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Abstract. General Relativity is one of the triumphs of twentieth century
physics. Its spectacular predictions include gravitational waves, black holes,
and spacetime singularities. The mathematical study of this theory leads to
deep problems connecting the areas of partial differential equations, geometry
and topology with physics. The talks of the workshop illustrated the rapid
progress in this subject over the last few years.
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Introduction by the Organisers

The workshop Mathematical Aspects of General Relativity was organised by Carla
Cederbaum (Tübingen), Mihalis Dafermos (Cambridge/Princeton), Jim Isenberg
(Eugene) and Hans Ringström (Stockholm). The over 50 participants represented
a wide selection of different research areas connected to the general theory of
relativity, and roughly half of them gave talks at the workshop.

Proving nonlinear stability for solutions of the vacuum Einstein equations (with-
out symmetry assumptions) has been a long-term goal of the field, and the progress
reported in previous workshops is now finally converging to a complete solution.
In this direction, Martin Taylor discussed a proof (in progress, joint with Holzegel,
Rodnianski and Dafermos) of the full nonlinear stability of the Schwarzschild solu-
tion, the first non-trivial asymptotically flat black hole solution to be discovered.
Andras Vasy described his proof (joint with Hintz) of stability of very slowly ro-
tating Kerr-de Sitter spacetimes (for the case of positive cosmological constant).
Peter Hintz discussed a new proof of the non-linear stability of Minkowski space.



2158 Oberwolfach Report 36/2018

Finally, on this theme, Pau Figueras presented beautiful numerical work exhibiting
various novel instabilities of higher dimensional black holes. These numerics may
serve as inspiration for mathematical work to be presented at future workshops!

The Einstein–Vlasov and Vlasov–Poisson systems are of central interest in
physics, since they can be used to model, e.g., galaxies. One central question
concerning solutions to these systems is whether they are stable or not. This
question was addressed in a talk by Mahir Hadzic. In particular, he described an
instability theory for self gravitating relativistic matter systems.

In addition to stability problems, important progress has been made in under-
standing solutions of the vacuum Einstein equations with no (or limited) symmetry
in various singular regimes. Jonathan Luk presented joint work with Van de Moor-
tel concerning the interaction of impulsive gravitational waves with three singular
fronts, while Y. Shlapentokh-Rothman presented joint work with Rodnianski con-
cerning asymptotically self-similar solutions.

As discussed in several previous workshop of this series, Anti-de Sitter space
has been conjectured to be unstable, in stark contrast to Minkowski and de Sitter
space. Though numerical evidence has more recently been given for the validity of
this conjecture, it has remained elusive to prove because the instability mechanism
is a purely non-linear effect. Georgios Moschidis discussed the first rigorous proof
of this instability, accomplished in the context of the Einstein–Vlasov system under
spherical symmetry. On the other hand, Stephen Green discussed numerical work
connected to so called “islands of stability”.

Black hole interiors remain one of the most intriguing domains for general rel-
ativity. Sung-Jin Oh discussed his joint work with Luk concerning weak null
singularities in black hole interiors, giving finally a complete proof of a suitable
formulation of Strong Cosmic Censorship for the Einstein–Maxwell-scalar field
eqations under spherical symmetry. Christoph Kehle presented joint work with
Shlapentokh-Rothman concerning a scattering theory for the wave equation on
Reissner–Nordström.

The formulation of strong cosmic censorship requires the notion of “maximal
Cauchy development”. In his talk, Jan Sbierski explained the subtleties in defining
this object for some of the most classical equations of mathematical physics.

The causal structure plays a central role in the understanding of the asymptotic
behaviour of solutions to Einstein’s equations. In the standard models of the
universe, particle horizons form in the direction of the big bang. However, already
in 1969, Misner suggested that in, e.g., Bianchi type IX solutions, particle horizons
would not form. In recent work, presented during the workshop, Bernhard Brehm
demonstrated that for Lebesgue almost all Bianchi type IX initial data, particle
horizons form. However, he also presented heuristics indicating that for Baire
generic initial data, particle horizons do not form.

Back reaction is a topic of current interest in physics. During the workshop it
was discussed in the presentation by Cécile Huneau. In joint work with Jonathan
Luk, she has explored the relation between weak limits of solutions to Einstein’s
vacuum equations and solutions to the Einstein null dust system. In particular,
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Huneau and Luk have demonstrated that (under suitable assumptions) solutions to
the Einstein null dust system can be obtained as weak limits of families of solutions
to Einstein’s vacuum equations. One of the basic examples of this phenomenon is
obtained in the class of polarised Gowdy solutions. A generalisation of this class is
the T 2-symmetric solutions. The future asymptotics of solutions to this family was
discussed in the presentation of Adam Layne. In joint work with Beverly Berger
and James Isenberg, he has identified an attractor for the future asymptotics.
However, the attractor does not represent a known explicit solution.

Gregory Galloway presented a result joint with Eric Ling giving an interesting
connection between the topology of cosmological spacetimes and the occurrence
of singularities. Roughly speaking, the result states that in a globally hyper-
bolic spacetime satisfying the null energy condition and having a smooth compact
Cauchy hypersurface with a positive definite second fundamental form, the fol-
lowing holds. Either the Cauchy hypersurfaces are spherical spaces or the space-
time is past causally geodesically incomplete. In a related talk, Melanie Graf
presented singularity theorems for C1,1-metrics. A topological understanding of
photon spheres in Kerr spacetimes was presented by Sophia Jahns, relying on
a lift to the phase space and using methods related to some of those of central
importance in the result presented by Galloway (joint with Carla Cederbaum).

Henri Roesch discussed his result on the Penrose inequality for (rather) general
null hypersurfaces in 4-dimensional spacetimes. His method of proof heavily relies
on a new quasi-local notion of mass that is tailored to converge to Bondi mass and
has very useful monotonicity properties.

A number of talks focused on initial data for Einstein’s equations with pre-
scribed asymptotic behavior. Many talks focused on the special case of Riemann-
ian manifolds, typically assuming that those have non-negative scalar curvature,
corresponding to the dominant energy condition in the spacetime generated from
the Riemannian manifold, assuming time symmetry.

In this context, Richard Schoen presented his groundbreaking result with Shing-
Tung Yau settling the positive mass theorem for asymptotically flat Riemannian
manifolds obeying the dominant energy condition (non-negative scalar curvature,
in this setup) in arbitrary dimension without any topological conditions. Working
instead in the asymptotically hyperbolic context, but still in arbitrary dimension,
Romain Gicquaud showed that certain algebraic ideas can be used to define novel,
mass-like covariants to be determined from the asymptotics of the metric (joint
with Julien Cortier and Mattias Dahl).

Christina Sormani (joint work with a number of co-authors) and Jeffrey Jau-
regui (joint work with Dan Lee) each presented subtle results on stability / almost
rigidity of general relativistic inequalities for Riemannian manifolds such as the
positive mass theorem, using the relatively new, tailor-made notion of intrinsic flat
convergence suggested by Sormani and Wenger.



2160 Oberwolfach Report 36/2018

Working with methods from Riemannian geometry and also with those devel-
oped in the context of curvature flows, Mart́ın Reiris presented an extensive clas-
sification result for static spacetimes with an axisymmetry condition but without
any asymptotic assumptions.

Furthermore, Armando Cabrera Pacheco presented a gluing construction for
Riemannian extensions allowing to give an upper estimate on the quasi-local Bart-
nik mass of a 2-dimensional surface with prescribed metric and mean curvature,
defined as the infimum of the ADM-masses of all “admissible” Riemannian mani-
folds realizing the given geometric data on the 2-surface. This construction extends
and refines a construction suggested by Christos Mantoulidis and Richard Schoen
for minimal surfaces in the asymptotically flat case both to the context of con-
stant mean curvature surfaces and to the asymptotically hyperbolic case (joint
with Carla Cederbaum, Stephen McCormick, Pengzi Miao).

More generally, for arbitrary asymptotically flat initial data sets satisfying the
dominant energy condition, several results were presented that demonstrate the
progress the field has made in the last years: Both Ye Sle Cha (partially joint
work with Marcus Khuri) and Eugenia Gabach Clement (partially joint work with
Sergio Dain and also with others) discussed recent progress made towards proving
geometro-physical inequalities such as the quasi-local area-angular momentum and
global angular momentum-mass inequalities for black holes.

Anna Sakovich presented a novel foliation near infinity for asymptotically flat
initial data sets in three dimensions that generalizes the canonical foliation by
constant mean curvature surfaces initially studied by Gerhard Huisken and Shing-
Tung Yau and that is intimately linked with the mathematically consistent defi-
nition of the center of mass of an isolated system (joint with Carla Cederbaum).

The participants of the workshop benefitted a lot from an open problem ses-
sion led by Robert Wald, where he discussed the subtle intricacies of well-posing
perturbative corrections to surprisingly simple equations.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Gregory Galloway in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

The positive mass theorem again

Richard Schoen

(joint work with Shing-Tung Yau)

The purpose of this talk is to describe and present some features of the paper [5]
which extends the minimal hypersurface proof of the positive mass theorem to all
dimensions. We refer the reader to [5] for a more complete history and background
on the problem.

We consider an asymptotically flat Riemannian manifold (Mn, g) (n ≥ 3). By
this we mean that there is a compact subset K of M so that the complement
M \ K is diffeomorphic to the exterior of a ball in Rn in the sense that there
are coordinates x1, . . . , xn on M \ K so that the metric coefficients gij in these
coordinates satisfy the falloff

gij = δij +O2,α(|x|−p), Rg = O0,α(|x|−q)
where p > (n − 2)/2, q > n, α ∈ (0, 1) and the notation Ok,α(|x|−s) means that
the indicated function is bounded by a constant times |x|−s, its first k partial
derivatives and the α-Hölder coefficient of the kth order derivatives decay at the
corresponding rates.

For such a manifold it is possible to define the ADM mass by the expression

m = lim
σ→∞

cn

∫

Sσ

(∂jgij − ∂igjj)ν
i da

where Sσ = {x : |x| = σ} and ν is the outward unit normal to Sσ with respect to
the euclidean metric. The positive constant cn is chosen so that the n-dimensional
Schwarzschild metric gm = (1+ m

2|x|n−2 )
4/(n−2)δij has ADM mass m. For example

c3 = 1/(16π).
The simplest form of the positive mass theorem is the following.

Theorem 1. Let (Mn, g) be an asymptotically flat Riemannian manifold with
Rg ≥ 0. We then have m ≥ 0 and m = 0 if and only if (M, g) is isometric to
(Rn, δ), the euclidean space of dimension n.

The original conjecture was the case n = 3, but the statement makes sense for
any n ≥ 3 and the higher dimensional case is of both mathematical and physical
importance. There are three methods which have been successful for proving the
result. The first was the minimal hypersurface approach developed by the speaker
and S-T. Yau [3]. The second method uses the Dirac operator and was introduced
by E. Witten [6]. There is also a third method, the inverse mean curvature flow
proposed by R. Geroch and rigorously developed by G. Huisken and T. Ilmanen
[1], which gives a stronger result, but only seems to work for n = 3.

In general dimensions both the minimal hypersurface and Dirac operator ar-
guments have limitations. The Dirac operator argument requires the condition
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that M be a spin manifold while the minimal hypersurface argument only works
directly for n ≤ 7 because of the possibility of singularities in the minimal hyper-
surfaces in higher dimensions. There is a separate argument which extends the
method to the n = 8 case (see the discussion in [5]).

There is a technical simplification based on the early work [4], which simplifies
the asymptotics, and the work of J. Lohkamp [2]. The result is a compactification
argument.

Theorem 2. Let Mn
0 be any closed n-manifold and let M = M0#T

n. Then M
cannot carry a metric with positive scalar curvature.

The conclusion of [4] and [2] is that Theorem 2 implies Theorem 1. Technically
Theorem 2 only implies the weak form of Theorem 1 which says that m ≥ 0. The
strong form can then be derived by well known arguments.

We outline the argument for the proof of Theorem 2 by introducing the notion
of minimal k-slicings. We may assume that M is orientable and we observe that
there are closed 1-forms ω1, . . . , ωn such that

∫
M ω1 ∧ . . . ∧ ωn = 1. These are

gotten by pulling back the basic 1-forms on T n by a degree one map from M to
T n which collapses M0 to a point. We may then construct a nested family of
oriented hypersurfaces

Σk ⊂ Σk+1 ⊂ . . . ⊂ Σn−1 ⊂M

for 1 ≤ k ≤ n−1. We construct these hypersurfaces by minimization of a weighted
volume functional. First construct Σn−1 by minimizing volume among oriented
hypersurfaces Σ of M satisfying

∫
Σ ω

1 ∧ . . .∧ωn−1 = 1. We then choose a positive
lowest eigenfunction un−1 of the second variation form Sn−1(ϕ, ϕ) and let ρn−1 =
un−1 be a weight function. Construct Σn−2 by minimizing the weighted volume
Vρn−1

over oriented hypersurfaces Σ in Σn−1 subject to the condition that
∫

Σ

ω1 ∧ . . . ∧ ωn−2 = 1.

Let un−2 be a positive first eigenfunction of the second variation form Sn−2 and
set ρn−2 = un−1ρn−1. We then continue this argument down to dimension k. To
summarize, Σj is a minimizer of Vρj+1

subject to the homological constraint, and
ρj = ujρj+1. Such a family of hypersurfaces is called a minimal k-slicing.

The basic geometric theorem about such objects is the following.

Theorem 3. If M has positive scalar curvature and

Σk ⊂ . . . ⊂ Σn−1 ⊂M

is a minimal k-slicing, then Σk with its induced metric as a submanifold of M is
Yamabe positive. In particular if k = 2, then Σ2 is homeomorphic to a union of
2-spheres.

A basic example of a minimal 2-slicing in the manifold M = S2×T n−2 is given
by

S2 ⊂ S2 × S1 ⊂ S2 × T 2 ⊂ . . . ⊂ S2 × T n−3 ⊂M.
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We see that M has positive scalar curvature if we take the product metric.
The proof of Theorem 2 follows from Theorem 3 because the condition

∫
Σ2
ω1∧

ω2 = 1 is not possible if Σ2 is simply connected (each ωi would be exact on Σ2).
For n ≥ 8 there is the possibility that Σn−1 could have a closed singular set Sn−1

of Hausdorff dimension at most n− 8. The strategy for extending the proof to all
dimensions is to construct the minimal slicings in the presence of singularities and
to show that the two dimensional slice is completely regular. The proof involves
an existence and a regularity theorem. If we denote by Sk the singular set of Σk,
the regularity theorem says that dim(Sk) ≤ k−3. The proof involves construction
of ‘tangent’ slicings at singular points and the regularity of homogeneous minimal
2-slicings.

As to the existence part, we must construct the eigenfunctions which comprise
the weights, and the slices which minimize allowing the possibility of small singular
sets. To construct the eigenfunctions it seems necessary to modify the second
variation forms to make them more coercive. For example if we take a volume
minimizing hypersurface Σ in a manifold M , its second variation form is

S(ϕ, ϕ) =

∫

Σ

[‖∇ϕ‖2 − (RicM (ν, ν) + ‖A‖2)ϕ2] dµ

where A is the second fundamental form of Σ in M . In order to diagonalize this
form on the unit sphere of L2 we must show that a sequence ϕi with S(ϕi, ϕi)
and ‖ϕi‖L2 bounded has a subsequence ϕi′ which converges in L2 norm. What
must be shown is that the ϕi cannot concentrate on the singular set S. This seems
difficult to do since the two terms ‖∇ϕ‖2 and ‖A‖2ϕ2 can both become large and
cancel keeping S bounded. The way this is handled is to observe that only half of
the term ‖A‖2ϕ2 term is needed for the geometric conclusions, so we can replace S
by a form Q = S +α

∫
Σ
‖A‖2ϕ2 dµ with α ∈ (0, 1/2). Having a bound on Q(ϕ, ϕ)

then gives a bound on
∫
Σ
‖A‖2ϕ2 dµ and hence a bound on

∫
Σ
‖∇ϕ‖2 dµ. Since

minimal hypersurfaces have a uniform Sobolev constant it would then follow that
there is a bound on

∫
Σ ϕ

2n/(n−2) dµ. Such a bound prevents the L2 norm from
concentrating on sets of small volume. There is an analogous way of modifying the
forms Sj for j < n− 1 so that they can be diagonalized and so that the geometric
conclusions remain correct.

References

[1] G. Huisken, T. Ilmanen, The Inverse Mean Curvature Flow and the Riemannian Penrose
Inequality, J. Diff. Geom 59 (2001), 353–437.

[2] J. Lohkamp, Scalar curvature and hammocks, Math. Ann. 313 (1999), 385–407.

[3] R. Schoen, S-T. Yau, On the proof of the positive mass conjecture in general relativity,
Comm. Math. Phys. 65 (1979), 45–76.

[4] R. Schoen, S-T. Yau, Positivity of the total mass of a general space-time, Phys. Rev. Lett.
43 (1979), 1457–1459.

[5] R. Schoen, S-T. Yau, Scalar curvature and minimal hypersurface singularities,
arXiv:1704.05490.

[6] E. Witten, A New Proof of the Positive Energy Theorem. Comm. Math. Phys. 80 (1981),
381–402.



2168 Oberwolfach Report 36/2018

The stability of Kerr–de Sitter black holes

Andras Vasy

(joint work with Peter Hintz)

According to Einstein’s theory of General Relativity, a vacuum spacetime with
cosmological constant Λ ∈ R is a (3 + 1)-dimensional manifold M equipped with
a Lorentzian metric g satisfying the Einstein vacuum equation

(1) Ric(g) + Λg = 0.

A Kerr–de Sitter (KdS) spacetime, discovered by Kerr [Ker63] and Carter [Car68],
models a stationary, rotating black hole within a universe with Λ > 0: far from the
black hole, the spacetime behaves like de Sitter space with cosmological constant Λ,
and close to the event horizon of the black hole like a Kerr black hole. Fixing Λ > 0,
a (3 + 1)-dimensional KdS spacetime (M◦, gb) depends, up to diffeomorphism
equivalence, on two real parameters, namely the mass M• > 0 of the black hole
and its angular momentum a, which we combine into a single parameter b =
(M•, a). The Kerr–de Sitter family of black holes is then a smooth family gb
of stationary Lorentzian metrics, parameterized by b = (M•, a), on a fixed 4-
dimensional manifold M◦ ∼= Rt∗ × (0,∞)r × S2 solving the equation (1). The
Schwarzschild–de Sitter (SdS) family is the subfamily of the KdS family with
a = 0; a SdS black hole describes a static, non-rotating black hole. We point out
that according to the currently physically accepted ΛCDMmodel, the cosmological
constant is indeed positive in our universe.

The equation (1) is a non-linear second order partial differential equation for
the metric tensor g. Due to the diffeomorphism invariance of this equation, the
formulation of a well-posed initial value problem is more subtle than for (non-
linear) wave equations. This was first accomplished by Choquet-Bruhat [CB52],
who with Geroch [CBG69] proved the existence of maximal globally hyperbolic
developments for sufficiently smooth initial data. The initial data are a triple
(Σ0, h, k), consisting of i) a 3-manifold Σ0, ii) a Riemannian metric h on Σ0, iii)
a symmetric 2-tensor k on Σ0, subject to the constraint equations, which are the
Gauss–Codazzi equations on Σ0 implied by (1). Fixing Σ0 as a submanifold of
M◦, a metric g satisfying (1) is then said to solve the initial value problem with
data (Σ0, h, k) if i) Σ0 is spacelike with respect to g; ii) h is the Riemannian
metric on Σ0 induced by g; iii) k is the second fundamental form of Σ0 within
M◦. Our main result concerns the global non-linear asymptotic stability of the
KdS family as solutions of the initial value problem for (1); we prove this for
slowly rotating black holes, i.e. near a = 0. To state the result in the simplest
form, let us fix a SdS spacetime (M◦, gb0), and within it a compact spacelike
hypersurface Σ0 ⊂ {t∗ = 0} ⊂ M◦ extending slightly beyond the event horizon
r = r− and the cosmological horizon r = r+; let (hb0 , kb0) be the initial data on Σ0

induced by gb0 . Denote by Σt∗ the translates of Σ0 along the flow of ∂t∗ , and let
Ω◦ =

⋃
t∗≥0 Σt∗ ⊂M◦ be the spacetime region swept out by these. Since we only

consider slow rotation speeds, it suffices to consider perturbations of SdS initial
data, as this includes (perturbations of) slowly rotating KdS initial data.
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Theorem 1 (Stability of the Kerr–de Sitter family for small a; informal version,
[HV18]). Suppose (h, k) are smooth initial data on Σ0, satisfying the constraint
equations, which are close to the data (hb0 , kb0) of a Schwarzschild–de Sitter space-
time in a high regularity norm. Then there exist a solution g of (1) attaining these
initial data at Σ0, and black hole parameters b which are close to b0, so that

g − gb = O(e−αt∗)

for a constant α > 0 independent of the initial data; that is, g decays exponentially
fast to the KdS metric gb. Moreover, g and b are quantitatively controlled by (h, k).

In particular, we do not require any symmetry assumptions on the initial data.
Above, we measure the pointwise size of tensors on the spacetime M◦ by means
of a fixed smooth stationary Riemannian metric gR on M◦. The norms we use for
(h−hb0, k−kb0) on Σ0 and of g−gb on Σt∗ are then high regularity Sobolev norms;
any two choices of gR yield equivalent norms. If (h, k) are smooth and sufficiently
close to (hb0 , kb0) in a fixed high regularity norm, the solution g we obtain is
smooth as well, and in a suitable Fréchet space of smooth symmetric 2-tensors
on M◦ depends smoothly on (h, k), as does b. In terms of the maximal globally
hyperbolic development (MGHD) of the initial data (h, k), the Theorem states
that the MGHD contains a subset isometric to Ω◦ on which the metric decays at
an exponential rate to gb. We stress that a single member of the KdS family is
not stable, rather we have orbital stability: small perturbations of the initial data
of, say, a SdS black hole, will in general result in a solution which decays to a KdS
metric with slightly different mass and non-zero angular momentum.

Earlier global non-linear stability results for the Einstein equation include Fried-
rich’s work [Fri86] on the stability of (3+1)-dimensional de Sitter space, the mon-
umental proof by Christodoulou–Klainerman [CK93] of the stability of (3 + 1)-
dimensional Minkowski space. Partial simplifications and extensions of these re-
sults include those of Lindblad–Rodnianski [LR10] and Bieri–Zipser [BZ09] on
Minkowski space, as well as many others. For Λ = 0, linear stability of the Schwarz-
schild spacetime (i.e. with a = 0) was proved recently by Dafermos, Holzegel and
Rodnianski [DHR16] and they also obtained results for the Teukolsky equation
[DHR17]. Our Theorem is the first result for the Einstein equation proving an
orbital stability statement, and our flexible techniques allow for investigations of
many further orbital stability questions, such as for the Kerr–Newman–de Sitter
family of rotating and charged black holes accomplished by Hintz [Hin16b] after
the work being reported on. More recently [HV17] we showed that our methods
yield yet another proof of the stability of Minkowski space, together with a rather
precise analysis of the asymptotic behavior of the solutions.

