
Mathematisches Forschungsinstitut Oberwolfach

Report No. 39/2018

DOI: 10.4171/OWR/2018/39

Reactive Flows in Deformable, Complex Media

Organised by
Margot Gerritsen, Stanford
Iuliu Sorin Pop, Diepenbeek
Florin Adrian Radu, Bergen

Barbara Wohlmuth, Garching

26 August – 1 September 2018

Abstract. Many processes of highest actuality in the real life are described
through systems of equations posed in complex domains. Of particular inter-
est is the situation when the domain is changing in time, undergoing defor-
mations that depend on the unknown quantities of the model. Such kind of
problems are encountered as mathematical models in the subsurface, material
science, or biological systems.The emerging mathematical models account for
various processes at different scales, and the key issue is to integrate the do-
main deformation in the multi-scale context. The focus in this workshop was
on novel techniques and ideas in the mathematical modelling, analysis, the
numerical discretization and the upscaling of problems as described above.

Mathematics Subject Classification (2010): 35 (Partial differential equations), 65 (Numerical

analysis), 74 (Mechanics of deformable solids), 76 (Fluid mechanics).

Introduction by the Organisers

Problems involving flow, reactive transport and mechanical or bio-chemical de-
formations in complex media are encountered in fields of utmost societal rele-
vance. Such aspects have been addressed during this meeting from a mathematical
prospect: the mathematical modelling and analysis, the numerical discretization
and simulation. The goal was to find major mathematical challenges connected
with such issues and the underlying applications. This was facilitated by the ac-
tive involvement of the participants, who were scientists with various expertise,
sharing the interest and will to collaborate and exchange ideas.

The workshop was attended by 52 scientists from 9 countries, including 5 young
scientists supported by the ”Oberwolfach Leibniz Graduate Students” Programme
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and two by US National Science Foundation. One of the participants, Prof. Ivan
Yotov, was awarded the Simons Visiting Professorship. This supported his visits
to the universities in Bergen (Norway) and Hasselt (Belgium). There were 30
presentations addressing the workshop theme from various prospects:

• Mathematical methods, including homogenization, multi-scale analysis,
and model order reduction;

• Discretisation schemes, including (mixed and conformal) finite elements,
finite volumes, enriched Galerkin or gradient discretisation methods, in-
cluding multi-scale methods and mixed dimensional discretisations;

• Complex mathematical models, including coupled porous medium and free
flow, or flow and mechanical deformation, diffuse interface and free bound-
ary models, problems in fractured media, or sub-continuum scale models.

The organizers would like to acknowledge the involvement of Jan Nordbotten
(Bergen), who was co-organiser of the first edition of this workshop and was also
involved in the organisation of this workshop. The meeting took place in a friendly
and inspiring atmosphere. The presentations of highest level were accompanied
by fruitful discussions, which generated promising initiatives. As sustained unani-
mously by all participants, this would not have been possible without the support
from the MFO. The hospitality and the wonderful conditions offered in Oberwol-
fach, thanks to the dedicated work of the MFO staff was gratefully acknowledged
by all participants.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Ivan Yotov in the “Simons Visiting Professors” program
at the MFO.
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Géraldine Pichot (joint with Patrick Laug, Jocelyne Erhel, Romain Le
Goc, Caroline Darcel, Philippe Davy, Jean-Raynald de Dreuzy )
Flow simulations in geology-based Discrete Fracture Networks . . . . . . . . 2427

J.Tinsley Oden (joint with Faghihi, Daniel; Scarabosio, Laura; Wohlmuth,
Barbara, and Lima, Ernesto)
Principles of Predictive Computational Science: Predictive Models of
Random Heterogeneous Materials and Tumor Growth . . . . . . . . . . . . . . . . 2431

Johannes Kraus (joint with Qingguo Hong, Maria Lymbery, Fadi Philo)
Parameter-robust stability and strongly mass-conservative discretization
of multi-permeability poroelasticity model . . . . . . . . . . . . . . . . . . . . . . . . . . . 2432

Ivan Yotov
Biot-Stokes modeling of fluid-poroelastic structure interaction . . . . . . . . . 2435

Paolo Zunino
Computational models for the interaction of fractures and wells with
poroelastic media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2438

Nicola Castelletto (joint with Massimiliano Ferronato, Andrea Franceschini,
Randolph R. Settgast, Joshua A. White)
Fully-implicit solvers for coupled poromechanics of fractured reservoirs . 2439

Markus Bause (joint with M. Anselmann, S. Becher, U. Köcher, G.
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Abstracts

Coupling two-phase compositional porous-medium and free flow

Rainer Helmig

(joint work with Thomas Fetzer, Katharian Heck, Bernd Flemisch)

Understanding the coupled exchange processes between a free flow and flow
through a porous medium is important for a wide spectrum of applications in
many of research. Possible applications arise from environmental science, medi-
cal science, aerospace engineering, civil engineering, process engineering, energy
supply, safety issues, and technical design problems. A common feature in all
these applications is the interface between the free-flow and the porous-medium
flow domain. In the vicinity of this interface, processes in both domains control
the coupled exchange fluxes. Therefore, modeling the interface region is a key
challenge and requires the consideration of various processes on different scales
with varying physical complexity, and thus the application of adequate modeling
strategies.

Evaporation from soil is a good example of the immense variety of challenges.
The corresponding patterns and evaporation rates strongly influence the water and
energy balance of terrestrial surfaces, driving a multitude of climatic processes.
To predict evaporative drying rates from porous media remains a challenge for
several reasons. First, there are complex ambient conditions at the interface,
such as radiation, humidity, temperature, air velocity, turbulence and boundary-
layer effects. Second, the small-scale internal porous-medium properties lead to
abrupt transitions and complex fluid dynamics. Third, the processes involved are
characterised by complex interactions between the porous medium and the free-
flow system. Modelling such coupled systems while accounting for the respective
processes in both domains is a challenging task, especially since many of these
systems are dominated by multi-phase compositional flow processes on different
scales in space and time.

Currently existing concepts for coupling free and porous-medium flow use rela-
tively simple interface concepts ([1]). We will revise these concepts, aiming for an
complex interface concept on the REV scale. This concept should adapt its own
model complexity flexibly, depending on the changes in the relevant free-flow or
boundary-layer processes and conditions ([2]).

What are the main steps:
First, understanding the relevant processes and the key properties in the free flow
(e.g. turbulence, boundary layer formation), in the porous medium (e.g. capil-
lary flow, thermal conduction), and at their common interface (e.g. roughness) is
important for the analysis of resulting coupled exchange fluxes. Second, bridging
scales by properly accounting for effects occurring on smaller spatial and temporal
scales is important for an efficient simulation and accurate results. Third, for the
numerical modeling, numerical stable and mass conservative schemes are required.
In addition, inside the two domains the relevant scales and processes are different
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and a sufficiently high resolution in interface-normal direction is required for a
good approximation of the exchange fluxes. Fourth, comparing numerical simula-
tions with laboratory experiments is difficult due the coupled interplay of mass,
momentum, and energy transport composed of advective and diffusive transport
mechanisms which occur in a small area around the interface.

The focus of this presentation was on the explanation of the new model con-
cept for multi-phase porous-medium flow coupled to a turbulent free flow, both
including multi-component and energy transport. It was aimed to show an REV-
scale two-domain concept which can handle two models in two separated sub-
domains and to couple them via appropriate coupling conditions at a sharp in-
terface. One goal was to perform this coupling without introducing additional
degrees of freedom on the interface. An existing porous-medium model, using the
equations by Darcy or Forchheimer and discretized with the cell-centered finite
volume method, was coupled to a (Reynolds-Averaged) Navier-Stokes model dis-
cretized with a marker-and-cell scheme (also known as staggered grid). In this
framework, eddy-viscosity based turbulence models of different complexity were
presented. In addition, simplifications of the coupling conditions were introduced
and discussed.

Numerical results for the analysis of different model concepts, parameters, and
setups were presented ([3], [2]). In the first part, the developed model concepts and
coupling methods were compared to a previous work which uses the box method
for spatial discretization. The investigated turbulence models produce differences
in stage-I evaporation rates of about 12% compared to their mean rate. Under
specific conditions, simpli

cations of the free-flow model concept can speed-up the simulations by preserv-
ing the quality of the results. The analyses of the turbulent Schmidt number,
the turbulent Prandtl number, and the Beavers-Joseph coefficient showed an in-
fluence of up to +10% on stage-I evaporation rates when each value is varied
from unity to other physical meaningful values. In a second study, the model re-
sults were compared to different evaporation experiments from the literature and
showed a good qualitative and quantitative agreement. Most difficulties were ob-
served in reproducing the temperature evolution over time, or the transition from
stage-I to stage-II evaporation. The results showed that the model predictions are
sensitive to the boundary conditions, the considered model dimension, and the
porous-medium properties. Finally, the effect of three different kinds of roughness
were analyzed: heterogeneities, roughness resulting from the sand-grains and from
porous obstacles. The roughness of the porous medium has a strong influence
on the entire evaporation process and may add additional stages to the typical
evaporation stages known from at and homogeneous media.
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Effective models for metabolic processes in living cells including
substrate channeling

Maria Neuss-Radu

(joint work with Markus Gahn and Peter Knabner)

The central metabolism in plant cells contains among others starch and sucrose
synthesis, glycolysis and respiration, see also Figure 1. Enzymes of glycolysis
are distributed in the cytosol or bound to the surface of mitochondria (metabolic
channelling). The aim of our investigations is to quantify the impact of metabolic
channeling on the carbon partitioning between starch, sucrose and respiration.

Figure 1. Schematic overview of the central carbon metabo-
lism. At the mitochondrial membrane, the glycolytic channel is
depicted.

The domain Ω (a plant cell) on which the mathematical model is formulated
consists of the subdomains Ωǫ

1 occupied by the cytosol and Ωǫ
2 occupied by the

organelles relevant for our applications (chloroplasts (also called plastids) and mi-
tochondria), separated by the interface Γǫ modelling the organellar membranes.
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We consider a reaction-diffusion system for concentrations

uj,ǫ = (uj,ǫ1 . . . . , uj,ǫm ) : (0, T ) × Ωǫ
j → Rm for j = 1, 2, and ub,ǫ = (ub,ǫ1 , . . . , ub,ǫm ) :

(0, T )× Γǫ → Rm:

∂tu
j,ǫ
i −∇ ·

(
Dj,ǫ

i ∇uj,ǫi

)
= f j,ǫ

i (uj,ǫ) in (0, T )× Ωǫ
j ,

∂tu
b,ǫ
i − ǫ2∇Γǫ ·

(
Db,ǫ∇Γǫub,ǫi

)
= f b,ǫ

i (u1,ǫ, u2,ǫ, ub,ǫ) on (0, T )× Γǫ,

−Dj,ǫ
i ∇uj,ǫi · νǫj = −ǫhj,ǫi (u1,ǫ, u2,ǫ, ub,ǫ) on (0, T )× Γǫ,

−D1,ǫ
i ∇u1,ǫi · νǫ1 = 0 on (0, T )× ∂Ω,

uj,ǫi (0) = uji,0 in Ωǫ
j ,

ub,ǫi (0) = ubi,0 in Γǫ.

The structure of the subdomains Ωǫ
1 and Ωǫ

2 is periodic and is obtained by the rep-
etition of a scaled standard cell ǫY = ǫ(0, 1)n, where Y = Y1 ∪ Γ ∪ Y2, with open
sets Y1, Y2, Y2 ⊂⊂ Y . This leads to a connected subdomain Ωǫ

1 and a disconnected
Ωǫ

2. We observe that in both subdomains Ωǫ
1 and Ωǫ

2 the diffusion coefficients are
of the same order with respect to the scale parameter ǫ. The nonlinear functions
appearing in the right hand side of the equations and transmission/boundary con-
ditions are the kinetics of multi-substrate enzymatic reactions and are given by
rational functions of the solution components, see [2] for a detailed description.

Based on energy estimates and estimates for shifts of the solutions u2,ǫ and ub,ǫ,
the following convergence results are obtained in the limit ǫ→ 0. The proof is based
on a Kolmogorov-type compactness result by Simon, see [3], and its generalization
form [1].

Theorem 1 (see [2]). There exist u1,0∈L2((0, T ), H1(Ω))m∩H1((0, T ), H1(Ω)′)m,
and u1,1 ∈ L2((0, T )× Ω, H1

per(Y )/R)m, such that up to a subsequence it holds

ũ1,ǫi → u1,0i strongly in L2((0, T ), L2(Ω)),

∇ũ1,ǫi → ∇xu
1,0
i +∇yu

1,1
i in the two-scale sense,

u1,ǫi → u1,0i strongly in the two-scale sense on Γǫ,

∂tū
1,ǫ
i ⇀ |Y1|∂tu1,0i weakly in L2((0, T ), H1(Ω)′).

