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Introduction by the Organisers

The workshop Geometric Methods of Complex Analysis attracted 52 researchers
from 14 countries. Both, leading experts in the field and young researchers (in-
cluding four Ph. D. students and three postdocs) were well represented in the
meeting and gave talks. There was 9 female researchers among the participants of
the workshop. A rather wide spectrum of topics related to Complex Analysis (and
this was one of the aims of the workshop) was covered by the talks and informal
discussions. All 21 lectures presented on the meeting can be conditionally divided
into the following groups.

Holomorphic Dynamics and Foliations were represented by talks of E. Bedford,
H. Peters, N. Sibony and B. Jöricke. Bedford discussed some open problems
arising in the complex dynamics of volume-preserving polynomial maps and their
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relation to the well-known results. Peters showed that a transcendental entire
function has infinite topological entropy. Sibony gave new versions of the classical
theorems, Nevanlinna’s second main Theorem, Bloch’s Theorem, Ax Lindemann’s
Theorem, in the case when the source is an open Parabolic Riemann surface.
Jöricke presented finiteness theorems for bundles over connected finite Riemann
surfaces with some specified types of fibers.

L2-methods and Cohomologies were represented by the talks of T. Ohsawa, B.-
Y. Chen, F. Deng, X. Zhou and N. Tardini. Ohsawa explained how L2-extension
technique can be applied to analytic families. In particular, he showed how using
L2-extension theorem one can prove Nishino’s theorem on Stein submersions and,
moreover, how using this method one can extend the results of Takegoshi and
Takayama on the Levi problem on complex manifolds. Chen presented relations
of the directional derivative of the weighted Bergman kernel corresponding to a
given plurisubharmonic function to certain directional Lelong numbers associated
to this function. Deng gave a new characterization of plurisubharmonic functions
and Griffiths positivity of holomorphic vector bundles with singular Finsler met-
rics, and presented a proof of the Griffiths positivity of the direct image bundles
of the twisted relative canonical bundle associated to a holomorphic family of
Stein manifolds or compact Kähler manifolds, by applying this characterization
and Ohsawa-Takegoshi type extension theorems. Zhou explained how to obtain
new vanishing and finiteness theorems for multiplier ideal sheaves using the strong
openness property of the multiplier ideal sheaves. He also gave some generalisa-
tions of Siu’s lemma which can be proved using ideas and results contained in the
proof of the strong openness conjecture. Tardini explained how to characterize the
∂∂-lemma using the Bott-Chern cohomology.

Plurisubharmonic Functions and Pluripotential Theory were represented by the
talks of Z. B locki, C.H. Lu and E.A. Poletsky. B locki presented a new definition of
the Monge-Ampère operator for plurisubharmonic functions with analytic singu-
larities on Hermitian manifolds. The advantage of this definition is that it gives no
loose of the total mass. Lu showed monotonicity property of total mass for natu-
ral classes of θ-plurisubharmonic functions. This allows him to prove concavity of
the volume function T 7→ log Vol(T ) and hence confirm a conjecture of Boucksom-
Eyssidieux-Guedj-Zeriahi. Poletsky discussed the question of separability of points
in a complex manifold M by bounded above continuous plurisubharmonic func-
tions PSHcb(M). In particular, he explained how to prove that the core c(M) of
an arbitrary complex manifold M can be decomposed as the disjoint union of the
sets Ej , j ∈ J , that are 1-pseudoconcave in the sense of Rothstein and have the
following Liouville property: every function from PSHcb(M) is constant on each
of Ej .

Singular Metrics on Vector Bundles, Chern Forms and Residue Currents were
represented by the talks of R. Lärkäng, E. Wulcan and J. Ruppenthal. Lärkäng
explained how to generalize the classical Poincaré-Lelong formula to the case of
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residue current associated to a complex of vector bundles. Wulcan presented a
definition of the Chern forms of hermitian metrics with analytic singularities which
uses so-called Segre forms. Ruppenthal explained how to give a natural meaning
to the k-th Chern form of a singular Griffiths semi-positive hermitian metric as a
closed (k, k)-current of order 0, as long as the set where the metric degenerates
is small enough. He has also shown how these results can be extended to Chern
forms of arbitrary degree if the metric has analytic singularities.

Geometric Questions of Complex Analysis (including Uniformization, Polyno-
mial Convexity, Levi-flat Surfaces etc.) were represented by the talks of S. Ne-
mirovski, P. Gupta, B. Stensønes, J. Winkelmann, J. Brinkschulte and K.-T. Kim.
Nemirovski discussed relations of uniformization and steinness. He explained that
the universal cover of a Stein stictly pseudoconvex domain with non-spherical
boundary cannot cover a complex manifold containing a compact analytic subset
of positive dimension. In particular, it follows that any other strictly pseudocon-
vex domain with the same universal cover is also Stein. Gupta presented results
on optimal (with respect to the dimension of the target complex space) polyno-
mially convex embeddings of compact real manifolds. Stensønes gave an example
of a bounded (pseudoconvex) domain in C2 with boundary of class C1,1 which has
a Stein neighborhood basis, but is not s-H-convex for any real number s ≥ 1.
Winkelmann defined the notion of a tame set for a subset of an arbitrary complex
manifold. In the case when this manifold is a semisimple Lie group he investi-
gated the properties of tame subsets in more details. Brinkschulte presented a
non-existence result for smooth compact Levi-flat real hypersurfaces in a complex
manifold such that their normal bundle admits a Hermitian metric with positive
curvature along the leaves. Kim explained that a bounded symmetric domain in
a complex Banach space is holomorphic homogeneous regular if and only if it is of
finite rank. He also gave a complete characterization of such domains and provided
an explicit formula for their rank.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Some interesting domains that arise in the complex dynamics

Eric Bedford

We consider the iteration of polynomial automorphisms of C2. The prime example
of such a map is a complex Hénon map

f(x, y) = (y, y2 + c− δx)

We will consider this as a generalization of the one-dimensional map y 7→ qc(y),
where qc(y) = y2 + c. The set where the iterates of qc remain bounded is the filled
Julia set Kc. If c belongs to the Main Cardioid of the Mandelbrot set, then qc has
a unique attracting fixed point, and Kc is the closure of the basin of attraction.

In the case of a complex Hénon map, we consider the set K+ of the points
whose forward orbits are bounded. Similarly, we define K− in terms of backward
orbits, and we set K := K+ ∩K−.

Theorem (Hubbard-ObersteVorth, Fornæss-Sibony). If c belongs to the Main
Cardioid of the Mandelbrot set, then for |δ| sufficiently small, the complex Hénon
map f has a unique attracting fixed point, and K+ is the closure of the basin of
attraction.

A set of primary importance is the Fatou set F+, which is defined as the largest
open set on which the iterates {fn : n ≥ 0} are a normal family. This is the same
as the set of equicontinuity of the forward iterates. Equivalently, it is the same as
the set of points where f is Lyapunov stable. It is not hard to show that

F+ = U+ ∪ int(K+), U+ := C
2 −K+

It is known that the (2-dimensional) Hénon map is closely related to the 1-
dimensional map qc in the case where qc is hyperbolic, and |δ| ≪ 1. And the case
|δ| = 1 is the case where the 2-dimensional case is expected to be most different
from the 1-dimensional case. The case |δ| = 1 is called conservative because such
maps preserve volume. In general, the Lebesgue volume of a Borel set satisfies:

Volume(f(E)) = Volume(E)

so the term “conservative” means the same as “volume-preserving”. The case
|δ| = 1 differs from the case |δ| 6= 1 in several respects. For instance:

Theorem (Friedland-Milnor). If |δ| = 1, then int(K+) = int(K−) = int(K), and
this set is bounded.

At the moment, a number of basic questions about conservative Hénon maps
remain unanswered. Recall that for c in the Main Cardioid, Kc, the filled Julia
set of qc, is the closure of its (connected) interior. Can there be an analogue of
this for volume-preserving maps?

Question 1. If f is conservative, is it possible that the interior of K+ is connected,
and its closure is equal to K?
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We will discuss the Fatou components, i.e., connected components of F+. The
set U+ is the escape locus, points escaping to infinity, and it is quite different from
the other components, which will be seen to be rotation domains. Thus by Fatou
component we will mean the connected components of the interior of K+.

If Ω is a component of the interior of K, then it follows from the Friedland-
Milnor Theorem that fN (Ω) = Ω for some N ≥ 1. Thus we may replace f by fN

and suppose that f(Ω) = Ω. Let us consider the restriction f |Ω and define the set
of all sub-sequential limits of its iterates:

G = {g = lim
j→∞

(f |Ω)nj : Ω → Ω}

where the limit is taken over all sequences {nj} for which the limit g exists. Using
Theorems of H. Cartan, we see that G consists of automorphisms of Ω, and it is a
compact, Abelian Lie group. Thus if G0 denotes the connected component of the
identity, we have that G0

∼= Tρ, where Tρ is a real torus of dimension ρ. Thus f
generates a torus action on Ω, and we call Ω a rotation domain of rank ρ.

Theorem (Bedford-Smillie). The only possible values of ρ are 1 or 2.

Theorem (Barrett-Bedford-Dadok). If ρ = 2, then (f |Ω,Ω) is biholomorphically

conjugate to (L,D), where D ⊂ C2 is a Reinhardt domain, with L =

(
λ 0
0 µ

)

a linear transformation of D, and |λ| = |µ| = 1, λjµk 6= 1 for all j, k ∈ Z,
(j, k) 6= (0, 0).

We can ask whether the rank 1 case is always given by a (p, q)-domain:

Question 2. Suppose that Ω is a rotation domain of rank 1. Is (f |Ω,Ω) biholo-
morphically conjugate to a linear map (L,D), where D ⊂ C2 is a domain, and

L =

(
αp 0
0 αq

)
, with (p, q) = 1, |α| = 1 and α not a root of unity?

In this case, we think of D as the linear model of the rotation domain Ω. If D is
a Reinhardt domain (the case where rank is 2), then D is logarithmically convex,
and thus the boundary is quite “tame”. On the other hand, we would expect that
the boundary of Ω can be a rather “wild” fractal, corresponding to the case of
Siegel disks in dimension 1.

In some sense the “nicest” case is when f |Ω has a fixed point. Suppose f(0) = 0,

and let L = Df(0). By a linear conjugation, we may suppose that L =

(
λ 0
0 µ

)

with |λ| = |µ| = 1. Since Ω is an invariant Fatou component, it follows that the
limit

(1) Ψ =
1

N

N−1∑

n=0

L−n ◦ fn

converges on Ω, and Ψ gives a conjugacy from (f |Ω,Ω) to (L,Ψ(Ω)). Thus, when
there is a fixed point, there is always a conjugacy to a linear action.
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Let us revisit the case of a rotation domain Ω with rank 2. Thus we have a
rotation L of a Reinhardt domain D ⊂ C2.

Question 3. What sorts of Reinhardt domains can arise as linear models of ro-
tation domains?

These Fatou components should be especially interesting to us as Complex An-
alysts because they present us with very concrete/abstract examples of Reinhardt
domains for which we have not yet answered the basic questions:

Can D be biholomorphically equivalent to the bidisk?
and/or

Can D be biholomorphically equivalent to the ball?

Remark. If we wish to examine these questions more concretely, we may choose f

to have a fixed point with Df = L =

(
e
√
2iπ 0

0 e
√
3iπ

)
. By a celebrated Theorem

of C.L. Siegel, the map f will be linearizable in a neighborhood of the fixed point.
That is, the map Ψ defined in (1) will be convergent in a neighborhood of the
fixed point. In fact, the Reinhardt model D will be the region of convergence for
the power series for Ψ−1.

A rather different question is the following:

Question 4. Is it possible that the Reinhardt model is incomplete (i.e., it does not
contain the origin)?

Question 4 is equivalent to asking: Is it possible that Ω does not contain a
fixed point? We note that since all Fatou components are Runge domains and
polynomially convex, it follows that H2(Ω;Z) = 0. It follows that the Reinhardt
model, also, must satisfy H2(D;Z) = 0. Thus if D does not contain the origin,
it must intersect one of the coordinate axes, and the intersection of D with this
coordinate axis is a special invariant annulus.