The proof of the Theorem uses a generalized wave coordinate gauge adjusted
‘dynamically’ (from infinity) by finite-dimensional gauge modifications. The key
tool is the precise analysis of the linearized problem around a SdS metric; we de-
velop a robust framework that has powerful stability properties with respect to
perturbations. This completes in a sense a series of works starting with [Vas13],
including [HV15, Hin16a, HV16], with the works of Wunsch–Zworski [WZ11] and
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Dyatlov [Dya16] as an external input to handle the trapped set. The restriction to
small angular momenta in the Theorem is then due to the fact that the required
algebra, mostly concerning resonances, is straightforward for linear equations on a
SdS background, but gets rather complicated for non-zero angular momenta. Our
framework builds on a number of recent advances in the global geometric microlo-
cal analysis of black hole spacetimes. For solving the non-linear problem, we use a
Nash–Moser iteration scheme, which proceeds by solving a linear equation globally
at each step and is thus rather different in character from bootstrap arguments.
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Interaction of three impulsive gravitational waves under polarized
U(1) symmetry

Jonathan Luk

(joint work with Maxime van de Moortel)

An impulsive gravitational wave is a (weak) solution (M, g) to the Einstein vacuum
equations

(EinVac) Ric(g) = 0

in which the Riemann curvature tensor of g admits a delta singularity supported on
a null hypersurface. An explicit solution featuring such an impulsive gravitational
wave was first considered in [6]. Impulsive gravitational waves can be thought of
as an idealized representation of gravitational waves emitting from strongly grav-
itating objects and as such it is interesting to understand their interaction (which
is geometrically represented by the intersection of the corresponding singular hy-
persurfaces).

Previously, there have been two important works regarding the interaction of
two impulsive gravitational waves:

(1) An explicit example in plane symmetry was discovered by Khan–Penrose
[3] and Szekeres [7] featuring the interaction of two plane symmetric impul-
sive gravitational waves (see also [2] for a survey on the vast literature on
related explicit examples). In the example of Khan–Penrose and Szekeres,
locally immediately after the interaction, the spacetime metric remains
smooth; nevertheless, the interaction creates a focusing effect so that the
spacetime eventually terminates with a spacelike singularity.

(2) A local theory for the interaction of two impulsive gravitational waves
for general wavefronts without any symmetry assumptions has been de-
veloped by Luk–Rodnianski [4, 5]. They showed in particular that in
general, locally after the interaction of two impulsive gravitational waves,
the spacetime metric remains smooth away from the impulsive wavefronts.

Despite the above developments, there has been no known example for a space-
time solution to (EinVac) featuring the transversal interaction of three (or more)
impulsive gravitational waves. In particular, in [4, 5], the interaction of two im-
pulsive gravitational waves was treated by a geometric construction (based on the
double null foliation gauge) which exploits the fact that “the spacetime is more
regular (in fact smooth) in two directions”. The methods in [4, 5] break down once
there is a third transversally interacting impulsive gravitational wave; indeed one
may even expect that the structure of the singularity is qualitatively different with
three impulsive waves (cf. Remark 1 below). Understanding the transversal inter-
action of three impulsive gravitational waves will therefore necessarily introduce
new ideas to study the dynamics of (EinVac).

Our main result is a construction of a large class of solutions to (EinVac) featur-
ing the interaction of three impulsive gravitational waves. For this we do not work
in full generality, but instead impose a polarized U(1)-symmetry, i.e. we consider
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a spacetime (M,(4) g) which M = [0, 1]× R2 × S1, where (4)g takes the form (for
some (2 + 1)-dimensional Lorentzian metric g and some real-valued function φ)

(4)g = e−2φg + e2φ(dx3)2.

Under this ansatz, (EinVac) reduces to the following (2 + 1)-dimensional problem

(EinU(1)) �gφ = 0, Ric(g) = 2dφ⊗ dφ.

We set up our problem by considering the initial value problem for (EinU(1))
such that φ and its derivatives are compactly supported and small in L∞. The
derivatives of φ are imposed to have a small jump discontinuity along three curves.
Moreover, the singularities are arranged to that they propagate towards each other.

Theorem 1 (Luk–Van de Moortel, forthcoming). Given a polarized U(1) sym-
metric initial data set corresponding to three appropriately small impulsive gravita-
tional waves propagating towards each other, there exists a solution to the Einstein
vacuum equations corresponding to the given data up to and beyond the interaction
of these waves. Moreover, in the solution, the metric is everywhere Lipschitz and
is C1,α for some α > 0 away from the three null hypersurfaces corresponding to
impulsive gravitational waves.

Remark 1. Our theorem does not give uniqueness, nor does it give higher regular-
ity beyond C1,α away from the impulsive gravitational waves. Both of these aspects
are different from the known result for the interaction of two impulsive gravitational
waves established in [5]. Nevertheless, in view of the picture established even in
some much simpler semilinear model problems [1], it seems reasonable to conjec-
ture that the spacetime metric is in general not smooth away from the impulsive
gravitational waves, in the sense that some weaker singularities are generated by
the interaction of the impulsive gravitational waves.

We now discuss some key ideas of the proof.

(1) (A δ-approximate problem) The general strategy is to smooth out the
singularity at scale δ and to prove uniform bounds as δ → 0. In the
δ-approximate problem, the initial singularities are localized to a length
scale ∼ δ and obey the estimates |φ| ∼ 1, |∂φ| ∼ 1 and |∂2φ| ∼ δ−1 (in
L∞).

(2) (Geometric coordinate systems) To close the estimates we introduce mul-
tiple systems of coordinates: one global elliptic coordinate system together
with three null coordinate systems, where each null coordinate system is
adapted to one of singularities. The elliptic coordinate system is used so
that the metric components satisfy semilinear elliptic PDEs and we can
obtain maximal spatial regularity for them. On the other hand, we use the
null coordinate systems to capture exactly the directions that the singular-
ities propagate. This allows us to show that derivatives in some directions
remain more regular. However, while the use of multiple coordinate sys-
tems is advantageous for proving regularity, it also necessarily creates the
challenge of controlling the transformation between different coordinate
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systems. In the process, we show that all the transformations give only
“lower order” contributions in an appropriate sense.

(3) (Wave estimates) When controlling the wave part φ, we cannot hope for
an estimate in the L2-based Sobolev spaces better than ‖φ‖H1 ∼ 1 and

‖φ‖H2 ∼ δ−
1
2 — such an estimate is way too weak! Instead, we need to

show that in fact (1) the H2 norm of φ is only large in a “small region” of
length scale ∼ δ and (2) that it is only derivatives of φ in some directions
that are large, and that the derivatives in some other directions (defined
with respect to the null coordinates) remain better controlled.

In order to achieve points (1) and (2) above, we decompose φ into
a “regular” and a “singular” part (constructed via solving an auxiliary
characteristic-Cauchy problem). The regular part of φ has bounded H2

norm. The singular part φsing of φ, while necessarily has ‖φsing‖H2 ∼ δ−
1
2 ,

is localized to scale δ, and has the additional property that the L2 norms
of its lower order derivatives, as well as derivatives in the “good” directions
along the singularities, are in fact small in terms of δ.

We can then propagate a hierarchy of δ-dependent estimates for φsing.
This is reminiscent of Christodoulou’s short pulse method for proving
the formation of trapped surfaces. In particular, such estimates can be
achieved with only relatively weak control of the geometry.

(4) (Higher order regularity and harmonic analytic estimates) In order to show
that the solution is in fact Lipschitz everywhere and C1,α away from the
impulsive gravitational waves, we introduce an additional commutation
of a fractional derivative with respect to the elliptic coordinate systems.
Constructing these commuting fractional derivatives in the elliptic coordi-
nate system in particular allows us to exploit the spatial regularity of the
metric components to control the commutator terms. In order to imple-
ment and utilize this, we need to additionally bound the transformations
of fractional derivatives between different coordinate systems, and prove
certain anisotropic Sobolev embedding and Sobolev extension results. All
of these are achieved using tools from harmonic analysis.
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Towards uniqueness of near-horizon geometries

Piotr T. Chruściel

(joint work with Sebastian Szybka and Paul Tod)

Degenerate Killing horizons are, by definition, those Killing horizons on which the
surface gravity vanishes. The metric induced on a section of a degenerate Killing
horizon H by a vacuum space-time metric satisfies the set of equations

(1) RAB − (DAωB + DBωA + 2ωAωB) = 0 ,

known as the near-horizon-geometry equations, where ωA is a field of one-forms
on the section. Equation (1) implies a nonlinear elliptic system of equations for
both ωA and the metric.

The fact that there are no solutions of these equation on S2 on horizons arising
from static space-times [2] implies that there are no static vacuum black holes with
degenerate horizons.

The fact that [5, 8] (compare [7, 10])

all axisymmetric solutions (gAB, ωA) of (1) on a two-dimensional

sphere arise from degenerate Kerr metrics(2)

plays a key role in the proof that all connected degenerate stationary axisymmetric
vacuum black holes are Kerr [1] (see also [4, 9]).

It is expected that

Conjecture 1. (2) holds without the axisymmetry assumption.

In my talk I described the computer-assisted proof, presented in [3], that the
conjecture holds in a neighborhood of the Kerr near-horizon geometries:

Theorem 1. Let S denote the set of pairs (gAB, ωA) on S2 satisfying (1), let
SKerr ⊂ S denote the set of such pairs arising from some Kerr solution. There
exists a neighborhood U of SKerr in the set of all pairs (gAB, ωA) such that

S ∩ U = SKerr .

A useful fact in this context, also proved in [3], and likely to be useful in further
analyses of the problem, is

Theorem 2. Consider a smooth solution of (1) on a two-dimensional sphere S2.
Then ω = ωAdx

A has exactly two zeros, each of index one.

The proof of Theorem 1 proceeds by showing that the operator obtained by
linearising (1) has no kernel other than the fields obtained by varying the mass
and the direction of the angular momentum of the extreme Kerr solutions. The
analysis uses a parametrisation of solutions of (1) introduced by Jezierski and
Kamiński in [6]. There the linearised problem is reduced to a coupled system of
second order elliptic equations for a R2-valued function, say φ. The system can be
handled by separately analysing each of the equations satisfied by the coefficients
φk of the Fourier series of φ with respect to the longitudinal angle on S2. It is ele-
mentary to show that all modes except those with |k| ∈ {1, . . . , 7} vanish. Further
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Figure 1. Solution curves Wk(x), 1 < |k| < 8, x = cos θ, in the
complex plane, regular at the north pole.

manipulations of the equations reduce the problem to showing that a family of
second-order Fuchsian ordinary differential equations, degenerating at the poles,
for complex-valued functions Wk(cos θ), k ∈ {1, . . . , 7}, has no solutions which are
regular both at the north and south pole. This last property is established by
numerically solving the equations. The solution curves Wk are shown in Figure 1:
non-trivial smooth solutions would lead to closed curves in the complex plane,
which is clearly not the case.
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On geometric foliations and the center of mass of isolated systems in
general relativity

Anna Sakovich

(joint work with Carla Cederbaum)

The notion of the center of mass of a physical system is one of the most fundamental
concepts in mathematical physics and geometry, as understanding its position and
motion is often the first step towards understanding of the overall dynamics of the
system. In this talk we present a novel definition of the center of mass of initial
data for general relativistic isolated systems.

Let ε ∈ (0, 12 ] and let I = (M3, g,K) be a smooth initial data set, consisting

of a smooth Riemannian 3-manifold (M3, g) equipped with a smooth symmetric
2-tensor K to be thought of as the second fundamental form of the initial data
set inside some ambient Lorentzian spacetime. We say that I is an asymptotically
Euclidean initial data set if there is a smooth diffeomorphism Φ: M3 \ B → R3 \
BR(0) defined in the region exterior to a compact set B ⊂ M3 such that in the

coordinates ~x = (x1, x2, x3) induced by this diffeomorphism on R3 \ BR(0), we
have the following pointwise estimates

|gij − δij |+ |~x||∂kgij |+ |~x|2|∂k∂lgij | ≤ C|~x|− 1
2
−ε

|Kij |+ |~x||∂kKij | ≤ C|~x|− 3
2
−ε

|µ|+ |Ji| ≤ C|~x|−3−ε

where the Kronecker delta δij denotes the components of the Euclidean metric with
respect to the coordinates ~x. The local energy density µ and the local momentum
density J of the initial data can be computed using the standard constraint equa-
tions. The case when K ≡ 0 is called the Riemannian case; in this case µ is the
scalar curvature of (M, g) and J ≡ 0.

Asymptotically Euclidean initial data sets as described above are well-known to

have well-defined total energy E and linear momentum ~P in the sense of Arnowitt,
Deser, and Misner [1]. However, the so-called Beig-Ó Murchadha center of mass, a
notion developed in [2] using the Hamiltonian formalism, will not be well-defined
unless certain asymptotic symmetry conditions (such as e.g. the so-called Regge-
Teitelboim condition) are additionally imposed. This being a rather restrictive
additional assumption, an alternative strategy (first suggested by Christodoulou
and Yau in [4]) is to define the center of mass of an asymptotically Euclidean
initial data set in terms of geometric foliations. A very satisfying definition of
this kind was given in the Riemannian case by Huisken and Yau in [5], where the
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center of mass was related to the unique CMC-foliation, i.e. foliation by surfaces
of constant mean curvature. The main result of this work proving the existence
of such foliation near infinity of a Riemannian asymptotically Schwarzschildean
3-manifold with positive energy E > 0 has subsequently been generalized to the
case of asymptotically Euclidean initial data sets as defined above, with K ≡ 0
and E 6= 0. Moreover, by now it is known that the coordinate center of the CMC-
foliation coincides with the Beig-Ó Murchadha center of mass, provided that the
later is well-defined. For further details, see [6] and references therein.

We note yet another generalization of Huisken and Yau’s result. In [9], Metzger
introduced foliations of asymptotically Euclidean initial data sets I = (M, g,K) by
surfaces of constant expansion. A surface Σ →֒ I is said to have constant expansion
if either HΣ+trΣK = const or HΣ− trΣK = const holds along Σ, where HΣ is the
mean curvature of Σ →֒ (M, g) with respect to the outward pointing unit normal
and trΣK denotes the partial trace of K with respect to the induced metric on
Σ →֒ (M, g). As observed in [9] and [7], this foliation will only exist under certain
smallness assumptions on K. Furthermore, in general, the coordinate centers of
its leaves will drift away towards infinity (|~x| → ∞) in the direction of the linear

momentum ~P . Consequently, this foliation is not related to the center of mass of
the initial data set I, unless K falls of very fast.

As the second fundamental form K does not play a role in defining the Huisken-
Yau foliation by surfaces of constant mean curvature, the associated notion of
center of mass will not necessarily behave in accordance with a point particle in
Special Relativity. In particular, explicit examples of initial data sets for Schwarz-
schild spacetime may be constructed showing that this notion of center of mass
does not transform equivariantly under the asymptotic Poincaré group; in partic-
ular, it is not boost covariant. In fact, as pointed out in [8], there is a similar issue

related to the Beig-Ó Murchadha center of mass.
In [3], we propose a foliation which may be viewed as a covariant relativistic

generalization of the Huisken-Yau CMC-foliation. Given an asymptotically Eu-
clidean initial data set I = (M, g,K) with non-vanishing energy E 6= 0, we prove
that outside a compact setM is foliated by 2-surfaces of constant spacetime mean
curvature (STCMC), and that this STCMC-foliation is unique. Recall that if Σ2

is a 2-surface in a 4-dimensional spacetime (L4, γ) then its spacetime mean curva-

ture is defined as the length with respect to γ of the mean curvature vector ~H. If,
in addition, it is known that Σ lies in an initial data set I = (M3, g,K) for the

spacetime (L4, γ), and that ~H is spacelike, then the spacetime mean curvature can
be computed as

| ~H|γ =
√
(HΣ)2 − (trΣK)2.

Clearly, in the Riemannian case K ≡ 0 the notion of STCMC-surface coincides

with the notion of CMC-surface. Note also that the STCMC-condition | ~H|γ ≡
const is boost covariant. Moreover, this condition is “independent” of the initial
data set in the following sense: if Σ →֒ Ii = (Mi, gi,Ki), i = 1, 2, then Σ is
STCMC with respect to I1 if and only if it is STCMC with respect to I2. This
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indicates that there is a plethora of STCMC 2-spheres in a neighborhood of spatial
infinity of any asymptotically flat spacetime.

Our proof of existence and uniqueness of the STCMC-foliation builds upon ideas
of Metzger [9] and Nerz [6, 7]. It is based on a method of continuity argument, using
the established existence and uniqueness of CMC-foliations in the Riemannian
setting. In particular, we introduce a non-self-adjoint STCMC-stability operator
and analyze the asymptotic behavior of its lowest (a priori real) eigenvalues and
the respective eigenfunctions. This operator resembles the CMC-stability operator
except for an additional non-self-adjoint term which turns out to have sufficiently
good fall-off properties.

The leaves of the foliation are proven to be asymptotic to large coordinate
spheres. As for their coordinate centers, assuming a slightly faster fall-off K =
O(|x|−2) we obtain the formula

∣∣∣∣∣∣∣
~z σ1 − ~z σ0 − 1

32πE

∫

|~x|=σ

(∑
k,l πklx

kxl
)2
~x

σ3
dµδ

∣∣∣∣∣∣∣
≤ C

σε
,

where π = K − (trgK)g. Here ~z σ1 denotes the coordinate center of the STCMC-
surface Σσ1 with spacetime mean curvature 2

σ in the initial data set I1 = (M, g,K),
~z σ0 denotes the coordinate center of the (ST)CMC-surface Σσ0 with (spacetime)
mean curvature 2

σ in the initial data set I0 = (M, g, 0), and σ > 0 is assumed
to be sufficiently large. This formula indicates that the CMC-foliation and the
STCMC-foliation of the same initial data set (M, g,K) will in general not have
the same coordinate center and that the second fundamental form of the initial
data set can in a sense “compensate” for the diverging coordinate center of the
CMC-foliation.

Finally, we prove that the coordinate center of the STCMC foliation evolves
in time under the Einstein evolution equations like a point particle in Special
Relativity. In fact, we obtain estimates which show that the individual leaves of

the foliation evolve in a way more and more close to a translation with velocity
~P
E .
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Critical phenomena in the general spherically symmetric
Einstein-Yang-Mills system

Oliver Rinne

(joint work with Maciej Maliborski)

The Einstein–Yang–Mills (EYM) equations form a rich dynamical system already
in spherical symmetry due to the existence of nontrivial static solutions (Bartnik–
McKinnon solitons and coloured black holes). After exploiting the residual gauge
freedom, the most general spherically symmetric YM connection with gauge group
SU(2) can be written as

(1) A = uτ3dt+ (wτ1 + ωτ2) dθ + (cot θτ3 + wτ2 − ωτ1) sin θdφ,

where u, w and ω are functions of t and r only and τi form a standard basis
of SU(2). There are two degrees of freedom, w and ω (the third field u obeys
a constraint equation analogous to the Gauss constraint in electromagnetism).
Most numerical work so far has assumed the magnetic ansatz ω = 0, which is
self-consistent in that if the initial data satisfy ω = 0 then this will hold at all
times. The aim of this work is to investigate critical phenomena in gravitational
collapse in the general system, including nonzero ω. We refer the reader to our
paper [1] for a more detailed presentation and list of references.

In the magnetic sector three different types of critical collapse have been ob-
served. We begin by discussing the first two. In Type I, black hole formation turns
on at a finite mass, and the critical solution at the threshold between dispersal and
black hole formation is the lowest member X1 of the family of Bartnik–McKinnon
solitons. In Type II, the black hole mass vanishes at the threshold and scales as
M ∼ (p−p∗)γ with a universal (independent of the family of initial data) exponent
γ. The critical solution is universal and discretely self-similar, i.e. in logarithmic
coordinates

(2) ρ = ln r, τ = ln(T ∗
0 − T0),

where T0 is proper time at the origin and T0∗ the so-called accumulation time,
any scale-free variable Z of the critical solution obeys

(3) Z(τ −∆, ρ−∆) = Z(τ, ρ)

with a universal echoing exponent ∆. We illustrate this in the left panel of Fig. 1,
where we plot five echoes of the scale-free variable w′ := dw/dr, which nicely
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Figure 1. Discrete self-similarity of the critical solution in the
magnetic ansatz (left) and (lack thereof) in the general system
(right).

overlap. Our numerical results are in good agreement with previous numerical
studies [2].

When the sphaleronic sector (i.e. the second potential ω) is turned on, X1

can no longer be a critical solution because it has a second unstable mode in the
general EYM system. Hence Type I critical collapse disappears and we generically
observe Type II. However we have some indications that neither w′ nor ω′ are
exactly scale invariant in the extended system (Fig. 1). This is apparent even
in manifestly gauge-invariant quantities [1]. Moreover, exact universality of the
critical solution (i.e. independence of the family of initial data chosen) also appears
to be lost. There are small but noticeable differences when we compare gauge-
invariant quantities for the magnetic critical solution vs. the general one. We
cannot rule out completely that there is a very slowly decaying mode about the
Type II critical solution in the general system that would require us to tune much
closer to the critical point than is currently feasible in order to see the true features
of the critical solution.

When we add a small sphaleronic perturbation to initial data that would be
Type I-critical in the magnetic sector, the Bartnik–McKinnon soliton X1 appears
as an intermediate attractor before the Type II critical solution is approached
(left panel of Fig. 2). We observe quasi-normal mode decay to this unstable at-
tractor and obtain good agreement with the quasi-normal mode frequency that we
computed in linear perturbation theory.

Finally we briefly discuss the third type of critical collapse that occurs in the
magnetic sector [3]. Here black holes form on both sides of the threshold but with
different vacuum values of the YM potential, w = ±1. The dynamical evolutions
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Figure 2. Adding a small sphaleronic perturbation to magnetic
Type I-critical data: dynamical evolution (left) and onset of the
polynomial mass/curvature scaling for different strengths of the
perturbation as a function of critical parameter distance (right).

are markedly different and there is a gap in the final black hole mass as the
threshold is crossed. In the general system, it is to be expected that this critical
phenomenon disappears as well because the dichotomy of vacuum states w2 = 1 is
replaced with a continuum w2 + ω2 = 1. Indeed we observe numerically that the
discontinuous transition in the potential w across the threshold is replaced by a
continuous one as soon as a small sphaleronic perturbation is added to the initial
data (Fig. 3).
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Figure 3. Final values of the YM potentials (left) and the black
hole mass (right) along a family of magnetic initial data (dashed)
and with a small sphaleronic perturbation added to the initial
data (solid).
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Stability of Minkowski space and polyhomogeneity of the metric

Peter Hintz

(joint work with András Vasy)

We prove the non-linear stability of (3 + 1)-dimensional Minkowski space as a
solution (M◦, g), g Lorentzian, of Einstein’s vacuum equation

(1) Ric(g) = 0.