There exists ub,0 ∈ L2((0, T ) × Ω, H1
per(Γ))

m with ∂tu
b,0 ∈ L2((0, T ) × Ω × Γ)m,

such that up to a subsequence,

T b
ǫ u

b,ǫ
i → ub,0i strongly in L1((0, T )× Ω× Γ),

ǫ∇Γǫub,ǫi → ∇Γ
yu

b,0
i in the two-scale sense on Γǫ,

∂tu
b,ǫ
i → ∂tu

b,0
i in the two-scale sense on Γǫ.
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There exists u2,0 ∈ L2((0, T ) × Ω)m with ∂tu
2,0 ∈ L2((0, T ), H1(Ω)′)m, such that

up to a subsequence

Tǫū2,ǫi → χY2
u2,0i strongly in L1((0, T )× Ω× Y ),

∇u2,ǫi → 0 in the two-scale sense,

T b
ǫ u

2,ǫ
i → u2,0i strongly in L1((0, T )× Ω× Γ),

∂tū
2,ǫ
i → |Y2|∂tu2,0i weakly in L2((0, T ), H1(Ω)′).

Passing to the limit in the microscopic equations, we obtain the following macro-
scopic model.

Theorem 2 (see [2]). For the function u1,ǫ on the connected domain Ωǫ
1 we obtain:

|Y1|∂tu1,0i −∇ ·
(
D∗

i∇u1,0i

)
=

∫

Γ

h1i (t, y, u
1,0, u2,0, ub,0(y))dσy

+

∫

Y1

f1
i (t, y, u

1,0)dy in (0, T )× Ω,

−D∗
i∇u1,0i · ν = 0 on (0, T )× ∂Ω,

u1,0i (0) = u1i,0 in L2(Ω),

with the homogenized diffusion-coefficient D∗
i given by

(D∗
i (x))kl =

∫

Y1

D1
i (x, y)(∇wk(x, y) + ek) · (∇wl(x, y) + el)dy,

where wk solves the cell-problem

−∇y ·
(
D1

i (x, y)(∇ywk(x, y) + ek)
)
= 0 in Ω× Y1,

−D1
i (x, y)(∇ywk(x, y) + ek) · ν = 0 on Ω× Γ,

For the function u2,ǫ on the disconnected domain Ωǫ
2 the diffusion-term vanishes

and we obtain the ODE:

|Y2|∂tu2,0i =

∫

Γ

h2i (t, y, u
1,0, u2,0, ub,0(y))dσy

+

∫

Y2

f2
i (t, y, u

2,0)dy in (0, T )× Ω,

u2,0i (0) = u2i,0 in Ω.

For the surface-concentration ub,ǫ it holds:

∂tu
b,0
i −∇Γ

y ·
(
Db

i∇Γ
yu

b,0
i

)
= f b

i (u
1,0, u2,0, ub,0) in (0, T )× Ω× Γ,

ub,0i (0) = ubi,0 in Ω× Γ.

All equations are coupled via the nonlinearities on the right-hand side.

Outlook: To give a quantitative answer to the biological question about the
partition of carbohydrates, numerical simulations of the effective model are re-
quired. Furthermore, the model can be improved e.g., by including the dynamics
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of the association of the enzymes with the mitochondrial membrane as well as the
dynamics of the mitochondria themselves, like change of shape (e.g., by swelling)
and location inside a living cell, fusion or division.
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Approximation of the miscible flow in porous media problem

Robert Eymard

(joint work with J. Droniou, T. Gallouët, C. Guichard,
R. Herbin, A. Prignet, K. Talbot)

The miscible flow in porous media problem.
Our aim is to approximate the miscible flow in porous media problem (improp-

erly called “Peaceman’s model” [4] by myself during my talk), as defined by the
following equations.

u(x, t) = − K(x)

µ(c(x, t))
∇p(x, t)

divu(x, t) = (qI − qP )(x, t)




, (x, t) ∈ Ω× (0, T );

Φ(x)∂tc(x, t)−div (Dxu(x, t)∇c− cu) (x, t)=(ĉqI − cqP )(x, t), (x, t) ∈ Ω× (0, T ),

together with an initial value prescription for the concentration c. The reservoir-
dependent quantities of porosity and absolute permeability are Φ and K, respec-
tively. The coefficient Dxu is the diffusion-dispersion tensor, and the coefficient
ĉ is the injected concentration. We assume no-flow boundary conditions, which
imply compatibility conditions on the data, and we impose zero-average value for
the pressure. Russell and Wheeler [5] give a complete derivation of this problem.

The numerical scheme obtained through the Gradient Discretisation
method.

Our game was to approximate the previous problem only using the following
tools:

• The set XD of discrete unknowns is a finite-dimensional vector space over
R.

• ΠD : XD → L2(Ω) is a linear mapping, called the function reconstruction
operator.

• ∇D : XD → L2(Ω)d is a linear mapping called the gradient reconstruction
operator.

These objects are extensively studied in [1]. Many schemes are included in this
framework, such as:



Reactive Flows in Deformable, Complex Media 2397

• Finite-difference scheme on rectangular meshes,
• Mass-lumped P 1 conforming scheme, or Control-Volume Finite Element
method,

• The discontinuous Galerkin SIPG method [3]. . .

An advantage of this framework is that the convergence properties and error es-
timates are proved only once (for linear elliptic or parabolic problems, and in
the case of many other ones), and hold for all the methods which enter into the
framework. For example, in the case of a linear elliptic problem, an error esti-
mate is shown in terms of consistency and conformity of the function and gradient
reconstructions.

In the case of the miscible flow in porous media problem, the numerical scheme
is obtained too through the replacement, in the weak formulation of the problem,
of the continuous unknowns by the discrete ones ΠDp, ∇Dp, ΠDc and ∇Dc.

Mathematical and numerical results.
We proved the convergence of the scheme in [2], in the case where the continuous

model is modified by bounding and truncating some terms involved in the problem.
The convergence properties (obtained through estimates and compactness results)
only hold for a subsequence and do not include L∞ bounds on the unknown fields.

The scheme has been validated on two numerical examples.

• An analytical radial solution, given by c(r, t) = ψN (N+1
2

r2

t ), where

ψN (z) = e−z
N∑

k=0

zk

k!

is solution to

∀z > 0, −zψ′
N(z) +Nψ′

N (z)− zψ′′
N(z) = 0,

with ψN (0) = 1 and ψN (+∞) = 0,
• The literature test provided in [4].

In the case where the physical diffusion is insufficient, we stabilize the method,
thanks to the addition in the numerical scheme of isotropic numerical diffusion.

(Dh(x,u))i,i = max
(
(Dxu)i,i, |u|h

)
,

(Dh(x,u))i,j = (Dxu)i,j for j 6= i,
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Complex patterns arising from Optimal Transportation Problems

Mario Putti

(joint work with Enrico Facca, Franco Cardin)

We have recently developed an original dynamic formulation of the Monge-Kanto-
rovich (MK) partial differential equations modeling L1 Optimal Transport (OT)
problems first proposed by [1]. Our formulation reads as follows [2]. Given an open
bounded domain Ω ⊂ Rn and two positive densities f+, f− ∈ L1(Ω) such that∫
Ω f

+ dx =
∫
Ω f

− dx, we want to find the pair of functions (µ, u) : [0,+∞[×Ω 7→
R+ × Rn that satisfies:

−∇ ·
(
µ(t, x)∇u(t, x)

)
= f+(x)− f−(x) = f(x) in Ω

µ′(t, x) = µ(t, x)
(
|∇u(t, x)| − 1

)
in [0,+∞)(1)

µ(0, x) = µ0(x) > 0

complemented by zero Neumann boundary conditions on ∂Ω. We conjectured
in [2] that as t → +∞ the pair (µ, u) tends to the OT density and potential
(µ∗, u∗) defined in [1] solution of the Monge-Kantorovich equations. Always in [2]
local in time existence and uniqueness of the solution pair (µ(t), u(t)) was proved
under the assumption of f ∈ L∞(Ω) and µ0 ∈ Cδ(Ω), where for simplicity we
have dropped the dependence on x. The main difficulty in obtaining existence and
uniqueness of the solution to (1) at large times is the absence of a uniform upper
bound for |∇u(t)| or |µ(t)∇u(t)|. However, several numerical experiments shown
also in [3] support the conjecture of the convergence of µ towards the solution of
the MK equations.

Further support of the conjecture is given by the derivation of a candidate-
Lyapunov function L(µ) proposed in [3] given by the sum of an energy and a mass
functional, E and M, respectively:

L(µ) := E(µ) +M(µ)

E(µ) := sup
ϕ∈Lip(Ω)

{∫

Ω

(
fϕ− µ

|∇ϕ|2
2

)
dx

}
M(µ) :=

1

2

∫

Ω

µ dx

where Lip(Ω) denotes the space of Lipschitz continuous functions in Ω. In the
previous equation, the energy functional is written in variational form and repre-
sents the Dirichlet energy of the system. It can be show that L has a negative
Lie derivative along the µ-trajectories, its unique minimizer is µ∗, solution of the
Monge-Kantorovich equations, and its unique minimum is the L1-Wasserstein dis-
tance between the two densities f+ and f−.
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An extension to the above mentioned model is proposed in [4], whereby a power
β is added to the flux term of the dynamic equation for the transport density. The
model then becomes:

−∇ · (µ(t)∇u(t)) = f+ − f− = f,

µ′(t) = [µ(t)|∇u(t)|]β − µ(t),

µ(0) = µ0(x) > 0,

again completed with zero Neumann boundary conditions. We conjecture that
the solution pair (µ(t), u(t)) of the above system converges toward an equilibrium
configuration as t → ∞ and that this equilibrium point is related to congested
(0 < β < 1) and branched (β > 1) OT problems. Empirically, a sub-linear growth
of the flux term (0 < β < 1) penalizes the flux intensity (i.e. the transport
density) and promotes the spreading of transport paths over Ω. Correspondingly,
the equilibrium solutions are reminiscent of Congested Transport (CT). On the
other hand, a super-linear growth favors flux intensity and promotes concentrated
transport, leading to the emergence of “singular” and “fractal-like” configurations
that resemble the structures typical of Branched Transport (BT), as shown e.g.
in [5, 6].

A candidate Lyapunov function can be identified also in this case and is given
by a sum of the Dirichlet energy and a nonlinear mass functional:

Lβ(µ) := E(µ) +Mβ(µ),

E(µ) := 1

2

∫

Ω

µ|∇u(µ)|2 dx; Mβ(µ) :=





1

2

∫

Ω

ln(µ) dx if β = 2

1

2

∫

Ω

µ
2−β
β

2−β
β

dx otherwise
.

Also the case β = 1, Lβ decreases in along µ(t)-trajectories. While for the case
0 < β < 1 we can prove the equivalence between the minimization of the Lyapunov
candidate function and the CT problem, for β > 1 we are not able to character-
ize rigorously the minimizers of L. Moreover, numerical simulations show that
the final long-time solution depends upon the initial states, suggesting that the
Lyapunov candidate functional is highly non-convex.

The numerical solution of our formulation for all β > 0 is easily obtained by
means of Galerkin finite elements using piecewise constant basis functions for µ
and piecewise linear basis functions on a uniformly refined triangulation for u.
The time derivative can be discretized by forward Euler or by backward Euler
with Picard approximation. Future work includes the development of Newton
method.

For β = 1 the proposed numerical approach is fast, accurate, and robust, and
provides an efficient tool for the solution of L1 OT problems and the evaluation of
L1 Wasserstein distances. For 0 < β < 1 the considered numerical method share
the same efficiency. On the other hand, for β > 1, numerical approximations of µ
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display the singular structures that, we conjecture, are related to local minima of
L.

Notwithstanding these difficulties, the numerical results we obtain are highly
promising for the simulation of fractal-like structures commonly arising in nature,
such as e.g., blood vessels, river networks, tree branches, plant roots, etc. An
application to the dynamics of plant roots is under investigation.
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Linear Biot equations from a gradient flow perspective

Jakub W. Both

(joint work with Kundan Kumar, Jan M. Nordbotten, Florin A. Radu)

Linear poroelasticity is the simplest model describing flow in deformable porous
media [2, 6]. However, it is the building block for various extensions and thus of
interest. In this work, we approach linear poroelasticity from a new perspective.
We model it as generalized gradient flow [10] and demonstrate that based on this
approach, well-posedness and robust splitting schemes can be derived naturally.
The final results are not necessarily new [9, 12], but their derivation is. Considering
nonlinear extensions, this approach seems very promising.

1. Classical and generalized gradient flows

In order to describe a classical gradient flow in a Hilbert space we need to:

(i) Choose a state space X (a Hilbert space with inner product 〈·, ·〉 and
induced norm | · |).

(ii) Define an energy E(x) for states x ∈ X .

Then states change, minimizing the total energy locally as effectively as possible

ẋ = −∇E(x),(1)

which is equivalent with the minimization problem

ẋ = arginf
q

{
〈∇E(x), q〉 + 1

2 |q|2
}
.(2)
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The framework can be generalized [10], incorporating dissipation and a character-
ization of changes of state via process vectors. In addition to (i)–(ii):

(iii) Choose a process space PẊ , and assign how states can change ẋ = T (x)p,
where x ∈ X , p ∈ PẊ , and T (x) is a transformation operator.

(iv) Choose a dissipation potential D(p), defining the cost for changes of state.

