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Introduction by the Organisers

The workshop New Directions in Stochastic Optimisation organized by Jesús De
Loera (Davis), Darinka Dentcheva (Hoboken), Georg Ch. Pflug (Vienna) and
Rüdiger Schultz (Essen) was well attended by 54 participants with broad geo-
graphic representation. By a surprising coincidence, the workshop took place
precisely 50 years after the first Oberwolfach Workshop in Operations Research
(Organizers: R. Henn (Karlsruhe), H. P. Künzi (Zurich) and H. Schubert (Kiel)).

Topic: Stochastic programming offers mathematically rigorous optimisation mod-
els incorporating probabilistic information with uncertain data. Decisions are
based exclusively on the information that is available at the moment of taking
decisions (nonanticipativity). Depending on when missing information is unveiled
and on how this interacts with decision making over time, different principal model
setups arise, e.g., one-stage, two-stage, or multi-stage models. Selection and place-
ment (in the objective or the constraints) of the statistical parameters according
to which relevant random variables are to be evaluated is another important issue.
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This allows to express perceptions such as reliability, risk neutrality, or risk aver-
sion. Finally, the nature of the initial uncertain optimisation problem (linear or
nonlinear, with or without integer variables, living in finite or infinite dimension)
has crucial impact on the arising stochastic programming model. These aspects
lead to a wide variety of stochastic optimization programs as well as to a wide
variety of mathematical techniques for their analysis and algorithmic treatment.

Course of the workshop: On the one hand, the workshop reflected the diversity
of the involved areas. On the other hand, there was enough overlap among indi-
vidual expertise to generate new ideas and obtain input from other directions. In
particular, the 35 talks together with a brainstorming session on Thursday evening
provided the basic ideas for stimulating discussions covering a broad spectrum of
topics. We now will discuss some contributions on specific topics.

Numerical Analysis of PDEs: The rapid development of PDE-constrained
optimisation is accompanied by approaches to handle uncertainty in appropriate
fashion. The approach via stochastic programming aims at finding best possi-
ble decisions under data uncertainty. Procedures for reaching optimality in terms
of stochastic criteria may incorporate user attitudes such as being risk averse,
risk neutral or risk seeking. A related contemporary approach to handling uncer-
tainty, also discussed at the workshop, is uncertainty quantification that looks for
“a computational framework for quantifying input and response uncertainties in
a manner that facilitates predictions with quantified and reduced uncertainty”1.
Shape optimization under stochastic loading for elastic materials have been dis-
cussed in several talks. Risk neutral and risk averse objective functionals have
been investigated and the concept of stochastic dominance constraints was ex-
plored. Thereby the expected excess and the excess probability are taken into
account, first as objective functional involving the compliance cost of an elastic
object under stochastic loading and then as a constraint when comparing a shape
with a benchmark shape.

Open problems concern the identification of subclasses allowing for duality
and resulting algorithmic shortcuts; exploiting problem similarities for efficient
repeated solution of PDE-constrained optimisation problems differing in the re-
alisations of the random data; mathematical foundation and algorithm design of
approximation via linearisation of full models, arriving at linear models, devel-
opment of numerical PDE-solvers taking into account specifics of this problem
class.

PDE-constrained optimization under uncertainty has been addressed from fur-
ther points of view. We mention convergence of projected gradient methods in
Hilbert spaces, reduced-order models/incorporating risk functionals /(CVaR) and
risk averse optimization; optimal boundary control under uncertain initial data;
general characterizations of feasibility, stationarity, optimality, and stability in
PDE-constrained optimization.

1R.C. Smith: Uncertainty Quantification, SIAM, 2014, page ix.
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Quasi-Monte-Carlo Methods: Another classical topic with relevance in sto-
chastic programming is Quasi-Monte-Carlo Approximation. At the workshop, it
was reported that randomized Quasi-Monte Carlo (RQMC) methods when used to
tackle mixed-integer two-stage stochastic programs can achieve their optimal con-
vergence order of almost O(n−1) although integrands are discontinuous and non-
differentiable in their continuity regions. Applications include randomly shifted
lattice rules, randomly scrambled Sobol’ point sets, and Monte Carlo methods to
solve a mixed-binary electricity portfolio model with normal prices and demands.

Algebraic and Combinatorial Models: The last two decades have seen notable
progress in developing structural insight and improving algorithmic capabilities
in stochastic integer programming. Compared to their continuous counterparts,
which enjoy convexity on a broad range and whose analysis substantially benefits
from convexity, linear stochastic programs with mixed-integer variables are non-
convex and even may face discontinuities in the objective and/or the constraints,
so that fresh ideas are necessary. The incorporation of computational algebraic
geometry to address non-convexity and integrality has become more and more vi-
tal. A research field that has emerged recently is devoted to optimality certificates
provided by ideal bases, and their geometric analogues. In test-set augmentation
algorithms for two-stage stochastic integer programming certificates enjoy decom-
posability and stabilisation with growing numbers of scenarios which is extremely
useful in algorithm design. At the workshop an account on optimality certificates
involving Graver sets for block-structured integer programs of which two-stage
stochastic programs are a special case was given. It concluded with recent results
on improved complexity estimates for augmentation algorithms with Graver-type
improving vectors.

Utilization of polynomial algebra for non-convex stochastic optimisation problems
whose objectives and/or constraints are given by polynomials, is another promising
departure point for extending the ability to analyze and solve stochastic programs
with nonlinearities. The discussion circled around relationships between nonnega-
tive real polynomials, sums of squares, and semidefinite programming highlighting
computation of sum-of-squares decompositions of polynomials using semidefinite
programs. Stochastic mixed-integer programs have been considered from differ-
ent perspectives: For multi-stage models, decision rules for the Lagrangian dual
based on relaxation of either the non-anticipativity or the stage-wise constraints
were introduced. For simple integer recourse models, a reinterpretation of approx-
imation techniques in terms of asymptotically accurate inexact cutting planes was
presented.

Single- and Multi-Period Risk: Nowadays, rigorous treatment of risk in an
optimization context covers static and more and more often also dynamic opti-
misation models. Mostly, however, under the assumption of purely exogenous
uncertainty or in Markov decision processes. At the workshop approaches to the-
ory and application in the presence of decision dependency have been discussed.
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On the one hand, investigations on chance constraints under endogenous uncer-
tainty have been reported. Additionally, new extensions of the theory of risk
measure to the case of moving probability spaces were presented. A comprehen-
sive framework for risk models with applications in decision dependent sampling
has been introduced. Further talks ranged from algorithmic and dynamic aspects
of multistage optimization, via decision-dependent ambiguity sets in distribution-
ally robust optimization, to optimality conditions for partially observable Markov
Decision Processes.

Chance Constraints in Infinite Dimension: Traditional research topics like,
two- and multi-stage or chance constrained stochastic programs, still today, pro-
vide the frame for stimulating research. Probabilistic (or chance) constraints,
originally mostly employed in finite dimension, now occur more and more often
as instruments for ensuring reliability also in infinite dimension. This raises open
questions on basic structural properties including statements on stability under
perturbations (of Euclidean parameters up to underlying probability measures).
Some first answers regarding semi-continuity, convexity, and stability were given
at the workshop for models combining PDE and chance constraints.

Robust versus stochastic paradigms: Relations between robust and stochastic
modeling in optimization have been considered from various angles. Utility prefer-
ence robust optimization relies on tailored integrands for risk functionals to cope
with partial information about the decision maker’s utility function. Concerning
efficient computation, the finding of optimal distributionally robust predictors via
tractable convex programs has been discussed for ambiguity sets that are optimal
in a specific context. Dependence uncertainty has been considered for a portfolio
selection problem where the marginal return distributions of the assets can be es-
timated with high accuracy, whereas the dependence structure between the assets
remains ambiguous.

Equilibrium: Topics related to mathematical equilibrium ranged from algorithms
for rank-1 bimatrix games, via quasi-hyperbolic discount rates to account for dy-
namic inconsistency in sequential decision models with changing preferences, to
structure and stability of linear stochastic bilevel problems. Moreover, a computa-
tional framework for the algorithmic treatment of multiple optimization problems
coupled with an equilibrium constraint and a bilevel approach to automated reg-
ularization parameter selection in image processing have been discussed.

Data and Decisions: The growing interest in data-driven analysis stimulates
the study of topics seemingly apart from each other. Among the aspects discussed
at the workshop there are (i) Learning enabled optimization, (ii) stochastic varia-
tional inequalities and (iii) the interplay of variational analysis and nonparametric
statistics. Additionally, first results in risk-averse statistical learning in the context
of clinical trails were discussed.

Markets: A class of risky capacity equilibrium problems reflecting future stochas-
tic production in a spot market, when agents are risk-averse and can buy financial
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hedges for their physical investments has been discussed in a unified Nash equi-
librium framework. For risk trading in complete markets, existence of solutions
has been proven. In a similar spirit, the impact of risk-aversion on participants in
(incomplete) energy markets has been addressed as well.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Perspectives in probabilistic programming under continuous random
distributions

René Henrion

The standard form of a probabilistic programming problem is [5]

minimize f(x) subject to

P(gi(x, ξ) ≤ 0 (i = 1, . . . ,m) ≥ p, x ∈⊆ Rn ,

where ξ is a finite-dimensional (continuously distributed) random vector, P a prob-
ability measure and p ∈ [0, 1] some fixed probability level. Here it is assumed that
x is decided on before observing ξ. This form of probabilistic programming is still
prevailing in the literature. On the other hand, some formally obvious general-
izations are quickly attracting interest due to new applications: This leads to the
following three perspectives in probabilistic programming discussed in the talk:

• The stochastic inequality system is not finite but infinite.
• The decisions are not just finite-dimensional but elements of a Banach

space
• For decisions and random vectors representing discrete time processes, the

static setting above is replaced by a dynamic setting taking into account
the gain of information while observing the random process.

The first two items lead us to the discussion of the model

minimize f(x) subject to(1)

P(g(x, ξ, t) ≤ 0 (t ∈ T ⊂ Rm) ≥ p, x ∈ X = Banach space,

where the cardinality of index set T may be infinite. For instance, the index set
might represent some time interval (e.g., in the probabilistic level control of water
reservoirs) or some domain in space (in PDE constraint optimization subject to
probabilistic state constraints [6]). It could also refer to some uncertainty set of a
parameter t which, in contrast to ξ is not endowed with statistical information. A
typical application is optimization in gas networks subject to random loads ξ and
unknown friction coefficients t in the pipes [2]. The latter aspect was motivation
to call the constraint in (1) a probust constraint (short for: probabilistic/robust)
[3].

A major challenge in the theoretical analysis and algorithmic treatment of prob-
lem (1) is to infer analytical properties of the probability function

(2) ϕ(x) := P(g(x, ξ, t) ≤ 0 (t ∈ T ⊂ Rm)

from the properties of the input data, i.e., the function g and the distribution
of ξ. This connection is detailed in the talk for properties like lower- and upper
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semicontinuity, convexity [6] and (sub-)differentiability [1, 4]. The obtained results
allow one to derive existence and stability theorems of problem (1) which apply
to certain types of PDE constrained optimization problems with random state
constraints and to set up an algorithmic approach in the case of Gaussian-like
distributions which was successfully applied to optimization problems in stationary
gas networks.

The last of the three items presented above motivated the consideration of the
problem

minimize Ef(x1, x2(ξ1), . . . xm(ξ1, . . . ξm−1), ξ) subject to(3)

P(gi(x1, x2(ξ1), . . . xm(ξ1, . . . ξm−1), ξ) ≤ 0 (i = 1, . . . , l)) ≥ p.
Here, the essential difference with the static model (1) consists in understanding
time-dependent decisions not in a static way but as policies reacting on previously
observed random parameters. While this setting is familiar in multistage stochastic
programming, the understanding of its probabilistic version is still in its infancy.
The talk presents corresponding semi-continuity results for the probability function
associated with (3) and provides fully explicit Lipschitz and differentiability results
for the simple two-stage setting (m = 2) with separable (w.r.t. x and ξ) functions
gi. A major challenge discussed at the workshop addresses the concept of time
consistency for such models.

References
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Learning Enabled Optimization (LEO)

Suvrajeet Sen

Optimization principles pervade many engineering disciplines, economic sciences,
and of course computational/mathematical sciences. Whether studying classifica-
tion using linear/quadratic programming for support vector machines (SVM) or
logistic regression using a specialized version of Newton’s methods, optimization
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algorithms have provided a strong foundation for a variety of statistical/machine
learning (S/ML) applications. Indeed, today’s learning algorithms could be easily
described as “optimization enabled learning”. This approach essentially sets up a
parameter estimation model which finds the “best fit” from a space of models (e.g.
regression, neural networks, and others). Learning Enabled Optimization (LEO),
a new paradigm to support seamless integration between two fundamental struc-
tures: a) learning models/algorithms which are based on optimizing goodness of
“fit”, and b) decision models which seek “near-optimal” decisions in constrained
optimization applications. This new paradigm leads to composite stochastic opti-
mization problems which support a fusion of a) and b) above. This fusion is best
illustrated by the figure below. Figure 1.a) depicts the typical workflow associated
with S/ML, whereas, the LEO workflow may be depicted as shown in Figure 1.b).

Figure 1. a) Statistical/Machine Learning (ML) b) Learning
Enabled Optimization (LEO)

1. How is LEO different from Stochastic Programming?

In order to pose the kind of questions which motivate LEO, consider a common
S/ML situation in which we have a dataset of i.i.d. observations {(Zi,Wi)

N
i=1}

which represent data for random covariates (Z,W ), generically referred to as pre-
dictors and responses respectively. Ordinarily, the S/ML model helps to discover
a relationship (e.g., a regression) between the covariates (Z,W ). Depending on
the model, such a relationship can be used to predict outcomes of the response
variable W , given a realization Z = z. This aspect of using a model to charac-
terize the behavior of the response, given the predictor value z is usually not the
purpose of SP (Birge and Louveaux 2011), although there are some examples (e.g.,
Support Vector Machines – SVM) which can be formulated as SP. To illustrate
the connections between Empirical Risk Minimization of ML, and a data-driven
SP with Sample Average Approximation (SAA), we state the SVM model as an
instance of SP. This formulation will also help us make the distinctions between
SP and LEO.

Consider a binary classification problem whose data includes a predictor Zi and
response (classification) Wi ∈ {+1,−1}. The goal of such an SVM is to identify
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the “best-fit” parameters (β0, β) = βββ ∈ Rp+1 such that β0 + β⊤Zi ≥ Wi − δi for
Wi = +1, and β0 + β⊤Zi ≤ Wi + δi for Wi = −1; here δi ≥ 0 for all i, and the
goal is to solve the following SP.

min
(ρ

2

)
βββ⊤βββ +

1

N

N∑

i=1

δi, δ ≥ 0.(1)

In the terminology of SP, the variablesβββ are known as the first-stage (or “here-and-
now”) variables, whereas δi are known as the second-stage variables which depend
on the specific outcome Wi. Traditionally, it is common to solve (1) using a QP
solver, although more recently, they are being solved using SP-type decomposition
(Schwartz et al 2011).

From the viewpoint of mathematical structures, an SAA model of a generic
two-stage SP has the following form:

min
xxx∈X⊂Rn

c(xxx) + E[h(xxx, ω̃)],(2)

where E[·] denotes the expectation operator, and xxx ∈ X is a generic optimization
decision variable. Assuming that the random variable ω̃ is discrete, and takes
values {(Zi,Wi)} each with probability 1/N , (2) subsumes (1),and algorithms
designed for (2) are directly applicable to (1); that is, it is straightforward to
interpret (2) in the context of empirical observations, and replace E[h(xxx, ω̃)] by
its finite sum representation

∑
i

1
N h(xxx, ωi). In addition, (2) will serve another

purpose: it will help us clarify the distinctions between SP and LEO.
The simplest version of a LEO model, the so-called LEO with disjoint spaces,

has the following form

min
xxx∈X⊂Rn

c(xxx) + E[h(xxx,W |Z = z)],(3)

where the expectation is taken with respect to random variable W |Z = z and the
value z is given. As in the learning literature, we assume that the data is only
available in the form of covariates {(Zi,Wi)} and hence, one needs a statistical
model to infer a distribution. A somewhat more difficult model arises in the case
where decision variable xxx assumes values in the same space as the random variable
Z. Such models arise in design optimization, marketing optimization and others
where a decision may be looked upon as a “bet”. In this case, the model takes the
following form

min
xxx∈X⊂Rn

c(xxx) + E[h(xxx,W |Z = xxx)],(4)

A model of the form (4) is the so-called LEO with shared spaces.
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2. Novel Research Questions

While problems (2), (3) and (4) highlight the differences between SP and LEO,
they suppress the composite nature of the optimization necessary for LEO. How-
ever, it is not difficult to see that the need to infer an approximate distribution of
the random variable W |Z raises several novel research questions:

(a) Is deterministic optimality as suggested in (4) an appropriate goal, given that
the composition of estimation and stochastic optimization creates a model
which may be far too demanding for deterministic optimality? Notice that
in the S/ML world, the inexactness of stochastic gradient descent (SGD) has
been credited with providing solutions which are more flexible/generalizable
than solving S/ML models to deterministic optimality. Is there an appropri-
ate analog, say statistical optimality, which can quantify the probability of a
solution being ǫ-optimum?

(b) How do we define generalizability for LEO models?
(c) The diamonds in Figure 1 are intended as Hypothesis Tests for Model Valida-

tion. Such tasks are well known in the statistics literature (which is captured
in Figure 1.a). Are similar tests for model validation possible for LEO models.

(d) In contrast with Figure 1.a, we observe that there are several possible loops
within Figure 1b. Each loop characterizes a particular combination of the man-
ner in which the fusion of learning and optimization can be performed. For
instance, the cycle between Learning and Optimization in Figure 1b suggests
that there could be a tight coupling between the two aspects of LEO. Such
coupled models (CLEO) are likely to be non-convex and questions regarding
optimality become much more treacherous under the circumstances. Never-
theless, ideas from non-convex optimization become relevant in such cases.

These new problems are being posed in the spirit of the purpose of seeking new
frontiers in Stochastic Optimization. It is my hope that the participants will find
these research questions to be intriguing. Some preliminary ideas are presented in
Sen and Deng 2017. This is ongoing work with my Ph.D. student Yunxiao Deng.