On a conceptual level, we show how some of the methods we developed for our
proofs of black hole stability in cosmological spacetimes [12, 10] apply in this more
familiar setting, studied by Friedrich [8], Christodoulou–Klainerman [5], Lindblad–
Rodnianski [14, 15], Klainerman–Nicolò [13], Bieri [2], and many others. We also
establish full polyhomogeneous expansions of g, in all asymptotic regions, i.e. near
spacelike, null, and timelike infinity on a suitable compactification of R4. See
[7, 6, 16, 1] for previous works in related contexts.

The simplest solution of (1) is the Minkowski spacetime (M◦, g) = (R4, g0) =
(Rt×R3

x, dt
2−dx2). The far field of an isolated gravitational system (M◦, g) with

total (ADM) mass m is described by the Schwarzschild metric

g ≈ gSm =
(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2gS2 = g0 +O(r−1), r ≫ 1.

Suitably interpreted, the field equation (1) has the character of a quasilinear
wave equation, and we thus study its initial value problem: given a 3-manifold
Σ◦ and symmetric 2-tensors γ, k ∈ C∞(Σ◦;S2T ∗Σ◦), with γ a Riemannian metric,
one seeks a vacuum spacetime (M◦, g) and an embedding Σ◦ ⊂M◦ such that

(2) Ric(g) = 0 on M◦, g|Σ◦ = −γ, IIg = k on Σ◦,

where IIg denotes the second fundamental form of Σ◦. Choquet-Bruhat and Ge-
roch [3, 4] proved that provided the constraint equations for γ and k hold,

(3) Rγ + (trγk)
2 − |k|2γ = 0, −divγk + dtrγk = 0,

there exists a unique (up to isometries) maximal globally hyperbolic development
(M◦, g) of (2). The future development is the causal future of Σ◦ within (M◦, g).
Our main theorem concerns the long time behavior of solutions of (2) with initial
data close to those of Minkowski space:
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Theorem 1 (Rough version [11]). Let b0 > 0. Suppose that (γ, k) are smooth
initial data on R3 satisfying the constraint equations (3) which are small in the
following sense: for some small δ > 0, a cutoff χ ∈ C∞

c (R3) identically 1 near 0,
and γ̃ := γ − (1− χ)gSm|{t=0}, where |m| < δ, we have

(4)
∑

j≤N+1

‖〈r〉−1/2+b0(〈r〉∇)j γ̃‖L2 +
∑

j≤N

‖〈r〉1/2+b0 (〈r〉∇)jk‖L2 < δN ,

for all N ∈ N, and δ26 is small.
Then the future development of the data (R3, γ, k) is future causally geodesi-

cally complete and decays to the Minkowski solution. More precisely, there exist a
smooth manifold with corners M with boundary hypersurfaces Σ, i0, I +, i+, and
a diffeomorphism of the interior M◦ with {t > 0} ⊂ R4, as well as an embedding
R3 ∼= Σ◦ of the Cauchy hypersurface, and a solution g of the initial value prob-
lem (2) which is conormal on M and satisfies |g − g0| . (1 + t + |r|)−1+ǫ for all
ǫ > 0. See Figure 1. For fixed ADM mass m, the solution g depends continuously
on γ̃, k.

If the initial data (γ̃, k) are in addition E-smooth, i.e. polyhomogeneous at in-
finity with index set E (see below), then the solution g is also polyhomogeneous on
M , with index sets given explicitly in terms of E.

This allows for the initial data to be Schwarzschildean modulo O(r−1−ǫ) for
any ǫ > 0. The assumption of E-smoothness, i.e. polyhomogeneity with index
set E ⊂ C × N0, means, roughly speaking, that 〈r〉γ̃ (similarly 〈r〉2k) has a full
asymptotic expansion as r → ∞ of the form

〈r〉γ̃ ∼
∑

(z,k)∈E

r−iz(log r)k γ̃(z,k)(ω), ω = x/|x| ∈ S2, γ̃(z,k) ∈ C∞(S2;S2T ∗R3),

with Im z < −b0, where for any C, the number of (z, k) ∈ E , Im z > −C, is finite.
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Figure 1. Left: the compact manifold M (solid boundary),
pasted together with the past development (dashed boundary).
M is closely related to the blow-up of a Penrose diagram (right)
at timelike and spatial infinity.

The compactification M only depends on the ADM mass m of the initial data
set; for the class of initial data considered here, the mass gives the only long range
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contribution to the metric that significantly (namely, logarithmically) affects the
bending of light rays and thus the location of null infinity. We prove Theorem 1
using a Nash–Moser iteration scheme in which we a linearization of the gauge-fixed
Einstein equation globally on M at each step; we use a wave map gauge which is
a slight modification of the wave coordinate gauge. This gauge, which can be
expressed as the vanishing of a certain 1-form Υ(g), fixes the long range part of g
and hence the main part of the null geometry at I +. We implement constraint
damping [9], already crucially used in [12]; here it ensures that throughout the
iteration scheme, the 1-form Υ vanishes sufficiently fast so as to fix the long range
part of g to be that of mass m Schwarzschild. In this gauge, we also identify the
Bondi mass in terms of metric coefficients, and prove the Bondi mass loss law.

Our systematic approach is based on energy estimates for the linearized equa-
tions (using complete vector fields onM as multipliers)—including versions giving
iterated regularity with respect to suitable vector fields—which are rather refined
in terms of a splitting of the symmetric 2-tensor bundle (different components
behave differently at null infinity). Both the relevant notion of regularity and
the determination of the precise asymptotic behavior of the solution can be read
off from the geometric and algebraic properties of the linearized equations; cor-
respondingly, once M and the required function spaces are defined, the proof of
stability itself is rather concise.
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Total mass and Sormani–Wenger intrinsic flat convergence

Jeffrey Jauregui

(joint work with Dan Lee)

Interest in the semicontinuity phenomenon of the total mass in general relativity
(GR) arises from its connection with the positive mass theorem, as well as the
study of Ricci flow of asymptotically flat metrics and of Bartnik’s quasi-local mass.
By total mass we mean the ADM mass of an asymptotically flat, totally geodesic
spacelike slice of a spacetime; in the lower regularity setting, this is replaced with
Huisken’s isoperimetric mass concept. We present joint work in progress with Dan
Lee on establishing the lower semicontinuity of total mass for pointed Sormani–
Wenger intrinsic flat volume convergence.

The first result we recall is:

Theorem 1 ([8]). If (Mj , gj , pj) is a sequence of pointed asymptotically flat 3-
manifolds, each with nonnegative scalar curvature and with no horizons, converg-
ing in the pointed C2 Cheeger–Gromov sense to a pointed asymptotically flat 3-
manifold (N, h, q), then

(1) mADM (N, h) ≤ lim inf
j→∞

mADM (Mj , gj).

Pointed Ck Cheeger–Gromov convergence essentially means Ck convergence of
the metric tensors on compact sets, modulo diffeomorphisms.

Through a basic example of expanding spherical shells, one can see that equal-
ity in (1) can fail, and why the non-negativity of scalar curvature is necessary.
Through a simple blow-up example, one can see that Theorem 1 actually recov-
ers the positive mass theorem. The key ingredient in the proof of Theorem 1 is
Huisken–Ilmanen’s weak inverse mean curvature flow [7].

For applications in GR such as Bartnik’s minimal mass extension conjecture
[3], C2 convergence is far too strong. We then consider C0 convergence, with a C0

limit space. For a smooth manifold M (with a possibly C0) asymptotically flat
Riemannian metric g, Huisken’s isoperimetric mass [5], [6] is defined as:

miso(M, g) = sup
{Ki}

lim sup
i→∞

2

|∂Ki|g

(
|Ki| −

1

6
√
π
|∂Ki|3/2

)
,
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where the supremum is taken over exhaustions {Ki} ofM by compact sets. (Here,
“| · |” is used to denote volumes and areas.) It is known that with nonnegative
scalar curvature, if the metric is sufficiently regular, mADM and miso agree.

In joint work with Lee, we previously extended Theorem 1 to C0 convergence:

Theorem 2 ([9]). If (Mj , gj , pj) is a sequence of pointed asymptotically flat 3-
manifolds, each with nonnegative scalar curvature and with no horizons converging
in the pointed C0 Cheeger–Gromov sense to a pointed C0 asymptotically flat 3-
manifold (N, h, q), then

miso(N, h) ≤ lim inf
j→∞

mADM (Mj , gj).

Significantly more technical work is involved in this proof. In addition to
Huisken–Ilmmanen’s work, we also require a modified weak mean curvature flow
argument and Huisken’s monotonicity of an isoperimetric defect quantity [6]. The
modified flow freezes connected components once their area drops below a thresh-
old.

Unfortunately, C0 convergence is still too strong for GR applications; for exam-
ple it is sensitive to “gravity wells” or “tentacles” of positive scalar curvature that
can occur in asymptotically flat manifolds, even of arbitrarily small total mass.
Thus, we turn our attention to the Sormani–Wenger intrinsic flat distance (F) [13]
that has shown promise to, for example, the “near rigidity” of the positive mass
theorem; see [1], [4], [10], [11], [12], for example.

The F -distance is defined using Ambrosio–Kirchheim’s notion of currents in
metric spaces [2]. Given two compact, oriented Riemannian n-manifolds M1 and
M2, one considers all distance-preserving embeddings ofM1 andM2 into a common
space metric Z, and computes the flat distance between the corresponding pushed-
forward integral currents. The F -distance is defined by taking the infimum over all
such metric spaces and embeddings. To handle spaces with infinite diameter, one
may define pointed F -convergence by considering F -convergence of balls. Pointed
F -volume convergence means further that the volumes of the balls converge (as
opposed to being merely lower semicontinuous).

The main result we present is:

Theorem 3 (J.–Lee, in progress). Let (Mj, gj , pj) be a sequence of smooth, ori-
ented asymptotically flat Riemannian 3-manifolds, with nonnegative scalar cur-
vature and no horizons. Assume there exists a uniform positive lower bound for
the isoperimetric constants of (Mj , gj). If this sequence converges in the pointed
intrinsic flat volume sense to a pointed asymptotically flat local integral current
space N = (X, d, g, T, q) of dimension 3, then

lim inf
j→∞

mADM (Mj , gj) ≥ miso(N).

Integral current spaces are the natural F -limits of sequences of Riemannian
manifolds, defined by Sormani–Wenger in [13]. The definition of asymptotically
flat integral current space is new; in essence it requires a C0 asymptotically flat end
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structure where the Riemannian metric is locally compatible with the underlying
distance function. This implies the isoperimetric mass of the limit is well-defined.

We describe three of the main ingredients in the proof of Theorem 3. First,
there is an estimate proved in [9] for the quasi-local isoperimetric mass that plays
a critical role. If Ω is an outward-minimizing region in a (smooth) asymptotically
flat 3-manifold M with nonnegative scalar curvature and no horizons, then

(2)
2

|∂Ω|g

(
|Ω| − 1

6
√
π
|Ω|3/2

)
≤ miso(M) +

C√
|∂Ω|

for a well-controlled constant C.
Second, given a competitor Ω ⊂ X for the quasi-local isoperimetric mass in

the limit space, one must construct “corresponding” regions Ωj in Mj. (This was
trivial for Cheeger–Gromov convergence, where embeddings of large regions in X
into Mj is assured.) This is achieved, roughly, by considering embeddings of Mj

and X into a common metric space Z (using a theorem of Sormani–Wenger [13]),
viewing Ω as a sublevel set of a Lipschitz function, and eventually constructing,
non-canonically, Lipschitz functions of Mj, which can be used to define Ωj .

Third, and most difficult, is to control how the boundary masses (perimeters)
of the Ωj behave when passing to a limit. A priori they are lower semicontinuous,
but unfortunately this is the wrong sign for lower semicontinuity of the quasi-local
isoperimetric mass (i.e., the left-hand side of (2)). Roughly speaking, the strategy
is to use the volume convergence and Ambrosio–Kirchheim’s slicing theorem [2] to
show that enough of the perimeters nearly converge.

Theorem 3 also provides further evidence that the F -distance interacts well
with general relativistic concepts such as scalar curvature and total mass.
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Topology and singularities in cosmological spacetimes

Gregory J. Galloway

(joint work with Eric Ling)

A theme of long standing interest in global General Relativity concerns the re-
lationship between the topology of spacetime and the occurrence of singularities,
as expressed in terms of causal geodesic incompleteness. Many such results have
centered on the notion of topological censorship; see e.g. [2] (which includes a
brief review of the topic) and references therein. The results on topological cen-
sorship apply to the asymptotically flat setting, or other such settings, which are
not directly relevant to cosmology. The main aim of our talk is to present re-
cent work with Eric Ling [3] concerning the relationship between topology and
singularities in the cosmological setting. More specifically, we consider globally
hyperbolic spacetimes with compact Cauchy surfaces in a setting compatible with
the presence of a positive cosmological constant. (See e.g. [4, 6] for basic causal
theoretic notions.)

The classical Hawking singularity theorem [4, p. 272] establishes past timelike
geodesic incompleteness in spatially closed spacetimes that at some stage are future
expanding. This singularity theorem requires the Ricci tensor of spacetime to
satisfy the strong energy condition, Ric(X,X) ≥ 0 for all timelike vectors X .
However, in spacetimes obeying the Einstein equations with positive cosmological
constant, Λ > 0, this energy condition is not in general satisfied, and the conclusion
then need not hold; de Sitter space, which is geodesically complete and (in 3 + 1
dimensions) satisfies

(1) Ric = Λg (Λ > 0)

is an immediate example. Although the strong energy condition fails, note that the
null energy condition (NEC), Ric(X,X) ≥ 0 for all null vectors X , holds. In fact
the NEC is compatible with the presence of a cosmological constant, regardless of
sign.

Dust filled FLRW spacetimes with positive cosmological constant provide fur-
ther examples in which the conclusion to Hawking’s theorem can fail, but now
topology enters the picture. Consider FLRW models with compact Cauchy sur-
faces:

M = (0,∞)× V 3, ds2 = −dt2 + R2(t)dσ2
k

where (V 3, dσ2
k) is a compact Riemannian manifold of constant curvature k =

−1, 0,+1. These three cases are topologically quite distinct. For instance, in the
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k = +1 (spherical space) case, the Cauchy surfaces have finite fundamental group,
while in the k = 0,−1 (toroidal and hyperbolic 3-manifold) cases, the fundamental
group is infinite.

Assuming a collisionless perfect fluid (dust), one can solve the Einstein equa-
tions with Λ > 0, and analyze the behavior of the scale factor R(t), which is done
in many standard text books. One finds that in the case k = −1 or k = 0, there
is aways a big bang singularity. Only in the k = +1 case, can the past big-bang
singularity be avoided. As it turns out, this behavior holds in a much broader
context.

In [1], this topology dependent behavior was studied (without symmetry as-
sumptions) for spacetimes which are asymptotically de Sitter in the sense of ad-
mitting a regular spacelike conformal (Penrose) compactification. For example, in
this more general setting, it was shown that past timelike geodesic incompleteness
is related to the Yamabe type of future null infinity I + (with negative or zero
Yamabe type leading to incompleteness). Here we present a result in a similar vein
(recently obtained in [3]) which strengthens various aspects of the results in [1]. In
particular, the assumption that spacetime be future asymptotically de Sitter is not
needed, and, apart from the NEC, no further curvature conditions are required.

Theorem 1. Suppose V is a smooth compact spacelike Cauchy surface in a 3 +
1 dimensional spacetime (M, g) that satisfies the null energy condition (NEC),
Ric(X,X) ≥ 0 for all null vectors X. Suppose further that V is expanding in all
directions (i.e. the second fundamental form of V is positive definite). Then either

(i) V is a spherical space, or
(ii) M is past null geodesically incomplete.

In other words, ifM is past null geodesically complete, the only possible Cauchy
surface topology is that of a spherical space; any other topology leads to past null
incompleteness. Here, by a spherical space, we mean that V is diffeomophic to a
quotient of the 3-sphere S3, V = S3/Γ (where Γ is isomorphic to a subgroup of
SO(4)). By taking quotients of de Sitter space, we see that there are geodesically
complete spacetimes satisfying the assumptions of the theorem, having Cauchy
surface topology that of any spherical space.

We make some remarks about the proof. The proof makes use of fundamen-
tal existence results for minimal surfaces and takes advantage of our current un-
derstanding of the topology of 3-manifolds, specfically the positive resolution of
Thurston’s geometrization conjecture, and subsequent consequences of it. Ulti-
mately, the proof relies on the Penrose singularity theorem. Underlying the proof
is the following simple observation:

Lemma 1. Let Σ be a compact minimal surface in a smooth spacelike Cauchy
surface which is expanding in all directions, i.e. which has positive definite second
fundamental form. Then Σ is a past trapped surface.

Proof. One can express the null expansion scalars θ± of Σ in terms of initial data
on Σ; specifically one has

(2) θ± = −trΣK ±H ,
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where K is the second fundamental form Σ and H is the mean curvature of Σ in
V . Since Σ is minimal (H = 0) and K is positive definite, one has θ± < 0. �

The strategy of the proof is then as follows. Assuming M is past null geodesi-
cally complete we show that V must be a spherical space. We can reduce to the
case that V is orientable. Then by the prime decomposition theorem (and the pos-
itive resolution of the Poincaré conjecture!), V can be expressed as a connected
sum,

(3) V = V1#V2# · · ·#Vk ,
where for each i = 1, ...k,

(1) Vi is a spherical space, or
(2) Vi is diffeomorphic to S2 × S1, or
(3) Vi is a K(π, 1) manifold.

We can eliminate possibilities (2) and (3) briefly as follows. In these cases
we can establish the existence of a compact minimal surface in a noncompact
Cauchy surface Ṽ for a covering spacetime (M̃, g̃) of (M, g), with Ṽ expanding
in all directions. (For case (2), we make use of an argument in [1, Theorem
4.3]. For case (3), we make use of the positive resolution of the surface subgroup
conjecture [5] and a well-known existence result for minimal surfaces due to Schoen
and Yau [7].) Lemma 1, together with an application of the Penrose singularity

theorem, leads to the past null geodesic incompleteness of (M̃, g̃), and hence of
(M, g), contrary to assumption. This shows that V is a connected sum of spherical
spaces. Similar sorts of arguments can then be used to show that there can be
only one spherical space.

Of course it is possible that, in Theorem 1, if V is other than a spherical space,
the consequent past null completeness is due to the formation of a Cauchy horizon.
As such, it would be desirable to weaken the assumption of global hyperbolicity.

References

[1] L. Andersson and G. J. Galloway, dS/CFT and spacetime topology, Adv. Theor. Math. Phys.
6 (2002), no. 2, 307–327.

[2] M. Eichmair, G. J. Galloway, and D. Pollack, Topological censorship from the initial data
point of view, J. Differential Geom. 95 (2013), no. 3, 389–405.

[3] G. J. Galloway and E. Ling, Topology and singularities in cosmological spacetimes obeying
the null energy condition, Commun. Math. Phys. 360 (2018), no. 2, 611–617.

[4] S. W. Hawking and G. F. R. Ellis, The large scale structure of space-time, Cambridge Uni-
versity Press, London, 1973, Cambridge Monographs on Mathematical Physics, No. 1.

[5] J. Kahn and V. Markovic, Immersing almost geodesic surfaces in a closed hyperbolic three
manifold, Ann. of Math. (2) 175 (2012), no. 3, 1127–1190.

[6] B. O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics, vol. 103, Academic
Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1983.

[7] R. Schoen and S.-T. Yau, Existence of incompressible minimal surfaces and the topology
of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. (2) 110
(1979), no. 1, 127–142.



Mathematical General Relativity 2191

Black hole instabilities and violation of the weak cosmic censorship
conjecture in higher dimensional asymptotically flat spacetimes

Pau Figueras

(joint work with Markus Kunesch, Saran Tunyasuvuankool, Luis Lenher)

Proving or disproving the weak cosmic censorship conjecture (WCC) [1, 2] is per-
haps one of the most important unresolved problems in classical general relativity.
One can formulate this conjecture around any spacetime which is a solution of the
Einstein equation, and in particular around black hole spacetimes. In the latter
case, the conjecture relates to another open problem in general relativity, namely
the stability problem for black hole spacetimes.

Even though proving the non-linear stability of the Kerr black hole is still
an open problem, the recent linear stability results, (see e.g., [3, 4]), strongly
suggest that such a proof is within reach. On the other hand, the situation is
radically different in spacetime dimensions D > 4, where black holes in vacuum
can be unstable to gravitational perturbations. This was first famously shown by
Gregory and Laflamme (GL) [5] for the case of black strings and black p-branes in
the asymptotically Kaluza–Klein spaces. This result has been recently extended
to various types of asymptotically flat higher dimensional vacuum black holes
[6, 7, 8, 9, 10].

Given that some black holes can be unstable, the natural question to ask is
what is the endpoint of such instabilities. And, is the WCC around such space-
times violated? Addressing this question involves evolving unstable black hole
spacetimes into the fully non-linear regime of the Einstein equation, and the only
tools available at the moment are numerical methods. Using numerical relaltivity,
Lehner and Pretorious [11] showed that unstable black strings in D = 5 spacetime
dimensions evolve, in a self-similar fashion, into dynamical black holes with fractal
horizons consisting of spherical bulges connected by long and thin black strings
on different scales. The black string segments are GL unstable, leading to a cas-
cade of instabilities that results in the pinch off of the horizon, and hence a naked
singularity, in finite asymptotic time. Since there is no fine tuning of the initial
data, this result can constitute an example of a violation of the WCC conjecture
in spacetimes with Kaluza–Klein asymptotics.