S. Ushiki has done computer experiments to address Question 4 and has found
numerical examples which seem to be strong evidence that the answer to Question
4 is “yes”. We present and discuss one of Ushiki’s examples. This appears to give
a very curvy and complicated embedding of an incomplete Reinhardt domain into
C2.

Stein neighborhood basis

Berit Stensønes

(joint work with Lars Simon)

The notion of s-H-convexity was introduced by J. Chaumat and A.-M. Chollet
and goes back to work by A. Dufresnoy. Given a real number s ≥ 1, a compact
set ∅ 6= K ⊆ Cn is called s-H-convex, if there exists a C > 0 with C ≤ 1, such that
for all ǫ, 0 < ǫ ≤ 1, there exists an open pseudoconvex subset Ωǫ of Cn satisfying

{z ∈ C
n : d(z,K) < Cǫs} ⊆ Ωǫ ⊆ {z ∈ C

n : d(z,K) < ǫ},
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where d(·,K) denotes the Euclidean distance to K.
J. Chaumat and A.-M. Chollet obtain various ∂-results for such sets. Another

result in that spirit is due to A.-M. Chollet.
Furthermore, the notion of s-H-convexity is related to the Mergelyan property.

Specifically, there exists a k0(s, n) > 0, such that O(Ω) is dense in Ck(Ω) ∩ O(Ω),
whenever k is an integer ≥ k0(s, n) and Ω ⊆ Cn is a bounded pseudoconvex
domain, satisfying suitable assumptions, whose closure is s-H-convex.

Given these ∂-results and the connection to the Mergelyan property, it becomes
desirable to identify sets which are s-H-convex for some s ≥ 1. Specifically, given a
bounded (pseudoconvex) domain in Cn whose closure admits a Stein neighborhood
basis, one can ask under which additional assumptions said closure is necessarily
s-H-convex for some s ≥ 1.

To our knowledge, it is unknown whether there exists a bounded (pseudoconvex)
domain Ω in C2 with boundary of class C2 (or C∞), such that Ω has a Stein
neighborhood basis, but is not 1-H-convex. In this paper we show that, if the
smoothness assumption on the boundary is relaxed appropriately, there exists a
bounded domain whose closure admits a Stein neighborhood basis, but is not s-
H-convex for any s ≥ 1. This is achieved by modifying the construction of the
classical Diederich-Fornæss worm domain. A precise statement of the main result
of this paper goes as follows:

Theorem. There exists a bounded (pseudoconvex) domain Ω 6= ∅ in C2 with
boundary of class C1,1, such that:

• Ω has a Stein neighborhood basis,
• Ω is not s-H-convex for any real number s ≥ 1.

We give here an informal explanation of the intuition behind our constructions:
A classical worm domain admits a Stein neighborhood basis if the duration of

the rotation at maximal radius is less than π. If the duration is exactly π this
fails to be true, as can be seen by refining the classical argument by K. Diederich
and J. E. Fornæss. In the case of the domain Ω defined above, we prevent this
argument from working by drastically increasing the speed of the round-off, which
leads to the boundary regularity dropping to C1,1. Using the fact that the function
g vanishes to infinite order in 0 ∈ R, one can apply the Kontinuitätssatz for annuli
to open pseudoconvex neighborhoods of the closure of Ω to show that Ω is not
s-H-convex for any s ≥ 1.

It is easy to construct a neighborhood basis for Ω (not a Stein one) by taking
appropriate worm domains and increasing the radii of the rotating discs without
changing the centers. This increase of the radii of course destroys pseudocon-
vexity. We counteract this by “chopping off” the “bad part”, which is done by
intersecting with a domain of half planes rotating around 0 in the w-plane. This,
however, leads to these sets not being neighborhoods anymore, as can be seen by
considering 0 in the w-plane. We finally resolve this issue by moving the center of
the rotation from 0 slightly in the direction of −i and slightly slowing down the ro-
tation (symmetrically around the angle π/2), which intuitively speaking amounts
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to introducing a small tilt. In the w-plane, −i represents the “out direction” of Ω,
which exists because the duration of the rotation at maximal radius does not ex-
ceed π. Since g is positive on R>0, one actually leaves the closure of Ω, when going
from 0 slightly in the direction of −i in the w-plane, which is of course crucial for
our construction to work. Since the purpose of the domain of rotating half planes
is to help with the pseudoconvexity of the neighborhoods we are constructing, we
have to apply these changes to both of the domains we are intersecting.

Chern forms of hermitian metrics with analytic singularities

Elizabeth Wulcan

(joint work with Richard Lärkäng, Hossein Raufi and Martin Sera)

I will discuss a joint work [8] with Richard Lärkäng, Hossein Raufi and Martin
Sera. The overall goal of this project is to define Chern forms or rather currents
for singular hermitian metrics on holomorphic vector bundles. In this talk I will
describe how to do this for metrics with so-called analytic singularities. The gen-
eral strategy is to define Chern forms through so-called Segre forms, following
ideas from classical intersection theory. The Segre forms are defined as the push-
forwards of certain Monge-Ampère type products introduced by Andersson and
me. Our work is inspired by the previous work [7] by my coauthors and Jean
Ruppenthal, where they define Segre forms for singular metrics in a different way,
using regularisations.

Let E be a holomorphic vector bundle of rank r over a manifold X of dimension
n and let h be a smooth hermitian metric on E. Then the associated Chern forms
ck(E, h) are by definition the coefficents in the characteristic polynomial of the
curvature of h. More precisely if Θ(E, h) is the curvature of h, then

∑
ck(E, h)tk := det

(
Id +

i

2πi
tΘ(E, h)

)
.

The de Rham cohomology classes, the Chern classes of, ck(E) are topological
invariants of E and in particular independent of the metric h. Alternatively Chern
forms can be defined in the following way: Let π : P(E) → X be the projective
bundle of lines in E∗, and let e−ϕ be the metric induced on the dual OP(E)(1)
of the tautological line bundle OP(E)(−1) ⊂ π∗E∗. Then following ideas from
intersection theory one can define the associated kth Segre form as

(1) sk(E, h) := (−1)kπ∗(ddcϕ)k+r−1,

where dc = (i/4π)(∂ − ∂̄). Then the total Segre form s(E, h) = 1 + s1(E, h) +
s2(E, h) + · · · is the multiplicative inverse of the total Chern form c(E, h) =
1 + c1(E, h) + c2(E, h) + · · · , i.e.,

(2) c(E, h) ∧ s(E, h) = 1.

On cohomology level this identity is a classical intersection theory result whereas
on form level this was first proved in [9]. Note that from (2) one can recover
c(E, h) from s(E, h) and vice versa.
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Next, let h be a singular hermitian metric on a vector bundle E in the sense of
Berndtsson-Păun, [5]; then the associated metric e−ϕ on OP(E)(1) is singular.

Example. Let L → X be a line bundle with a global holomorphic section locally

defined by holomorphic functions f . Then e− log |f |2 is a singular metric on L that
is smooth outside {f = 0}. In this case the only non-trivial Chern form is a
well-defined positive current

c1(L, e− log |f |2) = ddc log |f |2 = [f = 0],

where [f = 0] denotes the current of integration along {f = 0} (with multiplicities)
and the last equality is the classical Poincaré-Lelong formula.

Our goal is to define Chern forms of higher rank vector bundles. However, if
h is singular the curvature Θ(E, h) is a current in general as is the first Chern
form ddcϕ of the associated line bundle on OP(E)(1). Therefore expressions like

det
(

Id + i
2πi tΘ(E, h)

)
and (ddcϕ)m do not make sense, since one cannot multiply

currents in general.
In the example above, however, ϕ is nice in a certain way. It is plurisubharmonic

(psh) and moreover it has analytic singularities, which means that locally it is of
the form

(3) ϕ = c log |F |2 + v,

where c > 0, F is a tuple of holomorphic functions fj , |F |2 =
∑ |fj |2, and v is

bounded. In [6] Hosono generalized the metric in the example above to vector
bundles of higher rank; also in this case the associated line bundle metric ϕ is psh
with analytic singularities. That ϕ is psh is equivalent to that h is positive in a
certain sense, namely Griffiths positive. We say that h has analytic singularities
if ϕ has.

Given a psh function ϕ with analytic singularities, together with Andersson
[4], building on ideas from [1], we defined generalized Monge-Ampère products
(ddcϕ)m recursively as

(4) (ddcϕ)k := ddc(ϕ1X\Z(ddcϕ)k−1),

where Z is the unbounded locus of ϕ, i.e., locally defined as {F = 0} where ϕ is
given by (3). The current (ddcϕ)m is positive and closed and of bidegree (m,m),
and for m ≤ codimZ, it coincides with Bedford-Taylor-Demailly’s classically de-
fined (ddcu)m.

Now assume that h is a Griffiths positive metric with analytic singularities
and let θ be the first Chern form of a smooth metric on OP(E)(1). Since the

difference of two local weights ϕ is of the form log |f |2, where f is a nonvanishing
holomorphic function, (ddcϕ)m is a globally defined current on P(E). Inspired by
[2, Theorem 1.2], in order to keep track of what is lost in the recursive definition
(4) we introduce

[ddcϕ]mθ := (ddcϕ)m +

m−1∑

ℓ=0

θm−ℓ1Z(ddcϕ)ℓ,
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and, inspired by (1), we define

sk(E, h, θ) := (−1)kπ∗[ddcϕ]k+r−1
θ .

If the ϕ are smooth, then clearly sk(E, h, θ) coincides with sk(E, h) defined by
(1). By extending ideas in [4] and [3] we give meaning to mixed Monge-Ampère
products

[ddcϕt]
mt

θt
∧ · · · ∧ [ddcϕ1]m1

θ1

and we use these to define currents skt(E, h, θ) ∧ · · · ∧ sk1(E, h, θ) and through
(2) currents ck(E, h, θ). Now these currents have nice properties. They are closed
normal (k, k)-currents; more precisely they are locally differences of closed positive
currents so that in particular they have well-defined Lelong numbers. Moreover

(1) ck(E, h, θ) and sk(E, h, θ) represent the kth Chern and Segre classes ck(E)
and sk(E) of E, respectively,

(2) ck(E, h, θ) and sk(E, h, θ) coincide with the Chern and Segre forms ck(E, h)
and sk(E, h), respectively, where h is smooth,

(3) ck(E, h, θ) and sk(E, h, θ) coincide with the Chern and Segre currents in-
troduced in [7] when these are defined,

(4) the Lelong numbers of ck(E, h, θ) and sk(E, h, θ) at each x ∈ X are inde-
pendent of θ.
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Entropy of transcendental entire functions

Han Peters

(joint work with Anna Miriam Benini, John Erik Fornæss)

In this work with Anna Miriam Benini and John Erik Fornæss we prove that a
transcendental entire function has infinite topological entropy. In the presentation
I will focus on the special and simpler case where the function omits some value
β ∈ C.

Our main theorem is the following.

Theorem 1. Let f be a transcendental entire function with an omitted value β,
and let N ∈ N. For R > 0 define the annulus

AR := {R/2 < |z − β| < 2R}.
Then there exists δ > 0 and R = R(n) such that f(AR) ⊃ AR and every point
in AR has at least N preimages in AR which are at Euclidean distance at least δ
from each other.

Theorem 1 has the following corollary:

Theorem 2. Let f be a transcendental entire function with an omitted value.
Then f has infinite topological entropy.

The fact that entire transcendental functions should have infinite entropy is no
surprise. Indeed, it has been know for decades that rational maps of degree d
acting on the Riemann sphere have topological entropy equal to log d. The lower
bound was shown by Misiurewicz and Przytycki, and the upper bound by Gromov
and independently by Lyubich.

One of the reasons why the problem of topological entropy for entire tran-
scendental maps has not been addressed for so long is that there are several non
equivalent definitions of topological entropy on non-compact metric spaces. Ob-
serve that transcendental maps are not uniformly continuous on C and that they
do not extend continuously to its one-point compactification: the Riemann sphere

Ĉ. The definition of topological entropy that we will use is the following.