References
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[2] Sen, S. and Y. Deng 2017, “Learning Enabled Optimization”, Optimization Online.
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Convergence of randomized Quasi-Monte Carlo methods for
mixed-integer two-stage stochastic programs

Werner Römisch

(joint work with Hernan Leövey)

By extending our earlier work [2, 4] we study convergence properties of randomized
Quasi-Monte Carlo (RQMC) methods for solving mixed-integer two-stage stochas-
tic optimization models. Although the integrands are discontinuous and nondif-
ferentiable in their continuity regions, we show that their lower order ANOVA
terms can be smooth if certain geometric conditions are satisfied. If the effective
dimension of the integrands is small, too, the integrands are approximately smooth
and, hence, RQMC methods can achieve their optimal convergence order of almost
O(n−1) (see [1]). In case of normal distributions we show that the geometric con-
ditions are satisfied almost everywhere with respect to the Haar measure on the
topological group of real orthogonal matrices. The latter are needed to decompose
the covariance matrix into diagonal form. We also show that the effective dimen-
sion of the integrand can be essentially reduced by applying principal component
analysis factorization to the covariance matrix instead of classical Cholesky fac-
torization. The theory is illustrated by presenting numerical results for randomly
shifted lattice rules [6], randomly scrambled Sobol’ point sets [5] and Monte Carlo
methods to solve a mixed-binary electricity portfolio model with normal prices and
demands (see [3]). Instead of 104 Monte Carlo samples one only needs only about
102 samples for randomly scrambled Sobol’ point sets and randomly shifted lattice
rules. The advantages consist in the improved accuracy for given sample size or
in shorter running times for smaller sample sizes. The latter becomes crucial for
high-dimensional optimization models.
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Risk averse optimal stopping

Alois Pichler

(joint work with Alexander Shapiro)

Abraham Wald was the first to consider stopping rules in statistics (see [1]) and
stopping times have been well studied since then.

This talk introduces stopping risk measures which allow for stopping. The
Snell envelope is defined as in the classical theory, although based on the risk
measures rather than the expectation. Further, risk averse, multistage stochastic
optimization problems are formulated including stopping times. In this context,
the Snell envelope corresponds to the solution of multistage programs with initial
decisions fixed. We characterize optimal stopping policies in this general context.

We further relate the risk measures to dynamic equations. We provide dynamic
equations for both situations in stochastic optimization, with and without optimal
stopping.
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From Data to Decisions: Distributionally Robust Optimization is
Optimal

Daniel Kuhn

(joint work with Bart Van Parys and Peyman Mohajerin Esfahani)

We study stochastic programs where the decision-maker cannot observe the distri-
bution of the exogenous uncertainties but has access to a finite set of independent
samples from this distribution. In this setting, the goal is to find a procedure
that transforms the data to an estimate of the expected cost function under the
unknown data-generating distribution, i.e., a predictor, and an optimizer of the
estimated cost function that serves as a near-optimal candidate decision, i.e., a
prescriptor. As functions of the data, predictors and prescriptors constitute sta-
tistical estimators. We propose a meta-optimization problem to find the least con-
servative predictors and prescriptors subject to constraints on their out-of-sample
disappointment. The out-of-sample disappointment quantifies the probability that
the actual expected cost of the candidate decision under the unknown true distri-
bution exceeds its predicted cost. Leveraging tools from large deviations theory,
we prove that this meta-optimization problem admits a unique solution: The best
predictor-prescriptor pair is obtained by solving a distributionally robust optimiza-
tion problem over all distributions within a given relative entropy distance from
the empirical distribution of the data.

The optimal distributionally robust predictor identified in this paper can be
evaluated by solving a tractable convex optimization problem. Under standard
convexity assumptions about the feasible set and the cost function of the sto-
chastic program, the corresponding optimal prescriptor can also be evaluated in
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polynomial time. Although perhaps desirable, the tractability and distributionally
robust nature of the optimal predictor-prescriptor pair are not dictated ex ante
but emerge naturally.

Relative entropy ambiguity sets have already attracted considerable interest in
distributionally robust optimization [1, 2, 4, 6, 9]. Note, however, that the relative
entropy constitutes an asymmetric distance measure between two distributions.
The asymmetry implies, among others, that the first distribution must be abso-
lutely continuous to the second one but not vice versa. Thus, ambiguity sets can
be constructed in two different ways by designating the reference distribution ei-
ther as the first or as the second argument of the relative entropy. All papers listed
above favor the second option, and thus the emerging ambiguity sets contain only
distributions that are absolutely continuous to the reference distribution. Maybe
surprisingly, the optimal predictor resulting from our meta-optimization problem
uses the reference distribution as the first argument of the relative entropy instead.
Thus, the reference distribution is absolutely continuous to every distribution in
the emerging ambiguity set. Relative entropy balls of this kind have previously
been studied in [3, 5].

Adopting a Bayesian perspective, the paper [3] determines the smallest ambigu-
ity sets that contain the unknown data-generating distribution with a prescribed
level of confidence as the sample size tends to infinity. Both Pearson divergence
and relative entropy ambiguity sets with properly scaled radii are optimal in this
setting. In the terminology of the present paper, [3] thus restricts attention to
the subclass of distributionally robust predictors and operates with an asymp-
totic notion of optimality. The meta-optimization problem proposed here entails
a stronger notion of optimality, under which the distributionally robust predictor
with relative entropy ambiguity set emerges as the unique optimizer. The pa-
per [5] also seeks distributionally robust predictors that trade conservatism for
out-of-sample performance. It studies the probability that the estimated expected
cost function dominates the actual expected cost function uniformly across all de-
cisions, and it calls a predictor optimal if this probability is asymptotically equal
to a prescribed confidence level. Using the empirical likelihood theorem of [7], it
shows that Pearson divergence and relative entropy ambiguity sets with properly
scaled radii are optimal in this sense. This notion of optimality has again an as-
ymptotic flavor because it refers to decreasing sequences of ambiguity sets that
converge to a singleton, and it admits multiple optimizers.

This talk is based on the working paper [8].
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Statistical inference of two stage stochastic programs using stochastic
variational inequality techniques

Shu Lu

(joint work with Yang Yu)

Stochastic variational inequalities provide a unified framework for modeling and
analyzing stochastic optimization and stochastic equilibrium problems. In this
talk, we provide a method for computing confidence regions and confidence inter-
vals for the true optimal solution of a two-stage stochastic program, based on the
solution to a sample average approximation problem [1]. This method is devel-
oped by combining existing results in [2] on the asymptotic behavior of optimal
solutions of two stage linear stochastic programs with recently developed tools
on inference of stochastic variational inequalities. This method does not rely on
the strict complementarity assumption, which has been a standard assumption in
previous works.

A stochastic variational inequality (SVI) is of the form

(1) 0 ∈ f0(x) +NS(x),

where f0(x) = E[F (x, ξ)] is the expectation function of a random function F :
Rn × Ξ → Rn, ξ is a random vector supported on a closed set Ξ ⊂ Rd, S is a
polyhedral convex set in Rn, and NS(x) ⊂ Rn denotes the normal cone to S at x:

NS(x) = {v ∈ Rn | 〈v, s− x〉 ≤ 0 for each s ∈ S}.
The SVI (1) can arise as the first-order necessary condition of a stochastic opti-
mization problem. More specifically, consider a stochastic optimization problem
over the feasible set S whose objective is the expectation function of a random
function Φ : Rn × Ξ→ R:

min
x∈S

E[Φ(x, ξ)].

If its objective function is differentiable at a local minimizer x0, then x0 satisfies
the first-order necessary condition −∇xE[Φ(x0, ξ)] ∈ NS(x0), which becomes a
SVI when ∇xE[Φ(x0, ξ)] = E[∇xΦ(x0, ξ)].

In many applications the expectation function f0 does not have a closed form
expression and is approximated by a sample average function. Let ξ1, · · · , ξN be
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i.i.d. variables with distribution same as that of ξ. Define the sample average
function fN : Rn × Ω→ Rn by

fN (x, ω) = n−1
n∑

i=1

F (x, ξi(ω)).

The sample average approximation (SAA) problem is to find a point x ∈ S such
that

(2) 0 ∈ fN(x, ω) +NS(x).

A solution xN to (2) is known to converge to a true solution x0 to (1) almost
surely as the sample size N grows, and their asymptotic distributions and expo-
nential convergence rates have also been obtained [3, 4, 5, 6, 7]. Under conditions
that ensure (1) to have a locally unique solution under small perturbations of f0,
the asymptotic distribution for xN is known to be “piecewise normal.” In other
words, it is the image of a normally distributed random variable under a piecewise
linear function. Under an additional condition known as “strict complementary
slackness” in the standard nonlinear programming setting, that piecewise linear
function reduces to a linear function and the distribution becomes normal.

In practice, because the true solution is unknown, it is difficult to check whether
the strict complementary slackness condition is satisfied or not. Moreover, when
this condition is not satisfied, standard methods to estimate the asymptotic dis-
tribution based on the SAA solution will fail due to the nonsmoothness associated
with the piecewise normal distribution. In [8, 9, 10, 11] we provide a method
to compute asymptotically exact confidence regions and confidence intervals for
the true solution, based on a single SAA solution. Our method does not require
making the strict complementary slackness assumption.

Next, consider a two-stage stochastic program

min cTx+ E[Q(x, ξ)]

s.t. Ax = b, x ≥ 0
(3)

where A ∈ Rm×n, and Q(x, ξ) is the optimal value of the second-stage problem in
which ξ = (q, T,W, h):

min qT y

s.t. Tx+Wy = h, y ≥ 0.

Let ξi = (qi, hi, Ti,Wi), i = 1, · · · , N be i.i.d. samples of ξ, and yi be an optimal

solution of the ith second stage problem. Replacing E[Q(x, ξ)] by
∑N

i=1Q(x, ξi)
leads to the SAA problem which can be written as

min
x∈Rn

cTx+

N∑

i=1

qTi yi

s.t. Ax = b, x ≥ 0,

Tix+Wiyi = hi, yi ≥ 0, i = 1, · · · , N.

(4)
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With Φ(x, ξ) = cTx + Q(x, ξ) and S = {x ∈ Rn | Ax = b, x ≥ 0}, (3) is in the
form minx∈S E[Φ(x, ξ)], whose corresponding SVI formulation is −E[∇xΦ(x, ξ)] ∈
NS(x). However, for any fixed ξ, Φ(x, ξ) is a piecewise linear function of x, so
∇xΦ(x, ξ) is not well defined at breakpoints of the piecewise linear function. Fur-
thermore, the piecewise constant function ∇xΦ(x, ξ) cannot provide a good sample
average approximation for E[∇xΦ(x, ξ)] in the space of continuously differentiable
functions. This prevents a direct application of inference techniques developed for
stochastic variational inequalities to (3).

The problem caused by the nonsmoothess of Φ(x, ξ) can be bypassed by defining

a function δN (x) = 1
N

∑N
i=1 Φ(x, ξi)−E[Φ(x, ξ)], and considering an intermediate

problem

(5) min
x∈S

E[Φ(x, ξ)] + 〈∇δN (x0), x〉.

Under some standard assumptions, ∇δN is well defined almost surely at the so-
lution x0 of (3), and the objective function of (5) is twice differentiable on a
neighborhood of x0. Accordingly, we can treat (5) as the SAA problem of an SVI
to obtain the asymptotic distribution of its optimal solution, which in turn gives
the asymptotic distribution of the optimal solution of (4) based on a result in [2].
Combining such asymptotic distribution with techniques in [8, 9, 10, 11], we can
compute confidence regions and confidence intervals for the solution of (3) given
a solution to (4).
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Variational Analysis of Infinite-Dimensional Stochastic Optimization
Problems with Applications to Nonparametric Statistics

Johannes O. Royset

Variational analysis has been central in the development of optimality conditions,
approximation schemes, and computational methods for stochastic optimization
problems. In this lecture, we present recent advances in the formulation and solu-
tion of infinite-dimensional problems using variational metrics. Spaces of upper-
semicontinuous (usc) functions with the hypo-distance are bounded and even com-
pact under mild conditions [2], and exhibit low metric entropy in many cases [1].
These properties together with connections with weak convergence of distributions
and convergence of minimizers and maximizers make such metric spaces attractive
choices for many stochastic optimization problems [5, 7, 3]. The lecture demon-
strates possibilities in the context of statistical M -estimators.

Given d0-dimensional random vectors X1, . . . , Xn, we consider M -estimators

(1) f̂n ∈ ǫn- argminf∈Fn

1

n

n∑

j=1

ψ(Xj, f) + πn(f),

where Fn is a class of candidate functions on IRd, or a subset thereof, possibly
varying with n, ψ is a loss function; for example ψ(x, f) = − log f(x) in maximum
likelihood (ML) estimation of densities and ψ((x, y), f) = (y − f(x))2 in least-
squares regression, and πn is a penalty function possibly introduced for the purpose
of smoothing and regularization.

We address the challenges of existence, consistency, and computations of con-
strained M -estimators by viewing the class of functions under consideration as
a subset of a particular metric space of usc functions equipped with the hypo-
distance. Although viewing M -estimators as minimizers of empirical processes
indexed by a metric space is standard, our particular choice is novel. The only
precursors are [4, 6], which hint to developments in this direction without a sys-
tematic treatment. Three main advantages emerge from the choice of metric space:
(i) A unified and disciplined approach to rich classes of functions becomes possible
as the hypo-distance can be used across M -estimators. (ii) Consistency of plug-in
estimators of modes of densities, maximizers of regression functions, and related
quantities follows immediately from consistency of the underlying estimators. (iii)
Computation of estimates becomes viable because usc functions, even when de-
fined on unbounded sets, can be approximated by certain parametric classes to an
arbitrary level of accuracy in the hypo-distance.

We bypass uniform laws of large numbers (LLN) and instead rely on a one-
sided epi-LLN for which upper bounds on the loss function ψ becomes superfluous.
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Thus, concern about density values near zero and the need for reformulations in
ML estimation vanish. The epi-LLN establishes convergence in some sense across
the whole class of functions as in the case of a uniform LLN, but under less
burdensome conditions. Thus, consistency results are not hampered by model
misspecification or other circumstances under which an estimator is constrained
away from an actual function. It also becomes immaterial whether the estimator
and the actual function are unique. Under misspecification in ML estimation, just
to mention one case, there can be an uncountable number of densities that have
the same Kullback-Leibler divergence to the one from which the data is generated.
Our results still hold.

In our framework, conditions for existence and consistency of estimators es-
sentially reduce to checking that the class of functions Fn is closed under the
hypo-distance. We establish that many natural classes of functions are also closed
in the hypo-distance. Specifically, we show this for classes defined by convex-
ity, log-concavity, monotonicity, s-concavity, monotone transformations, Lipschitz
continuity, pointwise upper and lower bounds, location of modes, height at modes,
location of level-sets, values of moments, size of subgradients, approximate eval-
uation of integrals, splines, multivariate total positivity of order two, and any
combination of the above, possibly under some minor technical conditions. No
prior study has established existence and consistency of M -estimators for such a
variety of constraints.

Figure 1. Top view of actual density (left) and estimate using
sample of size n = 1000 (right).

Example. As a concrete example of a rich class of densities in ML estimation on
IRd, suppose that α, κ ≥ 0; C,D ⊂ IRd; I ⊂ [0,∞] is closed; g, h : IRd → [0,∞),
with h being usc and also satisfying

∫
h(x)dx <∞; and

F =
{
f : IRd → [0,∞]

∣∣∣f usc,

∫
f(x)dx = 1, C ⊂ argmaxx∈IRd f(x), D ⊂ lev≥α f

supx∈IRd f(x) ∈ I, g(x) ≤ f(x) ≤ h(x), |f(x)− f(y)| ≤ κ‖x− y‖2, ∀x, y ∈ IRd
}
,

where lev≥α f = {x ∈ IRd | f(x) ≥ α} is a super-level set of f . We restrict the
consideration to densities with (global) modes covering C and “high-probability
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regions” covering D. Neither C nor D need to be singletons. We permit nearly
arbitrary pointwise bounds on allowable densities. In settings with little data but
substantial experience about what an estimate “should” look like, such constraints
can be helpful modeling tools. Let IN = {1, 2, . . .}.

Proposition. Suppose that X1, X2, . . . are iid random vectors, each distributed
according to a density f0 : IRd → [0,∞], F is nonempty, and {ǫn ≥ 0, n ∈ IN} → 0.
Then the following hold almost surely:

(i) For all n ∈ IN , there exists f̂n ∈ ǫn- argminf∈F −n−1
∑n

j=1 log f(Xj).

(ii) Every hypo-cluster point of {f̂n, n ∈ IN}, of which there is at least one,
minimizes the Kullback-Leibler divergence to f0 over the class F .

(iii) If f0 ∈ F , then f0 is the hypo-limit of {f̂n, n ∈ IN}.
We also give rates of convergence results and approximation theory that sup-

ports computations.

Numerical Results. We consider ML estimation of the mixture of three uniform
densities on [0, 1]2 depicted in Figure 1(left). The resulting mixture density f0 has
height f0(x) = 3 for x in the areas colored yellow and f0(x) = 0.6150 elsewhere.
Using a sample of size 1000, we compute a penalized ML estimate over the class

F =
{
f : [0, 1]2 → [α, β]

∣∣∣
∫
f(x)dx = 1, {x̄, ȳ} ⊂ argmaxx∈[0,1]2 f(x),

|f(x)− f(y)| ≤ κ‖x− y‖2, ∀x, y ∈ [0, 1]2, pw-affine on simplicial partition
}
.

A simplicial complex partition divides [0, 1]2 into N equally sized triangles, which
reduces the problem to that of finite-dimensional convex optimization. Thus, F
can be viewed as an approximation, introduced for computational reasons, of the
class obtained from F by relaxing the piecewise affine restriction. We adopt the

penalty π(f) = λ
∑N

k=1 ‖gi‖1, where gi is the gradient of the ith affine function
defining f . In the results reported here, κ = 100 with x̄ = (0.4702, 0.4657) and
ȳ = (0.7746, 0.7773). We observe that F is misspecified as f0 is not Lipschitz
continuous. Figure 1 illustrates the case with λ = 0.02, α = 0.3075, β = 4.5, and
N = 800. Experiments show that argmax-constraints regularize the estimates.
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Lagrangian dual decision rules for multistage stochastic mixed-integer
programming

James Luedtke

(joint work with Merve Bodur, Maryam Daryalal)

A multistage stochastic programming (MSSP) problem is an optimization problem
where a vector of decisions x1 is to made now, followed by an observation of a
random variable ξ1, which is followed by another set of decisions x2(ξ1), and so on
for T stages. In multistage stochastic mixed-integer programming (MSMIP), some
of the decision variables are constrained to take on integer values. Let ξ1, . . . , ξT
be a sequence of random variables, where ξ1 ≡ 1 and let ξt = [ξ1, . . . , ξt] be the
history of random variables observed at time t ∈ [T ] := {1, . . . , T }. A MSMIP
problem is formulated as follows:

min EξT

[∑

t∈[T ]

ct(ξ
t)⊤xt(ξ

t)
]

(1a)

subject to At(ξ
t)xt(ξ

t) +Bt(ξ
t)xt−1(ξt−1) = bt(ξ

t), t ∈ [T ],P-a.s.(1b)

xt(ξ
t) ∈ Xt(ξ

t) t ∈ [T ],P-a.s.(1c)

where Xt(ξ
t) := {x ∈ Zpt ×Rnt : Ct(ξ

t)x ≥ dt(ξt)} and pt and nt are the number
of integer and continuous variables in stage t, respectively. In this work, we assume
the recourse constraint sets Xt(ξ

t) are bounded for all t ∈ [T ] and all ξt, that the
problem has relatively complete recourse: for each t ∈ [T ] and possible history of
random variables ξt, and decisions xs(ξ

s) for s = 1, . . . , t− 1, there always exists
a feasible decision xt(ξ

t).
MSSP problems are generally intractable, and so an active area of research is to

investigate methods to obtain approximate solutions to these problems, including
feasible policies and bounds on the optimal value. In the context of multistage
stochastic linear programming (in which all decision variables are continuous),
Shapiro and Nemirovski [5] presented a primal linear decision rule (LDR) approx-
imation, in which they restrict the decisions at each stage to be a linear function
of random variables observed up to that stage. The expected value of using this
policy provides an upper bound on the optimal value of the MSSP problem. On
the other hand, Kuhn et al. [3] demonstrate how a lower bound can be obtained
by applying the LDR restrictions to the dual policies. In our recent work [1], we
introduced two-stage LDR approximations of MSSP. In the primal problem, this
is accomplished by requiring only the state variables to be LDR, and in the dual
problem, only the dual variables associated with the state equations are restricted
to be LDR. These approximations provide better bounds than the static primal
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and dual approximations, and may be approximately solved, for example, by us-
ing sample average approximation [4]. None of these LDR approximations extend
generally to the stochastic mixed-integer programming case, because in the primal
problem it is likely infeasible to constrain integer recourse decisions to be a linear
function of random observations, and the dual approximations rely on (stochastic)
linear programming duality.