The result of [11] left some important open questions. Firstly, the dynamics of
the GL instability is intimately related to the fact that the spacetime itself has a
non-trivial topology. Indeed, black strings in D = 5 have a horizon topology of
S1 × S2, where the S1 is the non-contractible Kaluza–Klein circle, and this non-
contractible S1 plays a crucial role in the GL dynamics. Second, the original WCC
conjecture was formulated in asymptotically flat spaces, and therefore one would
like to know whether the conjecture is true or not and under which circumstances
in such spaces.
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In our first paper [12] we considered the endpoint of the GL instability of asymp-
totically flat black rings in 5 spacetime dimensions.1 Black rings are know explicitly
in D = 5 [13] (see also [14] for a review), and the spatial sections of the horizons
have topology S1 × S2. The solution of [13] rotates along the S1, which is a con-
tractible circle since the topology of the spacetime is trivial. Black rings occur
in two families, known as ‘thin’ or ‘fat’ according to their physical and geomet-
rical properties. [10] showed that all thin rings are unstable under a GL type of
instability, and hence it is natural to ask whether the WCC around such space-
times can be violated, similarly to what happens with black strings. Note that in
this case, the GL modes break the rotational symmetry along the S1 and hence
they will lead to gravitational wave emission in the non-linear regime. If the loss
of angular momentum and mass through gravitational wave emission is efficient
enough, unstable black rings can collapse into a spherical black holes (since the
S1 of the ring is contractible) and hence now violation of the WCC will occur.

In [12] we showed that thin but not so thin rings (in the language of [13]) also
suffer from a new type of instability, which we called “elastic”. This instabil-
ity dominates for low enough angular momentum, and its endpoint is a rotating
spherical black hole, with a lower angular momentum. Hence no violation of WCC
occurs for this range of thin rings. On the other hand, for thin enough black rings,
the GL instability dominates and its evolution is qualitatively similar to the black
string case: the horizon develops a structure of bulges connected by long and
thin strings. The latter are very unstable and their local dynamics should be the
same as in [11]; in particular, they should pinch off on an exponentially fast time
scale, as opposed to the collapse time, which is dominated by gravitational wave
emission and hence polynomial in time. Therefore, the results presented in [12]
provide strong evidence that sufficiently thin black rings will pinch off in finite
time, thus resulting in a naked singularity and hence potentially violating the
WCC in asymptotically flat spaces in D = 5 dimensions.

The results in [12] left a number of questions unanswered, most notably, 1) we
could not estimate the timescale of the pinch off and, 2) we could not determine
whether the process is self-similar. To address these two questions in the asymptot-
ically flat context, in [15] we studied the endpoint of the ultraspinning instability
of singly spinning Myers–Perry black holes in D = 6 spacetime dimensions. These
instabilities preserve the two rotational symmetries of the background and hence
the dynamics can be consistently truncated to a 2+1 system. The main results
in [12] show that these black holes pinch off in finite time but the dynamics is no
longer self-similar. The ultimate reason for this is conservation of angular momen-
tum, which is redistributed along the horizon and hence different regions evolve on
different time scales. It is precisely this local dynamics on the horizon that breaks
self-similarity. Interestingly though, the minimum thickness of the horizon follows
a scaling law.

1From a computational point of view, evolving black rings is effectively a 3+1 problem, while
the evolution of the GL instability of black string is a 2 + 1 problem.
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In our ongoing work [16] we study the evolution of non-axisymmetric instabili-
ties of rotating black holes inD = 6, but for larger values of the angular momentum
than [8]. Our results show that for sufficiently rapidly rotating black holes, even if
they do not suffer from a GL type of instability, the non-linear dynamics leads to
deformations of the horizon such that local GL instabilities should kick in. There-
fore, for sufficiently large angular momentum, unstable spherical rotating black
holes should also generically evolve into naked singularities in finite time.

Our results motivate us to make the following conjectures:
Conjecture 1: The Gregory–Laflamme instability is the only mechanism that GR
has to change the horizon topology.
Conjecture 2: The only stable black hole in D > 4 spacetime dimensions is the
Myers–Perry black hole with J/MD−3 ≤ O(1).

Resolving these conjectures should provide a general picture of the dynamics of
black holes in D > 4 asymptotically flat spaces.
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The Asymptotically Self-Similar Regime for the Einstein Vacuum
Equations

Yakov Shlapentokh-Rothman

(joint work with Igor Rodnianski)

Loosely speaking, a singular solution to the Einstein vacuum equations Ric (g) = 0
is called self-similar if the singularity is scale invariant in that there exists a vector
field K which “vanishes” at the singularity and satisfies LKg = 2g:

singularity

Some motivation for studying self-similar solutions are as follows:

(1) There is numerical (and heuristic) evidence that (approximate and/or dis-
crete) self-similar solutions play an important underlying role in many
interesting dynamical situations. Two particularly relevant examples are
“Type-II critical phenomena” in gravitational collapse [1, 6, 8] and the
behavior near the endpoint of the Gregory–Laflamme instability [5, 7].

(2) In his work on the cosmic censorship conjecture for the spherically symmet-
ric Einstein-scalar field system, Christodoulou established a well-posedness
result for so-called “solutions of bounded variation” [2]. While these solu-
tions may be quite singular on the axis of symmetry, the norms defining
the space are scale invariant, and the individual solutions satisfy the prop-
erty that rescalings around any point on the axis eventually converge to a
self-similar solution.

(3) The ambient metrics of Fefferman–Graham [4, 3], which play such an im-
portant role in the classification of conformal invariants and the AdS-CFT
correspondence, are formal expansions for a self-similar solution.

Our main result develops a local theory underlying the dynamical construction (in
all spacetime dimensions) of “asymptotically self-similar solutions”. By a “dynam-
ical construction”, we mean that our solutions arise from suitable characteristic
Cauchy data, and by “asymptotically self-similar” we mean that successive rescal-
ings around the singular point eventually converge to a self-similar solution.
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data

da
ta

singularity

≈ self-similar

A corollary of our main result is the construction of actual solutions corresponding
to all of the formal power series expansions of Fefferman–Graham [3, 4].
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On the smoothness of the critical sets of the cylinder at spatial infinity
in vacuum spacetimes

Tim-Torben Paetz

Penrose [6] suggested an elegant geometric approach to define the notion of as-
ymptotic flatness in general relativity. A spacetime is regarded as asymptotically
flat supposing that it admits a smooth conformal completion at infinity. By this
it is meant that, after a suitable conformal rescaling, one can attach a boundary
I to the spacetime through which the rescaled metric admits a smooth extension.

We consider spacetimes which satisfy Einstein’s vacuum field equations. Then
I is a null hypersurface. We further assume the “natural” topology I ∼= R× S2,
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which implies that the Weyl tensor vanishes on I (in fact, it shows a specific
peeling behavior). An open issue is to what extent Penrose’s notion of asymptotic
flatness is compatible with the vacuum equations in the sense that a sufficiently
large class of solutions to model the physical situations of interest is admitted.

The conformal field equations (CFE) [7, 9] provide a system of equations which
is equivalent to Einstein’s in regions where the conformal factor is positive, but
remains regular where it vanishes. This permits the formulation of an asymp-
totic Cauchy problem where data are prescribed on either a portion of I− and
an incoming null hypersurface [12], or on I− in a setting where it forms the fu-
ture light-cone of a regular point i− representing past timelike infinity [4]. While
this shows that there is a large class of asymptotically flat vacuum spacetimes no
insight is provided into how generic such spacetimes are.

For this, it is beneficial to study hyperboloidal and characteristic Cauchy prob-
lems. In both cases [8, 3] the emerging vacuum spacetime admits at least a piece of
a smooth I, supposing that the initial data admit a smooth extension through the
2-sphere S where the initial surface hits I. The data need to fulfill constraint equa-
tions, solutions whereof can be constructed from suitable freely prescribable seed
data. It turns out, though, that seed data which are smooth at S will in general
produce solutions of the constraints which are only polyhomogeneous [1, 2, 5, 13].
However, one can get rid of all log-terms if the leading order expansion coefficients
of the seed data are suitably adjusted. While, again, this shows that large classes
of asymptotically flat vacuum spacetimes exist, it raises the question whether a
polyhomogeneous I might be more natural than a smooth one.

To fully understand the restrictions which arise from a smooth I, one needs
to study a spacelike Cauchy problem with asymptotically Euclidean data which
incorporates spatial infinity. Hintz & Vasy [11] proved that an appropriate class of
data which are polyhomogeneous at spatial infinity produces a polyhomogeneous
I. As their gauge produces log-terms, too, it is not clear under which additional
conditions on the data a gauge transformation yields a smooth I.

To analyze the appearance of log-terms near spatial infinity it is convenient
to use a blow-up to a cylinder I [10]. The CFE provide a symmetric hyperbolic
system of evolution equations. However, hyperbolicity breaks down at the critical
sets I± ∼= S2 where the cylinder “touches” I±. One can construct data which ex-
tend smoothly through I0 ∼= S2, where the Cauchy surface runs into I. The
CFE become inner equations on I so that, in principle, on I, all fields, including
derivatives of any order, can be computed from the data. Generically, though, the
fields are merely polyhomogeneous at I± [10, 15], and one expects the log-terms
to spread over to I. A full characterization of Cauchy data which permit smooth
extensions through I± turns out to be subtle as, in contrast to hyperboloidal and
characteristic Cauchy problem, log-terms can arise at any order.

To gain a better understanding and establish geometric restriction on the data,
it is beneficial to set up an asymptotic Cauchy problem with data on I− (and
some incoming null hypersurface) and analyze the appearance of log-terms at the
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critical set I−. A main advantage of this approach is that I− arises as the future
boundary of the initial surface I−, whence it is easier to control the fields there.

For the analysis [14] we use a conformal Gauss gauge [9], adapted to a con-
gruence of timelike conformal geodesics. We then show that if the radiation field,
which represents the seed data on I−, vanishes at all orders at I−, no log-terms
are produced there. This requires an analysis of the constraints on I− and their
transverse derivatives of all orders. It turns out that only equations satisfied by
certain components of the rescaled Weyl tensor Wijkl := Θ−1Cijkl provide poten-
tial sources of log-terms. In our current setting they do not produce log-terms as
the source has a specific structure,

(1) rn+3∂r(r
−n−2∂nτW )|I− = Pn+1 + O(r∞).

Here W is symbolic for certain components of the rescaled Weyl tensor. I− is
located at r = 0, ∂τ is transverse to I−, and Pk is a polynomial in r of degree k.

The situation is very similar when approaching I− from I, where an analysis of
the transport equations (and their radial derivatives) shows that the source term
has a somewhat complementary structure (I− is located at τ = −1),

(2) (1 + τ)n−1∂τ [(1 + τ)2−n∂nrW )]|I = O(1 + τ)n−1.

One is led to the question whether the vanishing of the radiation field at all
orders at I− is also necessary for the non-appearance of log-terms there. To tackle
this issue, we assume that the limit M of the Bondi mass aspect to I− is constant
(and non-zero), and that the same holds for the limit N of the Bondi dual mass
aspect, which requiresN = 0. In that case the vanishing of the radiation field at all
orders at I− is necessary. To prove this, one needs to compute the log-producing
term of order n + 2 in (1) and require it to vanish. In fact, the corresponding
no-logs condition can explicitly be expressed in terms of the asymptotic data. The
proof works by induction. Assuming that the first m0 expansion coefficients of the
radiation field vanish at I−, the first non-trivial no-logs condition adopts the form

(3)

m0∏

ℓ=1

(∆s + ℓ(ℓ+ 1))∂m0+1
r Wrad|I− = 0 ,

where ∆s is the standard Laplacian on the round 2-sphere, andWrad are the Hodge
decomposition scalars of the radiation field. From this condition one cannot deduce
the vanishing of Wrad which may contain spherical harmonics up to order m0.
When going to the next order, though, this Taylor coefficient appears in the source,

(4)

m0+1∏

ℓ=1

(∆s + ℓ(ℓ+ 1))∂m0+2
r Wrad|I− =M · f(∂m0+1

r Wrad|I−) ,

and brings in precisely those spherical harmonics which destroy solvability of (4).
A calculation shows that no cancellations occur and that ∂m0+1

r Wrad|I− needs to
vanish. To conclude, while certain spherical harmonics don’t produce log-terms im-
mediately, they do produce them in the next order (this statement is wrong for the
massless spin-2 equation as there is no coupling between the no-logs conditions).
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Theorem 1 ([14]). (i) Assume that a smooth vacuum spacetime with smooth
I−, I and I− has been given and assume further that M = const. 6= 0 and
N = 0. Then the radiation field vanishes at I− at any order.

(ii) Conversely, the restriction of all the fields appearing in the CFE to both
I− and I, and all derivatives thereof, admit smooth extensions through I−

if the radiation field vanishes there at any order.
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[6] R. Penrose: Zero rest-mass fields including gravitation: Asymptotic behavior, Proc. R. Soc.
Lond. A 284 (1965) 159–203.

[7] H. Friedrich: On the regular and the asymptotic characteristic initial value problem for
Einstein’s vacuum field equations, Proc. R. Soc. Lond. A 375 (1981) 169–184.

[8] H. Friedrich: Cauchy problems for the conformal vacuum field equations in general relativity,
Comm. Math. Phys. 91 (1983) 445–472.

[9] H. Friedrich: Einstein equations and conformal structure: Existence of Anti-de Sitter-type
space-times, J. Geom. Phys. 17 (1995) 125–184.

[10] H. Friedrich: Gravitational fields near space-like and null infinity, J. Geom. Phys. 24 (1998)
83–163.

[11] P. Hintz, A. Vasy: A global analysis proof of the stability of Minkowski space and the
polyhomogeneity of the metric, (2017), arXiv:1711.00195 [math.AP].

[12] J. Kánnár: On the existence of C∞ solutions to the asymptotic characteristic initial value
problem in general relativity, Proc. R. Soc. Lond. A 452 (1996) 945–952.

[13] T.-T. Paetz: Characteristic initial data and smoothness of Scri. II. Asymptotic expansions
and construction of conformally smooth data sets, J. Math. Phys. 55 (2014) 102503.

[14] T.-T. Paetz: On the smoothness of the critical sets of the cylinder at spatial infinity in
vacuum spacetimes, 2018), arXiv:1804.05034 [gr-qc].

[15] J.A. Valiente Kroon: Regularity Conditions for Einstein’s Equations at Spatial Infinity,
Ann. Henri Poincaré 10 (2009) 623–671.
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Instability theory for self-gravitating isolated relativistic galaxies and
stars

Mahir Hadžić

(joint work with Zhiwu Lin, Gerhard Rein)

We consider compactly supported steady states of the spherically symmetric
asymptotically flat Einstein–Vlasov (EV) system and Einstein–Euler (EE) system,
describing steady galaxies and stars respectively. For the EV-system it is well-
known that given a microscopic equation of state which prescribes the functional
dependence of the phase spaces density on the local particle energy, one can find a
1-parameter family of solutions parametrised by the size of the central redshift of
the steady galaxy. We prove that, for sufficiently high central redshifts such steady
galaxies are necessarily unstable. Moreover, we show that the instability is driven
by the existence of a growing mode and prove a linear exponential trichotomy re-
sult. For the former statement, we characterise the behaviour of steady galaxies in
a suitably rescaled region around the centre of symmetry, by showing convergence
to a singular limiting object known as the Bisnovatyi-Kogan–Zeldovich solution
of the massless Einstein–Vlasov system. To prove the exponential trichotomy we
capitalise on the manifestly Hamiltonian character of the linearised equation and
use a recent theory developed by Lin and Zeng. An analogous statement applies
to the spherically symmetric steady states of the EE-system.

Free S1-symmetric static solutions

Mart́ın Reiris

In 1917 H. Weyl published a seminal paper in Annalen der Physik, describing a
simple method of solving the static axisymmetric vacuum Einstein equations. The
virtue of the procedure rooted in casting the Einstein equations into a linear equa-
tion on a two dimensional domain plus another always solvable by quadratures.
This influential ‘generating technique’ allowed Myers in 1987 (and later Korotkin-
Nicolai in 1994) to ‘superpose’ infinitely many Schwarzschild holes along a common
axis, where consecutive horizons are separated from each other by a characteristic
length. Quotients of this ‘periodic’ solution by translations give asymptotically
Kasner but metrically complete ‘static’ black hole solutions, with a finite number
of compact horizons.

The Myers/Korotkin–Nicolai solutions play an important role in the under-
standing of metrically complete static solutions with compact horizons (shortly
below, static black holes). In the papers arXiv:1806.00818, arXiv1806.00819 it was
proved the following classification theorem of static vacuum black holes.

Theorem 1 (The classification Theorem). Any static black hole is either,

(1) A Schwarzschild black hole, or,
(2) a Boost, or,
(3) is of Myers/Korotkin–Nicolai type.
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As the theorem does not assume any a priori asymptotic, it is therefore a
generalisation of the celebrated Schwarzschild’s uniqueness theorem.

The Boosts are quotients of the Rindler wedge of the Minkowski space-time.
Thus, they are flat and their topologies are T2 × [0,∞) (see arXiv:1806.00819).
On the other hand a solution is of Myers/Korotkin–Nicolai type if it has the
same topology and Kasner asymptotic as the Myers/Korotkin–Nicolai black holes
introduced above.

A large part of these two works was dedicated to show that metrically complete
static black holes are either asymptotically flat or asymptotically Kasner. When
the volume growth is subcubic, then it can be proved by scaling techniques that
a S1 or a T2 symmetry forms asymptotically (one must use here the quadratic a
priori curvature decay due to M. Anderson). It is not then a surprise that the
study of the asymptotic of static ends required a previous understanding of spaces
with a free S1-symmetry.

This links to Weyl’s work, or indeed to the larger field of static solutions with
a free S1 symmetry. Note that the perpendicular distribution of Killing fields
generating free S1-symmetries are not necessarily integrable, in contrast to the
Killing fields of axisymmetry.

The reduced data (S; q, U, V ) of a free S1-symmetric static data, consists of a
two-manifold S, a two-metric q, the field U = lnN where N is the lapse, and the
field V that is equal to the logarithm of the norm of the Killing generating the S1-
symmetry. We then prove the following theorem on the structure of static solutions
with a free S1-symmetry (see arXiv:1806.00818). This theorem is a crucial piece
of information inside the proof of the classification Theorem 1.

Theorem 2. Let (S; q, U, V ) be a metrically complete (reduced) static data set
with S non-compact and ∂S compact. Then,

(1) S has a finite number of ends each diffeomorphic to S1 × [0,∞).
(2) The fields U and V , and the Gaussian curvature κ have the following

decay,

|∇U |2(p) ≤ η

d2(p, ∂S)
, |∇V |2(p) ≤ η

d2(p, ∂S)
,(1)

and,

(2) κ(p) ≤ η

d2(p, ∂S)
.

The theorem provides global information, on the topology and the fields, from
which a large amount of information can be obtained. The proof involves using
techniques á la Bakry-Émery, plus a careful understanding, in the case when the
twist is non-zero, of the geometry of high-curvature regions, that turn of to be
model by a special type of solutions called the cigars.
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Strong cosmic censorship and generic mass inflation for charged black
holes in spherical symmetry

Sung-Jin Oh

(joint work with Jonathan Luk)

The subject of this talk is the strong cosmic censorship conjecture and mass infla-
tion, which concern the stability and instability properties of the Cauchy horizon
in the interior of a rotating or charged black hole. Our main results are rigor-
ous formulation and proof of these conjectures for a widely-studied model system,
namely the Einstein–Maxwell–Scalar Field system in spherical symmetry.

1. Formulation of the problems

To introduce these problems, we focus on the simplest example, namely, the
(subextremal) Reissner–Nordström spacetime; it is a spherical symmetric solution
to the Einstein–Maxwell equation that describes an electrically charged, static
black hole. The properties of our interest are most conveniently expressed in the
Penrose diagram of the Reissner–Nordström spacetime1:

Here, Σ0 is a complete spacelike Cauchy hypersurface, which has two asymp-
totically flat ends. Associated to each asymptotically flat end is (complete) future
null infinity I+, a portion of the ideal future boundary of the Penrose diagram
consisting of limits of radial future-directed null geodesics along which r → ∞.
The remainder of the ideal future boundary of the Penrose diagram is called the
Cauchy horizon CH+, which is null and lies in the black hole interior BH (i.e., the
complement of the causal past of I+).

1As we work with the initial value formulation, we only consider the forward maximal de-
velopment of a complete Cauchy hypersurface Σ0 inside the subextremal Reissner–Nordström
spacetime.
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The Cauchy horizon in a subextremal Reissner–Nordström spacetime turns out
to be smooth (in fact, real-analytic)2. This feature leads to the troubling phenom-
enon of breakdown of global uniqueness : The spacetime is smoothly extendible
past CH+, even as a solution to the Einstein–Maxwell equation, in many different
ways that cannot be uniquely determined from the data.

An intriguing way out of this issue was suggested by Simpson–Penrose [9],
who numerically observed linear instability of CH+ under the electromagnetic
perturbations. Based on this instability, Penrose put forth the celebrated strong
cosmic censorship conjecture, asserting that the failure of global uniqueness in the
Reissner–Nordström spacetimes is a unstable, nongeneric phenomenon. In rough
terms, the conjecture may be stated as follows:

Strong cosmic censorship. The maximal forward development of “generic”
asymptotically flat initial data under a “reasonable Einstein–matter model” leads
to a spacetime that is inextendible as a “suitably regular” Lorentzian manifold.

Moreover, through the study of a simple nonlinear model (Einstein–Maxwell–
null dust system in spherical symmetry), Poisson–Israel [8] (see also Ori [6]) put
forth a detailed nonlinear instability scenario dubbed mass inflation; for pertur-
bations of the Reissner–Nordström spacetime, it may be formulated as follows:

Mass inflation scenario. Consider the the maximal future development of a
generic perturbation of the Reissner–Nordström spacetime.

• The null Cauchy horizon CH+ is nonempty, and the metric extends con-
tinuously past CH+.

• Nevertheless, the Hawking mass m, which is defined by the relation 1 −
2m
r = g(∇r,∇r) in spherical symmetry blows up identically on CH+.

2. Main results for the Einstein–Maxwell–Scalar Field system

To investigate the issues of strong cosmic censorship and mass inflation in an
analytically simple yet interesting setting, we consider the spherically symmetric
Einstein–Maxwell–(real) Scalar Field system:






Rµν −
1

2
gµνR =2(TMµν + T SFµν ),

gαβ∂αFνβ =0, dF = 0,

�gφ =0,

where

TMµν = F α
µ Fνα − 1

4
gµνF

αβFαβ , T SFµν = ∂µφ∂νφ− 1

2
gµν∂

αφ∂αφ.

Importantly, this system admits the Reissner–Nordström spacetime as a solu-
tion (φ = 0). However, as the Einstein–Maxwell in spherical symmetry is rigid,

2These notions of regularity must be interpreted in the sense of manifolds-with-boundaries,
and take into account the nondegenerate bifurcation sphere, which is represented as a corner in
the Penrose diagram.
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the real scalar field φ is added to ‘emulate’ the dynamic degree of freedom in the
full Einstein equation.

We start with a previous result:

Theorem 1 (Dafermos [1, 2], Dafermos–Rodnianski [3]). The maximal forward
development of an admissible initial data has the Penrose diagram above3. In
particular, CH+ 6= ∅, and the solution (g, F, φ) is C0 up to CH+.

