

Q2
+

1

8
dist2Q2

(

(G1)2×2,E1

)

,
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where again StretchingO2 = 0 in view of the assumed
∫ 1/2

−1/2
G1 dx3 = 0. For the

same reason: P1

(

(G1)2×2

)

= x3(Ḡ1)2×2 with (Ḡ1)2×2 defined in (EF). The limiting

oscillatory energy IO2 consists thus of the bending term that coincides with I2 for
the effective metric Ḡ, plus the purely metric-related excess term.

It is easy to observe that: min IO2 = 0 if and only if (G1)2×2 = x3(Ḡ1)2×2 on
ω×{0}, which automatically implies: inf Eh ≤ Ch4. The Γ-limit of 1

h4 Eh is further
derived by considering the decomposition:

TensorO4

= p0(x3)StretchingO4 + p1(x3)BendingO4 + p2(x3)CurvatureO4 + Excess4,

with Excess4 = TensorO4 − P2(TensorO4 ).

It follows that:

IO4 (V, S) =
1

2

(

∥

∥Stret.O4
∥

∥

2

Q2
+
∥

∥Bend.O4
∥

∥

2

Q2
+
∥

∥Curv.O4
∥

∥

2

Q2
+
∥

∥Excess4
∥

∥

2

Q2

)

=
1

2

∥

∥S +
1

2
(∇V )T∇V +B0

∥

∥

2

Q2
+

1

24

∥

∥

[

〈∇i∇jV,~b0〉
]

i,j=1,2
+B1

∥

∥

2

Q2

+
1

1440

∥

∥

[

Ri3j3(x′, 0)
]

i,j=1,2

∥

∥

2

Q2

+
1

2
dist2Q2

(1

4
(G2)2×2 −

∫ x3

0

[

∇i

(

(G1e3) − 1

2
(G1)33e3

)]

i,j=1,2,sym
dt,E2

)

,

where R1313, R1323, R2323 are the respective Riemann curvatures of the effective
metric Ḡ in (EF) at x3 = 0. The corrections B0 and B1 coincide with the same
expressions written for Ḡ under two extra constraints that can be seen as the

h4-order counterparts of the h2-order condition
∫ 1/2

−1/2
G1 dx3 = 0 that has been

assumed throughout. In case these conditions are valid, the functional IO4 is
the sum of the effective stretching, bending and curvature in I4 for Ḡ, plus the
additional purely metric-related excess term.

0.4. Coercivity of I2 and I4. We additionally analyze the derived limiting func-
tionals by identifying their kernels, when nonempty. The kernel of I2 consists of
the rigid motions of a single smooth deformation y0 that solves:

(∇y0)T∇y0 = Ḡ2×2,
(

(∇y0)T∇~b0
)

sym
=

1

2
∂3G(x′, 0)2×2.

Further, I2(y) bounds from above the squared distance of an arbitrary W 2,2 iso-
metric immersion y of the midplate metric Ḡ2×2, from the indicated kernel of I2.

For the case of I4, we first identify the zero-energy displacement-strain couples
(V, S) and show that the minimizing displacements are exactly the linearised rigid
motions of the referential y0. We then prove that the bending term in I4, which
is solely a function of V , bounds from above the squared distance of an arbitrary
W 2,2 displacement obeying

(

(∇y0)T∇V
)

sym
= 0, from the indicated minimizing

set in V . On the other hand, the full coercivity result involving minimization in
both V and S is false. We exhibit an example in the setting of the classical von
Kármán functional, where I4(Vn, Sn) → 0 as n→ ∞, but the distance of (Vn, Sn)
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from the kernel of I4 remains uniformly bounded away from 0. We note that this
lack of coercivity is not prevented by the fact that the kernel is finite dimensional.

Critical and almost-critical points in isoperimetric problems

Francesco Maggi

(joint work with M. Delgadino, C. Mihaila, R. Neumayer)

De Giorgi’s isoperimetric inequality [1] states that if Ω is a measurable set with
finite volume |Ω| <∞, then the distributional perimeter P (Ω) of Ω satisfies

(1) P (Ω) ≥ (n+ 1) |B1|1/(n+1) |Ω|n/(n+1) B1 = {x : |x| < 1} ,
with equality if and only if Ω is a equivalent to a ball. In other words, among
sets of finite perimeter (SFP) with fixed volume, balls are the unique minimizers
of perimeter. Looking more generally at critical points, rather than at minimizers,
for a variation ft(x) = x+ tX(x) +O(t2) with X ∈ C1

c (Rn+1;Rn+1) we have that

d

dt

∣

∣

∣

∣

t=0

|ft(Ω)| =

∫

Ω

divX =

∫

∂∗Ω

X · νΩ ,
d

dt

∣

∣

∣

∣

t=0

P
(

ft(Ω)
)

=

∫

∂∗Ω

div∂
∗ΩX .

Thus a critical point of perimeter must satisfy, for a constant λ,

(2)

∫

∂∗Ω

div∂
∗ΩX = λ

∫

∂∗Ω

X · νΩ , ∀X ∈ C1
c .

Here ∂∗Ω is the reduced boundary of Ω, νΩ the outer unit normal to Ω in the
measure theoretic sense, and, necessarily, λ = H0

Ω, where

H0
Ω =

nP (Ω)

(n+ 1) |Ω| .

When ∂Ω ∈ C2, then (2) is equivalent to HΩ ≡ H0
Ω along ∂Ω, where HΩ denotes

the mean curvature of Ω (w.r.t. νΩ); moreover, in this case, |Ω| < ∞ implies
that Ω is bounded (by area monotonicity), and so the moving planes method of
Alexandrov [2] can be applied to conclude that among C2-sets with fixed volume,
balls are the unique critical points of perimeter. The gap in the characterization
of critical points between C2-sets and finite perimeter sets is addressed in a joint
paper with Delgadino [3], where we prove the following theorem.

Theorem [Alexandrov’s theorem revisited] Among sets of finite perimeter with
fixed volume, finite unions of balls are the unique critical points of perimeter.

Wente’s torus is a non-shperical example of a 2-dimensional stationary unit
density integer rectifiable varifold in R3 with constant mean curvature (CMC). As
an immediate corollary,

Compactness I: If {Ωj}j is a sequence of sets of finite perimeter and finite
volume with Ωj → Ω in L1, such that there exists a constant λ with
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(3) lim
j→∞

P (Ωj) = P (Ω) lim
j→∞

∫

∂∗Ωj

{

div∂
∗Ωj X − λ X · νΩj

}

= 0 ,

whenever X ∈ C1
c , then Ω is a finite union of balls.

This compactness statement is interesting in view of the many variational prob-
lems where almost-CMC boundaries arise. Examples include capillarity type prob-
lems, CMC-foliations in general relativity, and long-time behavior of weak solu-
tions to mean curvature flows (MCF). Weak solutions to the volume preserving
MCF are generally constructed as families of SFP {Ω(t)}t≥0 with distributional
mean curvature Ht ∈ L2(Hnx∂∗Ω(t)), and satisfy the dissipation inequality

(4)

∫ ∞

0

dt

∫

∂∗Ω(t)

(Ht − 〈Ht〉)2 dHn ≤ P (Ω(0)) <∞ .

Now assume, for a sequence of times tj → ∞, that: (i) the averages 〈Htj 〉 are

bounded; (ii) there exists Ω such that Ω(tj) → Ω in L1 and P (Ω(tj)) → P (Ω);
and (iii) exploiting (4), and up to extracting subsequences, that

lim
j→∞

∫

∂∗Ω(tj)

(Htj − 〈Htj 〉)2 dHn = 0 .

Then Ω is necessarily a finite union of balls, thanks to Compactness I. The assump-
tion P (Ωj) → P (Ω) in Compactness I can be dropped if working with smooth sets
with HΩj

converging to a constant in L2, and satisfying a uniform mean convexity
bound. More precisely, in a joint paper with Delgadino, Mihaila and Neumayer
[4] we proved:

Compactness II: If {Ωj}j is a sequence of open sets with smooth boundary and
finite volume, normalized by scaling so to have H0

Ωj
= n = HB1

and such that for
a constant κ > 0

HΩj
≥ κ on ∂Ωj

then

Ωj → Ω in L1 and lim
j→∞

∫

∂Ωj

|HΩj
− n|2 = 0

imply that Ω is a finite union of unit balls and that P (Ωj) → P (Ω).

This second compactness statement is a particular case of a more general com-
pactness result, related to the anisotropic version of Alexandrov’s theorem. Define
a geometric integrand to be a convex, one-homogenous function F : Rn+1 → [0,∞),
positive on the sphere. The Wulff shape of F is the bounded open convex set WF ,

WF =
⋂

ν∈Sn

{

x ∈ R
n+1 : x · ν < F (ν)

}

.

The isoperimetric inequality (1) holds with WF in place of B1, and with the
anisotropic energy

F(Ω) =

∫

∂∗Ω

F (νΩ) dHn
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in place of P (Ω). In particular, among SFP with fixed volume, F -Wulff shapes are
the unique minimizers of F [7]. Given a variation ft(x) = x+ tX(x) +O(t2), the
convexity of F implies the existence of the first variation

δF|Ω(X) = lim
t→0+

F(ft(Ω)) .

If Ω is a local minimizer of F at fixed volume, then δF|Ω(X) ≥ 0 on every X ∈ C1
c

s.t.
∫

∂∗Ω
X · νΩ = 0. A set of finite perimeter satisfying this property is a critical

point of F at fixed volume.

Conjecture: F -Wulff shapes are the unique sets of finite perimeter and finite
volume that are critical points of F at fixed volume.

This anisotropic version of Alexandrov’s theorem is open even when Ω is as-
sumed to be an open set with Lipschitz boundary rather than to be merely of finite
perimeter. To the best of our knowledge this question seems to have been consid-
ered for the first time in a paper of Morgan [6], where it is affirmatively solved in the
planar case, and, actually, in the most general case of immersed closed rectifiable
curves. When F is smooth and λ-uniformly elliptic (i.e., λ Id ≤ ∇2F (ν) ≤ Id/λ on
ν⊥ for every ν), and Ω has a C2-boundary, then the condition of being a critical
point of F at fixed volume translates into

HF
Ω = div∂Ω(∇F (νΩ))

being constant. (By construction, we always have HF
WF

= n.) Assuming that Ω is

bounded, as proved by He, Li, Ma and Ge [5], HF
Ω is constant if and only if Ω is

an F -Wulff shape. From the physical viewpoint, the most significant case would
however be that of crystalline integrands F , obtained as maxima of finitely many
linear functions. In the joint paper [4] with Delgadino, Mihaila and Neumayer,
we proved the following result, pointing to the validity of the above conjecture for
every integrand F .

Compactness III: If {Fj}j is a sequence of smooth, λj-elliptic integrands with
m ≤ Fj ≤ M for uniformly-in-j positive constants m and M ; and if {Ωj}j is
a sequence of open sets with smooth boundary and finite volume, normalized by
scaling so to have nFj(Ωj)/[(n+ 1)|Ωj |] = n and such that for a constant κ > 0

(5) H
Fj

Ωj
≥ κ on ∂Ωj ;

then

(6) Fj → F on Rn+1 Ωj → Ω in L1 lim
j→∞

1

λ2j

∫

∂Ωj

|HFj

Ωj
− n|2 = 0

imply that Ω is a finite union of F -Wulff shapes, with Fj(Ωj) → F(Ω).