To overcome these limitations, we propose to use LDR restrictions within La-
grangian duals of the MSMIP (1). Although a Lagrangian dual for a MSMIP
problem does not generally have the strong duality property, it can still be useful
for obtaining bounds on the optimal value of the MSMIP problem, which is our
goal. We investigate the use of LDR in two specific Lagrangian duals: the stage-
wise dual (obtained by relaxing the state equations (1b)), and the nonanticipative
dual (obtained by relaxing nonanticipativity constraints in a reformulation of the
problem). In either case, once the LDR restriction is imposed, the restricted
Lagrangian dual problem becomes a stochastic program in which the decision
variables are the parameters of the dual LDR policy, and where subgradients for
a given sample outcome can be obtained by solving deterministic mixed-integer
programming (MIP) subproblems. Thus, these problems can be solved by sample
average approximation or stochastic approximation methods.

For the two different Lagrangian duals we consider, we characterize the strength
of the relaxation obtained by deriving an equivalent primal characterization, which
has some similarity to the dual problem introduced in [3], but which also demon-
strates the convexifying effect of the Lagrangian dual for the MSMIP context.
In [2], it has been shown that the bound obtained from the unrestricted nonan-
ticipative Lagrangian dual is at least as good as the bound obtained from the
unrestricted stagewise Lagrangian dual. This result does not immediately extend,
however, to the case when LDR restrictions are imposed in the dual problems. Us-
ing our primal characterizations, we demonstrate that, if the LDR basis functions
for the nonanticipative Lagrangian dual are chosen in a particular way relative to
those used in the stagewise Lagrangian dual, then the bound is at least as good.

Several interesting questions remain. One important question is how to choose
the basis functions used in the LDR approximations. Some theory demonstrating
that a class of basis functions is sufficient to converge to the true Lagrangian dual
bound would be useful for guiding this choice. Another open problem is how to
efficiently computationally optimize the LDR restricted Lagrangian dual problems.
Finally, an idea that was raised at the Oberwolfach workshop was to investigate
applying LDR restrictions in additional Lagrangian dual problems, such as those
obtained by structural decomposition investigated in [2].
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Graver basis methods for two-stage stochastic integer programs and
other block structures

Matthias Köppe

The Graver basis G(E) of an integer matrix E ∈ Zm×n is the unique inclusion-
minimal finite set that generates all elements z of the integer kernel of E by
nonnegative integer linear combinations of orthant-compatible vectors [7],

(1) z =

k∑

i=1

λig
i, λi ∈ Z+, gi ∈ G(E), gi, z in the same orthant of Rn.

From the inclusion-minimality it follows that the elements of G(E) are irreducible,
i.e., they do not themselves have nontrivial decompositions of the form (1).

Consider the following basic augmentation algorithm for integer linear pro-
grams maximizing cTx subject to equality constraints Ex = b and lower and upper
bounds on the variables, l ≤ x ≤ u. Given the problem data E, b, c, l, u, a feasible
point x0, and Graver basis G(E), start with x← x0 and run the iteration

(A)
while ∃ g ∈ G(E), cT g > 0, x+ g feasible

x← x+ g,

returning x. Assume that the problem has an optimal solution x∗ and let x be
an iterate, a feasible point. If x is non-optimal, i.e., cTx∗ − cTx > 0, then the
difference z = x∗ − x decomposes as (1), and thus by linearity of the objective,

(2) ∃ i such that cT gi > 0.

Moreover, from the orthant-compatibility condition it follows that x + gi is
feasible. Thus the algorithm finds an optimal solution x∗, terminating in finitely
many steps because each improves the objective function value by at least 1.

Is this an efficient algorithm? Let us discuss this question in the standard
framework of bit complexity, first relative to an oracle that gives suitable query
access to G(E). If the input size of the problem is the sum of the bitlengths of E,
b, c, l, u, and x0, then the gap cTx∗ − cTx0 is of (singly) exponential size (even
if the dimension of the problem is considered a fixed constant), and thus we can
only give a exponential bound on the number of iterations of the algorithm.

However, Algorithm (A) can be improved by various algorithmic acceleration
techniques developed in the literature; see the book [3, § 3, § 4] for a compre-
hensive exposition. Some of these are inspired by techniques from combinatorial
optimization; others are specific to Graver-based augmentation. An example of
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the latter is the following. By the integer Carathéodory theorem, the number k
in (1) can be bounded by 2n− 2. Thus, (2) can be sharpened to

(3) ∃ i such that cTλig
i ≥ 1

2n− 2
(cTx∗ − cTx0).

Hence, the following Graver-best iteration [11],

(AGb)

while ∃ g ∈ G(E), cT g > 0, x+ g feasible

find (g∗, λ∗) ∈ G(E)× Z+ maximizing cTλg s.t. x+ λg feasible

x← x+ λ∗g∗,

achieves a geometric reduction of the gap and will therefore terminate within a
polynomial number of iterations. It remains to find efficient implementations
of the Graver-best oracle (AGb, line 2). Two observations refine this idea:
First, an approximate maximizer (g∗, λ∗) suffices; e.g., the step length λ can be
chosen as a power of 2 [6]. Second, g does not actually have to be a Graver basis
element [3, § 3.4]; we are allowed to optimize over a superset of G(E) contained
in kerZE. Thus, though software (4ti2 [8]) is available for computing Graver
bases explicitly, the most powerful applications of Graver basis technology only
use structural results and size estimates for Graver basis elements. One
estimation technique uses Steinitz’ classic result in convexity that asserts the ex-
istence of a function s(m) with the following property. Let v1, . . . , vN ∈ Rm with
v1 + · · · + vN = 0; then there exists a reordering of the vectors so that all par-
tial sums lie in the dilated polytope sV = s(m) · conv{v1, . . . , vN}. Using the
Grinberg–Sevast'yanov estimate s(m) ≤ m, Diaconis et al. [5] prove a bound for
‖g‖1 as follows: WLOG, let g ≥ 0; take v1, . . . , vN as the columns of E, repeated
with multiplicities given by the components gi; then N = ‖g‖1. The irreducibility
of g implies that no two partial sums of the reordering are the same. Thus,

(4) ‖g‖1 ≤ #(sV ∩ Zm) ≤ (2m)m(m+ 1)m+1D(E),

where D(E) is a bound on the subdeterminants of E. However, using this general
bound would forgo a key benefit of Graver-based analysis, namely to work with
structured families in which D(E) is allowed to grow exponentially.
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Estimates free of D(E), instead depending on param-
eters that are better to control, have become available
for the 4-block structured matrices [9] shown on
the right. These include as special cases the two-stage
stochastic integer programs (C = D = O, Hemmecke–
Schultz [12]) and the N -fold programs (B = C = O,
De Loera et al. [4]). A combination of structural results
and size estimates allows us to construct and analyze dynamic programming
techniques to implement the Graver-best oracle. The first Graver-based dynamic
programming algorithm appeared in [10]; for a simplified exposition, see [3, § 4.1.3].
Moreover, proximity, i.e., the ℓ∞-distance from an arbitrary optimal solution to
the continuous relaxation to the closest optimal integer solution, can be bounded
by n ·max{ ‖g‖∞ : g ∈ G(E) } [3, § 4.3.3]. The resulting proximity bounds enable
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generalizations to separable convex function minimization [3, § 4.3.5]; reduce the
dependence of the running time on the size of the right-hand side b and the bounds
l, u; and enable Frank–Tardos reduction of the linear objective c [13].

A wave of powerful new results by several groups of authors appeared in
2017–2018, providing a striking array of new applications (see [6] for a list) and
contributions to the general theory. A crucial aspect is the context of multivariate
algorithmics (fixed parameter tractability). For lack of space, we can only cite a
few key publications and refer the interested reader to papers cited within. Chen,
Xu, and Shi [2] give an improved analysis for 4-block IPs and a special case, 3-block
IPs (C = O). Chen and Marx [1] develop Graver techniques for tree-fold IPs, a
generalization of N -fold IPs whose block structure is the transpose of multi-stage
stochastic integer programs. Eisenbrand et al. [6] find a tighter estimation analysis
based on the Steinitz lemma that improves upon (4), which has strong implications
for various block-structured problems. Koutecký et al. [13] give a parameterized
strongly polynomial algorithm for various block-structured problems and give an
interpretation of these results in terms of graph parameters such as treewidth and
treedepth of the constraint matrix.
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Algorithms for Rank-1 Bimatrix Games

Bernhard von Stengel

(joint work with Bharat Adsul, Jugal Garg, Ruta Mehta, and Milind Sohoni)

The rank of a bimatrix game is the matrix rank of the sum of the two payoff
matrices. For a game of rank k, the set of its Nash equilibria is the intersection
of a one-dimensional set of equilibria of parameterized games of rank k − 1 with
a hyperplane. For a game of rank 1, this is a monotonic path of solutions to a
parameterized zero-sum game and hence LP. One intersection of this path with
the hyperplane can be found in polynomial time by binary search. This gives a
polynomial-time algorithm to find an equilibrium of a game of rank 1, as already
shown by Adsul, Garg, Mehta, and Sohoni [1]. On the other hand, there are rank-1
games with exponentially many equilibria [5], which answers an open problem by
Kannan and Theobald [3]. Hence, the exponential multiplicity of equilibria does
not prevent one equilibrium in polynomial time. In this spirit, we conjecture that
the uniqueness of an equilibrium of a rank-1 game is co-NP-hard. For games of
higher rank, the parameterized equilibria of lower rank correspond to the com-
putation of the global Newton method by Govindan and Wilson [2], which for
two-player games is a special case of Lemke’s algorithm [4].
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Risk-Averse Control of Partially Observable Systems

Andrzej Ruszczynski

We consider risk measurement in controlled partially observable dynamical sys-
tems in discrete time. In such systems, part of the state vector is not observed,
but affects the transition kernel and the costs. Because of the dependence of the
probability measure on the control and observation, we have to consider risk mod-
els involving the probability measure as one of the arguments. First, we discuss
two-stage problems, derive the risk disintegration formula and hierarchical for-
mulations of the problems. Then we pass to discrete-time Markov models and we
introduce new concepts of risk filters and study their properties. We also introduce
the concept of conditional stochastic time consistency. We derive the structure of
risk filters enjoying this property and prove that they can be represented by a
collection of law invariant risk measures on the space of function of the observ-
able part of the state. We also derive the corresponding dynamic programming
equations. Then we illustrate the results on a clinical trial problem.

Chance-Constrained Programming with Decision-Dependent
Uncertainty

Miguel A. Lejeune

(joint work with François Margot, Alan D. de Oliveira)

We study a class of joint chance-constrained stochastic problems with decision-
dependent uncertainty CC-DD. A coupling function models the dependency be-
tween decision and endogenous random variables. We propose deterministic re-
formulations equivalent to the general chance-constrained problem with decision-
dependent uncertainty CC-DD and applicable to any coupling function. We
expose the advantages of the proposed Boolean-based reformulations over typi-
cal scenario-based formulations. We define the properties of coupling functions
and explain, illustrate their versatility, and the importance of properly modeling
decision-dependent uncertainty. We then provide the explicit formulation of prob-
lem CC-DD in the decision-dependent service uncertainty context and derive
exact mixed-integer nonlinear reformulations. We design an algorithmic frame-
work which includes the derivation of convex MINLP relaxation problems, the
use of new multiterm convexification methods for bilinear terms, the derivation of
tight lower and upper bounds, and the design of a nonlinear branch-and-bound
algorithm featuring a conification-relaxation method and the new smallest domain
branching rule. Experiments based on real-life data show the scalability and com-
putational efficiency of the nonlinear branch-and-bound framework. To conduct
the tests, we also develop a new medical evacuation chance-constrained model with
exogenous and decision-dependent uncertainty which endogenizes the calculation
of individual busy probabilities.



2334 Oberwolfach Report 38/2018

References

[1] M.A. Lejeune, Pattern-Based Modeling and Solution of Probabilistically Constrained Opti-
mization Problems, Operations Research 60-6 (2012), 1356–1372.

[2] M.A. Lejeune, F. Margot, Solving Chance Constrained Problems with Random Technology
Matrix and Stochastic Quadratic Inequalities, Operations Research 64-4 (2016), 939–957.

[3] M.A. Lejeune, F. Margot, Aeromedical Battlefield Evacuation Under Endogenous
Uncertainty in Casualty Delivery Times. Management Science (2018). Forthcoming:

https://pubsonline.informs.org/doi/10.1287/mnsc.2017.2894.
[4] M.A. Lejeune, F. Margot, A.D. de Oliveira, Chance-Constrained Pro-

gramming with Decision-Dependent Uncertainty. Working Paper (2018):
https://papers.ssrn.com/sol3/papers.cfm?abstract id=3201121.

Bounds in Multistage Stochastic Optimization Programs

Francesca Maggioni

(joint work with Georg Ch. Pflug)

Multistage stochastic optimization problems are typically formulated in terms
of continuous distributions for the underlying stochastic processes describing the
problem uncertainty. As such, they are usually intractable as they are originally
defined and approximations in terms of finite scenario trees are needed for a nu-
merical solution.

In this talk bounding methods for multistage stochastic optimization problems
are discussed. First we consider bounds of multistage convex problems with con-
cave risk functionals as objective and we assume that a sufficiently large discretized
scenario tree describing the problem uncertainty is given but is unsolvable. We
construct new refinement chains of lower bounds [2], where each bound can be
computed by solving sets of group subproblems less complex than the original
one, and recalculating the probabilities of each scenario in the group accordingly.
Refinement chains are constructed principally in two ways: by keeping one or sev-
eral scenarios fixed in all subproblems or choosing them disjoint. A monotonically
nondecrasing behavior in the cardinality of scenarios of each subproblem is proved.
Complexity considerations for the computation of the proposed bounds as function
of tree depth and branching factor are also discussed.

Secondly, we demonstrate how one can find guaranteed bounds for the optimal
values of the original infinite problem with continuous distribution of the problem
uncertainty [4]. We construct new discrete trees directly from the simulated data
of the whole scenario process and not from the discretization of the conditional
distributions as done before in the literature, e.g. in [1], by means of the concept
of stochastic dominance of probability measures (first order stochastic dominance
and convex order dominance). The proposed method can be made arbitrarily close
to optimal solution of the original infinite problem by making the approximating
trees bushier. By constructing upper and lower trees, we take care of the fact
that that scenario tree approximation keeps the nonanticipativity requirements
of the original problem. Our bounds are the optimal values of the problem at
hand on finite scenario trees and therefore are easy to get without changing the
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optimization model. Moreover, we relate the solution of the approximating tree to
the solution of the original continuous problem and vice-versa; that is by solving
the upper and lower trees approximations, we get automatically ǫ-solutions, i.e.
near optimal solutions for the original problem. Their use is shown in a multi-
stage risk-averse production problem. Results show that the solutions based on
convex order dominance construction outperform the ones obtained by first order
stochastic dominance closing the gap between upper and lower bounds within a
limited computational complexity and simple scenario tree structures.

Current work on optimal scenario grouping in order to obtain the best mono-
tonic chain of lower bounds will be also discussed [3].
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Open Problems Relevant to New Developments in Markov Decision
Processes

Eugene A. Feinberg

Recently, there are several developments in the theory of Markov decision pro-
cesses (MDPs) and in real analysis relevant to MDPs. Such progresses in MDPs
include: (i) optimality conditions for problems with weakly continuous probabili-
ties, noncompact action sets, and unbounded costs; (ii) optimality conditions for
partially observable MDPs (POMDPs); (iii) applications to inventory control; and
(iv) extensions to games, robust optimization, and risk. Relevant developments
in real analysis focus on Berge’s maximum theorem for noncompact decision sets
and Fatou’s lemma for varying probabilities.

These developments give rise to several open problems and questions:

1. For average-cost MDPs, it is not clear whether two sufficient conditions for
average-cost optimality inequalities (sufficient conditions for the existence
of relative values), Assumptions B and B are equivalent.

2. For POMDPs, what are the natural assumptions on the POMDP that
guarantees Assumption B (or B) for the Completely Observable MDP
(COMDP), to which POMDP is reduced.

3. The examples of data-driven applications of Fatou’s lemmas for converging
probabilities and Berge’s theorems are not known, except their applica-
tions to POMDPs described in [6].
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Let us begin with the generation of Berge’s maximum theorem for noncompact
decision sets. Let X and A be metric spaces, u : X×A→ R and A : X→ 2A \ {∅}.
Consider an optimization problem:

v(x) := inf
a∈A(x)

u(x, a) for each x ∈ X.(1)

Definition 1. A function f : X × A → R is called K-inf-compact, if for every
compact set K ⊆ X, the function f : K × A→ R is inf-compact.

A K-inf-compact function f : X × A → R is lower semicontinuous and inf-
compact in a on A(x) at each x ∈ X. In fact, these assumptions are almost equiv-
alent. Essentially, K-inf-compactness of f(x, a) is slightly stronger than: (i) lower
semicontinuity in (x, a); and (ii) inf-compactness in a. However, (i, ii) do not imply
lower semicontinuity of the value function. K-inf-compactness implies semiconti-
nuity of the value function. In addition, an inf-compact function is K-inf-compact.
Some examples are as follows. The function f(x, a) = x2 + a2 is inf-compact. The
functions f(x, a) = |x− a| and f(x, a) = (x− a)2 are K-inf-compact, but they are
not inf-compact since f(x, a) = 0 for x = a. If the function h is inf-compact, then

c(x, a) = K1{a>0} + c̄a+ Eh(x + a−D), a ≥ 0,

is inf-compact for c̄ > 0 and K-inf-compact for c̄ = 0. This cost function is used in
inventory control with setup costs.

The following two theorems extend Berge’s (maximum) theorem to possibly
noncompact action sets.

Theorem 2 (Berge’s theorem for possibly noncompact action sets [3]). If u :
X × A → R is a K-inf-compact function, then the function v defined in (1) is
lower semicontinuous and the sets A∗(x) = Argmina∈A(x) u(x, a) are compact.