Therefore, the strong cosmic censorship conjecture is false(!), if ‘suitably reg-
ular’ means C0 Lorentzian metric. Nevertheless, we show that the strong cosmic
censorship conjecture holds in a different formulation:

Theorem 2 (Luk–O. [4, 5]). There exists a generic4 class of initial data sets,
denoted by G, such that the maximal forward development of a data set in G ex-
hibits blow up near every point on CH+, in the sense that ∂φ 6∈ L2(O) for any
neighborhood O of p ∈ CH+. Moreover, the solution is inextendible as a spacetime
with C2 metric.

Let us also announce a forthcoming work, in which we verify that the mass
inflation scenario of Poisson–Israel and Ori is valid for the model at hand:

Theorem 3 (Luk–O., forthcoming). There exists a Baire-generic5 subclass G̃ ⊂ G
such that the maximal forward development of a data set in G̃ exhibits m = ∞ on
each point of CH+.

3We remark that for small perturbations of the Reissner–Nordström spacetime, S = ∅.
4By generic, we mean open and dense in a natural topology for admissible data sets; for

details, we refer to [4, 5].
5By Baire-generic, we mean the countable intersection of open and dense sets in a natural

(complete) topology.
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A proof of the instability of AdS spacetime for the Einstein–massless
Vlasov system

Georgios Moschidis

The simplest solution of the vacuum Einstein equations

(1) Ricµν −
1

2
Rgµν + Λgµν = 0

with a negative cosmological constant Λ is Anti-de Sitter spacetime (M3+1
AdS, gAdS).

In the standard polar coordinate chart (t, r, θ, ϕ) onMAdS ≃ R3+1, the AdS metric
gAdS is expressed as

gAdS = −
(
1− 1

3
Λr2

)
dt2 +

(
1− 1

3
Λr2

)−1

dr2 + r2
(
dθ2 + sin2 θ · dϕ2

)
.

The spacetime (MAdS , gAdS) can be conformally identified with (R × S3+,−dt2 +
gS3), where S3+ is the northern hemisphere of S3. Through this identification,
the timelike boundary I = R × ∂S3+ of R × S3+ can be naturally attached to
(MAdS , gAdS) as a conformal boundary at infinity. More generally, the conformal
boundary I is a fundamental feature of the asymptotic geometry of any asymp-
totically AdS spacetime (M, g).

In view of the timelike character of I, the right framework to study the dynam-
ics of (1) in the asymptotically AdS setting is that of an initial-boundary value
problem, with initial data (satisfying the vacuum constraint equations) prescribed
on a complete spacelike hypersurface Σ terminating at I, and boundary data im-
posed asymptotically on I. Most physically relevant boundary conditions on I
can be classified as either reflecting or dissipative.
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The well-posedness of the initial-boundary value problem for (1) was first ad-
dressed by Friedrich [10]: Working in the conformally compactified picture and
rewriting (1) as a hyperbolic system of renormalised variables which are regular
up to I, [10] established that the initial-boundary value problem for (1) is well-
posed for a wide class of boundary conditions on I (including both reflecting and
dissipative conditions).

Given the well-posedness of the initial-boundary value problem for (1), the
question naturally arises whether the trivial solution (MAdS, gAdS) is stable under
perturbations of its initial data. In 2006, Dafermos and Holzegel [7, 6] suggested
the following conjecture (see also [1]):

AdS instability conjecture. There exist arbitrarily small perturbations to the
initial data of (MAdS , gAdS) which, under evolution by the vacuum Einstein equa-
tions (1) with a reflecting boundary condition on I, lead to the development of black
hole regions at late enough times. In particular, (MAdS, gAdS) is non-linearly un-
stable.

Remark 1. The initial data norm || · ||data, used to measure the size of the initial
perturbations, is not specified by the conjecture; a natural minimal requirement
for || · ||data is that the initial-boundary value problem for (1) for initial data with
finite || · ||data norm is well-posed. Let us also remark that the choice of a reflecting
boundary condition on I is important for the conjecture: In the case of a maximally
dissipative boundary condition, [12] showed that, at the linear level, perturbations
of (MAdS, gAdS) decay in time at a superpolynomial rate.

The numerical and heuristic study of the AdS instability conjecture has been
mainly focused on the simpler setting of the spherically symmetric Einstein–scalar
field system

(2)

{
Ricµν − 1

2Rgµν + Λgµν = 8π
(
∂µϕ∂νϕ− 1

2gµν∂
αϕ∂αϕ

)
,

�gϕ = 0.

In the pioneering work [3], Bizon–Rostworowski were the first to propose a mech-
anism driving the instability of AdS, suggesting, in particular, that the concen-
tration of energy in small scales (which is necessary for a black hole to form) is
triggered by a resonant mode mixing for the scalar field ϕ. Following [3], a vast
number of numerical and heuristic works by several authors have been dedicated
to the study of the AdS instability conjecture for the spherically symmetric Ein-
stein–scalar field system (see, e. g. [8, 4, 14, 5, 2, 9, 11, 13]); however, no rigorous
proof has been obtained so far in this setting.

An alternative Einstein–matter field system allowing for non-trivial spherically
symmetric dynamics and retaining many of the qualititative properties of (1) is
the Einstein–massless Vlasov system:

(3)





Ricµν − 1
2Rgµν + Λgµν = 8π

∫
TxM

pµpνf
√−gdp,

pα∂xaf − Γαβγp
βpγ∂pαf = 0,

supp(f) ⊂
{
(x; p) ∈ TM : gαβ(x)p

αpβ = 0
}
.
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In my talk, I presented the proof of the AdS instability conjecture in the spherically
symmetric setting of the system (3) (which will appear in [15]):

Theorem 1. There exists a one parameter family of spherically symmetric, asymp-
totically AdS initial data
Sε = (ḡε, kε; f̄ε), ε ∈ (0, 1], for the Einstein–massless Vlasov system (3), such that
the following hold:

(1) As ε→ 0, the initial data Sε converge to the trivial data S0 = (ḡ0, k0; 0) of
pure AdS spacetime with respect to a rough initial data norm || · ||data, for
which the initial-boundary value problem for (3) with reflecting conditions
on I is well-posed in spherical symmetry.

(2) Let (Mε, gε; fε) be the maximal future development of Sε for (3) with re-
flecting boundary conditions on I. Then, for any ε ∈ (0, 1], (Mε, gε; fε)
contains a black hole region.

Remark 2. The initial data norm || · ||data measures the concentration of energy

along the evolution of the Vlasov field f
(ε)
AdS obtained by solving the uncoupled

Vlasov equation on (MAdS , gAdS) with f
(ε)
AdS = f̄ε initially. In a certain sense,

|| · ||data is a minimal initial data norm for which (3) is well-posed in spherical
symmetry. In the case Λ = 0, it can be shown that Minkowski spacetime is globally
stable as a solution of (3) under spherically symmetric perturbations which are
small with respect to (the analogue of) || · ||data.

In the proof of the theorem above, the initial data family (ḡε, kε; f̄ε) is con-
structed so that the Vlasov field fε is initially arranged into a large number of
ingoing beams, with each successive Vlasov beam supported in an increasingly
narrower region in phase space. The proof then proceeds by exploiting an asym-
metry in the exchange of energy during the (non-linear) interaction of any pair of
beams taking place close to the axis of symmetry and close to I, respectively. In
view of the specific configuration of the beams, this asymmetry leads, after many
reflections off I, to the gradual concentration of energy at the beams supported
in the narrowest regions in phase space. Some of the technical challenges involved
in designing this configuration and controlling the non-linear evolution up to the
point of black hole formation were briefly highlighted in the talk.

While the technical details of the proof depend crucially on the structure of the
system (3), the main instability mechanism is expected to be relevant for more
general matter models admitting non-trivial spherically symmetric dynamics and
allowing the arrangement of matter into nearly null beams, the Einstein–scalar
field system being one particular example.
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Mass-like covariants for asymptotically hyperbolic manifolds

Romain Gicquaud

(joint work with Julien Cortier, Mattias Dahl)

The mass of an asymptotically hyperbolic manifold is an important covariant in-
troduced by X. Wang in [7] and in a more general setting by P. Chruściel and M.
Herzlich in [3].

As its Euclidean analog, it is defined in terms of the asymptotic geometry. Still,
unlike the mass of an asymptotically Euclidean manifold which is a scalar invariant
under the change of chart at infinity, this mass appears as a vector in Minkowski
space that transforms covariantly under the change of chart at infinity. To be
more precise, it is proven in [3, 4, 5] that the transition functions from one chart
to another is at top order an isometry of the hyperbolic space (or equivalently a
Lorentz transformation) that encodes the change of the mass vector.
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Assume that the metric decays sufficiently fast towards the hyperbolic metric
at infinity and that the scalar curvature is greater than or equal to that of the
hyperbolic space. Then the positive mass theorem states that the mass vector is a
timelike future pointing vector unless the manifold is isometric to the hyperbolic
space. This theorem has now been proven under the assumption that the manifold
is spin [3, 7] or under dimensional restrictions [1, 2].

The aim of the talk is to classify asymptotics objects that enjoy similar covari-
ance properties. We show that these covariants belong to two different families
each indexed by a non-positive integer.

To describe these covariants, we work in the conformal ball model of the hy-
perbolic space. Namely, it is described as the unit ball B1(0) ⊂ Rn endowed with
the metric

b = ρ−2δ

where δ denotes the Euclidean metric on Rn and

ρ =
1− |x|2

2

is a defining function for the unit sphere S1(0) of Rn. In a well chosen chart at
infinity, a given asymptotically hyperbolic metric g can be written as

g = ρ−2(δ + ρkm+ h.o.t.),

where m is a symmetric 2-tensor defined in a neighborhood of S1(0) that satisfies
the so-called transversality condition mijx

i = 0. The integer k > 0 is the decay
rate towards the hyperbolic metric.

The covariants are best described as invariant pairings between the space of
mass-aspect tensors and certain representations of the Lorentz group O(n, 1).

• Conformal covariants: Let Hp denote the set of wave harmonic ho-
mogeneous polynomials of degree p:

Hp = {P ∈ R[X0, X1, . . . , Xn], P homogeneous of degree p, �P = 0}.
Then the p-th conformal mass is defined when k = n− 1 + p and is given
by

Cp(m,P ) =
∫

S1(0)

P (1, x1, . . . , xn)trσ(m)dµσ,

where σ denotes the round metric on S1(0) and x
1, . . . , xn are the standard

coordinates on Rn restruicted to S1(0).
• Weyl covariants: Let Wp denote the set of homogeneous Weyl tensors
on Rn,1, i.e. polynomial 4-tensors that satisfy the symmetry and trace free
assumptions of the usual Weyl tensor together with the (linearized) second
Bianchi identity. Then the p-th Weyl mass is defined for k = n + 1 + p
and is given as follows:

Wp(m,P ) =

∫

S1(0)

〈
W (1, x1, . . . , xn)(e+, · · · , e+, ·),m

〉
σ
dµσ,
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where e+ = (1, x1, . . . , xn) is the outgoing null vector to the sphere S1(0).

The usual mass is the conformal mass with p = 1. An extension of the
definition of these covariants to a broader context (à la Chruściel–Herzlich)
can be done by following a method described in [6] but finding a tight link
between a given mass and a curvature operator, as the standard mass is
bound to scalar curvature, is still an open question.
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Ill Posed Perturbative Corrections to Well Posed Equations

Robert M. Wald

It often happens in physical theories with well posed equations that the addition of
a “perturbative correction” to the equations will drastically change the character
of the equations—making them ill posed or introducing spurious additional degrees
of freedom and/or instabilities. The perturbative corrections should, in principle,
improve the accuracy of the description of the system, but it is not obvious how
to make predictions with the perturbatively corrected equations.

A good example of this is the equation of motion for a particle in classical
electrodynamics, when the effects of radiation reaction are taken into account.
The equations of motion without radiation reaction are of the form of Newton’s
second law

(1) ẍ = F (x, ẋ).

Radiation reaction adds a perturbative correction of the form

(2) ẍ = F (x, ẋ) + ǫ
...
x .

Although this equation is still an ODE and is well posed, it requires the initial data
(x, ẋ, ẍ)—rather than (x, ẋ)—and it gives rise to unphysical “runaway solution”
instabilities of form x ∼ exp(t/ǫ).
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Another good example is the semiclassical Einstein equation

(3) Gab = 8π〈Tab〉
where the classical stress-energy tensor Tab of the matter fields is replaced by
the expectation value of the quantum stress tensor in some state. The difference
between the classical stress energy and the quantum expectation value can be
viewed as a perturbative correction to the ordinary Einstein equation. For a
fixed initial quantum state, (3) becomes a nonlocal equation for the metric. The
quantum field regularization procedure introduces dependence of 〈Tab〉 on 4th
derivatives of the metric, so this equation is effectively of higher differential order.
It seems unlikely that (3) will have a well posed initial value formulation, and
even if it did, the higher derivative dependence on the metric would undoubtedly
introduce additional spurious degrees of freedom.

The issue I wish to address is how to treat perturbative corrections to the equa-
tions of motion such as the ones above. One certainly cannot treat the modified
equations as literally correct, as they give rise to physically spurious solutions. One
alternative would be to first solve the original unperturbed equation, substitute
the solution in the perturbation term, and then treat this term as a “source term”
to find the first order correction to the original solution. This will properly give a
perturbative correction to the unperturbed solution. However, over long periods of
time, a perturbative correction calculated in this way will typically become large,
making it unreliable/inaccurate. Going to any finite higher order in perturbation
theory will not help (or, at least, not help much). Is there a better way to take
account perturbative corrections of the above sort?

In the case of ordinary differential equations such as (2), the answer is “yes.”
The reduction of order procedure provides a systematic way to modify an equation
like (2) so that it remains as accurate to leading order in ǫ but does not introduce
spurious degrees of freedom. To implement this procedure, we compute

...
x using

the unperturbed equation (1)

...
x =

∂F

∂x
ẋ+

∂F

∂ẋ
ẍ

=
∂F

∂x
ẋ+

∂F

∂ẋ
F (x, ẋ)(4)

One then substitutes this in (2) to produce the modified equation

(5) ẍ = F (x, ẋ) + ǫ

[
∂F

∂x
ẋ+

∂F

∂ẋ
F (x, ẋ)

]
.

This equation has entirely satisfactory mathematical properties, and should accu-
rately describe the leading order effects of radiation reaction on particle motion.

However, there is no known similar procedure for dealing with perturbative
corrections to partial differential equations. As a much simpler example than (3)
consider a classical scalar field φ in Minkowski spacetime that satisfies

(6) �φ− φ3 = ǫSabcd∇aφ∇bφ∇cφ∇dφ
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where the tensor field Sabcd appearing in the perturbative correction is smooth but
does not have any other special properties. One could make a choice of coordinates
and “reduce order” on the time derivatives as in (5). However, the reduced equa-
tions would then depend on the choice of coordinates. Worse yet, this procedure
would introduce additional spatial derivatives, and the equations would still have
an ill posed character.

Many proposals for modifying Einstein’s equation yield equations that have a
character like (6). It is far from clear whether these proposals make “predictions”—
since this requires a well posed initial value formulation—and, if so, what these
predictions are. This is an open problem that undoubtedly deserves more atten-
tion.

Singularity theorems for C1,1-metrics

Melanie Graf

(joint work with James D. E. Grant, Michael Kunzinger, Roland Steinbauer)

The classical singularity theorems of General Relativity show that a Lorentzian
manifold with a C2-metric that satisfies physically reasonable conditions cannot
be geodesically complete. One of the questions left unanswered by the classical
singularity theorems is whether one could extend such a spacetime with a lower
regularity Lorentzian metric such that the extension still satisfies these physically
reasonable conditions and does no longer contain any incomplete causal geodesics.
In other words, the question is if a lower differentiability of the metric is still
sufficient for the theorems to hold. A number of technical obstacles for lowering
the regularity of the metric are discussed, e.g., in Sect. 6.1 of the review article
[10].

A natural differentiability class to consider here is C1,1. From the point of view
of physics, the curvature of a metric being bounded but discontinuous, rather
than blowing up, would, via the Einstein field equations, give rise to (or be gen-
erated by) a finite jump in the energy-momentum tensor, a scenario that arises
in the classical example of the Oppenheimer–Snyder solution and the whole class
of matched spacetimes. Mathematically, this regularity guarantees that the Levi-
Civita connection is still locally Lipschitz, so the classical Picard–Lindelf theorem
gives existence and uniqueness of solutions of the geodesic equations and these
solutions depend continuously (in fact, Lipschitz continuously) on the initial data.
However, while the curvature of the metric exists almost everywhere and is well-
defined in L∞

loc, it might be undefined along any given geodesic.
Recent progress in low-regularity Lorentzian geometry ([1], [8], [5] and others)

has allowed one to tackle the many challenges in proving singularity theorems for
C1,1-metrics and show that, in fact, the classical singularity theorems of Penrose
([9]), Hawking ([3]), and even the more general theorem of Hawking–Penrose ([4])
remain valid in this regularity (cf. [7], [6], [2]).

The main difference between the Hawking–Penrose theorem and the earlier
theorems lies in the introduction of the so-called genericity condition, which allows
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a significant weakening of some of the other assumptions in the Hawking and the
Penrose theorem. One of the modern formulations of this condition is that for any
inextendible causal geodesic γ : I →M there exists t0 ∈ I such that the operator

[R(t0)] : [γ̇(t0)]
⊥ → [γ̇(t0)]

⊥, V 7→ R(V, γ̇(t0))γ̇(t0),

where [γ̇]⊥ denotes γ̇⊥ ⊆ TM if γ is timelike and the quotient space γ̇⊥/Rγ̇ if γ
is null, is non-zero. This condition manifestly involves curvature along geodesics
and as such any C1,1-version of the Hawking–Penrose theorem needs to involve
a suitable replacement. Further, while the classical proofs of both the Hawking
and the Penrose theorem involve concrete and explicit estimates (in terms of the
curvature and an initial condition) on the parameter time it takes geodesics to
reach a focal point, no such estimates are found for conjugate points in the proofs
of the Hawking–Penrose theorem.

As for previous results, the overarching strategy for the proof of the C1,1-
Hawking–Penrose theorem, [2, Thm. 2.5], is to follow the smooth proof but cir-
cumvent the need to use curvature estimates and Raychaudhuri arguments along
g-geodesics by using approximating smooth metrics gε respecting the causal struc-
ture (cf. [1]) and leveraging estimates on when gε-geodesics stop being maximising
to show that also g-geodesics must stop maximising.

To this end we derive the following for smooth metrics (cf. [2, Section 4]): Given
a bound on the causal Ricci curvature, Ric(X,X) > −δ for all causal vectors X in
a compact subset K ⊆ TM , and any causal geodesic γ : I → M for which γ̇ ∈ K
and for which (g(R(Ei, γ̇)γ̇, Ej))ij > diag(c,−C, . . . ,−C) (where Ei denotes a
parallel orthonormal frame of [γ̇]⊥ along γ) on [−r, r], we show that for δ small
enough (compared to c, r) there exists a bound on the maximal time T such that
γ : [−T, T ] → M does not contain conjugate points. This bound depends only on
δ, c and r, not on γ or g, and, by the well-known relation between maximising
properties and conjugate points, also bounds the interval on which γ maximises
the distance between its endpoints.

We define the genericity condition for C1,1-metrics by saying that the genericity
condition holds along γ if there exists a neighbourhood U of γ(t0) and continuous
vector fields X and V on U and a constant c > 0 such that X(γ(t)) = γ̇(t) and
V (γ(t)) ∈ γ̇(t)⊥ for all t ∈ I with γ(t) ∈ U and |g(R(V,X)X,V )| > c in L∞(U)
(cf. [2, Def. 2.2]) and the strong energy condition by Ric(X,X) ≥ 0 a.e. for
all Lipschitz continuous causal local vector fields X . This guarantees that the
approximating metrics satisfy the inequalities required in the previous paragraph
(cf. [2, Section 3]) and the estimate on T for gε geodesics can be used to show that
complete timelike g-geodesics contained in an open globally hyperbolic subset and
complete null geodesics, that are not closed, cannot be maximising (cf. [2, Section
5]).

Dealing with the initial conditions (the existence of a compact achronal set
without edge, a closed trapped surface or a trapped point (cf. [2, Def. 2.4]),
similarly, one establishes the existence of an achronal set S such that E+(S) is
compact (Cf. [2, Section 6]). This reduces the proof of the theorem to an argument
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involving only causality theory which remains unaffected by a drop of the regularity
of the metric to C1,1 (cf. [2, Section 7, Appendix A]).

This shows a C1,1-version of the Hawking–Penrose singularity theorem. One
question that is left unanswered by this approach is whether this Theorem con-
tinues to hold without excluding the existence of closed null curves additionally
to excluding closed timelike curves: While excluding closed null curves is neces-
sary for the given proof, the smooth version only excludes closed timelike curves
and one might wonder if there exists a spacetime with a C1,1-metric that contains
closed null curves but satisfies all other conditions of the theorem and is causal
geodesically complete. Another avenue for possible future exploration is whether
it is possible to show some version of a singularity theorem for metrics of even
lower regularity.
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High-frequency backreaction for the Einstein equations under
polarized U(1) symmetry

Cecile Huneau

(joint work with Jonathan Luk)

1. Introduction

In this report, I describe the article [5], which is a joint work with Jonathan Luk.
Our article is concerned with backreation, which is the following non linear phe-
nomenon. Let us consider a sequence of metrics gλ, solutions of Einstein vacuum
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equations, that we recall here

(1) Rµν −
1

2
Rgµν = 0,

where Rµν is the Ricci tensor and R the scalar curvature. Let us assume that

• gλ converges strongly in L2
loc when λ tends to zero toward a metric g0

which is smooth,
• ∂gλ is bounded in L2

loc.

Then, since (1) contains nonlinear terms of the form ∂gλ∂gλ, which may not
converge, even weakly toward ∂g0∂g0, a priori we can only write that g0 satisfies
the equation

Rµν −
1

2
Rgµν = Tµν .

This phenomenon has been first studied by Isaacson in [6] and [7] in the context
of high frequency gravitational waves. This study was continued by Burnett in
the late eighties [1]. In this article, he conjectured that the only Tµν which can
be obtained with such a process correspond to massless Vlasov matter model. He
also asked the reverse question which is the following : if we consider a solution g0
to Einstein equations coupled to a massless Vlasov field, can we find a sequence of
metric gλ, satisfying Einstein vacuum equations, which converges toward g0 in the
sense described above? These two questions were then forgotten until Green and
Wald replaced this issue in the context of small scale inhomogeneities in cosmology
in [2] and [3]. Under additional assuptions, they prove that Tµν should be traceless
and satisfy the weak dominant energy condition. These conditions are compatible
with Burnett’s conjecture, but the road is still long toward the proof of it.