Definition 3 (Definition of topological entropy). Let f : Y → Y be a self-map of
a metric space (Y, d). Let X be a compact subset of Y. Let n ∈ N and δ > 0. A
set E ⊂ X is called (n, δ)-separated if

• for any z ∈ E, its orbit {z, f(z), . . . , fn−1(z)} ⊂ X ;
• for any z 6= w ∈ E there exists k ≤ n− 1 such that d(fk(z), fk(w)) > δ.

Let K(n, δ) be the maximal cardinality of an (n, δ)-separated set. Then the topo-
logical entropy htop(X, f) is defined as

htop(X, f) := sup
δ>0

{
lim sup
n→∞

1

n
logK(n, δ)

}
.

We define the topological entropy htop(f) of f on Y as the supremum of htop(X, f)
over all compact subsets X ⊂ Y.
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In general this definition depends on the metric d. In our setting, the natural
metrics on C with respect to the dynamics of transcendental entire functions are
the spherical metric and the Euclidean metric. Since they are comparable on com-
pact subsets of C, both choices yield the same result with respect to Definition 3.

The proof of Theorem 1 is short and elementary, and relies on the following
well known ingredients:

• By Picard’s Theorem, every value apart from the omitted value is obtained
infinitely often.

• The maximal value on a circle of radiusR grows faster than any polynomial
in R.

• The twice punctured plane is hyperbolic, and equipped with the Poincaré
metric gives a complex metric space.

Complex Monge-Ampère equations with prescribed singularity

Chinh H. Lu

Let (X,ω) be a compact Kähler manifold of dimension n and θ be a closed smooth
real (1, 1)-form on X representing a big cohomology class. A function u : X →
R ∪ {−∞} is quasi plurisubharmonic (quasi-psh for short) if it is locally the sum
of a smooth and a plurisubharmonic function. We let PSH(X, θ) denote the set
of all quasi-psh functions u 6≡ −∞ such that θu := θ + ddcu ≥ 0. The De Rham
cohomology class {θ} is big if PSH(X, θ − εω) is non empty for some ε > 0.

Given two θ-psh functions u, v we say that u is more singular than v (and we
write u ≺ v) if u ≤ v + C on X , where C is a constant (possibly dependent on
u, v). We say that u has the same singularity as v (and we write u ≃ v) if u ≺ v
and v ≺ u. If φ ∈ PSH(X, θ) is less singular than all u ∈ PSH(X, θ) then we say
that φ has minimal singularity. An example of such potentials is

Vθ(x) := sup{u(x) | u ∈ PSH(X, θ), u ≤ 0}.
It follows from Demailly’s approximation theorem that there is a Zariski open set
Ω, called the ample locus of θ in which Vθ is locally bounded. Given a θ-psh
function u the sequence of positive measures

1{u>Vθ−k}(θ + ddc max(u, Vθ − k))n

is increasing and defines the non-pluripolar Monge-Ampère measure of u, that we
denote by (θ + ddcu)n. By definition

∫
X(θ + ddcu)n takes values in [0, V ] where

V =
∫
X

(θ+ddcVθ)
n. We let E(X, θ) denote the set of all θ-psh functions such that∫

X
(θ + ddcu)n = V . These are called θ-psh functions with full Monge-Ampère

mass.
There is a satisfactory (global) pluripotential theory developed for this class of

potentials by [1, 2] (see also [5]). The analogous theory for potentials with non-full
mass, i.e. for θ-psh functions u with

∫
X(θ + ddcu)n < V , was recently developed

in [3, 4], stemming from the following monotonicity property of total mass.



2268 Oberwolfach Report 37/2018

Theorem 1. Assume θ1, ..., θn are big classes and uj ≤ vj are θj-psh functions,
j = 1, ..., n. Then

∫

X

(θ1 + ddcu1) ∧ ... ∧ (θn + ddcun) ≤
∫

X

(θ1 + ddcv1) ∧ ... ∧ (θn + ddcvn).

This result, conjectured to be true in [2], was proved by Witt Nyström for the
case when θ1 = ... = θn and u1 = ... = un. The general case was established in [3].

Theorem 1 opens the door for a (global) pluripotential theory in relative full
mass classes. Several pluripotential tools such as comparison principle, conver-
gence of non-pluripolar measures, stability of sub/super solutions were established
in [3, 4], leading to the following resolution of complex Monge-Ampère equations
with prescribed singularity:

Theorem 2. Assume φ = P [φ], 0 ≤ f ∈ Lp(X), p > 1 with
∫
X

(θ + ddcφ)n =∫
X
fdV > 0. Then there exists a unique u ∈ PSH(X, θ) such that supX u = 0,

u ≃ φ and (θ + ddcu)n = fdV .

The envelope P [φ], introduced by Ross and Witt Nyström [6] is defined as

P [φ] :=

(
lim

t→+∞
Pθ(min(φ+ t, 0))

)∗
.

An important consequence of Theorem 2 is the following result confirming a
conjecture of Boucksom-Eyssidieux-Guedj-Zeriahi [2] :

Theorem 3. The volume function T 7→ log Vol(T ) is concave on the convex set
of closed positive (1, 1)-currents.

Here given T a positive closed current of type (1, 1) on X we can find θ ∈ {T },
which is a smooth closed real (1, 1)-form on X and u ∈ PSH(X, θ) such that
T = θ + ddcu. If {θ} is big then Vol(T ) is defined to be

∫
X(θ + ddcu)n, otherwise

Vol(T ) = 0.
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Applications of the L
2 extension theorem to analytic families

Takeo Ohsawa

Geometric invariants of complex manifolds are encoded in the L2-space of holomor-
phic sections of vector bundles. They are compressed in the Bergman kernel as the
works of Kodaira, Hörmander and Fefferman have shown, so that relations between
analysis and geometry on complex manifolds are suggested in the results on the
Bergman kernels. Given an analytic family of complex manifolds, say π : M → T ,
the parameter dependence of the Bergman kernel Kt = KMt

of Mt = π−1(t)
reflects how the complex structure of Mt deforms. It is known by Berndtsson
that logKt depends plurisubharmonically in t if M is weakly 1-complete (=C∞

plurisubharmonic) and Kählerian. An immediate consequence of Berndtsson’s
theorem is that such a family is locally analytically trivial if logKt ∈ C∞ and
∂∂̄ logKt annihilates a horizontal distribution (a subbundle of T 1,0

M which bijects

to T 1,0
T by π). This generalizes a result of Maitani and Yamaguchi for Stein fami-

lies of Jordan domains. Roughly speaking, the Bergman kernel detects the rigidity
of analytic families. On the other hand, it was proved by Nishino that a Stein sub-
mersion over the unit disc is trivial if the fibers are C. Although this rigidity does
not follow directly from KC ≡ 0, it turned out that an L2 extension theorem is
available to give its alternate proof (cf. [1]).

Indeed, Nishino’s theorem is an immediate consequence of the following L2

extension theorem in [3], up to simple or well-known assertions on holomorphic
functions.

Theorem 1. Let M be a Stein manifold of dimension n, let ϕ be a plurisubhar-
monic function on M , let s be a holomorphic function on M and let X = s−1(0).
Assumme that X0 := X ∩ {ds 6= 0} is a dense subset of X. Then, for any holo-
morphic (n− 1)-form on X0 satisfying

∣∣∣∣
∫

X0

e−ϕf ∧ f
∣∣∣∣ <∞,

one can find a holomorphic n-form F on M such that F = f ∧ ds on X0 and
∣∣∣∣
∫

M

e−ϕ(1 + |s|2)−2F ∧ F
∣∣∣∣ ≤ C0

∫

X0

e−ϕf ∧ f,

where C0 ≤ 1620π.

Besides the rigidity, a variant of the L2 extension theorem can be applied to
extend the results of Takegoshi and Takayama on the Levi problem on complex
manifolds (cf. [2]).
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HHR/USQ domains and squeezing constants for bounded symmetric
domains

Kang-Tae Kim

(joint work with Cho-Ho Chu, Sejun Kim)

1. Basic notions

Let Ω be a complex manifold of dimension n with a 1-1 holomorphic mapping
f : Ω → Bn(0, 1) into the unit open ball Bn(0, 1) in Cn. Then Ω is biholomorphic
to a subdomain of Bn(0, 1), as a consequence. So we are naturally lead to focus
upon the case of bounded domains.

For p ∈ Ω, let Fp(Ω) := {f : Ω → Bn(0, 1) | f(p) = 0 & 1-1 holomorphic}.
Then for each f ∈ Fp(Ω), let

σf (p) := sup{r > 0: Bn(0, r) ⊂ f(Ω)},
and let

σΩ(p) := sup{σf (p) : f ∈ Fp(Ω)},
which we call the squeezing function of Ω. (Of course, Bn(p, r) = {z : ‖z−p‖ < r}.)
Moreover, Ω is called holomorphic homogeneous regular, or uniformly squeezing, if
the squeezing function admits a positive lower bound [6, 7, 9].

2. Infinite dimensions

This consideration can be extended to the infinite dimensional complex Banach
spaces. Let V be a Banach space. Then a domain Ω in V is with a holomorphic em-
bedding ψ : Ω → BH(0, 1) into the unit open ball in a Hilbert space H , with ψ(p) =
0 is associated with the squeezing function σΩ : Ω → R defined much the same way
as follows: let Fp(Ω, H) := {f : Ω → H | holomorphic embedding with f(p) =
0 & f(Ω) ⊂ BH(0, 1)}. Then put

σf (p) = sup{r > 0: BH(0; r) ⊂ f(Ω)}
for each f ∈ Fp(Ω, H). Moreover,

σΩ(p) := sup
f∈Fp(Ω,H)

σf (p).

As in the finite dimensional case, Ω is called holomorphic homogeneous regular
(HHR) if the sqeezing function has a positive lower bound.

Proposition 1 ([3]). The concept of squeezing function is independent of choice
of the Hilbert space H.

Theorem 2 ([3]). A domain in V is HHR if, and only if, V is of type 2 and
cotype 2, or equivalently it is linearly homeomorphic to a Hilbert space. In fact,
any uniformly elliptic domains in Hilbert spaces are HHR.

For the concept of type and cotype for Banach spaces, we refer to [8].
On the other hand, unlike finite dimensions, the following question is yet to be

answered:
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Question 5. Is a convex bounded domain in an infinite dimensional Hilbert space
HHR?

In Cn the answer is known to be affirmative [4]. But that method does not
seem to generalize directly.

3. Squeezing functions for bounded symmetric domains

First we discuss the finite dimensional bounded symmetric domains.
According to [2], the complete list of bounded symmetric domains divides into

6 types: 4 classical types and 2 exceptional domains which are called type V
and type VI. Since these domains are homogeneous, the squeezing function is a
constant function. The value of this constants were sought after.

Kubota [5] discovered these constants, in fact, even before the squeezing func-
tion was extensively studied following H. Alexander’s analysis on the polydiscs
[1].

We have discovered the following:

Proposition 3 ([3]). The squeezing constnat of the exceptional domain D27 of

type V is 1/
√

3. Moreover the squeezing constant of the bounded symmetric domein

D16 of type VI is 1/
√

2. In fact, the squeezing for every irreducible BSD’s of finite

dimensions is 1/
√
rank, regardless classical or exceptional.

Regardless of dimensions we have the following:

Theorem 4 ([3]). Let D be a bounded symmetric domain in a complex Banach
space. Then D is HHR if, and only if, it is of finite rank. In this case, D is
biholomorphic to a finite product D1 × · · · ×Dk of irreducible bounded symmetric
domains and it follows that

σD =

(
1

σ2
D1

+ · · · +
1

σ2
Dk

)− 1
2

.

If dimV is finite, then each Dj is one of the domains of six types by Cartan. If
dimV = ∞, then each Dj is either a Lie ball or a Type I domain of finite rank.

For the Lie ball the squeezing constant is 1/
√

2. For the Type I domain, it is again

1/
√
rank.