Given the current state, the generalized gradient flow defines the change of state

ẋ = T (x)p and p = arginf
q

{〈E ′(x), T (x)q〉 +D(x; q)} ,(3)

i.e., the loss of energy is maximized under minimal cost. Compared to classical
gradient flows, zero or infinite cost is allowed.

2. Linear Biot equations as generalized gradient flow

We derive the quasi-static, linear Biot equations [2] as generalized gradient flow (3).
Here, we consider a highly simplified setting, focusing on the essentials. In par-
ticular, we neglect any external impacts as volume or surface forces, and we con-
sider solely homogeneous boundary conditions for normal fluxes and mechanical
displacements. Furthermore, we consider isotropic, homogeneous materials. For
generalizations the components (i)–(iv) have to be modified accordingly.

In the following, let 〈·, ·〉 denote the L2(Ω)-inner product with induced norm
‖ · ‖, where Ω ⊂ Rd, d ∈ {2, 3}, defines the porous material.

(i) As state space, we choose X := {(u,m)}, where u is the displacement, and
m is the fluid mass scaled by the inverse of some reference fluid density.

(ii) Displacements u change with rate u̇. Masses m change via fluxes q, con-
serving mass ṁ+∇ ·q = 0 on Ω. Let Γu,Γq ⊂ ∂Ω with positive measure,
then we choose function spaces corresponding to the process vectors (u̇, q)

V :=
{
v ∈ H1(Ω) |v = ~0 on Γu

}
,

Z := {z ∈ H(div; Ω) | z · n = 0 on Γq} .
(iii) The energy E is given by the Helmholtz free energy of a linearly poroelastic

system E(u,m) := 1
2 〈Cε(u), ε(u)〉 + M

2 ‖m− α∇ · u‖2, cf. e.g. [6], where
C is a fourth-order stiffness tensor, ε(u) is the linearized strain tensor, M
is the inverse of the compressibility, α is the Biot coefficient.

(iv) Accounting for viscous dissipation due to fluid flow, we choose the potential
D(q) := 1

2 〈κ−1q, q〉, where κ is the mobility. Mechanical deformation
comes at no cost.

The generalized gradient flow framework (3), defines the evolution of states
(u,m) ∈ X . Given some initial condition m(0) = m0, the changes of states satisfy

ṁ = −∇ · q,(4)

(u̇, q) = argmin
(v,z)∈V×Z

{
〈Cε(u), ε(v)〉+ 〈M(m− α∇ · u),−α∇ · v〉(5)

〈M(m− α∇ · u),−∇ · q〉+ 1
2 〈κ−1z, z〉

}
,
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similarly stated in [8]. Setting m = 1
M p + α∇ · u, the corresponding, necessary

optimality conditions are identical to the quasi-static, linear Biot equations [2].

3. Well-posedness of the linear Biot equations

Due to the lack of dissipation due to mechanical deformation, the generalized
gradient flow (4)–(5) does not define a classical gradient flow. However, following
ideas by [11], it can be reformulated as decoupled classical gradient flow for the
reduced energy Ered(m) := infuE(u,m) and a minimization problem

ṁ−∇ · κ∇∂mEred(m) = 0, m(0) = m0,(6)

u = arginf
v

E(v,m).(7)

Lemma 1. Assume Ered(m0) <∞. Then (6)–(7) has a unique solution, satisfying
u ∈ L∞(0, T ;H1(Ω)), m ∈ H1(0, T ;H−1(Ω)) ∩ L∞(0, T ;L2(Ω)).

Proof. As Ered is convex, (6) has a unique solution [1, 11]. As E(u,m) is strictly
convex in u, (7) has a unique solution. The solution satisfies the energy identity [1]

∫ T

0

‖ṁ‖2−1,κdt+ E(u(T ),m(T )) = Ered(m(0)),

where ‖m‖2−1,κ := 〈(−∇·κ∇)−1ṁ, ṁ〉 with (−∇·κ∇)−1 being the inverse operator

of (−∇ · κ∇) : H1
0 (Ω) → H−1(Ω). The regularity results are a consequence. �

4. Undrained splitting scheme derived as alternating minimization

Let ∆t denote a constant time step size. A natural implicit time discretization
of (6)–(7) is given by the minimizing movement scheme

(un,mn) = arginf(u,m) E∆t(m
n−1;u,m),(8)

E∆t(m
n−1;u,m) := 1

2∆t‖m−mn−1‖2−1,κ + E(u,m),

which is equivalent with the implicit Euler time discretization of the Biot equa-
tions. Considering the popularity of physical, sequential splitting schemes [3, 4, 5,
9], it is natural to apply an alternating minimization method for (8)

1. Step : un,i = arginfu E∆t(m
n−1;u,mn,i−1),(9)

2. Step : mn,i = arginfm E∆t(m
n−1;un,i,m).(10)

The scheme is identical with the undrained splitting scheme, which is known to
have a contraction property [9]. Utilizing the above interpretation, and the fact
that E∆t is strictly convex, linear, global convergence follows directly, cf., e.g., [7].

5. Concluding remarks and Outlook

The gradient flow framework has been demonstrated as powerful modelling tool
for poroelasticity. Simple analysis and the derivation of a splitting scheme are
more or less direct consequences. This perspective seems promising considering
extensions as nonlinear compressibility of solid and fluid [3], non-Newtonian fluids,
poroviscoelasticity, plasticity etc. Future work will be devoted to those topics.
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Long-term simulation of large deformation, mechano-chemical FSI in
ALE and fully Eulerian coordinates

Thomas Wick

(joint work with Stefan Frei and Thomas Richter)

In this presentation, we developed numerical schemes for mechano-chemical fluid-
structure interactions with long-term effects using a two-scale algorithm [6]. A
typical example for such a situation is the formation and growth of plaque in
blood vessels. The key challenges in the model are as follows:

• Modeling of solid growth (plaque) in ALE (arbitrary Lagrangian Eulerian)
and fully Eulerian coordinates;

• Coupling of the solid growth problem to the incompressible Navier-Stokes
equations;

⇒ FSI (fluid-structure interaction);
• Coupling of FSI to biochemical processes modeled in terms of an ODE

⇒ Reactive flow in a deformable, thin channel
• Development of a numerical two-scale algorithm for handling multiple tem-
poral scales: long-scale solid growth and short scale fluid dynamics.

Our model is inspired by the models considered in [10, 11, 12]. In [10, 11],
a model for the formation and growth of plaques in blood vessels was derived.
It consists of two main parts: a fluid structure-interaction problem describing
the biomechanical interaction between the blood flow and the vessel wall, and a
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system of transport equations describing the dynamics and biochemical reactions of
monocytes, macrophages and foam cells in the lumen and in the vessel wall. These
two problems are coupled with growth modeling. For the numerical computation
of the solution, a monolithic approach based on an ALE scheme was employed.
In [12], the model from [10, 11] was extended to include more general mechano-
chemical-fluid-structure interaction problems. For the numerical treatment again
an ALE approach was used and numerical tests were performed to analyze the
convergence of the numerical scheme and the quality of the mesh transformation
under large solid deformations.

In difference to [10, 11, 12], in [6], we derived a fully Eulerian framework (based
on the PhD thesis of Stefan Frei [4], a recent overview article [5], and older pre-
liminary experiences published in [7]). The fully Eulerian technique is capable to
compute very large deformations up to contact. In plaque growth applications, it
remains, however, the question, whether full contact is of relevance since plaque
will often rupture before it completely closes the channel [8]; an overview of vul-
nerable plaque and its rupture can be found in [3].

In order to concentrate on a fully Eulerian FSI model towards clogging, the
biochemical reactions were reduced to an ODE in [6], which is, obviously, open to
discussions whether such a reduced model still can adequately model the major
chemical effects. To drive the solid growth, we developed an approach to calculate
effective wall stresses with the goal to design a two-scale algorithm. This algorithm
is motivated by the fact that dynamics of the fluid demand to resolve a scale of
seconds, growth typically takes place in a range of months.

While [10, 11, 12] showed detailed numerical simulations, including compu-
tational convergence results, using the previously mentioned ALE technique, in
[6], we further compared ALE to the fully Eulerian framework. Not only did we
develop two numerical approaches, but we also did implement them in different
open-source software packages (employing the FSI-template [9] based on deal.II
[1] and, on the other hand, Gascoigne3D [2]). During these implementations, we
found several inconsistencies (and also bugs) in both frameworks and both codes.
This shows once more that a robust numerical framework for simulating multi-
physics problems is very difficult and needs careful verifications.

At the Oberwolfach meeting in August 2018, it was agreed upon that the prob-
lem is very complex and needs further investigations into several directions of
mathematical and numerical nature. Some open future questions are:

• Extending in [6] to the full PDE chemical model proposed in [10, 11];
• Further investigations of the validity of the two-scale algorithm;
• Further numerical tests in particular with respect to larger inflow condi-
tions;

• Careful investigations whether non-symmetric solid growth can be mod-
eled;

• Local mesh and time step adaptivity and parallel computing to reduce the
computational cost;

• 3D simulations.
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Sorting in two species aggregation and chemotaxis

Angela Stevens

(joint work with Martin Burger, Marco Di Francesco, Elio Espejo, Simone
Fagioli, Juan J. L. Velázquez)

One biological model-system for development is the cellular slime mold Dictyo-

stelium discoideum, Dd. Under starvation conditions the amoebae produce an
attractive signal, namely cAMP. The amoebae sense this signal and move towards
higher concentrations. After aggregation and mound formation in Dd, the amoe-
bae start to pre-differentiate into pre-stalk and pre-spore cells. In the mound these
amoebae vary w.r.t. their chemotactic sensitivity. Amoebae with stronger chemo-
tactic abilities can be found at the top of the mound. Amoebae which are weaker
w.r.t. to chemotaxis can be found closer to the bottom of the mound. Later, these
differently sorted amoebae differentiate into two cell types. The amoebae from the
top of mound form the stalk of the fruiting body. The amoebae from the bottom
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of the mound become surviving spores. The outcome of cell sorting seems to be a
pre-stage for cell differentiation.

Jäger and Luckhaus [4] showed, that chemotaxis can serve as the main mech-
anism for self-organization of Dd. This means, that a 2-dimensional chemotaxis
model must exhibit blow-up of solutions. A simplified version of the classical
Keller-Segel model reads as follows. Let u be the density of the amoebae, and v
be the concentration of the chemo-attractant in Ω. Then

∂tu = ∆u− χ∇ · (u∇v) , ∂tv = η∆v + αu− βv

with Neumann boundary conditions on ∂Ω, models chemotactic motion of the
amoebae due to a self-produced chemo-attractant, where χ > 0 is the chemotactic
sensitivity. Define w̄ = 1

|Ω|

∫
Ωw dx. Then ū(t) = ū0 and 1

η (∂t + β)v̄ = α
η ū = α

η ū0 .

Consider ṽ := v − v̄, then 1
η (∂t + β)ṽ = ∆ṽ + α

η (u− ū0).

For fast diffusion of chemical molecules we obtain

∂tu = ∆u− χ∇ · (u∇v) , 0 = ∆ṽ +
α

η
u− α

η
ū0 .

The last equation can be further rescaled to 0 = ∆v + u− 1.
For the radial symmetric situation it was proved in [4], that there exist parameter
regimes for which global solutions exist. Further, there exist parameter regimes
for which blow-up happens in finite time. The explicit critical value for this switch
of behavior can be read of the estimates in the proof. Among others, a strong
chemotactic sensitivity χ gives rise to self-organization.

Can chemotaxis also serve as the main mechanism for cell sorting?
A suitable model for chemotactic cell sorting in the mound would be spatially
3-dimensional and show spatial ordering of the cells in correlation to their chemo-
tactic sensitivity. As a first test-problem we considered a mathematical model
with two chemotactic species in two spatial dimensions and asked if it is possible
to obtain blow-up for one species, whereas the solution for the other species still
exists, see [3]. Let u1, u2 be the densities of two cell types, and v the concentration
of the chemo-attractant. Consider

∂tu1 = ∆u1 − χ1∇ · (u1∇v) , ∂1u2 = µ2∆u2 − χ2∇ · (u2∇v)
∂tv = ∆v + u1 + u2 − 1

in BR(0), t > 0, with Neumann boundary conditions. Here χ1, χ2 > 0 are the
different chemotactic sensitivities, and µ2 describes the strength of random motion
of species u2. For χ2 = 0, the system is decoupled. Then u1 can - ’just’ - blow up,
whereas u2 does not. What happens for χ2 << 1?

Existence of classical solutions have been proved in [2]. Global existence for
general multi-component chemotaxis systems with Dirichlet boundary conditions
has been shown in [5]. Consider radial symmetric solutions and rewrite the system
in terms of the rescaled mass functions

Mi(t, r) =

∫ r

0

ui(t, ξ)ξ dξ , i = 1, 2,
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with r = |x|. Then ∂rv = M1+M2

r − r
2 and

∂tM1 = r∂r
(
1
r∂rM1

)
− χ1

(
r
2 − M1+M2

r

)
∂rM1

∂tM2 = µ2r∂r
(
1
r∂rM2

)
− χ2

(
r
2 − M1+M2

r

)
∂rM2

with boundary condition M1(t, 1) = m1, M2(t, 1) = m2. Global solutions exist, if

m1 < min

{
µ2

χ2
,
2(2− χ1m2)

χ1

}
and m2 < min

{
1

χ1
,
2(2µ2 − χ2m1)

χ2

}
.

