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Abstract. Non-commutative geometry today is a new but mature branch
of mathematics shedding light on many other areas from number theory to
operator algebras. In the 2018 meeting two of these connections were high-
lighted. For once, the applications to mathematical physics, in particular
quantum field theory. Indeed, it was quantum theory which told us first that
the world on small scales inherently is non-commutative. The second connec-
tion was to index theory with its applications in differential geometry. Here,
non-commutative geometry provides the fine tools to obtain higher informa-
tion.
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Introduction by the Organisers

The 2018 meeting on non-commutative geometry (NCG) was organized by R. Nest,
T. Schick, G. Yu and A. Connes. We had chosen to focus the conference on the
link of NCG with index theory and its link with physics. There were an average
of five regular talks per day. The variety of topics is demonstrated for instance by
the program of the Tuesday whose morning was concentrated on index theory and
KK theory while the afternoon dealt with physics and in particular on the recent
advances in QFT on non-commutative spaces. There was a very strong demand
from the participants to give talks and the way we handled it is exemplified by
the program of the Thursday which besides three regular talks contained a one
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hour talk shared between two speakers (due to the common ground they treated)
and also a one hour session for a “gong show” which featured 6 talks of 8 minutes
each where young researchers described their work. This happened to be very
successful and the interaction with the audience worked very well. The speakers
at the “gong show” were Mehran Seyedhosseini, Alexander Engel, Eske Ewert,
Simone Cecchini, Mayuko Yamashita, and Valerio Proietti. The meeting was
attended by 51 participants from all over the world and the emphasis on young
researchers was quite efficient.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Pairing cyclic theory with Higson-Roe’s surgery exact sequence

Magnus Goffeng

(joint work with Robin Deeley)

This talk is based on the work [3, 4, 5] joint with Robin Deeley. We describe a
geometric (in the sense of Baum-Douglas) model for Higson and Roe’s analytic
structure group [6]. We pair delocalized cyclic cocycles with the analytic structure
group via a Chern character defined on the geometric model giving a coherent
framework for several known secondary invariants such as relative η-invariants,
L2-ρ invariants and Lott’s delocalized η-invariants.

There are several analytic approaches to Higson and Roe’s analytic structure
group: Higson-Roe’s original definition [6] using coarse geometry, Xie-Yu’s defini-
tion [9] using Yu’s localization algebras and Zenobi’s definition [10] using adiabatic
deformations. The two main virtues of the analytically defined models are that
they are “easy to map into” (geometric data gives rise to canonical cycles) and
that they are structurally more stable coming with various K-theoretical tools.
The geometric model is easier to “map out of” in the sense that there are fewer
and better behaved cycles on which a Chern character is defined. This fact makes
the geometric model highly suitable for geometric invariants.

1. Geometric models

In the 80’s, Baum and Douglas [1] gave a geometric model Kgeo
∗ (X) for the K-

homology of a space X using geometric cycles (M,E,ϕ); here M is a closed spinc-
manifold, E → M is a complex vector bundle and ϕ : M → X is a continuous
mapping. The relation imposed on the geometric cycles is generated by direct
sum/disjoint union, vector bundle modification and bordism. We shall work in a
slightly more general setting by picking a dense ∗-subalgebraA ⊆ C∗

r (Γ) containing
the group algebra C[Γ]. We can define a geometric group Kgeo

∗ (X ;A) as above by
using geometric cycles (M, EA, ϕ) where EA → M is an A-bundle (i.e. a locally
trivial bundle of finitely generated projective A-modules). If X is a finite CW-
complex and A is closed under holomorphic functional calculus, there is an explicit
isomorphism Kgeo

∗ (X ;A) ∼= KK∗(C(X), C∗
r (Γ)).

In analogy with K-homology we ask for a Baum-Douglas model of the analytic
structure group S∗(X ; Γ). For simplicity, we assume that Γ acts freely on X̃ and

set X := X̃/Γ. The geometric model for the analytic surgery group (given in [3]),
relies on an explicit description of the free assembly mapping. The free assembly
mapping uses the Mishchenko bundle LX,A := X̃ ×Γ A → X and is given by

(1) µ : Kgeo
∗ (X)→ Kgeo

∗ (pt;A), µ(M,E,ϕ) := (M,E ⊗ ϕ∗LX,A).

If A is holomorphically closed, µ can be identified with the assembly mapping.
Starting from this geometric description of assembly, we can define a geometric
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model. A cycle for Sgeo∗ (X ;A) as a triple (W, ξ, f) where W is a compact spinc-
manifold with boundary, f : ∂W → BΓ is a continuous mapping and ξ is a relative
K-theory cocycle for (W,∂W, f∗LX,A). The cocycle ξ contains three pieces of data:
A-bundle data ξA over W , vector bundle data ξ

C

over ∂W and an isomorphism α
identifying ξA|∂W with ξ

C

⊗ f∗LX,A on ∂W . Heuristically, a cycle for Sgeo∗ (X ;A)
is a cycle for Kgeo

∗−1(BΓ) with a prescribed reason for its vanishing under assembly.

Theorem 1 ([3, 5]). The abelian group Sgeo∗ (X,A) fits into an exact sequence

· · · → Sgeo∗+1(X,A)
δ−→ Kgeo

∗ (X)
µ−→ Kgeo

∗ (pt;A) r−→ Sgeo∗ (X,A) δ−→ Kgeo
∗−1(X)→ · · · ,

with µ, δ and r defined at the level of cycles. This short exact sequence maps
explicitly into Higson-Roe’s analytic surgery exact sequence via higher index the-
ory. If X is a (locally) finite CW-complex and A is holomorphically closed, these
mappings are isomorphisms.

2. Chern characters

The geometric model comes with a Chern character. This construction requires
a Frechet algebra structure on A. Following Wahl’s and Lott’s work on higher
index theory, we use topological noncommutative de Rham homology of A (see
more in [5, 8]). The abelianized topological de Rham complex of A is denoted

by Ω̂ab
∗ (A). The closed subcomplex of forms localized at the identity e ∈ Γ is

denoted by Ω̂
〈e〉
∗ (A). The associated topological homology groups are denoted by

ĤdR
∗ (A) and Ĥ

〈e〉
∗ (A), respectively. The mapping cone complex of the inclusion

Ω̂
〈e〉
∗ (A)→ Ω̂dR

∗ (A) defines the delocalized homology group Ĥdel
∗ (A).

Theorem 2 ([5]). Chern-Weil theory for total connections allow for definitions
of Chern characters making the following diagram commutative with exact rows:
(2)

· · · −−−−−−→ Kgeo
∗ (X)

µ
−−−−−−→ Kgeo

∗ (pt;A)
r

−−−−−−→ S
geo
∗ (X;A)

δ
−−−−−−→ K

geo
∗−1(X) −−−−−−→ · · ·

chX

y chA

y chdel
y chX

y

· · · −−−−−−→ Ĥ
〈e〉
∗ (A)

µdR
−−−−−−→ ĤdR

∗ (A)
rdR

−−−−−−→ Ĥdel
∗ (A)

δdR
−−−−−−→ Ĥ

〈e〉
∗−1(A) −−−−−−→ · · ·

.

The full details of the construction of Chern characters can be found in [5]. An
important feature of the delocalized Chern character is its connection with Wahl’s
higher η-invariant η̂(W, ξ, f, AξC) ∈ Ω̂dR

∗ (A). The following result follows from the
construction and Wahl’s higher Atiyah-Patodi-Singer index theorem [8].

Theorem 3 ([5]). Assume that A = lim←−Ak for a projective system (Ak)k∈N where

Ak ⊆ C∗
r (Γ) is a Banach *-algebra closed under holomorphic functional calculus.

We let p : Ĥdel
∗ (A) → Ĥ∗(Ω̂

dR
∗ (A)/Ω̂〈e〉

∗ (A)) denote the canonical projection. The
image of the delocalized Chern character under p can be written as:

p
(
ch

del
(W, ξ, f)

)
=

[
chA

(
ind

APS
C∗
r (Γ)(D

W
ξC∗

r (Γ)
, AξC∗

r (Γ)
) + cs(ξ, AξC∗

r (Γ)
, Aξ

C

)

)]
+ [η̂(W, ξ, f, AξC

)].
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3. Delocalized invariants and relations to higher index theory

The delocalized Chern character on the geometric model for the analytic surgery
group allow us to pair with delocalized cyclic cocycles. If c ∈ Ck

λ(A) is a continuous
cyclic cocycle, we say that c is delocalized if

c(γ0, γ1, . . . , γk) = 0, whenever γ0γ1 · · · γk = e.

Theorem 4. Assume that c ∈ Ck
λ(A) is a continuous delocalized cyclic cocycle.

Then there is an associated delocalized index character τc : Sgeo∗ (X,A) → C such
that τc ◦ r(x) = 〈[c], chA(x)〉 for x ∈ Kgeo

∗ (pt;A). Moreover, τc factors over p and
if A satisfies the assumption of Theorem 3 we have that

τc[(W, ξ, f)] =

〈
[c], chA

(
ind

APS
C∗
r (Γ)(D

W
ξC∗

r (Γ)
, AξC∗

r (Γ)
) + cs(ξ, AξC∗

r (Γ)
, Aξ

C

)

)〉
+〈c, η̂(W, ξ, f, AξC

)〉.

A closed manifold (M, g) with a positive scalar curvature metric (PSC) has
an associated ρ-class ρ(M, g) in the analytic structure group. Its pairing with
a delocalized continuous cyclic cocycle c can be computed when A satisfies the
assumption of Theorem 3. Indeed, τc ◦ ρ(M, g) = 〈c, η̂(M, g)〉, where η̂(M, g)
denotes the higher eta invariant of the spin Dirac operator on M defined from g.
Theorem 3 allows us to describe the special case when c ∈ C0

λ(A) satisfies c(1) = 0:

τc ◦ ρ(M, g) =
2√
π

∫ ∞

0

(Tr⊗ c)(D̃ge
−s2D̃2

g )ds,

where D̃g is the spin Dirac operator on the universal cover of M . This gives rise
to invariants τc ◦ ρ on Stolz’ PSC-group. It is an open problem to compute the
pairing of delocalized continuous cyclic cocycles with the topological structure set.

Let us consider some examples of continuous delocalized cocycles. All our ex-
amples are traces. It would be interesting to exhibit some examples of higher
delocalized cocycles. However, there are substantial technical difficulties with con-
tinuity of higher cocycles. If c : A → C is a continuous trace, c is delocalized if
c(1) = 0.

• For two representations σ1, σ2 : Γ → U(N), we can define a delocalized
conintuous 0-cocycle c := Trσ1−Trσ2 on C

∗(Γ). The associated delocalized
index character is the relative η-invariant. See [4, 5].
• For the trivial representation ǫ : Γ→ U(1) and the L2-trace TrL2 , we can
define the delocalized continuous 0-cocycle c := TrL2−Trǫ on C∗(Γ) whose
associated delocalized index character is the L2-ρ-invariant. See [2, 4].
• If g ∈ Γ is a non-trivial element with associated conjugacy class 〈g〉, we
define the delocalized trace Tr〈g〉(

∑
γ∈Γ aγγ) :=

∑
γ∈〈g〉 aγγ. If 〈g〉 has

polynomial growth, Xie-Yu showed that Tr〈g〉 is continuous on the Connes-
Moscovici algebra. It follows from Theorem 3 that the associated delocal-
ized index character extends Lott’s delocalized η-invariant to the analytic
structure group.
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Singular structures, groupoids and K-theory invariants of Dirac
operators

Paolo Piazza

(joint work with Vito Felice Zenobi)

Let SX be a Thom-Mather stratified pseudomanifold and let Xreg be its regular
part. The goal of this talk was to report on recent results, in collaboration with
Vito Felice Zenobi, concerning analytic, geometric and topological invariants of
Dirac operators on Xreg [4]. In fact, in addition to stratified spaces we considered
others, more singular structures, such as manifolds X with a foliated boundary
(∂X,F∂), or foliated manifolds with boundary (X,H) with a foliation H which is
transverse to the boundary and degenerates on the boundary to a foliation F∂ of
higher codimension.

In the first part of the talk we considered a smooth compact manifold M with
fundamental group Γ and with universal coverMΓ. We illustrated two approaches
to K-theory invariants for Dirac operators, the classic one due to Higson and
Roe and the more recent one, due to Zenobi [5], based on the adiabatic defor-
mation of the groupoid MΓ ×Γ MΓ over M , with source map s[x, y] = y and
range map r[x, y] = x. We explained in particular how given a Dirac operator
D : C∞(M,E) → C∞(M,E) and its Γ-equivariant lift DΓ : C∞(MΓ, EΓ) →
C∞(MΓ, EΓ), it is possible to define the fundamental class [D] ∈ K∗(M) and
the index class Ind(DΓ) ∈ K∗(C

∗
rΓ) and how these fit into the analytic surgery
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sequence of Higson and Roe. We then introduced the rho class ρ(DΓ) of an invert-
ible operator, an element in the K-theory of the C∗-algebra D∗(MΓ)

Γ obtained
as the closure of the Γ-equivariant, finite propagation, pseudolocal operators on
L2(MΓ, EΓ). We also stated the delocalized Atiyah-Patodi-Singer index theorem
[3], a fundamental result relating the index class of a Dirac operator on a man-
ifold with boundary with invertible boundary operator and the rho class of the
boundary operator. We explained how the fundamental class, the index class and
the rho class can be defined in the adiabatic deformation approach, and stated
compatibility results relating the two sets of invariants. We also reported on the
possibility of developing the theory for a general Lie groupoid and how in this gen-
erality Zenobi has proved a delocalized Atiyah-Patodi-Singer index theorem. We
ended this introductory part by explaining some important geometric applications
of these invariants, for example the mapping of the surgery sequence of Browder,
Novikov, Sullivan and Wall to the analytic surgery sequence, and the mapping of
the Stolz’ surgery sequence for positive scalar curvature metrics to the analytic
surgery sequence. In particular, we explained how the rho class gives well-defined
maps
(1)
ρ : π0(R+(M))→ KdimM+1(D

∗(MΓ)
Γ), ρ : π̃0(R+(M))→ KdimM+1(D

∗(MΓ)
Γ)

with R+(M) denoting the space of positive scalar curvature metrics on X and
π̃0(R+(X)) the associated set of concordance classes.

In the second part of the talk we tackled the following problem: how can one
define these three K-theory classes (i.e. the fundamental class, the index class and
the rho class) for the singular structures introduced above ? We started with a
Thom-Mather pseudomanifolds of depth 1 with singular stratum Y and link LY .
To any such space one can associated its resolution X , a smooth manifold with

boundary H := ∂X and with H the total space of a fibration LY → H
φ−→ Y

with base Y and with typical fiber the link LY . There is a natural identification
between the interior of X , X̊ , and SXreg. We introduced a metric structure on our
singular space by endowing SXreg, or, equivalently X̊, with a riemannian metric
g. There are many different types of metrics that can be considered; the ones that
were singled out in this talk were the fibered boundary metrics of Mazzeo and
Melrose [2]. These are metrics that in a tubular neighbourhood of the singularity
Y , or equivalently, in a collar neighborhood of the boundary of X , can be written
in the following special form

dx2

x4
+
φ∗gY
x2

+ hH/Y

with x a boundary defining function for ∂X and hH/Y a fiber metric on the

boundary fibration LY → H ≡ ∂X
φ−→ Y . The vector fields dual to the above

metric are given by

VΦ(X) = {ξ ∈ Vb(X) | ξ|∂X is tangent to the fibers of φ and ξx ∈ x2C∞(X)}



1920 Oberwolfach Report 32/2018

where Vb(X) is the Lie algebra of vector fields that are tangent to the boundary.
Notice that VΦ(X) is a Lie algebra and is finitely generated and projective as a
C∞(X)-module. According to Serre-Swan, there exists a smooth vector bundle
ΦTX → X , the Φ-tangent bundle, and a natural map ιΦ : ΦTX → TX such that
VΦ(X) = ιΦC

∞(X,ΦTX). These data define an algebroid (ΦTX, ιΦ). Thanks to
a theorem of Debord this algebroid can be integrated; the corresponding groupoid
GΦ, considered first in the work of Debord-Lescure-Rochon [1], is explicitly given
by Xreg × Xreg over Xreg and H ×Y TY ×Y H × R over H . There is also a
Γ-equivariant version of it, GΓ

Φ, again a groupoid over X × [0, 1]. Let us denote
by (GΓ

Φ)
0
ad the restriction of the adiabatic deformation of GΓ

Φ to X × [0, 1). The
C*-algebra of this groupoid fits into the following exact sequence

(2) 0→ C∗
r (X

reg
Γ ×

Γ
Xreg

Γ × (0, 1))→ C∗
r ((G

Γ
Φ)

0
ad)→ C∗

r (T
NCX)→ 0.

with TNCX a groupoid over Xreg×{0}∪H× [0, 1) given explicitly by the disjoint
union ΦTX ∪ (H ×Y TY ×Y H × R) × (0, 1). We denote by δ the connecting
homomorphism in the K-theory long exact sequence associated to (2).

Let us now assume that the Φ-tangent bundle endowed with the given Φ-metric
g admits a spin structure and let us choose one. Let us concentrate on the as-
sociated spin-Dirac operator D/g. Using the groupoid pseudodifferential calculus
for GΦ one can show that under the additional hypothesis that the singular stra-
tum is spin and that the links have positive scalar curvature, the Dirac opera-
tor D/g defines a class σnc(D/g) ∈ K∗(C

∗
r (T

NCX)) and thus a class δ(σnc(D/g)) in
K∗(C

∗
r (X

reg
Γ ×Γ X

reg
Γ )) = K∗(C

∗
rΓ). A fundamental result, ultimately due to De-

bord, Lescure and Rochon, states that C(SX), the algebra of continuous functions
on the stratified pseudomanifold, is K-dual to the C*-algebra C∗

r (T
NCX): thus

K∗(
SX) ∼= K∗(C

∗
r (T

NCX)). Moreover, under this isomorphism the class σnc(D/g)
correspond to [D/g] ∈ K∗(

SX), the latter class defined through a parametrix con-
struction in the Mazzeo-Melrose pseudodifferential calculus. In this talk we pre-
sented this as a compatibility result, relating an adiabatic invariant with a classic
invariant. We then stated a second compatibility result, due to Piazza and Zenobi,
asserting that the class δ(σnc(D/g)) is equal to the index class defined by the Γ-
equivariant operator associated to D/g via a Γ-equivariant parametrix construction.