Then we pose, finally:

Question 6. Can it be possible to compute squeezing function value (constant)
for the bounded homogeneous domains?
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Plurisubharmonically separable complex manifolds

Evgeny A. Poletsky

(joint work with Nikolay Shcherbina)

Let M be a complex manifold and PSHcb(M) be the space of bounded contin-
uous plurisubharmonic functions on M . In this paper we study obstructions to
separation of points in a complex manifold M by functions from PSHcb(M).

There are complex manifolds, for example compact manifolds, where all pluri-
subharmonic functions are constants. There are parabolic manifolds, for example
Cn, where all bounded plurisubharmonic functions are constants. For their char-
acterization see [6] and [1]. But there are plenty of complex manifolds like D×C,
D is the unit disk, where the space PSHcb(M) is large but, nevertheless, does not
separate points.

The first main results of our paper can be summarized in the following theorem.

Theorem 1. For a complex manifold M the following statements are equivalent:

(1) the functions from PSHcb(M) separate points of M ;
(2) for every point w0 ∈M there is a function u ∈ PSHcb(M) that is smooth

and strictly plurisubharmonic near w0 ;
(3) for every point w0 ∈M there are a negative continuous plurisubharmonic

function v on M and constants C1 and C2 such that log |z − w0| + C1 <
v(z) < log |z − w0| + C2 near w0.

The main obstruction to separation is the set c(M) of all points w ∈M , where
every function of PSHcb(M) fails to be smooth and strictly plurisubharmonic
near w. It was first introduced and systematically studied by Harz–Shcherbina–
Tomassini in [2]–[4] and was called the core of M . Observe that directly from
the definition one concludes that c(M) is a closed subset of M . Among the main
properties of the core established in these papers we mention here the following
result that will be one of the important technical tools in the present paper.
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Theorem 2 (see [2, Theorem 3.2]). Let M be a complex manifold. Then the
set c(M) is 1-pseudoconcave in the sense of Rothstein. In particular, c(M) is
pseudoconcave in M if dimCM = 2.

Our next main result is the following theorem that was proved in [3] when the
dimension of M is two.

Theorem 3. Let M be a complex manifold. Then the set c(M) is the disjoint
union of the sets Ej, j ∈ J , that are 1-pseudoconcave in the sense of Rothstein and
have the following Liouville property: every function from PSHcb(M) is constant
on each of Ej.

A closed set E ⊂M is called 1-pseudoconcave in the sense of Rothstein if for any
z0 ∈ E and for any strictly plurisubharmonic function ρ defined on a neighborhood
V of z0 at any neighborhood U ⊂⊂ V containing z0 there is a point z ∈ E ∩ U
where ρ(z) > ρ(z0).

By their definition these sets are perfect, i.e., have no isolated points. But it
may happen that such a set is compact. For example, take the unit ball B in C2

and blow-up a complex projective line E at the origin. We get a complex manifold
M . Clearly, E is a set that is 1-pseudoconcave in the sense of Rothstein. But if
M is Stein, then any connected component X of E is non-compact.

Observe that if E ⊂M is a set that is 1-pseudoconcave in the sense of Rothstein
in M which has the property that each bounded above continuous plurisubhar-
monic function ϕ on M is constant on E, then E ⊂ c(M) (for details see Lemma
3.1 in [3]). Hence, mentioned above Theorem 3 clarify the phenomenon of both,
existence and the structure of the core.

Note that in this paper we are dealing mainly with the core defined using con-
tinuous plurisubharmonic on M functions (the core c0(M) in terminology of [4]),
while the main object of the study in [2]-[4] was the core c(M) defined using
smooth plurisubharmonic on M functions. Note also, that another proof of The-
orem 3 for cores defined by smooth plurisubharmonic functions was obtained by
Slodkowski [8] using essentially different methods. His proof also covers the case
of minimal kernels which are defined and studied in [9].

Let w0 be a point in M . A point Acb(w0) if u(z) ≤ u(w0) for any u ∈
PSHcb(M).

Let us list some easily derived properties of the sets Ab(w0) and Acb(w0).

Proposition 4. (1) The set Acb(w0) is closed.
(2) If z0 ∈ Acb(w0), then Acb(z0) ⊂ Acb(w0).
(3) A point w0 6∈ c(M) if and only if Acb(w0) = {w0}.

In the theorem 5 below we prove the major property of the sets Acb(w0).

Theorem 5. If Acb(w0) 6= {w0}, then the set Acb(w0) is 1-pseudoconcave in the
sense of Rothstein.

Following the terminology of [7] we say that a closed setX in a complex manifold
M has the local maximum property if X is perfect (i.e. has no isolated points) and
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for any z0 ∈ X there is an open neighborhood V of z0 in M with compact closure
such that if an open set U ⊂⊂ V contains z0 and the set L = X∩∂U is non-empty,
then

sup
X∩U

u ≤ sup
L
u

for any plurisubharmonic function u on V .

Theorem 6. IfM is a complex manifold, then any closed set X ⊂M has the local
maximum property if and only if it is 1-pseudoconcave in the sense of Rothstein.

Let Acbe (w0) be the set of w ∈ M such that u(w) = u(w0) for any u ∈
PSHcb(M).

Theorem 7. If M is a complex manifold and w0 ∈ c(M), then the set Acbe (w0)
has the local maximum property.

As a corollary to the latter result we obtain the following theorem.

Theorem 8. Let M be a complex manifold with non-empty core c(M). Then:

(1) for every w0 ∈M the set Acbe (w0) 6= {w0} if and only if w0 ∈ c(M);
(2) if w0 ∈ c(M), then the set Acbe (w0) is a is 1-pseudoconcave in the sense

of Rothstein, lies in c(M) and all functions u ∈ PSHcb(M) are constants
on Acbe (w0);

(3) the core c(M) of M can be decomposed into the disjoint union of closed
sets Ej , j ∈ J , that are 1-pseudoconcave in the sense of Rothstein and
have the following Liouville property: Every function ϕ ∈ PSHcb(M) is
constant on each of the sets Ej.

If Acbe (w0) ∩ Acbe (w1) 6= ∅, then Acbe (w0) = Acbe (w1). Hence c(M) is the disjoint
union of the sets Ej = Acbe (w).

If the manifold M is not Stein, it may happen that the sets Acb(w0) and Acbe (w0)
are compact. For example, take the unit ball B in C2 and blow-up a complex
projective line X at the origin. We get a complex manifold M and a holomorphic
mapping F of M onto B such that F (X) = {0}. If u is a plurisubharmonic
function on B, then the function v = u ◦ F is plurisubharmonic on M while
any plurisubharmonic function on M is constant on X . Hence c(M) = X and
Acb(w0) = Acbe (w0) = X for w0 ∈ X .

The following theorem shows that such phenomenon can exist only on non-Stein
manifolds.

Theorem 9. Let M be a complex manifold and let X 6= {w0} be the closed con-
nected component of Acb(w0) containing w0. If X is compact, then Acb(w0) = X
and M is not Stein.

Open problems

(1) Is Acb(w0) = Acbe (w0)?
(2) Does Acb(w0) ⊂ c(M)?
(3) Is there a non-negative u ∈ PSHcb(M) such that the set {u = 0} = c(M)?
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Residue currents and cycles of complexes of vector bundles

Richard Lärkäng

(joint work with Elizabeth Wulcan)

The classical Poincaré-Lelong formula states that

(1) ∂̄∂ log |f |2 = 2πi[f = 0],

where [f = 0] is the intergration current along {f = 0}, counted with appropriate
multiplicities. Formally, the left-hand side of (1) equals ∂̄(1/f) ∧ df , and indeed,
if one defines ∂̄(1/f) := limǫ→0 ∂̄χ(|f |2/ǫ)/f , then

(2) ∂̄
1

f
∧ df = 2πi[f = 0].

If f = (f1, . . . , fp) is a tuple of holomorphic functions such that codim{f =
0} = p, i.e., such that f is a complete intersection, then (2) can be generalized to
the following formula,

(3) ∂̄
1

fp
∧ · · · ∧ ∂̄ 1

f1
∧ df1 ∧ · · · ∧ dfp = 2πi[f1 = · · · = fp = 0],

where ∂̄(1/fp) ∧ · · · ∧ ∂̄(1/f1) is the so-called Coleff-Herrera product, [2].
For a coherent analytic sheaf F , the cycle of F is

[F ] =
∑

mi[Zi],

where Zi runs over the irreducible components of suppF , [Zi] is the integration
current along Zi, and mi is the geometric multiplicity of Zi in F . For generic
z ∈ Zi, F can locally be given the structure of a free OZi

-module of constant
rank, and mi is this rank.
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Consider now a complex

(4) 0 → EN
ϕN−→ EN−1 → · · · → E1

ϕ1−→ E0 → 0

of vector bundles on X . We let the cycle of (E,ϕ) be the current

[E] :=
∑

(−1)ℓ[Hℓ(E)],

where Hℓ(E) is the homology group of (E,ϕ) at level ℓ. If (E,ϕ) is a locally free
resolution of a coherent sheaf F , then [E] = [F ].

Given a generically exact complex (E,ϕ), with E0, . . . , EN equipped with her-
mitian metrics, in [1] Andersson and Wulcan introduced an associated EndE-
valued residue current R. More precisely, one has R =

∑
ℓ<k R

ℓ
k, where Rℓk is a

Hom (Eℓ, Ek)-valued (0, k − ℓ)-current. More concretely, if rankEj = rj , then Rℓk
is in a local frame an rk × rℓ-matrix of (0, k − ℓ)-currents.

Our main result is the following variant of the Poincaré-Lelong formula.

Theorem 1. Let (E,ϕ) be a complex of vector bundles (4), such that all the
homology groups Hℓ(E) have pure codimension p > 0 or vanish, and let D be the
connection on EndE induced by arbitrary connections on E0, . . . , EN . Assume
E0, . . . , EN are equipped with hermitian metrics, and let R =

∑
ℓ<kR

ℓ
k be the

associated current. Then

(5)
1

(2πi)pp!

N−p∑

ℓ=0

(−1)ℓ trDϕℓ+1 · · ·Dϕℓ+pRℓℓ+p = [E].

Here, connectionsD0, . . . , DN onE0, . . . , EN induce a connectionD on End (E),
and in particular, Dϕk = Dk−1 ◦ ϕk + ϕk ◦Dk. Note that there is no relation re-
quired between the hermitian metrics on E0, . . . , EN used to define R and the
connections D0, . . . , DN on E0, . . . , EN .

In case Hk(E) = 0 for k > 0, then (E,ϕ) is a locally free resolution of F :=
H0(E), and in this case, Rℓℓ+p = 0 for ℓ > 0, so (5) becomes

(6)
1

(2πi)pp!
trDϕ1 · · ·DϕpR0

p = [F ].

In the case F = OZ , this is an earlier result of ours, [3], but we give a new,
simpler proof of (6) than the proof in [3]. In the special case when F = OZ =
OX/(f1, . . . , fp), where f defines a complete intersection, and one takes (E,ϕ) to
be the Koszul complex of f , then

R0
p = ∂̄

1

fp
∧ · · · ∂̄ 1

f1
and Dϕ1 · · ·Dϕp = p!df1 ∧ · · · dfp,

so (6) in this case becomes the Poincaré-Lelong formula (3).
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Polynomially convex embeddings of compact real manifolds

Purvi Gupta

(joint work with Rasul Shafikov)

A compact set X ⊂ Cn is said to be polynomially convex if it coincides with its

polynomial hull, given by X̂ = {z ∈ Cn : |p(z)| ≤ supX |p|, for all holomorphic
polynomials p}. Polynomial convexity is an important notion owing to the Oka-
Weil theorem which states that holomorphic functions in a neighbourhood of a
polynomially convex set M can be approximated uniformly on M by holomor-
phic polynomials. Although it is not a topological property, polynomial convexity
imposes topological constraints on the underlying set. For instance, it is known
that no m-dimensional compact manifold without boundary can be polynomially
convex in Cm. This raises the following question.

Question. What is the least n so that all m-dimensional compact real manifolds
admit a polynomially convex embedding into C

n?