The conjecture would follow from Compactness III by solving the following:

Approximation problem: Given a geometric integrand F , consider a bounded
open set Ω with boundary at most as regular as that of WF , and which is a critical
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point of F at fixed volume. Construct sequences {Fj}j of smooth λj-elliptic inte-
grands, and {Ωj}j of bounded smooth sets satisfying (5) for some uniform κ > 0,
in such a way that (6) holds.
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Minimal surfaces and the Allen–Cahn equation on 3-manifolds

Christos Mantoulidis

(joint work with Otis Chodosh)

Fix (M3, g) to be a closed Riemannian 3-manifold. The Allen–Cahn equation

(1) ε2∆gu = W ′(u)

is a semilinear PDE which is deeply linked to the theory of minimal hypersurfaces.
For instance, it is known that the Allen–Cahn functional

Eε[u] :=

∫

M

(

ε

2
|∇u|2 +

W (u)

ε

)

dµg,

whose critical points satisfy (1), Γ-converges as ε→ 0 to the perimeter functional
[12, 14] and the level sets of Eε-minimizing solutions to (1) converge as ε → 0 to
area-minimizing boundaries. When u is not Eε-minimizing, the limit may occur
with high multiplicity. Together with Otis Chodosh we studied solutions to (1)
on 3-manifolds with uniform Eε-bounds and uniform Morse index bounds and
showed that multiplicity does not occur when the metric g is “bumpy,” i.e., when
no immersed minimal surface carries nontrivial Jacobi fields; bumpy metrics are
generic in the sense of Baire category—see White [16]. This resolves a strong form
of the “multiplicity one” conjecture of Marques–Neves [10] for Allen–Cahn. Our
main theorem is:

Theorem 1 ([1]). Suppose that ui are critical points of Eεi with εi → 0 and

Eεi [ui] ≤ E0, ind(ui) ≤ I0 for all i = 1, 2, . . .
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Passing to a subsequence, for each t ∈ (−1, 1), {ui = t} converges in the Hausdorff

sense and in C2,α
loc away from ≤ I0 points to a smooth closed minimal surface Σ.

For any connected component Σ′ ⊂ Σ, either:

• Σ′ is two-sided and occurs as a multiplicity one graphical C2,α limit; or,
• Σ′ is a two-sided stable minimal surface with a positive Jacobi field and
which occurs as multiplicity two limit or higher; or

• Σ′ is one-sided and its two-sided double cover is a stable minimal surface
with a positive Jacobi field.

The case I0 = 0 of Theorem 1 is largely a consequence of Theorem 2 below:

Theorem 2 ([1]). Let u be a stable critical point of Eε. As ε→ 0 we have

(2) exp(−
√

2ε−1 distg(x, x
′)) = o(ε2| log ε|),

for any x, x′ that belong to different connected components of {u = 0}, as well as

‖H‖C0({u=t}) = o(ε| log ε|),(3)

‖A‖C0,α({u=t}) = O(1)(4)

for the mean curvature H and the second fundamental form A of {u = t}, |t| ≤
1 − β. Here α, β ∈ (0, 1), and the constants depend on α, β, Eε[u], M , g.

This theorem is based on sharpening some recent novel work of Wang–Wei [15]
that resolved the “finite index implies finitely many ends” Allen–Cahn conjecture
without energy bounds in R2. Their remarkable insight was the reduction of the
question of regularity to a question about the distance among the sheets comprising
{u = 0}. We remark that (2)-(3) are stronger than the bounds obtained in [15] (on
the other hand, we have dependence on Eε[u]). Though bounds on the order of
those in [15] suffice for obtaining C2,α estimates for some α ∈ (0, 1), the stronger
bounds stated in (2)-(3) ensure that the level sets are mean curvature dominated
and play a crucial role for our geometric applications.

Our other result, which is proved for all ambient dimensions, is a resolution of the
“index lower bound” conjecture of Marques–Neves [10] (for Allen–Cahn):

Theorem 3 ([1]). Suppose that ui are critical points of Eεi with εi → 0 and
{ui = t} converging to a smooth two-sided minimal hypersurface Σ with multiplicity
one. Then, after possibly passing to a subsequence,

ind(Σ) ≤ lim
i

ind(ui)(5)

≤ lim
i

[ind(ui) + nul(ui)] ≤ ind(Σ) + nul(Σ).(6)

Only the last inequality, (6), is new to [1]; (5) was previously shown to be true
by Gaspar [4] without two-sidedness or multiplicity one assumptions. (See also
the works of Hiesmayr [7], Le [13].) To prove (6), one needs to obtain a very
precise understanding of how {ui = t} tend to Σ. To do so, we borrow ideas from
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[2] where the authors studied the index and nullity for solutions of (1) that they
constructed; an added difficulty is that in our case the ui are essentially arbitrary.

Finally we point out an important consequence of this work to the study of minimal
surfaces in closed Riemannian 3-manifolds (M3, g). Recall the following minmax
construction of Gaspar–Guaraco (which works for ambient dimensions 3 ≤ n ≤ 7):

Theorem 4 (Gaspar–Guaraco [5]). Let p ∈ {1, 2, 3, . . .}. For all sufficiently small
ε > 0, there exists a critical point uε,p of Eε with

(7) Eε[uε,p] ∼ p1/3, and

(8) ind(uε,p) ≤ p ≤ ind(uε,p) + nul(uε,p).

Let us now assume that the metric g on M is bumpy, i.e., that there are no closed
immersed minimal surfaces that carry nontrivial Jacobi fields. Invoking Theorems
1, 3, 4, together with the bumpiness condition and Ejiri–Micallef [3], we obtain a
closed embedded minimal hypersurface Σp with

(9) |Σp| ∼ p1/3, ind(Σ) = p, genus(Σp) ≥ 1
6p−O(p1/3).

In particular, we resolve a conjecture due to Yau [17] in the case of bumpy metrics:

Corollary 1. Any closed (M3, g) with a bumpy metric g contains infinitely many
closed embedded minimal surfaces. They satisfy (9).

Irie–Marques–Neves [8] previously resolved Yau’s conjecture in a Baire-generic
sense using the Liokumovich–Marques–Neves Weyl law for the Almgren–Pitts
width spectrum [9]. See also the more recent work of Gaspar–Guaraco [6] who
proved the Weyl law in the Allen–Cahn setting and obtained similar conclusions
as [8]. Our corollary also carries through when Ricg > 0; see also the previous
work of Marques–Neves [11] using Almgren–Pitts in this same setting.

Remark. Theorems 2-3 are stated for closed manifolds, i.e., those without bound-
ary, but there are analogs in case ∂M 6= ∅. See [1].
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Regularity vs. singularity for elliptic and parabolic systems

Connor Mooney

We consider the regularity of minimizers and gradient flows of variational integrals
of the form

(1) E(u) :=

∫

B1

F (Du) dx.

Here u is a map from B1 ⊂ Rn → Rm, and F is smooth and uniformly convex on
Mm×n with bounded second derivatives.

We first discuss minimizers. By a minimizer we mean that u ∈ H1(B1) and
E(u + ϕ) ≥ E(u) for all maps ϕ ∈ C1

0 (B1). Minimizers solve the Euler-Lagrange
system ∂i(Fpα

i
(Du)) = 0, 1 ≤ α ≤ m. Morrey showed that minimizers are smooth

when n = 2 [Mo]. De Giorgi [DG1] and Nash [Na] showed the smoothness of
minimizers in the scalar case m = 1. In each case, the approach is to differ-
entiate the Euler-Lagrange system and treat the problem as a linear system for
the derivatives of u with measurable coefficients. Counterexamples of De Giorgi
[DG2], Giusti-Miranda [GM], Maz’ya [Ma], and later Frehse [F] show that this
technique fails when n ≥ 3, m ≥ 2. Singular minimizers of functionals of the type
(1) were first constructed by Nečas in dimension m = n2 large [Ne]. Šverák-Yan
later constructed counterexamples in the cases n = 3, m = 5 and n = 4, m = 3
[SY1], [SY2]. The cases n = 3, m = 2 or 3, which are particularly interesting for
applications, remained open (see e.g. [Gi]). In recent joint work with O. Savin we
prove [MS]:
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Theorem 1. There exists a one-homogeneous singular minimizer to a functional
of the type (1) with n = 3, m = 2.

By the previous results, these dimensions are the lowest possible. The example is
based on the construction of a singular minimizer in the scalar case with degenerate
convex integrand. By considering a pair of such minimizers, we obtain a map
into R2 which solves a de-coupled Euler-Lagrange system of two equations with
degenerate convex integrand on M2×3. However, we arrange that at least one of
the components solves a uniformly elliptic equation at each point, which allows us
to remove the degeneracy of the integrand in the vectorial case.

We now discuss the parabolic case. The gradient flow of E is a map w ∈ L2
tH

1
x

from B1×(−1, 0] ⊂ Rn×R → Rm that solves the system ∂tw = ∂i(Fpα
i

(Dw)), 1 ≤
α ≤ m. Nash proved the smoothness of gradient flows in the scalar casem = 1 [Na].
Nečas-Šverák later proved the smoothness of gradient flows in the case n = 2 [NS].
Unlike the elliptic case, the result in [NS] relies on a higher-integrability result
for linear parabolic systems with measurable coefficients rather than a continuity
result. The continuity of solutions to such systems in the case n = 2 remained open
for some time ([SJM], [SJ1], [SJ2]). In recent work we construct a counterexample
to continuity for solutions to linear uniformly parabolic systems in 2D [M1]:

Theorem 2. There exists a solution v : R2×(−∞, 0] → R2 to a linear, uniformly
parabolic system of the form ∂tv = div(A(x, t)Dv) with measurable coefficients,
such that v is globally bounded and smooth up to t = 0 away from (0, 0) but
discontinuous at (0, 0).

To construct the example we impose the self-similarity v = V(x/
√−t). This re-

duces the problem to finding a global bounded solution V to an elliptic system
with a gradient term. An important feature of our construction is that |V| is
radially decreasing near ∞, and V(0) = 0. Each component of V solves a scalar
equation, except for in an annulus where it takes a local maximum. By introduc-
ing coupling coefficients in this annulus, we can cancel the error in each equation
without breaking the ellipticity of the system.

The result in [M1] is surprising at first because solutions to linear uniformly
elliptic systems are continuous in 2D. In recent work we clarify the picture by
showing that solutions to linear uniformly parabolic systems are in general only
slightly better than parabolic energy estimates allow [M2]:

Theorem 3. For all n ≥ 2 and δ > 0, there exists a solution v to a linear,
uniformly parabolic system of two equations on Rn × R such that

lim
t→0−

‖v‖L2+δ
x (B1×{−t}) = ∞, lim

t→0−
‖∇v‖L2+δ(B1×(−1,−t)) = ∞.

The examples we construct are in fact C-valued solutions to uniformly parabolic
equations with C-valued coefficients, and can be viewed as parabolic analogues
of elliptic examples previously constructed by Frehse [F]. They are spiraling-
homogeneous of negative degree under parabolic rescalings. The key observation is
that the asymptotic shape of such solutions on the time slice {t = −1} distinguishes
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parabolic energy estimates from elliptic ones in R
n. Our examples in fact tend to

elliptic counterexamples from two dimensions higher at t = 0. In [M2] we prove
Liouville theorems that make precise the connection between parabolic systems in
Rn × R and elliptic systems in Rn+2, and also explain why previous approaches
([SJM], [FM]) only produced “elliptic” discontinuities.
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n-uniform measures: examples and characterizations

Abdalla Dali Nimer

n-uniform measures are measures that satisfy the following property: there exists
c > 0 such that for every x in the support of µ, for every r > 0, we have:

µ(Br(x)) = crn.

They were first studied by David Preiss in the proof of his seminal theorem on
the rectifiability of measures. Since his work on the classification of codimension
1 n-uniform measures with Kowalski, only one non-flat such measure was known.

We present our results on n-uniform measures that include a new family of
examples, a characterization of the geometry of their support and a classification
result in codimension 2.

We show that the support of a conical 3-uniform measure is a cone over a finite
union of disjoint 2-spheres. We isolate the condition of distance symmetry of the
centers of those 2-spheres as a sufficient condition to guarantee that a measure is
3-uniform.

We finally present a family of examples arising from a family of distance sym-
metric configuration of centers.