Theorem 3 (Berge’s maximum theorem for possibly noncompact action sets [1]).
If

(i) A : X→ 2A \ {∅} is a lower semicontinuous set-valued mapping,
(ii) u : X× A→ R is K-inf-compact and upper semicontinuous function,

then the function v defined in (1) is continuous and the set-valued mapping A∗(x) =
Argmina∈A(x) u(x, a) is upper semicontinuous and compact-valued.

Another development in real analysis that is relevant to MDPs is Fatou’s lemma
for varying probabilities. Let {p, pn}n=1,2,... be a sequence of probability measures.

Theorem 4 (Fatou’s Lemma for weakly converging probabilities [4]). Let X be a
metric space, {pn}n=1,2,... converge weakly to p, and {fn}n=1,2,... be a sequence of

measurable R-valued functions. Then the inequality
∫

X

lim inf
n→∞, y→x

fn(y)p(dx) ≤ lim inf
n→∞

∫

X

fn(s)pn(ds)
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holds, if there exists a sequence of measurable real-valued functions {gn}n=1,2,...

such that fn(x) ≥ gn(x) for all n = 1, 2, . . . and x ∈ X, and

−∞ <

∫

X

lim sup
n→∞,y→x

gn(y)p(dx) ≤ lim inf
n→∞

∫

X

gn(x)pn(dx).

If pn converges in total variation to p, Feinberg et al. [5] provided a more general
form of Fatou’s lemma and Lebesgue’s convergence theorem.

Theorem 5 (Uniform Fatou’s lemma [5]). Let (X,F) be a measurable space, a
sequence of finite measures {pn}n=1,2,... converge in total variation to a measure p
on X, f ∈ L1(X; p), and fn ∈ L1(X; pn) for each n = 1, 2, . . . . Then the inequality

lim inf
n→∞

inf
X∈F

(∫

X

fn(x)pn(dx) −
∫

X

f(x)p(dx)
)
≥ 0

holds if and only if the following two statements hold:
(i) for each ǫ > 0

p({x ∈ X : fn(x) ≤ f(x)− ǫ})→ 0 as n→∞;

(ii) lim
K→+∞

inf
n=1,2,...

∫
X
fn(x)I{x ∈ X : fn(x) ≤ −K}pn(dx) ≥ 0.

Theorem 6 (Uniform Lebesgue’s convergence theorem [5]). Let (X,F) be a mea-
surable space, a sequence of finite measures {pn}n=1,2,... converge in total variation
to a measure p on X, f ∈ L1(X; p), and fn ∈ L1(X; pn) for each n = 1, 2, . . . .
Then the equality

lim
n→∞

sup
X∈F

∣∣∣
∫

X

fn(x)pn(dx) −
∫

X

f(x)p(dx)
∣∣∣ = 0

holds if and only if the following two statements hold:
(i) the sequence of functions {fn}n=1,2,... converges in measure p to f ; and
(ii) lim

K→+∞
lim sup
n→∞

∫
|fn(x)|I{x ∈ X : |fn(x)| ≥ K}pn(dx) = 0.

Let us consider an MDP defined by {X,A, q, c}, where (i) X is a state space; (ii)
A is an action space; (iii) q(dy|x, a) is the transition probability; and (iv) c(x, a)
is the one-step cost function. The objective is to minimize

(i) finite-horizon costs: vπN,α(x) := Eπ
x

[∑N−1
t=0 αtc(xt, at)

]
, where α ∈ [0, 1)

is the discount factor and N = 1, 2, . . . is the horizon length;
(ii) infinite-horizon costs: vπα(x) := Eπ

x [
∑∞

t=0 α
tc(xt, at)] ; or

(iii) average costs per unit time: wπ(x) := lim supN→∞
1
NEπ

x

[∑N−1
t=0 c(xt, at)

]
.

Each of the following two conditions, being added to the assumptions that the
transition probabilities q is weakly continuous and the cost function c is K-inf-
compact, implies the existence of stationary optimal policies; see [2] for details.

Assumption B ([7]). (i) w∗ := inf
x

inf
π
wπ(x) < +∞; (ii) sup

α∈[0,1)

uα(x) <∞, x ∈ X.

Assumption B ([2]). (i) Assumption B(i) holds; (ii) lim inf
α↑1

uα(x) <∞, x ∈ X.
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Assumption B is more general and leads to the different optimality inequality
than the optimality inequality that holds under Assumption B.

Let us consider a POMDP defined by (X,Y,A, P,Q, c), where Y is the obser-
vation set and Q(dy|a, x) is the observation kernel. Let P0(dx′|x, a) be the initial
state distribution and Q0(dy|a, x) be the distribution of the initial observation.

The following theorem states the existence of optimal policies for POMDPs.

Theorem 7 ([6]). Suppose the following conditions hold for the POMDP:

(i) the cost function c is K-inf-compact;
(ii) the transition probability P (·|x, a) is weakly continuous in (x, a);

(iii) the observation kernel Q(·|a, x) is continuous in total variation in (a, x).

Then optimal policies exist and convergence of value iteration takes place for dis-
counted cost problems.
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Risk averse stochastic shape optimization

Martin Rumpf

(joint work with Sergio Conti, Benedikt Geihe, Harald Held, Rüdiger Schultz,
Sascha Tölkes)

In this extended abstract shape optimization for elastic materials [2, 1] is consid-
ered under stochastic loading. Risk averse objective functionals are investigated
and the concept of stochastic dominance constraints is explored. Thereby the ex-
pected excess and the excess probability are taking into account, first as objective
functional involving the complience cost of a elastic object under stochastic loading
and then as a constraint when comparing a shape with a benchmark shape.
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Shape optimization with stochastic loading. Shape optimization based on
an explicit parametric description of the mechanical object is algorithmically de-
manding. Hence, we consider an approximating phase-field representation of the
elastic object O ⊂ Ω, where Ω ⊂ Rd (d = 2, 3) denotes the computational do-
main. To this end, we take into account a phase-field function v : Ω → R of
Allen–Cahn or Modica–Mortola type with a phase field energy functional Lε[v] :=
1
2

∫
Ω
ε|∇v|2 + 1

εΨ(v) dx , where the scale parameter ε describes the width of the

interfacial region. In our context of shape modeling, we set Ψ(v) := 9
16 (v2 − 1)2,

which has two minima at v = −1 and v = 1 representing the two phases outside and
inside of O, respectively. In the limit ε→ 0, the phase field v is forced towards the
pure phases −1 and 1 and Lε Γ-converges to the total interface area. Furthermore,
we approximate the total volume by the smooth functional V [v] :=

∫
Ω χ(v) dx,

where χ(v) := 1
4 (v + 1)2 is an approximation to the characteristic function χO.

Next, let us recall the model of linearized elasticity taylored to the phase field
description of the elastic object O. Instead of considering a void phase on Ω \ O,
we follow common practice in shape optimization assuming the presence of a very
soft material on the part of the computational domain outside of O. The elastic
energy stored inside the material under a given displacement u : Ω → Rd is then
defined as

Wδ[v, u] :=
1

2

∫

Ω

((1− δ)χ(v) + δ)Cǫ[u] : ǫ[u]dx ,

where ǫ[u] = 1
2 (DuT + Du) is the strain tensor. Here, C is the elasticity tensor

of the material, in our case that of the Lamé-Navier elasticity model. Further-
more, we take into account a Dirichlet boundary ΓD ⊂ ∂Ω and an inhomogeneous
Neumann boundary ΓN ⊂ ∂Ω with ΓD ∩ ΓN = ∅. The equilibrium displacement
u ∈ H1(Ω;Rd) for fixed phase field v is then given as the minimizer of the free
energy E[v, u] := Wδ[v, u] − C[u] within a set of admissible displacements u with
trace u|ΓD

= 0, where the functional C[u] :=
∫
ΓN

g ·u d a is the (negative) potential

of the surface load for g ∈ L2(ΓN ;Rd).
Finally, we define the cost functional

J [v, u] := 2Wδ[v, u] + νV [v] + γLε[v] ,

where V approximately measures the volume of the elastic object O and Lε the
object perimeter within the computational domain Ω and ν, γ > 0. The shape
optimization problem is now to minimize J [v, u[v]] subject to the constraint that
u[v] is a minimizer of u 7→ E[v, u].

Stochastic loading and risk averse functionals. If the surface load g is uncer-
tain, i .e. described by a random variable g[ω] on some probability space (Ω,A,P),
then so are the displacement u[ω] and the cost functional J [v, ω]. Optimizing or
selecting shapes therefore amounts to optimizing the random variable representing

the cost,
{
J [v, u[v][·]] : v ∈ H1,2

ΓN
(Ω)
}
, where the Sobolev space H1,2

ΓN
(Ω) is the

set of admissible phase fields which are measurable functions obeying v = 1 on ΓN

in the sense of traces.



2340 Oberwolfach Report 38/2018

In mean-risk models [3] objective functions are formulated as weighted sums of
the expected value and some risk measure, which is chosen as a quantity that for-
malizes the user’s perception of risk. For the expected value one obtainsQev(v) :=∫
Ω
J [v, u[v][ω]]P(dω). General risk measures are nonlinear quantities [4, 6]. Typi-

cal examples of risk measures are the excess probabilityQep, which is the probabil-
ity of exceeding a preselected target value η ∈ R: Qep(v) := P [J [v, u[v][ω]] > η] ,
and the expected excess Qee given by the mean-value of the outcomes above a
preselected η ∈ R: Qee(v) :=

∫
Ω max {J [v, u[v][ω]] − η, 0} P(dω) In [4, 6] risk

neutral and risk averse stochastic shape optimization were discussed for mean-risk
models with the above specifications. To this end the stochastic energies were used
as stochastic cost functions for shape optimization directly.

Stochastic dominance constraints. Now, we use a notion of “being stochasti-
cally smaller ” to state dominance of first order and “being smaller with respect to
the increasing convex order” in the presence of second order dominance [5]. The
definitions of dominance of first order (�st) and second order (�icx), respectively,
are given as follows:

X �st Y iff P [{ω ∈ Ω : X[ω] ≤ η}] ≥ P[{ω ∈ Ω : Y[ω] ≤ η}] ∀η ∈ R ,

X �icx Y iff

∫

Ω

max {X[ω]− η, 0} P(dω) ≤
∫

Ω

max {Y[ω]− η, 0} P(dω) ∀η ∈ R .

In our shape optimization context, first order dominance can be understood as
turning the excess probability approach based on the cost function Qep into a
constraint. Analogously, second order dominance is conceptually related to the
expected excess approach with the cost function Qee.

Having fixed a benchmark phase field vb (which describes an elastic object
Ob) and a random benchmark surface load g[ωb] one can formulate the abstract
optimization problem

min{G(v) : J [v, u[v][ω]] � J [vb, u[vb][ωb]], v ∈ H1,2(Ω), v = 1 on ΓN}.
Here � is specified as either �st or �icx, and for the sake of notational simplicity
we identify vb with Ob and neglect the difference between soft material (δ > 0)
and void (δ = 0).

The entity J [vb, u[vb][ωb]] corresponds to the cost-representing random variable
that arises when exposing the benchmark)shape Ob to a random surface load g[ωb].
In this model G stands for an objective function which, in the present context
mainly consists of the volume or the elastic energy of O complemented with a
small perimeter functional. I.e. we choose

G(v) := V(v) + βLε(v)

for a β > 0. Furthermore, in the application we assume a finite set of realizations of
the stochastic loading, each with different boundary data, in which every scenario
is represented by a random variable ωk and comes with a certain probability πk
and a force gk for k = 1, . . . ,K, with πk ∈ [0, 1] and

∑K
k=1 πk = 1. Then, it suffices
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to consider a finite set of constraints. For a discussion of the numerical findings
we refer to [5].
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Uncertainty Quantification for Bayesian Inverse Problems

Claudia Schillings

(joint work with Dirk Blömker, Andrew Stuart, Philipp Wacker, Simon
Weissmann)

Uncertainty Quantification is an interesting, fast growing research area aimed at
developing methods to address the impact of parameter, data and model uncer-
tainty in complex systems. Here, we will focus on the identification of parameters
through observations of the response of the system - the inverse problem. The un-
certainty in the solution of the inverse problem will be described via the Bayesian
approach.

The forward response operator G ∈ C(X ,RK) maps the unknown parameters
u ∈ X in a separable Hilbert space X to the data space RK . The number of
observation is assumed to be finite and denoted by K ∈ N. The inverse problem
then consists of recovering the unknown parameters u ∈ X from noisy data y

y = G(u) + η ,

where the observation noise η is assumed to be Gaussian, i.e. η ∼ N (0,Γ) for a
given covariance matrix Γ ∈ RK×K . The unknown parameter u is modeled as a
X -valued random variable with prior distribution µ0. Assuming that η ∼ N (0,Γ)
is independent of u ∼ µ0, the solution of the inverse problem is the X -valued
random variable uy ∼ µy with

µy(du) =
1

Z
exp(−Φ(u; y))µ0(du)
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by Bayes’ theorem [8]. The constant Z is the normalization constant

Z :=

∫

X

exp(−Φ(u; y))µ0(du)

and the functional Φ : X → R is the least-squares functional

Φ(u; y) =
1

2
‖(y − G(u))‖2Γ .

with ‖ · ‖Γ := ‖Γ− 1
2 · ‖2. In cases, where the model evaluations are prohibitively

expensive, ad hoc methods such as the ensemble Kalman filter for inverse problems
[3, 4] are widely and successfully used by practitioners in order to approximate the
solution of the Bayesian problem. Since the method is usually used with a rather
small ensemble size (in the range of 20 - 100 ensemble members), the goal of our
work is to build analysis for a fixed ensemble size. To do so, we discuss the ensemble
Kalman inversion based on the continuous time scaling limits of the method as a
derivative free optimization method for the least-squares misfit functional. The
continuous time limit of the ensemble Kalman inversion is formally given by

(1) du
(j)
t = Cup(ut)Γ

−1(y − G(u
(j)
t )) dt+ Cup(ut)Γ

−1/2 dW
(j)
t ,

where W (j) are independent Brownian motions on RK and

Cup(u) =
1

J

J∑

j=1

(u(j) − u)⊗ (G(u(j))− G)

with u = 1
J

J∑
j=1

u(j), G = 1
J

J∑
j=1

G(u(j)). The strong convergence of the discrete

ensemble Kalman inversion iteration to continuous paths of (1) in the general
nonlinear setting is an interesting and still open question. Preliminary results for
a simplified model can be found in [1]. Under the assumption that the forward
operator is linear, i.e. G(·) = A· with A ∈ L(X ,RK), the continuous time limit
(1) is given by

(2) du
(j)
t =

1

J

J∑

k=1

〈A(u
(k)
t − ut), (y −Au(j)t ) dt+

√
Γ dW

(j)
t 〉Γ(u

(k)
t − ut) .

The structure of the continuous time limit (2) can be exploited to establish exis-
tence and uniqueness results, i.e. well-posedness of the ensemble Kalman inversion.
In particular, in [2], it is shown that the subspace property holds true in the contin-
uous time limit, which allows to use the theory of stochastic differential equations
in finite dimensional spaces. Furthermore, the ensemble collapse in the observa-
tion as well as parameter space is characterized in terms of moments and almost
sure convergence with given rates. In case of exact data, variance inflation can
be shown to lead to convergence to the true parameters in terms of moments and
almost sure convergence. We refer to [6, 7, 2] for more details. The interpretation
of the ensemble Kalman inversion as a derivative free optimization method opens
up the perspective to use the method in various fields of application, e.g. imaging,
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groundwater flow problems, biological problems as well as in the context of the
training of neural networks [5]. Even though the analysis in [6, 7, 2] is confined
to the linear setting, it can guide the analysis of nonlinear problems. Numerical
experiments show a good convergence behavior also for highly nonlinear problems.
The generalization of the well-posedness and accuracy results will be subject to
future work.
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Reduced-Order Models for CVaR Estimation and Risk Averse
Optimization

Matthias Heinkenschloss

(joint work with Boris Kramer, Timur Takhtaganov, Karen Willcox)

This talk introduces two approaches to improve the sampling efficiency in risk
averse optimization governed by partial differential equations (PDEs) with un-
certain parameters. For these problems, the PDE solution and the quantity of
interest (QoI), which depends on the PDE solution and would be the objective
function in the deterministic case, now depend on the random parameters. There-
fore, a so-called risk measure is applied to the QoI to define the objective function
risk averse optimization. We consider the Conditional-Value-at-Risk (CVaR) risk
measure. Evaluating the CVaR of the QoI requires sampling in the tail of the
distribution of the QoI and typically requires many solutions of the expensive
PDE. We use reduced-order models (ROM) of the PDE to substantially reduce
the computational expense of naive Monte Carlo (MC) sampling.

The parameter region that corresponds to the tail of the distribution of the
QoI that enters the evaluation of the risk measure is a small region in the original
parameter space and is called the risk region. For CVaR the probability of the
risk region is 1 − β ≪ 1, where β ∈ (0, 1) is the quantile level at which CVaR is
computed. Unfortunately, this risk region depends on the QoI, the PDE and the
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random variables that enter the PDE and is not known a-priori known. When
using naive MC to estimate the CVaR, about 100β% of the samples, each of which
requires an expensive PDE solve, fall outside the risk region and therefore do not
contribute to the CVaR estimate. We use ROMs in two ways to substantially
reduce the number of expensive high fidelity PDE solves (also referred to as full-
order model (FOM) evaluations) needed to estimate CVaR. We summarize our
approaches next. Details can be found in [1].

The first approach replaces the computationally expensive FOM by an inexpen-
sive ROM. This idea has been used before, but our refined error estimate shows
that the resulting CVaR estimation error is proportional to the ROM error in the
small risk region. This improves previous error estimates and also opens opportu-
nities for adaptive ROM generation.

The second approach uses a combination of FOM and ROM evaluations via
importance sampling, and can be effective even if the ROM has large errors, but
the risk region computed with the ROM is a good approximation of the true risk
region. In the importance sampling approach, ROM samples are used to estimate
the risk region and to construct a biasing distribution. Few FOM samples are then
drawn from this biasing distribution. Asymptotically as the ROM error goes to
zero, the importance sampling estimator reduces the variance by a factor 1−β ≪ 1,
where β is again the quantile level at which CVaR is computed.