It is known that allm-manifolds admit a polynomially convex topological embed-
ding in Cm+1, which is optimal (see [4]). In the context of smooth embeddings,
this question is open. It is related to the question of the minimum number of
smooth generators required to generate the algebra of continuous function on any
m-dimensional compact manifold. If M is a nonmaximally totally real submani-
fold of Cn, it can be deformed via a small perturbation into a polynomially convex
one, as proved by Forstnerič-Rosay [6], Forstnerič [5], and Løw-Wold [7]. The con-
dition that any abstract m-dimensional compact real manifold admits a totally
real embedding into Cn is well understood: one must have ⌊ 3m

2 ⌋ ≤ n. Thus, any
m-dimensional compact manifold can be embedded as a totally real polynomially
convex submanifold of Cn if n ≥ ⌊ 3m

2 ⌋ and (m,n) 6= (1, 1). If n < ⌊ 3m
2 ⌋, then

certain m-dimensional compact manifolds necessarily acquire complex tangent di-
rections when embedded into Cn. The points where these occur are the CR-
singularities of M . When n = m, certain CR-singularities prevent the manifold
from being polynomially convex, and these cannot be avoided due to topological
reasons. However, when n > m, it is not known whether the same phenomenon
takes place.

We discuss a technique of constructing polynomially convex embeddings of man-
ifolds in the case when CR-singularities will necessarily occur, thus allowing us to
reduce the known bound for the optimal n sought in the question above. This
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method involves replacing CR-singularities with suitable local models based on
the Beloshapka-Coffman normal form (see [2] and [3]), and then perturbing M
away from the new set of CR-singularities using a general result established in
Arosio-Wold [1]. In particular, this method works when the CR-singularities are
either isolated, or — under additional assumptions — one-dimensional. Similar
techniques can also be applied to produce improved bounds for yet another ques-
tion involving a minimum embedding dimension: what is the least n so that every
m-dimensional real compact manifold can be embedded into Cn to have no analytic
discs in its polynomial hull?
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Monge-Ampère operator for plurisubharmonic functions with analytic
singularities on Hermitian manifolds

Zbigniew B locki

A plurisubharmonic (psh) function u defined on a complex manifold X of dimen-
sion n is said to have analytic singularities if locally it can be written of the form

u = c log |F | + v,

where c ≥ 0 is a constant, F = (f1, . . . , fm) is a tuple of holomorphic functions not
vanishing everywhere and v is bounded. By Z we will denote its singular set. If
m = 1 then we say that u has divisorial singularities; then v has to be a bounded
psh function.

The Monge-Ampère operator for such functions was defined by Andersson and
Wulcan [2] as follows: for k = 1, . . . , n set inductively

(ddcu)k := ddc
(
u1X\Z(ddcu)k−1

)
.

It was shown in [2] that Tk−1 := 1X\Z(ddcu)k−1 extends across Z as a closed
current on X and that uTk−1 has locally finite mass. If u = c log |f | + v has
divisorial singularities then

(ddcu)k = ddcu ∧ (ddcv)k−1.
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In general, u does not belong to the domain of definition D defined in [3, 4]
which is the maximal subclass of the class of plurisubharmonic functions where the
complex Monge-Ampère operator can be defined in such a way that it is continuous
(in the weak∗ topology) for decreasing sequences. This is because D ⊂ W 1,2

loc and
usually functions with analytic singularities do not have gradient in L2

loc.
This means that one cannot expect good continuity properties for arbitrary

regularizations of u. In [1] it was shown however that this definition is continuous
for certain special regularizations:

Theorem 1. Let u be a negative psh function with analytic singularities and
assume that χj is a sequence of bounded nondecreasing convex functions on (−∞, 0]
such that χj(t) decreases to t as j increases to ∞. Then for k = 1, . . . , n

(ddc(χj ◦ u))k → (ddcu)k

weakly as j → ∞.

This can be treated as an alternative definition of the Monge-Ampère operator.
If ω is a Kähler form on X and ϕ is an ω-psh function with analytic singularities

then the Monge-Ampère operator (ω+ddcϕ)k was defined locally in [1] as (ddc(g+
ϕ))k where g is a local potential for ω (i.e. ω = ddcg). This definition has two
weaknesses however: first of all if X is compact then it may happen that∫

X

(ω + ddcϕ)n <

∫

X

ωn

(that is we loose some mass) and secondly it cannot be repeated if ω is only
Hermitian.

We propose instead an alternative definition:

Theorem 2. Let ω be a Hermitian form on X and ϕ a negative ω-psh function
with analytic singularities. Then for k = 1, . . . , n one can uniquely define a (k, k)-
current (ω+ddcϕ)k on X in such a way that if χj are as in Theorem 1 with χ′

j ≤ 1
then

(ω + ddc(χj ◦ ϕ))k → (ω + ddcϕ)k

weakly as j → ∞.

Since we may for example take χj(t) = max{t,−j}, we immediately get the
following:

Corollary 3. If ω is Kähler and X is compact then∫

X

(ω + ddcϕ)n =

∫

X

ωn.

The way to prove Theorem 2 is to write the Newton expansion

(ω + ddcϕ)k =

k∑

l=1

(
k

l

)
(ddcϕ)l ∧ ωk−l

and to generalize Theorem 1 to quasi-psh functions, that is functions that can be
locally written as ϕ = u+ ψ where u is psh and ψ is smooth.
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The Second Main Theorem in the hyperbolic case.

Nessim Sibony

Most results in Nevanlinna’s theory study the behavior of maps from C to a com-
pact complex manifold, mostly projective. In a joint work with Mihai Păun, we
question, the nature of the source space. We give versions of the classical the-
orems, Nevanlinna’s second main Theorem, Bloch’s Theorem, Ax Lindemann’s
Theorem, when the source is an open Parabolic Riemann surface (i.e all bounded
subharmonic functions are constant)see [4].

With Min-Ru,[5], we consider the case when the source space is the unit disc
D. We have to assume that the map f : D → (M,ω) satisfy a certain growth
condition expressed in terms of the Nevanlinna’s characteristic of the map f . We
require that

cf,ω := inf

{
c > 0

∣∣
∫ R

0

exp(cTf,ω(r))dr = ∞
}
,

is finite.
In [5] one shows that the Cartan, Ahlfors, Notchka Theorem can be extended

to this context.

Theorem 1. Let H1, . . . , Hq be hyperplanes in Pn(C) in general position. Let
f : D → Pn(C) be a linearly non-degenerate holomorphic curve (i.e. its image is
not contained in any proper subspace of Pn(C)) with cf < ∞, where cf = cf,ωFS

and 0 < R ≤ ∞. Then, for any ǫ > 0, the inequality
q∑

j=1

mf (r,Hj) +NW (r, 0) ≤ (n+ 1)Tf (r) +
n(n+ 1)

2
(1 + ǫ)(cf + ǫ)Tf(r)

+O(logTf (r)) +
n(n+ 1)

2
ǫ log r

holds for all r ∈ (0, R) outside a set E with
∫
E exp((cf + ǫ)Tf (r))dr < ∞. Here

W denotes the Wronskian of f .

It turns out that the condition is satisfied for generic leaves of foliations by
Riemann surfaces in compact Kähler manifolds, [1],[3]. We give a simple example
of the situation we have in mind. Let F be a foliation in P2, let L be a leave
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with φ → L the universal covering map. For any line Λ ⊂ P
2, one can study the

behavior of the family of measures

1

Tφ(r)

∑

φ(a)∈Λ,|a|<r
δa log+

r

|a|

which describe the intersection of the line Λ and the leaf L. where δa is the Dirac
measure at a. We get a family of measures on the unit disc, whose behavior is
related to the wiggling of the leave. The previous Theorem, says that with ”few”
exceptions the cluster points are probability measures.

In [2], the following geometrical ergodic theorem is proved. Let F be a foliation,
possibly singular, by Riemann surfaces on a compact Kähler manifold M . The
manifold M is endowed with a fixed Kähler form ω. Let T be an extremal positive
ddc-closed current directed by the foliation F . Assume for simplicity that T has
full mass on the hyperbolic leaves, i.e. leaves covered by the unit disc.

If φa : D → L is the universal covering of a leaf L with φa(0) = a, we consider
for r < 1 the Nevanlinna current

τar :=
1

T (r)
(φa)∗

(
log+ r

|ξ|
)

=
1

T (r)

∫ r

0

dt

t
(φa)∗[D(t)].

Here, [D(t)] is the current of integration on the disc D(t) of radius t centered at
0, log+ := max(log, 0) and T (r) is the Nevanlinna characteristic for φa which is
given by the formula

T (r) :=

∫ r

0

dt

t

∫

D(t)

(φa)∗(ω).

Theorem 2 ([2]). In the above situation, assume that all singularities of F are
linearizable. Then, for T -almost every a, we have τar → T as r tends to 1, in the
sense of currents. More precisely, for any smooth test form θ of bi-degree (1, 1) on
Pk, we have

〈τar , θ〉 → 〈T, θ〉 as r → 1.

A consequence of Theorem 2 is that for almost every leaf, with respect to the
current T, the Nevanlinna characteristic T (r) for the leaf parametrized by φa,
satisfies the inequality

T (r) ≥ c log
1

(1 − r)

for r close to 1, where c is a positive constant depending on a. In particular, it
satisfies the growth conditions needed for a second main Theorem for maps with
the unit disc as the source.
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Cohomological properties of complex non-Kähler manifolds

Nicoletta Tardini

(joint work with Daniele Angella)

On a complex manifold X the triple (A•,•(X) , ∂ , ∂) given by the space of (p, q)-
forms on X and the differential operators ∂ and ∂ is a double complex. One can
define the classical de Rham and Dolbeault cohomologies but it turns out that in
complex non-Kähler geometry they do not suffice in studying a complex manifold.
Many informations are indeed contained in the Bott-Chern [5] and Aeppli [1]
cohomologies, defined, on a complex manifold X , respectively as

H•,•
BC(X) :=

Ker ∂ ∩ Ker ∂

Im ∂∂
, H•,•

A (X) :=
Ker ∂∂

Im ∂ + Im ∂
.

These two cohomologies represent a bridge between a topological invariant (the de
Rham cohomology) and a complex invariant (the Dolbeault cohomology), indeed
we have that the identity induces natural maps

H•,•
BC(X)

��xxqq
qq
qq
qq
qq

&&▼
▼▼

▼▼
▼▼

▼▼
▼

H•,•
∂ (X)

&&▼
▼▼

▼▼
▼▼

▼▼
▼

H•
dR(X,C)

��

H•,•
∂

(X)

xxqq
qq
qq
qq
qq

H•,•
A (X) ,

while there is no natural map between the Dolbeault and de Rham cohomolo-
gies. Generally such maps are neither injective nor surjective but when the map
H•,•
BC(X) −→ H•

dR(X) is injective, namely every ∂-closed, ∂-closed and d-exact

form is ∂∂-exact, the manifold X is said to satisfy the ∂∂-lemma. Moreover, the
injectivity of H•,•

BC(X) −→ H•
dR(X) is equivalent to all the maps in the diagram

being isomorphisms [6, Lemma 5.15]. Every compact Kähler manifold satisfies
the ∂∂-lemma [6] but the converse is not true. More generally, manifolds in class
C of Fujiki and Moishezon manifolds (namely manifolds that can be respectively
modified to a Kähler manifold and a projective manifold) satisfy the ∂∂-lemma.
As a consequence of Hodge theory, all these cohomology groups on compact com-
plex manifolds are finite dimensional vector spaces [8] but differently from the
Dolbeault cohomology, Hermitian duality does not preserve the Bott-Chern coho-
mology, in fact it realizes an isomorphism with the Aeppli cohomology. In fact
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in [3] we prove that if X is a compact complex manifold, then X satisfies the
qualitative Kodaira-Spencer-Schweitzer property, i.e., the natural pairing

H•,•
BC(X) ×H•,•

BC(X) → C , ([α], [β]) 7→
∫

X

α ∧ β

is non-degenerate if and only if X satisfies the ∂∂-Lemma.
On the other side, many informations can be obtained investigating quantitative

properties of the Bott-Chern and Aeppli cohomologies (namely, relations between
their dimensions in terms of the Betti and Hodge numbers) towards the study of
their qualitative properties (namely, their algebraic structure).
In [4, Theorem A, Theorem B] it is proven a Frölicher-type inequality [7], namely
on X for every k ∈ Z one has

∆k(X) :=
∑

p+q=k

(dimCH
p,q
BC(X) + dimCH

p,q
A (X)) − 2 bk ≥ 0 .