Almost conically deformed thin elastic sheets

Heiner Olbermann

In this contribution, we are concerned with nearly conical deformations of thin
elastic sheets from the variational point of view. The elastic sheet is modeled as
the two-dimensional ball B1 ⊂ R2, and to a deformation y : B1 → R3 we associate
the free energy

(1) Ih,∆(y) =

∫

B1

(

|gy − g0|2 + h2|D2y|2
)

dx ,

where gy = DyTDy is the metric that is induced on B1 by pulling back the
Euclidean metric on R3 by y, g0 is some given reference metric, and h is some
small scalar parameter that can be thought of as the thickness of the sheet.

A single disclination. The first variational problem that we are going to consider
arises by setting

g∆0 = dr2 + (1 − ∆2)r2dθ2 ,

with 0 < ∆ < 1, and then considering the energy functional I∆h that is obtained in
(1) when inserting g0 ≡ g∆0 . This corresponds to shortening the two-dimensional
Euclidean metric in the angular direction. The metric g∆0 is the metric on a cone of

height ∆. This cone is the image of the deformation y∆(x) =
√

1 − ∆2x+ |x|e3∆,
which has vanishing membrane energy (the first term on the right hand side of
(1)) but infinite bending energy (the second term on the right hand side of (1)).
We are not going to impose any constraints on the set of allowed deformations,
and will first be interested in deriving an energy scaling law, i.e., upper and lower
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bounds for the minimum of energy that come along as expansions in the small
parameter h. Our first result is

Theorem 1 ([3, 5]). There exists a constant C1 that only depends on ∆ such that
for h < 1

2 , we have that

2π∆2h2
(

log
1

h
− C1

)

≤ min
y∈W 2,2(B1;R3)

I∆h (y) ≤ 2π∆2h2
(

log
1

h
+ C1

)

.

The upper bound is a straightforward construction that consists in smoothing
y∆ on the ball Bh. The lower bound is proved by observing that the quantity
∑3

i=1 detD2y can be considered as a linearization of the Gauss curvature of the
graph of y. The membrane term of I∆h forces this quantity to be close to a δ-type
distribution. This yields bounds from below for integrals of the linearized Gauss
curvature over balls Bρ, with h . ρ < 1. By a certain Sobolev-type inequality,
this yields lower bounds on

∑

iH1(Dyi(∂Bρ)), which in turn can be translated in
a lower bound for the bending term in I∆h . This idea has been first put forward
in [2].

Even more can be said about (almost-) minimizers of I∆h :

Corollary 1 ([5]). For h → 0, let ỹh be a sequence that satisfies I∆h (ỹh) ≤
2π∆2h2

(

log 1
h + C1

)

. Then up to subsequences and up to Euclidean motions, for
every 0 < ρ < 1, we have that

ỹh ⇀ y in W 2,2(B1 \Bρ;R3) .

The proof of the corollary works by combining the energy estimates from the
theorem with rigidity results on W 2,2 isometric immersions [6, 1].

A boundary value problem for conically constrained sheets. The idea
to use Gauss curvature (or linearizations thereof) as the decisive control variable
can also be transferred to settings of flat sheets, i.e., sheets where the reference
metric is the Euclidean metric. For our result, we have to change the setting:
Instead of (1), we now consider the so-called von Kármán approximation. This
consists in writing y(x) = x + u(x) + v(x)e3, where u : B1 → R2 is the in-plane-
deformation and v : B1 → R is the out-of-plane deformation, and then treating
these components differently in the energy. Namely, the energy reads

(2) Ih,p(u, v) =

∫

B1

∣

∣

∣

∣

symDu+
1

2
Dv ⊗Dv

∣

∣

∣

∣

2

+ h2|D2v|pdx .

The standard von Kármán energy is the case p = 2. Here, we are going to assume
p ∈ (2, 83 ), which is due to our method of proof for Theorem 2 that is based on
a certain Gagliardo-Nirenberg inequality, only valid for that range. In the sequel,
we write p′ for the dual exponent fulfilling 1

p + 1
p′ = 1.

We consider the boundary condition of a so-called d-cone (short for “devel-
opable cone”). Before carrying out the von Kármán approximation, the d-cone is
described by the deformation yγ(x) = |x|γ(x/|x|), where γ : ∂B1 → S2 is a unit
speed curve, not contained in a hyperplane. Taking the boundary conditions for
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yγ and Dyγ and translating them into the von Kármán approximation yields our
class of allowed deformations (u, v) ∈ Aγ ⊂W 1,2(B1;R3)×W 2,2(B1). Our second
result is

Theorem 2 ([4]). Let p ∈ (2, 83 ). Then there exists a constant C = C(γ, p) such
that

C−1hp
′ ≤ min

(u,v)∈Aγ

Ih,p(u, v) ≤ Chp
′

.

The upper bound is again straightforward; the proof of the lower bound works
by observing that the boundary conditions for Dv allow for a lower bound of the
(von Kármán) Gauss curvature detD2v in the negative Sobolev space W−1,p. By
an appropriate Gagliardo-Nirenberg inequality, this translates to a lower bound of
a certain product of the norms of detD2v in the spaces W−2,2 and Lp/2. These
norms in turn are lower bounds for the membrane and bending term in the energy
(2).
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A variational approach to regularity for the Monge-Ampère equation,

and an application to the matching problem

Felix Otto

(joint work with Michael Goldman, Martin Huesmann)

We present a One-step Improvement Lemma for the Monge-Ampère equation with
rough right hand side. Its proof is purely variational, passing via the Optimal
Transport formulation in its Eulerian version (Benamou-Brenier), and is orthog-
onal to the maximum principle-based approach (Caffarelli). In fact, the lemma
states that if the local transportation cost is small and the given measures weakly
close to the uniform distribution, then the displacement is close to a harmonic
gradient, with homogeneities as for a linear problem. On the one hand, by Cam-
panato iteration, this gives rise to an ǫ-regularity result and partial regularity
(Figalli-Kim, De Philippis-Figalli), in the spirit of the corresponding results for
minimal surfaces, see [1]. On the other hand, it can be used as a large-scale reg-
ularity theory for the problem of matching the Lebesgue measure to the Poisson
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measure in the thermodynamic limit, in the spirit of quantitative stochastic ho-
mogenization. More precisely, it can be shown that in the critical dimension two
(Ambrosio-Stra-Trevisan), increments of the displacement are still stationary.

Let π be the optimal transference plan between two measures µ0 and µ1 in Rd.
Consider the local energy in a (centered) ball of radius 6 (“E” for energy)

E :=

∫

(B6×Rd)∪(Rd×B6)

|x1 − x0|2π(dx0dx1)

and the squared local distance of µ0 and µ1 to the Lebesgue measure (“D” for
data term)

D := W 2
B6

(µ0, c0) + |c0 − 1|2 +W 2
B6

(µ1, c1) + |c1 − 1|2,

where WB6
denotes the Wasserstein metric between measures on B6.

Proposition [One-Step-Improvement]. For any 0 < τ ≤ 1 there exists a con-
stant C = C(d, τ) < ∞ such that provided E + D ≤ 1

C there exists a harmonic
gradient ∇φ in B1 such that

∫ 1

0

∫

(B1×Rd)∪(Rd×B1)

|x1 − x0 −∇φ(tx1 + (1 − t)x0)|2π(dx0dx1)dt

≤ τE + CD,(1)
∫

B1

|∇φ|2 ≤ C(E +D).

This proposition states that if the transportation cost is locally small (E ≪ 1)
and the initial and target measures are locally close to uniform (D ≪ 1) then the
displacement x1 − x0 is close to a harmonic gradient ∇φ. It does so using the
right topology: Closeness (to uniform and to a harmonic gradient, respectively) is
measured in terms of transportation itself. More importantly, the homogeneity of
all three terms match: a volume integral of a squared length.

The well-known connection between Optimal Transportation and the Monge-
Ampère equation is as follows: From soft convex analysis we learn that there
exists a convex ψ with sub-gradient ∂ψ such that x1 = ∂ψ(x0) for all (x0, x1) in
the support on π. For µ0 absolutely continuous w. r. t. Lebesgue, µ1 is the push-
forward of µ0 under the Lebesgue-a. e. existing gradient ∇ψ, that is, µ1 = ∇ψ#µ0.
For µ0, µ1 continuous and ψ twice continuously differentiable with positive definite
Hessian, this relation µ1 = ∇ψ#µ0 takes the form of the Monge-Ampère type
equation µ1(∇ψ(x0))det∇2ψ(x0) = µ0(x0).

The proof of the proposition relies on the Benamou-Brenier Eulerian formula-
tion of Optimal Transportation in terms of density/flux measures
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(ρ, j) = (ρtdt, jtdt) defined through
∫

ζdρt =

∫

ζ(tx1 + (1 − t)x0)π(dx0dx1), ∀ζ ∈ C0
0 (Rd)

∫

ξ · djt =

∫

ξ(tx1 + (1 − t)x0) · (x1 − x0)π(dx0dx1), ∀ξ ∈ C0
0 (Rd)d

for all t ∈ [0, 1]. In its localized version, the formulation states: For every radius
R, the (normal) flux boundary data f := ν · j on ∂BR exist and (ρ, j) minimizes

∫

BR×(0,1)

1

2ρ̃
|j̃|2 := sup

ξ∈C0
0
(BR×(0,1))d

{
∫

ξ · dj̃ − 1

2

∫

|ξ|2dρ̃}

among all (ρ̃, j̃) satisfying the continuity equation with initial/terminal and flux
boundary conditions

∂tρ̃+ ∇ · j̃ = 0 in BR × (0, 1),
ρ̃ = µ0 on BR × {0},
ρ̃ = µ1 on BR × {1},

ν · j̃ = f on ∂BR × (0, 1)















distributionally.(2)

With these notions, (1) follows from
∫

B2×(0,1)

1

ρ
|j − ρ∇φ|2 ≤ τE + CD

in conjunction with an L∞-bound on the displacement (see the lemma below),
which ensures that

{tx1 + (1 − t)x0|(x0, x1) ∈ suppπ ∩ ((B1 × R
d) ∪ (Rd ×B1))} ⊂ B2.

In the same vein, we note that
∫

B5×(0,1)

1

ρ
|j|2 ≤ E.

Our ∇φ will be the solution of the Neumann problem

−△φ = const. in BR, ν · ∇φ = ρ̄ on ∂BR,(3)

for suitable R ∈ (3, 4), where ρ̄ is a suitable approximation of
∫ 1

0 fdt. The above
proposition is a consequence of the following two lemmas.

Lemma [Construction]. Suppose E+D ≪ 1. For every 0 < τ ≪ 1 there exists

a radius R ∈ (3, 4), a density/flux pair (ρ̃, j̃) satisfying (2) and flux boundary data
ρ̄ such that for the ∇φ defined through (3) we have

∫

BR×(0,1)

1

ρ̃
|j̃|2 −

∫

BR

|∇φ|2

<∼ τE +
1

τ
D + super-linear termsτ in E +D.
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Lemma [Orthogonality]. Under the assumptions of the above lemma we have
for any length scale 0 < r ≪ 1

∫

B2×(0,1)

1

ρ
|j − ρ∇φ|2 −

(

∫

BR×(0,1)

1

ρ
|j|2 −

∫

BR

|∇φ|2
)

<∼ rE +
1

r
D + super-linear termsr in E +D.

The only place where we use the Euler-Lagrange equation in form of the mono-
tonicity (not even the cyclical none) of the support suppπ of π is the following
lemma, which is also one of the sources of the above super-linear terms.

Lemma [L∞-estimate]. Provided E +D ≪ 1 we have

|x1 − x0| <∼ (E +D)
1

d+2

for (x0, x1) ∈ suppπ ∩
(

(B5 × R
d) ∪ (Rd ×B5)

)

.
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Parametrized stationary varifolds and the multiplicity one conjecture

Alessandro Pigati

(joint work with Tristan Rivière)

In the last fifty years many ways of constructing unstable minimal submanifolds
Σk, in a given closed Riemannian ambient manifold (Mm, g), have been proposed.
These approaches deal with the existence of min-max minimal hypersurfaces (k =
m− 1) or minimal surfaces (k = 2).