Summarizing: at this point of the talk we have defined the fundamental class
and the index class in the adiabatic context and we have related them to more clas-
sic invariants. Assume now that g has positive scalar curvature everywhere on X ;
then the class δ(σnc(D/g)) vanishes and we can define a class ρ(g) ∈ K∗(C

∗
r ((G

Γ
Φ)

0
ad))

as a natural specific lift of the class [σnc(D/g)] in the K-theory long exact sequence
associated to (2). This is our rho-class. Thanks to the delocalized APS index
theorem for groupoids, due to Zenobi, this rho class gives a well-defined map

from π̃fb
0 (X), the set of concordance classes of fibered boundary metrics on X , to

K∗(C
∗
r ((G

Γ
π)

0
ad)). We ended this talk by explaining how these groupoid techniques

can be applied with little further work to the more singular structures mentioned
at the beginning of this extended abstract; this is indeed one of the motivations
for giving a groupoid treatment of the three K-theoretic invariants.
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Higher rho invariants, delocalized eta invariants, and the
Baum-Connes conjecture

Zhizhang Xie

(joint work with Guoliang Yu)

Let X be a complete manifold of dimension n with a discrete group Γ acting on it
properly and cocompactly through isometries. Each Γ-equivariant elliptic differ-
ential operator D on X gives rise to a higher index class IndΓ(D) ∈ Kn(C

∗
r (Γ)).

Here C∗
r (Γ) is the reduced group C∗-algebra of Γ. This higher index class is an

obstruction to the invertibility of D. It is a far-reaching generalization of the clas-
sical Fredholm index and plays a fundamental role in the studies of many problems
in geometry and topology such as the Novikov conjecture, the Baum-Connes con-
jecture and the Gromov-Lawson-Rosenberg conjecture. Higher index classes are
often referred to as primary invariants. When the higher index class of an operator
vanishes, a secondary index theoretic invariant naturally arises. One such example

is the associated Dirac operator D̃ on the universal covering M̃ of a closed spin
manifold M , which is equipped with a positive scalar curvature metric g. In this
case, it follows from the Lichnerowicz formula that the higher index of the Dirac
operator vanishes. And there is a natural secondary higher invariant – introduced

by Higson and Roe [8, 9, 10, 18] – called the higher rho invariant of D̃ (with re-
spect to the metric g). This higher rho invariant is an obstruction to the inverse
of the Dirac operator being local, and has important applications to geometry and
topology.

On the other hand, for the same Dirac operator D̃ above, Lott introduced the

following delocalized eta invariant η〈h〉(D̃) [16]:

(1) η〈h〉(D̃) :=
2√
π

∫ ∞

0

trh(D̃e
−t2D̃2

)dt,

under the condition that the conjugacy class 〈h〉 of h ∈ π1M has polynomial
growth. Here π1M is the fundamental group of M , and trh is the following trace
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map:

trh(A) =
∑

g∈〈h〉

∫

F

A(x, gx)dx

on Γ-equivariant Schwartz kernels A ∈ C∞(M̃ × M̃), where F is a fundamental

domain of M̃ under the action of Γ.
This talk is based on joint work with Guoliang Yu on our conceptualK-theoretic

approach to precise connections between Higson-Roe’s K-theoretic higher rho in-
variants and Lott’s delocalized eta invariants. More precisely, we have the following
theorem.

Theorem 1. Let M be a closed odd-dimensional spin manifold equipped with a

positive scalar curvature metric g. Suppose M̃ is the universal cover of M , g̃ is the

Riemannnian metric on M̃ lifted from g, and D̃ is the associated Dirac operator

on M̃ . Suppose the conjugacy class 〈h〉 of a non-identity element h ∈ π1M has
polynomial growth, then we have

τh(ρ(D̃, g̃)) =
1

2
η〈h〉(D̃),

where ρ(D̃, g̃) is the K-theoretic higher rho invariant of D̃ with respect to the
metric g̃, and τh is a canonical determinant map associated to 〈h〉.

While the definition of Lott’s delocalized eta invariant requires certain growth
conditions on π1M (e.g. polynomial growth on a conjugacy class), the K-theoretic
higher rho invariant can be defined in complete generality, without any growth
conditions on π1M . We give a generalization of Lott’s delocalized eta invariant
without imposing any growth conditions on π1M , provided that the strong Novikov
conjecture holds for π1M . This is achieved by using the Novikov rho invariant
introduced in [22, Section 7].

As an application of Theorem 1 above, we have the following algebraicity result
concerning the values of delocalized eta invariants.

Theorem 2. With the same notation as above, if the (rational) Baum-Connes
conjecture holds for Γ, and the conjugacy class 〈h〉 of a non-identity element h ∈ Γ

has polynomial growth, then the delocalized eta invariant η〈h〉(D̃) is an algebraic

number. Moreover, if in addition h has infinite order, then η〈h〉(D̃) vanishes.

This theorem follows from the construction of the determinant map τh and a
L2-Lefschetz fixed point theorem of B.-L. Wang and H. Wang [20, Theorem 5.10].
When Γ is torsion-free and satisfies the Baum-Connes conjecture, and the conju-
gacy class 〈h〉 of a non-identity element h ∈ Γ has polynomial growth, Piazza and

Schick have proved the vanishing of η〈h〉(D̃) by a different method [17, Theorem
13.7].

In light of this algebraicity result, we propose the following question.

Question. What values can delocalized eta invariants take in general? Are they
always algebraic numbers?
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In particular, if a delocalized eta invariant is transcendental, then it will lead to
a counterexample to the Baum-Connes conjecture [3, 4, 6]. Note that the above
question is a reminiscent of Atiyah’s question concerning rationality of ℓ2-Betti
numbers [1]. Atiyah’s question was answered in negative by Austin, who showed
that ℓ2-Betti numbers can be transcendental [2].

Our work is inspired by previous work of Lott, Leichtnam, Piazza and Schick [15,
16][17][14]. A key new ingredient of our approach is the construction of an explicit

determinant map τh on K1(C
∗
L,0(M̃)π1M ) for each non-identity conjugacy class

〈h〉 with polynomial growth. Here C∗
L,0(M̃)π1M is a certain geometric C∗-algebra

and its K-theory K1(C
∗
L,0(M̃)π1M ) is the receptacle of secondary higher index

theoretic invariants. Each such determinant map is induced by the corresponding
trace map trh on K0(C

∗
r (π1M)), and our construction is inspired by the work of

de la Harpe and Skandalis [7] and Keswani [12]. In fact, combined with finite
propagation speeds of wave operators, our K-theoretic approach above can also
be used to give a uniform treatment of various vanishing results and homotopy
invariance results for delocalized eta variants in [21, 12, 13, 17, 11, 5]. These details
will appear in a separate paper [19].
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Traces on Pseudodifferential Operators on the Noncommutative Torus

Carolina Neira Jimenez

(joint work with Cyril Levy, Sylvie Paycha)

Pseudodifferential calculus is a very useful tool in analysis and geometry. On
smooth manifolds, this calculus is performed via symbols which are locally defined
concepts. On manifolds equipped with certain symmetry (through the action of
a Lie group) it is possible to develop a notion of the global symbol of a pseu-
dodifferential operator following [3]. In this talk we consider such a notion and
use it to define a global pseudodifferential calculus on the noncommutative torus.
Analogously to the closed manifold case, we present a characterization of traces
on this calculus in terms of the leading symbol trace, the noncommutative residue
and the canonical trace. At the end, we show two instances where these traces
appear, namely, to define zeta regularized traces and to give an interpretation of
the scalar curvature of the noncommutative torus.

If θ is an n× n antisymmetric real matrix, we consider the 2–cocycle

c(k, l) = e−πi 〈k,θl〉, for all k, l ∈ Zn.

For all k ∈ Zn let Uk be the Weyl elements which satisfy UkUl = e−2πi 〈k,θl〉UlUk.
The set of Schwartz functions on the noncommutative torus is the set

Aθ :=

{
∑

k∈Zn

akUk ∈ L1(Zn, c) : (ak)k ∈ S(Zn)

}
.

Considering the infinitesimal generators of an action of the commutative torus
on C∗(Zn, c) it is possible to equip Aθ with a structure of Frechet ∗–algebra, and
with forward difference operators the notion of Aθ–valued toroidal symbols on Zn

is introduced [2, Section 3].
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A toroidal pseudodifferential operator on Aθ is defined via the quantization
map

Opθ(σ)(a) :=
∑

k∈Zn

ak σ(k)Uk,

where σ is an Aθ–valued toroidal symbol on Zn, and a =
∑

k∈Zn

akUk ∈ Aθ. The

map Opθ is a topological and algebraic isomorphism from the space of Aθ–valued
toroidal symbols to the space of toroidal pseudodifferential operators on Aθ, com-
patible with the filtration given by the order of the symbols and the order of the
operators.

An extension of a symbol σ on Zn is a symbol on Rn whose restriction to Zn

is equal to σ. Extension maps can be used to introduce the notion of noncom-
mutative classical toroidal symbols on Zn and classical toroidal pseudodifferential
operators on Aθ [2, Section 4].

A linear form on a subset of Aθ–valued classical toroidal symbols is said to be

(1) exotic if it vanishes on symbols of order less than −n,
(2) singular if it vanishes on smoothing symbols,
(3) ℓ1–continuous if it is continuous for the ℓ1(Zn,Aθ)–topology,
(4) trace if it vanishes on commutators.

By using the inverse of the map Opθ, we also have such linear forms on classi-
cal pseudodifferential operators on Aθ. The noncommutative residue, the leading
symbol trace and the canonical trace are examples of those linear forms. If the
order of the symbols (operators) is an integer greater than or equal to −n, exotic
traces are linear combinations of leading symbol traces and the noncommutative
residue. If the order of the symbols (operators) is not an integer or if it is less
than−n, ℓ1–continuous traces are proportional to the canonical trace [2, Section 6].

With complex powers of an appropriate operator, zeta regularized traces on
pseudodifferential operators on Aθ can be defined by means of the canonical trace
[2, Section 7]. The inverse Mellin transform of the zeta regularized trace of a pseu-
dodifferential operator on Aθ produces a heat kernel expansion, whose coefficients
can be written in terms of the (extended) noncommutative residue. In particular,
one recovers an analogue of the scalar curvature on the noncommutative torus [1,
Section 4].
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An algebraic approach to locality for geometric and renormalisation
purposes

Sylvie Paycha

(joint work with Pierre Clavier, Li Guo, Bin Zhang and Sara Azzali)

Disclaimer

These are informal notes based on a talk delivered at the meeting Non-commutative
Geometry, Index Theory and Mathematical Physics, July 8-14th 2018. This short
report on various papers in collaboration does not claim to have the level of rigour
of the original articles listed in the bibliography.

Abstract

We propose a mathematical framework underlying the concept of locality in clas-
sical and quantum field theory as well as in geometry. We develop a machinery
taylored to preserve locality during the renormalisation procedure. This provides
an algebraic formulation of the conservation of locality while renormalising and
applies to renormalise higher zeta functions at poles, such as conical (modelled
on cones), branched (modelled on trees) zeta functions which generalise multizeta
functions.

1. From locality sets to localityalgebras

Our starting point is to view locality as a symmetric binary relation comprising
all pairs of independent events. A locality set is a couple (X,⊤) where X is a set
and ⊤ ⊆ X×X is a symmetric relation on X , referred to as the locality relation
(or independence relation) of the locality set. So for x1, x2 ∈ X , denote x1⊤x2
if (x1, x2) ∈ ⊤. When the underlying set X needs to be emphasised, we use the
notation X ×⊤ X or ⊤X for ⊤. Here is a basic yet fundamental example.

Example 1.1. The orthogonality relation ⊥Q between vectors or subsets in an
Euclidean vector space (E,Q) equips E or the power set P(E) with the structure
of a locality set.

Multivariate meromorphic germs at zero with linear poles are very useful for
renormalisation purposes. Let R∞ = ∪∞k=1R

k be equipped with an inner product
Q compatible with the filtration.

For k ∈ N, let M(Ck) =
{

h(z1,··· ,zk)∏
m
i=1 L

si
i (z1,··· ,zk)

, Li ∈
(
Rk
)∗
, si ∈ C

}
, be the

space of meromorphic germs at 0 with linear poles and rational coefficients, so h
is a holomorphic germ at zero and for i ∈ {1, · · · ,m}, Li ∈

(
Rk
)∗

are linear forms
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with rational coefficients, si are positive integers. The setM :=
⋃∞

k=1M(Ck) is
filtered by N.

We now equipM with a locality structure.

Definition 1.2. Two meromorphic germs with rational coefficients f and f ′ are
Q- orthogonal (or independent) which we denote by f ⊥Q f ′ if the sets of
variables on which they depend span Q-orthogonal spaces. Let (M,⊥Q) denote the
resulting locality set.

One easily checks that the locality set
(
M,⊥Q, ·

)
is a (filtered) locality algebra

as defined in [CGPZ1].

2. Locality linear forms on pseudodifferential operators

M stands for a closed smooth manifold of dimension n. Let Ψphg(M) denote
the algebra of classical (polyhomogeneous) pseudodifferential operators acting on
C∞(M); it contains Ψ−∞

phg (M) as a subalgebra. The action of C∞(M,C) via

composition by multiplication operators extends to Ψphg(M) which is a C∞(M)-
module. We want to study “linear”1 forms on ΨΓ

phg(M) := {A ∈ Ψphg(M),

ord(A) ∈ Γ}, for a given subset Γ ⊂ C, where ord(A) denotes the order of the
operator A. Since multiplication operators have order zero, the set ΨΓ

phg(M) is a

C∞(M)- operated subset of Ψphg(M).

Definition 2.1. A linear form Λ : ΨΓ
phg(M) −→ C, A 7−→ Λ(A), is ⊤0-local if

and only if for any A ∈ ΨΓ
phg(M) and for any (φ1, φ2) ∈ C∞(M)× C∞(M)

φ1⊤0φ2 =⇒ Λ(φ1 Aφ2) = 0.

Here are two well-known examples of ⊤0-local linear forms:

Example 2.2. For A ∈ Ψphg(M) of order a, let

(1) σ(A) ∼
∞∑

j=0

σa−j

denote the asymptotic expansion of the polyhomogneous symbol σ(A) of A. Both
the

(1) canonical trace

TR : Ψ
C\Z
phg (M) −→ C; A 7−→ 1

(2π)n

∫

M


 −
∫

T∗
xM

σ(A)(x, ξ) dξ


 dx,

where the cut-off integral −
∫

T∗
xM

on the cotangent space T ∗
xM stands for the

Hadamard finite part as R→∞ of the integral
∫
‖ξ‖≤R,

1By linear form on a set which might not be a vector space, we mean a map that sends any
linear combination in the set to a linear combination of their images.
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(2) and the Wodzicki residue

Res : ΨZ

phg(M) −→ C; A 7−→ 1

(2π)n

∫

M

(∫

S∗
xM

σ−n(A)(x, ξ) dSξ

)
dx,

where σ−n(A) is the component of degree minus the dimension in the poly-
homogeneous expansion (1) of the symbol σ(A),

are cyclic and hence ⊤0-local linear forms.

We now specialise to Γ = Z and Γ = R \ Z and characterise local linear forms
on Ψphg(M). Here is a result adapted from [AP, Theorem 2.10].

Theorem 2.3. Any ⊤0-local linear form on A := ΨZ

cl(M,E) (resp.

A := Ψ/∈Z

cl (M,E)) which for any A ∈ A, induces continuous linear forms ΛA :
φ 7−→ Λ(φA) w.r. to the supremum norm topology, is proportional to the Wodz-
icki residue Res (resp. the canonical trace TR).

3. Multivariate minimal subtraction as a locality projection

In order to extend the set (resp. semigroup, resp. monoid, resp. algebra) category
to the locality set (resp. semigroup, resp. monoid, resp. algebra) category we need
to require that the maps (resp. morphisms) preserve locality .

Definition 3.1. Two maps φ, ψ : (X,⊤X)→ (Y,⊤Y ) from a locality set (X,⊤X)
to a locality set (Y,⊤Y ) are called independent if (φ× ψ)(⊤X) ⊆ ⊤Y . We write
φ⊤ψ. A localitymap from a locality set (X,⊤X) to a locality set (Y,⊤Y ) is a
map φ : X → Y such that φ⊤φ.

The morphisms should also preserve the locality structures.

Definition 3.2. Localitymorphisms of locality semigroups (resp. locality monoids,
resp. locality algebras) are locality maps which preserve the partial product (resp.
as well as the unit, resp. as well as linear combinations).

An element ofM is called a polar germ if it can be written in the form

(2)
h(ℓ1, · · · , ℓm)

Ls1
1 · · ·Lsn

n
,

where h is a holomorphic germ with rational coefficients in linear forms ℓ1, · · · , ℓm ∈
Qk, L1, · · · , Ln are linearly independent linear forms in Qk and s1, · · · , sn are in
Z>0, such that ℓi ⊥Q Lj for all i ∈ {1, · · · ,m}, j ∈ {1, · · · , n}.

There is a direct sum decompositionM =M+ ⊕MQ
−, whereM+ is the sub-

space of holomorphic germs and MQ
− is the subspace spanned by polar germs

defined by Eq. (2).

Proposition 3.3. The projection πQ
+ :M→M+ is a locality algebra homomor-

phism.
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Let ev0 :M+ → C stand for the evaluation at zero. The composition ev0 π
Q
+

defines what we call a generalised evaluator on
(
M,⊥Q

)
, namely a local-

ity character on the locality algebra
(
M,⊥Q

)
which coincides with the evaluation

at zero ev0 onM+.
The following straightforward corollary is the backbone of a multivariate minimal
subtraction scheme which respects locality .

Theorem 3.4. A locality morphism Φ : (A,⊤) −→
(
M,⊥Q

)
, on a locality algebra

(A,⊤) gives rise to a locality morphism ΦQ
+ := πQ

+ Φ : (A,⊤) −→
(
M+,⊥Q

)
, and

hence to a renormalised map ΦQ
ren:

ΦQ
ren := ev0Φ

Q
+ : (A,⊤) −→ C,

which defines a locality character.