Blow-up in finite time happens if

m1 >
2

χ1
and

∫

B1(0)

|x|2 u1(t, x)dx << 1 .

If u1 blows up in finite time, then also u2 blows up at the same time.

Formally, the asymptotics for parameters χ1, χ2, µ2 could be calculated, for
which M2 << M1 near the blow-up point. In such cases singularity formation for
u2 without mass aggregation is possible, whereas u1 shows mass aggregation.

Can differential attraction, repulsion, and diffusion lead to sorting and segregation?
Again, we consider two cell-types and now the following energy functional

E [ρ1, ρ2] =
∫
f(ρ1, ρ2)dx − 1

2

∫
ρ1S1 ∗ ρ1dx− 1

2

∫
ρ2S2 ∗ ρ2dx−

∫
ρ1K ∗ ρ2dx.

The f -term represents repulsive effects, and S1, S2,K are non-negative, smooth,
radially decreasing, attractive potentials with finite mass. Here S1, S2 model self-
attraction, whereas K models cross attraction. Specifically we use f(ρ1, ρ2) =
ε
2 (ρ1 + ρ2)

2. Formally, the related gradient flow of E [ρ1, ρ2] then reads

∂tρ1 = ∇ · (ερ1∇(ρ1 + ρ2)− ρ1∇S1 ∗ ρ1 − ρ1∇K ∗ ρ2)
∂tρ2 = ∇ · (ερ2∇(ρ1 + ρ2)− ρ2∇S2 ∗ ρ2 − ρ2∇K ∗ ρ1)

Here we focus on the one-dimensional case. We proved in [1] that discontinuous
stationary patterns can arise, and that ρ1, ρ2 can separate completely in the sta-
tionary state, i.e. both cell densities feature a jump discontinuity at exactly the
same point, with w = ρ1 + ρ2 remaining smooth at that point.

In order to get some intuitive insight, consider the following canonical model.

∂tρ1 = ∇ · (ερ1∇(ρ1 + ρ2)− ρ1∇V1) , ∂tρ2∇ · (ερ2∇(ρ1 + ρ2)− ρ2∇V2)
Here V1, V2 are smooth and given potentials.

Proposition: If (ρ∞1 , ρ
∞
2 ) is a (weak) stationary solution of (1), then

supp(p∞1 ) ∩ supp(p∞2 ) ⊂ {∇V1 = ∇V2} .
Theorem: Let K be the fundamental solution of the Laplace equation on Rd.

Let S1 = σ1K, S2 = σ2K with σ1 ≤ 1 ≤ σ2 and σ1 6= σ2.
Then every stationary solution (ρ1, ρ2) of (1) is fully segregated,
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i.e. supp(ρ1) ∩ supp(ρ2) has zero Lebesgue measure.

Segregation Dynamics: Consider w := ρ1 + ρ2 and ζ := (ρ1 − ρ2)/w. Then

∂tw = ∇ ·
(
εw∇w − w

1 + ζ

2
∇V1 − w

1− ζ

2
∇V2

)

Thus the dynamics of the total density w are governed by a porous medium equa-
tion with additional convective terms. Further

w∂tζ=

(
εw∇w − w

1 + ζ

2
∇V1 − w

1− ζ

2
∇V2

)
· ∇ζ − 1− ζ2

2
∇ · (w∇(V1 − V2)) .

The first term on the right hand side is along the flux of w, which determines the
spatial position and shape of the solution. The crucial part for the seggregation
dynamics is the second term, which has two fixed points ζ = ±1, corresponding
to segregation. Depending on the sign of ∇ · (w∇(V1 − V2)) one of them is stable.
Thus there is always dynamics towards a segregated state, driven by the differences
in the attractive forces. We consider one-dimensional steady states

(ερ1[ρ1 + ρ2]x−ρ1S′
1 ∗ ρ1 − ρ1K

′ ∗ ρ2)x=(ερ2[ρ1 + ρ2]x − ρ2S
′
2 ∗ ρ2 − ρ2K

′ ∗ ρ1)x
= 0, and minimizers of the energy functional

F [ρ1, ρ2]=
ε

2

∫
(ρ1 + ρ2)

2dx− 1

2

∫
ρ1S1 ∗ ρ1dx−

1

2

∫
ρ2S2 ∗ ρ2dx−

∫
ρ1K ∗ ρ2dx

on M = {(ρ1, ρ2) ∈ (L2(R) ∪ L1(R))2|ρi ≥ 0,
∫
R
ρi dx = mi}, for given m1,m2.

Proposition: Let (ρ1, ρ2) ∈ M∩BV (R)2 be a minimizer for the energy func-
tional F [ρ1, ρ2] such that w = ρ1 + ρ2 is Lipschitz continuous. Then (ρ1, ρ2) is a
weak solution of our steady state system, and every weak solution of this PDE-
system is a critical point of F .

Lemma: (Coercivity)
Assume that the Fourier transforms of the interaction kernels for all ξ ∈ R satisfy

ε > min{Ŝ1(ξ), Ŝ2(ξ)} and (ε− Ŝ1(ξ))(ε− Ŝ2(ξ)) > (ε− K̂(ξ))2 .

Then there exists no global minimizer (ρ1, ρ2) ∈ M.

Theorem: Assume the conditions of the above Lemma, then there exists no
nonzero stationary solution of our stationary PDE.

Example: For three Gaussian kernels the second condition in our Lemma
is satisfied, if ‖K‖L1 > max{‖S1‖L1 , ‖S2‖L1} and if the variance of K is small
compared to that of S1, S2. Then cross attraction is relevant only at very small
distances between particles of different species, and dominates self interaction.
Intuitive interpretation: Two - possibly separated - patterns for ρ1 and ρ2 (attained
at a steady state) tend to glue together at the closest points of their boundaries.



Reactive Flows in Deformable, Complex Media 2409

Example:

S1(x) =
A1

σ1
√
π
exp(−x2/(2σ2

1)) , S2(x) =
A2

σ2
√
π
exp(−x2/(2σ2

2))

K(x) =
B

λ
√
π
exp(−x2/(2λ2)) .

The conditions of our Lemma are met, if B > max{A1, A2} and λ < min{σ1, σ2}.
Similar conditions can be achieved for other specific interaction kernels.

Theorem: (For any dimension)
Let K ∈ C2(R) have a unique maximum at zero. Let Si = σiK for some σ1, σ2 > 0
with σ1 + σ2 > 2. Let (ρ∞1 , ρ

∞
2 ) be a local minimizer of F on M. Define

S := supp(ρ∞1 ) ∩ supp(ρ∞2 ). Then S has zero Lebesgue measure.

Proposition: Let (ρ∞1 , ρ
∞
2 ) ∈ M∪BV (R)2 be a weak solution to our station-

ary PDE-system. Then supp(ρ∞1 + ρ∞2 ) is simply connected.

Definition: A stationary solution (ρ1, ρ2) of our steady state system is called
a symmetric segregated steady state, if there exist L1, L2 > 0 such that

supp(ρ1) = [−L1, L1] =: I1 , supp(ρ2) = [−L2,−L1] ∪ [L1, L2] =: I2 ,

where ρ1, ρ2 are regular even functions with w = ρ1 + ρ2 being monotone decreas-
ing on [0, L2] and w(L2) = 0.

Let S1, S2,K be symmetric and strictly decreasing on [0,+∞]. Let e.g. Si = σiK,
σ1 > 1 > σ2 and S′

1(L1) ≤ K ′(L1), then

Proposition: Under the above assumptions and for fixed 0 < L1 < L2, there
exists a unique (up to mass normalisation) symmetric segregated steady state
(ρ1, ρ2) to our stationary PDE with ε = ε(L1, L2) > 0.

Theorem: There exists a constant ε0 such that for all ε ∈ (0, ε0) the stationary
PDE admits a unique segregated steady state solution with fixed mass.
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Thermoporoelasticity via homogenization

Andro Mikelić

(joint work with C.J. van Duijn, Mary F. Wheeler, Thomas Wick)

In the talk a derivation of a macroscopic model for thermoporoelasticity from the
pore scale linearized fluid-structure and energy equations was presented. Our start-
ing point are the continuum mechanics thermodynamically compatible pore scale
equations corresponding to realistic rock mechanics parameters. They are upscaled
using two-scale asymptotic expansions and the following dimensional equations of
the semi-linear thermoporoelasticity are obtained:

∂

∂t

{ P

ΛM
− 4− 2ν

(1 + ν)(1− 2ν)

βsT

M
+ div x

((
ΦI − BH

)
U
)}

+ divxV
D = 0,(1)

VD =
Kℓ2
η(T )

(
ρ0fβfg(T − T0 −

1

βf
)e3 −∇xP

)
,(2)

(
ρ̃c+

β2
sΛT0
M

)∂T
∂t

+ ΛβsT0
∂

∂t

(
− P

ΛM
−
(
ΦI − BH

)
: ex(U)

)
−

div x

(
Bterm∇xT ) + ρ0fcfV

D · ∇xT = hfΦ+ hs(1 − Φ),(3)

− divx

(
GΛex(U) −

(
ΦI − BH

)
P −

(
(1− Φ)I + BH

)
(3λ+ 2ν)βs(T − T0)

)
=

ρ0fβfΦg(T − T0)e3 − (ρ0fΦ+ ρs(1− Φ))ge3,(4)

where

ρ̃c = Φρ0fcf + (1− Φ)ρscs;

Btherm =
ρ̃c

ρ0fcf
κfPeB (the homogenized thermal dispersion coefficient).

All coefficients and variables appearing in (1)-(4) are defined in Table 1.
We also provide details when comparing our results to those obtained by Coussy

et al [2] and Lee and Mei [5], [6]. The choice of the characteristic time scale
was presented in detail and based on realistic data. It determinates whether the
homogenized system will be fully coupled (see e.g. [4]) or decoupled (see e.g. [1])

For the upscaled equations (1)-(4) a Lyapunov functional (a generalization of
Biot’s free energy) is constructed and the well-posedness of the model is discussed.
Possible applications to large time numerical simulations are pointed out.

Details are in the preprint [3].
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QUANTITY UNIT

uc characteristic solid state
displacement (≤ 5% L)

m (meter)

U = ucu0 solid phase displacement m (meter)

L domain size m (meter)

ν Poisson’s ratio dimensionless

µ Lamé’s parameter Pa (Pascal)

Λ characteristic value of
Young’s moduli

Pa (Pascal)

ΛG Gassmann’s 4th order pos-
itive definite symmetric
tensor

Pa (Pascal)

phpc = ρ0
f
gL hydrostatic pressure Pa (Pascal)

P = pc(p0 − phx3) fluid phase pressure Pa (Pascal)

T = ∆Tϑ0 + T0 temperature K (Kelvin)

η = η(T ) = ηcη(ϑ0) dynamic viscosity kg/(ms)

ℓ pore size m (meter)

BH part of Biot’s parameter a constant dimensionless
matrix

Kphys = ℓ2K permeability m2

Φ porosity dimensionless with values
in (0, 1)

β coefficient of thermal ex-
pansion

1/K

ρ0
f
cf fluid heat capacity Pa/K

hfΦ+ hs(1− Φ) effective heat source Pa/s

Kg = L2ρsg
Λuc

Bousinessq force dimensionless

KB = C0KS = KS
Kgρ

0

fβf∆T

KSρs
buoyancy O(KS)

ΛM > 0 compressibility Pa

Table 1. Description of parameters and unknowns.
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Traveling wave solutions for the Richards equation with hysteresis

Ben Schweizer

(joint work with E. El Behi-Gornostaeva, K. Mitra)

Our analysis is motivated by a physical process in porous media: We assume that,
initially, a porous medium is highly saturated in a top layer and has low saturation
below that top layer. In two and more dimensions, the liquid can move downwards
in two different ways: it can form a homogeneous saturation front or it can form
gravity fingers; in the latter case, water enters preferentially along thin channels
of high water saturation. We study a mathematical model for unsaturated flow in
porous media that allows the formation of fingers [1, 2, 4, 5, 7].

In order to study saturation profiles, we search for traveling wave solutions for
the system. We restrict here to one space dimension, the case that was also treated,
e.g., in [8, 9]. If we find a traveling wave solution, we can predict qualitative prop-
erties of solutions and we have a method of calculating the speed of propagation.
The one-dimensional results can also be interpreted in the higher dimensional set-
ting: Considering a vertical slice of the domain, the one-dimensional saturation
profile in the single finger can be expected to be an (approximate) traveling wave
solution to the one-dimensional equations.

Let us describe the system of equations. We denote by x ∈ R the space variable,
t ∈ [0,∞) is the time variable. The physical state in (x, t) is described by the
saturation s̃ and the pressure p̃, we consider s̃, p̃ : R × [0,∞) → R. Combining
Darcy’s law with mass conservation yields the unsaturated media flow equation

(1) ∂ts̃ = ∂x[k(s̃)(∂xp̃+ 1)] ,

where we have normalized the porosity of the medium and the gravity, which
points in negative x-direction. The conductivity k is given, it is a nonnegative and
nondecreasing coefficient function s 7→ k(s).