We mention for instance the work by Colding–Minicozzi for minimal spheres
obtained from a mountain pass min-max, the main technique being the harmonic
replacement; this was recently generalized to arbitrary genus by Zhou. Almgren–
Pitts theory allows to construct embedded minimal hypersurfaces from a min-max
in a suitable space of cycles; when m = 3, a simpler and more effective version
of this theory was developed by Almgren, Meeks, Pitts, Simon, Smith and Yau.
Still in codimension one, another approach based on the link between minimal
surfaces and phase transitions was recently proposed, starting from contributions
by Hutchinson, Tonegawa, Wickramasekera, Guaraco and others.

This talk focuses on a new penalization approach devised by Rivière [4], which
provides existence of immersed minimal surfaces (k = 2) without a priori restric-
tions on the genus, on the codimension m− 2 or on the number of parameters in
the min-max.
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A viscous relaxation of the area functional. The method proposed in [4] is
based on a penalization of the area functional involving the second fundamental
form A. More specifically, for a fixed parameter σ > 0, one first finds an immersion
Φ : Σ →M which is critical for the perturbed area functional

Aσ(Φ) :=

∫

Σ

dvolgΦ + σ2

∫

Σ

(1 + |A|2gΦ)2 dvolgΦ ,

where Σ is a fixed closed oriented surface and gΦ is the metric induced by Φ, with
volume form volgΦ . This functional Aσ enjoys a sort of Palais–Smale condition up
to diffeomorphisms.

Considering any sequence σj ↓ 0, one gets a sequence Φj : Σj →M of conformal
immersions, where Σj denotes Σ endowed with the induced conformal structure.
Assuming for simplicity that we are dealing with a constant conformal structure,
the sequence Φj is then bounded in W 1,2 and we can consider its weak limit Φ∞,
up to subsequences.

At this stage of the theory, it is still not clear whether the strong W 1,2-
convergence holds, even away from a finite bubbling set. However, in [4] the
second author shows that, if the sequence σj is carefully chosen so as to satisfy
a certain entropy condition, then the surfaces Φj(Σj) converge to a parametrized
stationary varifold.

Parametrized stationary varifolds and their regularity. Parametrized sta-
tionary varifolds, introduced in [4, 2], are two-dimensional varifolds admitting a
parametrization in the following sense: they are induced by a weakly conformal
map Φ ∈ W 1,2(Σ,Mm) (where Σ is a closed Riemann surface and Mm ⊆ R

q

is either a closed Riemannian manifold or Rq itself), together with a multiplicity
function N ∈ L∞(Σ,N \ {0}) on the domain.

They are required to satisfy a natural stationarity property: namely, we assume
that, for almost all domains ω ⊆ Σ, the varifold induced by the map Φ

∣

∣

ω
with

the multiplicity function N
∣

∣

ω
is stationary in the complement of the compact set

Φ(∂ω). In [2] the following optimal regularity result was obtained.

Theorem 1. The triple (Σ,Φ, N) is a parametrized stationary varifold, in a com-
pact manifold Mm ⊆ Rq or in Rq itself, if and only if Φ is a smooth conformal
harmonic map and N is a.e. constant. In this case, Φ is a minimal branched
immersion.

The work [2] relies on the previous treatment of the simpler situation where
N is assumed to be constant [5], which in turn is based on Allard’s ǫ-regularity
theorem. However, the strategy of [5] breaks down in the general situation, which
requires completely new ideas.

Everywhere regularity for general integer stationary varifolds fails without ad-
ditional assumptions, even in low dimension (consider e.g. three half-lines in the
plane emanating from the origin, forming equal angles 2π

3 ). Pitts was able to
obtain the optimal regularity for varifolds arising via min-max in codimension
one by introducing the stronger concept of almost minimizing varifold. We also
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mention Allard’s almost everywhere regularity theorem for the case of constant
multiplicity and, for the stable, codimension one case, Schoen–Simon regularity
result under the assumption that the singular set has locally finite Hn−2-measure,
which was recently reduced to an optimal assumption by Wickramasekera. The
almost everywhere regularity in full generality is still an open problem.

In the present situation, regularity stems from a subtle interaction between
stationarity and the topological information of being parametrized. Also, the sim-
plest examples of singular varifolds, namely classical singularities, are automati-
cally ruled out in this setting (whereas they can appear among stable, codimension
one varifolds).

Corollary 1. Given a family A ⊆ P(Imm(Σ,Mm)) invariant under isotopies of
Imm(Σ,Mm), its width

WA := inf
A∈A

sup
Φ∈A

area(Φ)

is the area of a (possibly branched) minimal immersion Φ : S → Mm with a locally
constant integer multiplicity N .

Multiplicity one. The result in [2], which is optimal for the class of parametrized
stationary varifolds, leaves nonetheless open the question whether one can have
N > 1 on some connected component of S. This question should be compared
with the multiplicity one conjecture by Marques and Neves. Roughly speaking, it
asks whether a minimal hypersurface obtained from some min-max method should
always have multiplicity one, at least for generic metrics.

Marques and Neves were able to prove this conjecture for one-parameter sweep-
outs. It was also recently established by Chodosh and Mantoulidis for bumpy
metrics in 3-manifolds, in the setting of Allen–Cahn level set approach.

The importance of this conjecture in relation to the Morse index of Σ is twofold.
First of all, there is no satisfactory definition for the Morse index of an embedded
minimal hypersurface with multiplicity bigger than one: such an object could be
thought as the limit of many qualitatively different sequences of multiplicity one
hypersurfaces. Also, if one can establish a lower bound on the Morse index like

k ≤∑i ni
(

index(Σi) + nullity(Σi)
)

, Σ =
⊔

i niΣi,

k being the number of parameters in the min-max, then the multiplicity one conjec-
ture gives infinitely many geometrically distinct minimal hypersurfaces, provided
there exists at least one for every value of k.

In [3] the natural counterpart of this conjecture in the viscosity approach is
established, namely we have the following result in arbitrary codimension and
without any genericity assumption.

Theorem 2. We have N ≡ 1.

Corollary 2. If there is no bubbling or degeneration of the underlying conformal
structure, we have strong W 1,2-convergence Φk → Φ∞ = Φ. In general we have a
bubble tree convergence Φk → Φ.
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The last corollary paves the way to obtain meaningful Morse index bounds.
Indeed, although Φ could still be a multiple cover, a crucial advantage of having a
parametrization at our disposal is that we have a good definition of Morse index
and nullity. The natural expected inequalities would be

index(Φ) ≤ k ≤ index(Φ) + nullity(Φ).

Using the results in [1] and [6], we are able to reach the following.

Corollary 3. Given A ⊆ P(Imm(Σ,Mm)) as above, Φ : S → Mm satisfies

(i) WA = area(Φ),
(ii) genus(S) ≤ genus(Σ),
(iii) index(Φ) ≤ k, the dimension of A.
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Regularity and higher regularity for the thin obstacle problem with

Hölder continuous coefficients

Angkana Rüland

(joint work with Herbert Koch and Wenhui Shi)

The thin obstacle problem arises in a number of applications ranging from the
modelling of osmosis to the analysis of American options. It can also be viewed
as a scalar toy model of the (vector valued) Signorini problem from elasticity and
as a degenerate version of the classical obstacle problem in which the obstacle
degenerates into a co-dimension one object.

In the presence of an anisotropic medium and after normalization of the under-
lying geometry it can be phrased as the following minimization problem:

Minimize

∫

B+

1

aij∂iu∂judx(1)

with u ∈ K := {v ∈ H1
g (B+

1 ) : v ≥ ψ on B′
1 := B+

1 ∩ {xn+1 = 0}}. Here

B+
1 := {x ∈ R

n+1
+ : |x| ≤ 1}, aij : B+

1 → R(n+1)×(n+1) is a symmetric, uniformly
elliptic matrix modelling the anisotropic environment and ψ : B′

1 → R denotes the
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obstacle. Moreover, H1
g (B+

1 ) := {u ∈ H1(B+
1 ) : u = g on ∂B+

1 ∩ {xn+1 > 0}}.
The convex constraint u ≥ ψ gives rise to three different domains: The contact set
Λ(u) := {x ∈ B′

1 : u = ψ}, the non-coincidence set Ω(u) := {x ∈ B′
1 : u > ψ}

and the free boundary Λ(u) := ∂B′

1
Ω(u). In their strong form the associated Euler-

Lagrange equations read

∂ia
ij∂ju = 0 in B+

1 ,

u ≥ 0 on B′
1,

an+1,i∂iu ≤ 0 on B′
1,

(u− ψ)(an+1,i∂iu) = 0 on B′
1.

(2)

As the main objectives of the talk I presented optimal regularity results on the
solution and the regular free boundary of the variable coefficient thin obstacle
problem with Hölder continuous coefficients.

For simplicity of presentation, in the sequel we focus on the situation ψ = 0 but
remark that this can be substantially generalized. As a first main result, we show
that solutions to (2) enjoy similar interior regularity properties as in the isotropic
thin obstacle problem [CSS08, ACS08] if the coefficients aij are Hölder continuous:

Theorem 1 ([RS17]). Let u : B+
1 → R be a weak solution to (2) with

aij ∈ C0,α(B+
1 ,R

(n+1)×(n+1)), α ∈ (0, 1), a uniformly elliptic tensor field and

ψ = 0. Then, u ∈ C1,min{α, 1
2
}(B+

1/2).

We remark that these results can be extended to the setting of the interior
thin obstacle problem and to the presence of more general obstacles and inho-
mogeneities. Further it can be complemented by a result on the (regular) free
boundary.

Comparing (1) to the regularity theory for linear elliptic equations in divergence
form, this result appears natural. However, in proving it, major technical obstruc-
tions have to be overcome: The “classical” strategy of proving optimal regularity
is based on a blow-up argument and a classification of low frequency global solu-
tions to (2). However, in our situation of only Hölder regular coefficients the two
main tools which have been used in this context – Almgren’s monotonicity formula
[GSVG14] and Carleman estimates [KRS16] – fail. As a consequence, we resort
to a linearization technique, which had been introduced by Andersson [And16] in
the context of the full vectorial Signorini problem with constant coefficients. A
key ingredient here consists of the Liouville theorem for low-frequency solutions
to the thin obstacle problem. More precisely, the argument is based on two steps:

First we derive almost optimal C1,min{α, 1
2
}− regularity estimates. This relies on

a blow-up argument, where compactness is obtained through a contradiction ar-
gument. Invoking the Liouville theorem then implies the desired regularity. In a
second step, we then bound the difference

inf
p∈E

‖u− p‖L2(∂Br),(3)
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where E := {cRe(Qx′ + ixn+1)3/2 : Q ∈ SO(n), c ∈ R+} by an appropriate power
of r > 0. This is substantially more delicate as there might be concentration effects
due to the nonlinearity of the problem at hand. In deriving decay estimates, for
which we again rely on compactness arguments, we hence invoke tools such as
the Weiss energy and the epiperimetric inequality [FS16, GPSVG16]. As a direct
consequence of the decay estimate (3) we also infer the C1,α regularity of the
regular free boundary in B′

1/2, where

Γ3/2(u) ∩B′
1/2 :=

{

x0 ∈ Γ(u) ∩B′
1/2 : lim inf

r→0

ln(r−
n+1

2 ‖w − ℓx0
‖L2(B+

r ))

ln(r)
< 1 + α

}

,

with ℓx0
being the best affine approximation of u at x0 and α ∈ (12 , 1) being the

regularity exponent of the metric.
Based on these optimal regularity results for Hölder coefficients, we further

presented optimal higher regularity results, displaying regularity improvement for
the regular free boundary.