In particular, with the above notations, the renormalised map respects locality :

a1⊤a2 =⇒ ΦQ
ren(a b) = ΦQ

ren(a)Φ
Q
ren(b).

This renormalisation procedure by means of localitymorphisms serves various
renormalisation purposes, namely to renormalise

• discrete Laplace transforms of characterstic functions of convex cones,
leading to conical zeta functions [GPZ2];
• higher zeta functions associated with trees, which we call branched zeta
functions [CGPZ2];
• nested integrals associated with trees, such as in Kreimer’s toy model for
Feynman graphs (work in progress).
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Hecke modules and spectral triples for arithmetic groups

Bram Mesland

(joint work with M.H. Şengün)

The cohomology of arithmetic groups as a Hecke module is a central object of
study in the theory of automorphic forms. In recent joint work with M.H. Şengün
(Sheffield) [3, 4] we have shown that the double coset Hecke ring of Shimura homo-
morphically maps into any KK-ring associated to a crossed product involving an
arithmetic group. In the case of a boundary action associated to real hyperbolic
n-space, integral operators built from harmonic measures give K-homologically
non trivial spectral triples on the boundary crossed product algebra. During the
workshop I discussed our results and presented an outlook for future work.

The setting is as follows: Let G be a semisimple Lie group, Γ ⊂ G a lattice
and write Γg := Γ ∩ gΓg−1. The lattice Γ is said to be arithmetic in G, if the
commensurator subgroup

CG(Γ) := {g ∈ G : Γg and Γg−1 have finite index in Γ} ⊂ G,
is dense in G. For a subsemigroup S ⊂ CG(Γ) the free abelian group Z[Γ, S] on
the double cosets ΓgΓ becomes a ring under the Shimura product [5]. It is well
known that elements g ∈ CG(Γ) act on the cohomology of Γ via Hecke operators
Tg:

(1)

H∗(Γ,Z)
Tg−−−−→ H∗(Γ,Z)

res

y
xcores

H∗(Γg,Z)
Adg−−−−→ H∗(Γg−1 ,Z)

The corestriction map is well defined because [Γ : Γg−1 , ] is finite. In this way
H∗(Γ,Z) becomes a module over Z[Γ, S].

Now let B be a CG(Γ)-C
∗-algebra. In [3], we associated to each g ∈ CG(Γ) a

bimodule defining a class in the ring KK0(B ⋊r Γ, B ⋊r Γ). In our second paper
[4] we proved the following structural result:

Theorem 1.1. For any subsemigroup S ⊂ CG(Γ) and S-C
∗-algebra B the map

Z[Γ, S]→ KK0(B ⋊r Γ, B ⋊r Γ), Γg−1Γ 7→ Tg,

is a ring-homomorphism
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Now consider the case B = C0(X) and Γ acts on X freely and properly with

M := X/Γ. Any g ∈ CG(Γ) induces a Hecke correspondence M
τg←− Mg

πg−→ M .
The Hecke correspondence defines a bimodule TM

g and a class in
KK0(C0(M), C0(M)) as well. In [3] we proved that in this case the Hecke bi-
modules are closely related.

Proposition 1.2. Let X be a free and proper Γ-space, M := X/Γ and E the
associated (C0(X) ⋊ Γ, C0(M)) Morita equivalence bimodule. There are unitary
(C0(X)⋊ Γ, C0(M))-bimodule isomorphisms

E ⊗C0(M) T
M
g

∼−→ Tg ⊗C0(X)⋊Γ E.

In particular [E]⊗ [TM
g ] = [Tg]⊗ [E] ∈ KK0(C0(X)⋊ Γ, C0(M)).

The Hecke correspondences act on manifold cohomology in a natural way and
the action is compatible with the isomorphism H∗(BΓ,Z) ≃ H∗(Γ,Z). Moreover,
the Hecke module structure on topological K-theory recovers the classical Hecke
modules, as was shown in [4].

Theorem 1.3. Let X be a free and proper Γ-space and M := X/Γ. The Chern
character homomorphism

Ki(M)→
⊕

n≥0

H2n+i(M,Q),

is Hecke equivariant.

Let G be a semisimple algebraic group over Q and G = G(R) and Γ ⊂G(Q) be
a torsion-free arithmetic subgroup. Let K denote a maximal compact subgroup
of G and let X = K\G denote the associated symmetric space. Assume that X is
of non-compact type with geodesic boundary ∂X . Then the C∗-algebras C0(M),
with M := X/Γ, the reduced group C∗-algebra C∗

rΓ and the boundary crossed
product C(∂X)⋊ Γ are of particular interest.

In the case of real hyperbolic n-space X = Hn, we have shown in [3] that the
exact sequences in KK-theory induced from the G-equivariant extension

(2) 0→ C0(Hn)→ C(Hn ∪ ∂Hn)→ C(∂Hn)→ 0.

relating these C∗-algebras (see [2]) are Hecke equivariant. The connection map

∂ : K∗(C0(M))→ K∗+1(C(∂Hn)⋊ Γ)

can be computed at the level of unbounded cycles, as we now discuss.
Consider the harmonic measures νx and associated metrics dx on ∂Hn based at

x ∈ H. Let T1Hn = Hn×∂Hn be the unit tangent bundle of Hn and L2(T1Hn, νx)
the associated C∗-module completion. The integral operators

∆Ψ(x, ξ) =

∫

∂Hn

Ψ(x, ξ)−Ψ(x, η)

dx(ξ, η)n−1
dνxη, pΨ(x, ξ) =

∫

∂Hn

Ψ(x, η)dνxη,

are G-invariant and the multiplication operator ρΨ(x, ξ) = dHn
(0, x)Ψ(x, ξ) com-

mutes with G boundedly in L2(T1H, νx). In [3] we prove:
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Theorem 1.4. The operators ∆, ρ and p assemble into a G-equivariant unbounded
Kasparov module

(C(∂Hn), L
2(T1Hn, νx),−∆+ (2p− 1)ρ),

representing the class of the G-equivariant extension (2).

An embedded hypersurface (N, ∂N) ⊂ (M,∂M) in the Borel-Serre compact-
ification [1] defines a geometric cycle for M and an element K∗(C0(M)). Their
Dirac operators interact surprisingly well with the integral operator ∆, which gives
rise to the following construction of spectral triples on the purely infinite simple
C∗-algebra C(∂Hn)⋊ Γ.

Theorem 1.5. A self-adjoint Dirac operator /DN̊ associated to an embedded hy-

persurface (N, ∂N) ⊂ (M,∂M) and the integral operator S := −∆ + (2p − 1)ρ
assemble into an unbounded Kasparov product

(C(∂Hn)⋊ Γ, L2(T1Hn)⊗C0(M) L
2(N̊ , /SN̊ ), S ⊗ σ + 1⊗∇ /DN̊ ).

If dim M = 3, such spectral triples exhaust the group K1(C(∂H3)⋊ Γ).

It is worth noting that the same construction works with the Dirac operator
/DM on M .

The above results lay the groundwork for the study of automorphic forms in
the context of KK-theory. In future work we intend to investigate the following
questions:

• Summability properties of the (un)bounded Kasparovmodules constructed
in [3] and computation of their spectral zeta functions. Investigation of
any relationship between the latter and the arithmetic of Bianchi modular
forms.
• Investigation of whether the K-homology of the arithmetic C∗-algebras
as Hecke modules can be accounted for by automorphic forms as is the
case for cohomology of arithmetic groups. Since K-homology is directly
defined in terms analytic data, we wish to associate a K-homology class
to an automorphic form.
• The relation of the Hecke module structure of K-theory to the Baum-
Connes assembly map. One of the simplest cases in which the Baum-
Connes conjecture is open is the arithmetic group SL(3,Z). We have
recently shown that for such groups the Baum-Connes assembly map is
Hecke equivariant and we investigate the implications of this fact.
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Another look at discrete series and the Dirac operator

Nigel Higson

(joint work with Tsuyoshi Kato)

This is a report on a project still in progress with Tsuyoshi Kato that concerns the
discrete series of real reductive groups. It is part of a broader effort to re-examine
aspects of Harish-Chandra’s theory from the perspective of noncommutative ge-
ometry.

The Dirac operator is involved in our approach to the discrete series, as it is in
prior works of Parthasarathy, Atiyah-Schmid and Lafforgue, but it arises here in
a somewhat different way. The starting point is an elementary result based on the
following definition:

Definition. Let G be a real reductive group with a given Haar measure and with a
given maximal compact subgroupK. The compact ideal in the reduced C∗-algebra
C∗

r (G) is

C∗
r (G)cpt =

{
f ∈ C∗

r (G) : λ(f) acts as a compact operator on every L2(G)σ
}
.

Here λ is the left-regular representation of G, σ is an irreducible representation of
K and L2(G)σ ⊆ L2(G) is the σ-isotypical subspace for the right regular repre-
sentation of K on L2(G).

Lemma. The discrete series representations of G are precisely those irreducible
representations of C∗

r (G) that restrict to nonzero (irreducible) representations of
the compact ideal.

The rough idea is to use the operator traces on the compact ideal coming from
the actions of C∗

r (G)cpt on the Hilbert spaces L2(G)σ to access information about
the discrete series. More precisely we want to consider the supertraces

Traceλ(f) = SuperTrace
(
λ(f)⊗ 1:

[
L2(G)⊗ S

]K −→
[
L2(G) ⊗ S

]K)

on the compact ideal, as S ranges over the indecomposableK-equivariant represen-
tations of the Clifford algebra Cliff(p), where g = k⊕p is the Cartan decomposition
associated to K ⊆ G. The spaces S carry Z/2 gradings, but we should caution
that it is not always possible to pick a canonical Z/2-grading; see below.

Assume for simplicity that G is linear and connected, and that each maximal
torus T ⊆ K is a Cartan subgroup of G (the latter is Harish-Chandra’s con-
dition for the existence of discrete series). Then the spinor spaces S above are
parametrized by infinitesimal weights λ ∈ it∗ that are
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• Shifted-integral for G (that is, analytically integral after shifting by the
half-sum of the positive roots for G);
• Dominant for K (that is, lying in a chosen Weyl chamber for K); and
• Nonsingular for K (that is, fixed by no element of the Weyl group for K).

Let us call these Dirac parameters.
Harish-Chandra showed that the discrete series are parametrized by the smaller

subset of Harish-Chandra parameters, which are infinitesimal weights λ ∈ it∗ that
are

• Shifted-integral for G;
• Dominant for K; and
• Nonsingular for G (not merely nonsingular for K).

Assume for a moment that G is compact. Denote by d(λ) the polynomial function
on it∗ given by Weyl’s dimension formula for the irreducible representations of G,
whose value on a G-shifted integral, G-dominant and G-nonsingular weight is the
dimension of the associated irreducible representation of G. In addition, denote
by TraceG the canonical (unbounded) trace on C∗

r (G) given by evaluation of a
function on G at the identity. The following formula is essentially due to Bott; it
follows rather easily from Weyl’s character formula.

Theorem. In the compact case, if f ∈ C∗
r (G), then

|WG|/|WK | ·Vol(G) · TraceG(f) = (−1)dim(G/K)/2
∑

λ

d(λ) · Traceλ(f)

where the sum is over the Dirac parameters.

(Strictly speaking we should consider only f belonging to the minimal dense
ideal of C∗

r (U), to ensure all the traces are finite.)
Let us comment further on the issue of Z/2 gradings on the spinor space Sλ

associated to the Dirac parameter λ. If λ is G-nonsingular then there is a canonical
Z/2-grading associated to λ. On the other hand, if λ is G-singular, then d(λ) = 0.
So overall the right-hand side of the formula is well-defined.

Our main observation is that the above trace formula corresponds very closely
to a formula of Harish-Chandra in orbital integrals, using the “dictionary”

Traceλ(f) = F̂f (λ),

whenG is noncompact. Here Ff is Harish-Chandra’s orbital integral for the Cartan

subgroup T , and F̂f (λ) is the Fourier coefficient associated to λ. The proof of this
identity when f lies in the (minimal dense ideal of) the compact ideal C∗

r (G)cpt
(so that Traceλ(f) is well-defined) is a simple computation.

Harish-Chandra’s orbital integral formula translates into the following trace
formula, which is very close to Bott’s formula:

Theorem. In the noncompact case, if f ∈ C∗
r (G)cpt, then

Vol(U) · TraceG(f) = (−1)dim(G/K)/2
∑

λ

d(λ) · Traceλ(f)
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where the sum is over the Dirac parameters, where U is the compact form of G,
and where the Haar measure on U is the one associated to the given Haar measure
on G.

One way to think about the disappearance of the term |WG|/|WK | is to write

|WG|/|WK | = χ(G/K)

in Bott’s formula for the compact case (χ is the Euler characteristic) and recall
that in the noncompact case G/K is contractible, so that χ(G/K) = 1.

Harish-Chandra’s formula played a crucial role in his classification of the discrete
series. Note, for instance, that if π is a discrete series representation, and if p is a
diagonal matrix coefficient function for π, then formula immediately implies that
Traceλ(p) is nonzero for some λ. This means that π occurs in the index of a Dirac
operator associated to a Harish-Chandra parameter. Moreover if p is normalized
so as to be a projection in C∗

r (G), then the normalizing factor, which is the formal
dimension of π, is necessarily an integer, assuming we normalize Haar measure so
that vol(U) = 1. This is because each Traceλ(p) is an integer, as is each d(λ).

To complete the classification of the discrete series, Harish-Chandra used his
theorem on the local integrability of distribution characters. As an alternative, it
is possible to use instead some rather more elementary facts about tempered repre-
sentation theory, plus the injectivity of the Connes-Kasparov index map (which is
the easy part of the Connes-Kasparov isomorphism) to complete the classification.
So it becomes interesting to ask for an geometric approach to the trace formula for
noncompact groups. This is work in progress, but let us sketch our line of attack.

In the compact case there is a natural inclusion of G-Hilbert spaces
⊕

λ

d(λ) · [L2(G)⊗ Sλ]
K −→ L2(G)⊗ ΩL2(G/K)

whose image is the kernel of the identity tensored with the de Rham operator.
The inclusion immediately proves Bott’s formula.

The inclusion involves computations of Kostant on the kernel of the cubic Dirac
operator, together with the simple identification

(G×G)/K ∼= G×G/K.
In the noncompact case there is a more subtle identification

(U ×G)/K ∼= G/K × U
that comes from the dressing action of G on U . We aim to show that this leads
to an inclusion

⊕

λ

d(λ) · [L2(G) ⊗ Sλ]
K −→ L2(U)⊗ ΩL2(G/K)

whose image is the kernel of the identity tensored with Witten’s (index one) per-
turbation of the de Rham operator. This would suffice.
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Representations of ∗-algebras by unbounded operators

Ralf Meyer

This lecture is an invitation to my article [2].
LetX ⊆ Rn be an affine variety. We may describe it through the ∗-algebraP(X)

of polynomial functions onX , which is a certain quotient of the polynomial algebra
C[x1, . . . , xn], or through the C∗-algebra C0(X). If X is not compact, say, X =
Rn, then P(X) is not contained in C0(X). Nevertheless, we would like to say
that C0(X) is “the” C∗-completion or better C∗-hull of P(X). Woronowicz [7, 6]
has found a way to make this precise, speaking of unbounded affiliated multipliers
of a C∗-algebra and what it means for a C∗-algebra to be generated by a set of
such unbounded multipliers. Similar situations for non-commutative algebras are
very common in the theory of quantum groups, where it is usually quite hard to
find a suitable C∗-algebra.

A prototypical case for the theory is the universal enveloping algebra of a Lie
algebra g. It generates C∗(G), where G is the simply connected Lie group that
integrates g. This does not say, however, that g and C∗(G) have the same repre-
sentation theory. In fact, Nelson’s Theorem describes completely which represen-
tations of g come from a representation of C∗(G) by differentiation: this happens if
and only if Nelson’s Laplacian acts by an essentially self-adjoint operator (see [5]).
Here Nelson’s Laplacian is

∑n
j=1 x

2
j for a basis x1, . . . , xn of g. This is a general

feature of the representation theory of ∗-algebras: we must restrict attention to a
subclass of representations, called “integrable” representations, to get a well be-
haved theory. Already the representations of the polynomial algebra C[x1, x2] are
quite wild (see [5]).

The starting point of my work on representations by unbounded operators is
an article by Savchuk and Schmüdgen [4]. They study a unital ∗-algebra A that
is graded by a discrete group G, say, G = Z. That is, A =

⊕
g∈GAg with vector

subspaces Ag ⊆ A that satisfy Ag · Ah ⊆ Agh, A
∗
g = Ag−1 , and 1 ∈ Ae for all

g, h ∈ G, where e ∈ G is the unit element. For instance, let A be generated by
an element a of degree 1 subject to the relation aa∗ = a∗a+ 1. This is naturally
Z-graded, and the unit fibre is the polynomial algebra generated by N = a∗a.

IfA is graded byG, one would expect a C∗-hull B ofA to be graded as well. Such
a grading on a C∗-algebra is equivalent to an action of G on the unit fibre Be by
partial Morita–Rieffel equivalences (see [1]). Savchuk and Schmüdgen assume Ae

to be commutative and certain line bundles to be trivial, so that the grading
becomes a partial group action on a locally compact Hausdorff space. Then the
crossed product for this partial action is a C∗-hull for the graded algebra.

A generalisation of this result to graded algebras with non-commutative unit
fibre is quite interesting because it forces us to make the notion of C∗-hull much
more precise. We want a C∗-hull Be for Ae to “induce” a C∗-hull B for A. If our
notion of C∗-hull is too weak, then the information about Be does not suffice to
get B; if it is too strong, we may ask too much of B.
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A C∗-algebra generated by unbounded affiliated multipliers in Woronowicz’
sense is not unique. The defining condition for the C∗-hull in [2] is that its repre-
sentations are “equivalent” to the “integrable” representations of the ∗-algebra A.
Representations on Hilbert space do not suffice to determine a C∗-algebra uniquely
up to isomorphism. Therefore, I consider representations on Hilbert modules. In
the context of commutative algebras or Lie algebra representations, it is known
which representations integrate to the appropriate C∗-algebra. Roughly speaking,
one must ask operators to be regular and self-adjoint instead of just self-adjoint.