Moreover, the equalities characterize the validity of the ∂∂-lemma on X , meaning
that from a purely quantitative information we are able to understand whether
the manifold is cohomologically Kähler or not. Moreover, with D. Angella in
[3] we prove that the Bott-Chern cohomology is an invariant strong enough to

characterize the ∂∂-lemma; more precisely, a compact complex manifold X of
complex dimension n satisfies the ∂∂-Lemma if and only if, for any p, q ∈ Z, one
has

dimCH
p,q
BC(X) = dimCH

n−p,n−q
BC (X) .

This means that a central simmetry in the Bott-Chern diamond forces the natural
maps among all the cohomology groups to be isomorphisms.
Similar considerations can be done on (locally-conformally-)symplectic manifolds
for the analogue of the Bott-chern cohomology groups in these settings (cf [10],
[9], [2]).
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Weighted Bergman kernel, directional Lelong number and
John-Nirenberg exponent

Bo-Yong Chen

Let B1 be the unit ball in Cn and PSH(B1) the set of plurisubharmonic functions
on B1. For each ψ ∈ PSH(B1) we define Ktψ(z, w) to be the weighted Bergman
kernel of the Hilbert space

A2
tψ =

{
f ∈ O(B1) :

∫

B1

|f |2e−tψ <∞
}
, t ≥ 0.

Set Ktψ(z) = Ktψ(z, z). A cerebrated theorem of Demailly states that

ψt :=
1

t
logKtψ(z) → ψ(z) (t→ +∞)

and

ν(ψ, z) − 2n/t ≤ ν(ψt, z) ≤ ν(ψ, z)

where ν(ϕ, z) denotes the Lelong number for a psh function ϕ at z.
In this talk we consider the case when t is fixed and z approaches the boundary

∂B1. The main results are the following

Theorem 1. Let ψ be a psh function in a neighborhood of the closed ball BR :=
{|z| ≤ R} where R > 1. For each 0 ≤ t < ε̃BR

(ψ) and each ζ ∈ ∂B1 we have

lim
r→0

logKtψ((1 − r)ζ)

log 1/r
= n+ 1 − tν̃(ψζ).

Here ε̃BR
(ψ) is the John-Nirenberg exponent of ψ associated to certain family of

nonisotropic balls in BR, and ν̃(ψζ) is certain directional Lelong number associated
to ψ.

Theorem 2. Let ψ be as above. Then ε̃BR
(ψ) > 0.
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Tame discrete subsets in Stein manifolds

Jörg Winkelmann

For discrete subsets in Cn the notion of being “tame” was defined by Rosay and
Rudin. A discrete subset D ⊂ Cn is called “tame” if and only if there exists an
automorphism φ of Cn such that φ(D) = N × {0}n−1. (Here a subset D of a
topological space X is called a “discrete subset” if every point p in X admits an
open neighbourhood W such that W ∩D is finite.)

We want to introduce and study a similar notion for complex manifolds other
than Cn.

Therefore we propose a new definition, show that it is equivalent to that of Rosay
and Rudin if the ambient manifold is Cn and deduce some standard properties.

To obtain good results, we need some knowledge on the automorphism group of
the respective complex manifold. For this reason we get our best results in the case
where the manifold is biholomorphic to a complex Lie group. We concentrate on
semisimple complex Lie groups, since every simply-connected complex Lie group
is biholomorphic to a direct product of Cn and a semisimple complex Lie group.

Definition 1. Let X be a complex manifold. An infinite discrete subset D is
called (weakly) tame if for every exhaustion function ρ : X → R+ and every map
ζ : D → R+ there exists an automorphism φ of X such that ρ(φ(x)) ≥ ζ(x) for all
x ∈ D.

Andrist and Ugolini have proposed a different notion, namely the following:

Definition 2. LetX be a complex manifold. An infinite discrete subsetD is called
(strongly) tame if for every injective map f : D → D there exists an automorphism
φ of X such that φ(x) = f(x) for all x ∈ D.

It is easily verified that “strongly tame” implies “weakly tame”. For X ≃ Cn

and X ≃ SLn(C) both tameness notions coincide. Furthermore, for X = Cn both
notions agree with tameness as defined by Rosay and Rudin.

However, for arbitrary manifolds “strongly tame” and “weakly tame” are not
equivalent. (For instance this happens for ∆ ×C.)

In this article, unless explicitly stated otherwise, tame always means weakly
tame.

Comparison between Cn and semisimple complex Lie groups. For tame
discrete sets in Cn in the sense of Rosay and Rudin, the following facts are well-
known:

(1) Any two tame sets are equivalent.
(2) Every discrete subgroup of (Cn,+) is tame as a discrete set.
(3) Every discrete subset of Cn is the union of two tame ones.
(4) There exist non-tame subsets in Cn.
(5) Every injective self-map of a tame discrete subset of Cn extends to a

biholomorphic self-map of Cn.
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(6) If vk is a sequence in Cn with
∑∞

k=1
1

||vk||2n−1 <∞, then {vk : k ∈ N} is a

tame discrete subset.

For discrete subsets in semisimple complex Lie groups we are able to prove the
following properties:

(1) Any two tame discrete subsets in a semisimple complex Lie group are
equivalent. The notions “strongly tame” and “(weakly) tame” coincide.

(2) Certain discrete subgroups may be verified to be tame discrete subsets.
In particular, SLn(Z[i]) is a tame discrete subset, and also every discrete
subgroup of a one-dimensional Lie subgroup of SLn(C) and every discrete
subgroup of a maximal torus.

(3) Every discrete subset of complex linear algebraic group is the union of 2
tame discrete subsets.

(4) Every semisimple complex Lie group admits a non-tame discrete subset.
(5) Every injective self-map of a tame discrete subset of a semisimple complex

Lie group extends to a biholomorphic self map of this Lie group.
(6) For every semisimple complex Lie group S there exists a “threshold se-

quence”, i.e., there exists a sequence of numbers Rk > 0 and an exhaustion
function τ such that every sequence gk with τ(gk) > Rk defines a tame
discrete subset.

Riemann surfaces of second kind and finiteness theorems

Burglind Jöricke

The Geometric Shafarevich Conjecture (now a theorem) states that over a closed or
punctured Riemann surface there are only finitely many locally (holomorphically)
non-trivial holomorphic fiber bundles with fibers a punctured Riemann surface of
given hyperbolic type. We prove finiteness theorems in this spirit in case the base
is an arbitrary finite open Riemann surface, maybe, of second kind. For example,
over an arbitrary finite Riemann surface there are up to isotopy no more than
finitely many irreducible holomorphic torus bundles. Moreover, there are up to
homotopy no more than finitely many holomorphic mappings of an open Riemann
surface to the three times punctured Riemann sphere that are not contractible to
a point and not contractible to a puncture.

The Geometric Shafarevich conjecture was stated in connection with research re-
lated to Fermat’s last theorem and to the Mordell conjecture. It was proved by
Parshin in the case of compact base and fibers of type (g, 0), g ≥ 2, and by Arakelov
for punctured Riemann surfaces as base and fibers of type (g, 0). Imayoshi and
Shiga gave a proof of the quoted version using Teichmüller theory. Here g is the
genus of the Riemann surface and m is the number of punctures.

For fiber bundles over punctured Riemann surfaces the following two state-
ments hold. First, each isotopy class of smooth (g,m) bundles contains no more
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than finitely many holomorphic fiber bundles that are locally holomorphically non-
trivial. Secondly, there are no reducible genus g fiber bundles over a punctured
Riemann surface that are not locally holomorphically trivial.

The notion of reducible fiber bundles is related to Thurston’s theory of surface
homeomorphisms. It is defined as follows.

A finite non-empty set of mutually disjoint closed Jordan curves C = {C1,
. . . , Cα} on a punctured Riemann surface S is called admissible if no Ci is homo-
topic to a point in S, or to a puncture, or to a Cj with i 6= j. Thurston calls an
isotopy class of self-homeomorphism of S reducible if there exists an admissible
system of curves C = {C1, . . . , Cα} on S so that some homeomorphism in the class
(and hence each homeomorphism in the class) maps C to a homotopic system of
curves. In this case we say that C reduces the class. If there is no such system
the class is called irreducible.

Irreducible mapping classes can be classified and studied. Reducible mapping
classes can be decomposed in some sense into irreducible mapping classes.

A (g,m) bundle over a finite Riemann surface is called reducible if there is
an admissible system of curves in the fiber over a base point that reduces all
monodromy maps simultaneously. Otherwise the bundle is called irreducible.

The afore mentioned statements for bundles over a punctured Riemann surface
are not true if the base is a finite Riemann surface of second kind. We have the
following conjecture which is equivalent to the geometric Shafarevich conjecture
in the case when the base is a punctured Riemann surface.

Conjecture. Consider an arbitrary connected finite Riemann surface X, maybe,
of second kind. Up to isotopy there are no more than finitely many irreducible
holomorphic (g,m) fiber bundles over X.

The following theorem holds.

Theorem 1. The conjecture is true for torus bundles (i.e. bundles of type (1, 0))
and for bundles with fiber being the three times punctured complex plane.

Notice that each locally holomorphically non-trivial holomorphic torus bundle
over an open Riemann surface is isotopic to such a bundle with a holomorphic
section. Hence, in the theorem we may consider (1, 1) bundles instead of (1, 0)
fiber bundles. Notice also that bundles with fibers being the three times punctured
complex plane are special cases of (0, 4) bundles.

The theorem reduces to the following finiteness theorem for holomorphic map-
pings.

Theorem 2. Let Y be equal to the three punctured Riemann sphere P1\{−1, 1,∞}.
For each finite open Riemann surface X there are up to homotopy only finitely
many holomorphic mappings from X into Y that are not contractible to a point in
Y and not contractible to a puncture.

There are no topological obstructions for the existence of isotopies (or homo-
topies, respectively) in the theorems. Indeed, the following theorem is known.
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Theorem. Let X be a connected smooth oriented open surface with finitely gen-
erated fundamental group. The set of isotopy classes of smooth oriented (g,m)
fiber bundles on X is in one-to-one correspondence to the set of conjugacy classes
of homomorphisms from the fundamental group π1(X, q0) into the modular group
Mod(g,m) of a Riemann surface of genus g with m punctures.

The modular group Mod(g,m) is the group of isotopy classes of self-homeo-
morphisms of a Riemann surface of genus g with m punctures.

The obstructions for the existence of isotopies in the theorems are of conformal
nature. In the first theorem they rely on a braid invariant, the extremal length
(equivalently, on the conformal module) of braids, in the second theorem they
rely on the extremal length of elements of the fundamental group of the twice
punctured complex plane.

New characterization of plurisubharmonic functions and positivity of
direct image bundles

Fusheng Deng

(joint work with Zhiwei Wang, Liyou Zhang and Xiangyu Zhou)

This note gives a report on a recent work joint with Zhiwei Wang, Liyou Zhang,
and Xiangyu Zhou.

The aim of the work is to give a new characterization of plursisubharmonic (p.s.h
for abbreviation) functions and Griffiths positivity of holomorphic vector bundles
with singular Finsler metrics, and present a proof of the Griffiths positivity of
the direct image bundles of the twisted relative canonical bundle associated to a
holomorphic family of Stein manifolds or compact Kähler manifolds, by applying
this characterization and Ohsawa-Takegoshi type extension theorems. The work is
inspired by Demailly’s method to the regularization of plurisubharmonic functions
and Berndtsson’s proof of the integral form of the minimum principle for p.s.h
functions.

Let us first take a look at Demailly’s method to the regularization of p.s.h
functions. Let ϕ be a p.s.h function on a bounded pseudoconvex domain D ⊂ Cn.
Let Km(z, z̄) be the weighted Bergman kernel of D with respect to the weight
e−mϕ. Applying the Ohsawa-Takegoshi extension theorem, Demailly showed that
logKm/m converges (in certain sense) to ϕ on D as m → ∞, and then got a
regularization of the original p.s.h function ϕ.