Theorem 2 ([KRS17]). Let u : B+
1 → R be a weak solution to the thin obstacle

problem (2) with ψ = 0 and aij a uniformly elliptic tensor field. Then the following
holds:

• Assuming that aij ∈ W 1,p(B+
1 ,R

(n+1)×(n+1)) with p ∈ (n + 1,∞), then

Γ3/2(u) ∩B′
1/2 ∈ C1,1−n+1

p .

• If aij ∈ Ck,α(B+
1 ,R

(n+1)×(n+1)) with p ∈ (n+1,∞), then Γ3/2(u)∩B′
1/2 ∈

Ck+1,α.
• If aij is analytic, then Γ3/2(u) ∩B′

1/2 is analytic.

Hence, there is a gain of a full derivative with respect to the metric. Similar
results can further be obtained in the presence of obstacles and inhomogeneities
(yielding a gain of three halves of a derivative with respect to the inhomogeneity).

The derivation of these results is based on a partial Legendre-Hodograph trans-

form. Due to the only C1, 1
2 regularity of the solution to the thin obstacle problem,

this however requires careful estimates. It leads to the analysis of a fully nonlinear
degenerate elliptic operator in a corner domain. Interpreting this operator as a
perturbation of the Baouendi-Grushin Laplacian and setting up an implicit func-
tions argument in appropriate Hölder spaces adapted to the underlying operator
through a Carnot-Caratheodory metric and the corner domain finally implies the
desired results.
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Finite time degeneration of Teichmüller harmonic map flow

Melanie Rupflin

(joint work with P. M. Topping and C. Robertson)

Teichmüller harmonic map flow is a geometric flow, first introduced in the joint
work [1] with Topping, that is designed to flow maps towards parametrisations
of minimal surfaces. As we explain in this talk this flow succeeds in its task and
decomposes every initial map from a closed surface into an arbitrary compact
manifold into a (union of) branched minimal immersion(s).

Given a Riemannian manifold (N, gN) of arbitrary dimension and a domain
surface M , we evolve pairs (u, g) of maps u : M → N and constant curvature
metrics g on the domain by a natural gradient flow of the Dirichlet energy E in
order to try to flow to a map that is both harmonic and (weakly) conformal and
hence a branched minimal immersion (or constant). For closed surfaces this flow
evolves the map component by the full gradient of E, but changes the metric only
orthogonally to the symmetries and is hence described by

(1) ∂tu = τg(u), ∂tg = Re(Pg(Φ(u, g)))

where τg(u) is the tension of u, Φ(u, g) the Hopf-differential and Pg denotes the
projection onto the space of holomorphic quadratic differentials.

As long as inj(M, g(t)) is bounded away from zero, the metric component of a
solution of (1) remains regular and hence the map component behaves as well as
comparable solutions of the harmonic map flow, i.e. remains smooth away from
finitely many times, with all of the ’lost energy’ at such singularities accounted for
in terms bubbles, i.e. maps ωj : S2 → N that are harmonic and non-constant and
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hence themselves (branched) minimal immersions.

One of the main challenges in the analysis of the flow, and in the proof that
the flow decomposes maps into minimal surfaces, is thus to control its behaviour if
inj(M, g(t)) → 0, which is equivalent to the collapse of some simple closed geodesics
σj(t) ⊂ (M, g(t)) and hence allows for a change of the topology of the domain.
If such a degeneration occurs at a finite time T , which is impossible for closed
surfaces of genus less than 2, then the results of [3] ensure that we can flow all
the way to the singular time and obtain a canonical continuation by restarting the
flow with the obtained limit map on the resulting collection of lower genus domain
surfaces. While proving convergence on the δ-thick part of the surface for every
δ > 0 would be sufficient to obtain such a canonical continuation, this would not
exclude the possibility that ’unstructured energy’ can be lost down the degenerat-
ing collar. To obtain the desired result that the flow decomposes the initial map
into minimal immersions we hence prove in [3] that at times t < T close to the
singular time T both the metric and map component will have essentially settled
down to their limits (up to bubbles for the map) on the (T − t)-thick part, which
allows us to show that the parts of the domain that can be lost are sufficiently
collapsed that along tn ր T the maps u(tn) on this part of the domain are almost
harmonic with respect to the flat metric and thus map close to a collection of
(branched) minimal spheres and curves.

Despite this precise understanding of the flow at potential finite time degenera-
tions it was unclear until recently whether one should expect such singularities to
occur at all, with a previous joint result [2] with Topping excluding this for targets
that support no bubbles. In the final part of this talk we discuss recent joint work
[4] with Robertson which establishes that if the image of a collar C(σ(t)) around
a geodesic σ(t) of sufficiently small length ℓ(t) stretches out at a rate of at least

ℓ(t)−( 1
4
+δ), δ > 0, then the solution of (1) must degenerate in finite time. This

result applies both for the flow from closed domains and the corresponding flow
from cylinders and allowed us to construct examples of solutions of Teichmüller
harmonic map flow from cylinders which indeed degenerate in finite time. For the
rescaled flow

τg(u) = 0, ∂tg = Re(Φ(u, g))

introduced by Huxol we indeed obtain the more precise result that solutions cannot
degenerate in finite time if the image of collars stretches out at a rate of no more
than | log(ℓ)| 12 , but must degenerate in finite time if it stretches out at a rate of

at least | log(ℓ)| 12+δ for some δ > 0.
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A free boundary problem with facets

Charles Smart

(joint work with William Feldman)

This is joint work with William Feldman. We study a variational problem on the
lattice Z

d whose scaling limit is a free boundary problem of the form

{

Lu = 0 in {u > 0}
H(∇u) = 1 on ∂{u > 0},

where L is the Laplacian and H is a lower semicontinuous Hamiltonian. We
study viscosity solutions of this problem for general H , and prove existence and
uniqueness of solutions for certain boundary value problems. We exactly compute
our limiting Hamiltonian for the lattice problem, prove that it is not continuous,
and show that the scaling limit has facets.

The main motivation for our study is to explain the appearance of facets in
the contact line of liquid droplets wetting rough surfaces or spreading in a porous
medium. This phenomenon has been observed in physical experiments. While it
is easy enough to construct a problem of the above form with facets in the free
boundary, we are able to derive such a problem as a scaling limit of a simple
microscopic model for the liquid droplet problem. Furthermore we find solutions
which can be reliably obtained by a natural flow at the level of the microscopic
problem, advancing the contact line from a small initial wetted set as was done in
the experiments.

For large L > 0, let uL : Zd → R be least such that

u ≥ L1BL
and ∆u ≤ 1{u=0}.

Here ∆ denotes the discrete Laplacian. For d = 3 and L = 128, the function ∆uL
restricted to the free boundary {∆uL > 0} is:
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For p ∈ R
d, let H(p) = sup ∆v, where v : Zd → R is least such that

v ≥ max{0, p · x} and ∆v ≤ 0 in {v > 0}.
First, we have a formula for the Hamiltonian:

Theorem 1 (Feldman-S). For p ∈ Rd \ {0},

H(p) = 2d|p|2 exp









∑

q∈Z
d

q·p=0

L̂(q)









where L ∈ L2(Rd/Zd) is given by

L(θ) = log

(

1 +
1

d

d
∑

k=1

cos(θk)

)

and satisfies

0 > L̂(q) ≥ C(1 + |q|)−d log(2 + |q|).
Second, we have the scaling limit:

Theorem 2 (Feldman-S). The rescalings

ūL(x) = L−1uL(Lx)

converge uniformly as L→ ∞ to the least ū ∈ C(Rd) satisfying










ū ≥ 1 in B1

∆ū ≤ 0 in {u > 0} \B1

H(Dū) ≤ 1 on ∂{u > 0} \B1

in the sense of viscosity.

Third, we can describe some features of the limit:
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Theorem 3 (Feldman-S). Let ū ∈ C(Rd) be as in the previous result. The support
{ū > 0} is open, bounded, and convex and its boundary ∂{ū > 0} has facets in
every rational direction. That is, for all p ∈ Zd \ {0}, the set

Fp = {x ∈ {ū > 0} : p · x = sup
y∈{ū>0}

p · y}

is convex and has positive (d− 1)-dimensional Hausdorff measure.

How a minimal surface leaves a thin obstacle

Emanuele Spadaro

(joint work with M. Focardi)

In this talk I present some of the recent results in [2] on the nonparametric thin
obstacle problem for the area functional.
The setting of the problem is the one proposed by J. Nitsche in his paper [7] “[...]
how to fashion a cheap hat for Giacometti’s brother”: we are given an obstacle
function ψ : {xn+1 = 0} ⊂ Rn+1 → R, ψ ∈ C2({xn+1 = 0}), ψ is assumed
to describe the profile of the head of Giacometti’s sculpture; and we are given
a boundary datum g ∈ C2(Rn+1) satisfying g|Rn×{0} ≥ ψ and g(x′, xn+1) =
g(x′,−xn−1), describing the external profile of the hat; we seek the solution to the
following variational problem

(1) min
v∈Ag

∫

B1

√

1 + |∇v|2 dx

in the class Ag :=
{

v ∈ g|B1
+W 1,∞

0 (B1) : v|B′

1
≥ ψ, v(x′, xn+1) = v(x′,−xn+1)

}

.

Here B′
1 = B1 ∩ {xn+1 = 0}; and in addition we set B+

1 := B1 ∩ {xn+1 > 0}.
This variational problem is sometimes described as a thin obstacle problem,

because the unilateral constrain v ≥ ψ is prescribed on a thin set B1 ∩ {xn+1 =
0}. It gives arise to a free boundary problem: indeed the solution u satisfies the
following boundary conditions on B′

1

(u− ψ) ∂n+1u = 0 on B′
1,

which defines two subsets of B′
1, the one where u coincides with the obstacle

{u = ψ} and that complementary set {u > ψ}, separated by a boundary region
that is not prescribed apriopri but is an outcome of the minimization problem, the
so called free boundary Γ(u) := ∂Rn×{0}{u = ψ}.

The problem (1) is a nonlinear version of the scalar Signorini problem in elastic-
ity, for which the area functional is replaced by the Dirichlet energy

∫

B1
|∇u|2dx.

The existence and the uniqueness of a solution u in the class g|B1
+ W 1,∞

0 (B1)
is a classical issue that has been investigated by E. Giusti [5, 6]. The Lipschitz
continuity for u is the best possible global regularity in B1, as simple examples
show. Nevertheless, the solution is expected to be more regular on both sides
of the obstacle, thus leading to the investigation of the one-sided regularity on
B+

1 ∪B′
1. This is a central question in understanding the qualitative properties of
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the solutions to variational inequalities with thin obstacles and several important
questions remain still unanswered.

1. The main results

Differently from the case of the scalar Signorini problem, for which many results
have been recently proven, for the nonlinear case of minimal surfaces only fewer
results are available. Apart from the Lipschitz regularity by E. Giusti [5, 6],
the most general result is due to J. Frehse [3, 4] where the the continuity of the
first derivatives of u taken along tangential directions to B′

1 in any dimension
and one-sided continuity (up to B′

1) for the normal derivative in two dimensions
(i.e. n = 1) is established for the solutions to a very general class of nonlinear
variational inequalities.

In the paper in collaboration with M. Focardi of the University of Firenze [2],

we establish a first general result on the optimal C1, 1
2 regularity and provide a

detailed analysis of the free boundary of the solutions to the thin obstacle problem
for nonparametric minimal surfaces (1).
The following are the main results (more refined conclusions are shown in the
paper).

Theorem 1. Let u be a solution to the thin obstacle problem (1) with ψ ≡ 0 and
let Γ(u) be its free boundary, namely the boundary of {(x′, 0) ∈ B′

1 : u(x′, 0) = 0}
in the relative topology of B′

1. Then,

(i) u ∈ C
1, 1

2

loc (B+
1 ∪B′

1);
(ii) Γ(u) has locally finite (n−1)-dimensional Hausdorff measure and is Hn−1-

rectifiable.