2. Main result

The aim of our article [5] is to address the reverse question of Burnett conjecture.
Doing so in full generality requires to study solutions of Einstein equations which
are only bounded in H1, which is below the regularity known to ensure local
wellposedness (see [8]). This makes the problem highly non trivial. Consequently,
we reduced the difficulty in two ways

• by working in the context of polarized U(1) symmetry,
• by approaching solutions of Einstein equations coupled to an arbitrary
number of null dust, model which is a discrete analog of massless Vlasov.

2.1. Polarized U(1) symmetry. We study solutions of the vacuum Einstein
equations of the form (I × R3,(4) g), where I ⊂ R is an interval, with

(4)g = e−2φg + e2φ(dx3)2,

where φ : I ×R2 → R is a scalar function and g is a Lorentzian metric on I ×R2.
The vector field ∂x3

is Killing and hypersurface orthogonal. Then Einstein vacuum
equations R((4)g)µν = 0 are equivalent to the following system for (g, φ):

(2)

{
�gφ = 0,
Rµν(g) = 2∂µφ∂νφ.
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2.2. Null dusts. We describe the system of Eistein coupled to N null dusts. We
consider a quadruple (g, φ, FA, uA), withA ∈ A for some finite setA with |A| = N ,
where g is a Lorentzian metric on I × R2, φ : I × R2 → R is a scalar function,
FA : I×R2 → R≥0 is the density of the null dust for each A and uA : I×R2 → R

is an eikonal function such that (duA)♯ is the direction of propagation of the null
dust for each A, which is a solution to the system

(3)






Rµν(g) = 2∂µφ∂νφ+
∑

A
(FA)2∂µuA∂νuA,

�gφ = 0,
2(g−1)αβ∂αuA∂βFA + (�guA)FA = 0,
(g−1)αβ∂αuA∂βuA = 0.

2.3. Main theorem. We state an unprecise version of our main theorem in [5]

Theorem 1. Let (g0, φ0, FA, uA) be a sufficiently small and sufficiently regular
local-in-time asymptotically conic solution to (3) such that

• The initial hypersurface is maximal;
• The uA’s are angularly separated (meaning

|∇uA.∇uB| ≤ (1− η)|∇uA||∇uB| for A 6= B)
• A genericity condition holds for the initial data.

Then (g0, φ0) can be weakly approximated by a 1-parameter family of solutions
(gλ, φλ) for λ ∈ (0, λ0), λ0 ∈ R to (2), i.e., in a suitable coordinate system,
as λ → 0, (gλ, φλ) → (g0, φ0) uniformly on compact sets and the derivatives
(∂gλ, ∂φλ)⇀ (∂g0, ∂φ0) weakly in L2 (for each component).

3. Ideas of proof

The proof is based on two main ingredients :

• In 2+1 dimensions, we can write Einstein equations in a gauge where the
principal symbol of the Ricci tensor is elliptic. Consequently, in (2), the
2 + 1 metric g is more regular than the scalar field.

• We write φ as a sum of planes waves oscillating at frequency λ in the uA
direction and a remainder term, and we use a continuity argument for the
remainder.

3.1. Elliptic gauge. We write the (2 + 1)-dimensional metric g on M := I ×R2

in the form
g = −N2dt2 + ḡij(dx

i + βidt)(dxj + βjdt).

Let Σt := {(s, x1, x2) : s = t} and e0 = ∂t−βi∂i, which is a future directed normal
to Σt. We introduce the second fundamental form of the embedding Σt ⊂ M

Kij = − 1

2N
Le0 ḡij .

We decompose K into its trace and traceless parts.

Kij =: Hij +
1

2
ḡijτ.

Here, τ := trḡK and Hij is therefore traceless with respect to ḡ.
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We can introduce the following gauge conditions :

• ḡ is conformally flat, i.e., for some function γ, ḡij = e2γδij ;
• The constant t-hypersurfaces Σt are maximal τ = 0.

In this gauge, Einstein equations can be written as semi-linear elliptic equations
for the metric coefficients N, β, γ. In [4] we proved the local wellposedness of
Einstein and Einstein-null dust equations in elliptic gauge.

3.2. Parametrix construction. We want to introduce an ansatz for φ of the
form

φλ = φ0 +
∑

A

λFA cos
(uA
λ

)
+ φ̃λ

where ‖∂φ̃λ‖L2 . λ. The fact that uA satisfies the eikonal equation and FA a
transport equation yield a priori that

∑
A
λFA cos

(
uA

λ

)
is a good approximation

of a solution of �g0φ = 0. The metric perturbations induced by φλ have a better
behaviour in λ than φλ itself but it is not sufficient to ensure that

∑
A
λFA cos

(
uA

λ

)

is a good approximation of a solution of �gλφ = 0. The two main ideas to overcome
this difficulty are the following.

• We use a more precise parametrix for φ, which describe the terms of order
λ2. We give here the form of the parametrix we use

φλ =φ0 +
∑

A

λFA cos
(uA
λ

)
+
∑

A

λ2F̃A sin
(uA
λ

)

+
∑

A

λ2F̃
(2)
A

cos

(
2uA
λ

)
+
∑

A

λ2F̃
(3)
A

sin

(
3uA
λ

)
+ Eλ

with
‖∂Eλ‖L2 . λ2.

The terms F
(2)
A

and F
(3)
A

can be computed directly from the solution of

(3). The term F̃A however satisfies a transport equation with a source
term given by gλ.

• We use precisely Einstein equations to deal with the time derivative of the
metric coefficients. Notice that for a model problem of the form ∆g =
(∂φ)2, ∂tg is less regular than ∇g. However, for the actual system, we can
use for instance the condition τ = 0 which links ∂tγ to divβ.
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Islands of stability in anti-de Sitter spacetime

Stephen R. Green

(joint work with Alex Buchel, Luis Lehner, Steven L. Liebling, Antoine Maillard)

We study the stability of anti-de Sitter (AdS) spacetime with reflecting boundary
conditions in general relativity. This system has no dissipation, as there is no
black hole horizon and the boundary conditions prevent the escape of gravitational
waves. Thus, linear perturbations do not decay in time, and nonlinear interactions
determine the final state. It was, therefore, conjectured that AdS is unstable to
black hole formation [6].

As a toy model, we restrict to spherical symmetry, and we insert a real scalar
field for dynamics. We work in four spacetime dimensions. This model was studied
numerically in [2], where it was shown that no matter how small the initial am-
plitude of the scalar field, collapse to a black hole always occured. The identified
mechanism was a nonlinear transfer of energy to short wavelength modes, which
are more highly peaked at the origin. The normal modes of AdS have frequency
spectrum ωn ∝ 2n+ 3, n = 0, 1, 2, . . ., so they are commensurate with each other
and resonances readily transfer energy among the modes. The work [2] showed a
turbulent cascade of energy to short wavelengths, and the formation of a power-law
energy spectrum that put sufficient energy into small scales to form a black hole.
Later work indicated, however, that different initial data (with different initial
field profile) can fail to collapse for sufficiently small amplitudes [4].

The nonlinear energy transfer takes place over a time scale proportional to
1/ǫ2, where ǫ is the amplitude of the scalar field. To study the dynamics in the
small-amplitude limit, we therefore make use of a two timescale perturbation the-
ory framework (TTF) [1]. This framework integrates out the rapid normal-mode
oscillations, leaving a set of effective equations that describe the nonlinear intera-
tions between the modes. These nonlinear coupled ordinary differential equations
for the complex mode amplitudes An provide access to a regime that becomes
increasingly difficult to reach with traditional numerical simulations. The TTF
equations conserve a Hamiltonian H , as well as the energy E =

∑
n ω

2
n|An|2 and

the “particle number” N =
∑
n ωn|An|2 [5, 3].

In this work we study quasiperiodic (QP) equilibrium solutions to the TTF
equations of the form An(τ) = αne

−iβnτ , with αn, βn ∈ R, and βi + βj = βk + βl
for i + j = k + l. With this ansatz, the TTF equations reduce to algebraic equa-
tions, and solutions can be found numerically with a Newton–Raphson method.
Solutions extremize H for fixed E and N . QP solutions have constant-in-time
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energy per mode, and are characterized by a dominant mode, as well as their to-
tal energy E and particle number N . Thus, once the dominant mode is chosen,
the QP solutions form 2-parameter families. The QP solutions are observed to
have energy spectra with nearly-exponential decay to both sides of the dominant
mode. We can find solutions up to a maximal E/N , which depends on the choice
of dominant mode.

Within TTF, we perform a linear stability analysis of QP solutions, and show
that perturbations are described by real-frequency modes. We argue that these
QP solutions, therefore, form “islands of stability.” The previously-observed non-
collapsing solutions are orbits about QP solutions, and, indeed, have oscillation
periods consistent with the stability analysis. The picture that emerges is that
solutions fall into two classes: (1) for initial data sufficiently close to a QP solution,
the solution is confined to the island of stability, and its spectrum remains nearly
exponential, or (2) for initial data far from a QP solution, a power-law spectrum
forms, putting far more energy in high frequencies, and leading to collapse.

Although the linear stability analysis within TTF indicates that QP solutions
are stable over short time periods, the question of long-term stability remains un-
known. Indeed, it is possible that over extremely long time scales, solutions of class
(1) also collapse. This problem is reminiscent of the question of thermalization of
the Fermi–Pasta–Ulam (FPU) system of nonlinearly coupled oscillators [7]. Both
systems exhibit similar non-thermalization and “recurrences” of a solution close
to initial data; understanding this for the FPU problem led to many developments
in nonlinear dynamics. Recent work on the FPU problem, however, suggests that
collapse may occur in the end [9], and it may be useful to adapt these methods to
the AdS problem.

For collapsing solutions of class (2), the reason for the rapid collapse and the
origin of the power law that forms remain unknown. Recent work by G. Moschidis
proving that there is a one-parameter family of collapsing data in the spherically-
symmetric Einstein-massless Vlasov system [8] may shed light on this problem.
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Geometric Inequalities for Axially Symmetric Initial Data Sets

Ye Sle Cha

The standard picture of gravitational collapse asserts that an inequality relating
the physical quantities of the initial state such as mass m and angular momentum
J may hold. This is called the mass angular momentum inequality, as described
below:

(1) m ≥
√
|J |.

This inequality has been intensively studied over the past decade, by Dain
[6] et al. Here we consider a 3 dimensional, axially symmetric initial data set
(M3, g, k) for the Einstein equations, satisfying the dominant energy condition.
Some additional assumptions may be imposed, mainly to guarantee the existence
of a twist potential related to the Killing vector generating the axial symmetry,
which plays an important role in the proof. Dain et al., then proved that (1)
holds, if a few more assumptions are made, such that (M3, g, k) is maximal, and
that it has two ends, one strongly asymptotically flat and the other either strongly
asymptotically flat or asymptotically cylindrical. Moreover, Alaee, Khuri, Kunduri
recently extended the proof to show that the analogy of (1) holds if (M4, g, k) is
a 4 dimensional, bi-axisymmetric initial data set satisfying the above assumptions
[1].

Naturally, one may ask how to generalize the known proof. For instance, is
there a canonical way to reduce the general non-maximal case to the known max-
imal case? Or can we prove (1) in a similar way, if (M3, g, k) possesses only one
asymptotically flat end, and has an apparent horizon boundary?

The first question has been studied in my previous work with Khuri [3] for a 3
dimensional case, and in my upcoming work [2] for a higher dimensional case. In
[3], we show that the general non-maximal case reduces to the known maximal case,
if a system of elliptic equations possesses a solution with appropriate asymptotics.
For a higher dimensional case, it turns out that a similar reduction argument holds
[2]. Moreover, in [2], it will be shown that there exists a solution to this system
of elliptic equations, if (M, g, k) is near maximal, i.e. |Trgk| < ǫ for 0 < ǫ < 1,
for both cases. Even though this does not resolve the full conjecture, it lends a
credence to the currently proposed strategy. Note that the above results can be
extended to include the charge [2, 4].
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The second question is still widely open. It is in fact a weaker version of the
Penrose inequality with angular momentum

(2) m2 ≥ Amin
16π

+
4πJ 2

Amin
,

where Amin is the minimum area required to enclose one end. There has been
some progress in this direction including [5], but all the known results impose
more restrictive boundary conditions. Recall that Dain’s proof [6] is composed of
two parts : first to show that mass is bounded below by Dain’s mass functional, and
second to prove that this functional realizes the global minimum by the extreme
Kerr data. For the manifold with boundary case, one of the main difficulties
arises from the first part of the proof. A boundary integral appears, which turns
out to be difficult to control. It will be very interesting to see future progress in
this direction, since this problem, as well as the Penrose inequality with angular
momentum, will put a cornerstone to resolve the most generalized version of the
Penrose inequality.
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Scattering of linear waves on the interior of Reissner–Nordström black
holes

Christoph Kehle

(joint work with Yakov Shlapentokh-Rothman)

There has been a lot of recent activities analyzing the Cauchy problem on black
hole interiors. For certain physical processes, it is more natural to consider the
scattering problem (see also [6] for scattering on the exterior of black holes). In [2]
we developed a definitive scattering theory for finite energy solutions to the linear
wave equation

�gψ = 0,(1)
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on the interior of a subextremal Reissner–Nordström black hole, from the bifurcate
event horizon H to the bifurcate Cauchy horizon CH as depicted in Figure 1a. The

(a) Illustration of the scattering map. (b) Visualization of the direction of the
Killing vector field T = ∂t.

Figure 1. Penrose diagram of the interior of the Reissner– Nord-
ström black hole

Reissner–Nordström black holes with metric

gM,Q = −
(
1− 2M

r
+
Q2

r2

)
dt2 +

(
1− 2M

r
+
Q2

r2

)−1

dr2 + r2gS2

constitute a family of spacetimes, parametrized by mass M and charge 0 < |Q| <
M , which satisfy the Einstein–Maxwell system in spherical symmetry. The main
result presented in the talk is existence, uniqueness and asymptotic completeness
of finite energy scattering states. This means that for given finite energy data ψ0

on the event horizon H = HA ∪ HB ∪ B−, there exist unique finite energy data
on the Cauchy horizon CH = CHA ∪ CHB ∪ B+ arising from ψ0 as the evolution
of (1). The energy space on the event horizon is defined by imposing finiteness
of the T = ∂t energy flux on HA minus the T energy flux on HB . Since T = ∂t
is past directed on HB (cf. Figure 1b), the above gives a non-degenerate norm
on the event horizon H = HA ∪ HB ∪ B− and similarly on the Cauchy horizon
CH = CHA ∪ CHB ∪ B+. More precisely, we define

‖ψ‖2ET
H

:=

∫

HA

JTµ [ψ]n
µ
HA

dvolnHA
−
∫

HB

JTµ [ψ]n
µ
HB

dvolnHB
,

‖ψ‖2ET
CH

:=

∫

CHB

JTµ [ψ]n
µ
CHB

dvolnCHB
−
∫

CHA

JTµ [ψ]n
µ
CHA

dvolnCHA
.

Taking the completion of C∞
c functions on the event and Cauchy horizon, re-

spectively, defines Hilbert spaces ETH and ETCH on the event and Cauchy horizon,
respectively. Moreover, we can define a scattering operator from data on the event
horizon to the Cauchy horizon ST0 : C∞

c (H) ⊂ ETH → ETCH by the Cauchy evolution
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of (1). Indeed, in [2] we have shown in the proof of the following Theorem 1 that
this operator is bounded which allows us to define a scattering map ST : ETH → ETCH
by unique extension.

Theorem 1. The scattering map ST : ETH → ETCH is a Hilbert space isomorphism,
i.e. a bounded and invertible linear map with bounded inverse BT : ETCH → ETH. In
addition, the scattering map ST is pseudo-unitary, meaning for ψ ∈ ETH, we have

∫

HA

|Tψ|2 −
∫

HB

|Tψ|2 =

∫

CHB

|TSTψ|2 −
∫

CHA

|TSTψ|2.(2)

In more traditional language, this shows existence, uniqueness and asymptotic
completeness of scattering states. Note that the sign-indefinite energy identity (2)
does not, even a posteriori, yield boundedness of the scattering map. Indeed, in
order to prove boundedness of ST it is crucial to go to the separated picture:

It is well known that (1) on Reissner–Nordström allows separation of variables
which reduces it to the radial o.d.e.

u′′ − Vℓu+ ω2u = 0

with potential Vℓ, where ω ∈ R is the time frequency and ℓ ∈ N0 is the angular
parameter. Indeed, most of the existing literature concerning scattering of waves in
the interior of Reissner–Nordströmmainly considers fixed frequency solutions [4, 5,
1]. For a purely incoming (i.e. supported only onHA) fixed frequency solution with
parameters (ω, ℓ), we can associate transmission and reflection coefficients T(ω, ℓ)
and R(ω, ℓ). The transmission coefficient T(ω, ℓ) measures what proportion of the
incoming wave is transmitted to CHB, whereas the reflection coefficient R specifies
the proportion reflected to CHA. An essential step to go from fixed frequency
scattering to physical space scattering and to prove the boundedness of ST is to
prove uniform boundedness of T(ω, ℓ) and R(ω, ℓ). This is non-trivial in view of
the sign-indefinite Wronskian identity |T(ω, ℓ)|2 − |R(ω, ℓ)|2 = 1. Note that this
identity can be considered as the o.d.e. analog of the sign-indefinite energy identity
(2). A careful o.d.e. analysis involving WKB approximations, Volterra iterations
and a well chosen perturbation of special functions shows

Theorem 2. The reflection and transmission coefficients R(ω, ℓ) and T(ω, ℓ) are
uniformly bounded, i.e. they satisfy

sup
ω∈R,ℓinN0

(|R(ω, ℓ)|+ |T(ω, ℓ)|) ≤ C(M,Q),(3)

where C(M,Q) > 0 is constant only depending on the black hole parameters M
and Q.

It should be remarked that in [2] we first prove Theorem 2 which eventually
allows us to show Theorem 1.

The developed scattering theory has several applications. First, it can be shown
that for purely incoming radiation on HA, there is always non-trivial reflection
to CHB, see [2, Theorem 4]. Then, we can show that smooth data on H which
are supported away from the past bifurcation sphere B− and future null timelike
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infinity i+ give rise to a solution which vanishes on B+. Moreover, we can also
put the C1 blow-up result of Chandrasekhar and Hartle [1] on rigorous footing:
Indeed, we show [2, Theorem 5] that there exist smooth, compactly supported and
purely incoming data on the event horizon HA for which the Cauchy evolution of
(1) fails to be in C1 at the Cauchy horizon CH.

If a cosmological constant Λ ∈ R is added to the Einstein–Maxwell system,
we can consider the analogous (anti-) de Sitter–Reissner–Nordström family of so-
lutions whose interiors have the same Penrose diagram as depicted in Figure 1.
However, remarkably, there is no analogous T energy scattering theory for either
the linear wave equation (1) or the Klein–Gordon equation with conformal mass
�gψ − 2

3Λψ = 0. The reason for this failure is the unboundedness of the trans-
mission coefficient T and reflection coefficients R in the vanishing frequency limit
ω → 0. Nevertheless, the scattering theory is crucially used in [3] for frequencies
bounded away from ω = 0.
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Topology of the Kerr Photon Region in the Phase Space

Sophia Jahns

(joint work with Carla Cederbaum)

We give a geometric proof that the photon region of a subcritical Kerr spacetime
can be naturally viewed as a submanifold of the phase space with topology SO(3)×
R2.

It is well known that in the Schwarzschild spacetime with positive mass M ,
there is a family of photons that is trapped on the hypersurface {r = 3M} (in
Schwarzschild coordinates). Similar phenomena occur in other static spacetimes
like Reissner–Nordström. Such a timelike hypersurface (that is, one with the
property that every null geodesic once tangent to it will stay tangent) is totally
umbilic [4, 9]. This geometric characterization has recently led to a number of
uniqueness results for spacetimes possessing such hypersurfaces (with additional
properties), see e.g. [1, 2, 3, 12, 11]. This is one of the main reasons why it seems
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desirable to better understand the geometry of the set of trapped light also in a
non-static setting.

We therefore turn to the Kerr spacetimes as paradigmatic models of stationary,
non-static spacetimes. We work with (the domain of outer communication of)
subcritical Kerr spacetimes K, that is, we assume that the mass parameter M
and the rotational parameter a fulfil |a| < M .

It is known that there is a 2-parameter family of photons who stay at a fixed
coordinate radius (see e.g. [10]), and it can be verified by a direct computation
using the decoupled equations of motion that these are the only photons in the
Kerr exterior that are trapped in the sense that they neither approach or fall
through the horizon nor escape towards infinity.

Unlike in the Schwarzschild situation, the spacetime region in a subcritical Kerr
spacetime K where trapped photons are found (the photon region) is not a sub-
manifold (with or without boundary) of the spacetime. Therefore, the spacetime
itself seems not the right setting to investigate properties of photon regions; in-
stead, the (co-)tangent bundle of the Kerr spacetime is a much more appropriate
setting for further investigation of its geometry and topology.

With this purpose in mind, we identify a geodesic γ = (t, r, ϑ, ϕ) in a natural
way in with the phase space point ♭(γ(0), γ̇(0)) ∈ T ∗K, where ♭ : TK → T ∗K
denotes the canonical metric typechange. Similarly, the photon region P in the
phase sphace of Kerr is a subset of T ∗K given as

P := {♭(γ(0), γ̇(0)) : γ is a future-directed trapped null geodesic } ⊆ T ∗K.

The trapped photons in the subcritical Kerr exterior were described in [10] in
terms of their energy E, angular momentum L and Carter constant Q as the null
geodesics that fulfil

L

E
= −r

3 − 3Mr2 + a2r + a2M

a(r −M)
,

Q

E2
= −r

3(r3 − 6Mr2 + 9M2r − 4a2M)

a2(r −M)2
,

where the radial coordinate r (in Boyer–Lindquist coordinates) ranges from 2M(1+
cos(2/3 arccos(−a/M))) to 2M(1 + cos(2/3 arccos(a/M))).