The “equivalence” of representation theories also requires that isometric inter-
twiners are the same in both worlds. If an isometry intertwines two representations
of a C∗-algebra, then its adjoint does so, too. For representations by unbounded
operators, this may fail: restrict a representation to a subset of its domain. The
identical inclusion of the representation with smaller domain is an isometric inter-
twiner, but the adjoint is not an intertwiner. In fact, the condition about having
the same isometric intertwiners in both cases says that such extension phenomena
do not happen among “integrable” representations. This very subtle condition is
needed for the Induction Theorem for C∗-hulls. A couterexample shows that the
theorem becomes false if this condition is dropped.

The main theorem in [2] is the Induction Theorem. In the situation of a graded
∗-algebra, it describes a C∗-hull for the “integrable” representations of A, given
a C∗-hull Be for the “integrable” representations of the unit fibre Ae. Here a
representation of A is called “integrable” if its restriction to Ae is integrable.
More precisely, the C∗-hull of A is the section C∗-algebra of a Fell bundle over the
group G, whose unit fibre is a certain quotient of Be.

For instance, let A = C〈a | aa∗ = a∗a + 1〉 be graded as above. We call a
representation of A on a Hilbert module integrable if the closure of N = a∗a is
regular and self-adjoint. The C∗-hull for these representations of the polynomial
algebra C[N ] is Be = C0(R). Most representations of Be are not contained in any
representation of A. The ones that appear are the ones where induction to A gives
a representation on a vector space with positive-definite inner product. In the
case at hand, this replaces Be by the quotient B+

e = C0(N). That is, only those
characters that map N to an integer may be induced to a representation of A. The
unit fibre of the relevant Fell bundle is B+

e . In this case, the Fell bundle comes
from a partial action of Z on N. This is simply the restriction of the translation
action on Z to the non-invariant subset N. The section C∗-algebra of the Fell
bundle is the algebra of compact operators on the Hilbert space ℓ2(N). This is the
expected result.

The machinery above does not work so well for commutative algebras with
infinitely many generators. Here the most natural class of “integrable” represen-
tations has no C∗-hull. So the approach in [2] does not help much, say, to get a
C∗-algebra that is related to the canonical commutation relations. To build such
a C∗-algebra, we must impose some technical extra conditions for representations
to make the space of integrable characters on the unit fibre locally compact.
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Lambert-W solves the noncommutative Φ4-model

Raimar Wulkenhaar

(joint work with Erik Panzer)

This abstract is based on [1] where we give strong evidence for

Conjecture 1. The non-linear integral equation for a function Gλ : R+×R+ → R,

(1 + a+ b)Gλ(a, b) = 1 + λ

∫ ∞

0

dp
(Gλ(p, b)−Gλ(a, b)

p− a +
Gλ(a, b)

1 + p

)

+ λ

∫ ∞

0

dq
(Gλ(a, q)−Gλ(a, b)

q − b +
Gλ(a, b)

1 + q

)
(1)

− λ2
∫ ∞

0

dp

∫ ∞

0

dq
Gλ(a, b)Gλ(p, q)−Gλ(a, q)Gλ(p, b)

(p− a)(q − b) ,

is for any real coupling constant λ > −1/(2 log 2) ≈ −0.721348 solved by

Gλ(a, b) = Gλ(b, a) =
(1 + a+ b) exp(Nλ(a, b))(

b+ λW
(
1
λe

(1+a)/λ
))(

a+ λW
(
1
λe

(1+b)/λ
)) , where(2)

Nλ(a, b) :=
1

2πi

∫ ∞

−∞

dt log
(
1− λ log(12 − it)

b+ 1
2 + it

) d
dt

log
(
1− λ log(12+it)

a+ 1
2 − it

)
.(3)

Here, W denotes the Lambert function, more precisely its principal branch W0

for λ > 0 and the other real branch W−1 for −1 < λ < 0 of the solution of
W (z)eW (z) = z. The function Nλ(a, b) defined for λ > −1/(2 log 2) has a pertur-
bative expansion into Nielsen polylogarithms.

Equation (1) arises from the Dyson-Schwinger equation for the 2-point function
of the λφ⋆4-model with harmonic propagation on 2-dimensional noncommutative
Moyal space in a special limit where the matrix size and the deformation parameter
are simultaneously sent to infinity. We refer to [1, 2] for details and treat here only
the solution of (1).
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Starting point is the observation that (1) is equivalent to a boundary value
problem. Define by

Ψλ(z, w) := 1 + z + w − λ log(−z)− λ log(−w) + λ2
∫ ∞

0

dp

∫ ∞

0

dq
Gλ(p, q)

(p− z)(q − w)
a function holomorphic on (C \ [0,Λ2])2. Then (1) is equivalent to

(4) Ψλ(a+ iǫ, b+ iǫ)Ψλ(a− iǫ, b− iǫ) = Ψλ(a+ iǫ, b− iǫ)Ψλ(a− iǫ, b+ iǫ) .

Therefore, there is a real function τa(b) with

(5) Ψλ(a+ iǫ, b+ iǫ)e−iτa(b) = Ψλ(a+ iǫ, b− iǫ)eiτa(b) .

The Plemelj formulae give (after introducing a common cut-off Λ in the integrals
(1)) two equations for the real and imaginary part of (5). Both are Carleman-
type singular integral equations for Gλ(a, b) and for Gλ(a, b) := 1

λπ +Ha[Gλ(•, b)],
where Ha[f(•)] := 1

π −
∫ Λ2

0 dp f(p)
p−a is the one-sided Hilbert transform (we denote by

−
∫
the Cauchy principal value). The equation for Gλ(a, b) is easily solved by

Gλ(a, b) =
sin τa(b)

λπ
eHb[τa(•)] .(6)

The solution for Gλ(a, b) is the symmetric partner a ↔ b of the Gλ(a, b)-equation
provided that

λπ cot τb(a) = 1 + a+ b− λ log a+ Iλ(a) , where

Iλ(a) :=
1

π

∫ ∞

0

dp
(
e−Hp[τa(•)] sin τa(p)−

λπ

1 + p

)
.

(7)

A solution of (7) as formal power series in λ leads surprisingly far. Using the
HyperInt package [3] we convinced ourselves that whereas Hp[τa(•)] recursively
evaluates to polylogarithms and more complicated hyperlogarithms, Iλ(a) itself
remains extremely simple and only contains powers of log(1 + a). The results for
Iλ(a) are of such striking simplicity and structure that we could obtain an explicit
formula. Concretely,

Iλ(a) = −λ log(1 + a) +

∞∑

n=1

λn+1
( (log(1 + a))n

nan
+

(log(1 + a))n

n(1 + a)n

)

+

∞∑

n=1

(n−1)!λn+1

(1+a)n

n−1∑

j=1

n∑

k=0

(−1)j sj,n−k

k!j!

((1+a
a

)n−j

+ 1
)(

log(1+a)
)k

(8)

correctly reproduces the first 10 terms of the expansion in λ. We conjecture that
it holds true to all orders. By sn,k we denote the Stirling numbers of the first
kind, with sign (−1)n−k. Using generating functions of Stirling numbers, (8) is
simplified to

Iλ(a) =
∞∑

n=1

λn

n!

dn−1

dan−1
(− log(1 + a))n − λ

∞∑

n=1

λn

n!

dn−1

dan−1

(− log(1 + a))n

a
.(9)
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This structure is covered by the Lagrange inversion theorem which shows that

the first sum in (9) is the inverse w(λ) =
∑∞

n=1
λn

n!
dn−1

dwn−1 (φ(w))
n
∣∣
w=0

of the

function λ(w) = w
φ(w) if we set φ(w) = − log(1 + a + w). On the other hand,

λ(w) = − w
log(1+a+w) is easily inverted to the Lambert-W function which solves

W (z)eW (z) = z. The second sum in (9) (without the preceeding −λ), written as∑∞
n=1

λn

n!
dn−1

dwn−1

(
H ′(w)φ(w)n

)∣∣
w=0

for H(w) = log(1 + w/a), is by the Lagrange-
Bürmann formula equal to H(w(λ)) for the same w(λ) as above. Putting every-
thing together, we we have resummed (9) to

(10) Iλ(a) = λW
( 1
λ
e

1+a
λ

)
− λ log

(
λW

( 1
λ
e

1+a
λ

)
− 1
)
− 1− a+ λ log a .

A closer discussion shows that for λ ≥ 0 the principal branch W0 of the Lambert
function is selected and for −1 < λ < 0 the other real branch W−1. It can be
shown that (10) is analytic at any λ > −1.

This result gives τb(a) via (7). For Gλ(a, b) we need according to (6) the Hilbert
transform of that function. A lengthy calculation leads to

Ha[τb(•)] = log
√
(b+ λW ( 1λe

(1+a)/λ)− λ log(λW ( 1λe
(1+a)/λ)− 1))2 + (λπ)2

+ log
( (1 + a+ b) exp(Nλ(a, b))

(b+ λW ( 1λe
(1+a)/λ))(a+ λW ( 1λe

(1+b)/λ))

)
,

Nλ(a, b) :=
1

2πi

∫

γǫ

dz log
(
1− λ log(−z)

1 + b+ z

) d

dw
log
(
1− λ log(1+z+w)

1+a− (1+z+w)

)∣∣∣
w=0

,

(11)

where γǫ is the curve in the complex plane which encircles the positive real axis
clockwise at distance ǫ. Equation (11) holds for λ > −1 and can be rearranged for
λ > − 1

2 log 2 into (3). In particular, formula (2) follows.

Further information is obtained from the generating function Rα,β(a, b;w) de-

fined by Nλ(a, b) =
∑∞

m,n=1
(−λ)m+n

m!n! ∂m−1
a ∂n−1

b ∂mα ∂
n
β∂wRα,β(a, b;w)

∣∣
α=β=w=0

,

Rα,β(a, b;w) =
(1 + w)α+β

(1 + a+ b− w)
Γ(1− α− β)

Γ(1− α)Γ(1 − β)

{
− 1

+
(1 + b)β

(1 + w)β
2F1

(−α, β
1− α

∣∣∣w − b
1 + w

)
+

(1 + a)α

(1 + w)α
2F1

(−β, α
1− β

∣∣∣w − a
1 + w

)}
.(12)

The hypergeometric function generates precisely the Nielsen polylogarithms

2F1

(−x, y
1− x

∣∣∣z
)
= 1−

∑

n,p≥1

Sn,p(z)x
nyp ,

Sn,p(z) :=
(−1)n+p−1

(n− 1)!p!

∫ 1

0

dt
(log(t))n−1(log(1− zt))p

t
,(13)

and Γ(1−α−β)
Γ(1−α)Γ(1−β) = exp

(∑∞
k=2((α + β)k − αk − βk) ζ(k)k

)
gives rise to Riemann

zeta values.
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Our result now permits to complete the exact solution of the whole λφ⋆4-model
on Moyal space [2]. Moreover, all experience shows that solving a non-linear
problem such as (1) by generalised radicals (here W (z), Nλ(a, b)) can only be
expected in presence of a hidden symmetry. We consider it worthwhile to explore
the corresponding integrable structure.
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Random Tensors

Vincent Rivasseau

There are three main approaches to quantum gravity in two dimensions. The
first one is the discretized random geometric approach provided by matrix mod-
els. Their Feynman graphs are combinatorial maps dual to surfaces. The corre-
sponding perturbative expansion is structured into non-trivial layers by ’tHooft
topological 1/N expansion [1]. Lower genera dominate when the size N of the
matrix becomes big. By the Gauss-Bonnet theorem, the genus of the surface is
related to the integral of the scalar curvature, hence matrix models perform a sum
over discrete geometries pondered by the Einstein-Hilbert action [2].

The two other approaches to quantum gravity in two dimensions are through
Liouville continuous field theory and through integrals over moduli spaces. The
last approach, when suitably decorated through additional fields, is also the entry
door for string and superstring theory. It turns out that these three different
approaches to quantum gravity in two dimensions are essentially equivalent [3, 4].

In more than two dimensions the situation is much more complicated. One
can wonder what are the analogs of these three successful approaches. Perelman’s
proof of the Poincaré conjecture and Thurston uniformization program, now com-
pleted, provide some understanding of the geometry of three dimensional manifolds
roughly similar to the level of understanding reached by Poincaré and Koebe for
two-dimensions more than a century ago. However theoretical physicists have cer-
tainly not fully incorporated yet the physical consequences of these mathematical
breakthroughs. In four dimensions geometry is even richer, as the category of
smooth/piecewise-linear manifolds becomes distinct from that of topological man-
ifolds. The smooth Poincaré conjecture and the classification of smooth structures
on four dimensional manifolds remain today major open geometric problems.
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In view of these difficulties, for the time being the simplest and most straight-
forward path towards higher dimensional quantum gravity seems to be the gen-
eralization to higher dimensions of the discretized random geometric approach
provided by matrix models. Matrix models are tensor models of rank 2. At higher
rank r ≥ 3 the Feynman expansion of tensor models is made of stranded graphs
dual to random piecewise-linear quasi-manifolds of dimension r [5]. This Feynman
expansion is again naturally pondered by a discretized analog of the dimension r
Einstein-Hilbert action [6]. However tensor models for about twenty years lacked
the additional structure provided by a 1/N expansion generalizing ’tHooft expan-
sion. This expansion was found in 2010-11 [7]. It is led by a very simple class of
series-parallel graphs, the so called melonic graphs [8]. The corresponding revived
approach to quantum gravity in more than two dimensions has been nicknamed
the tensor track to quantum gravity [9]. It led to a flurry of publications (see
[10] for reviews), and in particular to the definition and renormalization of tensor
analogs of non commutative field theories [11, 12].

The melonic series, i.e. the tensor model expansion restricted to the leading
melonic graphs, displays a critical point and an associated single scaling limit
leading to a continuous random geometric phase. When equipped with the graph
distance this continuous limit identifies with the so-called branched polymer phase
[14] corresponding to Aldous continuous random tree [15]. The latter certainly does
not look like our smooth 4-dimensional universe. This fact has been taken by some
theoretical physicists as an argument to dismiss the whole tensor track approach.
However we think that more physical phases of random geometry probably hide
in the structure of subdominant 1/N tensor contributions. This structure is much
more complex in the tensor than in the matrix case, as it mixes in a non-trivial
way topology and triangulation complexity. In matrix models the sub-leading 1/N
contributions are incorporated through a single step, called the double scaling
limit. In the tensor case the double scaling limit also exists, but it incorporates
still a very small fraction of the tensor perturbative expansion [13]. It will certainly
require a much finer mathematical analysis than in the matrix case to discover all
what the 1/N tensor expansion has to tell us about quantum gravity.

In 2015 a bridge was found between tensor models and holography through
the quantum mechanical Sachdev-Ye-Kitaev model [16]. This condensed matter
model has a melonic large N limit which exhibits features of the much sought
after near-AdS2/CFT1 correspondence. In 2016 the ordinary SYK model, which
contains a quenched tensor field, has been generalized into field theoretic models
[17] which share the same melonic leading term, but do contain the rich geometric
structure of true tensor models in their subdominant 1/N expansion.

Other current developments tend to show that tensor models, just like their
matrix model parents, have many unexpected mathematical as well as physical
applications outside the initial quantum gravity motivation, for instance in enu-
merative combinatorics [18], in statistical mechanics [19, 20] and for understanding
energy cascade in randomized non-linear PDE’s [21]. Our Oberwolfach talk will
partly review this rapidly expanding subject.
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The term a4 in the heat kernel expansion of noncommutative tori

Farzad Fathizadeh

(joint work with Alain Connes)

For a general metric in the canonical conformal structure on the noncommutative
two torus T2

θ, we calculate and study properties of the local geometric term a4
that has explicit information about the noncommutative analog of the Riemann
curvature tensor. The term a4 appears in the small time heat kernel expansion of
the Laplacian of the curved metric. We derive an explicit formula for this term by
making use of heat kernel methods [8], the pseudodifferential calculus developed in
[1], and suitable techniques to handle challenges posed by the noncommutativity of
the algebra C∞(T2

θ) of the noncommutative torus. The presence of noncommuta-
tivity has in fact the significant effect of having complicated dependence in the final
formulas for the geometric invariants, such as a4, on the modular automorphism
of the state representing the volume form of the curved metric.

Stimulated by the analog of the Gauss-Bonnet theorem and the scalar curvature
for T2

θ [5, 6, 4, 7], this line of research has attained remarkable attention in recent
years and its origins can be traced back to classical facts in spectral geometry.
That is, let us consider the Laplacian ∆g of a Riemannian metric g on a closed
manifold M , which acts on C∞(M). There are densities a2n(x,∆g) dx on M that
can be derived locally from the Reimann curvature tensor and its contractions
and covariant derivatives such that for any f ∈ C∞(M), as t → 0+, there is an
asymptotic expansion of the following form:

(1) Trace (f exp(−t∆g)) ∼ t−dim(M)/2
∞∑

n=0

tn
∫

M

f(x) a2n(x,∆g) dx.
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Due to the rapid growth in the complexity of the expressions for the
a2n(x,∆g) dx, in the literature one can find formulas only up to a10. For example,
one has [8]: a0(x,∆g) = (4π)−1, a2(x,∆g) = (4π)−1(−R(x)/6), and

a4(x,∆g) = (4π)−1(1/360)(−12∆gR(x) + 5R(x)2 − 2|Ric(x)|2 + 2|Riem(x)|2),

where Riem,Ric,R denote the Riemann curvature tensor, Ricci tensor and scalar
curvature of the metric, respectively. This fact shows that fundamental geometric
information is encoded in geometric operators such as Laplacians. Hence, in non-
commutative geometry, one allows a noncommutative geometric manifold to have
a noncommutative algebra of functions while the metric information is encoded in
a geometric operator. The depth of this idea is fully illustrated in [3] by showing
that the Dirac operator of any Riemannian spinc manifold (which squares to a
Laplace-type operator) contains the full metric information.