Remarks. (1) The one-sided C1, 1
2 regularity is optimal: one can indeed construct

explicit solutions that enjoys no better regularity, using minimal surfaces with
suitable branch points.
(2) The conclusion (ii) of the theorem establishes a structure theorem for the free
boundary, saying that it can be covered almost everywhere (with respect to the
right measure) with C1 submanifolds.
(3) More refined conclusions for the free boundary are available, by distinguishing
among regular and singular points, cf. [2] for more details.

2. Concerning the proof

2.1. Optimal C1, 1
2 regularity. Building upon the results by J. Frehse [4], the

proof is given in several steps:

(A) one-sided C1 regularity, obtained via a barrier argument;
(B) the analysis of a penalized problem:

min
v|∂B1

=g
Eε(v),
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where

Eε(v) :=

∫

B1

(

√

1 + |∇v|2 + χ(|∇v|)
)

dx+

∫

B′

1

Fε(v(x′, 0)) dx′,

where ε > 0, Fε(t) :=
∫ t

0
βε(s) ds, βε(t) := ε−1β( tε ) and β, χ ∈ C∞(R) are

such that

|t| − 1 ≤ |β(t)| ≤ |t| ∀ t ≤ 0, β(t) = 0 ∀ t ≥ 0,

β′(t) ≥ 0, χ′′(t) ≥ 0 ∀ t ∈ R,

χ(t) =

{

0 for t ≤ Lip(u),
1
2 (t− 2Lip(u))2 for t > 3Lip(u);

(C) the De Giorgi method, as pioneered by N. Uraltseva [9] for variational
inequalities;

(D) the identification of the graph of the multiple-valued map U = {u,−u}
with a stationary varifold and the use of the regularity result by Simon
and Wickramasekera [8].

2.2. The structure of the free boundary. As far as the second part of the
theorem is concerned with, it turns out that u minimizes the nonhomogeneous
quadratic form

(2) Ag ∋ v 7−→ 1

2

∫

B1

ϑ(x)|∇v(x)|2 dx,

with ϑ(x) :=
(

1+ |∇u(x)|2
)− 1

2 . Note that the above functional is coercive because
in view of the Lipschitz continuity of u we have that

(3) 0 <
(

1 + Lip(u)2
)− 1

2 ≤ ϑ(x) ≤ 1 ∀ x.

Moreover, ϑ ∈W 1,∞(B+
1 ): indeed, setting d(x) := dist(x,Γ(u)), by the regularity

result in Theorem 1 (i) and the curvature estimates for minimal surfaces we deduce
that

|u(x)| ≤ C d
3
2 (x), |∇u(x)| ≤ C d

1
2 (x) and |D2u(x)| ≤ C d−

1
2 (x),

for some constant C > 0, and therefore

|∇ϑ| =
(

1 + |∇u|2
)− 3

2 |D2u∇u| ≤ C.

The proof of the theorem follows then from a generalization to quadratic energies
with Lipschitz coefficients of the arguments based on the frequency function de-
veloped in our paper [1]. Note that the Lipschitz continuity of ϑ, and hence the
optimal regularity of u in Theorem 1 (i), seems essential for this approach.
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The Cost of Crushing: Curvature-Driven Wrinkling of Thin Elastic

Sheets

Ian Tobasco

We discuss the wrinkling and folding patterns that form when a thin elastic shell
is floated onto a water bath. Our work is motivated by the recent experiments
reported in [1, 2]. We develop a mathematically rigorous framework for proving
the existence of “non-wrinkling” or “stable” directions throughout the shell. Such
directions are stable in that any asymptotically persistent oscillations or concentra-
tions parallel to them are ruled out. Depending on the application, such directions
can be globally defined, defined only on certain sub-domains, or fail to exist alto-
gether. These alternatives are consistent with the experimental results. In what
follows, we briefly describe our model and state our results. A more complete
presentation is under preparation at the time of this writing.

We consider the minimization of a singularly perturbed, non-convex energy
functional to describe the deformation of a thin, weakly curved, floating elastic
shell. If the undeformed mid-shell is given by the graph S of a function p : Ω ⊂
R2 → R, a deformation of the shell corresponds to a map Φ : S → R3. Introducing
“in-plane” and “out-of-plane” displacements u : Ω → R

2 and w : Ω → R (the plane
being referenced is that of the initial water bath) we obtain

Φ(x, p(x)) = (x1 + u1(x), x2 + u2(x), w(x)), x ∈ Ω.

Provided the shell is weakly curved, its equilibrium shape can be determined by
minimization of the geometrically linearized energy functional

Eb,k(u,w) =

∫

Ω

|e(u) +
1

2
∇w ⊗∇w − 1

2
∇p⊗∇p|2 + b|∇∇w|2 + k|w|2 dx.
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The notation | · | indicates the Frobenius norm, and e(u) denotes the symmetric
gradient of u. The first two terms account for the internal elastic energy of the
shell, and are called the “stretching” and “bending” terms. The third term ac-
counts for the work done by buoyancy forces. The positive parameters b and k are
proportional to the squared thickness of the shell and the gravitational accelera-
tion of the water, respectively, but are actually non-dimensional. Their inverses
are analogous to the “bendability” and “deformability” parameters from [3]. Tak-
ing b≪ 1 permits the shell to oscillate more and more rapidly, while taking k ≫ 1
ensures that it must lie nearly flat. To complete the description we must explain
our choice of strain,

ε = e(u) +
1

2
∇w ⊗∇w − 1

2
∇p⊗∇p.

Such a formula arises from a geometric linearization procedure applied to the
nonlinear strain induced by Φ, in which the leading order terms in ∇u, ∇w, and
∇p are retained. Similar Föppl–von Kármán-type models have been used across
the literature on pattern formation in thin elastic structures (see, e.g., [3, 4]).

Before stating our results, we introduce the space of bounded deformation maps

BD(Ω) =
{

u ∈ L1(Ω;R2) : e(u) ∈ M(Ω; Symm2×2)
}

,

where M(Ω; Symm2×2) denotes the two-by-two symmetric matrix-valued Radon
measures on Ω. A map u ∈ BD(Ω) satisfies e(u) = 0 if and only if it belongs to

R = {x 7→ ωx+ b : ω ∈ Skew2×2, b ∈ R
2}.

Each of BD(Ω) and BD(Ω)/R turns out to be a Banach space which is also a dual.
For our purposes, it suffices to note that a sequence {un} ⊂ BD(Ω)/R converges
weakly-∗ to u if and only if there exists a sequence {rn} ⊂ R so that

un + rn → u strongly in L1(Ω)

e(un)
∗
⇀ e(u) weakly-∗ in M(Ω; Symm2×2).

We refer the reader to [5] for further discussion.
We come now to our results. Throughout, we understand that p ∈ W 2,∞(Ω)

where Ω ⊂ R2 is open, bounded, Lipschitz, and strictly star-shaped. This last
requirement is satisfied if there exists x0 ∈ Ω such that for every x ∈ ∂Ω the open
line segment from x0 to x is contained in Ω. We also fix a sequence {(bn, kn)}
which satisfies

1

k
3/2
n

≪ bn ≪ 1

kn
as n→ ∞,

though we hide the subscript n in the remainder. Our first result establishes the Γ-
convergence of rescaled versions of Eb,k in a topology where they are equi-coercive.

Theorem 1. We have that

Eb,k

4
√
bk

Γ−→
{

∫

Ω
1
2 |∇p|2 −

∫

∂Ω
u · ν̂ ds e(u) ≤ 1

2∇p⊗∇p dx,w = 0

+∞ otherwise
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with respect to the weak-∗ topology on BD(Ω)/R×H1(Ω). Moreover, any admis-

sible {(ub,k, wb,k)} that satisfies Eb,k(ub,k, wb,k) = O(
√
bk) is weakly-∗ precompact.

The following corollary is immediate. We say that {(ub,k, wb,k)} is a sequence
of almost minimizers provided that

Eb,k(ub,k, wb,k) = min Eb,k + o(
√
bk).

Corollary 1. The minimum energies satisfy

lim
min Eb,k

4
√
bk

= min
u∈BD(Ω)/R

e(u)≤ 1
2
∇p⊗∇p dx

∫

Ω

1

2
|∇p|2 −

∫

∂Ω

u · ν̂ ds.

Moreover, (ueff, weff) ∈ BD(Ω)/R × H1(Ω) is the weak-∗ limit of a sequence of
almost minimizers if and only if ueff solves the limiting problem appearing above
and weff = 0.

Next, we present a duality theory for the limiting problem. Let (·)δ denote a
standard non-negative mollifier.

Theorem 2. We have the duality

min
u∈BD(Ω)/R

e(u)≤ 1
2
∇p⊗∇p dx

∫

Ω

1

2
|∇p|2−

∫

∂Ω

u·ν̂ ds = max
ϕ:R2→R

ϕ is convex
ϕ= 1

2
|x|2 on R

2\Ω

∫

Ω

(

ϕ− 1

2
|x|2
)

det∇∇p.

The following complementary slackness conditions also hold: an admissible pair
(u∗, ϕ∗) is optimal only if

lim
δ→0

∫

Ω

〈

(cof∇∇ϕ∗)δ,
1

2
∇p⊗∇p dx− e(u∗)

〉

= 0.

Combining the previous results we deduce a method for proving the existence
of stable directions.

Corollary 2. Let ϕ∗ solve the dual problem from Theorem 2 and assume there
exists an open set U for which ϕ∗ ∈ C2(U). Any sequence of almost minimizers
must satisfy the improved convergence

〈cof∇∇ϕ∗,∇wb,k ⊗∇wb,k〉 → 0 strongly in L1
loc(U).

To demonstrate how this last result can be applied to deduce the existence of
stable directions, we consider it in the case that ϕ∗ satisfies

cof∇∇ϕ∗ = λn̂⊗ n̂

for some continuous n̂ : U → S1 and λ : U → (0,∞). Such ϕ∗ naturally arise
when we consider the application of our results to the setting of [1, 2]. In such
a case, the result of Corollary 2 implies that any sequence of almost minimizers
must satisfy the improved convergence

n̂ · ∇wb,k → 0 strongly in L2
loc(U).

The situation is neatly summarized by saying that almost minimizers are stable
to asymptotic out-of-plane perturbations parallel to n̂ on U .
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Translating solutions of mean curvature flow

Brian White

A translator with velocity v is a hypersurface M in Rn+1 such that

t 7→ M + tv

is a mean curvature flow, i.e., such that normal component of the velocity at each
point is equal to the mean curvature at that point:

−→
H = v⊥.

By rotating and scaling, we can make the velocity equal to −en+1; unless otherwise
specified, I will assume that the velocity has been so normalized.

If a translator M (with velocity −en+1) is the graph of function u : Ω ⊂ Rn →
R, we will say that M is a translating graph; in that case, we also refer to the
function u as a translator, and we say that u is complete if its graph is a complete
submanifold of Rn+1. Thus u : Ω ⊂ Rn → R is a translator if and only if it solves

the translator equation (the nonparametric form of
−→
H = −e⊥n+1):

Di

(

Diu
√

1 + |Du|2

)

= − 1
√

1 + |Du|2
.

An example is the grim reaper curve:

{(x, y) : y = log(cosx)), x ∈ (−π/2, π, 2)}.
Translators are interesting for a number of reasons:

(1) They provide simple examples of mean curvature flows.
(2) They provide possible models for singularity formation in mean curvature

flow. For example, consider a figure 8 curve M(t) in the plane moving by
(mean) curvature flow. It will develop a singularity at some finite time T .
Let p(t) be the point of maximum curvature κ(t). Then κ(t)(M(t)− p(t))
converges smoothly as t → T to the grim reaper curve (modulo a rotation
of R2).
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(3) They are interesting as examples in minimal surface theory. Ilmanen ob-
served that M is a translator with velocity v if and only if M is a minimal
surface (i.e., critical point of the area functional) with respect to the Rie-
mannian metric

gij(x) = (e−x·v)2/nδij .