Our first main observation is as follows. We start from an u.s.c (upper semi-
continuous) function ϕ in D which is not assumed to be p.s.h. at the beginning.
From the argument of Demailly, we see that the convergence for logKm/m to ϕ
is also valid, provided that the Ohsawa-Takegoshi extension theorem holds on D
with the weight e−mϕ, with the constant Cm in the estimate growing mildly as m
goes to infinity. Note that logKm/m is always p.s.h, so ϕ is p.s.h. Precisely we
prove the following:
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Theorem 1. Let ϕ : D → [−∞,+∞) be an upper semicontinuous function on
D ⊂ Cn that is not identically −∞. If for any z0 ∈ D with ϕ(z0) > −∞ and any
m > 0, there is f ∈ O(D) such that f(z0) = 1 and

∫

D

|f |pe−mϕ ≤ Cme
−mϕ(z0),

where p > 0 is a fixed constant, and Cm are constants independent of z0 and satisfy
logCm/m→ 0, then ϕ is plurisubharmonic.

Our second main observation is to relate Theorem 1 with the positivity of
Hodge type bundles, via giving a trivial but important geometric interpretation
of Theorem 1 as follows. We view e−ϕ as a (singular) hermitian metric on the
trivial line bundle L = D × C. Let π = Id : D → D′ = D be the trivial
fibration with each fiber being one single point. It is obvious that the associated
twisted relative canonical bundle KD/D′⊗L is isomorphic to L and its direct image
L′ := π∗(KD/D′ ⊗ L) → D′ is also canonically isomorphic to L. The Hodge-type

metric (defined by integration along fibers) on L′ is given by e−ϕ
′

with ϕ′ = ϕ.
Therefore Theorem 1 implies that: if (mL, e−mϕ) satisfies the Ohsawa-Takegoshi
extension theorem, then the direct image π∗(KD/D′ ⊗L) is positively curved with
respect to the Hodge-type metric. This observation leads us to a rough principle
of expectation that Ohsawa-Takegoshi type extensions implies Griffiths positivity
of the associated (0-th) direct image bundles. In connection to this direction, we
get a generalization of Theorem 1 and a characterization of the Griffiths positivity
of a holomorphic vector bundle.

Theorem 2. Let (E, h) be a Hermitian holomorphic vector bundle over a domain
D ⊂ Cn. Assume that for any z0 ∈ D, any nonzero element a ∈ Ez0 with finite
norm, and any m ≥ 1, there is a holomorphic section fm of E⊗m on D such that
f(z0) = a⊗m and satisfies the following estimate:

∫

D

|fm|2p ≤ Cm|a⊗m|2p = Cm|a|2mp,

where p > 0 is a fixed constant and Cm are constants independent of z0 and
satisfying logCm/m → 0 as m → ∞. Then (E, h) is positive in the sense of
Griffiths.

In fact Theorem 2 can be generalized to singular Finsler metrics.
In recent years, there are several important works on positivity of direct image

sheaves of twisted relative canonical bundles associated to holomorphic families of
certain complex manifolds, based on L2-method in complex analysis.

The starting point is Berndtsson’s work on the integral form of Kiselman’s
minimum principle for p.s.h functions [1]. Following this work, Berndtsson shows
that the relative weighted Bergman kernel associated to a family of pseudocon-
vex domains varies plurisubharmonically [2]. This idea was further developed by
Berndtsson himself who finally shows that the direct image sheaf of the twisted
relative canonical bundle with a semipositive twist associated to a holomorphic
family of pseudoconvex domains or compact Kähler manifolds is Griffiths positive
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[3]. This result was generalized by Berndtsson and Păun to projective family of
compact manifolds with singular twist [5]. The main tool in the works of Berndts-
son and Berndtsson-Păun is Hörmander’s L2-estimate of ∂̄ and Kohn’s regularity
of the ∂̄-Neumann problem for strongly pesudoconvex domains.

In another direction, Guan-Zhou shows that Berndtsson’s plurisubharmonic
variation of Bergman kenels can be deduced from the Ohsawa-Takegoshi exten-
sion theorem with optimal estimate that was established by B locki and Guan-
Zhou [6]. In connection to this result, Berndtsson and Lempert show that the
Ohsawa-Takegoshi extension theorem with optimal estimate (at least for the case
of pesudoconvex domains) can be deduced from Berndtsson’s result of positivity
of direct image sheaves [4].

With the works of Guan-Zhou and Berndtsson-Lempert, it is widely believed
by experts that the Ohsawa-Takegoshi extension theorem with optimal estimate
and the positivity of direct image sheaves should be equivalent. Recently, by
developing the method of Guan-Zhou, Hacon, Popa, and Schnell showed that, for
a projective family of compact manifolds, the positivity of the the direct image
sheaf of the twisted relative canonical bundle can be deduced from the Ohsawa-
Takegoshi extension theorem with optimal estimate [7], and hence provide stronger
evidence of the equivalence for the two conclusions.

Although it is widely believed that the Ohsawa-Takegoshi extension theorem
with optimal estimate and the positivity of direct image sheaves should be equiva-
lent, it seems that, as far as we know, no one has even expected that the positivity
of direct image sheaves can be deduced from the ordinary Ohsawa-Takegoshi ex-
tension theorem (namely without optimal estimate).

However, using the two observations mentioned above, we show that this is
indeed the case, that is, the positivity of the direct image sheaf of the twisted
relative canonical bundle (with singular weight) associated to a holomorphic family
of pseudoconvex domains or compact Kähler manifolds can be deduced from the
ordinary Ohsawa-Takegoshi extension theorem, in a very transparent way.

By the same method, we also prove the plurisubharmonic variation of the so
called relative m-Bergman kernel associated to a holomorphic family of pseudo-
convex domains or compact Kähler manifolds (the case that m = 1 corresponds
to the usual Bergman kernel and was proved by Berndtsson).

In addition to the above two observations, our other main technique is rising
the powers of complex manifolds, which was inspired by Berndtsson’s method to
the minimum principle for p.s.h functions in [1].
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Chern Forms of Singular Metrics on Vector Bundles

Jean Ruppenthal

Let X be a complex manifold of dimension n, let E → X be a rank r holomorphic
vector bundle over X , and let h denote a hermitian metric on E. The classical
differential geometric study of X through (E, h) revolves heavily around the notion
of the curvature associated with h. This approach requires the metric to be smooth
(i.e. twice differentiable). However, for line bundles Demailly introduced the notion
of singular hermitian metrics, and in a series of influential papers he and others
showed how these are a fundamental tool for giving complex algebraic geometry an
analytic interpretation. He showed e.g. that a holomorphic line bundle is pseudo-
effective in the algebraic sense if and only if it carries a singular hermitian metric
which is Griffiths semi-positive.

For holomorphic vector bundles of higher rank, things are much more sophisti-
cated, even when considering smooth metrics. One reason is that Griffiths posi-
tivity and Nakano positivity do not coincide any more. In view of the connection
between algebraic geometry and analysis mentioned above, it is, however, very in-
teresting to study also singular hermitian metrics of holomorphic vector bundles.
A suitable notion of singular hermitian metrics for vector bundles of higher rank
and Griffiths semi-positivity/negativity has been introduced by Berndtsson-Păun
in [1]. It turned out to be extremely useful in the study of positivity of direct
images of twisted canonical bundles (see [1] and [5]).

For vector bundles with such a Griffiths semi-positive singular metric, there is
a naturally defined first Chern form which is a positive closed (1, 1)-current, but
there are examples where the full curvature matrix is not of order 0 (so that it is
not clear how to define higher Chern forms).

In [2], it is shown that one can give a natural meaning to the k-th Chern form
of a singular Griffiths semi-positive hermitian metric as a closed (k, k)-current of
order 0, as long as the set where the metric degenerates is small enough. It is
shown in [3] that the results can be extended to Chern forms of arbitrary degree
if the metric has analytic singularities, which is a very natural condition. Let us
explain the results in [2] more precisely.

In [1] Berndtsson and Păun introduced the following notion of singular metrics
for vector bundles:

Definition 1. Let E → X be a holomorphic vector bundle over a complex man-
ifold X . A singular hermitian metric h on E is a measurable map from the base
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space X to the space of hermitian forms on the fibers. The hermitian forms are
allowed to take the value ∞ at some points in the base (i.e. the norm function ‖ξ‖h
is a measurable function with values in [0,∞]), but for any fiber Ex the subset
E0 := {ξ ∈ Ex ; ‖ξ‖h(x) < ∞} has to be a linear subspace, and the restriction of
the metric to this subspace must be an ordinary hermitian form.

They also defined what it means for these types of metrics to be curved in the
sense of Griffiths:

Definition 2. Let E → X be a holomorphic vector bundle over a complex mani-
fold X and let h be a singular hermitian metric. We say that h is Griffiths negative
if ‖u‖2h is plurisubharmonic for any (local) holomorphic section u. Furthermore,
we say that h is Griffiths positive if the dual metric h∗ is Griffiths negative.

Strictly speaking, [1] define h to be Griffiths negative if log ‖u‖h is plurisubhar-
monic for any holomorphic section u. It is, however, not too difficult to show that
these two definitions are equivalent (see e.g. [6], section 2). Any singular hermit-
ian metric on a vector bundle E induces a dual metric on the dual bundle E∗ (see
[2], Lemma 3.1). This justifies the notion of Griffiths positivity in Definition 2 in
terms of duality. Definition 2 is very natural as these conditions are well-known
equivalent properties for smooth metrics.

Although Definition 1 is very liberal, as it basically puts no restriction on the
metrics, it turns out that Definition 2 rules out most of the pathological behaviour.
We have e.g. the following proposition ([6], Proposition 1.3 (ii)):

Proposition 3. Let h be a singular, Griffiths negative, hermitian metric. If
deth 6≡ 0, then i∂∂ log deth is a closed, positive (1, 1)-current.

The proof uses the well-known fact that if h is a metric on E, then deth is a
metric on detE. For smooth metrics it is also well-known that the curvature of
deth, i.e. −∂∂ log deth = ∂∂ log det h∗, is the trace of the curvature of h, i.e. 2πi
times the first Chern form c1(E, h). Thus, a simple consequence of Proposition 3 is
that for a singular metric which is curved in the sense of Definition 2, it is possible
to define the first Chern form in a meaningful way as a closed, positive or negative
(1, 1)-current.

However, despite this, one of the main results in [6] (Theorem 1.5) is a counter-
example that shows that the curvature requirement of Definition 2 is not enough
to define the curvature of a singular metric as a current with measure coefficients.
This rather surprising fact, given the existence of the first Chern form, leads to the
question of which differential geometric concepts one can obtain from Definition 2.
A main result in [2] (Theorems 1.11 and 1.13) is as follows:

Theorem 4. Let E → X be a holomorphic vector bundle over a complex manifold
X, and let h denote a singular, Griffiths positive, hermitian metric on E. Assume
that there is some subvariety V of X with codim(V ) ≥ k such that L(log deth∗) ⊆
V , where L(log deth∗) denotes the unbounded locus of log deth∗.

Then the k-th Chern current of E associated with h, ck(E, h), can be defined as
a closed (k, k)-current of order 0 with locally finite mass in X. If X is compact,
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then [ck(E, h)] = ck(E) where ck(E) = [ck(E, h0)] is the usual Chern class defined
by any smooth metric h0 on E.

If h is instead a singular, Griffiths negative, hermitian metric, then the same
result holds if L(log deth∗) is replaced by L(log deth) throughout the statement.

If the metric h is smooth, then our ck(E, h) coincides by construction with the
usual Chern form. If h fulfils the assumptions of Theorem 4 and is continuous
outside the variety V , then for any local regularizing sequence {hε} of h, with
hε → h locally uniformly outside of V , we have that

ck(E, hε) → ck(E, h)

in the sense of currents. This is important for applications, because local regular-
ization is one of the main tools to deal with singular metrics, and it is possible for
singular hermitian metrics which are Griffiths positive or negative by convolution
with an approximate identity (see [1], Proposition 3.1, and [6], Proposition 6.2). If
h is continuous outside V , then the Chern currents defined in Theorem 4 satisfy all
the usual properties known for smooth Chern forms in terms of duality, pull-backs,
direct sums, direct products (see [2], Corollary 1.9).