Equation (1) must be complemented with a constitutional law that relates pres-
sure and saturation. We want to include hysteresis (the drainage and the imbibi-
tion curve are different and scanning curves can be explored by the system). For a
capillary pressure function [0, 1] ∋ s 7→ pc(s) ∈ R we consider play-type hysteresis
(γ > 0) and non-equilibrium effects (τ > 0) and demand

(2) p̃ ∈ pc(s̃) + γ(s̃)H(∂ts̃) + τ∂ts̃ .
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We use here the multivalued function

H(ζ) :=





0 for ζ > 0 ,

[−1, 0] for ζ = 0 ,

−1 for ζ < 0 .

Loosely speaking, our results treat the case γ(s) = +∞, i.e., negative arguments
of H do not occur.

It is known that regularized versions of the above equations permit traveling
wave solutions. Furthermore, the regularized versions show oscillations and, in
particular, the physically relevant effect of a saturation overshoot [3, 6]. Our
result for the non-regularized hysteresis operator is that, despite the positive τ -
term, the system permits the existence of monotone traveling wave profiles. These
traveling waves describe the behavior of fronts in a bounded domain. The main
result is that, when only imbibition and scanning curves can be reached by the
system, monotone traveling wave profiles exist. In particular, we have a method
to calculate the speed of fronts and/or fingers.

For our results, it is important that the non-equilibrium parameter exceeds
a critical threshold, τ > τ∗. The proofs are based on a re-formulation of the
equations and a careful phase-plane analysis.

References

[1] A. Y. Beliaev and S. M. Hassanizadeh. A theoretical model of hysteresis and dynamic
effects in the capillary relation for two-phase flow in porous media. Transp. Porous Media,
43(3):487–510, 2001.

[2] S. M. Hassanizadeh and W. G. Gray. Thermodynamic basis of capillary pressure in porous
media. Water Resour. Res., 29(10):3389–3405, 1993.

[3] R. Hilfer and R. Steinle. Saturation overshoot and hysteresis for twophase flow in porous

media. The European Physical Journal Special Topics, 223(11):2323–2338, 2014.
[4] A. Lamacz, A. Rätz, and B. Schweizer. A well-posed hysteresis model for flows in porous

media and applications to fingering effects. Adv. Math. Sci. Appl., 21(1):33–64, 2011.
[5] A. Rätz and B. Schweizer. Hysteresis models and gravity fingering in porous media. ZAMM

Z. Angew. Math. Mech., 94(7-8):645–654, 2014.
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Algebraic limiting techniques and hp-adaptivity for continuous finite
element discretizations

Dmitri Kuzmin

(joint work with Christopher Kees, Christoph Lohmann, Manuel Quezada de
Luna, Sibusiso Mabuza, John N. Shadid)

In this note, we review some new approaches to enforcing discrete maximum prin-
ciples in continuous high-order finite element discretizations of hyperbolic conser-
vation laws. As a model problem, we consider the linear advection equation

(1)
∂u

∂t
+∇ · (vu) = 0 in Ω,

where v is a given velocity field and Ω is the domain of interest. A homogeneous
flux boundary condition is imposed weakly on the inflow boundary of Ω. The
standard Galerkin discretization leads to the semi-discrete system [5, 6]

(2) MC
du

dt
+Au = 0,

where MC = {mij} is the consistent mass matrix, A = {aij} is the discrete trans-
port operator, and u = {ui} is the vector of time-dependent nodal values associated
with globally continuous Lagrange or Bernstein basis functions ϕ1, . . . , ϕNdof

.
Following the derivation of algebraic flux correction (AFC) schemes [5] for P1

and Q1 finite element discretizations, we write system (2) in the form

(3) ML
du

dt
+ (A−D)u = f

(
u,

du

dt

)
,

whereML = {δij
∑

j mij} is the lumped mass matrix andD = {dij} is a symmetric
perturbation matrix defined in terms of the artificial diffusion coefficients

(4) dij =

{
max{aij , 0, aji} if j 6= i,

−∑k 6=i dik if j = i.

By definition of ML and D, the low-order discrete upwind approximation

(5) ML
du

dt
+ (A−D)u = 0

is bound-preserving [5, 8]. Hence, any violations of discrete maximum principles
are caused by the antidiffusive term f (u, u̇) = (ML −MC)u̇ − Du. To suppress
undershoots and overshoots, we decompose fi =

∑
e f

e
i into edge or element con-

tributions fe
i and apply adaptively chosen correction factors αe ∈ [0, 1].

The simplest algebraic limiting techniques enforce local maximum principles via
postprocessing based on the following predictor-corrector strategy [4, 5, 8]:

1. Calculate a bound-preserving low-order approximation ūn+1 using (5).
2. Add a sum of limited antidiffusive edge/element contributions to obtain

(6) un+1
i = ūn+1

i +
∆t

mi

∑

e

αefe
i ,
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where ∆t is the time step and mi is the i-th diagonal entry of ML. Adopting
the design philosophy of flux-corrected transport (FCT) algorithms, the correction
factors αe are chosen so as to guarantee that ūmin

i ≤ un+1
i ≤ ūmax

i , where the
bounds ūmax

i and ūmin
i are defined as local maxima and minima of ūn+1 [8]. Hence,

the limited antidiffusive correction is local extremum diminishing (LED).

The predictor-corrector limiting strategy is ideally suited for numerical solution
of evolutionary problems using small time steps. However, it is not to be recom-
mended for steady-state computations since direct manipulation of the degrees of
freedom at the antidiffusive correction stage prevents convergence to stationary
solutions and the levels of numerical diffusion depend on the (pseudo-)time step.
Instead of calculating and correcting a low-order predictor, a limited antidiffusive
term f̄ can be incorporated into the residual of the nonlinear system

(7) M̄
du

dt
+ Āu = f̄

(
u,

du

dt

)
.

The solution-dependent correction factors αe for the edge/element contributions
fe
i (u, u̇) to f̄i =

∑
e α

efe
i are defined so that f̄i = 0 whenever ui is a local maximum

or minimum. In contrast to predictor-corrector approaches, monolithic limiting
techniques of this kind constrain the perturbation of the Galerkin system (2) in an
iterative manner [2, 5]. The recently developed theory of algebraic flux correction
schemes [3] provides a set of sufficient conditions for well-posedness of nonlinear
discrete problems and convergence of iterative solvers in the steady state limit.
Limiter functions that possess all desired theoretical properties in the context of
P1 and Q1 finite element approximations can be found in [6].

The extension of algebraic limiting to high-order piecewise-polynomial approx-
imations calls for the use of finite element basis functions ϕi which guarantee that
the numerical solution uh =

∑
i uiϕi is bounded by the maxima and minima of

its coefficients ui not only at the nodal points but also in-between. In contrast
to high-order Lagrange elements, the Bernstein basis representation of uh does
provide this property. As shown in [1, 8], FCT-like limiting techniques are appli-
cable to arbitrary-order Bernstein-Bèzier elements but require careful localization
to preserve the high-order accuracy of the target scheme for smooth data.

Another promising approach to constraining high-order continuous Galerkin
discretizations is the use of limiters in the basis functions of partitioned finite el-
ement spaces, as proposed in [7]. Let Vph,p = span{ϕH

1 , . . . , ϕ
H
Ndof

} denote the
space of continuous piecewise-polynomial functions such that uh|K ∈ Pp(K) or
uh|K ∈ Qp(K) for each uh ∈ Vph,p, p ∈ N and each element K ∈ Tph of a con-
forming finite element mesh Tph. Using a P1/Q1 approximation on elements of the
embedded submesh Th, we define the space Vh,1 = span{ϕL

1 , . . . , ϕ
L
Ndof

}. To design
an adaptive finite element scheme which employs the high-order approximation
uHh in ‘smooth’ cells and the low-order approximation uLh in ‘troubled’ cells, we
define the partitioned space Vh(αh) := span{ϕ1, . . . , ϕNdof

} ⊂ Vh,p+1 in terms of

(8) ϕi(x) = αh(x)ϕ
H
i (x) + (1 − αh(x))ϕ

L
i (x), x ∈ Ω̄, i = 1, . . . , Ndof ,
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where αh is a blending function which yields a convex average of ϕH
i and ϕL

i . The
traditional approach to hp-adaptivity in finite element methods is to use piecewise-
constant basis selectors (αh|K ≡ 1 or αh|K ≡ 0 for K ∈ Tph). To ensure continuity
of traces at common boundaries of adjacent mesh cells, this adaptation strategy
requires special treatment of ‘hanging’ nodes and is difficult to implement. More-
over, the outcome depends on many binary decisions and small changes of the
data may produce entirely different finite element spaces. To avoid the theoretical
and practical difficulties associated with this methodology, the use of continuous
blending functions αh =

∑
i αiϕ

L
i was proposed in [7]. The partition of unity (PU)

parameters αi ∈ [0, 1] may be defined using error indicators, smoothness criteria,
and/or a priori information about location of internal/boundary layers. Moreover,
the use of artificial diffusion operators and limiters can be restricted to troubled
cells where the blending function αh is set to zero by a smoothness indicator. Nu-
merical examples illustrating the potential of using continuous blending functions
in partitioned space and time discretizations can be found in [7].

In summary, a finite element approximation can be constrained to satisfy dis-
crete maximum principles by using limiters to combine the degrees of freedom,
edge/element contributions, and/or basis functions corresponding to a high-order
target scheme and its bound-preserving low-order counterpart. The combination of
limiting techniques with hp-adaptivity based on the PU approach provides a very
general framework for robust, accurate, and physics-compatible discretization of
conservation laws on general meshes. Further efforts are currently required to ex-
tend the theoretical foundations of algebraic limiting [3] to high-order / partitioned
FEM and develop more efficient iterative solvers for nonlinear systems.
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Representation of Diffusive Fractures in a Fractured Porous Media
and Carbonate Acidizing

Mary F. Wheeler

(joint work with Sanjay Srinivasan, Sanghyun Lee, and Rencheng Dong)

Optimal design of hydraulic fractures is controlled by the distribution of natural
fractures in the reservoir. Due to sparse information, there is uncertainty asso-
ciated with the prediction of the natural fracture system. Our objective here is
to:

• Quantify uncertainty associated with prediction of natural fractures using
micro-seismic data and a Bayesian model selection approach

• Use fracture probability maps to implement a finite element phase-field
approach for modeling interactions of propagating fracture with natural
fractures

The proposed approach employs state-of-the-art numerical modeling of natu-
ral and hydraulic fractures using a diffusive adaptive finite element phase-field
approach [1]. The diffusive phase field is defined using the probability map de-
scribing the uncertainty in the spatial distribution of natural fractures [2]. One
example of the diffusive natural fracture network is shown in Fig. 1. That prob-
ability map is computed using a model selection procedure that utilizes a suite of
prior models for the natural fracture network and a fast proxy to quickly evaluate
the forward seismic response corresponding to slip events along fractures. Employ-
ing indicator functions, diffusive fracture networks are generated utilizing accurate
computational adaptive mesh schemes based on a posteriori error estimators.

Figure 1. Initialization of phase field for complicated natural
fracture network

The coupled algorithm was validated with existing benchmark problems which
include prototype computations with fracture propagation and reservoir flows in
a highly heterogeneous reservoir with natural fractures. Implementation of algo-
rithm for computing fracture probability map based on the micro-seismic data
for a Fort Worth basin data set reveals consistency between those results and the
interpretation based on time lapse seismic information, Convergence of iterative
solvers and numerical efficiencies of the methods were tested against different ex-
amples including field-scale problems. Results reveal that the interpretation of
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uncertainty pertaining to the presence of fractures and utilizing that uncertainty
within the phase field approach to simulate the interactions between induced and
natural fracture yields complex structures that include fracture branching, fracture
hooking, etc.

The novelty of this work lies in the efficient integration of the phase-field frac-
ture propagation models to diffusive natural fracture networks with stochastic
representation of uncertainty associated with the prediction of natural fractures in
a reservoir. The presented method enables practicing engineers to simulate multi-
physical problems in a reservoir with fractures efficiently and accurately. Together
with efficient parallel implementation, our approach allows for cost-efficient ap-
proach to optimizing production processes in the field.

This work is being done in collaboration with Professor Sanjay Srinivasan at
Pennsylvania State University and Professor Sanghyun Lee at Florida State Uni-
versity.

Our next topic is collaboration with Rencheng Dong, a graduate student at The
University of Texas and Professor Sanghyun Lee at Florida State University.

Acidizing in unfractured carbonate reservoirs has been well studied through
modeling and simulation. Since carbonate reservoirs are often naturally frac-
tured, fractures should be modeled for realistic acidizing operations. Acidizing
usually leads to large contrast in permeability between wormholes and rock ma-
trix. The fracture system will further increase the complexity of the reactive flow.
We present a pressure diffraction formulation with adaptive enriched Galerkin
(EG) methods [3, 4] to handle these challenges for simulating acidizing in frac-
tured carbonate reservoirs.