(4) Ilmanen’s elliptic regularization [6] scheme lets one get general mean cur-
vature flows as limits of translators.

In this talk, I described recent joint work with David Hoffman, Tom Ilmanen,
and Francisco Mart́ın: (1) a classification of all the complete translating graphs in
R3, and (2) new families of examples of non-graphical translators in R3.

Before stating the classification theorem, I recall the known examples of trans-
lating graphs in R3. First, the Cartesian product of the grim reaper curve with
R is a translator:

G : R× (−π/2, π/2) → R,

G(x, y) = log(cos y).

It is called the grim reaper surface.

Figure 1. The grim reaper surface in R3, and that surface tilted
by angle θ = −π/4 and dilated by 1/ cos(π/4). (Picture by
F. Martin.)
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Second, if we rotate the grim reaper surface by an angle θ ∈ (0, π/2) about the
y-axis and dilate by 1/ cos θ, the resulting surface is again a translator, given by

Gθ : R× (−b, b) → R,

Gθ(x, y) =
log(cos(y cos θ))

cos2 θ
+ x tan θ,

where b = π/(2 cos θ). Note that as θ goes from 0 to π/2, the width 2b of the strip
goes from π to ∞. These examples are called tilted grim reaper surfaces.

Every translator R3 with zero Gauss curvature is (up to translations and up to
rotations about a vertical axis) a grim reaper surface, a tilted grim reaper surface,
or a vertical plane.

In [3], J. Clutterbuck, O. Schnürer and F. Schulze (see also [1]) proved for
each n ≥ 2 that there is a unique (up to vertical translation) entire, rotationally
invariant function u : Rn → R whose graph is a translator. It is called the bowl

soliton.

Figure 2. The bowl soliton. As one moves down, the slope tends
to infinity, and thus the end is asymptotically cylindrical. (Picture
by F. Mart́ın.)

In addition to the examples described above, many years ago, Ilmanen (in
unpublished work) proved that for each 0 < k < 1/2, there is a translator u :



Calculus of Variations 2143

Ω → R with the following properties: u(x, y) ≡ u(−x, y) ≡ u(x,−y), u attains its
maximum at (0, 0) ∈ Ω, and

D2u(0, 0) =

[

−k 0
0 −(1 − k)

]

.

The domain Ω is either a strip R × (−bR or R2. He referred to these examples
as ∆-wings. As k → 0, he showed that the examples converge to the grim reaper
surface. Uniqueness (for a given k) was not known. It was also not known which
strips R× (−b, b) occur as domains of such examples.

Figure 3. The ∆-wing of width
√

2π. As y → ±∞, this ∆-wing
is asymptotic to the tilted grim reapers G−π

4
and Gπ

4
, respectively.

(Picture by F. Mart́ın.)

Our new classification theorem is the following:

Theorem 1. [5] For every b > π/2, there is (up to translation) a unique complete,
strictly convex translator ub : R × R, b) → R. Up to isometries of R2, the only
other complete translating graphs in R3 are the grim reaper surface, the tilted grim
reaper surfaces, and the bowl soliton.

I remark that Bourni, Langford, and Tinaglia [2] have recently given a different
proof of part of this theorem: they proved existence (but not uniqueness) of strictly
convex translating graphs defined over strips.

The proof of Theorem 1 uses some important earlier work. In particular, Spruck
and Xiao recently proved the very powerful theorem that every translating graph
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in R3 is convex [8, Theorem 1.1]. Thus it sufficed to classify convex examples.
L. Shahriyari [7] proved that if u : Ω ⊂ R2 → R is a complete translator, then
Ω is (up to rigid motion) one of the following: the plane R2, a halfplane, or a
strip R × (−b, b) with b ≥ π/2. Also, in [9], X. J. Wang proved that the only
entire convex translating graph is the bowl soliton, and that there are no complete
translating graphs defined over halfplanes. Thus by the Spruck-Xiao Convexity
Theorem, the bowl soliton is the only complete translating graph defined over a
plane or halfplane.

In the lecture, I also described a new family of examples of complete, non-
graphical translating annuli. Clutterbuck, Schnürrer, and Schulze found all rota-
tionally invariant examples [3]. In particular, there is a one-parameter family of
such examples, parametrized by the necksize. Each example has two ends, and
each end is asymptotic to a bowl soliton. Thus the example looks like two bowl
solitons, one above the other, joined by a neck; see Figure .

Figure 4. A rotationally invariant translating annulus. Each of
the two ends is asymptotic to a bowl soliton. (Picture by
F. Mart́ın.)

Hoffman, Ilmanen, Marten, and I have shown that those rotationally invari-
ant examples are part of a larger, two-parameter family of complete, translating
annuli [4]. One parameter is the necksize, which we define to be the shortest (Eu-
clidean) length of a homotopically nontrivial curve in the annulus. The necksize
takes all values in (0,∞). The other parameter is an “inner width” w, which



Calculus of Variations 2145

takes all values in [π,∞]. When the inner width is infinite, the examples are the
rotationally invariant examples analyzed by Clutterbuck et. al.

For every finite width w, an example M with neck size n and inner width w has
the following property: as z → −∞, M is asymptotic to four parallel planes, and
w is the distance between the inner pair. That is, by making a translation and a
rotation, we can assume that as z → −∞, M is asymptotic to the planes y = c,
y = w/2, y = −w/2, and y = −c. Here w/2 ≤ c < w/2 + π.

Note: we prescribe the inner width w and the necksize n. For each (w, n) ∈
[π/2,∞] × (0,∞), there is at least one example M with inner width w and neck
size n. We would guess that there is exactly one example, but we do not know
how to prove that.

What about c? For a long time, we were puzzled by it. We had some heuristic
arguments that it should be w/2, but other heuristic arguments that it should be
strictly greater than w/2. In fact, both arguments are right. It turns out (for each
finite inner width w) that when the necksize is very small, c = w/2. However, as
the necksize tends to infinity, c tends to w/2 + π.
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The inverse problem of finding a phase field energy for 2D branched

transport and other functionals of normal currents

Benedikt Wirth

Branched transport. Denote by P(R2) the set of probability measures on R2

and by M(R2;R2) the set of vector-valued Radon measures on R2. Most optimal
transportation problems on R2 can be formulated as the task of finding the optimal
way to move all material from a given source µ0 ∈ P(R2) to a given sink µ1 ∈
P(R2). For a particular subclass of optimal transport problems the cost can be
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expressed based on the material flux σ ∈ M(R2;R2), which necessarily satisfies
the mass conservation law

(1) divσ = µ0 − µ−

in a distributional sense. For instance, in Wasserstein-1-transport the cost to be
minimized is the total variation |σ|(R2) of σ among all material fluxes σ satisfying
(1) [3, §4.2]. In so-called branched transport and related models the cost depends
concavely on the transported mass and is given by

Eτ [σ] =

∫

S

τ(|w|) dH1 + τ ′(0)|σ⊥|(R2) for σ = wθH1xS + σ⊥ ,

where S is a 1-rectifiable set with approximate tangent θ : S → S1, w : S → R an
H1xS-measurable function, σ⊥ the union of a Lebesgue-continuous and a Cantor
part, and where τ : [0,∞) → [0,∞) is an admissible transport cost, that is, τ(0) = 0
and τ is nondecreasing, concave, and continuous. The quantity τ(w) here has the
interpretation of the cost for transporting mass w along a unit distance, and a
consequence of its concavity is that optimal (that is, cost-minimizing) mass fluxes
σ typically are concentrated on ramified 1-rectifiable transportation networks S.
Phase field approximation. One approach to compute optimal mass fluxes σ
numerically is via a phase field approach. In more detail, we wish to replace Eτ by
an approximating functional Eτε whose minimizer u : R2 → R2 shall be a smooth
approximation of the optimal σ in the sense that all lines of the network S are
thickened to a width of roughly ε > 0. To this end we make the ansatz of a
Modica–Mortola or Allen–Cahn functional

Eτε [u] =

∫ 2

R

εα

2
|∇u|2 +

1

εβ
c(εγ |u|) dx

in which the phase field potential c : [0,∞) → [0,∞) has to be chosen appropriately
so as to yield an approximation of Eτ (the real powers α, β, γ will be fixed further
below). In [2] the authors made the ansatz c(s) = sζ for some ζ > 0 and showed
this to be the appropriate choice for τ(w) a concave power of w (for alternative
Ambrosio–Tortorelli type phase field models see [1]). Such a potential c can be
interpreted as a double well with one well at 0 and another one at infinity so
that the functional-minimizing u will preferably be either zero or have a large
magnitude, resulting in a flux concentration within small regions (those regions
will be the thickened S).

For simplicity consider the situation in which the minimizer u of Eτε (among
all phase field functions satisfying a smoothed version of the mass conservation
(1)) describes a vertical flux of mass w. Without loss of generality we may as-
sume u(x1, x2) = m(x1)(0, 1)T for some function m : R → [0,∞) symmetrically
decreasing about x1 = 0 (otherwise the cost could be reduced without changing
the vertical flux by altering u to this form) so that we obtain

(2) w =

∫

R

u(x1, x2) ·
(

0

1

)

dx1 =

∫

R

m(x1) dx1 =

∫

R

ψ(y) dy ,
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where we performed the change of variables y = x1/ε and introduced the rescaled
flux magnitude ψ(y) = m(εy)ε. For Eτε to be an approximation of Eτ we would
like the vertical phase field cost per unit length (that is, a horizontal slice of Eτε )
to equal τ(w),

(3) τ(w) =

∫

R

εα

2
|∇u|2 +

1

εβ
c(εγ |u|) dx1

=

∫

R

εα

2
|m′|2 +

1

εβ
c(εγ |m|) dx1 =

∫

R

εα−3

2
|ψ′|2 + ε1−βc(εγ−1|ψ|) dy .

Thus, the natural parameter choice is α = 3, β = γ = 1, and the phase field
potential c is to be determined from

(4) τ(w) = inf {F c[ψ] | (2)} for F c[ψ] =

∫

R

1

2
|ψ′|2 + c(|ψ|) dy .

During the remainder of this note we answer the question whether such a function
c exists and how it can be calculated.
Formula and examples. It is more convenient to work with the mass-specific
potential z(s) = c(s)/s rather than with c itself. A heuristic calculation now yields
a formula for z (or rather for g(s) = (z−1(s))3/2, assuming z to be invertible): The
optimality conditions for the optimal ψw in (4) read

0 = −ψ′′
w + c′(ψw) + λ , 0 =

∫

R

ψw dy − w

for a Lagrange multiplier λ ∈ R. Differentiating τ(w) = F c[ψw] we now obtain

τ ′(w) = ∂ψF
c[ψw](∂wψw) =

∫

R

ψ′
w∂wψ

′
w + c′(ψw)∂wψw dy

=

∫

R

(−ψ′′
w + c′(ψw)) ∂wψw dy = −λ∂w

∫

R

ψw dy = −λ .

Thus, testing the optimality conditions with ψ′
w and integrating we obtain

0 = −|ψ′
w|2 + 2(c(ψw) − τ ′(w)ψw)

(where the integration constant is zero due to lim|y|→∞ ψw(y) = lim|y|→∞ ψ′
w(y) =

0), which implies |ψ′
w| =

√

2(z(ψw) − τ ′(w))ψw as well as z(ψw(0)) = τ ′(w). Thus,

τ(w) − τ ′(w)w = F c[ψw] − τ ′(w)

∫

R

ψw dy=

∫

R

|ψ′
w|2
2

+
2(z(ψw) − τ ′(w))ψw

2
dy

= 2

∫ ∞

0

|ψ′
w|
√

2(z(ψw)−τ ′(w))ψw dy= 2

∫ ψw(0)

0

√

2(z(φ) − τ ′(w))φ dφ

=

∫ z−1(τ ′(w))

0

√

2(z(φ)−τ ′(w))φ dφ =−4

3

∫ z−1(τ ′(w))

0

φ
3
2

z′(φ)
√

2(z(φ)−τ ′(w))
dφ

=−4

3

∫ τ ′(w)

∞

[

z−1(s)
]
3
2

1
√

2(s−τ ′(w))
ds= [g ∗ r](τ ′(w)) for r(s) = − 2

3
√−s .
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With w = (τ ′)−1(t) this yields

(5) [−τ(−·)]∗ (t) = [g ∗ r](t) .