We use this characterization to show via the implicit function theorem that the
photon sphere in the phase space is a smooth submanifold of codimension 3. We
then proceed to determine its topology by topological and geometric arguments:
working in a slice of constant time and energy P0 := P ∩ {t = 0, E = 1}, we
show that P0 is homeomorphic to SO(3). In the Schwarzschild case a = 0, this is
obvious since P0 can be viewed as a unit sphere bundle over a sphere S2. In the
rotating |a| > 0 case, we proceed as follows: We calculate the first fundamental
groups of the regions of P0 around the poles and around the equator and use the
Seifert–van Kampen theorem to show that the first fundamental group of P0 is
Z2. By general results about the classification of closed 3-manifolds (see e.g. [7]),
this allows to conclude that P0 is homeomorphic to one of the lens spaces L(2; 0)
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or L(2; 1) ≈ SO(3). Since these two possibilities we are left with are homotopy
equivalent, we now need different machinery to distinguish between them: One
can show that the projection

p : P0 ∋ (ϑ, ϕ, ∗, ∗) → (ϑ, ϕ) ∈ S2

makes P0 a Seifert fibered space with no exceptional fibers. On the other hand,
it is known that L(2; 0) admits no Seifert fibration with less than 2 exceptional
fibers [6]; and hence one can rule out the possibility P0 ≈ L(2; 0), concluding
the proof that P0 ≈ SO(3). Hence, the photon sphere P in T ∗K has topology
SO(3) ≈ SO(3)× R2.

It was already established in [5] that the Kerr photon region in the phase space
is a submanifold. The author of [5] expresses P by means of equations whose
dependence on a is smooth even in a = 0 (in contrast to the description of the
photon region that we use, which breaks down for a = 0); this allows to see that
the Kerr photon region in the phase space is a submanifold of the phase space
which has the same topology for the rotating and the nonrotating (Schwarzschild)
case. In contrast, our proof is more in a geometric spirit. It cannot directly be
extended to higher dimensional Kerr spacetimes, since it makes crucial use of the
classification of 3-manifolds. It has, however, the advantage that it allows to see
that the Seifert fiber structure of the photon sphere in the phase space comes from
a natural projection of P to a sphere S2. This additional structure could be useful
in further investigating and using topological and geometric properties of the Kerr
photon region.
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Spacetime Intrinsic Flat Convergence

Christina Sormani

(joint work with Anna Sakovich, Carlos Vega)

The intrinsic flat (F) convergence of Riemannian manifolds was introduced by
the author jointly with Stefan Wenger in [15]. The notion was first applied to
General Relativity jointly with Dan Lee in [10]. Since then it has been applied
in work of Lan-Hsuan Huang, Jeff Jauregui, Dan Lee, Philippe LeFloch, Anna
Sakovich, and Iva Stavrov to prove the F -stability of special cases of the Positive
Mass Theorem, the Hyperbolic Positive Mass Theorem and the Penrose Inequality
[9, 6, 7, 11, 12, 13].

Shing-Tung Yau has suggested that one develops a similarly useful notion of
convergence for sequences of spacetimes. One might then apply it to answer the
following questions:

• What does it mean to say the universe is approximately a Friedmann–
Lemâıtre–Robertson–Walker big bang spacetime when it has gravity wells
and black holes?

• In what sense is one maximal development close to another if they have
approximately the same initial data but the control on initial data is not
strong enough to prevent gravitational collapse?

• In what sense is a black hole spacetime of small mass close to Minkowski
space?

First recall that stronger notions of convergence are not suited to questions
where long thin gravity wells can develop. The development of such wells in
sequences of Riemannian manifolds prevents smooth, Lipschitz, uniform, and
Gromov–Hausdorff (GH) convergence. However, F -convergence was designed
specifically so that Ilmanen’s example of a sequence of spheres with wells con-
verges. Under F convergence, the wells disappear in the limit. Indeed all regions
of small volume disappear and sequences of manifolds whose volume converge to
0 disappear as well. If the sequence does not disappear, the intrinsic flat limit is
an integral current space, (X, d, T ). In particular the limit space is a metric space
endowed with a biLipschitz collection of charts.

Recall that Federer–Flemming developed the notion of integral currents to ex-
tend the notion of submanifolds and solve Plateau’s problem. Integral currents, T ,
act on m forms, ω, via integration and have boundaries, ∂T (ω) = T (dω), and inte-
ger weighted volumes, M(T ). Federer–Flemming define the flat distance between
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pairs of integral currents:

dF (T1, T2) = inf{M(A) +M(B) : A+ ∂B = T1 − T2}.
So this is intuitively measuring the volume between the generalized submanifolds.
Ambrosio–Kirchheim extended this entire theory to metric spaces in [1].

Wenger and I then defined the F distance:

dF ((X1, d1, T1), (X2, d2, T2)) = inf
{
dZF (ϕ1#T1, ϕ2#T2) : ϕi : Xi → Z

}

where the infimum is taken over all distance preserving maps, ϕi : Xi → Z,
and over all complete metric spaces, Z, of the flat distance, dZF , between the
pushforwards of the integral current structures, ϕi#Ti [15]. In the same paper
we proved Ilmanen’s sequence of spheres with increasingly many increasingly thin
wells converges to the sphere by constructing an explicit metric space Z in one
dimension higher which filled in all the wells. In work with Sajjad Lakzian we
proved F convergence for sequences of manifolds converging smoothly away from
singular sets when there are volume, area, and distance bounds around those
singular sets [8].

When trying to extend F convergence to a spacetime intrinsic flat convergence,
we first encountered the difficulty that Lorentzian manifolds do not have a metric
space structure and so we had no notion of distance preserving maps, ϕi such that

dZ(ϕi(p), ϕi(q)) = dXi
(p, q).

If ϕi were replaced by Riemannian isometries then the dF would always be 0. But
how would one possibly define anything but a Lorentzian isometry between space-
times where there is no external distance structure to speak of? Lars Andersson
suggested that we use a canonical time function like the cosmological time func-
tion, τ , to create a Riemannian manifold by adding twice dτ2 to the Lorentzian
metric. Then define the spacetime intrinsic flat distance as the F distance between
the two Riemannian manifolds and somehow keep track of the causal structure.
After a few years, trying to deal with the singularities that could arise where τ
was not smooth, this approach was abandoned.

Carlos Vega and I then decided to convert a spacetime directly into an integral
current space rather than a Riemannian manifold [14]. Taking any time function,
τ , on our spacetime, we defined the null distance as follows:

d̂τ (p, q) = inf
β
L̂τ (β) = inf

β

k∑

i=1

|τ(β(ti)) − τ(β(ti+1)|

where the inf is over all piecewise causal curves β from p to q, which are causal

from xi = β(ti) to xi+1 = β(ti+1). We observed that d̂τ does not always define a
metric space for arbitrary τ . For example in Minkowski space if we take τ = t3,

the null distance d̂τ (p, q) = 0 for all p, q ∈ t−1(0).

Carlos Vega and I proved d̂τ defines a metric space when τ is a regular cosmolog-
ical time in the sense of Anderson–Howard–Galloway [3] (see also Wald–Yip [16]).
The cosmological time τ at p is defined to be the supremum of the Lorentzian dis-
tance from q to p over all q in the past of p. It is “regular” if it is finite on all ofM
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and converges to 0 along all past inextensible curves [3]. One may envision exam-
ples like big bang spacetimes and maximal future developments from some initial
data sets as possible examples of spaces with regular cosmological time functions.

The great advantage of using d̂τ is that it captures causality:

p is in the future of q =⇒ d̂τ (p, q) = τ(p) − τ(q).

We say that d̂τ encodes causality when this is an ⇐⇒ . We prove that when

d̂τ encodes causality then d̂τ is also definite and thus defines a metric space. We

observed that d̂τ encodes causality in warped product spacetimes of the form
−dt2 + f(t)2g0 where τ = t. Indeed the balls in such spaces are shaped like
cylinders around the lightcones. [14]

• What spaces have regular cosmological time functions?

• When does d̂τ encode causality?

Wald and Yip first introduced the cosmological time function as the maximal
lifetime function in [16]. It has since been studied by Andersson–Barbot–Béguin-
Zeghib [2], Cui–Jin [4], Ebrahimi [5], and many others but it must be explored
further.

Carlos Vega and I are currently exploring the SF convergence of big bang
spacetimes. Recall the classic FLRW big bang spacetimes have metrics of the
form dt2+f2(t)g0 with t > 0 and limt→0 f(t) = 0. In such spaces the cosmological
time, τ = t, and so it is regular and in fact smooth and we can define a metric

space (X, d̂τ ), which encodes causality. We have proven that there is a single big
bang point, pBB, in the metric completion of this space, X̄ , and that cosmological

time, τ(p) = d̂τ (pBB, p). We can then generalize the notion of big bang spacetime
to any spacetime for which the cosmological time function defines a metric space

(X, d̂τ ) which encodes causality that has a big bang point, B ∈ X̄ such that

τ(p) = d̂τ (B, p).

• Which Lorentzian manifolds are generalized big bang spaces?

The pointed F convergence of such spaces based at the big bang points is then well
defined and one has compactness theorems with limit spaces which are integral
current spaces with causal structures defined using

q1 is in the future of q2 ⇐⇒ d̂τ (q1, q2) = d̂τ (B, q1)− d̂τ (B, q2).

Currently Anna Sakovich and I are exploring SF convergence for future max-
imal developments of initial data sets where the cosmological time function is
regular and τ−1(0) is the initial Cauchy surface. We are examining particular
sequences of black hole spacetimes whose mass is converging to 0 to test that their
metric spaces defined using the null distance do indeed converge in the intrinsic
flat sense and we are formulating appropriate definitions and conjectures. It is
possible that we might be able to prove a compactness theorem in this setting as
well.

• When does a future maximal development have a cosmological time func-
tion that is 0 on the initial Cauchy surface?
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• Which future developments of initial data sets have null distances that
encode causality?

• Are there other canonical time functions that are more suited to study
future maximal developments of the Einstein equations?

This research is funded in part by NSF DMS - 1309360.
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The nonlinear stability of the Schwarzschild family of black holes

Martin Taylor

(joint work with M. Dafermos, G. Holzegel, I. Rodnianski)

The Schwarzschild metrics

(1) gM = −4(1− 2M/r)dudv + r2(dθ2 + sin2 θ dφ2), M > 0,

discovered in 1915, constitute the most famous family of solutions of the vacuum
Einstein equations,

(2) Ric[g] = 0.

Each member of the Schwarzschild family describes a static black hole, and the
family arises as a subfamily of the larger stationary two parameter Kerr family of
uniformly rotating black holes, ga,M .

The most fundamental question one can ask about (1) is whether the exterior
region is nonlinearly stable as a solution of (2). This talk concerned a theorem, in
progress, on this question, which can be roughly formulated as follows.

Theorem 1 (Full finite codimension nonlinear asymptotic stability of the Schwarz-
schild family). For all characteristic initial data sufficiently close to Schwarzschild
data with mass Minit and lying on a codimension-3 “submanifold” of the moduli
space of initial data, the maximal Cauchy development M contains a region R
which admits a double null gauge such that

(i) M possesses a complete future null infinity I+ such that R ⊂ J−(I+),
and the future boundary of R in M is a smooth, future affine complete
“event horizon” H+;

(ii) the metric remains close to Schwarzschild in R;
(iii) the metric asymptotes, inverse polynomially, to a Schwarzschild metric

with mass Mfinal ≈Minit as u→ ∞ and v → ∞.

The proof of Theorem 1 is based on the strategy of Dafermos–Holzegel–Rodnian-
ski [6] on the linear stability of Schwarzschild. An alternative proof of the linear
stability of Schwarzschild, using a harmonic gauge, has also recently been obtained
by Johnson [13]. See also related work of Hung–Keller–Wang [12]. Each of the
above linear stability works relies heavily on methods developed in recent years to
understand the dispersion of linear waves on fixed black hole backgrounds. The
study of such dispersive properties began with the pioneering work of Wald [16]
on the boundedness of waves on the exterior of a Schwarzschild black hole, and
culminated in the recent work of Dafermos–Rodnianski–Shlapentokh-Rothman [9]
on the boundedness and decay of waves on the exterior of Kerr for the full subex-
tremal range |a| < M . The understanding of the phenomena of trapped null
geodesics, superradiance, the celebrated redshift effect and their coupling play a
crucial role in [9].

The main step of the proof of the linear stability of Schwarzschild in [6] was
to prove decay results for the decoupled Teukolsky equation, governing the gauge-
invariant part of the perturbations, via a physical space reinterpretation and novel
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use of transformations first introduced by Chandrasekhar [1]. This has recently
been generalised to the Kerr case in [7]. See also [15]. With these more recent
developments, the whole approach of the proof of Theorem 1 can in principle be
generalised to Kerr.

The study of the nonlinear stability of solutions of (2) was initiated with the
monumental proof of the stability of Minkowski space [4], the trivial solution of
(2) (corresponding to (1) in the case M = 0). The proof of Theorem 1, of course,
relies on the insights developed in [4] on understanding the nonlinearities of (2), in
particular in the most difficult radiation zone towards null infinity I+ where null
structure is paramount.

There are a number of nonlinear stability results for Schwarzschild under sym-
metry assumptions. By far the simplest case is when enough symmetry is imposed
to reduce the equations to a 1+1 dimensional system. For the case of the Einstein-
scalar field system under spherical symmetry, the non-linear asymptotic stability
of (1) follows from the more general results of [2, 8]. The vacuum equations (2)
in higher space-time dimensions admit other symmetries reducing the equations
to 1 + 1, for instance the triaxial Bianchi symmetry. The non-linear orbital sta-
bility of the 4 + 1-dimensional analogue of (1) under triaxial Bianchi symmetry
was proven in [5] while its full asymptotic stability, in the further restricted biaxial
case, was proven in [11].

Beyond reductions to 1 + 1, the problem is considerably harder. Non-linear
stability of (1) has been announced in the case of (2) under polarised axisymmetry
(a 2 + 1 reduction) by Klainerman–Szeftel, the first part of the proof already
appearing in [14]. Note that the set of axisymmetric spacetimes constructed in
the above work are included as an infinite-codimension subset of the codimension-3
set of data referred to in Theorem 1.

One should also note the recent work of Hintz–Vasy [10] on the nonlinear stabil-
ity of the very slowly rotating Kerr–de Sitter family of black holes for the vacuum
Einstein equations with a positive cosmological constant.

The restriction to finite codimension in Theorem 1 is indeed necessary to achieve
point (iii) of the theorem in view of the larger Kerr family. The finite codimension
of Theorem 1 is precisely equal to the dimension of fixed mass linearised Kerr
solutions, which is 3 in our parameterisation. It is in this sense that Theorem 1
is the “full” finite codimension stability and one expects that the “submanifold”
of the theorem contains all data close to Schwarzschild whose evolution satisfies
(iii). It should be noted that the “submanifold” cannot be explicitly identified but
is teleologically characterised in the proof.

The point of the restriction to perturbations which converge to a member of
the Schwarzschild family (rather than a member of the Kerr family with a 6= 0)
is so that the proof can follow that of Dafermos–Holzegel–Rodnianski [6] on the
linear stability of Schwarzschild. In particular, the proof of Theorem 1 is based
entirely in physical space.
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A double null gauge, referred to in Theorem 1, is a coordinate system (u, v, θ1, θ2)
in which the metric takes the form

(3) g = −4Ω2du dv + /gAB(dθ
A − bAdv)(dθB − bBdv),

for some Ω, b, /g. One example of a metric in double null gauge is the above form
of the Schwarzschild metric (1). This is, however, far from the only way to write
Schwarzschild in this form. Indeed, there exists an infinite dimensional family of
diffeomorphisms of Schwarzschild preserving the double null form (3). A central
difficulty in the proof of Theorem 1, on top of the issue of characterising the “sub-
manifold” of initial data, is in determining a double null gauge of the dynamical
spacetimes in which the spacetime converges to the Schwarzschild metric in the
familiar form (1). Indeed, the double null gauge of Theorem 1 is characterised
teleologically in the proof (as, in fact, is the region R itself). This difficulty, and
such a normalisation, is present already in the work [6]. The gauge in Theorem
1, however, is more carefully normalised, both to the event horizon and to future
null infinity, in order to ensure that the nonlinear error terms in the equations
decay suitably. Further care needs to be taken as the location of the event horizon
is not a priori known. As a bonus of the normalisation to future null infinity, the
gauge in particular satisfies the Bondi normalisation in which the familiar laws of
gravitational radiation hold, and moreover the nonlinear Christodoulou memory
effect [3] can be understood.
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Geometrical inequalities for isolated systems

Maŕıa Eugenia Gabach-Clement

1. Introduction

Geometrical inequalities are a priori estimates on certain geometrical quantities
defined on a physical system, that also have a clear physical interpretation.

One of the most important such geometrical inequality in General Relativity is
the positivity of mass [1]. For asymptotically flat (AF) spacetimes satisfying the
dominant energy condition, the ADM mass m is non negative,

(1) m ≥ 0 (= iff Minkowski).

If the system describes a black hole one arrives at the Penrose inequality [2],
relating the mass with the horizon area A of the black hole

(2) m ≥
√

A

16π
(= iff Schwarschild).

The idea behind geometrical inequalities is to understand how the different physical
properties of a system play with and control each other.

There is a significant difference between (1) and (2). Inequality (1) involves m,
which is a global quantitiy, defined at infinity. On the other hand, (2) involves also
the horizon area, which is a quasilocal quantity. Therefore, in order to prove (2)
one needs to connect the bounded region (where A is defined) and infinity (where
m is defined). And one needs to connect these two regions in a controlled way, so
that one is able to obtain the fine relation between m and A.

In this article we will mostly refer to inequalities involving either purely global
quantities or purely quasilocal quantities. We will focus on two systems: black
holes and ordinary, material objects like neutron stars. We refer the reader to [3]
for a recent review on the subject.

Let us start by discussing the global inequalities.

2. Global inequalities for black holes

Consider electrovacuum initial data for the Einstein equations D := (Σ, g,K, µ, j)
where Σ is a 3-dimensional manifold, g is a Riemannian metric on Σ, K is a
symmetric 2-tensor on Σ and µ, j are matter fields on Σ. Assume that D is AF,
axially symmetric, maximal and that it satisfies the dominant energy condition.
Some of these conditions can and have been relaxed (see [3] for details).
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To describe a black hole we assume that (Σ, g) is complete with 2 ends. Both
AF or one AF and one asymptotically cylindrical. Also assume that the data has
total angular momentum J∞. Then, one has [4]

(3) m ≥
√
J∞ (= iff extremal Kerr).

In order to prove (3) one first finds the bound m ≥ M, where M is a functional
related to the energy of maps from open bounded sets of R3 that do not include the
symmetry axis, intoH2. Hence, minimizingm amounts finding the harmonic maps.
As it turns out, the minimizer is the extreme Kerr black hole and M ≥ √

J∞,
giving the desired result (3).

A related inequality involves m and the total electric charge Q∞ [5]

(4) m ≥ Q∞ (= iff extremal Reissner–Nordström.)

We remark that (4) has been extended to many black holes with equality for
Majumdar-Papapetrou solution (a static configuration of multiple charged black
holes in equilibrium). Also, not only (4) holds for complete manifolds Σ with non
trivial topology, but for manifolds with inner trapped boundary as well. These
remarks lead us to the main open problems in this topic.

• Open Problem 1: Extend (3) to the case of Σ with trapped inner boundary
• Open Problem 2: Understand the multiple black hole extension of (3),
partly done in [6] where the bound m ≥ Mmany was proven, with Mmany

a functional related to M. More concretely one needs to understand
– What the value of Mmany is. Does it depend on the total J∞ or the

individual Ji and the distances between the black holes, etc.
– What the minimizer represents. In previous results minimizers are

stationary, extremal solutions, which, we know do not exist for the
rotating case (at least for two black holes [7]).

3. Quasilocal inequalities for black holes

The quasilocal inequalities admit two approaches depending on the way the quasilo-
cal black hole is described. Most of the results apply to both, stable minimal
surfaces and stable marginally outer trapped surfaces (MOTS). We assume, for
simplicity, that such surface S is axially symmetric and has (quasilocal) angular
momentum JS . In vacuum, one obtains [8].

(5) A ≥ 8πJS (= iff extremal Kerr)

Inequality (5) has been generalized to include a positive cosmological constant
Λ ≥ 0 [9]. The inequality is saturated by extremal Kerr–dS horizon. Related to
this, the main open problems are

• Open Problem 3: Extend (5) to explicitly include a Λ ≤ 0. What role does
extremal AdS play in the final estimate?

• Open Problem 4: Rigidity statement in the area-charge inequality.
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4. Inequalities for Material Bodies

Consider initial data D containing a material body. By material body we mean
an open subset Ω in Σ such that some of the matter fields are supported in Ω
and that there are no horizon outside Ω. We assume the data to be AF, axially
symmetric and satisfying the DEC.

The study of geometrical inequalities involving quantities that describe Ω is
greatly open due to a number of difficulties, the most basic and important being

• Q1: Characterization of Ω. Some sort of stability may be needed.
• Q2: Measures of Ω that are intuitively clear, easy to compute and that
can be controlled in terms of other physical-geometrical quantities.

• Q3: Existence of non trivial ’extremal bodies’, playing the role of extremal
black holes for the inequalities presented in the previous sections.

These questions are crucial in order to understand what kind of estimate we
are looking for, what quantities we expect to be relevant for the description of the
system and what should be the best way to represent an ordinary, material object.

Clearly, different choices produce different results and many geometrical in-
equalities have been obtained (see [3] for details). In the purely quasilocal setting,
estimates of the form

(6) JΩ ≤ cR2

were proven for very specific models. Here c is a constant and R is a measure of
size of Ω.

In the mixed, global-quasilocal setting there is a recent result [10] of the form

(7) m ≥ mΩ + c
J2

√
AR2

e

where mΩ is a quasilocal mass contained in Ω, A is the area of ∂Ω, c is a constant
and Re = Ce/2π and Ce is the length of the greatest axially symmetric circle
on ∂Ω. There are some technical assumptions that need to be addressed in the
statement of this result. As with the Penrose inequality, this result uses the IMCF
to relate the object and infinity. The novel issue here is the explicit inclusion of
the angular momentum.