Numerical experiments of CVaR estimation of a QoI related to heat release
modeled by a system of semilinear diffusion-advection-reaction PDEs derived from
a simple combustion model demonstrate the substantial computational savings
(measured in FOM evaluations) of our approaches. In one comparison the number
of FOM evaluations is reduced by a factor of 100. The importance sampling
framework led to substantially better CVaR estimates when coarser ROMs are used
compared to simply replacing FOM samples by ROM samples, but at the expense
of using 102 additional FOM samples. Since the ROM construction also requires
FOM evaluations, these are accounted for in our computational cost estimates.
Overall, our numerical results showed that it appears beneficial to invest FOM
samples to train a ROM—which is then used to compute a biasing distribution—
than to sample from the FOM directly.
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How turnpike theory helps to find good controls

Martin Gugat

(joint work with René Henrion)

The computation of optimal controls that solve a dynamic optimal control prob-
lem is often more time-consuming than the solution of the corresponding static
problems. Turnpike theorems provide a relation between the solution of the dy-
namic problems and the solution of the static problem. Recently, some progress
in turnpike theory with pdes has been achieved, see [6, 5, 4, 3, 2]. Here we present
abstract turnpike theorems that can be applied in the context of boundary control
of gas pipeline operations. First we present an integral turnpike result that states
that the norm of the difference between the dynamic and the static optimal control
remains uniformly bounded for all time horizons. Then we state an exact turn-
pike result that gives conditions that imply that after a fixed time t0 the dynamic
optimal control is equal to the static optimal control. This exact turnpike result
only holds under rather strong assumptions.

In the application to the gas flow through a network of pipes the state in each
pipe is governed by a hyperbolic partial differential equation. At the nodes of
the network graph the system is governed by algebraic node conditions. The con-
sumer behavior at the boundary nodes of the graph is uncertain. This gives rise
to uncertainty in the data in the corresponding Dirichlet boundary conditions.
The customers require that the state at the boundary nodes satisfies certain state
constraint. In order to take the uncertainty into account, this requirement can
be modeled in the form of a probabilistic constraint. Under the assumption that
the distribution is log-concave, this probabilistic constraint is equivalent to a de-
terministic convex inequality constraint. This is the form that we consider in the
following analysis. The corresponding static optimal control problems are studied
in [1]. For the numerical solution, the spheric-radial decomposition is used.

1. Definitions and notation

Let a natural number n be given. For T > 0 define H(T ) = (L2(0, T ))n. For all
T > 0, let a convex continuously differentiable function JT : H(T ) → [0, ∞) be
given. Assume that JT is strongly convex in the sense that there a constant κ > 0
that is independent of T such that for all T > 0

(1) 〈J ′
T (u)− J ′

T (v), u− v〉H(T ) ≥ κ‖u− v‖2H(T ).

Let a convex continuously differentiable function GT : H(T )→ R be given. Define
the convex set KT = {u ∈ H(T ) : GT (u) ≤ 0}. Assume that there exists a Slater
point rs ∈ Rn such that GT (rs) < 0. We consider the time-parametric dynamic
optimization problem

P (T ) : min
u∈KT

JT (u).

Assume that for all T1 > 0, T2 > 0 we have KT1 ∩Rn = KT2 ∩Rn. Let a strongly
convex continuously differentiable function f : Rn → [0, ∞) be given. Assume
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that for all r ∈ Rn there exist constants C0 > 0, C1 > 0 such that for all T > 0,
for all h ∈ H(T ) we have

(2) 〈f ′(r)− J ′
T (r), h〉H(T ) ≤ C0 + C1 ‖h‖H(T ).

Define the static optimization problem

P(σ) : min
r∈Rn∩K1

f(r).

2. An integral turnpike result

The solutions of P (T ) and P(σ) are related by the following turnpike result:

Proposition 1: For T > 0 let u(δ,T ) denote the solution of P (T ). Let u(σ) denote
the solution of P(σ). Then there exists a constant η0 > 0 that does not depend on
T such that for all T > 0 the following inequality holds:

(3)
∥∥∥u(δ,T ) − u(σ)

∥∥∥
H(T )

≤ η0

Proof: Due to (1), we have

(4) 〈J ′
T (u(δ,T ))− J ′

T (u(σ)), u(δ,T ) − u(σ)〉H(T ) ≥ κ‖u(δ,T ))− u(σ)‖2H(T ).

Due to the Slater condition the necessary optimality conditions imply that for all
T > 0 there exist multipliers µ(δ,T ) ≥ 0, µ(σ) ≥ 0 such that

−J ′
T (u(δ,T )) = µ(δ,T )G′

T (u(δ,T ))

−f ′(u(σ)) = µ(σ)G′
T (u(σ))

and

µ(δ,T )〈G′
T (u(δ,T )), u(σ) − u(δ,T )〉H(T ) ≤ 0,(5)

µ(σ)〈G′
T (u(σ)), u(δ,T ) − u(σ)〉H(T ) ≤ 0.(6)

Hence due to (4) we have

κ‖u(δ,T ))− u(σ)‖2H(T ) ≤ 〈J ′
T (u(δ,T ))− J ′

T (u(σ)), u(δ,T ) − u(σ)〉H(T )

= 〈
[
J ′
T (u(δ,T ))− f ′(u(σ))

]
+
[
f ′(u(σ))− J ′

T (u(σ))
]
, u(δ,T ) − u(σ)〉H(T )

= 〈f ′(u(σ))− J ′
T (u(σ)), u(δ,T ) − u(σ)〉H(T )

+µ(δ,T ) 〈G′
T (u(δ,T )), u(σ) − u(δ,T )〉H(T ) + µ(σ)〈G′

T (u(σ)), u(δ,T ) − u(σ)〉H(T )

≤ 〈f ′(u(σ))− J ′
T (u(σ)), u(δ,T ) − u(σ)〉H(T )

where the last inequality follows using (5) and (6). Due to (2) this implies

κ‖u(δ,T ))− u(σ)‖2H(T ) ≤ C0 + C1‖u(δ,T ) − u(σ)‖H(T ).

This implies (3).

Example: Let a linear operator F(σ) : Rn → Rn and for all T > 0 a linear
operator FT : H(T ) → H(T ) be given. Let d ∈ Rn denote a given desired
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state. For r ∈ Rn, define f(r) = 1
2r

⊤r + 1
2‖F(σ)r − d‖Rn . For u ∈ H(T ), define

JT (u) = 1
2‖u‖2H(T ) + 1

2‖FTu− d‖2H(T ).

Assume that there exists C2 > 0 such that for all T > 0 we have ‖FT ‖ ≤ C2.
Assume that for all r ∈ Rn there exist C3 > 0 and C4 > 0 such that for all

T > 0 we have ‖(FT − F(σ))r‖H(T ) ≤ C3 and ‖(F ∗
T − F ∗

(σ))(FT r − d)‖H(T ) ≤ C4.

Then for all r ∈ Rn we have

‖f ′(r) − J ′
T (r)‖H(T ) = ‖F ∗

(σ)(F(σ)r − d)− F ∗
T (FT r − d)‖H(T )

= ‖F ∗
(σ)(F(σ) − FT )r‖H(T ) + (F ∗

(σ) − F ∗
T )(FT r − d)‖H(T )

≤ ‖F ∗
(σ)‖ ‖(F(σ) − FT )r‖H(T ) + ‖(F ∗

(σ) − F ∗
T )(FT r − d)‖H(T ) ≤ C2 C3 + C4.

Hence (2) holds. Thus Proposition 1 implies that the turnpike inequality (3) holds.

3. Exact controllability and an exact turnpike result

We consider again the time-parametric dynamic optimization problem P (T ), but
without assumption (1). Assume that the system is exactly controllable in the

time t0 in the sense that for all r ∈ K1 there exists an exact control u
(r)
exact such

that for the control

ũ(r)(t) =

{
u
(r)
exact(t), t ≤ t0,
r, t > t0

for all T ≥ t0 we have ũ(r) ∈ K(T ) and JT (ũ(r)) ≤ f(r).
Moreover, assume that for all u ∈ KT we have

(7) JT (u) ≥ f(u(σ)).

Then we have the following exact turnpike result:

Proposition 2: Let u(σ) denote the solution of P(σ). Then for all T ≥ t0 the

control u(δ,T ) = ũ(u
(σ)) is a solution of P (T ).

Proof: Let ω(T ) (ω(σ))) denote the optimal value of P (T ) (P(σ) respectively).

Then ω(T ) ≤ JT (ũ(u
(σ))) ≤ f(u(σ)) = ω(σ). On the other hand, (7) implies that

ω(T ) ≥ ω(σ). Therefore ω(σ) = ω(T ) = JT (ũ(u
(σ))) which implies the assertion.

This work was supported by DFG grant CRC/TRR 154, project C03 and B04.
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Risky Capacity Equilibrium Models in Electricity Markets

Daniel Ralph

(joint work with Gauthier de Maere d’Aertrycke, Andeas Ehrenmann, Yves
Smeers)

We present a set of investment models, the class of risky capacity equilibrium prob-
lems, reflecting future (stochastic) production in a spot market, when agents are
risk averse and can buy financial hedges for their physical investments. These mod-
els are structured in a unified stochastic Nash game framework. Each model is the
concatenation of a short-term electricity market (perfect competition or Cournot)
with long-term investment behaviour (risk neutral or risk averse behaviour in dif-
ferent risk trading settings). For risk trading with complete markets, we prove
existence of solutions and report numerical results to illustrate the relevance of
market imperfections on investments and welfare.

Our focus is two stage models but, time permitting, we show that the extension
to multistage is essentially notational via a standard approach to multistage risk
functions. This approach is viable for industrial scale multistage models.

The working paper for this topic and some extensions to existence of equilibria
in the incomplete case is available at [1].

References

[1] G. de Maere d’Aertrycke, A. Ehrenmann, D. Ralph and Y. Smeers, Risk
trading in capacity equilibrium models, EPRG Working Paper 1720 (2017),
https://www.eprg.group.cam.ac.uk/eprg-working-paper-1720/

Inexact cutting planes for two-stage mixed-integer stochastic programs

Ward Romeijnders

(joint work with Niels van der Laan, Suvrajeet Sen)

We consider two-stage mixed-integer stochastic programs, with randomness in the
right-hand side only. For so-called simple integer recourse models, we reinterpret
α-approximations of [1] as inexact cutting plane approximations, connecting two
existing solution approaches for solving stochastic mixed-integer programs. More-
over, we derive conditions under which inexact cutting planes are asymptotically
accurate. Intuitively, this means that the cutting planes yield good approximations
if the variability of the random parameters in the model is large enough. We illus-
trate our results for an inexact mixed-integer rounding cut on a two-dimensional
example with a single random constraint.
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Open problems include how to algorithmically implement several classes of in-
exact cutting planes and how to derive tighter error bounds for the approximations
obtained using inexact cutting planes.
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Risk averse linear bilevel programming under stochastic uncertainty

Matthias Claus

(joint work with Johanna Burtscheidt, Stephan Dempe)

Two-stage linear stochastic programs and linear bilevel problems under stochastic
uncertainty bear significant conceptual similarities. However, the step from the
first to the latter mirrors the step from optimal values to optimal solutions and
entails a loss of convexity and desirable analytical properties.

Taking into account that the lower level problem may have more than one
optimal solution, the talk focusses on properties of the optimistic formulation
under stochastic uncertainty. Assuming that only the follower can observe the
realization of the randomness, Lipschitz continuity and continuous differentiability
of the objective function are established for the risk neutral and various risk averse
models.

The second part of the talk examines stability of local optimal solution sets
under perturbations of the underlying probability measure w.r.t. to the topology
of weak convergence for models involving law-invariant convex risk measures.

Finally, extended formulations for the stochastic linear bilevel problem with
finite discrete distributions and their numerical handling shall be discussed.
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Shape optimization under uncertainty

Helmut Harbrecht

Introduction. Shape optimization is indispensable for designing and constructing
industrial components. Many problems that arise in application, particularly in
structural mechanics and in the optimal control of distributed parameter systems,
can be formulated as the minimization of functionals which are defined over a class
of admissible domains.

Shape optimization problems can be solved by means of gradient based mini-
mization algorithms, which involve the shape functionals’ derivative with respect
to the domain under consideration. The computation of the shape gradient and
the implementation of appropriate numerical optimization algorithms is meanwhile
well understood, provided that the state equation’s input data are given exactly.
In practice, however, input data for numerical simulations in engineering are often
not exactly known. One must thus address how to account for uncertain input
data in the state equation.

Uncertainty in the state equation might arise from three different sources:

• Uncertainty might arise from geometric entities like a certain part of
boundary which has not to be optimized but is prescribed.
• The right-hand side of the state equation might be random.
• The material parameters, entering the partial differential operator, might

be not exactly known.

We separately consider these sources of uncertainty and discuss their impact on
the shape optimization problem. Especially, we show the well-posedness of the
problem formulations and present numerical solution methods.

Shape optimization under geometric uncertainty. Bernoulli’s free boundary
problem is concerned with finding the exterior (free) boundary Γ of an annular
domain D ⊂ Rn for a given interior (fixed) boundary Σ such that, besides Dirichlet
boundary conditions at both boundaries, also a Neumann boundary condition is
satisfied at the exterior boundary. The problem under consideration models for
example the growth of anodes in electrochemical processes and can be seen as the
prototype of a free boundary problem arising in many applications.

We shall consider the situation that the interior boundary is random, i.e., it is
Σ = Σ(ω) with an additional parameter ω ∈ Ω. Such an assumption arises when
treating tolerances in fabrication processes or when the interior boundary is only
known by measurements which typically contain errors. We are thus looking for a
tuple

(
D(ω), u(ω)

)
such that there holds

(1)

∆u(ω) = 0 in D(ω),

u(ω) = 1 on Σ(ω),

− ∂u
∂n

(ω) = g, u(ω) = 0 on Γ(ω).

The questions which have to be addressed are the following:
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(1) What is a suitable model for the domain D(ω)? Is the problem well-posed
in the sense of D(ω) being almost surely well-defined?

(2) How to define the expectation of a random domain? The main difficulty
to deal with here is that the space of domains is not linear.

(3) How to compute the solution to the random free boundary problem nu-
merically?

We provide the theoretical background that ensures the well-posedness of the
problem under consideration and describe two different frameworks to define the
expectation and the deviation of the resulting annular domain. The first approach
is based on the Vorob’ev expectation, which can be defined for arbitrary sets.
The second approach is based on a particular parametrization. We compare these
approaches by analytical computations for circular interior domains and by nu-
merical experiments for more general geometric configurations. For the numerical
approximation of the domain’s expectation and deviation, we propose a sampling
method like the (quasi-) Monte Carlo quadrature. Then, each particular realiza-
tion Σi of the interior boundary leads to an exterior boundary Γi via the solution
of Bernoulli’s free boundary problem. It is computed by solving the shape opti-
mization problem

J(Di) =

∫

Di

{
‖∇ui‖2 + g2

}
dx→ min

subject to ∆ui = 0 in Di, ui = 1 on Σi, ui = 0 on Γi.

Shape optimization in case of random diffusion. We consider again Ber-
noulli’s free boundary problem (1), but now the situation that the material con-
tained in the domain D is not perfectly homogeneous. Hence, we arrive at the
following random free boundary problem: seek the free boundary Γ, such that

(2)

div
(
α(ω)∇u(ω)

)
= 0 in D,

u(ω) = 1 on Σ,

−α(ω)
∂u

∂n
(ω) = g, u(ω) = 0 on Γ,

holds for almost all ω ∈ Ω. Since we intend to model a uniformly elliptic random
perturbation of the Laplace operator, the random diffusion is assumed to satisfy

0 < αmin ≤ α(ω) ≤ αmax <∞
almost everywhere in D.

For solving the random free boundary problem (2), we first show that the
minimizer of the shape optimization problem

(3)
J(D,ω) =

∫

D

{
α(ω)‖∇u(ω)‖2 +

g2

α(ω)

}
dx→ min

subject to div
(
α(ω)∇u(ω)

)
= 0 in D, u(ω) = 1 on Σ, u(ω) = 0 on Γ

solves the free boundary problem (2) for each particular ω ∈ Ω. This is done by
deriving the Hadamard representation of the associated shape gradient and proving
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that the necessary optimality condition imposes the desired Neumann boundary
condition.

Therefore, since the random diffusion induces a random state and thus a random
shape functional, we are going to minimize the ensemble average E

[
J(D,ω)

]
of the

random shape functional. Note that this shape optimization problem is well-posed
since we are minimizing a continuous energy functional.

Shape optimization in case of random right-hand sides. We shall next con-
sider shape optimization problems where the right-hand side in the state equation
is random. Then, the state is random, but depends linearly on the randomness.
In this situation, the expectation and variance of a quadratic objective can be
reformulated as deterministic expressions by exploiting the state’s moments. This
leads to cheap, deterministic algorithms to minimize such objectives.

Consider, for example, Bernoulli’s free boundary problem in case of random
Dirichlet data at the interior boundary:

(4)

∆u(ω) = 0 in D,

u(ω) = f(ω) on Σ,

− ∂u
∂n

(ω) = g, u(ω) = 0 on Γ.

We show that the random shape optimization problem

(5)
E[J(D,ω)] = E

[ ∫

D

{
‖∇u(ω)‖2 + g2

}
dx

]
→ min

subject to ∆u(ω) = 0 in D, u(ω) = f(ω) on Σ, u(ω) = 0 on Γ

can be reformulated into the deterministic shape optimization problem

E[J(D,ω)] =

∫

D

{(
‖(∇⊗∇) Cor[u](x,y)‖

∣∣∣
y=x

)2

+ g2
}

dx→ min,

where Cor[u](x,y) denotes the two-point correlation of random state u(ω) given
by (5).
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Variance-based stochastic extragradient methods with line search for
stochastic variational inequalities

Alejandro Jofré

We propose a dynamic sampled stochastic approximated (DS-SA) extragradient
method for stochastic variational inequalities (SVI) that is robust with respect to
an unknown Lipschitz constant. We propose, to the best of our knowledge, the
first provably convergent robust SA method with variance reduction, either for
SVIs or stochastic optimization jointly with optimal rates of convergence using
dynamic sampling.
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On a dynamic decision model with quasi-hyperbolic discounting

Anna Jaśkiewicz

(joint work with  L. Balbus, A.S. Nowak)

The issue of dynamic inconsistency in sequential decision models with changing
preferences in time was pointed out in the seminal paper of [4]. The time preference
studies found that discount rates are much grater in the short run than in the long
run. To model this phenomena researchers have adopted discount functions from
the class of generalized hyperbolas, [2] and references therein. The discrete-time
analog of quasi-hyperbolic discounting involves the functions: 1, δβ, δβ2, ..., where
β ∈ (0, 1) is a long run discount factor and δ > 0 is a short run discount factor.
Such discounting was first used by [3]. Specifically, they noticed that finding a
time-consistent solution may be obtained by looking for a Nash equilibrium in
certain games played by countably many short-lived players assuming that each
player can act only once.

Define S := [0,+∞), S+ := (0,+∞) and, for each s ∈ S, A(s) := [0, s]. The set
S is referred to as the state space. It represents the set of “levels” for the renewable
resource and A(s) is the set of available actions (possible consumption levels) in
state s ∈ S. In a dynamic choice model with quasi-hyperbolic preferences and the
state space S we envision an individual decision maker as a sequence of autonomous
temporal selves. These selves are indexed by period numbers t ∈ T := N in which
they make their choices. More precisely, for a given state st ∈ S at the beginning
of t-th period, self t chooses a consumption level at ∈ A(st) and the remaining
part yt := st − at is invested for future selves. Self t’s satisfaction is measured by
a bounded continuous period utility function uτ : S → S for all τ ≥ t.