This formula (which will be made rigorous below) can be used to derive c for
examples such as the following:

• τ(w) = wζ is induced by c(φ) = const.φ(4ζ−2)/(ζ+1),

• τ(w) = min{aw, bw+d} is induced by c(φ) = max

{

aφ− 2π2

9

(

d
a−b

)2

φ4, bφ

}

.

Existence and further properties. For piecewise constant nonincreasing mass-
specific phase field potential z one can explicitly solve the optimisation in (4)
for ψ. It turns out that this leads to a one-to-one relation between piecewise
constant nonincreasing potentials z and piecewise affine admissible costs τ . One
even obtains an explicit formula to derive a solution z of (4) for any piecewise
affine admissible cost τ . This formula can be used to prove an existence result for
general admissible τ via approximation:

Theorem 1 (Existence). Problem (4) has a solution c : [0,∞) → [0,∞) for any
given admissible τ . Furthermore, c can be chosen such that z(s) = c(s)/s is lower
semi-continuous and nonincreasing.

With that c one could now prove the Γ-convergence Eτε → Eτ along the lines of
[2, 1]. In general, c is nonunique. Note that our phase field ansatz approximates
exactly the branched transport problems with admissible τ :

Theorem 2 (Obtainable τ). Let c : [0,∞) → [0,∞) be Borel measurable with
c(0) = 0 and define τ : [0,∞) → [0,∞) via (4). Then τ is admissible.

Finally, the heuristic formula (5) can be made rigorous:

Theorem 3 (Necessary and sufficient conditions). Let c(s) = z(s)s solve (4), then
(5) holds for all t ∈ {τ ′(w) | τ differentiable at w}. Vice versa, if (5) holds for all
t > 0, then c(s) = z(s)s solves (4).
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Stochastic homogenisation of free-discontinuity problems

Caterina Ida Zeppieri

(joint work with Filippo Cagnetti, Gianni Dal Maso, Lucia Scardia)

In the Calculus of Variations the terminology free-discontinuity problems usually
refers to those minimisation problems involving competing volume and surface
functionals. A prototipical free-discontinuity problem consists in minimising an
integral functional of the form

(1) E(u) =

∫

A

f(x,∇u) dx+

∫

Su∩A

g(x, [u], νu) dHn−1,

depending on both a possibly discontinuous function u : A ⊂ Rn → Rm and on
its unknown discontinuity set Su. Functionals of type (1) are referred to as free-
discontinuity functionals and are ubiquitous in Material Sciences, Mathematical
Physics, and Computer Vision. Indeed free-discontinuity energies account for crack
growth and crack initiation in the theory of brittle fracture, interface formation
between different phases of Cahn-Hilliard fluids, surface tension between small
drops of liquid crystals, and are employed for pattern recognition in computer
vision to detect surfaces corresponding to sudden changes in images (such as edges
of objects or shadows). The natural functional space where to minimise (1) is
that of De Giorgi and Ambrosio’s space of special functions of bounded variation
SBV (A,Rm). Here ∇u denotes the approximate differential of u, [u] stands for
the difference u+ − u− between the approximate limits of u on both sides of the
discontinuity set Su, and νu denotes the (generalised) normal to Su.

In the typical applications one deals with families of functionals of type (1); i.e.,
functionals depending on some small positive parameter ε, whose nature depends
on the specific problem under examination, and tries to establish some emergent
properties in the limit as ε tends to zero. Further, in many relevant applications
(such as e.g., in the study of brittle composite materials) the integrands f and g
may also vary according to some (spatial) periodicity or, more in general, to some
random law. One then considers sequences of functionals of the form

(2) Eε(ω)(u) =

∫

A

f
(

ω,
x

ε
,∇u

)

dx+

∫

Su∩A

g
(

ω,
x

ε
, [u], νu

)

dHn−1,

where the random parameter ω belongs to the sample space Ω of a probability
space (Ω, T , P ) and denotes an instance of the medium. The integrands f and g
are random fields and only their statistical specification is known. When f and g
do not depend on ω and are periodic in the spatial variable, the limit behaviour of
Eε can be determined appealing to the classical homogenisation theory [3]. The
latter asserts that, under standard growth and coercivity conditions (and mild
regularity assumptions) on f and g the functionals Eε behave macroscopically
like a homogeneous free-discontinuity functional. Further, in the homogenisation
process there is no interaction between volume and surface energies.

In this talk we extend the classical deterministic periodic homogenisation result
as above to the stochastic stationary setting. We assume that the realisations of
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the random variables f and g satisfy the following assumptions: Fix five constants
p, c1, . . . , c4, with 1 < p < +∞, 0 < c1 ≤ c2 < +∞, and 0 < c3 ≤ c4 < +∞,
and two nondecreasing continuous functions σ1, σ2 : [0,+∞) → [0,+∞) such that
σ1(0) = σ2(0) = 0; then

The volume integrand f : Rn×Rm×n → [0,+∞) satisfies:

(f1) (measurability) f is Borel measurable on R
n×R

m×n;
(f2) (continuity in ξ) for every x ∈ Rn we have

|f(x, ξ1) − f(x, ξ2)| ≤ σ1(|ξ1 − ξ2|)
(

1 + f(x, ξ1) + f(x, ξ2)
)

for every ξ1, ξ2 ∈ Rm×n;
(f3) (bounds) for every x ∈ R

n and every ξ ∈ R
m×n

c1|ξ|p ≤ f(x, ξ) ≤ c2(1 + |ξ|p).
The surface integrand g : Rn×Rm0 ×Sn−1 → [0,+∞) satisfies:

(g1) (measurability) g is Borel measurable on Rn×Rm0 ×Sn−1;
(g2) (continuity in ζ) for every x ∈ R

n and every ν ∈ S
n−1 we have

|g(x, ζ2, ν) − g(x, ζ1, ν)| ≤ σ2(|ζ1 − ζ2|)
(

g(x, ζ1, ν) + g(x, ζ2, ν)
)

for every ζ1, ζ2 ∈ Rm0 ;
(g3) (bounds) for every x ∈ Rn, ζ ∈ Rm0 , and ν ∈ Sn−1

c3(1 + |ζ|) ≤ g(x, ζ, ν) ≤ c4(1 + |ζ|);
(g4) (symmetry) for every x ∈ Rn, ζ ∈ Rm0 , and ν ∈ Sn−1

g(x, ζ, ν) = g(x,−ζ,−ν).

The random environment is described by a group of P -preserving transformations
(τz)z∈Zn defined on the probability space (Ω, T , P ). In the random setting the
analogue of periodicity is periodicity in law which can be quantified in terms of
(τz)z∈Zn by requiring that f and g are stationary, that is for every z ∈ Zn and
P -almost surely

(3) f(ω, x+ z, ξ) = f(τzω, x, ξ) ∀(x, ξ) ∈ R
n × R

m×n,

(4) g(ω, x+ z, ζ, ν) = g(τzω, x, ζ, ν) ∀(x, ζ, ν) ∈ R
n × R

m
0 × Sn−1.

The two conditions as above ensure that the statistical properties of the medium
are invariant under translations and will allow us to reconstruct, in a suitable
statistical sense, the overall limit behaviour of Eε by the knowledge of its local
behaviour on a sequence of increasingly larger “fundamental cells”.

To determine the homogenised limit of Eε we first regard ω as a fixed parameter
and study the limit behaviour of the deterministic (and in general non periodic)
functionals Eε(ω). The convergence of functionals of type Eε(ω) has been stud-
ied in [5] where, among other things, the homogenisation of free-discontinuity
functionals without periodicity assumptions has been addressed. Specifically, [5,
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Theorem 3.8] provides us with a sufficient condition for the Γ-convergence of the
family

(

Eε(ω)
)

ε
towards a homogeneous free-discontinuity functional of the form

Ehom(ω)(u) :=

∫

A

fhom (ω,∇u) dx+

∫

Su∩A

ghom (ω, [u], νu) dHn−1,

for suitable Borel functions fhom(ω, ·) and ghom(ω, ·, ·). The aforementioned suffi-
cient condition amounts to the existence and independence of x of the two following
limits

(5) lim
r→0+

1

rn
inf

∫

Qr(rx)

f(ω, y,∇u(y))dy =: fhom(ω, ξ),

and

(6) lim
r→0+

1

rn−1
inf

∫

Su∩Qν
r (rx)

g(ω, y, [u](y), νu(y))dHn−1(y) =: ghom(ω, ζ, ν)

where the infimum in (5) is taken among functions in W 1,p(Qr(rx),Rm) satisfying
u(y) = ξy near ∂Qr(rx), while the infimum in (6) is taken among all functions u
in SBV (Qνr (rx),Rm) satisfying ∇u = 0 Ln-a.e. in Qνr (rx) and

u(y) = urx,ζ,ν(y) :=

{

ζ if (y − rx) · ν ≥ 0

0 if (y − rx) · ν < 0
near ∂Qνr (rx).

Then in a second (stochastic) step we show that the sufficient condition as above
is fulfilled almost surely; i.e., the two limits in (5) and (6) exist for P -a.e. ω ∈ Ω.
As for the case of stochastic homogenisation of volume functionals [6] this step
heavily relies on the stationarity assumption on f and g. Specifically, the almost
sure existence of the limit in (5) follows as in the classical result of Dal Maso and
Modica [6] by first proving that, for every fixed ξ ∈ R

m×n, the map

(ω,A) 7→ inf

{∫

A

f(ω, y,∇u(y))dy : u ∈W 1,p(A,Rm), u(y) = ξy near ∂A

}

defines a subadditive stochastic process on Ω × In (where In denotes the class
of n-dimensional intervals) and then invoking the pointwise subadditive Ergodic
Theorem of Ackcoglou and Krengel [1]. Though the proof of the existence of the
limit in (6) follows a similar strategy as for the volume case, the analysis of surface
random functionals is particularly delicate and requires some additional care. In-
deed, two main differences between volume and surface energies are immediately
apparent from (6). Namely, the latter shows a “mismatch” between the surface
scaling rn−1 and the minimisation problem

(7) inf

{∫

Su∩Qν
r (rx)

g(ω, y, [u], νu)dHn−1 : u ∈ SBV (Qνr (rx),Rm),

∇u = 0, a.e. in Qνr (rx), u = urx,ζ,ν on ∂Qνr (rx)

}
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which is defined on the n-dimensional cube Qνr (rx). Moreover, the explicit de-
pendence of the boundary datum urx,ζ,ν on the spatial variable x results into an
additional difficulty in the proof of (6). Then, similarly as in [2], we first set x = 0
in (7) and then provide a systematic way to associate to (7) a map defined on
Ω × In−1 (In−1 being the class (n − 1)-dimensional intervals). This map then
turns out to be the sought for (n− 1)-dimensional subadditive stochastic process,
the main difficulty being here the proof of the measurability of the process. As a
final step we show that the choice x = 0 is not “special”; i.e., that the limit in
(6) actually defines a homogeneous random surface-integrand ghom. This is done
appealing to the Birkhoff’s Ergodic Theorem in the spirit of [4], where a similar
issue is solved by proving the translation invariance of a first passage percola-
tion formula. Finally, if f and g are ergodic (i.e., they satisfy (3) and (4) for
(τz)z∈Zn ergodic) the homogenisation becomes effective and the functional Ehom

is deterministic.
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Università degli Studi di Bologna
Piazza Porta S. Donato, 5
40127 Bologna
ITALY

Prof. Dr. Guy David

Laboratoire de Mathématiques
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