On top of the basic questions raised above, some important open problems are

• Open Problem 5: Purely global inequalities.
• Open Problem 6: Relevance of some sort of convexity or roundedness of
the object.
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Uniqueness and non-uniqueness results for wave equations

Jan Sbierski

(joint work with F. Eperon, H. Reall)

The well-known theorem by Choquet-Bruhat and Geroch [1] states that for given
smooth initial data for the, say, vacuum Einstein equations Ric(g) = 0 there exists
a unique (up to isometry) maximal globally hyperbolic development of the initial
data. We firstly recall that the manifold on which the solution g is defined is not
given a priori, but constructed at the same time as the metric g, and secondly,
that in harmonic coordinates the vacuum Einstein equations take the form of a
quasilinear wave equation gµν∂µ∂νgαβ = Nαβ(g)(∂g, ∂g), where the right hand
side denotes a term that is quadratic in first derivatives of g with coefficients in g.
This report, which is based on [2], investigates the question whether an analogous
result holds for quasilinear wave equations that are defined on a fixed background.
Here, we consider quasilinear wave equations of the form

(1) gµν(φ, ∂φ)∂µ∂νφ = F (φ, ∂φ) ,

where φ : Rd+1 ⊆ D → R is a smooth function (d ∈ N≥1), g
µν is a smooth

Lorentzian-metric-valued function, and F is a smooth scalar-valued function. For
the sake of simplicity let us assume in this report that we prescribe initial data
for (1) on the hypersurface {t = 0} ⊆ Rd+1, which then consist of smooth choices
for φ(0, x) and ∂tφ(0, x). A globally hyperbolic development (GHD) of this data is
a smooth solution φ : Rd+1 ⊇ D → R of (1) such that {t = 0} ⊆ D is a Cauchy
hypersurface for D with respect to the Lorentzian metric g(φ, ∂φ). A maximal
globally hyperbolic development (MGHD) of the initial data is a GHD φ1 : D1 → R

with the property that there does not exist any other GHD φ2 : D2 → R of the
same initial data with D1 ( D2 and φ2|D1

= φ1.
We find that in contrast to the Einstein equations, for general quasilinear wave

equations defined on a fixed background there does not exist a unique MGHD.
In particular, the time evolution of solutions to quasilinear wave equations is in
general not unique. This is illustrated by means of the following counterexample:
we consider the equation

(2) −
(
1 + (∂xφ)

2
)
∂2t φ+ 2∂tφ∂xφ∂t∂xφ+

(
1− (∂tφ)

2
)
∂2xφ = 0

for a smooth function φ : R× R ⊇ D → R. Equation (2) is of the form (1) with

(3) gµν =

(
−(1 + (∂xφ)

2) ∂tφ∂xφ
∂tφ∂xφ (1− (∂tφ)

2)

)
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and F = 0. If φ satisfies

(4) 1 + (∂xφ)
2 − (∂tφ)

2 > 0 ,

then (3) is a Lorentzian metric which is moreover subluminal, i.e., its lightcones
lie inside those of the Minkowski metric m = −dt2 + dx2. In particular, for such
solutions φ, (2) is a quasilinear wave equation.

Equation (2) has been studied by Barbashov and Chernikov in [3], [4], who in
particular show that it is exactly solvable. Using their representation formula of
the general solution we construct a particular solution which satisfies (4), arises
from smooth initial data on {t = 0}, and admits a unique time evolution into a
globally hyperbolic region schematically depicted below.

t

x

Singularity

A

B

φ(0, x), ∂tφ(0, x)

As indicated in the figure, the light cones of the dynamical metric g tilt towards
the right end of the future directed Minkowski light cone near the solid line A,
which is thus spacelike with respect to g. Near the solid line B the light cones tilt
to the other side, so that B is spacelike, too, with respect to g. Apart from the
indicated singularity, the solution admits smooth extensions to the solid spacelike
lines A and B as well as to the dashed lines which are null with respect to g. One
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can now construct two different globally hyperbolic extensions by either extending
into the region between A and B through A or through B.

Let us emphasise that this non-uniqueness mechanism applies to smooth solu-
tions and is thus manifestly different to a loss of uniqueness induced by a loss of
regularity of the solution. We also remark that it is precisely the fixed background
which prevents us from extending the solution all the way through A as well as
all the way through B to obtain a solution which is double-valued in the region
between A and B.

We conclude by mentioning one of the uniqueness criteria from [2] for solutions
of quasilinear wave equations (1).

Theorem 1. Let φi : Di → R, i = 1, 2, be two GHDs of the same initial data for
a quasilinear wave equation of the form (1). If D1∩D2 is connected, then φ1 = φ2
on D1 ∩D2.

We note that in our counterexample above, the intersection of the domains of
the two different globally hyperbolic extensions is disconnected. The theorem now
shows that this is a necessary feature for a non-unique time evolution to arise.

Lemma 2. Consider a quasilinear wave equation of the form (1) and assume that
there exists a smooth vector field T such that T is timelike with respect to g(φ, ∂φ)
for all φ, ∂φ, and such that every maximal integral curve of T intersects {t = 0}
at most once. Let φi : Di → R be two GHDs of the same initial data posed on
{t = 0}. Then D1 ∩D2 is connected.

The lemma holds in particular for semilinear wave equations as well as for
superluminal1 quasilinear wave equations, since one can choose T = ∂t. Combined
with the above theorem, this gives unique time evolution for solutions of those
equations and thus also the existence of a unique MGHD (see [2]).
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Horizon Stability and the Null Penrose Inequality

Henri Roesch

In the early seventies, Roger Penrose [10] conjectured that the mass contributed

by a collection of black holes should be no less than
√
A/16π where A is the total

combined area of the black hole horizons. Alternatively,

M ≥
√

A

16π
(1)

where M represents the total (ADM,[2]) mass. One of the fundamental ingredi-
ents of Penrose’s heuristic argument was the use of weak cosmic censorship. As a
statement on the global future evolution of a system, weak cosmic censorship has
direct ties to an existence theorem in general relativity. Finding a counterexample
would likely indicate a failure of cosmic censorship and, conversely, a proof would
provide indirect support to its validity.

The first major breakthrough on the Penrose conjecture came in 1997 with the
work of Huisken and Ilmanen ([7]) when they settled a special case called the Rie-
mannian Penrose inequality. Measuring the propagation of the Hawking Energy
EH (introduced by Hawking [6]), along a weakly defined inverse mean curvature
flow of 2-spheres, the authors established the Penrose inequality for asymptotically
flat Riemannian manifolds of non-negative scalar curvature (i.e. non-negative en-
ergy density). They verified (1) with A the area of one connected component of
an outermost minimal surface. Bray lifted this restriction in 1999 ([4]), with A
now the total area of all connected components using a conformal flow of metrics
on the manifold and the positive mass theorem. Bray’s argument was shown to
generalize, yielding the result in dimensions 4 ≤ n ≤ 8 by Bray and Lee ([5]) in
2009.

Just as the Riemannian Penrose inequality describes the result on particular
space-like (hence Riemannian) slices of total ADM mass (MADM ) one can formu-
late a variant of the Penrose conjecture on degenerate null slices or null cones of
total Trautman–Bondi mass (MTB [3, 14], for null cones see [8]). This is called the
Null Penrose Inequality. In 2008, the PhD work of Sauter ([13]) in vacuum space-
times successfully identified foliations of a null cone exhibiting non-decreasing and
convergent Hawking Energy. However, comparison of this convergence with the
Trautman–Bondi mass was not forth coming, except for a very special class of
‘shear-free’ slices. Sauter was able to use these shear-free slices to validate the
conjecture. In 2015 Mars and Soria ([8]) identified the necessary asymptotics for
convergence of the Hawking Energy for general null cones but—like Sauter—they
faced similar difficulties in physically characterizing the Hawking Energy’s conver-
gence ([9]).

In [11], the author proposes a new quasi-local mass instead of energy. For

a 2-sphere Σ with mean curvature ~H , if Σ admits a normal null basis {L−, L+}



2240 Oberwolfach Report 36/2018

(〈L−, L+〉 = 2) whereby −〈L−, ~H〉 = 1, then this quasi-local mass is given by:

(2) mR(Σ) =
1

2

( 1

4π

∫

Σ

ρ
2
3 dA

) 3
2

where ρ = K − 1
4 〈 ~H, ~H〉 + ∇ · τ , K being the Gaussian curvature, and τ the

connection 1-form associated to {L−, L+}. We’re able to show that mR exhibits
monotonicity for a class of foliations of a null cone:

Theorem 1. Let Ω be a null hypersurface foliated by space-like spheres {Σs}
expanding along the null flow direction

¯
L = σL− such that |ρ(s)| > 0. Then

mR(s) := mR(Σs) has rate of change

dmR

ds
=

(2mR)
1
3

8π

∫

Σs

σ

ρ
1
3

(
(|χ̂−|2 +G(L−, L−))(

1

4
〈 ~H, ~H〉 −∆ log |ρ| 13 )

+
1

2
|ν|2 +G(L−, N)

)
dA

where G = Ric− 1
2Rg, ν := 2

3 χ̂
−·d log |ρ|−τ , and N := 1

9 |d log |ρ||2L−+ 1
3∇ log |ρ|−

1
4L

+.

So from the Dominant Energy Condition (DEC), Theorem 1 gives dmR

ds ≥ 0 for

foliations {Σs} satisfying ρ > 0 & 1
4 〈 ~H, ~H〉 ≥ 1

3∆ log ρ called double convexity.
Surprisingly, all asymptotically geodesic doubly convex foliations also measure the
same limiting mass, and underestimate MTB. Therefore, the mass mR overcomes
the difficulty arising asymptotically from the use of the Hawking Energy.

Theorem 2. Let Ω be a null hypersurface in a spacetime satisfying the DEC that
extends to past null infinity. Given the existence of a doubly convex {Σs} we have

mR(0) ≤ lim
s→∞

mR(Σs) =:MR

(for MR ≤ ∞). If, in addition, Ω is past asymptotically flat with strong flux decay
and {Σs} asymptotically geodesic (see [11], Section 4) then

MR ≤MTB.

In case 〈 ~H, ~H〉|Σ0
= 0 (i.e. Σ0 is a black hole horizon), we have the Null Penrose

Inequality √
|Σ0|
16π

= mR(Σ0) ≤MTB.

Furthermore, when equality holds for a strictly doubly convex foliation, we conclude
that equality holds for all foliations of Ω. Moreover, any foliation of Ω agrees with
some foliation of the standard null cone of the Schwarzschild spacetime with respect

to the data {γ,
¯
χ−, 〈 ~H, ~H〉, τ}.

For a proof of the Null Penrose Inequality, Theorem 2 assumes the existence of

a doubly convex Σ0 satisfying 0 = 1
4 〈 ~H, ~H〉 ≥ ∆ log ρ. Therefore, the Maximum

Principle demands that K + ∇ · τ = 4π
|Σ0|

. We say Σ0 is a doubly convex MOTS

when satisfying 〈 ~H, ~H〉 = 0, ρ0 := K +∇ · τ = 4π
|Σ0|

.
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In [12], we show the existence of a unique foliation by doubly convex MOTS
for a class of Weakly Isolated Horizons, H. Generalizing the notion of a Killing
Horizon, these totally geodesic null hypersurfaces admit a null generator l whereby
Dll = κll with constant surface gravity κl.

Theorem 3. If H is strictly stable, optically rigid (see [12]), and κl > 0, then
it admits a unique foliation, {Σs}, along l satisfying ρ0 = 4π

|Σ| . Moreover, for

a given Σs the linearization δψL−+φL+(ρ0 − 4π
|Σ| , 〈 ~H, ~H〉) has bounded inverse on

C̊k,α(Σ)× Cl,β(Σ).

From a Lemma of S. Alexakis [1] we’re able to use Theorem 3 to invoke the Im-
plicit Function Theorem for a proof of the stability of the Null Penrose Inequality
around the Schwarzschild spacetime:

Corollary 1. Let gλ be a smooth family of metrics satisfying the DEC off of the
Schwarzschild metric g0, then there exists ǫ > 0 and a corresponding family of
smooth doubly convex MOTS Σλ. If the past null cones Ωλ ⊃ Σλ are smooth and
gλ is close to Schwarzschild (see [12]), then we have the Null Penrose Inequality.
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Stability Within T
2-Symmetric Expanding Spacetimes

Adam Layne

(joint work with Beverly K. Berger, James Isenberg)

We present a recently completed, nonpolarized analogue of the asymptotic charac-
terization of T 2-symmetric Einstein flow solutions in [3]. We impose a far weaker
condition, but obtain similar rates of decay for the normalized energy and associ-
ated quantities. Critical to this work have been novel numerical simulations which
indicate that there is locally attractive behavior for those T 2-symmetric solutions
not subject to this weakened condition. This local attractor is distinct from the
local attractor in our main theorem, thereby indicating that the polarized asymp-
totics are on one hand stable within a larger class than merely polarised solutions,
but unstable within all T 2-symmetric solutions.

Let us recall that the T 2-symmetric vacuum Einstein flows have Cauchy surfaces
T 3 and two spacelike Killing vector fields. Work of [1] provides us with a global
foliation

g =el−V+4τ
(
−dτ2 + e2(ρ−τ)dθ2

)

+ eV [dx +Qdy + (G+QH)dθ]
2
+ e−V+2τ [dy +Hdθ]

2

where ∂x, ∂y are Killing. These contain all Kasner solutions and all Gowdy solu-
tions as subclasses, the future asymptotics of which are known.

In these coordinates, V and Q satisfy quasilinear wave equations coupled to the
evolution equations for l, ρ:

lτ + ρτ + 2 =
1

2

[
V 2
τ + e2(τ−ρ)V 2

θ + e2(V−τ)
(
Q2
τ + e2(τ−ρ)Q2

θ

)]
(1)

ρτ =el.

The structure of these two equations, and the fact that the right side of (1) has
the form of an energy density for the V,Q variables, suggests that one should try
to look for attractors of the flow by linearizing the ODE satisfied by

∫

S1

eρ dθ,

∫

S1

el+ρ+2τ dθ,

∫

S1

lτ + ρτ + 2 dθ.

This is the technique used in [3] under the assumption that the solutions are
polarised. A T 2-symmetric Einstein flow is called polarised if, in the coordinates
used here, Q ≡ 0.

Let us note that, in our coordinates, polarised Kasner solutions take the form

V = aτ + b, l =

[
1

2
a2 − 2

]
τ + c

for some constants a, b, c ∈ R. Non-Gowdy solutions such that l, V,Q are inde-
pendent of θ are called pseudo-homogeneous or PH [4]. Due to [4], the future
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asymptotics of polarised PH solutions are known to be of the form

|V − (aτ + b)| → 0,

∣∣∣∣l −
([

1

2
a2 − 2

]
τ + c

)∣∣∣∣→ 0, a ∈ (−2, 2).

That is, PH solutions have asymptotics of the same form as a Kasner solution, but
the value of Vτ at τ = ∞ is not entirely free.

In [3] it is shown that the following behavior is locally stable for polarised,
non-Gowdy, non-PH T 2-symmetric solutions:

|Vτ | → 0, |lτ | → 0, τ → ∞.(2)

Note that this is distinct from the PH and Kasner cases. It was previously conjec-
tured by Berger on the basis of numerical simulations that this behavior should be
generic; all T 2-symmetric solutions (excepting sets of positive codimension) should
have expanding direction asymptotics of the form (2).

We have in fact found that this behavior is not generic. There is a condition
which is weaker than polarisation, but which still ensures asymptotics of the form
(2). As shown in [4], the system has two conserved quantities:

A :=

∫

S1

eρ
(
Vτ − e2(V−τ)QτQ

)
dθ

B :=

∫

S1

eρ+2(V−τ)Qτ dθ.

Definition 1. Let B0 be the class of non-Gowdy, non-pseudo-homogeneous solu-
tions for which B = 0.

Note that all polarised solutions are B0 but the reverse is not true. We show, by
an argument which is essentially a refinement of that used in [3], that the results
of that paper extend to B0 solutions.

We also present more sophisticated numerical simulations which provide evi-
dence that the B0 assumption is necessary. If one does not impose this condition,
solutions seem to again have convergent first order behavior, but it is distinct from
(2). In the general case it appears that Vτ → 1

2 . For more detailed asymptotics,
see [2].

We thus have three conjectures supported by the numerical simulations done
as part of this project.

Conjecture 2. The local attractor in [3] and generalized in [2] is in fact a global
attractor for B0 solutions.

There already exists in [4] a partial result in this direction.

Conjecture 3. There is a local attractor for non-B0 solutions satisfying
∣∣∣∣Vτ −

1

2

∣∣∣∣→ 0, Qτ = O(e−3τ/2).

Conjecture 4. This non-B0 attractor is in fact a global attractor for T 2-symmetric
solutions.
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On estimates for Bartnik’s quasi-local mass for CMC Bartnik data

Armando J. Cabrera Pacheco

(joint work with Carla Cederbaum, Stephen McCormick and Pengzi Miao)

The Bartnik mass [2] is one notion of quasi-local mass, that is, a measurement of
how much energy is contained in a bounded region of an initial data set. Given
Bartnik data (Σ ∼= S2, g,H), where g is a metric on the surface Σ and H is
a smooth function on Σ, we consider a set of suitable Riemannian 3-manifolds,
called admissible extensions, and define the Bartnik mass, mB, as

(1) mB(Σ, g,H) := inf{mADM(M,γ) | (M,γ) admissible extension of (Σ, g,H)}.
It is well-known that under certain conditions on the set of admissible extensions,
the Hawking mass, mH , provides a lower bound for the Bartnik mass via Huisken
and Ilmanen’s proof of the Riemannian Penrose inequality [6].

In [7], Mantoulidis and Schoen computed the Bartnik mass for minimal Bartnik
data (Σ ∼= S2, g,H = 0). More precisely, they obtained the following theorem.

Theorem 1 (Mantoulidis and Schoen [7]). If (Σ ∼= S2, go, Ho = 0) is a Riemann-
ian manifold satisfying λ1(−∆go +K(go)) > 0, that is, the first eigenvalue of the
operator −∆go +K(go), where K(go) denotes the Gaussian curvature, is positive,
then

(2) mB(Σ, go, Ho = 0) = mH(Σ, go, Ho = 0).

The proof consists in explicitly constructing admissible extensions for the min-
imal Bartnik data (Σ ∼= S2, go, Ho = 0), in such a way that the ADM mass of the
extension is controlled and can be made arbitrarily close to the optimal value in
in the Riemannian Penrose inequality, mH(Σ, go, Ho = 0). Their method can be
summarized as the following two-step process.

(i) Construct a collar extension of (Σ, go), that is, a manifold diffeomorphic to
[0, 1]×Σ endowed with a metric such that the boundary component {t = 0} is
isometric to (Σ, go), minimal and outer-minimizing, and the boundary com-
ponent {t = 1} is round. Here, an essential step is to use the uniformization
theorem to connect go with the round metric.
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(ii) Smoothly glue this collar manifold to a Schwarzschild manifold of any mass
m > mH(Σ, go, Ho = 0). This requires to deform the Schwarzschild manifold
so it has positive scalar curvature in a small region close to the horizon.

In [5], in a joint work with Miao, the construction of Mantoulidis and Schoen
was adapted to higher dimensions making use of various geometric flows in higher
dimensions.

In this talk, we discuss a natural question motivated by the definition of Bartnik
mass, can the Mantoulidis–Schoen construction be carried out for Bartnik data
(Σ ∼= S2, go, Ho) with Ho 6= 0? In [4], in a joint work with Cederbaum, McCormick
and Miao, we prove the following theorem, which provides an upper bound for the
Bartnik mass of CMC Bartnik data, that is (Σ ∼= S2, go, Ho), whereHo is a positive
constant.

Theorem 2 (Cabrera Pacheco, Cederbaum, McCormick and Miao [4]). Given
Bartnik CMC data (Σ ∼= S2, go, Ho), with K(go) > 0, there exist constants 0 ≤ α
and 0 < β ≤ 1, such that if

H2
o r

2
o

4
<

β

1 + α
,

where ro denotes the area-radius of go, ro =
√

|Σ|go
4π , we have

(3) mB(Σ, go, Ho) ≤


1 +

(
α
H2

or
2
o

4

β − (1 + α)
H2

or
2
o

4

) 1
2


mH(Σ, go, Ho).

The constants α and β can be regarded as a measurement of how round go is.
The smallness condition on Ho was first used by Miao and Xie in [8]. Notice that
as Ho → 0, we recover Theorem 1. The proof of this theorem is obtained through
a careful modification of the method in [7], making use of a collar construction in
[8] to complete step (i) above.

Moreover, the construction in [7] has been further extended to the asymptot-
ically hyperbolic setting (negative cosmological constant) in a joint work with
Cederbaum and McCormick [3]. Currently, with Cederbaum and Alaee, we are
carrying out the corresponding construction in the context of initial data sets for
the Einstein–Maxwell equations [1].
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Structures in Gravitational Wave Memory and its EM Analog

Lydia Bieri

Gravitational waves are a common feature of interesting spacetimes in General
Relativity (GR). It has been predicted that these waves change the spacetime
permanently, which would show in a change of the arrangement of test masses
after the wave train passed. This is the so-called memory effect. Gravitational
waves were measured for the first time in 2015 by LIGO and several times since
then. It is believed that the memory effect will be detected in the near future. The
gravitational memory effect was found in a linear theory in 1974 by Ya. Zel’dovich
and B. Polnarev [6]. Then in 1991 D. Christodoulou [4] derived within the full
nonlinear theory such a memory that was much larger than expected. Together
with D. Garfinkle we showed [3] that these are two different effects sourced by
different events. In this talk, I will explore the memory structures as a result
of different types of initial data evolving under the Einstein equations. Based on
work by D. Christodoulou [4], D. Christodoulou and S. Klainerman [5] and of mine
[1] I present new results [2] proving that memory produced by gravitational waves
and “regular” matter-energy is of electric parity only, no magnetic parity memory
can occur. Further, I discuss some structures at null infinity for spacetimes that
decay very slowly to Minkowski spacetime as well as their implications for memory.
Many discussions of memory followed the pioneering works. We refer to our latest
papers for a detailed discussion of the history and detailed references.
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4, Place Jussieu
75252 Paris Cedex 05
FRANCE

Prof. Dr. Jonathan Luk

Department of Mathematics
Stanford University
Stanford, CA 94305-2125
UNITED STATES

Prof. Dr. Marc Mars

Facultad de Ciencias
Universidad de Salamanca
Plaza de la Merced s/n
37008 Salamanca
SPAIN

Prof. Dr. David Maxwell

Department of Mathematical Sciences
University of Alaska Fairbanks
PO Box 756660
Fairbanks, AK 99775-6660
UNITED STATES

Dr. Stephen McCormick

Matematiska Institutionen
Uppsala Universitet
Box 480
751 06 Uppsala
SWEDEN

Prof. Dr. Pengzi Miao

Department of Mathematics
University of Miami
1365 Memorial Drive
Coral Gables, FL 33146
UNITED STATES

Georgios Moschidis

Department of Mathematics
Princeton University
Fine Hall
Washington Road
Princeton, NJ 08544-1000
UNITED STATES



2250 Oberwolfach Report 36/2018

Dr. Sung-Jin Oh

School of Mathematics
Korea Institute for Advanced Study
85 Hoegi-Ro, Dongdaemun-gu
Seoul 02 455
KOREA, REPUBLIC OF

Dr. Todd Oliynyk

School of Mathematical Sciences
Monash University
Clayton, Victoria 3800
AUSTRALIA

Tim Torben Paetz

Gravitationsphysik
Universität Wien
Boltzmanngasse 5
1090 Wien
AUSTRIA

Dr. Martin Reiris-Ithurralde

Centro de Matemática
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