Let qt be a transition probability from S to S. Then, the state st+1 is generated
by qt(·|yt) depending on the investment yt ∈ A(st).
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Let Φ be the set of all Borel measurable functions φ : S → S such that φ(s) ∈
A(s) for each s ∈ S. A Markov strategy for self t is a function ct ∈ Φ. We put
it(s) = s − ct(s), s ∈ S. This is an investment strategy (or saving) of self t for
following selves. For any sequence (cn) ∈ Φ∞ := Φ × Φ × · · · of strategies of all
selves and any t ∈ T, we define ct := (ct, ct+1, ...). For any state st and any ct ∈ Φ∞,
the transition probabilities qτ (·|iτ (s)) induced by qτ with τ ≥ t generate due to the

Ionescu-Tulcea theorem a unique probability measure P ct

st on S∞ endowed with

the product σ-algebra. Let Ect

st denote the expectation operator corresponding to

the measure P ct

st .
The expected utility of self t is

(1) Ut(c
t)(st) := Ect

st

(
ut(ct(st)) + δβ

∞∑

τ=t+1

βτ−t−1uτ (cτ (sτ ))

)
.

Clearly, the expression in (1) is well-defined.
For any cn = (cn, cn+1, ...) ∈ Φ∞, n ≥ 2 and sn ∈ S, let

Jn(cn)(sn) = Ecn

sn

(
∞∑

τ=n

βτ−nuτ (cτ (sτ ))

)
.

Then we have

Ut(c
t)(st) = ut(ct(st)) + δβ

∫

S

Jt+1(ct+1)(st+1)qt(dst+1|st − ct(st)).

Define

Pt(a, c
t+1)(s) := ut(a) + δβ

∫

S

Jt+1(ct+1)(st+1)qt(dst+1|s− a), s ∈ S, a ∈ A(s).

Definition 1. A Markov Perfect Equilibrium (MPE) is a sequence ĉ = (ĉt)t∈T ∈
Φ∞ such that for every s ∈ S and t ∈ T, we have

sup
a∈A(s)

Pt(a, ĉ
t+1)(s) = Pt(ĉt(s), ĉ

t+1)(s) = Ut(ĉ
t)(s).

Definition 2. A Stationary Markov Perfect Equilibrium (SMPE) is an MPE
ĉ = (ĉt)t∈T ∈ Φ∞ such that ĉt = c0 for some c0 ∈ Φ and for all t ∈ T.

In a stationary MPE every self uses the same consumption strategy.
One can think that every self is a short-lived player in a non-cooperative game

and acts only once. The payoff function of self t ∈ T is given by (1). Then an
MPE ĉ = (ĉt)t∈T ∈ Φ∞ is a Nash equilibrium in this game.

Let c = (ct)t∈T ∈ Φ∞ and

ũct+n
(st+n) := ut+n(ct+n(st+n)), n ∈ T, st+n ∈ S.
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For any bounded Borel measurable function v : S → S, define

Qcnv(sn) :=

∫

S

v(s)qn(ds|sn − cn(sn)).

Consider the composition Qct+1 · · ·Qct+n
ũct+1+n

(st+1). By the Ionescu-Tulcea the-
orem, it follows that

(2) Jt+1(ct+1)(st+1) = ut+1(ct+1(st+1)) +
∞∑

n=1

βnQct+1 · · ·Qct+n
ũct+1+n

(st+1).

Clearly, (2) is bounded and non-negative for any st+1 ∈ S, ct+1 ∈ Φ∞ and t ∈ T.
We now formulate our main assumptions.

(U) For each t ∈ T, the function ut : S → S is increasing and strictly concave.
(Q) The transition probability qt is weakly continuous on S, that is, for each

y0 ∈ S and ym → y0, we have qt(·|ym) ⇒ qt(·|y0) as m → ∞. Moreover,
for each y ∈ S+, the probability measure qt(·|y) is non-atomic and qt(·|0)
has no atoms in S+.

We now define some special classes of strategies of the players. By F , we denote
the set of all continuous from the left mappings c : S → S such that the function
i(s) := s − c(s) is non-decreasing and 0 ≤ c(s) ≤ s for all s ∈ S. Note that i is
lower semicontinuous. Thus, c ∈ F is upper semicontinuous.

We can now state our first two main results. The proofs can be found in [1].

Theorem 1. Assume that (U) and (Q) are satisfied.
(a) Then, there exists an MPE ĉ = (ĉt) that belongs to the space F∞

(b) If, in addition, the model is stationary, i.e., qt = q and ut = u are independent
of t ∈ T, then there exists an SMPE ĉ = (c0, c0, ...) with c0 ∈ F.

In this talk, we presented the solution for non-atomic transition probabilities.
The open issue is the existence of a SMPE with deterministic transition proba-
bilities in a stationary decision model.
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A Dynamic Approach to Scaling in Bundle Methods
for Convex Optimization

Christoph Helmberg

(joint work with Alois Pichler)

For a detailed account and proofs, see [4]. Bundle methods [1, 6, 2] are designed
to minimize a nonsmooth convex f : Rn → R given by a first order oracle, which
for a point x ∈ Rn returns function value f(x) and any subgradient g ∈ ∂f(x) in
the subdifferential of f in x. By the subgradient inequality the data ω = (γ, g) =
(f(x)− g⊤x, g) describes a global affine minorant fω(y) := γ + g⊤y ≤ f(y), called
minorant ω for brevity. The set of all affine minorants Wf := {(γ, g) : f(y) ≥
γ + g⊤y for all y ∈ Rn} is convex and f = supω∈Wf

fω. Any subset Ŵf ⊆ Wf

yields a cutting model f
Ŵf

:= supω∈Ŵf
fω ≤ f .

In iteration k ∈ N a bundle method determines for a given compact (often

finite) model Ŵ k
f ⊆Wf and a center of stability ŷk a next candidate ȳk by solving

a bundle subproblem

ȳk = argmin
y∈Rn

f
Ŵk

f

(y) +
1

2
‖y − ŷk‖2H ,

where the quadratic (or proximal) term ‖y− ŷk‖2H = (y− ŷk)⊤H(y− ŷk) with pos-
itive definite scaling matrix H serves as proximity or trust region control. Strong

convexity of the proximal term and compactness of Ŵ k
f ensure the existence of a

unique saddle point (ȳk, ω̄k) ∈ Rn×conv Ŵ k
f to the Lagrangian L(y, ω=(γ, g)) =

γ + g⊤y + 1
2‖y − ŷk‖2H . The saddle point minorant ω̄k = (γ̄k, ḡk) ∈ conv Ŵ k

f is

called the aggregate and by optimality ȳk = ŷk − H−1ḡk. The function is then
evaluated at ȳk by a first order oracle which returns f(ȳk) and some subgradient
gk ∈ ∂f(ȳk) giving the candidate minorant ωk = (γk = f(ȳk)−(gk)⊤ȳk, gk) ∈Wf .
Then, depending on a descent test f(ŷk) − f(ȳk) ≥ κ[f(ŷk) − fω̄k(ȳk)] for given
κ ∈ (0, 1), a descent step sets ŷk+1 = ȳk or a null step keeps ŷk+1 = ŷk while

improving the model by requiring {ω̄k, ωk} ⊆ Ŵ k+1
f . The framework ensures

f(ŷk) → f∗ := infy∈Rn f(y) for k → ∞ [1]; if minimizers of f exist, the sequence
ŷk converges to some minimizer; if f is bounded from below, lim inf ‖ḡk‖ = 0.

The same still holds if H of the quadratic term or the proximal term is dy-
namically updated with some care, see [1], and various approaches inspired by
quasi-Newton methods have been proposed for this, e. g., [7, 9, 8, 3].

We propose a different approach that derivesH directly from a current collection

Ŵf of minorants, the current aggregate ω̄ and a violation parameter ε > 0: for

any ω ∈ Ŵf satisfying fω̄(ŷ) > fω(ŷ) − ε the quadratic model of ω̄ should not
violate fω by more than ε, i. e., fω̄ + 1

2‖ · −ŷ‖2H ≥ fω − ε. Denoting the set of
(symmetric) positive semidefinite matrices of order n by Sn

+ and, for symmetric
A,B, the Loewner partial order by A � B :⇔ A − B ∈ Sn

+ (A ≻ B :⇔ A − B
positive definite), and the trace inner product by 〈A,B〉 = trAB this gives rise to
the following requirement.
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Lemma 1. Given ŷ ∈ Rn, violation parameter ε > 0 and ω̄ = (γ̄, ḡ), ω = (γ, g) ∈
R×Rn with γ + g⊤ŷ < γ̄ + ḡ⊤ŷ + ε, then for H̄ ∈ Sn

+

fω̄ +
1

2
(· − ŷ)⊤H̄(· − ŷ) ≥ fω − ε ⇔ H̄ � 1

2

(ḡ − g)(ḡ − g)⊤

γ̄ + ε− γ + (ḡ − g)⊤ŷ
.

The search for a “best” H may be formulated as a semidefinite program.

Theorem 2. Given ŷ ∈ Rn, violation parameter ε > 0, ω̄ = (γ̄, ḡ), ωi = (γi, gi) ∈
R × Rn with γi + (gi)⊤ŷ < γ̄ + ḡ⊤ŷ + ε for i = 1, . . . , k and a positive definite
C ∈ Sn, let H̄ be an optimal solution of the semidefinite program

(1)

minimize 〈C,H〉
subject to H � 1

2
(ḡ−gi)(ḡ−gi)⊤

γ̄+ε−γi+(ḡ−gi)⊤ŷ
, i = 1, . . . , k,

H � 0.

Then fω̄ + 1
2 (· − ŷ)⊤H̄(· − ŷ) ≥ maxi=1,...,k fωi − ε. Furthermore, D := span{ḡ −

gi : i = 1, . . . , k} ⊆ R(H̄) for range space R. If C = I, equality holds, D = R(H̄).

C = I minimizes the sum of the eigenvalues of H or the overall curvature and
restricts H to the space explored. In order to relate the optimal solution to the
Hessian of a smooth convex function, consider the case of quadratic functions.

Lemma 3. Let f(x) = 1
2x

⊤Ax+ b⊤x+ ρ with A ∈ Sn
+ and suppose ŷ ∈ Rn, ω̄ =

(γ̄, ḡ = ∇f(ŷ)) and violation parameter ε ≥ 0 satisfy γ̄+ ḡ⊤ŷ ≤ f(ŷ) ≤ γ̄+ ḡ⊤ŷ+ε.
Given yi ∈ Rn and ωi = (γi, gi) = (f(yi) −∇f(yi)⊤yi,∇f(yi)), i = 1, . . . , k, let
P ∈ Rn×h, P⊤P = Ih have range space R(P ) = span{A(ŷ − yi) : i = 1, . . . , k},
then PP⊤APP⊤ is feasible for (1).

Thus, the projected Hessian is always feasible but it is not necessarily optimal.
If, however, the ŷ−yi include a full set of conjugate directions and ḡ is the gradient
at ŷ and ε = 0, the optimal H can be shown to be the Hessian for, e. g., C = I.

Theorem 4. Let f(x) = 1
2x

⊤Ax+b⊤x+ρ with A ∈ Sn
+ and vi := ŷ−yi contain a

family of conjugate directions of A satisfying v⊤i Avj = δij for i, j = 1, . . . , n with
Kronecker delta δij . Then for ḡ = Aŷ + b, gi = Ayi + b, γ̄i = f(ŷ) − ḡ⊤ŷ, γi =

f(yi) − gi⊤yi, ε = 0 and C =
∑n

i=1 ζiviv
⊤
i for any choice of ζi > 0, i = 1, . . . , n,

the Hessian H̄ = A is the unique optimal solution of (1).

For practical purposes solving (1) is computationally too expensive. Instead,
we try to choose a Q ∈ Rn×h, whose columns form an orthonormal basis of the
hopefully most relevant subspace of D of Th. 2. In the nonsmooth case a natural
choice for this are the normalized eigenvectors to the h largest eigenvalues of the
matrix V V ⊤ for V = [d1, . . . , dk] with di = (ḡ − gi)/

√
2(γ̄ + ε− γi + (ḡ − gi)⊤ŷ)

for i = 1, . . . , k. Alternatively, compute the singular value decomposition of V and
choose the left eigenvectors to the h largest singular values. Next, we restrict H̄
to be of the form H̄ = QΛH̄Q

⊤ with diagonal ΛH̄ = diag(λH̄1 , . . . , λ
H̄
h ). Finally,

instead of simplifying the semidefinite constraints of (1) to ΛH̄ � Q⊤did
⊤
i Q we

put λH̄j = max{diag(Q⊤did
⊤
i Q)j = (Q⊤di)

2
j : i = 1, . . . , k} j = 1, . . . , h.
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Again, for smooth f the choice of λH̄j andQ via the singular value decomposition
of V may be justified to some extent. Indeed, for the quadratic f of Lemma 3

the columns of V read di = A(ŷ − yi)/‖A 1
2 (ŷ − yi)‖. Whenever the generating

directions si = ŷ− yi are spread rather randomly the next result gives some hope
that the columns of Q will be close to an eigenvector basis of A.

Theorem 5. Given δ > 0 and a positive definite A ∈ Sn, let directions si ∈
Rn \ {0}, i = 1, . . . , k, be chosen by a rotationally invariant distribution with

second moments, let V = [d1, . . . , dk] with di = Asi/‖A 1
2 si‖ and let QΣV P

⊤ = V
denote a singular value decomposition with Q⊤Q = In. With probability going
to one for k → ∞ there is an orthogonal matrix Q̄ = Q + O(δ) diagonalizing
A = Q̄ΛAQ̄

⊤.

In practice the differences ŷ− yi are unlikely to be distributed randomly. Still,
together with Th. 4 the result indicates why in the smooth case the use of the
singular value decomposition in this more practical heuristic might indeed produce
a reasonable estimate of the projected Hessian.

Several further implementational decisions are required to develop this into a
fully automatic dynamic scaling approach via computing such a low rank approx-
imation H̄ . Preliminary computational results indicate significant benefits even if
only the diagonal of H̄ is used in the bundle method when solving large scale real
world problems [5] arising in scheduling trucks for transporting pallets between
warehouses so as to minimize the expected number of future transports.
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A VU-point of view of nonsmooth optimization

Claudia Sagastizábal

For functions that fail to be differentiable, nonsmoothness appears according to
some structure that can be exploited algorithmically. Such is the case, for instance,
for functions defined as the pointwise maximum of, say, C2 convex functions:

f(x) := max {fi(x) : i ∈ {1, . . . ,m}} .
Suppose one wants to minimize such function over the whole of ℜn The active
index set

I(x) := {i ∈ {1, . . . ,m} : f(x) = fi(x)} ,
characterizes a manifold along which the function appears to be smooth:

M = {y ≈ x : f(y) = fi(y) for i ∈ I(x)}
Near a minimizer x̄, the identification of such a manifold is therefore of interest,
since along trajectories inM it is possible to make Newton-like steps, and converge
to x̄ with superlinear speed, even if the function is not smooth.

This is the basics of the VU -space decomposition method introduced in [LOS00];
see also [MS03] and [Lew02]. To illustrate the methodology, consider the following
simple function, with a unique minimizer at x∗ = 0 ∈ ℜn, depending on gives
matrices A and B, for A with nontrivial kernel, and B ≻ 0:

f(x) = max
(
|x⊤Ax| , x⊤Bx

)
.

On the null space of A, N (A), the function is not differentiable; on the same
subspace the first term vanishes: f |N (A) looks smooth. All the nonsmoothness of
f near x is concentrated in the orthog0nal subspace defined by the range subspace,
R(A). The respective “smooth” and “sharp” subspaces are the so-called U and
V subspaces. Figure 1 shows such views for a function like in the example, with
n = 2.

Figure 1. Views of a nonsmooth function
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The VU -algorithm [MS05] is the a globally convergent algorithm with Q-super-
linear rate designed according to these premises. We refer to [Sag18] for references
and more details. Roughly speaking, to track the smooth manifold, special tra-
jectories, denoted by χ(u) in [MS02] are shown to have a V-component that goes
to zero faster t han the U-component. As a result, along the smooth trajectory
a Newton-like method (acting solely on the U-component) drives the convergence
speed of the iterates, therefore yielding the desired superlinear speed.

A fundamental result in the identification process is [MS02, Thm.5.1], repro-
duced below, and where riS stands for the relative interior of a convex set S. The
result links the proximal point operator of a convex function f at a given x ∈ ℜn

pf (x) := arg min
p∈ℜn

{
f(p) +

1

2
µ‖p− x‖22

}
,

with the special trajectories in the smooth manifold, denoted by χ(u).
Theorem: [Proximal points are on the fast track] Let f : ℜn → ℜ be a convex
function with minimizer x̄ ∈ ℜn. Suppose that 0 ∈ ri∂f(x̄) and let χ(u) be a fast
track. Given a positive parameter µ, for all x close enough to x̄ there exists u(x)

such that pfµ(x) = χ
(
u(x)

)
.

The interest of parameterizing the function via χ(u), is that it makes f appear
as if it were smooth. The corresponding function, defined only on the U-subspace,
is the U-Lagrangian introduced in [LOS00]:

LU(u) = f(χ(u)) .

Associated with χ(u) there is a dual element, called the U-gradient along which
the Newton step is done. In particular, Corollary 3.5 in [LOS00] shows that the V-
component of the trajectory goes to zero faster than the U-component, so the speed
of convergence of the overall process is directed by the speed of the U-component.

Back to the proximal point operator, the optimality condition for pf (x) gives
the equivalence

0 ∈ ∂f(pf(x))+µ
(
pf (x)−x

)
⇐⇒ pf (x) = x− 1

µ
gp for some gp ∈ ∂f(pf(x)) .

In the inclusion above the implicit nature of the subgradient makes it impos-
sible to compute the proximal point of f , unless the function f is not available
analytically.