We now turn our focus back to the noncommutative torus whose algebra C(T2
θ)

is the C∗-algebra generated by two unitaries U and V satisfying the commutation
relation V U = e2πiθUV for an arbitrary θ ∈ R. The canonical trace ϕ0 on C(T2

θ)
is defined by ϕ0(1) = 1 and ϕ0(U

mV n) = 0 if (m,n) 6= (0, 0), and the canonical
derivations (analogs of partial differentiation) δ1 and δ2 on C∞(T2

θ) are defined
by δ1(U) = U , δ1(V ) = 0, δ2(U) = 0, δ2(V ) = V . The trace ϕ0 is viewed as
integration against the volume form of the flat metric. Therefore, by using a fixed
self-adjoint element ℓ ∈ C∞(T2

θ), the functional ϕ(a) = ϕ0

(
ae−2ℓ

)
for a ∈ C(T2

θ)
plays the role of the volume form of the conformal perturbation of the flat metric by
e−2ℓ [5]. This functional is a state and the logarithm of its modular automorphism
is given by ∇(a) = 2(−ℓa+aℓ). By performing a heavy computer aided calculation
we find that the analog of the term a4 in (1) for the Laplacian ∆ℓ of the perturbed
metric on T2

θ is of the following form (which belongs to C∞(T2
θ)):

a4(ℓ) =

−e2ℓ
(
K1(∇)

(
δ21δ

2
2(ℓ)

)
+K2(∇)

(
δ41(ℓ) + δ42(ℓ)

)
+K3(∇,∇) ((δ1δ2(ℓ)) · (δ1δ2(ℓ)))+

K4(∇,∇)
(
δ21(ℓ) · δ22(ℓ) + δ22(ℓ) · δ21(ℓ)

)
+K5(∇,∇)

(
δ21(ℓ) · δ21(ℓ) + δ22(ℓ) · δ22(ℓ)

)
+

K6(∇,∇)
(
δ1(ℓ) · δ31(ℓ) + δ1(ℓ) ·

(
δ1δ

2
2(ℓ)

)
+ δ2(ℓ) · δ32(ℓ) + δ2(ℓ) ·

(
δ21δ2(ℓ)

))
+

K7(∇,∇)
(
δ31(ℓ) · δ1(ℓ) +

(
δ1δ

2
2(ℓ)

)
· δ1(ℓ) + δ32(ℓ) · δ2(ℓ) +

(
δ21δ2(ℓ)

)
· δ2(ℓ)

)
+

K8(∇,∇,∇)
(
δ1(ℓ) · δ1(ℓ) · δ22(ℓ) + δ2(ℓ) · δ2(ℓ) · δ21(ℓ)

)
+

K9(∇,∇,∇) (δ1(ℓ) · δ2(ℓ) · (δ1δ2(ℓ)) + δ2(ℓ) · δ1(ℓ) · (δ1δ2(ℓ))) +
K10(∇,∇,∇) (δ1(ℓ) · (δ1δ2(ℓ)) · δ2(ℓ) + δ2(ℓ) · (δ1δ2(ℓ)) · δ1(ℓ)) +

K11(∇,∇,∇)
(
δ1(ℓ) · δ22(ℓ) · δ1(ℓ) + δ2(ℓ) · δ21(ℓ) · δ2(ℓ)

)
+

K12(∇,∇,∇)
(
δ21(ℓ) · δ2(ℓ) · δ2(ℓ) + δ22(ℓ) · δ1(ℓ) · δ1(ℓ)

)
+

K13(∇,∇,∇) ((δ1δ2(ℓ)) · δ1(ℓ) · δ2(ℓ) + (δ1δ2(ℓ)) · δ2(ℓ) · δ1(ℓ)) +
K14(∇,∇,∇)

(
δ21(ℓ) · δ1(ℓ) · δ1(ℓ) + δ22(ℓ) · δ2(ℓ) · δ2(ℓ)

)
+

K15(∇,∇,∇)
(
δ1(ℓ) · δ1(ℓ) · δ21(ℓ) + δ2(ℓ) · δ2(ℓ) · δ22(ℓ)

)
+

K16(∇,∇,∇)
(
δ1(ℓ) · δ21(ℓ) · δ1(ℓ) + δ2(ℓ) · δ22(ℓ) · δ2(ℓ)

)
+

K17(∇,∇,∇,∇) (δ1(ℓ) · δ1(ℓ) · δ2(ℓ) · δ2(ℓ) + δ2(ℓ) · δ2(ℓ) · δ1(ℓ) · δ1(ℓ)) +
K18(∇,∇,∇,∇) (δ1(ℓ) · δ2(ℓ) · δ1(ℓ) · δ2(ℓ) + δ2(ℓ) · δ1(ℓ) · δ2(ℓ) · δ1(ℓ)) +
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K19(∇,∇,∇,∇) (δ1(ℓ) · δ2(ℓ) · δ2(ℓ) · δ1(ℓ) + δ2(ℓ) · δ1(ℓ) · δ1(ℓ) · δ2(ℓ)) +
K20(∇,∇,∇,∇) (δ1(ℓ) · δ1(ℓ) · δ1(ℓ) · δ1(ℓ) + δ2(ℓ) · δ2(ℓ) · δ2(ℓ) · δ2(ℓ))

)
.

We find that all of the functions K1, . . . ,K20 are smooth quotients of ex-
ponential polynomials, which have lengthy expressions, in particular the 3 and
4 variable functions K8, . . . ,K20. This invites one to use methods from the alge-
braic geometry of exponential polynomials familiar in transcendence theory [9] to
determine the general structure of the noncommutative geometric invariants. In
order to confirm the accuracy of our calculations we check that K1, . . . ,K20 satisfy
a highly non-trivial family of functional relations that we derive theoretically. This
is done by comparing the outcomes of two different calculations of the gradient
of the functional that sends any self-adjoint element ℓ ∈ C∞(T2

θ) to ϕ0 (a4(ℓ)):
first, by using a fundamental identity proved in [4] and, second, by direct cal-
culations in terms of finite differences. By restricting the functional relations to
certain hyperplanes we find a partial differential system that admits the action of
cyclic groups of order 2, 3 and 4. This helps us to find expressions in terms of our
calculated functions that possess certain symmetries with respect to the action of
these groups. Moreover, the partial differential system admits a very simple and
natural flow that allows us to express the system in a simplified manner. Finally,
as a corollary of our main calculation, we conveniently obtain an expression for
the term a4 of the 4-dimensional product geometry of the form T2

θ1
× T2

θ2
whose

metric is not conformally flat. In this case, two modular automorphisms are in-
volved and this motivates further systematic research on twistings that involve two
dimensional modular structures, cf. [2].
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Harmonic functions on quantum trees

Sergey Neshveyev

(joint work with Sara Malacarne)

The study of harmonic functions on trees has a long history. In the early 1960s
Dynkin and Malyutov [4] considered nearest neighbor random walks on free groups
and obtained an analogue of the Poisson formula for them by identifying the Martin
boundary of such a group with the space of ends of its Cayley graph. This result
was then generalized by a number of authors, among others by Cartier [2], who
considered nearest neighbor, but not necessarily homogeneous, random walks on
trees. Finite range random walks were subsequently studied by Derriennic [3] in
the homogeneous case and by Picardello and Woess [8] in general. In both cases
the result was the same as before: the Martin boundary of a tree coincides with
its space of ends. This was later generalized to hyperbolic graphs by Ancona [1]
who considered finite range random walks on such graphs and showed that the
corresponding Martin boundaries coincide with the Gromov boundaries. A related
result was also obtained by Kaimanovich [5].

The natural quantum analogues of free groups are the duals of free quantum
groups of Van Daele and Wang [11]. They are defined as follows.

Fix a natural number n ≥ 2 and a matrix F ∈ GLn(C) such that Tr(F ∗F ) =
Tr((F ∗F )−1). The compact free unitary quantum group Au(F ) is defined as the
universal unital C∗-algebra with generators uij , 1 ≤ i, j ≤ n, such that the matrices
U = (uij)i,j and FU cF−1 are unitary, where U c = (u∗ij)i,j , equipped with the
comultiplication

∆(uij) =

n∑

k=1

uik ⊗ ukj .

From now on we assume that F is not a unitary 2-by-2 matrix. An interpre-
tation of the dual Γ of Au(F ) as vertices of a quantum tree was proposed by
Vergnioux [12], and an analogue of the end compactification was defined by Vaes
and Vergnioux [10] in the free orthogonal case and by Vaes and Vander Vennet in
the free unitary case [9]. It is defined as follows.

Let I be the set of isomorphism classes of irreducible representations of Au(F ).
Then

ℓ∞(Γ) ∼= ℓ∞-
⊕

x∈I

B(Hx).

The set I is a free monoid on letters α and β. Consider the tree with vertex set I
such that different elements x and y of I are connected by an edge if and only if
one of them is obtained from the other by adding (or removing) one letter on the
left. Denote by Ī the corresponding end compactification of I. The elements of Ī
are words in α and β that are either finite or infinite on the left, and the boundary
∂I = Ī \ I is the set of infinite words. The algebra C(Ī) of continuous functions
on Ī can be identified with the algebra of functions f ∈ ℓ∞(I) such that

|f(yx)− f(x)| → 0 as x→∞, uniformly in y ∈ I.
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Now, for all x, y ∈ I, fix an isometry V (xy, x⊗ y) ∈Mor(xy, x⊗ y). Define ucp
maps

ψyx,x : B(Hx)→ B(Hyx), T 7→ V (yx, y ⊗ x)∗(1⊗ T )V (yx, y ⊗ x).
They do not depend on any choices. Define

B = {a ∈ ℓ∞(Γ) : ‖ayx − ψyx,x(ax)‖ → 0 as x→∞, uniformly in y ∈ I}.
It can be shown that this is a unital C∗-subalgebra of ℓ∞(Γ) containing c0(Γ).
It can therefore be considered as the algebra of continuous functions on a com-
pactification of Γ, which should be thought of as a quantum end compactification
of Γ. The (noncommutative) algebra of continuous functions on the corresponding
quantum space of ends is defined by B∞ = B/c0(Γ).

The following is our main result.

Theorem 1 [6] Consider a free unitary quantum group G = Au(F ), with F not
a unitary 2-by-2 matrix, and a generating finitely supported probability measure µ
on I. Then the Martin compactification C(Γ̄M,µ) of the discrete quantum group

Γ = Ĝ with respect to µ, as defined in [7], coincides with the compactification B.
Therefore the Martin boundary C(∂ΓM,µ) coincides with B∞.
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Sums of linear operators in Hilbert C*-modules

Matthias Lesch

(joint work with Bram Mesland)

This is a report on the paper [LeMe18].
A well-known problem in functional analysis is to describe the domain and the

spectral properties of the sum of two densely defined closed operators. In general
nothing can be said as the intersection of the domains can be just {0}. The problem
has a rich history which we are going to review briefly before summarizing our main
results.

1. Banach space history of the problem

Given two densely defined unbounded operators A,B in some Banach space X
with a joint ray, e.g. i(0,∞) or (−∞, 0), in the resolvent set. A basic problem is
to give criteria which ensure the following to hold:

(1) A+B + λ is invertible for −λ in the said ray and large enough.
(2) A+B is a closed operator with domain D(A) ∩D(B).

One of the first comprehensive papers on the problem [DPGr75] was motivated
by evolution equations

−∂2t︸︷︷︸
A

u+ Λ(t)︸︷︷︸
B

u+ λu = f,

with Λ(t) being a family of partial differential operators parametrized by t.
The validity of (1) means that the equation Ax + Bx + λx = y is weakly

solvable for λ large, that is given y there is a sequence xn ∈ D(A) ∩ D(B) such
that xx → x and (A+B+λ)xn → y. (1) and (2) together mean that the equation
Ax + Bx + λx = y is strongly solvable for λ large, that is given y there exists a
solution x ∈ D(A) ∩D(B).

One, and essentially the only approach to the problem in the Banach space
context rests on the idea of viewing A+B + λ as a (operator valued) function of
B and writing the resolvent (A+B + λ)−1 as the Dunford integral

(1) Pλ :=
1

2πi

∫

Γ

(z + λ+A)−1 · (z −B)−1dz,

where Γ is a suitable contour encircling the spectrum of B. This approach works
well only for sectorial operators with spectral angle < π/2. Eq. (1) equals the
resolvent only if A and B are resolvent commuting and so it is not surprising
that in the literature certain commutator conditions are formulated to ensure that
Eq. (1) gives an appropriate approximation to the resolvent [DPGr75, DoVe87,
LaTe87, Fuh93, MoPr97, KaWe01, PrSi07, Roi16].
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2. KK-theory history of the problem

In the completely different context of KK-theory [Kas80] one encounters the
problem of regular sums of operators when one tries to construct the notoriously
complicated Kasparov product at the level of unbounded cycles [Mes14, BMvS16,
MeRe16, KaLe12, KaLe13].

Here, the operators in question act on a Hilbert-(A,B)-bimodule E, which is
a complete inner product module over the C∗-algebra B. For an unbounded B-
linear operator T in E it makes sense to talk about self-adjointness and hence one
might be tempted to believe that everything is as nice as in a Hilbert space. This,
unfortunately (or fortunately), is not the case as the axiom of regularity does not
come for free: analogously as in the Banach space context above an unbounded
self-adjoint B-linear operator S in E is called regular if S ± λ has dense range
for one and hence for all λ ∈ C \ R. If B = C then regularity is equivalent to
self-adjointness. In general, it is an additional feature, cf. [BaJu83, Wor91,
Pie06, KaLe12].

An unbounded Kasparov module is a triple (A , E,D) consisting of a Hilbert
(A,B)- bimodule E and a self-adjoint regular operator D, with compact resolvent,
that commutes with the dense subalgebra A ⊂ A up to bounded operators. In the
construction of the tensor product of two such modules (A , X, SX) and (B, Y, TY )
one encounters two problems.

The first one is the definition of the operator T = 1 ⊗∇ TY on the module
E := X ⊗B Y . Since T does not commute with B, one needs to incorporate
extra data in the form of a connection ∇. This is discussed in great generality in
[MeRe16] and in this paper we will not be concerned with this construction.

Once a well-defined self-adjoint and regular connection operator T on E has
been constructed fromTY , the second problem that needs to be addressed is self-
adjointness and regularity of the sum D = S + T , where S = SX ⊗ 1. The goal is
then to formulate an appropriate smallness condition on the graded commutator
ST + TS such that S + T is self-adjoint and regular on D(S) ∩D(T ).

The Banach space results mentioned in the previous paragraph do not (at least
not a priori) apply to this situation as in general self-adjoint operators are sectorial
with spectral angle π/2. Hence the sum of the spectral angles of S and T is π
which is exactly the threshold for the validity of the above mentioned regularity
results for sectorial operators. The methods in the Hilbert module case therefore
resemble much more the methods known from Hilbert space theory.

3. The main results

Here we offer the following result which contains all previously known results in
this context as special cases [Mes14, KaLe12, MeRe16].

Theorem 1. Let S, T be self-adjoint and regular operators in the Hilbert-B-module
E. Assume that

(1) there are constants C0, C1, C2 > 0 such that the form estimate

(2) 〈[S, T ]x, [S, T ]x〉 ≤ C0 · 〈x, x〉 + C1 · 〈Sx, Sx〉 + C2 · 〈Tx, Tx〉
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holds for all x ∈ F := F (S, T ) =
{
x ∈ D(S) ∩D(T )

∣∣ Sx ∈ D(T ), T x ∈
D(S)

}
. This is an inequality in the C∗-algebra B.

(2) There is a core E ⊂ D(T ) such that (S + λ)−1
(
E
)
⊂ F (S, T ) for λ ∈ iR,

|λ| ≥ λ0.
Then S+T is self-adjoint and regular on D(S)∩D(T ). That is for z ∈ C \R and
y ∈ E the equation

Sx+ Tx+ z · x = y

has a unique (strong) solution x ∈ D(S) ∩D(T ).

Our main application of the Theorem is to the calculation of the Kasparov
product of unbounded cycles in KK-theory.

Historically, the main tool for handling the Kasparov product has consisted of
a guess-and-check procedure pioneered by Connes-Skandalis [CoSk84], and later
refined by Kucerovsky [Kuc97]. This entails checking a set of three sufficient
conditions to determine whether a cycle (A , E,D) is the product of the cycles
(A , X, SX) and (B, Y, TY ). Although this avoids the aforementioned hard prob-
lems, it leaves one with the burden of coming up with a good guess for D in every
particular instance, as well as proving that (A , E,D) is a cycle.

In recent years, significant progress has been made on the constructive approach
to finding D. In this setting, the first sufficient condition of Kucerovsky is satisfied
whenever D = S + T and T is a connection operator relative to TY . The second
condition will be satisfied whenever D(S + T ) ⊂ D(S). In previous work the
condition

〈[S, T ]x, [S, T ]x〉 ≤ C(〈x, x〉 + 〈Sx, Sx〉),
was imposed to ensure self-adjointness of the sum S + T . This condition implies
that

〈(S + T )x, Sx〉+ 〈Sx, (S + T )x〉 ≥ −κ〈x, x〉,
for some κ > 0, which is the third sufficient condition appearing in [Kuc97,
Theorem 13]. The form estimate (2) is in general not compatible with Kucerovsky’s
estimate. In [LeMe18] we prove that it is nonetheless sufficient to construct the
Kasparov product.

Theorem 2. Let (A , X, SX) and (B, Y, TY ) be unbounded Kasparov modules for
(A,B) and (B,C) respectively and let E := X ⊗B Y and S := SX ⊗ 1. Suppose
that T : D(T )→ E is an odd self-adjoint regular connection operator for TY such
that

(1) for all a ∈ A we have a : D(T )→ D(T ) and [T, a] ∈ L (E);
(2) (S, T ) is a weakly anticommuting pair.

Then (A , E, S+T ) is an unbounded Kasparov module that represents the Kasparov
product of (X,SX) and (Y, TY ).

We note that the statement that the sum operator D = S + T is a KK-cycle
is part of this result. The proof consists of showing that weak anticommutation
implies a weakened version of the sufficient conditions of Connes-Skandalis. In the
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constructive setting, this supersedes the result of Kucerovsky and covers a wider
range of examples, provided that we construct our operator as a sum.
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Non-commutative spectral triples for space-time

John W. Barrett

(joint work with James Gaunt)

Following the success of spectral triples in describing the internal space of par-
ticle physics [1], it is natural to suggest that space-time itself may also be non-
commutative using the same mathematical framework. Mathematically, one can
think of this as the approximation of (commutative) manifolds by non-commutative
spaces, in such a way that suitable limits of non-commutative spaces become com-
mutative. Since the key physical requirement is a cut-off in energy (at the Planck
scale), compact spaces will be approximated by finite spectral triples (i.e., a finite-
dimensional Hilbert space), and non-compact ones should have a finite number of
fermion states ‘per unit volume’.