The fracture is treated as a diffusive zone [1]. A phase-field variable is defined
as an indicator to distinguish fractures and unfractured rock matrix. The phase
field varies from 0 (fracture) to 1 (unfractured matrix). A weighted pressure
diffraction equation is derived to model the flow in both fractures and matrix
through phase field. We adopt a two-scale continuum model for the acid transport.
The coupled flow and reactive transport system is spatially discretized by enriched
Galerkin methods. The entropy residual stabilization technique is used to avoid
non-physical oscillations. Computational mesh is adaptively refined to track and
resolve fine-scale wormholes.

To validate our generalized formulation, matrix acidizing in the unfractured
carbonate reservoir is simulated [5]. Our two-dimensional simulation results can
reproduce different dissolution patterns observed from laboratory core flooding ex-
periments under different injection rates, including uniform dissolution, wormhole
and face dissolution. Simulation is also done for acidizing in radial flow to mimic
realistic near wellbore scenario. The porosity profiles for radial flow acidizing are
shown in Fig. 2. Simulation results show that mesh size needs to be small enough
to capture fine-scale wormhole growth. The adaptively refined mesh can produce
comparable wormholes with the globally refined mesh. while the runtime of the
adaptively refined mesh is just one quarter of the runtime for globally refined mesh
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in our numerical tests. Since wormholes only occupy very small portion of com-
putational domain, the adaptive mesh refinement is very useful to enhance the
computational efficiency. When the formulation is applied in fractured carbon-
ate reservoirs, the linear system to solve is better conditioned compared with the
formulation where the fracture is treated as a sharp interface. Simulation results
show that the fracture system controls the dissolution pattern since the wormhole
growth is a self-feeding process. The generalized pressure diffraction formulation
allows interactions of complicated natural fracture network.

Figure 2. Porosity solutions after acidizing in radial un-
fractured carbonate reservoirs

We propose a novel pressure diffraction formulation for acidizing in fractured
carbonate reservoirs. This diffusive approach can circumvent substantial perme-
ability contrasts between fractures and unfractured matrix and allow complicated
fracture network. The phase field can be initialized by the probability distribution
of fractures, which connects the geology data and simulation naturally. Enriched
Galerkin methods has less numerical dispersion and grid orientation effects than
standard finite difference method.
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Mixed-Dimensional Partial Differential Equations: applications to flow
and mechanics in media with thin inclusions

Wietse M. Boon

(joint work with Jan M. Nordbotten and Jon E. Vatne)

Mixed-dimensional partial differential equations are fully-coupled equations de-
fined on manifolds of different dimensions. These equations typically arise in the
modeling of physical processes in media containing thin inclusions. In this context,
features with extreme aspect ratios are modeled as lower-dimensional manifolds,
included within a surrounding medium. Examples are fractured and composite
materials, but also wells (in geological applications), plant roots, or arteries and
veins.

We limit the exposition to the context where the sub-manifolds are a single
dimension lower than the full domain. Dimensional reduction is then repeated, by
introducing lower-dimensional sub-manifolds at all intersections of existing mani-
folds. This leads to a hierarchy of sub-manifolds of codimension one, successively,
which typically ranges from a three-dimensional bulk medium to zero-dimensional
intersection points. Next, we note how the reduction of dimensionality leads to a
mixed-dimensional differential geometry.

The connectivity between these manifolds is described with the use of directed
graphs, referred to as trees. Assigning a tree to each manifold, a structure is
introduced upon which functions and their appropriate traces can be defined. In
the case of flow modeling, we define a pressure and flux variable as in [1]. The
pressure is defined on manifolds of all dimensions whereas the flux is defined only
on manifolds of dimension one and higher. Moreover, the normal trace of the
flux variable in d dimensions is defined on all boundaries coinciding with (d− 1)-
manifolds, which are easily identified using the introduced trees.

We continue by considering differential operators. We are particularly inter-
ested in partial differential equations arising from conservation laws, such as flow
in fractured media or mechanics of composite materials. After identifying the
mixed-dimensional geometry, conservation of mass or linear momentum can be
described using the mixed-dimensional divergence operator. This operator coin-
cides with the conventional divergence in the surrounding medium, while on the
lower-dimensional manifolds, it is supplemented by jump terms to incorporate
contributions from higher-dimensional manifolds.

The mixed-dimensional divergence, together with its dual, are sufficient to de-
fine a mixed-dimensional Poisson equation. In terms of applications, this equation
corresponds to modeling single-phase flow through a fractured medium. With
this observation in mind, we note that any discretization scheme suitable for the
conventional Poisson equation can be extended to solve the mixed-dimensional
fracture flow problem [2].

Next, a generalization of the above concepts is presented in terms of exterior
calculus, thereby introducing mixed-dimensional differential forms and the exterior
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derivative. Together, a cochain complex is created, referred to as the mixed-
dimensional De Rham complex. Analysis of this complex shows that it possesses
the same cohomology structure as the full domain [3].

In the context of fracture flow, three numerical methods follow naturally [4] by
identifying the appropriate differential forms and using results from finite element
exterior calculus. However, in order to model more complex physical processes in
the mixed-dimensional setting, the mixed-dimensional De Rham complex becomes
a practical tool. In recent work [5], for example, the mixed formulation for linear
elasticity is considered in which the symmetry of the stress tensor is imposed in a
weak sense. In the analysis of the problem, it proves convenient to have access to
the mixed-dimensional curl, which maps to the kernel of the divergence.

The general theory introduced herein forms a basis to analyze more complex,
mixed-dimensional partial differential equations. The defined curl operator, for
example, may be suited for modeling electromagnetism in media containing thin,
embedded structures. Our aim in terms of future research includes the coupling
flow and mechanics in terms of Biot equations in the mixed-dimensional setting.
This is of particular interest in the modeling of subsurface applications such as
CO2 storage in which the storage site is considered a thin, poroelastic medium.
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New approaches to the fixed-stress split scheme for solving Biot’s
model

Carmen Rodrigo

(joint work with Manuel Borregales, Francisco J. Gaspar, Kundan Kumar, Florin
A. Radu)

Biot’s equations [1] model the time dependent interaction between the deformation
of an elastic porous material and the fluid flow inside of its pore network. If
considering the displacements of the solid matrix u and the pressure of the fluid
p as primary variables, we obtain the so-called two-field formulation of the Biot’s
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consolidation model,

−divσ′ + α∇p = ρg, σ′ = 2µ ε(u) + λdiv(u)I,(1)

∂

∂t

(
1

β
p+ α∇ · u

)
−∇ ·

(
1

µf
K (∇p− ρfg)

)
= f,(2)

where λ and µ are the Lamé coefficients, I is the identity tensor, σ′ and ε are the
effective stress and strain tensors for the porous medium, g is the gravity vector,
µf is the fluid viscosity and K is the absolute permeability tensor, and ρ is the
bulk density. β is the Biot modulus and α is the Biot coefficient.

There is a vast number of applications of this model, making very important
its numerical simulation. In particular, the solution of the large linear systems
of equations arising from the discretization of Biot’s model is the most consum-
ing part when real simulations are performed. For this reason, a lot of effort has
been made in the last years to design efficient solution methods for these prob-
lems. There are two main approaches to deal with this problem, the monolithic
or fully coupled methods, which solve the linear system simultaneously for all the
unknowns, and the iterative coupling schemes, which solve sequentially the equa-
tions for fluid flow and geomechanics, at each time step, until a converged solution
within a prescribed tolerance is achieved. The most used iterative coupling method
is the fixed stress split scheme [2, 3, 4]. This sequential-implicit method basically

consists in solving the flow equation by adding the stabilization term L
∂p

∂t
in both

sides of the equation:

(3)

(
1

β
+ L

)
∂p

∂t
−∇ ·

(
1

µf
K (∇p− ρfg)

)
= f − α

∂

∂t
(∇ · u) + L

∂p

∂t
,

where L is a parameter to fix, and then, the mechanics part is solved from the
values obtained at the previous flow step. In this work, we present two new ap-
proaches to the fixed-stress split algorithm.

First, we propose a new version which forgets about the sequential nature of
the temporal variable and considers the time direction as a further direction for
parallelization, giving rise to a parallel-in-time iterative solution method. This
type of methods are receiving a lot of interest nowadays because of the advent
of massively parallel systems with thousands of threads, permitting to reduce
drastically the computing time. The classical implementation of the fixed-stress
split scheme (FS) is based on a time stepping approach for which at each time step
one iterates between the solution of the flow and mechanics problems until reaching
a converged global solution. More concretely, by using the backward Euler method
on a uniform partition of the time interval (0, T ] with constant time-step size τ ,
Nτ = T , and denoting ∂̄tu

n
h := (un

h − un−1
h )/τ and ∂̄tp

n
h := (pnh − pn−1

h )/τ , the
algorithm is given as follows,

For n = 1, 2, . . . , N

For i = 1, 2, . . .
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Step 1: Given (un,i−1
h , pn,i−1

h ) ∈ Vh ×Qh, find p
n,i
h ∈ Qh such that

(
1

β
+ L

)
(∂̄tp

n,i
h , qh) + b(pn,ih , qh) = −α(div∂̄tun,i−1

h , qh)

+L(∂̄tp
n,i−1
h , qh) + (f̃ , qh) ∀ qh ∈ Qh.

Step 2: Given pn,ih ∈ Qh, find u
n,i
h ∈ Vh such that

2µ(ε(un,i
h ), ε(vh)) + λ(divun,i

h , divvh) = α(pn,ih , divvh) + (ρg,vh), ∀ vh ∈ Vh.

Here, Vh and Qh are appropriate finite element spaces.
The proposed parallel-in-time fixed stress split method (PFS), however, iterates
between the solution of the flow problem in the whole space-time grid, and the
simultaneous solution of the mechanics problems at all time levels in a parallel-
in-time way. Thus, given an initial guess {(un,0

h , pn,0h ), n = 0, 1, . . . , N}, this re-
sults in the following algorithm, which gives us a sequence of approximations
{(un,i

h , pn,ih ), n = 0, 1, . . . , N}, i ≥ 1,

Step 1: Given {(un,i−1
h , pn,i−1

h ), n = 0, . . . , N} find {pn,ih ∈ Qh, n = 1, . . . , N},
such that
(
1

β
+ L

)(
pn,ih − pn−1,i

h

τ
, qh

)
+ b(pn,ih , qh) = α

(
div

u
n,i−1
h − u

n−1,i−1
h

τ
, qh

)
+

L

(
pn,i−1
h − pn−1,i−1

h

τ
, qh

)
+ (f̃ , qh), ∀ qh ∈ Qh,

p0,ih = p0.

Step 2: Given {pn,ih ∈ Qh, n = 1, . . . , N}, find {un,i
h ∈ Vh, n = 1, . . . , N}, such

that

2µ(ε(un,i
h ), ε(vh)) + λ(divun,i

h , divvh) = α(pn,ih divvh) + (ρg,vh), ∀ vh ∈ Vh.

The convergence of the proposed approach is rigorously proved. Moreover, dif-
ferent numerical experiments show that the number of iterations required by the
PFS is very similar to the iterations that the classical fixed-stress needs for con-
vergence, so that we obtain a very similar behavior of the two methods. PFS,
however, consumes around 20% of the wall time of FS, making this approach very
appealing. More details about this new version of the fixed-stress split scheme can
be found in [5].

Second, we consider an inexact version of the fixed-stress split scheme as
smoother in a geometric multigrid framework, giving rise to a very efficient mono-
lithic solver for Biot’s problem. The fixed-stress split scheme is equivalent to an
iterative method based on the splitting of the system matrix A = MA −NA as,

[
A BT

B −C

]
=

[
A BT

0 −C + LMp

]
−
[

0 0
−B LMp

]
,
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whereMp is the mass matrix. In the multigrid context, it seems natural to consider
as relaxation procedure an operator based onMA replacing the two diagonal block
matrices by suitable smoothers. This means to consider relaxations as

M̃A =

[
MA BT

0 MS

]
, or M̃A =

[
MA 0
0 MS

]
,

with MA and MS suitable smoothers for operators A and S = −C+LMp, respec-
tively. In particular, we consider symmetric Gauss-Seidel iterations for both A
and S. This solver combines the advantages of being a fully coupled method, with
the benefit of decoupling the flow and the mechanics part in the smoothing algo-
rithm. Moreover, it deals with complex domains by using semi-structured grids,
and it shows a very efficient behavior independently of the values of the physical
parameters, even for heterogeneous materials. Furthermore, the fixed-stress split
smoother is based on the physics of the problem, and therefore all parameters
involved in the relaxation are based on the physical properties of the medium and
are given a priori. More details about the monolithic multigrid method based on
the fixed-stress split smoother are given in [6].
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Mixed Methods for Two-Phase Darcy-Stokes Mixtures of Partially
Melted Materials with Regions of Zero Porosity

Todd Arbogast

(joint work with Marc A. Hesse and Abraham L. Taicher)

The Earth’s mantle, or an ice sheet, is a deformable solid matrix phase within
which a second phase, a fluid, may form due to melting processes. According to
McKenzie [4], the mechanics of this system can be modeled using mixture theory
as a dual-continuum. At each point of space, the solid matrix is governed by a
highly viscous Stokes system, and the fluid melt, if it exists, is governed by a Darcy
law. The mixing parameter is the porosity φ, which is the volume fraction of fluid
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melt. It is assumed to be much smaller than one, but it may be zero in parts of
the (bounded) domain Ω ⊂ Rd where there is no fluid melt.