In many optimization problems, the only information available is given by a
first-order oracle, delivering the functional value and one subgradient, say f i =
f(xi) and gi ∈ ∂f(xi) for a given xi ∈ ℜn. At the kth iteration of a minimization
algorithm, the output of past oracle iterations (the “bundle of information”) can
be used to define a cutting-planes model for the function:

f(x) ≈ m
k(x) for m

k(x) = max{f i + (x − xi)⊤gi , i = 1, . . . , k} .
It was shown in [CL93] that

lim
k→∞

pm
k

(x̂) = lim
k→∞

arg min
p∈ℜn

{mk(p) +
1

2
µ‖p− x̂‖22} = pf (x̂) ,
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see also [Aus87], [Fuk84]. This nice result shows that enriching the cutting-plane
model without moving the prox-center x eventually gives the proximal point for
f . Together with the theorem linking proximal points to the fast track, this opens
the door towards implementability of the VU decomposition. More precisely, the
track is approximated using the proximal point of the cutting-plane model:

χ(u) ≈ pmk

µ (x̂k) and ∇LU (u) ≈ ĝk ∈ ∂êkf(x̂k) ,

where x̂k is the prox-center at the kth iteration.
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Stochastic Gradients for PDE Constrained Optimization under
Uncertainty

Caroline Geiersbach

(joint work with G. Pflug)

Convergence of a projected stochastic gradient method is demonstrated for convex
objective functionals with convex and bounded constraints in Hilbert spaces. In
the convex case, the sequence of iterates un converges weakly to a point in the
set of minimizers with probability one. In the strongly convex case, the sequence
converges strongly to the unique optimum with probability one. An application to
a class of PDE constrained problems with a convex objective, convex and bounded
constraint and random elliptic PDE constraints is shown. Theoretical results are
demonstrated numerically. Future work includes the extension to a Banach space
setting with a nonconvex objective. This is motivated by a model problem in struc-
tural topology optimization, where phase fields represent shapes and the objective
is nonconvex.
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We consider problems of the form

(1) min
u∈C
{j(u) = E[J(u, ξ)]},

where C is a nonempty, closed and convex subset of a Hilbert space H . The
random variable ξ : Ω → Rm is defined on a probability space (Ω,F ,P); it is
assumed that for every ξ, J(·, ξ) is convex on C and L2-differentiable on an open
neighborhood of C, making j(·) convex and differentiable as well. Therefore

(2) j(u) = E[J(u, ξ)] =

∫

Ω

J(u, ξ) dP(ξ)

is well-defined and finite for each u ∈ C. Typically, direct calculation of the integral
(2) is not tractable. In stochastic approximation, one relies on the notion of a
stochastic gradient, or a function G(u, ξ) such that E[G(u, ξ)] ≈ ∇j(u). Iterates
take the form

un+1 = πC(un − τnG(un, ξn)),

where the proper choice of the step size τn ≥ 0 is essential to efficient performance.
Such methods originated in a paper by Robbins and Monro in 1951 [5], where
authors developed an iterative method for finding the root of a function where
only noisy estimates of the function are available. A related work for finding the
maximum of a regression function followed in a paper by Kiefer and Wolfowitz in
1952 [4].

Models incorporating uncertain inputs, such as random forces or material prop-
erties, have been of increasing interest in PDE constrained optimization. Gradient-
based methods are already widely used in PDE constrained optimization [3], and
it is the goal of our work [2] to establish the stochastic counterpart using stochastic
gradients as a viable method for the solution to problems involving uncertainty.
Under certain assumptions, (almost sure) strong convergence of the sequence {un}
can be demonstrated. Using efficiency estimates, proper step sizes can be chosen
that lead to robust performance even in the case where the objective function is
not strongly convex.

The approach was reviewed for a model problem involving a convex objective
function with a random elliptic PDE constraints and box constraints. Convergence
behavior aligning with the theory can be demonstrated. The next step will be to
investigate under what conditions convergence can be shown in Banach spaces and
in the nonconvex case. This is motivated by a model problem in structural topol-
ogy optimization, where phase fields represent shapes and the objective function
is nonconvex. Convergence of a generalized projected gradient method in Ba-
nach spaces was proven by Blank and Rupprecht [1] in the deterministic setting.
Initial simulations show promising results using a single random search direction
combined with a Armijo line search at each iteration.
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Solving Stochastic Equilibria: EMP, SELKIE, and Optimal Value
Functions

Michael C. Ferris

(joint work with Olivier Huber and Youngdae Kim)

Equilibrium problems are used extensively to model phenomena in economics and
engineering applications. Such problems usually involve collections of optimization
problems and variational inequalities, solved concurrently in a Nash manner. A
concrete example is a collection of multiple optimization problems coupled with
an equilibrium constraint (or variational inequality), so called MOPECs:

find (x∗1, . . . , x
∗
N , π

∗) satisfying,

x∗i ∈ arg min
xi

θi(xi, x
∗
−i, π

∗),

s.t. hi(xi, x
∗
−i, π

∗) = 0,

gi(xi, x
∗
−i, π

∗) ≤ 0,

π∗ ∈ SOL(K(x∗), F (·;x∗)).

Here SOL(K(x∗), F (·;x∗)) represents the solution set of a quasi-variational in-
equality defined by the set K(x) and the function F (y, x). Essentially we have
added to a Generalized Nash Equilibrium [3] an additional VI agent that solves a
variational inequality, i.e. market clearing conditions

0 ≤ supply− demand ⊥ π ≥ 0.

We have developed a framework, called Extended Mathematical Programming
(EMP), that enables such problems to be effectively described in modeling systems
such as GAMS, AMPL and Julia and transformed and communicated to solvers
[4]. The framework allows modelers to formulate their problem naturally, with
appropriate mathematical constructs, to convey known problems structures, and
automate problem transformations to tractable forms for solution engines. More
recent extensions [5] allow shared constraints and variational solutions [8], implicit
functions and state equations to be added to problem descriptions, along with
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duality tools to formulate appropriate primal-dual models. Hierarchical constructs,
such as optimal value functions [1] are also part of the EMP framework.

Real problems are messy, and involve lots of different constructs that a modeler
often has difficulty in conveying to a solver, and consequently these constructs are
not available to the solver. This frequently leads to poorly specified implementa-
tions of a nice problem (that are much harder to solve), and an inability of solvers
to detect the substructures in the formulation (that are well known to the mod-
eler) and therefore adds significantly to the complexity of solving the underlying
problem. The new framework communicates this structure, and improves solution
robustness as documented for example in [7].

We also introduce Selkie [6], a general-purpose solver for equilibrium problems
that exploits problem structures in a flexible and adaptable way to achieve a
more robust and faster solution path. To accomplish this, it transforms a given
model into a set of structure-exploiting sub-models via structure analysis and
accounting for information given via EMP. Many algorithms from the literature
can be implemented via options to the solver, including standard Gauss-Seidel
and Jacobi methods, and decomposition methods (for variational inequalities for
example [9]). New applications also become easier to implement, such as dynamic
programming schemes for large scale economic analyses, e.g. [2]. Also, it is possible
to exploit underlying sparsity in the models since a modeler can define intermediate
variables that appear in multiple subproblems but can be treated computationally
as an implicit function.

In applications of economics and engineering, it is important to allow modelers
to formulate and solve stochastic equilibrium problems within modeling systems.
While there are some tools to do this in existing modeling systems, we believe
they have several shortcomings that preclude their use by modelers with such
problems. Such an example can be found for instance in [11]. This involves the
notion of a multi-stage stochastic process, over which a number of agents solve a
risked stochastic program, that is linked at different time scales and in different
realizations by market clearing constraints (of an equilibrium type):

CP: min
d1,d2

ω≥0,tC
σtC + p1d1 −W (d1) + ρC

[
p2ωd

2
ω −W (d2ω)− tCω

]

TP: min
v1,v2

ω≥0,tT
σtT + C(v1)− p1v1 + ρT

[
C(v2ω)− p2ωv2ω − tTω

]

HP: min
u1,x1≥0

u2
ω ,x2

ω≥0,tH

σtH − p1U(u1) + ρH
[
−p2ωU(u2ω)− V (x2ω)− tHω

]

s.t. x1 = x0 − u1 + h1,

x2ω = x1 − u2ω + h2ω

0 ≤ p1 ⊥ U(u1) + v1 ≥ d1

0 ≤ p2ω ⊥ U(u2ω) + v2ω ≥ d2ω , ∀ω
0 ≤ σω ⊥ tCω + tTω + tHω ≥ 0, ∀ω σ = (σω)
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Note that this example has two stages only (so is simpler than the general case!),
involving three agents (a consumer C, thermal generator T, hydro generator H)
with cost, welfare and operational functions C, W , U and V , state variables d, v,
u and x, risk functions ρ and trades t, coupled by prices of goods p and trades σ
over scenarios indexed by ω. Note this is a concrete example of a MOPEC.

It is imperative that we build mechanisms to allow these models to be formu-
lated appropriately in modeling systems, that incorporate all the constructs neces-
sary for stochasticity and equilibrium definition, and enable such specified models
to be transformed into tractable computational pieces that can be manipulated
in new algorithms for their solution. Much of the new algorithmic work outlined
in this Oberwolfach workshop will be effective for problem solving in a myriad
of new applications if we can accomplish the formulation and implementation of
stochastic equilibria in modeling systems.
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Distributionally robust sample average approximation with small
sample sizes

Andy Philpott

(joint work with Eddie Anderson)

1. Introduction

Consider a stochastic optimization problem

min
x

EP[c(x, y)],

with known cost function c(x, y). Here expectations are taken over the random
variable Y , with instance y ∈ Rm, and probability distribution P. Assume the de-
cision variable x has optimal value x∗. In Sample Average Approximation (SAA)
the decision maker optimizes using a sample S = {y1, y2, ..., yN} of Y . We assume
that N is small and it is expensive or impossible to obtain more sample points. For
example S could be a record of past outcomes for Y , e.g. a historical record of an-
nual demand for a set of products where x is a capacity decision. Given a sample S

the decision maker can approximate the value of EP[c(x, y)] by (1/N)
∑N

i=1 c(x, yi)
and solve the problem

SAA: minx∈X(1/N)
∑N

i=1 c(x, yi).

We write x∗(S) for the solution of SAA which depends on sample S. The finite
distribution with probability (1/N) for each yi is denoted νS .

Distributionally robust optimization solves the problem

DRO: minx∈X supQ∈Pδ
EQ [c(x, y)] ,

for some choice of Pδ being a ball of size δ centered at νS . We write x∗DRO(S) for
the optimal solution of DRO. It has been observed by many authors (see e.g. [8]
[4],[6],[9],[10]) that x∗DRO(S) is often a better solution on average than x∗(S) when
evaluated out of sample. This is partly related to x∗(S) overfitting to S. Here
distributionally robust optimization can be viewed as a regularization of SAA.

The set Pδ can be defined in several ways. A popular approach is to use a φ-
divergence ([2],[3]) which confines Q to probability distributions over the sampled
set of points {y1, y2, ..., yN}. The φ-divergence of Q = (q1, q2, ..., qN ) relative to
ν(S) = (1/N, 1/N, ..., 1/N) is defined as

(1) dφ(Q) =

N∑

i=1

(1/N)φ (Nqi)

for φ a convex function defined on [0,∞) with φ(1) = 0 (and achieving its minimum
there). This gives

Pδ = {Q : dφ(Q) < δ}.
An alternative definition of Pδ uses the Wasserstein distance defined by the min-
imum cost transportation plan from one probability distribution to the other.
Details are discussed in [4].
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2. Unbiased solutions

As observed by [6] the estimate x∗DRO(S) has a lower variance than x∗(S) for small
δ, and this reduction compensates for any extra bias in x∗DRO(S), so x∗DRO(S)
performs better than x∗(S) out of sample. This will become most obvious when
x∗DRO(S) is unbiased. A simple example is provided by the estimation problem

min
x

EP[(x− y)2],

which has solution x∗ = E[Y ]. The SAA problem

SAA: minx∈X(1/N)
∑N

i=1(x− yi)2).

has solution x∗(S) = (1/N)
∑N

i=1 yi, the sample average. This estimate is unbi-
ased, and is the minimum variance unbiased estimator when Y is normally dis-
tributed. For other distributions, consider solving

DRO: minx∈X supQ∈Pδ
EQ

[
(x− yi)2

]
,

where Pδ is defined using (1) with φ(t) = |t − 1|. For example if Y has a uni-
form distribution and δ ≥ 2 − (4/N), the solution x∗DRO(S) can be shown to be
(1/2)(minS+ maxS) i.e. the solution identified by Fisher [5] and shown by Lloyd
[7] to be the minimum variance linear estimator for E[Y ] for uniformly distributed
Y . This is a much better estimator than x∗(S).

3. Biased solutions

If the cost function is not symmetric in y then DRO might introduce a bias in
x∗DRO(S). This could improve out-of-sample performance, or make it worse. Con-
sider a simple model in which the cost to produce x is kx+x2, and selling price is y,
so we minimize c(x, y) = kx+x2−xy. Suppose y is random, where µ = EP(y) is the

average price, so EP[c(x, y)] = kx+ x2 − xµ with minimum value of − (µ− k)
2
/4

attained at x∗ = (µ− k)/2.

Given a sample S = {y1, y2, ..., yN} with sample average y(S) = (1/N)
∑N

i=1 yi,

the SAA solution minimizes (1/N)
∑N

i=1 c(x, yi) yielding x∗(S) = (y(S) − k)/2.
The SAA solution is an unbiased estimator for the true solution x∗. The (out-of-
sample) cost of the SAA solution is

CSAA(S) = EP[c(x∗(S), y)] = kx∗(S) + x∗(S)2 − x∗(S)µ

= − (µ− k)
2

4
+

(µ− y(S))
2

4

giving an increase in cost of (µ− y(S))
2
/4 in comparison with the correct value.

Assume x > 0. Suppose we solve DRO with Pδ defined using (1) with φ(t) =
|t− 1| and small δ. The solution shifts probability δ/2 from the yi with the lowest
c(x, y) value (i.e. the highest price in the sample, yM ) and moves it to the yi with
the highest c(x, y) value (which is the lowest price in the sample, yL). The solution
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we obtain satisfies

(1/N)

N∑

i=1

(k + 2x− yi) + (δ/2)(yM − yL) = 0

so

x∗DRO(S) =
(y − k)

2
− δ(yM − yL)

4
= x∗(S)− δR(S)

4
where R(S) = yM − yL. This is always less than x∗(S) so x∗DRO(S) is biased
downwards. The cost of x∗DRO(S) is

CDRO(S) = EP[c(x∗DRO(S), y)]

= CSAA(S)− (y(S)− µ)R(S)
δ

4
+R(S)2

δ2

16
.

For small δ, E[CDRO(S)]< E[CSAA(S)] when

(2) E[(y(S)− µ)R(S)] > 0,

where the expectation is over the sampling distribution. Random variables Y
satisfying (2) can be characterized by conditions on their distributions which need
to be asymmetric with a right-handed skew (see [1]).

Finally, we mention the case where x∗(S) is biased. Here, using (1) with
φ(t) = |t − 1|, we can contruct examples of situations where x∗DRO(S) has less
bias than x∗(S) and performs better on average out of sample, as well as examples
of situations where x∗DRO(S) has more bias than x∗(S) and performs worse on
average out of sample. Details, derivations and extensions can be found in [1],
where we also compare the above results with those using the Wasserstein metric.
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Distributionally Robust Optimization with Decision-Dependent
Ambiguity Set

Nilay Noyan (Sabanci University, Turkey)

(joint work with Gábor Rudolf and Miguel Lejeune)

The classical stochastic programming literature relies on the assumption that the
probability distribution of uncertain model parameters is given as a model input,
often as set of scenarios along with their probabilities. However, in many decision-
making applications the true parameter distribution is unknown. Distributionally
robust optimization (DRO) is a recent and appreciated approach to hedge against
such distributional uncertainty. Instead of assuming that there is a known under-
lying probability distribution, in DRO one considers an ambiguity set that consists
of probability distributions, and solves a minimax-type problem to determine de-
cisions that provide hedging against the worst-case parameter distribution in the
ambiguity set.

Another common fundamental assumption in the stochastic programming lit-
erature is that the underlying probability space is independent of the decisions.
In other words, it is usually assumed that the probability distributions of ran-
dom model parameters are exogenously given. In the DRO setting this attitude
translates to the assumption that the specified ambiguity set of distributions is
decision-independent. However, in certain situations decisions can directly affect
the distribution of the random parameters, either by changing the parameter real-
izations or by changing the probabilities of underlying random events that occur
after the decisions are taken. This phenomenon is known as endogeneous uncer-
tainty (see, e.g., [7, 13]). For example, in the context of pre-disaster planning,
if the links of a transportation network are subject to random failure in case
of a disaster, then the investment decisions on strengthening such links (seismic
retrofitting of bridges/viaducts on links) can reduce the failure probabilities and
improve network survivability ([9]).

In our study we aim to address both distributional and endogeneous uncer-
tainty. In this regard, we incorporate endogenous uncertainty into distributionally
robust stochastic programming problems via decision-dependent ambiguity sets.
Until recently, DRO with decision-dependent ambiguity sets has been an almost
untouched research area ([12, 14]).

We limit our attention to statistical distance-based ambiguity sets. These
sets consist of probability distributions that are in the vicinity of a nominal
distribution—often the empirical one—thought to approximate the true distri-
bution. The vicinity is defined here as a ball centered on the nominal distribution.
A wide variety of statistical distances, which provide a measure of dissimilarity
between two probability distributions, have been employed to construct such balls.
We refer to [4] for an elaborate discussion of the pros and cons associated with
various ambiguity sets, and in particular the advantages of Wasserstein metrics
(see, e.g., [3, 10]) over φ-divergences (see, e.g., [1]). In line with the recent sharp
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increase in the use of Wasserstein distances in DRO, our focus will be on a gen-
eral class of earth mover’s distances, introduced in a discrete context by Rubner
et al. [11]. Our chosen class includes both the total variation distance and the
Wasserstein-1 metric (also known as the Kantorovich-Rubinstein metric), allows
the construction of ambiguity sets based on higher-order Wasserstein distances,
and also has desirable statistical and tractability properties.

While decision-dependent uncertainty—endogenous uncertainty—is straightfor-
ward to express in the framework of Markov decision processes, its use in stochas-
tic programming remains a tough endeavor, and is far from being a well-resolved
issue. The relevant literature primarily focuses on two types of optimization prob-
lems: problems with decision-dependent information revelation, and problems with
decision-dependent probabilities. In problems of the first type, decisions can par-
tially resolve the uncertainty, affect the timing of uncertainty resolution, and alter
the set of possible future random outcomes. In problems of the second-type, de-
cisions alter the probability measures. The first problem type has been addressed
more widely (see, e.g., [5, 13]) in the literature. Accordingly, in our study, we aim
to contribute to the literature by focusing on problems of the second type, where
decisions can affect the likelihood of underlying random future events and/or can
affect the possible realizations of the random parameters. Stochastic problems
with decision-dependent probability measures are notoriously difficult to model
and solve, and, not surprisingly, the relevant literature is quite sparse. Dupacova
[2] briefly discusses optimization under endogenous uncertainty, without providing
specific formulations or solution methods. Studies that feature algorithmic devel-
opments are relatively recent, and typically rely on additional structural properties
that are specific to their problems of interest (see, e.g., [6, 8]).

Our contributions. We present a unified modeling framework for a new class of
distributionally robust optimization problems under decision-dependent ambiguity
sets. In particular, as our ambiguity sets we consider balls centered on a decision-
dependent probability distribution. The balls are based on a class of earth mover’s
distances that includes both the total variation distance and the Wasserstein met-
rics. Our models typically give rise to non-convex non-linear programs, which are
in general very hard to solve. However, we provide an overview of various set-
tings where it is possible to obtain tractable formulations. Some of the arising
side results that make these formulations possible are also of independent interest,
including novel mathematical programming expressions for robustified risk mea-
sures in a discrete space. We also discuss how our results can be utilized to provide
tractable formulations for a practical pre-disaster investment planning problem in
humanitarian logistics.