The main idea behind the proof of Theorem 4 is as follows. Let π : P(E) → X
be the projective bundle of lines in E∗. Then the dual metric h∗ induces a metric
on the tautological line bundle OP(E)(−1) ⊂ π∗E∗. Let e−ϕ be dual metric on

OP(E)(1). If h is Griffiths positive, then e−ϕ is a positive metric, i.e., the local

weights ϕ are plurisubharmonic and the first Chern form of e−ϕ is given as ddcϕ. If
h is smooth, Mourougane [4] showed that the k-th Segre-form of h can be recovered
as

sk(E, h) = (−1)kπ∗
(
ddcϕ

)k+r−1
,

where r is the rank of E. We use this approach to define Segre forms also for
singular hermitian metrics. But the Chern forms can then be understood in terms
of the Segre forms, as the total Chern form is the multiplicative inverse of the total
Segre form.
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[1] B. Berndtsson and M. Păun, Bergman kernels and the pseudoeffectivity of relative canonical

bundles, Duke Math J. 145 (2008), 341–378.
[2] R. Lärkäng, H. Raufi, J. Ruppenthal and M. Sera, Chern forms of singular metrics on

vector bundles, Adv. Math. 326 (2018), 465–489.
[3] R. Lärkäng, H. Raufi, M. Sera and E. Wulcan, Chern forms of hermitian metrics with

analytic singularities on vector bundles, preprint available at arXiv:1802.06614v1.
[4] C. Mourougane, Computations of Bott-Chern classes on P(E), Duke Math. J. 124 (2004),

389–420.
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Some results on multiplier ideal sheaves

Xiangyu Zhou

In the present talk, we’ll recall the basics of multiplier ideal sheaves, then present
our recent solution of Demailly’s strong openness conjecture on multiplier ideal
sheaves, and some applications in complex geometry, e.g. some new results related
to the vanishing, finiteness theorems of analytic cohomology groups with multiplier
ideal sheaves for the pseudo-effective line bundles over holomorphically convex
manifolds, and generalized Siu’s lemma and pseudoeffectiveness of the twisted
relative pluricanonical bundles and their direct images.

1. Introduction

Associated to a plurisubharmonic function, one may define multiplier ideal sheaf.
The first basic properties of multiplier ideal sheaf includes that it is a coherent
analytic sheaf and integral closed, and it holds Nadel vanishing theorem.

Guan-Zhou (Ann. of Math. 2015) showed that Demailly’s strong openness con-
jecture holds.

2. Application 1

2.1. Vanishing theorems and finiteness theorem. Meng-Zhou (JAG, to ap-
pear) obtained some vanishing and finiteness theorems about multiplier ideal
sheaves, using the strong openness property of the multiplier ideal sheaves. For
holomorphically convex manifolds, the Kähler assumption can be removed in the
Nadel vanishing theorem.

Theorem 1. Let (X,ω) be a hermitian holomorphically convex manifold, and let
L be a holomorphic line bundle over X equipped with a singular hermitian metric
h. Assume that iΘL,h ≥ εω for some continuous positive function ε on X. Then

Hq(X,KX ⊗ L⊗ I(h)) = 0 for q ≥ 1.

Theorem 2. Let X be a strongly 1-convex manifold and let L be a holomorphic
line bundle over X equipped with a singular hermitian metric h such that iΘL,h ≥ 0
in the sense of currents. Then

Hq(X,KX ⊗ L⊗ I(h)) = 0 for q ≥ 1.

We present the following ”singular” version of Ohsawa’s finiteness theorem.

Theorem 3. Let X be a holomorphically convex manifold, and let L be a holo-
morphic line bundle over X equipped with a singular hermitian metric h. Assume
the curvature current iΘL,h ≥ γ for some continuous real (1, 1)-form γ on X and
γ is strictly positive outside a compact subset K of X. Then we have

dimHq(X,KX ⊗ L⊗ I(h)) < +∞ for q ≥ 1,

and the corresponding restriction maps are bijective.

The proof is based on Theorem 1 and the Remmert reduction theorem.
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3. Application 2

Using ideas and results in the proof of the strong openness conjecture, Zhou and
Zhu prove:

Generalized Siu’s lemma 1. (Zhou, Zhu 2016)
Let ϕ(z′, z′′) be a plurisubharmonic function, h be a nonnegative continuous

function on B1
r × Bn−1

r (1 ≤ m ≤ n).

lim
ε→0+

1

λ(B1
ε)

∫

B1
ε×B

n−1
r

h(z′, z′′)e−ϕ(z
′,z′′)dλn

=

∫

z′′∈B
n−1
r

h(0, z′′)e−ϕ(0,z
′′)dλn−1

Generalized Siu’s lemma 2. (Zhou, Zhu 2017)
Assume that

If,ϕ :=

∫

z′′∈B
n−m
r

|f(z′′)|2e−ϕ(0,z′′)dλn−m < +∞

Assume that ε, r1, r2 ∈ (0, r) and r1 < r2.
Then there exists a holomorphic function F (z′, z′′) on Bmr2 × Bn−mr2 such that

F (0, z′′) = f(z′′) on Bn−mr2 ,

∫

Bm
r2

×B
n−m
r2

|F (z′, z′′)|2e−ϕ(z′,z′′)dλn < +∞,

and

lim
ε→0+

1

λ(Bmε )

∫

Bm
ε ×B

n−m
r1

h(z′, z′′)|F (z′, z′′)|2e−ϕ(z′,z′′)dλn

=

∫

z′′∈B
n−m
r1

h(0, z′′)|f(z′′)|2e−ϕ(0,z′′)dλn−m

Guan-Zhou (Ann. Math. 2015) established the optimal L2 extension theorem
in the almost Stein setting and discovered that it implies log-psh property of the
relative Bergman kernel and Griffiths of the relative canonical bundles.

The generalized versions of Siu’s lemma together with optimal L2 extension
theorem in the Kähler setting by Zhou-Zhu (JDG, to appear) implies the opti-

mal L
2
m theorem for the twisted pluricanonical bundles in the Kähler setting.

Using Guan-Zhou’s discovery, Zhou-Zhu (2017) obtained pseudoeffectiveness of
the twisted relative pluricanonical bundles and their direct images for the Kähler
fibration (maybe non smooth).
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Curvature properties and nonexistence of compact Levi-flat
hypersurfaces

Judith Brinkschulte

A real hypersurface M (of class at least C2) in a complex manifold is called Levi-
flat if its Levi-form vanishes identically or, eqivalently, if it admits a foliation
by complex hypersurfaces. Another equivalent formulation is that M is locally
pseudoconvex from both sides.

Levi-flat hypersurfaces can be of quite different nature and therefore one would
like to classify compact Levi-flat real hypersurfaces. On the other hand, the study
of Levi-flat real hypersurfaces is related to basic questions in dynamical systems
and foliation theory: Levi-flats arise as stable sets of holomorphic foliations, and a
real-analytic Levi-flat real hypersurface extends to a holomorphic foliation leaving
M invariant. Relating to this, a famous open problem is whether or not CP

2

contains a smooth Levi-flat real hypersurface.
Given a Levi-flat real hypersurface M in a complex manifold X of dimension

n, we call N1,0
M = (T 1,0

X )|M/T
1,0M the holomorphic normal bundle of M . The

restriction of N1,0
M to each (n − 1)-dimensional complex submanifold of M has a

structure of a holomorphic line bundle induced from that of T 1,0
X .

In this talk, I discuss curvature properties of the holomorphic normal bundle of
a compact Levi-flat real hypersurface.

For n ≥ 3, however, it is known that there does not exist any smooth real Levi-
flat hypersurface M in CP

n. This was first proved by LinsNeto for real-analytic M
and by Siu for C12-smooth M . The proofs of these results essentially exploited the
positivity of T 1,0CP

n. Brunella observed that the positivity of the normal bundle
itself is enough to ensure that the complement of M is pseudoconvex. This led
Brunella to prove that if X is a compact Kähler manifold with dimX ≥ 3, and
if M is a smooth Levi-flat real hypersurface such that there exists a holomorphic
foliation on a neighborhood of M leaving M invariant, then the normal bundle of
this foliation does not admit any fiber metric with positive curvature.

In a recent paper, I proved the following result:

Theorem. Let X be a complex manifold of dimension n ≥ 3. Then there does not
exist a smooth compact Levi-flat real hypersurface M in X such that the normal
bundle to the Levi foliation admits a Hermitian metric with positive curvature
along the leaves.

This theorem is a generalized version of Brunella’s result in the sense that we
are able to drop the compact Kähler assumption on the ambient X .

The following example due to Brunella shows that the above result cannot hold
for n = 2, even for X compact Kähler:

Let Σ be a compact Riemann surface of genus g ≥ 2. Let D be the open unit
disc, and let Γ be a discrete subgroup of AutD ⊂ AutCP1 such that Σ ≃ D/Γ.

Then Γ also acts on D× CP
1 by

(z, w) 7→ (γ(z), γ(w)), γ ∈ Γ.
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The quotient X = (D× CP
1)/Γ is a compact complex surface, ruled over Σ (and

hence projective). From the horizontal foliation on D×CP
1, we get a holomorphic

foliation on X , leaving invariant a real analytic Levi-flat hypersurface M induced
from the Γ-invariant D× S1. The Bergman metric induces a metric with positive
curvature on the normal bundle of M .

Uniformization and Steinness

Stefan Nemirovski

(joint work with Rasul Shafikov)

A Stein strictly pseudoconvex domain D is universally covered by the unit ball
Bn if and only if its boundary is spherical, that is, locally CR-diffeomorphic to
the unit sphere ∂Bn. The ‘only if’ implication holds also for strictly pseudoconvex
domains that are not necessarily Stein. This suggests two related questions:

(1) How to tell that a given strictly pseudoconvex ball quotient is Stein?
(2) Which non-Stein strictly pseudoconvex domains with spherical boundary

are ball quotients?

For instance, Christian Miebach observed that a strictly pseudoconvex quotient
of Bn by a discrete group Γ such that H2p(Γ,R) = 0 for 1 ≤ p ≤ n − 1 must be
Stein. If this condition doesn’t hold (e.g. if Γ is the fundamental group of a closed
orientable surface of genus ≥ 2), both Stein and non-Stein quotients may occur.

Another sufficient condition for such a quotient to be Stein was pointed out
in the seminal paper of Burns–Shnider. Namely, it is enough to assume that the
limit set of the action on the boundary is polynomially convex. It is not clear at
present whether a condition of this type might also be necessary.

As for the second question, it is known only that a domain with spherical
boundary need not be a blow-up of a ball quotient. This can be seen by considering
ramified coverings of the quotients constructed by Goldman–Kapovich–Leeb.

The situation for strictly pseudoconvex domains with non-spherical boundary
is strikingly different:

Theorem. The universal cover of a Stein stictly pseudoconvex domain with non-
spherical boundary cannot cover a complex manifold containing a compact analytic
subset of positive dimension. In particular, any other strictly pseudoconvex domain
with the same universal cover is also Stein.

The proof of this result is based on a version of the Wong–Rosay theorem for
coverings of strictly pseudoconvex domains.

Reporter: Nikolay Shcherbina
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SWEDEN

Prof. Dr. Liyou Zhang

Department of Mathematics
Capital Normal University
Haidian District
105 West Third Ring Road N
Beijing 100048
CHINA

Prof. Dr. Xiangyu Zhou

Institute of Mathematics
Academy of Mathematics and Systems
Science
Chinese Academy of Sciences
No. 55, Zhongguancun East Road
Beijing 100190
CHINA

Prof. Dr. Andrew M. Zimmer

Department of Mathematics
College of William and Mary
Sadler Center
P.O. Box 8795
Williamsburg VA 23185
UNITED STATES