We can describe the mechanics using the subscripts f , s, and r to refer to
a quantity associated with the fluid melt, the matrix solid, or the relative fluid
minus solid, respectively. For simplicity, we set all constants to unity and apply a
Boussinsq approximation (constant and equal densities for non-buoyancy terms).
Fluid melt forms at the boundaries of rock crystals and so obeys a Darcy’s law for
fluid flow around solid matrix ”grains”, which is

u = −φ2∇qf ,
where u is the Darcy velocity, qf is the fluid pressure potential, and φ2 is the
porosity dependent relative permeability (more general forms may be treated—the
important point is that it vanishes when φ = 0). Mass conservation is expressed

∇ · (u+ vs) = 0,

where vs is the matrix solid velocity of the Earth. Conservation of momentum
obeys the Stokes equation. In terms of the deviatoric stress of the mixture

σ̂σσ = σ̂σσ(vs) = 2(1− φ)
(
Dvs − 1

3∇ · vsI
)
,

wherein Dvs =
1
2 (∇vs +∇vT

s ) is the symmetric gradient, we have that

−∇q +∇ · σ̂σσ(vs) = G,

where q = q̄ = φqf + (1 − φ)qs = qs + φqr is the mixture pressure potential and
G is related to the gravitational body force. Finally, the solid and fluid pressures
are related through a compaction relation

qs − qf = − 1

φ
∇ · vs,

where 1/φ is the solid matrix bulk viscosity.
When coupled with solute transport and thermal evolution, the model transi-

tions dynamically in time from a non-porous single phase Stokes solid to a two-
phase porous medium. The free boundary between the one and two-phase regions
need not be determined explicitly; rather, the model equations based on mixture
theory describe both phases over the entire domain Ω. Unfortunately, the Darcy
part of the equations is mathematically degenerate in regions where the porosity
is zero, since then there is only the one solid phase.

In the work [1], we assume that φ(x) is given at some instant of time, and we
discuss only the mechanics part of the full model. With an eye to future use in
a full, dynamic simulation, our goal is to find a well-posed variational framework
of the problem and a (mixed) finite element approximation that manages the zero
porosity case.

To handle the possible degeneracy, we define the scaled relative velocity and
scaled fluid potential [2]

ṽr = φ−1u and q̃f = φ1/2qf ,
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respectively, and we reformulate the problem as

ṽr + φ∇(φ−1/2q̃f ) = 0,

φ−1/2∇ · (φṽr) +
1

1− φ

(
q̃f − φ1/2q

)
= 0,

−∇q +∇ · σ̂σσ(vs) = G,

∇ · vs −
φ1/2

1− φ

(
q̃f − φ1/2q

)
= 0.

These equations make sense if the gradient and divergence terms, which are duals
of each other, are well-defined when φ = 0. But

φ−1/2∇ · (φṽr) = φ1/2∇ · ṽr + φ−1/2∇φ · ṽr

is well defined under the assumption

φ ∈ L∞(Ω) and φ−1/2∇φ ∈ (L∞(Ω))d.

The scaled velocity ṽr should be expected to lie in the space

Hφ(div; Ω) =
{
v ∈ (L2(Ω))d : φ−1/2∇ · (φv) ∈ L2(Ω)

}
,

which is a Hilbert space with the inner product

(u,v)Hφ(div;Ω) = (u,v) +
(
φ−1/2∇ · (φu), φ−1/2∇ · (φv)

)
.

Moreover, these vector functions have a well-defined normal trace γ(v) = φ1/2v ·ν
on ∂Ω, where γ : H(div; Ω) → H−1/2(∂Ω) is bounded. For homogeneous Neumann
boundary conditions, the problem can be recast in variational form: Find ṽr ∈
Hφ,0(div) =

{
v ∈ Hφ(div; Ω) : φ

1/2v · ν = 0 on ∂Ω
}
, q̃f ∈ L2, vs ∈ (H1

0 )
d, and

q ∈ L2/R such that

(ṽr ,ψψψr)−
(
q̃f , φ

−1/2∇ · (φψψψr)
)

= 0 ∀ψψψr ∈ Hφ,0(div),

(
φ−1/2∇ · (φṽr), wf

)
+
( 1

1− φ
(q̃f − φ1/2q), wf

)
= 0 ∀wf ∈ L2,

−(q,∇ ·ψψψs) + (σ̂σσ(vs),∇ψψψs) = (G,ψψψs) ∀ψψψs ∈ (H1
0 )

d,

(∇ · vs, w) −
( φ1/2
1− φ

(q̃f − φ1/2q), w
)

= 0 ∀w ∈ L2/R.

There exists a unique solution to this problem, and

‖ṽr‖+ ‖φ−1/2∇ · (φṽr)‖ + ‖q̃f‖+ ‖vs‖1 + ‖q‖ ≤ C.

A mixed finite element method can be defined based on the variational for-
mulation. The lowest order Raviart-Thomas spaces can be used to approximate
(ṽr, q̃f ) by (ṽr,h, q̃f,h), and any reasonable Stokes elements, such as Bernardi-
Raugel or Taylor Hood elements, can be used to approximate (vs, q) by (vs,h, qh).
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In terms of the Raviart-Thomas and L2 projection (πRT,PRT) and the Stokes H1

and L2 projections (πS,PS), if the computational mesh is quasi-uniform,

‖ṽr − ṽr,h‖L2 +
∥∥PRT

[
φ−1/2∇ · (φ(ṽr − ṽr,h))

]∥∥
L2

+ ‖vs − vs,h‖H1

+ ‖q̃f − q̃f,h‖L2 + ‖q − qh‖L2

≤ C
{
‖ṽr − πRTṽr‖L2 +

∥∥PRT

[
φ−1/2∇ · (φ(ṽr − πRTṽr))

]∥∥
L2

+ ‖q − PSq‖L2 + ‖vs − πSvs‖H1 + ‖q̃f − PRTq̃f‖L2

}
.

That is, if the solution is sufficiently regular, the approximation error is O(h).
The method as stated is locally non-conservative, but it can be modified to obtain
a locally conservative method. On rectangular meshes, the method can also be
implemented by an efficient cell-centered finite difference approximation of the
first equation [3]. In this case, ṽr can be eliminated locally, and a Stokes system
with not one but two pressures results. Moreover, superconvergence is sometimes
observed by this modified method.

Numerical results illustrate the performance of the mixed finite element method.
They also verify the convergence of the method up to the regularity of the solution.
If one replaces φ by, say max(φ, ǫ) to avoid any degeneracy, the condition number
of the linear system remains bounded as ǫ → 0+, unlike competing approaches
that require nonzero φ.
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Flow simulations in geology-based Discrete Fracture Networks

Géraldine Pichot

(joint work with Patrick Laug, Jocelyne Erhel, Romain Le Goc, Caroline Darcel,
Philippe Davy, Jean-Raynald de Dreuzy )

1. Motivation

The underground is a reservoir of natural resources (water, oil and gas, heat,...)
and a potential warehouse storage solution. Using these resources and storage fa-
cilities in a sustainable way requires a good understanding of the physical, chemical
and biological processes happening there. Also, the geometry of the subsurface
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couples these processes together. Here, numerical models are very useful: they
reduce the costs and risks of in situ experiments and allow long-term predictions.

2. Geometric model

At first, we need to build a geometric model of the subsurface. Observations and
experiments (investigations of drill cores and drill cuttings, lineament characteri-
zation, measurements of reflection seismics, transient electromagnetic soundings,
... [1]) give data for soil characterization and fracture locations. Fractures cannot
be neglected as they critically impact the response of subsurface systems through
their complex organisation over a broad range of scales. However, the information
collected via the measurements are local. To derive an image of the full geometry,
numerical models come into play. It is quite challenging to process tremendous
amounts of noisy data, scattered and at different scales. Nevertheless, hydroge-
ologists are able to derive models for the subsurface, and especially for fracture
systems [2]. The one we rely on is based on a spatial organization of fractures
satisfying two main regimes: a dilute regime for the smallest fractures, where they
can grow independently of each other, and a dense regime for which the density
distribution is controlled by the mechanical interactions between fractures [3, 4].
In these models, called UFM (likely Universal Fracture Model), the fracture size
distribution matches the observations and large fractures inhibit the smaller ones,
creating T-termination configurations. Models mix spatial dimensions as fracture
networks consist in a large number of 2D fractures interconnected in the 3D space
[5]. These models are implemented in a dedicated software, called UFMLab. UFM
networks may contain millions of fractures.

3. Flow problem

Let us focus on a simple process, which is the flow of water within the fractures.
The surrounding rock matrix is assumed impervious. The associated problem is
governed by the Poiseuille’s law and the mass conservation equation in each frac-
ture combined with continuity conditions at the intersections between fractures.
The transmissivity within the fractures is assumed heterogeneous and modeled by
random fields whose parameters are given by the experiments.

4. Mesh generation

The next step is to build a mesh of the domain. To easily enforce the continuity
conditions at the intersections, we request a mesh which takes the intersections
into account, either with matching or non-matching grids at the intersections.
However, even in the non-matching cases, the intricate configurations of the frac-
ture systems make it difficult for standard planar meshers to generate a mesh of
the geometry. The idea is then to discretize first the border and intersections to
build a geometric model, valid for the planar mesher. It implies automatic correc-
tions to build valid curve discretizations. These corrections are implemented in the



Reactive Flows in Deformable, Complex Media 2429

software BLSURF FRAC
1. Then a planar mesher is called, for example, BL2D [6] or

BAMG [7]. Up to now, the largest network successfully meshed with this technique
contains 508,339 fractures which generate 1,031,231 intersections. It is meshed in
15 minutes using the combination of BLSURF FRAC and BL2D, with 4 threads on a
PC Intel Core i7 4 cores CPU @ 2.90 GHz, 32GB RAM memory. The final mesh
contains 8,112,299 of triangles and 1,630,682 of intersection edges. Notice that
the computational time can be improved on a computer with more RAM memory
as memory swapping was detected during this numerical experiment. Also, we
identified some sequential parts of BLSURF FRAC that can be parallelized.

5. Numerical methods and implementation

The next step is to solve the flow problem efficiently. We propose to solve this
problem using a Mixed Hybrid Finite Elements Method (MHFEM) [8, 9, 10]. Pos-
sible non-matching grids at the intersections between fractures are handled by
using suitable Mortar conditions [11, 12, 13, 14, 15]. In both, the matching and
non-matching grids cases, we end up with a linear system whose matrix is sym-
metric positive definite. It is a sparse matrix with a L-shape structure. The linear
system can be solved either with a direct solver (Cholesky factorization) or with
an iterative solver (preconditioned conjugate gradient or multigrid). A way to im-
prove the computational time of iterative solvers is to use domain decomposition
techniques [16, 17]. We developed a Matlab code, called NEF-Flow, which imple-
ments the MHFEM either for matching or non-matching meshes, with sink/source
terms and contrasts in transmissivities. Efficiency is obtained using Matlab vector-
ization. For example, we solved the flow problem in the largest network described
above in 21 minutes on a PC Intel Core i7 4 cores CPU @ 2.90 GHz, 32GB RAM
memory with a direct solver. Here again memory swapping was detected. Further
numerical experiments are now performed with iterative solvers to reduce memory
requirements. Also to keep an accurate solution with less triangles, we are inves-
tigating the use of a higher order hybridizable discontinuous Galerkin technique,
the HHO method [18], combined with a posteriori error estimates [19] in order to
refine only the fractures that carry most of the flow.

Acknowledgments. The author thanks the organizers of the workshop for their
kind invitation. The author thanks the MFO and all its staff for the extremely
good working and living conditions provided at Oberwolfach.
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[1] Svensk Kärnbränslehantering AB (SKB), Site description of Forsmark at completion of the
site investigation phase. SDM-Site Forsmark, TR-08-05, Stockholm (2008).

[2] J. Maillot, P. Davy, R. Le Goc, C. Darcel and J.-R. de Dreuzy. Connectivity, permeability,
and channeling in randomly distributed and kinematically defined discrete fracture network
models. Water Resources Research, 52 (11), 8526–8545, (2016).

1http://pages.saclay.inria.fr/patrick.laug/logiciels/logiciels.html



2430 Oberwolfach Report 39/2018

[3] P. Davy, R. Le Goc, C. Darcel, O. Bour, J.-R. de Dreuzy and R. Munier. A likely univer-
sal model of fracture scaling and its consequence for crustal hydromechanics. Journal of
Geophysical Research: Solid Earth, 115 (B10) (2010).

[4] P. Davy, R. Le Goc and C. Darcel. A model of fracture nucleation, growth and arrest, and
consequences for fracture density and scaling. Journal of Geophysical Research: Solid Earth,
118 (4), 1393–1407 (2013).
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[13] J. Maryška, O. Severýn and M. Vohraĺık. Numerical simulation of fracture flow with a
mixed-hybrid FEM stochastic discrete fracture network model, Computational Geosciences,
8, pp. 217-234 (2004).