Further avenues of research. One of the main distinguishing features of our
approach is that the nominal distribution at the center of the ambiguity set is
decision-dependent. In this regard, it would be essential to investigate possible
ways to describe this dependence, and in particular to develop meaningful and
tractable characterizations of decision-dependent nominal parameter realizations
and/or scenario probabilities for practical applications.
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The DRO formulations we presented mostly rely on a full (exponential sized)
scenario set, which usually makes it impossible to solve problem instances of prac-
tical interest. It is of crucial importance to reduce the number of scenarios. For
certain problem classes one could benefit from scenario bundling methods. How-
ever, bundling raises an important concern in DRO: Considering an EMD ball
around the reduced version of the original distribution (based on the original indi-
vidual scenarios) is in general not equivalent to considering the reduced versions of
the distributions in the EMD ball around the original distribution. Thus, replac-
ing the scenario distances in the original formulation with suitably defined bundle
distances is highly non-trivial, and typically leads to undesired consequences, such
as formulations whose optimal solution depends on the choice of bundling. Alter-
natively, one might consider sampling methods to reduce the number of scenarios.
The use of sampling, however, comes with two important caveats. First, sampling
typically sacrifices exact solutions in exchange for tractability. Second, even in
cases where a particular sampling method (such as importance sampling) is known
to work well for the underlying (non-DRO) problem, this does not automatically
translate to a performance guarantee for the DRO variant. For example, when
using an ambiguity set based on the total variation distance, the worst-case distri-
bution will be highly sensitive to the worst scenario included in a sample. Accord-
ingly, developing sampling approaches suited for DRO with decision-dependent
ambiguity sets appears to be an open and interesting research topic.
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Ambiguity in stochastic optimization

Mathias Pohl

(joint work with Stefan Eckstein, Michael Kupper, Georg Pflug)

As a motivation we consider the portfolio selection problem in some detail. In
mean-risk portfolio optimization, it is typically assumed that the returns of the
assets follow a known distribution P0, which is estimated from observed data. We
aim at an investment strategy which is robust against possible misspecification
of P0. Hence, the portfolio selection problem is considered with respect to the
worst-case distribution within a Wasserstein-neighborhood of P0. The investor’s
trust in the reference distribution P0 is captured by the size of this Wasserstein-
neighborhood. We review tractable formulations of the so-called portfolio selection
problem under model ambiguity by [1], [2] and [3]. For instance, the latter two ref-
erences established that high model ambiguity leads to equally-weighted portfolio
diversification.

Then, we introduce the portfolio selection problem under dependence uncer-
tainty. This novel viewpoint is motivated by a situation in which the marginal
return distributions of the assets can be estimated with high accuracy, whereas
the dependence structure between the assets remains ambiguous. We therefore fix
the marginal distributions and assume the model uncertainty only concerns the
dependence structure. It is thus natural to define the Wasserstein-neighborhood,
in which the worst case distribution has to lie, directly on the level of the depen-
dence structure. We show that if the investment decision is based on the worst
case among all kinds of dependencies, which corresponds to the case where the in-
vestor does not trust the reference dependence structure at all, then concentration
of the portfolio into a single asset is optimal. Moreover, we develop an algorithm
which allows us to approximately solve the portfolio selection problem for a fixed
level of dependence uncertainty.

An empirical study compares the two approaches and their opposing implica-
tions.

Finally, we study stochastic optimization problems under dependence uncer-
tainty in a more general framework. Inspired by Gao and Klewegt [4], we establish
a duality result in this context and show that the derived dual problem can be
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reformulated as an LP under restrictive assumptions. Proposing a new direction
in stochastic programming, we show that artificial neural networks allow us to
approximately solve the dual problem in a general framework. Moreover, we can
also compute the primal optimizers and derive bounds.

This talk is based on [5] as well as on the working paper [6].
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Utility Preference Robust Optimization: Piecewise Linear
Approximation, Error Bounds and Qualitative Stability

Huifu Xu

(joint work with Shaoyan Guo)

Consider the following one-stage expected utility maximization problem

max
x∈X

EP[u(f(x, ξ(ω)))],

where u : IR→ IR is a real-valued utility function, x is a decision vector restricted
to take values over a specified compact set X ⊂ IRn, ξ : Ω → Ξ is a vector
of random variables defined over a probability space (Ω,F ,P) with a bounded

support set Ξ ⊂ IRk and f is a continuous function of x and ξ. In practice, f
may represent a financial position or the performance of an engineering design.
Our focus here is on the situation where a decision maker does not have complete
information on the utility function u, i.e., utility preference, but it is possible to
elicit partial information to construct an ambiguity set of utility functions denoted
by U such that the true utility function which reflects precisely the decision maker’s
preference lies in U with high likelihood. Under such a circumstance, it might be
sensible to consider a maximin preference robust optimization model:

(PRO) ϑ := max
x∈X

min
u∈U

EP[u(f(x, ξ(ω)))].
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Let U denote a class of nonconstant increasing functions defined over [a, b] with
u(a) = 0, u(b) = 1, let

U :=

{
u ∈ U :

∫ b

a

ψj(t)du(t) ≤ cj , for j = 1, · · · ,m
}
,(1)

where ψj : [a, b] → IR, j = 1, · · · ,m are a class of u-integrable functions, and cj
j = 1, · · · ,m are fixed constants. It is easy to verify that U is a convex set.

An important component of the research is to develop efficient computational
schemes for solving (PRO) model. A key step that we take in this paper is to
develop a piecewise linear approximation of the utility functions defined in the
ambiguity set U . We consider an approximation of the ambiguity set U defined in
(1) by

UN :=

{
uN ∈ UN :

∫ b

a

ψj(t)duN (t) ≤ cj , for j = 1, · · · ,m
}

over interval [a, b], where UN is a class of continuous, piecewise linear functions
defined over interval [a, b] with kinks {t1, · · · , tN} ⊂ [a, b] and t1 = a, tN = b.
With UN , we propose an approximation of (PRO) model by

(PRO-N) ϑN := max
x∈X

min
u∈UN

EP[u(f(x, ξ(ω)))].

Let G :=
{
g : [a, b]→ IR| g is measurable, supξ∈[a,b] |g(t)| ≤ 1

}
be a set of mea-

surable functions defined over [a, b]. For u, v ∈ U , define the pseudo-metric between
u and v by dlG (u, v) := supg∈G |〈g, u〉 − 〈g, v〉|. The following theorem quantifies
the difference between (PRO-N) model and (PRO) model.

Theorem 1 (Error bound on the optimal value). Assume: (a) each function u ∈ U
is differentiable and Lipschitz continuous over [a, b] with modulus being bounded by
L, and its derivative function ∇u is also Lipschitz continuous with modulus being
bounded by L̃; (b) there exist a positive constant α and a function u0 ∈ U such that

for j = 1, · · · ,m.
∫ b

a ψj(t)du0(t) − cj < −α; Then there exists a positive number
N0 such that

|ϑN − ϑ| ≤
[
L̃(b− a) +

2

α

(
√
m(b− a) sup

j=1,··· ,m,t∈[a,b]

|ψj(t)|L̃
)]

βN

for all N ≥ N0, where βN := maxi=2,··· ,N (ti − ti−1).

To explain the idea of qualitative robustness, let PN and QN be the empirical
distributions with supports generated respectively by the true probability distri-
bution P and its perturbation Q. Note that we are supposed to observe samples
generated by Q rather than P . We consider a statistical estimator T (·) which is
based on QN , that is, T (QN) is a statistical quantity we are able to obtain in
practice. Our interest is whether T (QN) is close to T (PN) under some appropri-
ate metric for all N sufficiently large. Here T (PN ) should be understood as the
corresponding statistical estimator when the noise in the samples is detached. If
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T (QN) is close to T (PN ), then it is safe to use T (QN) as an estimator of T (P )
(because we are unable to obtain T (PN ) in practice). In what follows, the partic-
ular estimator that we are looking at is the optimal value of the (PRO) problem.
Specifically we consider

(PRO-QN) ϑ(QN ) := max
x∈X

min
u∈U

EQN
[u(f(x, ξ))].

Obviously ϑ(QN ) is a statistical estimator of ϑ(Q) rather than the true robust
optimal value ϑ(P ), so we are interested in how close ϑ(QN ) is to ϑ(PN ) (which
is the statistical estimator of ϑ(P )) under some metric. Let

S(PN ) := arg sup
x∈X

min
u∈U

EPN
[u(f(x, ξ))], S(QN) := arg sup

x∈X
min
u∈U

EQN
[u(f(x, ξ))]

be the sets of optimal solutions.

Theorem 2 (Qualitative robustness of the optimal value and optimal solutions).
Assume: (a) there are an exponent γ > 0 and a positive constant C ≥ 1 such that

|f(x, t)| ≤ C(‖t‖γ + 1), ∀(x, t) ∈ IRn × IRk;

(b) the setM⊂Mφp

k,κ, whereM
φp

k,κ is the class of all P ∈P(IRk) such that
∫

IRk

φ(t)pP (dt) ≤ κ, for κ ≥ 0 and p > 1,

with φ(t) := max(supu∈U u(C(‖t‖γ + 1)), supu∈U −u(−C(‖t‖γ + 1))); (c) the set

of functions {u(f(x, ·)) : IRk → IR|x ∈ X,u ∈ U} are equi-continuous, that is, for
any ǫ > 0, there exists a δ > 0 such that for every g in the set, |g(ξ′)− g(ξ′′)| ≤ ǫ
when ‖ξ′ − ξ′′‖ ≤ δ; (d) f(·, ξ) is uniformly Lipschitz continuous in x, that is,
there exists a positive constant L such that |f(x′, ξ) − f(x′′, ξ)| ≤ L‖x′ − x′′‖ for
all x′, x′′ ∈ X and ξ ∈ Ξ. Then the following assertions hold.

(i) For any small number ǫ > 0, there exist positive numbers δ > 0 and N0 ∈ N
such that for all N ≥ N0

Q ∈ M, dlφ(P,Q) ≤ δ =⇒ dlProh

(

P
⊗N

◦ ϑ(PN)−1
, Q

⊗N
◦ ϑ(QN)−1

)

≤ ǫ.

(ii) If, in addition, for each Q ∈ M, the sets of optimal solutions S(QN ) and
S(Q) are singleton, then for any small number ǫ > 0, there exist positive
numbers δ > 0 and N0 ∈ N such that for all N ≥ N0

Q ∈ M,dlφ(P,Q) ≤ δ =⇒ dlProh

(

P
⊗N

◦ S(PN)−1
, Q

⊗N
◦ S(QN)−1

)

≤ ǫ.

P⊗N denotes a probability measure on the measurable space
(

Ξ⊗N ,B(IRk)⊗N
)

with marginal P on each (Ξ,B(IRk)) and Q⊗N with marginal Q, where Ξ⊗N de-

notes the Cartesian product Ξ⊗· · ·⊗Ξ and B(IRk)⊗N its Borel sigma algebra. Let

Mφ
k := {P ∈ P(IRk) :

∫
IRk φ(t)P (dt) < ∞}. The distance dlφ : Mφ

k ×M
φ
k → IR

is defined by

dlφ(P ′, P ′′) := dlProh(P ′, P ′′) +

∣∣∣∣
∫

IRk

φ(t)P ′(dt) −
∫

IRk

φ(t)P ′′(dt)

∣∣∣∣ ,
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for P ′, P ′′ ∈ Mφ
k where dlProh : P(IRk) ×P(IRk) → IR+ is the Prohorov metric

defined as follows:

dlProh(P ′, P ′′) := inf{ǫ > 0 : P ′(A) ≤ P ′′(Aǫ) + ǫ, ∀A ∈ B(IRk)},
where Aǫ := A+Bǫ(0) denotes the Minkowski sum of A and the open ball centred
at 0 (w.r.t. Euclidean norm).

The research opens a new direction for robust optimization. An interesting
further development will be to extend it to risk management particularly in the
multi-stage setting, it will also be helpful to link the new robust framework to
distributionally robust optimization and stochastic dominance.
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Perspectives on PDE-Constrained Optimization under Uncertainty

Thomas M. Surowiec

(joint work with Drew P. Kouri, Sandia National Laboratories)

A diverse array of science and engineering applications necessitate the solution of
optimization problems constrained by partial differential equations (PDE) with
uncertain or random inputs. As in all traditional stochastic programming models,
it is crucial to find solutions that are in some sense robust to catastrophic events.

The purpose of this talk is two-fold. First, we motivate the standard practices
in modern PDE-constrained optimization as in, e.g., [1]. This includes a brief
discussion of the necessary analytical tools and algorithmic considerations along
with their implications for numerics. Second, we present an abstract class of
stochastic PDE-constrained optimization problems that we now largely understand
from a theoretical perspective. The subsequent results can be found in [8, 7, 5, 2].

In what follows, (Ω,F ,P) is a complete probability space; X := Lp(Ω,F ,P)
(p ∈ [1,∞]) is the space of p-integrable random variables on Ω; D ⊂ Rn, n ∈ N

is the physical domain for the PDE, which is open, bounded and has a Lipschitz
boundary ∂D; the space Z of decision variables is a Hilbert space and is deter-
ministic; Zad ⊆ Z is the set of feasible decisions; and the solution space for the
deterministic PDE model U = U(D), is a reflexive Banach space.
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Given some z ∈ Zad, we represent the PDE constraint by the abstract nonlinear
equation: For P-a.e. ω ∈ Ω, find u(ω) ∈ U such that

(1) e(u(ω), z, ω) = 0.

Here, we set u(ω) = [S(z)](ω) and refer to the latter as the solution mapping and
sometimes the control-to-state mapping. In the absence of uncertainty, the usual
workflow requires the study of the well-posedness of (1) as well as higher regularity
properties of the PDE solution u : D → R. In addition, we typically require
continuity (e.g., compactness) and differentiability properties of S as a function
of z. These requirements are augmented in the stochastic setting by the need to
establish measurability and uniform integrability properties of S(z) : Ω→ U . This
can be challenging even for semilinear elliptic PDEs with uncertain inputs, see [2].

As in the deterministic setting, we aim to optimize an objective function F that
depends on u ∈ U and z ∈ Zad. In addition to the constraints defined in Zad, one
can consider constraints on the PDE solution u such as u ≥ 0. The treatment of
these state constraints in the stochastic context is currently an open topic. One
major difficulty is the lack of regularity of S(z) : Ω→ U , e.g., continuity, which is
needed to verify constraint qualifications. In the deterministic setting, one obtains
continuity by appealing to classical regularity theory for PDEs. This can only be
done on a case-by-case basis for the dependencies on ω in the stochastic setting.
Regardless of the presence of control or state constraints, the fact that u is a
random field means that we cannot directly minimize F as a function of u and z.
For this we appeal to the wide variety of models found in stochastic programming.

Of the many possibilities offered by stochastic programming, e.g., stochastic
order constraints, distributionally robust optimization, and optimization of risk
measures, we choose the latter. This allows us to partially leverage existing results
from the deterministic case for existence of solutions, optimality conditions, and
the development of function-space-based numerical methods. Moreover, there is
a rich theory of risk measures that provides a diversity of modeling possibilities.
We therefore consider problems of the type:

(2) min
z∈Zad

R[J(S(z))] + ℘(z).

Here, R : X → R := R ∪ {+∞} is a risk measure that assigns a numerical
value to the random objective J(S(z)) where J : Lq(Ω,F ,P;U)→ X , q ∈ [1,∞],
and ℘ : Z → R is the cost of the decision z. Extensions to other stochastic
programming models are interesting directions of future research.

Though many possibilities for R exist, we primarily focus on coherent risk
measures, as defined in [3]. In this setting, R is a positively homogeneous and
subadditive functional that respects the usual partial ordering on X along with
so-called “translation equivariance”: R[X + C] = R[X ] + C for any X ∈ X and
C ∈ R. A related class of risk measures that works well in our framework are the
convex risk measures, cf. [4], where positive homogeneity and subadditivity are
replaced by convexity.
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The main difficulties in analyzing (2) are due to the potential nonsmoothness
of R and the differentiability of the nonlinear composition (J ◦ S). We provide
sufficient conditions, based on the theory of superposition operators, for treating
these difficulties in [5]. In particular, the main difficulty in proving existence of
solutions to (2) is to prove weak lower semicontinuity of the composition (R◦J◦S);
whereas the derivation of optimality conditions hinge on the subdifferentiability of
R and the Fréchet differentiability of (J ◦S). These issues are further exacerbated
when the governing PDEs have multiple solutions, i.e., S is set valued.

Letting F := (J ◦ S), one can show that (2) does in fact possess an optimal
solution z⋆ under appropriate regularity conditions [5]. Moreover, for any optimal
solution z⋆ to (2), there exists ϑ⋆ ∈ X ∗ such that

〈E[ϑ⋆∇F (z⋆)], z − z⋆〉+ ℘′(z⋆; z − z⋆) ≥ 0, ∀ z ∈ Zad(3a)

R[X ]−R[F (z⋆)] ≥ E[ϑ⋆(X − F (z⋆))], ∀ X ∈ X .(3b)

We can partially reinterpret this system using the notion of an adjoint state λ⋆ as
is done in the deterministic case. Here, we have

∇F (z⋆) = ez(u⋆, z⋆, ·)∗λ⋆,

where u⋆ and λ⋆ solve the coupled system

e(u⋆, z⋆, ·) = 0 a.s.(4a)

eu(u⋆, z⋆, ·)∗λ⋆ + Ju(u⋆) = 0 a.s.(4b)

The terms eu, ez, and Ju denote partial derivatives of e and J .
Finally, we address the numerical solution of (2). The nonlinear couplings

in (3) make the application of direct solvers, e.g., semismooth Newton, rather
complicated in general. Hence, fast solvers exploiting second-order information
are still an open topic. In some cases, e.g., for R = E and Zad = Z, one possible
solution method is presented in [6]. This is a trust-region algorithm that makes
use of inexact gradient and objective information along with an adaptive sparse
grid strategy for sampling the uncertainty. Although this method was developed
for the risk-neutral case, it can be extended for some smooth R.

In our recent work, we have had significant success with globalized derivative-
based solvers for smooth R using sample average approximation for the uncer-
tainties. In contrast, we have observed generally poor performance of subgradient
and bundle methods for nonsmooth risk measures such as mean-plus-AVaR, cf.
the discussions in [5, 2]. As a consequence, we developed a comprehensive varia-
tional smoothing technique in [7] that can be used in conjunction with globalized
derivative-based solvers by employing a continuation approach. We briefly discuss
our smoothing technique here.

Given a proper, closed and convex functional Φ : X → R and a proper, closed,
and convex risk measure R, we define the epi-regularized risk measure RΦ

ε by

RΦ
ε [X ] := inf

Y ∈X

{
R[X − Y ] + εΦ

[
ε−1Y

]}
.
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Under suitable assumptions, cf. [7], one can show that RΦ
ε enjoys a number of

favorable properties including pointwise error bounds, Mosco convergence to R
and consistency of minimizers and stationary points as ε ↓ 0. Furthermore, under
additional properties, given a solution z⋆ε for the epi-regularized problem and z⋆

for the original problem, we have

(5) ‖z⋆ε − z⋆‖ = O(
√
ε).

Sandia National Laboratories is a multimission laboratory managed and operated by National Technol-

ogy and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International,

Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract

DE-NA0003525.
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