More than just approximation, however, one wants to learn what aspects of
commutative geometry survive as analogues in the relevant non-commutative case
(and converge to the commutative notions). After introducing the general frame-
work, the example of the fuzzy torus as a finite spectral triple is explained (in
joint work with James Gaunt). Finite spectral triples are very restrictive and it
is well known that the standard construction of the Dirac operator on the non-
commutative torus does not work with matrices. However, there is an alternative
starting point that is very fruitful and yields a Dirac operator on the fuzzy torus
that does indeed square to the Laplace operator.

The framework of a finite spectral triple [2] is a finite-dimensional Hilbert space
H with a faithful representation λ of a ∗-algebra A in H and a Dirac operator D.
The real structure is an anti-unitary operator J so that a 7→ Jλ(a∗)J−1 is a right
action of A that commutes with the left action λ.

Two key definitions are the operators v(a) = λ(a) − Jλ(a∗)J−1 and x(a) =
λ(a) + Jλ(a∗)J−1 in H. It is helpful to write the left and right actions in abbre-
viated notation so

v(a)ψ = [a, ψ] = aψ − ψa, x(a) = {a, ψ} = aψ + ψa,

for ψ ∈ H. The operator v(a) is the non-commutative version of a Hamiltonian
vector field. I propose the interpretation of the anti-commutator x(a) is that it
is the non-commutative version of the operator of multiplication by a coordinate
function determined by a. Indeed in a suitable limiting process as dimH → ∞,
the x(a), after a rescaling, become commutative and converge (pointwise in H) to
the coordinate ring of a limiting manifold. The v(a) are not scaled and converge to
vector fields on this manifold. This is analogous to the formalism of the contraction
of representations of a Lie algebra [3]. It is worth noting that in the only examples
I know how to construct, the spinor bundle of the limiting manifold is enhanced
to a trivial bundle (e.g., via an embedding into Rn). One suspects this is a generic
feature.

This limiting construction does throw some light onto the differences between
the commutative and non-commutative definitions of a real spectral triple. The
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first-order condition for a non-commutative triple reads
[[
D, x(a) + v(a)

]
, x(b)− v(b)

]
= 0.

In the commutative limit, the v operators become vanishingly small compared
to the x operators and so one is left with the correct first-order condition in the
commutative case, [[

D, x(a)
]
, x(b)

]
= 0.

In addition, it explains the additional axiom one has in the commutative case

Jx(a)∗J−1 = x(a).

This follows automatically in the limit because it is true for the x(a) in the non-
commutative case; but it is of course not true that Ja∗J−1 = a.

The fuzzy torus [4] illustrates the geometric interpretation of the anticommu-
tators. Picking U, V ∈ A such that

UV = qV U,

with q ∈ C a root of unity, one can define the Laplacian [5]

∆ψ =
−1

q1/2 − q−1/2

(
[U, [U∗, ψ]] + [V, [V ∗, ψ]]

)
.

This has eigenvalues given by the q-number analogues of eigenvalues of commu-
tative flat tori, with a variety of possible shapes for the tori, depending on the
choices of U and V .

The Dirac operator is defined using four gamma matrices that commute with
the algebra. The formula is

Dψ =
1

q1/4 − q−1/4

∑

i

γi ⊗ [Xi, ψ] +
1

q1/4 + q−1/4

∑

i<j<k

γiγjγk ⊗ {Xijk, ψ}

with

X1 = X234 = −1

4
(U + U∗), X2 = −X134 = − i

4
(U∗ − U),

X3 = −X124 =
1

4
(V + V ∗), X4 = X123 =

i

4
(V ∗ − V ).

The eigenvalues are again q-number analogues of the commutative ones, so that
D converges pointwise to the commutative operator in the large matrix limit, in
which q → 1.

The interpretation of this formula is that the commutator terms are analogues
of partial derivatives and the anti-commutator terms are the analogues of spin
connection terms. Indeed, the corresponding commutative formula is exactly the
usual Dirac operator on a flat torus but expressed using a rotating frame, giving
non-zero connection coefficients but vanishing curvature. The rotation is a map
T 2 → SO(4) and encodes a spin structure according to π1(T

2) → π1(SO(4)). In
cases where this is trivial (which is the non-bounding ‘Lie’ spin structure), one can
calculate that the non-commutative D2 is unitarily equivalent to ∆.
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Time to think about time?

Fedele Lizzi

(joint work with F. D’Andrea, A. Devastato, S. Farnsworth, M.A. Kurkov and
P. Martinetti in various combinations)

Most of noncommutative geometry [1], being spectral, is based on elliptic opera-
tors, the archetype of them being the Dirac operator, or the Laplacian defined on
a Riemannian compact manifold. Physical spacetime, however, is noncompact and
with a Lorentzian signature. The compactness issue is usually considered a minor
issue, since usually the problems for quantum field theory come form short distance
(ultraviolet) divergences1. The implementation of a “Lorentzian” noncommutative
geometry seems to be a rather difficult problem. One direction has been to use
Krein Spaces, which generalise the Hilbert space structure [3, 4, 5, 6], another is a
covariant approaches [7], Wick rotations on pseudo-Riemanninan structures [8], or
algebraic characterizations of causal structures [9, 10, 11], and others. Although
the mathematics coming out of these approach is very interesting, we are still far
away from a full understanding of the theory from a physical point of view. It
is fair to say that noncommutative geometry has a time problem. It is probably
time to confront this, both from a mathematical and a physical point of view.

Physicists themselves are no less culpable than mathematicians. To regularize
quantum field theory one of the most useful methods is to consider the theory in
Euclidean space, performing what is called a Wick rotation, whereby the time co-
ordinate is rotated, in a complex plane, to its imaginary counterpart, therefore ad-
justing the signature of spacetime to an Euclidean one. After the rotation, usually
divergent (path) integrals become convergent and it is possible perform calcula-
tions, for example scattering amplitudes. At the end another Wick (anti)rotation is
performed to obtain the answer in the space with Minkowskian signature. It must
be said that this procedure is often ill defined, especially in curved spacetime [12].
Nevertheless, the answers are in agreement with experiments.

We have analyzed in [13] the issue of Wick rotation in the Chamseddine-Connes
noncommutative approach to the standard model [14, 15] (for a recent review

1This too may be optimistic, the large distance (infrared) divergences are becoming relevant,
(for a review see [2]) and they may require a mathematical rethinking as well.
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see [16]). The issue is intimately related with the extra degrees of freedom of the
model known as fermion doubling feature of the model. We have given a precise
prescription for the Wick rotation from the Euclidean theory to the Lorentzian
one, eliminating the extra degrees of freedom. This requires not only projecting
out mirror fermions, which leads to the correct Pfaffian, but also the elimination
of the remaining extra degrees of freedom. The remaining doubling has to be
removed in order to recover the correct Fock space of the physical (Lorentzian)
theory. In order to get a Spin(1,3) invariant Lorentzian theory from a Spin(4)
invariant Euclidean theory such an elimination must be performed after the Wick
rotation. These considerations point to a deep connection between the spectral
action and the signature of spacetime

There is another cunning connection between Lorentzian signature and the
standard model. In [17] we have show how twisting the spectral triple [18] of the
Standard Model of elementary particles naturally yields the Krein space associated
with the Lorentzian signature of spacetime. The twist is necessary to introduce
a“Grand Symmetry”[19], which is one of the solutions of the Higgs mass problem
in the model, but is otherwise interesting [20, 21]. We established the fact that
the required twist corresponds to a Wick rotation. More precisely, we show that
the twist turns the inner product of the Hilbert space of (Euclidean) spinors into
a Krein product. The latter is precisely the inner product associated with spinors
on a Lorentzian manifold. In a sense the twist is actually the square of the Wick
rotation. The picture that emerges is that twisted geometries may provide an
appropriate framework from which to facilitate the description of non-Euclidean
signatures in NCG.
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Higher rho-invariants for the signature operator – A survey and
perspectives

Charlotte Wahl

Analytical rho-invariants associated to Dirac operators have been introduced by
Atiyah–Patodi–Singer. Their definition is based on the eta-invariant, however they
have better invariance properties, at least in geometrically interesting cases: For
the spin Dirac operator for manifolds with positive scalar curvature and for the
signature operator they do not depend on the metric. More generally, they are
invariant under suitable bordism relations, which makes them an important tool
for the study of bordism classes of psc-metrics and of the surgery structure set,
respectively.

Along with the generalization of index theory first to an L2-setting and later to
a higher setting, allowing the pairing of the index with cocycles on the fundamen-
tal group, appropriate generalizations of the APS rho-invariant where found and
studied in work of Cheeger–Gromov, Lott, Leichtnam–Piazza and others. APS and
Cheeger–Gromov rho-invariants have been exploited for classification results of psc
metrics and of differential structures in dimensions 4k − 1. Higher rho-invariants
yield nontrivial results also in other, in particular even dimensions. A crucial prop-
erty for applications are product formulas of the type ρ(M ×N) = ρ(M) sign(N).

While here we are focussing on numerical invariants, other generalizations based
on and inspired by work of Higson–Roe lead to K-theoretic rho-invariants. A
precise relation between the numerical and K-theoretic higher invariants has not
yet been proven.

The basic ingredient for the definition of higher rho-invariants for a closed
oriented Riemannian manifold M is the Mishchenko C∗Γ-vector bundle F =
M̃ ×Γ C

∗Γ. Here M̃ → M is a Galois covering with deck transformation group
Γ. The invariants are derived from the twisted signature operator DF . Since
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the higher eta-invariant is only defined for invertible Dirac operators, one has to
find a “canonical” invertible perturbation of DF in order to construct higher rho-
invariants. In the case of psc manifolds invertibility is automatically guaranteed.
In the case of the signature operator an appropriate perturbation has been found
in two situations (for simplicity we restrict to odd-dimensional M):

(1) If dimM = 2m− 1 and the m-th Novikov–Shubin invariant of M is ∞+,
let I be the involution which is 1 on forms of degree < m and −1 on the
complement. Then for t > 0 small DF + tI is invertible. By a standard
spectral flow argument, the higher rho-invariant does not depend on t.

(2) Instead of a single manifold one considers a smooth orientation preserv-
ing homotopy equivalence f : M → N between odd-dimensional oriented
closed Riemannian manifolds. Let FN = Ñ ×Γ C

∗Γ be the Mishchenko
bundle on N and FM = f∗FN the induced Mishchenko bundle onM . The
signature operator N ∪Mop twisted by F := FN ∪FM has a special class
of invertible perturbations which was defined by Hilsum–Skandalis and
further studied in the context of rho-invariants by Piazza–Schick. Again,
the induced higher rho-invariant does not depend on the choice of the
perturbation.

In both cases the rho-invariants have the expected properties: invariance under
changes of the metrics, product formulas, well-definedness on the (smooth) surgery
structure set, compability with the action of the L-groups on the surgery structure
set . . .

In joint work (in progress) with Sara Azzali we are considering the generalization
of rho-invariants to an almost flat setting. Here several frameworks are relevant:

(i) the case of twisted group C∗-algebras associated to a group 2-cocycle,
(ii) almost flat vector bundles,
(iii) quasirepresentations of the fundamental group.

In [1] we established the necessary tools for the definition of (higher) rho-
invariants in the case of (i) for spin Dirac operators on psc manifolds. In this
case the deformed C∗-algebras assemble to an upper semi-continuous field. The
invertibility of the perturbed signature operator from (1) is then guaranteed for
small parameters.

In cases (ii) and (iii), which include (i), this argument does not work. Additional
conditions such as the restriction to completely positive asymptotic representations
of C∗Γ might be necessary. Note that these two frameworks are closely related by
results of Dardalat. However, Dardalat focussed on the induced K-theory classes
whereas for the study of secondary invariants the connections also have to be taken
into account. Framework (iii) seems more suited than (ii) for the establishment
of geometric properties like bordism invariance which are formulated in terms of
Galois coverings and their classifying maps.

In the situation of (2) all three frameworks should lead to a reasonable definition
of rho-invariants since the Hilsum–Skandalis perturbation was also constructed in
an almost flat setting.
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Discrete group actions and a weak form of the Baum–Connes
conjecture

Sara Azzali

(joint work with Paolo Antonini, Georges Skandalis)

Let Γ be a discrete group. In this talk, we use KK-theory with R-coefficients to
construct a Baum–Connes map localised at the unit element of Γ. The localisation
is defined by a distinguished idempotent [τ ] of the commutative ring KKΓ

R
(C,C)

which is canonically associated to Γ via its standard trace. We construct a natural
Baum–Connes type morphism µτ between the τ-parts of the usual left and right
hand side. We show that the τ -form of the Baum–Connes conjecture is weaker
than the classical one, but still implies the strong Novikov conjecture.

1. KK-theory with coefficients in R and the τ-part

The groups KKR are defined as inductive limits over II1-factors. Let A and B
be Γ-C∗-algebras, let N be a II1-factor with trivial Γ-action. The functor N →
KKΓ

∗ (A,B ⊗N) from the category of II1-factors N acting on a separable Hilbert
space H , with morphism given by unital embeddings, to the category of groups
has a limit [2] and we set

KKR(A,B) := lim
FII1

(H)
(N → KK(A,B ⊗N)) .

The tensor product ⊗ is the minimal one. Hence an element x of KKΓ
R
(A,B) is

represented by a class x0 ∈ KKΓ(A,B ⊗N), where N is a II1-factor with trivial
Γ-action. Note that if A and B are in the bootstrap class then KKΓ(A,B ⊗ N)
is independent of the II1-factor N .

1.1. KKR-classes coming from traces. Let tr : D → C be a tracial state.
There exists a II1-factor N and a unital trace preserving morphism φ : D → N .
The class [φ] ∈ KKR(D,C) only depends on the trace tr and will be denoted by
[tr].

Let C∗Γ denote the maximal group C∗-algebra of the discrete group Γ. Then
the standard group trace τ : C∗Γ→ C defined by τ(

∑
aγuγ) = ae gives a class in

KKR(C
∗Γ,C). As the latter group is isomorphic to KKΓ

R
(C,C), we obtain a class

[τ ] ∈ KKΓ
R(C,C)

which is canonically associated to Γ.
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1.2. The element [τ ]. In the ring KKΓ
R
(C,C), [τ ] is a projection. Moreover it is

central when acting on KKΓ
R
(A,B) by exterior product:

Lemma 1.1. (a) [τ ] ⊗ [τ ] = [τ ] ∈ KKΓ
R
(C,C);

(b) [τ ]⊗ x = x⊗ [τ ], ∀x ∈ KKΓ
R
(A,B), ∀A,B Γ-algebras.

Proof. (a): one shows more generally that if t, s are tracial states on C∗Γ, then the
product [t]⊗ [s] is the class of the trace t.s := (t⊗s)◦δ. Note that t.s(g) = t(g)s(g)
for any group element g ∈ Γ, so that in particular τ.t = t. (see [2, Remark 2.4]);
(b) follows from the commutativity of the exterior product in KKR ([3]). �

Definition 1.2. The image of the projector [τ ] acting KKΓ
R
(A,B) is called the

τ-part of KKΓ
R
(A,B) and denoted

KKΓ
R(A,B)τ := {x⊗ [τ ]; x ∈ KKΓ

R(A,B)} .
To clarify what the τ -part contains, let us compute for example 1ΓA,R ⊗ [τ ],

where 1ΓA,R is the unit of KKΓ
R
(A,A), for a given Γ-algebra A. Say the Γ-action

is denoted by β. Fix a II1-factor N with a trace preserving map λ : C∗
rΓ → N .

Then the class 1ΓA,R⊗ [τ ] is represented by the (A,A⊗N)-bimodule A⊗N , where
Γ acts by β ⊗ λ. This implies the following crucial fact.

Remark 1.3. Let A = C0(Y ), for a free and proper Γ-space Y . Then
KKΓ

R
(A,A)τ = KKΓ

R
(A,A). In fact, let β be the action of Γ on A by translations.

For any II1-factor N with trace preserving λ : C∗
rΓ→ N , the (A,A⊗N)-bimodule

A ⊗ N with Γ-action β ⊗ λ represents the module of sections of a flat bundle
over Y/Γ with fibre N . This can be always trivialised [1, Prop. 5.1] so that it is
equivalent in KKΓ to the (A,A ⊗ N)-bimodule A ⊗ N with Γ-action β ⊗ 1. As
a consequence, τ acts as the identity on the K-homology with Γ-compact support
KΓ

∗,R(EΓ) – where EΓ is the classifying space for free and proper actions.

What we have seen so far will be used to define the left hand side of a τ -Baum–
Connes map.

Let A be a Γ-algebra. For the right hand side, it is natural to define the τ -part
of KR(A ⋊r Γ) by letting [τ ] act via descent i.e. by right multiplication with the
idempotent element JΓ

r (1A⊗ [τ ]) of the ring KKR(A⋊r Γ, A⋊r Γ). Here J
Γ
r is the

descent morphisms KKΓ
R
(A,A) → KKR(A ⋊r Γ, A ⋊r Γ). The analogous for the

maximal crossed product will be denoted JΓ. We set

[τ ]r := JΓ
r ([τ ]) ∈ KKΓ

R(A⋊r Γ, A⋊r Γ) , [τ ]m := JΓ
r ([τ ]) ∈ KKΓ

R(A⋊ Γ, A⋊ Γ) .

Definition 1.4. The τ -parts of the crossed product are defined as:

K∗,R(A⋊r Γ)τ := {x⊗ [τ ]r; x ∈ K∗,R(A⋊r Γ)},
K∗,R(A⋊ Γ)τ := {x⊗ [τ ]m; x ∈ K∗,R(A⋊ Γ)} .

The τ -part does not distinguish between reduced and maximal crossed product:

Theorem 1.5. There is an isomorphism

K∗,R(A⋊ Γ)τ
≃−→ K∗,R(A⋊r Γ)τ
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Proof. Let λA : A⋊rΓ→ A⋊Γ be the natural map. Via coproduct we have a map
A⋊rΓ→ A⋊Γ⊗C∗

rΓ→ A⋊Γ⊗N which gives a class [∆A] ∈ KKR(A⋊rΓ, A⋊Γ).
It holds [∆A]⊗ [λA] = [τ ]r and [λA]⊗ [∆A] = [τ ]m. �

2. The localised Baum–Connes maps in KKR

For a Γ-algebra A, let µA : Ktop
∗ (Γ;A) −→ K∗(A ⋊r Γ) be the classical Baum–

Connes morphism, where Ktop
∗ (Γ;A) is the K-homology with compact support of

the classifying space for proper actions [5]. The collection of maps µA⊗N , where

N ranges over II1-factors with trivial Γ-action, defines a map µR : Ktop
∗,R(Γ;A) →

K∗,R(A⋊r Γ) which in turn descends to a map

µτ : Ktop
∗,R (Γ;A)τ −→ KR(A⋊r Γ)τ

between the τ -parts given by µτ (x ⊗ [τ ]) := µR(x) ⊗ [τ ]r for all x ∈ Ktop
∗,R(Γ;A).

The τ -form of the Baum–Connes conjecture with coefficients in a Γ-algebra A is
then the statement that µτ is an isomorphism.

Theorem 2.1. If the Baum–Connes assembly map is injective ( resp. surjective)
for A⊗N for every II1-factor N then µτ is injective ( resp. surjective) for A.

Let σ : KΓ
∗ (EΓ)→ Ktop

∗ (Γ) be the natural map.

Theorem 2.2. If µτ is injective, then the analytic assembly map
µan := µ ◦ σ : K∗(BΓ)→ K∗(C

∗
rΓ) is rationally injective.

For the complete proofs of the above, we refer to [3]. In particular, Theorem

2.2 is a consequence of the following Claim: there is a map t : Ktop

R,∗(Γ;A) −→
KΓ

∗,R(EΓ) which is inverse to σ on the τ-part. Whence the commutative diagram:

Ktop
∗,R(Γ)τ

t

qq

✌

✆

③

q
✐❝

µτ
// K∗,R(C

∗
t Γ)τ� _

��

KΓ
∗,R(EΓ)

σ
88qqqqqqqqqqq

K∗,R(C
∗
rΓ)

KΓ
∗ (EΓ)⊗ R

≃

OO

µan⊗1

// K∗(C
∗
rΓ)⊗ R

OO

To construct the map t, we show that we can find a Γ-space X such that:

(I) X is a compact, and every torsion element of Γ acts freely. (Such a space
will be called (TAF) (torsion acts freely). It satisfies: if Y is proper and
X is (TAF), then X × Y is free and proper w.r.t. the diagonal Γ-action).

(II) X has a Γ-invariant probability measure.

From (II) we get trace tX : C(X)⋊ Γ→ C, and its class [tX ] ∈ KKΓ
R
(C(X),C)).

For every pair JY, y K, where Y ∈ EΓ, y ∈ KΓ(C0(Y ),C), the map defined by
t(JY, y K) := JY ×X, y⊗[tX ] K provides an inverse of σ on the τ -parts, as σ◦t = [τ ],
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t ◦ σ = [τ ]. This shows the claim as [τ ] = 1 on KΓ
∗,R(EΓ). More generally, the

claim identifies the τ -part of Ktop
∗,R(Γ;A) with KK

Γ
R
(EΓ, A).

In [3, Section 7] we show that the construction of [9] for group actions using
the “Gromov Monster” still provides counterexamples to the bijectivity of the
τ -Baum–Connes map µτ . Again the failure of exactness is the source of coun-
terexamples, so that µτ cannot be an isomorphism for every Γ-algebra.
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Group cocycles on loop groups

Jens Kaad

(joint work with Ryszard Nest, Jesse Wolfson)

The Connes-Karoubi multiplicative character is an invariant of higher algebraic
K-theory associated to the geometric data contained in any finitely summable
Fredholm module, [5, 9]. The construction of the multiplicative character relies
on a long exact sequence of abelian groups relating the algebraic K-theory and
the topological K-theory of any Banach algebra (in fact any Fréchet algebra)
by means of a relative K-group. When the underlying geometric object is of
spectral dimension one, this secondary invariant can be computed using central
extensions and group 2-cocycles, [5]. Due to the work of Carey-Pincus this links
the multiplicative character to the tame symbol of a pair of meromorphic functions
on a Riemann surface, [3, 4]. As an example of the computation carried out by
Carey and Pincus one may consider the 2-summable Fredholm module

F =
(
C∞(T), L2(T), 2P − 1

)
,
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where P : L2(T)→ L2(T) denotes the orthogonal projection onto Hardy-space. In
this case, the multiplicative character provides a group homomorphism

MF : Kalg
2 (C∞(T))→ C∗

and one may evaluate this group homomorphism on the Steinberg symbol {f, g} ∈
Kalg

2 (C∞(T)) arising from a pair of smooth invertible functions on the circle f, g :
T→ C∗. In this setting we have the local formula

MF

(
{f, g}

)
= exp

( 1

2πi

∫

T

log(f)d log(g)
)
· g(1)w(f),

where w(f) ∈ Z denotes the winding number and where the logarithms are taken
with respect to the choice of basepoint 1 ∈ T.

The first main result of this talk is a category theoretic description of the
Connes-Karoubi multiplicative character on the second algebraic K-group. Start-
ing from a 2-summable Fredholm module F = (A, H, F ), we show how to construct
a category CF with an action of the general linear group GL(A). Using results of
Brylinski this GL(A)-category provides us with a group 2-cohomology class, which
computes the Connes-Karoubi multiplicative character in this one-dimensional set-
ting. Fundamental ingredients in our construction are graded determinant lines
for Fredholm operators and canonical isomorphisms of these graded determinant
lines associated with compositions and trace class perturbations of Fredholm op-
erators. The graded determinant line of a Fredholm operator T : H → G is given
by the pair

Det(T ) =
(
Λtop(Ker(T ))⊗ Λtop(Coker(T ))∗, Index(T )

)
,

which should be considered as an object in the Picard category of graded complex
lines. Our constructions are related to results of Arbarello, de Concini, and Kac,
[1], but, contrary to these authors, we are working in the analytic context of Hilbert
spaces and trace class perturbations.

The second (and much more substantial) main result of this talk concerns the
two-dimensional version of the Connes-Karoubi multiplicative character (coming
from a 3-summable Fredholm module), which is a secondary invariant of the third
algebraic K-theory relating to group 3-cocycles on the general linear group over
an algebra. Using ideas going back to Street, [10], we expose a higher category
theoretic framework for constructing group 3-cohomology classes out of group
actions. The core part of our work is however to explicitly construct examples
of the relevant higher category theoretical structures from “realistic” geometric
data. In order to achieve this goal, we assume that the geometry factorizes in a
vertical and a horizontal component and this gives rise to the following notion of
a bipolarized group representation:

Suppose that we have a discrete (but typically uncountable) group G that acts
on a separable Hilbert spaceH (by invertible operators). We say that two bounded
idempotents P and Q : H → H provide a bipolarization of this group representa-
tion when the following holds for all g, h ∈ G:

(1) The commutator [gPg−1, hQh−1] is of trace class;
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(2) The product of commutators [g, P ] · [h,Q] is of trace class.

Interesting examples of bipolarized group representations come from the geom-
etry of the noncommutative 2-torus. In this case, the group G in question is the
general linear groups over the smooth functions on the noncommutative 2-torus
whereas the two idempotents P and Q are given by spectral projections coming
from the two first order differential operators ∂

∂θ1
and ∂

∂θ2
.

Starting from a bipolarized group representation we are able to explicitly build
the relevant higher category theoretic framework so that any bipolarized group
representation gives rise to a group 3-cohomology class on the group in question
and with values in the complex multiplicative group. In particular, we have a
group 3-cohomology class

[cP,Q] ∈ H3(GL(C∞(T2
θ)),C

∗)

on the noncommutative 2-torus coming from the above mentioned bipolarization.
In the case of the commutative 2-torus, we are also able to verify that this group
3-cohomology class is non-trivial.

It is conjectured that our group 3-cocycles compute the Connes-Karoubi mul-
tiplicative character and that they are linked to the tame symbol of triples of
meromorphic functions on a 2-dimensional complex manifold.

Our constructions are related to the work of several authors: Frenkel and Zhu;
Gorchinskiy and Osipov; Braunling, Groechenigg and Wolfson. However, contrary
to these authors, we are working in the analytic setting of Hilbert spaces and
Schatten ideals, and this allows us to treat examples such as the actual commu-
tative 2-torus, C∞(T2), instead of the formal 2-torus, C((s))((t)), given by formal
Laurent series in two variables, [6, 7, 2].

The results of this talk are available as a preprint, which will hopefully soon
appear on the arXiv, [8].
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Solutions to the Yang–Baxter equation and related deformations

Giovanni Landi

The duality between spaces and algebras of functions on the spaces is at the basis
of noncommutative geometry. One gives up the commutativity of the algebras of
functions while replacing them by appropriate classes of noncommutative associa-
tive algebras which are considered as ‘algebras of functions’ on (virtual) ‘noncom-
mutative spaces’. A possibility is to consider noncommutative associative regular
algebras generated by coordinates functions that satisfy relations other than the
commutation between them, thus generalizing the polynomial algebras.

In this framework in the papers [4, 5] there were defined noncommutative
(products of) finite-dimensional Euclidean spaces. One starts with an algebra
AR generated by two sets of hermitian elements x = (x1, x2) = (xλ1 , x

α
2 ), with

λ ∈ {1, . . . , N1} and α ∈ {1, . . . , N2}, subject to relations

xλ1x
µ
1 = xµ1x

λ
1 , xα2 x

β
2 = xβ2x

α
2 , xλ1x

α
2 = Rλα

βµ x
β
2x

µ
1 , xα2 x

λ
1 = R

λα

βµ x
µ
1x

β
2(1)

for a ‘matrix’ (Rλα
βµ). Thus AR = ⊕n∈N(AR)n is the quadratic ∗-algebra generated

by the hermitian elements xλ1 and xα2 with the relations (1) and by duality is
thought to be the algebra of coordinate functions on the noncommutative vector
space RN1 ×R RN2 (the commutative solution is (R0)

λα
βµ = δλµδ

α
β and AR0 is the

coordinate algebra over the product RN1 × RN2 ≃ RN1+N2).
If we collect together the coordinates, defining the xa for a ∈ {1, 2, . . . , N1+N2}

by xλ = xλ1 and xα+N1 = xα2 , the relations (1) can be written in the form

xaxb = Ra b
c d x

cxd .

The endomorphism R = (Rab
cd) of (AR)1 ⊗ (AR)1 turns out to be involutive:

R2 = I ⊗ I and one next imposes that R satisfies the Yang-Baxter equation

(R⊗ I)(I ⊗R)(R⊗ I) = (I ⊗R)(R⊗ I)(I ⊗R).
Finally, additional conditions comes by requiring that both quadratic elements

(x1)
2 =

∑N1

λ=0(x
λ
1 )

2 and (x2)
2 =

∑N2

α=0(x
α
2 )

2 of AR be central. The general

solution of these conditions was given in [5] as follows. By setting R̂λα
µβ = Rλα

βµ for

the endomorphism R̂ = (R̂λα
µβ ) of R

N1 ⊗ RN2 one has the representation

(2) R̂ =
∑

r
Ar ⊗Br + i

∑
a
Ca ⊗Da

with Ar real symmetric and Ca real anti-symmetric N1 × N1 matrices, and Br

real symmetric and Da real anti-symmetric N2 × N2 matrices. The matrices A’s
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commutes among themselves and with the C’s and these also commute among
themselves; similarly for the matrices B’s and D’s, with a normalization condition

∑
r,s
ArAs ⊗BrBs +

∑
a,b
CaCb ⊗DaDb = 1N1 ⊗ 1N2.

Being the quadratic elements (x1)
2 and (x2)

2 central, the quotient algebra
AR/

(
(x1)

2 − 1, (x2)
2 − 1

)
defines the noncommutative product SN1−1×RS

N2−1 of

the classical (commutative) spheres SN1−1 and SN2−1. Furthermore, the quotient
algebra AR/

(
x1)

2 + (x2)
2 − 1

)
defines the noncommutative (N1 +N2− 1)-sphere

SN1+N2−1
R , a noncommutative spherical manifold in the sense of [2] and [1].
When N1 = N2 = 4, explicit solutions for the matrix Rλα

βµ were given in [4] and

[5] using quaternions. The space of quaternions H is identified with R4:

(3) H ∋ q = x01 + x1e1 + x2e2 + x3e3 7−→ x = (xµ) = (x0, x1, x2, x3) ∈ R4,

with imaginary units ea obeying the multiplication rule of H. With this, left
and right multiplication of quaternions are represented by matrices acting on R4:
Lq′q := q′q → E+

q′ (x) and Rq′q := qq′ → E−
q′ (x). In particular, the basis matrices

J+
a := E+

a and J−
a := −E−

a obey the algebra J±
a J

±
b = −δab1 +

∑3
c=1 εabcJ

±
c and

J+
a J

−
b = J−

b J
+
a . With the identification U1(H) ≃ SU(2), they are representations

of the Lie algebra su(2) corresponding to commuting SU(2) actions on R4.
We get antisymmetric matrices J+

u
:= u1J+

1 + u2J+
2 + u3J+

3 with any vector
u = (u1, u2, u3) ∈ R3. Then the matrix Rλα

βµ = u0 δλµδ
α
β + i (J+

v
)λµ (J

+
u
)αβ , satisfy all

required commutation relations. The action of SO(3) rotate v to a fixed direction
û and a residual gauge freedom, a rotation around û, removes one component of
u. We get families of noncommutative spaces governed by the deformation matrix

(4) Rλα
βµ = u0δλµδ

α
β + i (J+

1 )λµ (u
1J+

1 + u2J+
2 )αβ ,

and parameters constrained by (u0)2 + u2 = 1, a two-sphere P1(C) = S3/S1 = S2.
These are quaternionic generalisations of the toric four-dimensional noncom-

mutative spaces described in [2] for which the space of deformation parameter is
P1(R) = S1/Z2 = S1. In parallel to the complex case where there is an action of the
torus T2, there is now an action of the torus T 2

H
= U1(H)×U1(H) = SU(2)×SU(2)

by ∗-automorphisms of the algebraAR. The mappings x1 7→ J−
a x1, x2 7→ J−

b x2 for
a, b ∈ {1, 2, 3} leave the algebra relations alone and thus define ∗-automorphisms
of the ∗-algebra AR. This action of U1(H)× U1(H) on AR passes to the quotient
by the ideal generated by the central elements (x1)

2, (x2)
2 giving an action of the

quaternionic torus U1(H)× U1(H) by ∗-automorphisms of the coordinate algebra

A((T 2
H)R) = AR/

(
(x1)

2 − 1, (x2)
2 − 1

)

of a noncommutative ‘quaternionic torus’ (T 2
H
)R. The action also passes to the

quotient by the ideal generated by the central element (x1)
2 + (x2)

2 and thus
defines an action of U1(H)×U1(H) by ∗-automorphisms of the coordinate algebra
A(S7R) = AR/

(
(x1)

2 + (x2)
2 − 1

)
of a noncommutative seven-sphere S7R.

As shown in [3], with the diagonal action of U1(H) ⊂ U1(H)×U1(H) on A(S7R)
one gets a SU(2)-principal bundles S7R → S4R on a noncommutative four-sphere.
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Indeed, in parallel with (3) consider the two quaternions x1 = xµ1 eµ, x2 = xα2 eα,
with commutation relations among their components governed by a matrix Rλα

βµ

as in (1). Then, on the sphere S7R the vector-valued function

(5) |ψ〉 =
(
x2
x1

)

has norm 〈ψ, ψ〉 = ||x1||2 + ||x2||2 = 1 and we get a projection p = |ψ〉〈ψ|, that is
p = p∗ = p2. Define coordinate functions Y = Y 0e0 + Y kek and Y 4 by

Y 4 = ||x2||2 − ||x1||2 and 1
2Y = x2x

∗
1.(6)

The condition p2 = p gives that Y 4 is central and leads to the conditions

−(Y 0∗Y k − Y k∗Y 0) + εkmnY
m∗Y n = 0, Y 0Y k∗ − Y kY 0∗ + εkmnY

mY n∗ = 0

for k, r,m = 1, 2, 3 and totally antisymmetric tensor εkrm, and sphere relations
∑3

µ=0
Y µ∗Y µ + (Y 4)2 = 1 =

∑3

µ=0
Y µY µ∗ + (Y 4)2.

These also give that
∑3

µ=0 Y
µ∗Y µ and

∑3
µ=0 Y

µY µ∗ are central. The elements

Y µ generate the ∗-algebra A(S4R) of a four-sphere S4R. This four-sphere S4R is the
suspension (by the central element Y 4) of a three-sphere S3R.

With |ψ〉 the vector-valued function in (5), let the action of a unit quaternion
w ∈ U1(H) ≃ SU(2) on S7R be obtained from the following action on the generators:

(7) αw(|ψ〉) = |ψ〉w =

(
x2w
x1w

)
.

Clearly, the projection p and then the algebra A(S4R) are invariant for this action.
In general the action (7) is not by ∗-automorphisms of the coordinate algebra

A(S7R) since it does not preserve the commutation relations of S7R. On the other
hand, for the quaternionic deformations governed by the matrix in (4) and in par-
ticular for the corresponding noncommutative seven-sphere, as we have seen, there
is a compatible action of U1(H)×U1(H) by ∗-automorphisms of the corresponding
coordinate algebra. It is shown in [3] that the corresponding algebra inclusion
A(S4R) ⊂ A(S4R) is a noncommutative SU(2)-principal bundle.

With commutation relations for the x’s by the matrix (4), one has Y µ∗ = Λµ
νY

ν

for Λ ∈ M4(C) a symmetric unitary matrix. This matrix can be diagonalized
by a real rotation S and further normalized by a factor of modulus one. The
corresponding rodefinition of the generators gives that the sphere S4R ≃ S4θ that is
it is isomorphic to a θ-deformation sphere, as the one in [2]
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Factorizations of spectral triples in unbounded KK-theory

Walter D. van Suijlekom

(joint work with Jens Kaad)

We start by explaining the natural link between noncommutative geometry and
non-abelian gauge theories. This is mainly due to the fact that any noncommuta-
tive (involutive) algebra A gives rise to a non-abelian group of invertible (unitary)
elements in A: the gauge group. This has given rise to many applications in
physics, such as to Yang–Mills theories [4, 5] and to the Standard Model of ele-
mentary particles [6].

Even though these examples deal with gauge theories on commutative back-
ground spaces, the gauge group and the gauge fields are defined along the general
lines of [9] (cf. the more recent [8], valid for any real spectral triple for a C∗-algebra
A. For instance, the gauge group is given in terms of the unitary elements U(A)
in A, independent of a classical background space. In the physical applications of
[4, 5, 6, 12, 7] —including extensions of them to the topologically non-trivial case
[2, 3, 1]— the elements in U(A) are realized as automorphisms of a principal bun-
dle, in perfect agreement with the usual description of gauge theories. However,
in the general case the geometric picture appears to be less clear.

Basing ourselves on [18] we will explain that the gauge theory derived from
any real spectral triple for the C∗-algebra A can always be described by means of
bundles on a commutative background space. We will identify a subalgebra AJ in
the center of A which by Gelfand duality is isomorphic to C(X) for some compact
Hausdorff topological space X . This turns A into a so-called C(X)-algebra [15] for
which it is well-known that it can be identified with the C∗-algebra of continuous
sections of a bundle B of C∗-algebras on X (in general, this is an upper semi-
continuous C∗-bundle, see [16, Appendix C] and references therein). This bundle
B will set the stage for the generalized gauge theory. We will show that the gauge
group U(A)/U(AJ ) derived from the real spectral triple acts by vertical bundle
automorphisms on this bundle, which agrees with the action of it on A by inner
automorphisms. Moreover, under some additional conditions, we identify a group
bundle whose space of continuous sections coincides with the gauge group. The
gauge fields can be considered as sections of a bundle BΩ constructed in much the
same way as B, also carrying an action of the gauge group which agrees with the
usual gauge transformation for gauge fields.

Besides the applications to Yang–Mills theory we consider the interesting class
of toric noncommutative manifolds. They were obtained in [11] (see also [10]) by
deformation quantization of a Riemannian spin manifold M along a torus action
and are real spectral triples for the deformed C∗-algebras C(Mθ) derived by Rieffel
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in [17]. We identify the base space of our C∗-bundle with the orbit space for the
torus action on M , and characterize the fiber C∗-algebra as noncommutative tori
or subalgebras thereof). We show that the C∗-bundle is always continuous, as
opposed to merely upper semi-continuous. Moreover, if the orbit space is simply
connected, then the gauge group is isomorphic to the space of continuous sections
of a group bundle on that orbit space that we explicitly determine, which in turn
is isomorphic to the group of inner automorphisms. We end by a concrete study
of two examples: the toric noncommutative spheres S3θ and S4θ.

In the second part of this talk we will lift the above topological bundle picture
to the geometric level, working in the setting of unbounded KK-theory. We do this
by showing that also the Dirac operator DMθ

on Mθ can be decomposed into a
vertical operator DV acting on the Hilbert module EC0(X0) of continuous sections
of a Hilbert bundle, and a horizontal Dirac operator on the (principal) orbit space
X0 := M0/T

n where M0 ⊆ M is the principal stratum for the torus action. This
is based on [14] and is in line with the recent paper [13] in which we deal with
factorizations of Dirac operators on almost-regular fibrations.

The final result can then be summarized as follows:
Up to unitary equivalence of C∗-correspondences (from C0((M0)θ) to C), we

have the equality of selfadjoint operators

DV ⊗ 1 + γ ⊗∇ DX0 = DM0 −
i

8
cM0(Ω),

where DM0 : Γ∞
c (M0,SM0) → L2(M0,SM0) is the Dirac operator and cM0(Ω) :

Γ∞
c (M0,SM0)→ L2(M0,SM0) denotes Clifford multiplication (cf. [13, Section 3.3]

for the precise formula) by the curvature 2-form Ω : Λ2(THM0)⊗TVM0 →M0×C
defined by

Ω(X,Y, Z) = 〈[X,Y ], Z〉M0 ,

for all real horizontal vector fields X,Y and every real vertical vector field Z.
Moreover, if ı : M0 → M denotes the (torus-equivariant) inclusion of the prin-

cipal stratum we have the identity

ı∗[DMθ
] = [(DV )θ]⊗̂C0(X0)[DX0 ]

in the KK-group KK(C0((M0)θ),C). The curvature 2-form thus arises as an
obstruction for having a tensor sum decomposition in unbounded KK-theory which
can not be detected at the level of bounded KK-theory.
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The minimal exact crossed product

Rufus Willett

(joint work with Alcides Buss, Siegfried Echterhoff)

The Baum-Connes conjecture (for a group G, with arbitrary coefficients) posits
that for every G-C∗-algebra A, a certain assembly map

µ : Ktop
∗ (G;A)→ K∗(A⋊r G)

is an isomorphism. The conjecture is intrinsically interesting in its own right, and
has many applications in algebra, geometry, topology, and representation theory.

For fixedG, the left and right hand sides can both be considered as functors from
the category ofG-C∗-algebras to the category of (graded) abelian groups. Now, the
left hand side of the Baum-Connes conjecture is always an exact functor, meaning
that it takes short exact sequences of G-C∗-algebras to long exact sequences of
abelian groups. Higson, Lafforgue, and Skandalis [4] were able to show, however,
that for certain highly pathological groups constructed by Gromov (see Osajda’s
work [6] for a more refined result, and proof), the left hand side of the Baum-
Connes conjecture is not an exact functor. This implies in particular that the
Baum-Connes conjecture with coefficients fails for such groups.
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Now, Paul Baum suggested that the it might be possible to ‘fix’ the Baum-
Connes conjecture by replacing the reduced crossed product ⋊r with some other
crossed product functor with better exactness properties. This program was car-
ried out by Baum, Guentner, and myself [2] where we showed that if one takes
the minimal crossed product functor ⋊E amongst all of those that are exact and
are compatible with Morita equivalences in a suitable sense, then it can indeed
be used to ‘fix’ the Baum-Connes conjecture: precisely there are no counterexam-
ples to the reformulated conjecture, and some previous counterexamples become
confirming examples.

However, the reformulated Baum-Connes conjecture with associated assembly
map

Ktop
∗ (G;A)→ K∗(A⋊E G)

remained mysterious. In particular, we did not know what the exotic group algebra
C∗

E(G) := C ⋊E G was: one would like it to be the reduced group C∗-algebra (as
one would like not to change the conjecture more than necessary, and there are no
known counterexamples in this case); however, even this was not clear. Moreover,
although the crossed product A⋊E G is well-defined, it was not at all clear how it
might be concretely realised, or computed, in particular cases.

The point of my talk was to exposit recent work with Buss and Echterhoff where
we remedy some of these deficiencies. The key idea (developed from a suggestion
of Ozawa) is to show that A⋊EG can be defined as the completion of the algebraic
crossed product Cc(G,A) for the largest possible norm coming from the canonical
embedding

Cc(G,A) →֒
B ⋊r G

I ⋊r G
,

where B and I range over all possible G−C∗-algebras appearing in a short exact
sequence 0→ I → B → A→ 0 with A appearing on the right.

The key step in proving that this works is a proof that, for a crossed product
functor ⋊µ, the following are equivalent:

(1) ⋊µ is half exact;
(2) for any G-C∗-algebra, the natural map Cc(G,A

∗∗)→ (A⋊µ G)
∗∗ extends

to A∗∗ ⋊µ G;
(3) ⋊µG is exact.

This result is new even for ⋊µ = ⋊r (although partly inspired by work of Mat-
sumura [5] in that case), and seems interesting in its own right; it is a close analogue
of work of Archbold and Batty on tensor products [1].

Once we know the equivalences above, it is not too difficult to show that the
new description gives ⋊E . Several interesting consequences follow fairly directly:
in particular that C∗

E (G) is indeed equal to the reduced group C∗-algebra C∗
r (G).
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Orbit Integrals and the Connes-Kasparov Conjecture

Xiang Tang

(joint work with Nigel Higson and Yanli Song)

Let G be a real reductive group and K be its maximal compact subgroup. Let
X = G/K be the associated homogeneous space. We assume that X has even
dimension, and is equipped with a spin structure with the associated spinor bundle
S±. Let Vµ be an irreducible K-representation, and Vµ := (G × Vµ)/K be the
associated G-equivariant vector bundle over X . In this talk, we study the index
theory associated the twisted Dirac operator Dµ on X ,

Dµ : S+ ⊗ Vµ → S− ⊗ Vµ.
The kernel and cokernel of Dµ are naturally unitary G-representations. The index
of Dµ is defined to be the element

Ind(Dµ) ∈ K0(C
∗
r (G)),

where C∗
r (G) is the reduced group C∗-algebra of G.

Let Rep(K) be the representation ring of the compact group K. The Connes-
Kasparov isomorphism theorem states that the index map

Ind : Rep(K)→ K0(C
∗
r (G)), Vµ 7→ Ind(Dµ),

is an isomorphism of abelian groups. With the contribution of many authors,
we know that this isomorphism holds true for all almost connected Lie groups,
[4, 6, 7] . In this talk, we present some results using cyclic theory to study the
above isomorphism.

Let tr be the standard trace on C∗
r (G) defined by tr(f) = f(e), where e is

the identity of G. tr defines a linear functional on K0(C
∗
r (G)). In [5], Connes

and Moscovici obtained a topological formula for tr(Ind(Dµ)), and furthermore
they proved that tr(Ind(Dµ)) is equal to the formal degree of the irreducible G-
representation on the kernel Ker(Dµ) of the operator Dµ. When µ is regular, the
kernel Ker(Dµ) is not trivial, and tr(Ind(Dµ)) is not zero. However, when µ is
singular, the kernel Ker(Dµ) is trivial, and tr(Ind(Dµ)) vanishes. Our main idea is
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to use orbit integrals from representation theory, [1]-[3], to detect such an element
Ind(Dµ) in K0(C

∗
r (G)).

Assume thatH is a compact maximal cartan subgroup ofG. Fix a Haar measure
on G. For f ∈ Cc(G), consider the following orbit integrals

FH
f (h) := ∆H(h)

∫

G/H

f(ghg−1)dh,

where h is a regular element in H , and ∆(h) is the Weyl denominator defined by
positive roots, i.e.

∆H(h) =
∏

α positive root

(e
α
2 − e−α

2 ).

When h is regular, the orbit integral f 7→ FH
f (h) defines a trace on the Harish-

Chandra Schwartz algebra S(G), and therefore induces a linear functional on
K0(C

∗
r (G)), as S(G) is a dense subalgebra of C∗

r (G) closed under holomorphic
functional calculus. We prove the following theorem about orbit integrals.

Theorem. (Higson-Song-Tang) When G is equal rank, and G/K is even dimen-
sional and spin, the orbit integrals FH defines an isomorphism

FH : K0(C
∗
r (G))→ Rep(K).

As a corollary, we obtain a new proof of the following isomorphism theorem.

Corollary. Under the same assumptions as the above Theorem, the composition
of Ind and FH is the identity modulo a sign factor, i.e.

FH ◦ Ind = ±I.
Therefore, the index map Ind : Rep(K)→ K0(C

∗
r (G)) is an isomorphism with the

inverse defined by the orbit integral FH .
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Inertia Groupoids, their singularity structure and Hochschild
homology

Markus J. Pflaum

(joint work with C. Farsi, Ch. Seaton, H.B. Posthuma, X. Tang)

The loop space Λ0G of a Lie groupoid G ⇒ M is defined as the space of loops
{g ∈ G | s(g) = t(g)}, where s, t : G → M denote the source and target
map, respectively. The groupoid acts on this space by conjugation. The cor-
responding action groupoid ΛG is called the inertia groupoid of G and is the
object of our study. As one checks immediately, its space of arrows is given by
Λ1G = {(h, g) ∈ G × Λ0G | s(h) = t(g)}, the source map sΛG is projection onto
the second coordinate and the target map tΛG is given by (h, g) 7→ hgh−1. In
the particular case where the underlying groupoid G is the action groupoid of a
compact Lie group H on a manifold M , the loop space is given by Λ0(H ⋉M) =
{(h, p) ∈ H ×M | h · p = p}, i.e. as the union of all {h}×Mh, where Mh denotes
the fixed point manifold of the group element h. In the case where H is a finite
group, Λ0(H ⋉M) thus is the disjoint finite union of manifolds with possibly dif-
ferent dimensions. The inertia groupoid Λ(H ⋉M) then is again, like H ⋉M , a
proper étale Lie groupoid. In the non-finite case, though, Λ0(H⋉M) is in general
a singular space. By application of the slice theorem for a compact Lie group
action it has been shown in [5] that locally Λ0(H ⋉ M) has the structure of a
semialgebraic set. This then entails that Λ0(H⋉M) possesses a minimal Whitney
stratification. More generally, it has been shown in [6] that for every proper Lie
groupoid the associated inertia groupoid has the structure of a so-called differ-
entiable stratified groupoid. Each stratum of such a groupoid is a Lie groupoid
itself. One particular difficulty in regard to the singularity structure of inertia
groupoids is that the well-known stratification of a manifold with a compact Lie
group action by orbit types does not work for inertia groupoids. Using the concept
of Cartan subgroups an explicit Whitney stratification of the loop space and the
inertia groupoid of a proper Lie groupoid was given in [6]. In several examples
this stratification coincides with the minimal Whitney stratification. We call it
the Cartan orbit type stratification of the loop space. In addition, a de Rham
theorem for loop spaces of proper Lie groupoids has been derived in [6]. Note that
in general a de Rham theorem does not hold for singular (differentiable) stratified
spaces.

The orbit space of the inertia groupoid of a Lie groupoid G ⇒ M , i.e. the

quotient Λ0G/G, is called the inertia space of G and denoted M̃/G. This space
inherits from the loop space the Cartan orbit type stratification, see [6]. In the case

where the underlying groupoid is proper and étale, the inertia space M̃/G is, like
the orbit spaceM/G, itself an orbifold and is called the inertia orbifold associated
to M/G. Such inertia orbifolds appear at various places in the literature, even
though sometimes under a different or not a particular name. For example, the
inertia orbifold of an orbifold serves as a bookkeeping device for the contribution of
singularities to the analytic or algebraic index over the orbifold. In both cases the
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analytic respectively algebraic index can be identified with a topological orbifold
index that is the integral of a topologically or geometrically defined form over the
(cotangent bundle) of the inertia orbifold. See [7] for the original work on the index
theorem for orbifolds, and [8] for details on the algebraic orbifold index theorem.
The inertia orbifold also appears naturally in the computation of the Hochschild
and cyclic homology of the convolution algebra of a proper étale Lie groupoid, see
[3, 4]. The question now arises in how far these results can be generalized to the
proper Lie groupoid case.

In his paper [2] and unpublished preprint [1], Brylinski outlined a path to
compute the Hochschild and cyclic homology of the (smooth) convolution algebra
A of a smooth H-action on the manifold M . Brylinski claimed in [1] that the
Hochschild homology group HHk(A) coincides with the space of basic relative
forms. By definition, this space consists of smooth and H-invariant families ω =
(ωh)h∈H of forms ωh ∈ Ωk(Mh) on the fixed point manifolds Mh such that each
ωh is horizontal. The latter hereby means that contractions with fundamental
vector fields of elements of the Lie algebra Lie(Hh) vanish.

In view of a possible generalization to Lie groupoids, Brylinskis’s basic relative
forms have been interpreted in [9] as particular Grauert–Grothendieck forms on the
loop space. Let us explain this in some more detail. Denote by J ⊂ C∞(H ×M)
the ideal of smooth functions vanishing on the loop space Λ0(H⋉M). The complex
of Grauert–Grothendieck forms on the loop space is now defined as the differential
graded algebra

Ω•
GG(Λ0(H ⋉M)) = Ω•(H ×M)/JΩ•(H ×M) + dJ ∧ Ω•−1(H ×M) .

Next one needs a relative version of that complex. It is defined as

Ω•
rel(Λ0(H ⋉M)) = Γ∞(∧•s∗T ∗M)/JΓ∞(∧•s∗T ∗M)+ drelJ ∧Γ∞(∧•−1s∗T ∗M),

where s : H ×M → M is projection onto the second coordinate and drel is the
relative exterior derivative, see [9]. Horizontal relative forms are those elements of
Ω•

rel(Λ0(H ⋉M)) which are images of sections of alternating powers of the pull-
back of the co-normal bundle on T ∗M via the source map s. The subspace of
H-invariant horizontal relative Grauert–Grothendieck forms finally is called the
space of basic relative Grauert–Grothendieck forms. Brylinski’s conjecture can be
reformulated in these terms as follows:

Conjecture. The Hochschild homology HH•(A) of the (smooth) convolution al-
gebra A of the transformation groupoid H ⋉M is given by Ω•

bas-rel(Λ0(H ⋉M)),
the space of basic relative Grauert–Grothendieck forms on the loop space.

Using methods of real algebraic geometry we succeeded in [10] to prove the
conjecture for the case of the standard circle action on the plane or in other words
for the action groupoid S1 ⋉R2. Together with the orbifold case, where the claim
is verified due to the papers [3, 4], it thus follows that the conjecture holds true for
all S1-actions. Using the Cartan orbit type stratification of loop spaces from [6] it
appears feasible to verify the conjecture for arbitrary compact Lie group actions.
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Finally, a generalization of the conjecture to proper Lie groupoids comes within
reach by the concept of relative Grauert–Grothendieck forms.
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Bat. Braconnier
21, Avenue Claude Bernard
69622 Villeurbanne Cedex
FRANCE

Prof. Dr. Markus Pflaum

Department of Mathematics
University of Colorado
Boulder, CO 80309-0395
UNITED STATES

Prof. Dr. Paolo Piazza

Dipartimento di Matematica
Universita di Roma ”La Sapienza”
Istituto ”Guido Castelnuovo”
Piazzale Aldo Moro, 2
00185 Roma
ITALY

Prof. Dr. Raphaël Ponge
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