[14] G. Pichot, J. Erhel and J.-R. de Dreuzy. A mixed hybrid Mortar method for solving flow in
discrete fracture networks, Applicable Analysis, 89-10, pp. 1629-1643 (2010).

[15] G. Pichot, J. Erhel, and J.-R. de Dreuzy. A generalized mixed hybrid mortar method for
solving flow in stochastic discrete fracture networks. SIAM J. Sci. Comput., 34(1):B86–B105
(2012).

[16] B. Poirriez. Study and implementation of a domain decomposition method for the modeli-
sation of flow in 3D fracture networks, PhD Thesis, University of Rennes 1 (2011).

[17] G. Pichot, B. Poirriez, J. Erhel, and J.-R. De Dreuzy. A Mortar BDD method for solving
flow in stochastic discrete fracture networks. Domain Decomposition Methods in Science
and Engineering XXI, Lecture Notes in Computational Science and Engineering (LNCSE),
98 (2014).

[18] D. A. Di Pietro and A. Ern. A Hybrid High-Order locking-free method for linear elasticity
on general meshes. Comput. Meth. Appl. Mech. Engrg., 283:1–21 (2015).

[19] A. Ern and M. Vohraĺık. Polynomial-degree-robust a posteriori estimates in a unified setting
for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations. SIAM
J. Numer. Anal., 53, pp. 1058–1081 (2015).



Reactive Flows in Deformable, Complex Media 2431

Principles of Predictive Computational Science: Predictive Models of
Random Heterogeneous Materials and Tumor Growth

J.Tinsley Oden

(joint work with Faghihi, Daniel; Scarabosio, Laura; Wohlmuth, Barbara, and
Lima, Ernesto)

To set stage for specific developments and applications, this presentation begins
with an overview of the mathematical and philosophical foundations of predictive
computational science, the discipline concerned with the use of mathematical and
computational models to predict events in the physical universe in the presence
of uncertainties. It is argued that the principal sources of uncertainty are: the
system of reasoning (epistomology) selected to communicate logically notions of
uncertainty, the uncertainties in observational data, model selection, model pa-
rameters, and uncertainties due to dicretization errors. The Cox-Jaynes theory
of logical probability is advocated as a comprehensive framework for representing
uncertainty, it establishes that every extension of Aristotelian logic within uncer-
tainties is Bayesien, and that the logical theory, based on propositional Boolean
algebra, is isomorphic to the measure-based Kolmogorov theory of probability.
Thereafter, Bayesien inferences are used to quantify uncertainties in data, mod-
els, and parameters. Model selection using Bayesien arguments is taken up later.
Discretization error is quantified using a posteriori error estimation. Bayesien-
based methods for model calibration, selection, and then prediction of quantities
of interest are then described.

The discussion then proceeds to the development of predictive models of ran-
dom heterogeneous media. The notion of optimal control of modeling error as a
framework for generating sequences of surrogate models of lower dimension and
complexity than a ground-truth model of high fidelity is described. Applications
to problems in nano-manufacturing of semiconductors, random two-phase elas-
tic materials, and heat conduction in random two-phase materials are described.
There a greedy algorithm is developed whereby the domain of a stochastic model
of the random material is partitioned into subdomains and a sequence of surro-
gate models of increasing accuracy in approximation of local quantities of interest
(QoIs) is generated by successively adding fine-scale information until tolerances
in estimates of error in the QoIs are met. The method generalizes the approach
described in [1] to stochastic models. It is shown that the generation of sequences
of surrogate models of increasing accuracy provides a setting for implementing a
model-based version of the Multilevel Monte Carlo (MLMC) method for solving
the stochastic system. Examples are cited in which this adaptive model based
MLMC is substantially more efficient than the traditional MC method.

The presentation concludes with a discussion of OPAL, the Occam Plausibil-
ity Algorithm, which is presented as general framework for selection, calibration,
and validation of computational models based, in part, on the idea of posterior
Bayesien plausibilities. This methodology is applied to the selection of predictive
models of tumor growth, selected from sets of models based on continuum mixture
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theory, and well-known hallmarks of cancer. In particular experiments with lab-
oratory animals injected with brain cancer cells (glioma) and then radiotherapy
are presented in which plausible and valid models are selected from sets of up
to 39 models, some involving many parameters. Very accurate predictions of the
observed tumor mass, as approximated via MRI images, are obtained. Further
details on the work described in his presentation can be found in references [2, 3].
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Parameter-robust stability and strongly mass-conservative
discretization of multi-permeability poroelasticity model

Johannes Kraus

(joint work with Qingguo Hong, Maria Lymbery, Fadi Philo)

Multiple-network poroelastic theory (MPET) has been introduced into geomechan-
ics [1, 2] to describe mechanical deformation and fluid flow in porous media as a
generalization of Biot’s theory [3, 4]. The deformable elastic matrix is assumed to
be permeated by multiple fluid networks of pores and fissures with differing poros-
ity and permeability. The biological MPET model captures flow across scales and
networks in soft tissue and can be used as an embedding platform for more specific
models, e.g. to describe water transport in the cerebral environment [8].

In an open domain Ω ⊂ Rd, d = 2, 3, the unknown physical variables in the
MPET flux based model are the displacement u, fluxes vi and corresponding
pressures pi i = 1, . . . , n. Imposing proper boundary and initial conditions and
using the backward Euler method for time discretization one has to solve a static
problem in each time step, which after rescaling and proper variable substitutions
can be represented as an equation of the form

(1) A
[
uT ,vT

1 , . . . ,v
T
n , p1, . . . , pn

]T
=
[
fT ,0T , . . . ,0T , g1, . . . , gn

]T
where
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A :=




−div ǫ− λ∇div 0 . . . . . . 0 ∇ . . . . . . ∇

0 R−1
1 I 0 . . . 0 ∇ 0 . . . 0

... 0
. . .

... 0
. . .

...
...

...
. . . 0

...
. . . 0

0 0 . . . 0 R−1
n I 0 . . . 0 ∇

−div −div 0 . . . 0 α̃11I α12I . . . α1nI
... 0

. . .
... α21I

. . . α2nI
...

...
. . . 0

...
. . .

...
−div 0 . . . 0 −div αn1I αn2I . . . α̃nnI




is a scaled operator, R−1
i := τ−1K−1

i α2
i , αpi

:=
cpi
α2

i

, βii :=
∑n

j=1
j 6=i

βij , αij :=
τβij

αiαj
,

α̃ii := −αpi
− αii, i, j = 1, · · · , n.

The constants αi are known in the literature as Biot-Willis parameters, cpi
are

referred to as the constrained specific storage coefficients, βij = βji are the network
transfer coefficients coupling the different networks [8]. Moreover, Ki denotes the
hydraulic conductivity of the ith network and τ the time step size.

We make the rather general and reasonable assumptions that

λ > 0, R−1
1 , . . . , R−1

n > 0, αp1
, . . . , αpn

≥ 0, αij ≥ 0, i, j = 1, . . . , n.(2)

For convenience, let vT = (vT
1 , . . . ,v

T
n ), p

T = (p1, . . . , pn), z
T = (zT

1 , . . . , z
T
n ),

qT = (q1, . . . , qn) and v, z ∈ V = V1 × · · · × Vn, p, q ∈ P = P1 × · · · × Pn.
Under proper boundary and initial conditions, system (1) has the following weak
formulation: Find (u;v;p) ∈ U ×V ×P , such that for any (w; z; q) ∈ U ×V ×P

there holds

(ǫ(u), ǫ(w)) + λ(divu, divw)−
n∑

i=1

(pi, divw) = (f ,w)

(R−1
i vi, zi)−(pi, divzi) = 0, i = 1, . . . , n,

−(divu, qi)− (div vi, qi) + α̃ii(pi, qi) +

n∑

j=1
j 6=i

αij(pj , qi) = (gi, qi), i = 1, . . . , n,

or, equivalentely, A((u;v;p), (w; z; q)) = F (w; z; q) for all (w; z; q) ∈ U×V ×P ,
U = {u ∈ H1(Ω)d : u = 0 on Γu,D},Vi = {vi ∈ H(div,Ω) : vi · n = 0 on Γpi,N},
Pi = L2(Ω), and Pi = L2

0(Ω) if Γu,D = Γ = ∂Ω.
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We define R−1 := max{R−1
1 , . . . , R−1

n }, λ0 := max{1, λ}, and the following
n× n matrices

Λ1 :=




α11 −α12 . . . −α1n

−α21 α22 . . . −α2n

...
...

. . .
...

−αn1 −αn2 . . . αnn


 , Λ2 :=




αp1
0 . . . 0

0 αp2
. . . 0

...
...

. . .
...

0 0 . . . αpn


 ,

Λ3 :=




R 0 . . . 0
0 R . . . 0
...

...
. . .

...
0 0 . . . R


 , Λ4 :=




1
λ0

. . . . . . 1
λ0

...
...

...
...

1
λ0

. . . . . . 1
λ0



, Λ :=

4∑

i=1

Λi.

From the above definitions of αij , βii and βij = βji, it is obvious that Λi are
symmetric positive semidefinite (SPSD) for all i = 1, 2, 3, 4, and Λ3 is symmetric
positive definite (SPD). Hence, Λ and Λ−1 are SPD and can therefore be used to
define norms.

The crucial idea is to equip the Hilbert spaces U ,V ,P with parameter-matrix-
dependent norms ‖ · ‖U , ‖ · ‖V , ‖ · ‖P induced by the following inner products:

(u,w)U = (ǫ(u), ǫ(w)) + λ(divu, divw),(3a)

(v, z)V =

n∑

i=1

(R−1
i vi, zi) + (Λ−1Div v,Div z),(3b)

(p, q)P = (Λp, q),(3c)

where pT = (p1, . . . , pn), v
T = (vT

1 , . . . ,v
T
n ), (Div v)T = (div v1, . . . , div vn).

Then the bilinearform A((·; ·; ·), (·; ·; ·)) related to the weak formulation of (1)
is bounded with respect to the norms induced by (3), see [7].

Moreover, if for the spaces U ,V ,P there hold the inf-sup conditions

inf
q∈Pi

sup
v∈Vi

(divv, q)

‖v‖div‖q‖
≥ βd, i = 1, . . . , n,(4)

inf
(q1,··· ,qn)∈P1×···×Pn

sup
u∈U

(divu,
n∑

i=1

qi)

‖u‖1‖
n∑

i=1

qi‖
≥ βs(5)

for some constants βd > 0 and βs > 0 then the considered MPET model is uni-
formly stable, see [7]. This means that there exists a constant ω > 0 independent
of the parameters λ,R−1

i , αpi
, αij for all i, j = 1, . . . , n and independent of the

number of networks n, such that for W := U × V × P we have

inf
(u;v;p)∈W

sup
(w;z;q)∈W

A((u;v;p), (w; z; q))

(‖u‖U + ‖v‖V + ‖p‖P )(‖w‖U + ‖z‖V + ‖q‖P )
≥ ω.
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The above stability result has first been proven in [5] for Biot’s model of consol-
idation and generalized in [7] for the multi-permeability flux-based poroelasticity
model. It induces (norm-equivalent) block-diagonal operator preconditioners that
can be transferred to the discrete level subject to the existence of discrete inf-sup
conditions analogous to (4) and (5), which can be verified for several well-known
combinations of finite element spaces. In [7] a family of strongly mass-conservative
discretizations has been analyzed in this context using anH(div)-conforming SIPG
method to discretize the elastic subproblem. The authors establish discrete inf-
sup stability for the multi-permeability flux-based poroelasticity model and prove
optimal error estimates. A comparison with the mixed formulation introducing a
total pressure unknown, as proposed in [6], is subject of ongoing research.
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Biot-Stokes modeling of fluid-poroelastic structure interaction

Ivan Yotov

Fluid-poroelastic structure interaction refers to the coupling of a free incompress-
ible viscous fluid with a fluid within a poroelastic medium. Applications include
groundwater flow in fractured aquifers, subsidence and compaction in oil and gas
extraction, arterial flows, and industrial filters. In these applications, it is impor-
tant to model properly the interaction between the free fluid with the fluid within
the porous medium, and to take into account the effect of the deformation of the
medium. The mathematical models are systems of PDEs that couple through phys-
ically meaningful interface conditions free fluid models such as Stokes or Navier-
Stokes equations with Darcy flow. In regions involving deformable porous media
the Darcy flow is coupled with elasticity and modeled by the Biot system of poroe-
lasticity. Let Ω ⊂ Rd, d = 2, 3, be a union of non-overlapping regions Ωf and Ωp.
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Here Ωf is a free fluid region with flow governed by the Stokes equations and Ωp

is a poroelastic material governed by the Biot system. Let Γfp = ∂Ωf ∩ ∂Ωp.
Let (u⋆, p⋆) be the velocity-pressure pair in Ω⋆, ⋆ = f , p, and let ηp be the dis-
placement in Ωp. Let µ > 0 be the fluid viscosity, let f⋆ be the body force terms,
and let q⋆ be external source or sink terms. Let D(uf ) and σf (uf , pf) denote,
respectively, the deformation rate tensor and the stress tensor:

(1) D(uf ) =
1

2
(∇uf +∇uT

f ), σf (uf , pf) = −pfI+ 2µD(uf ).

In the free fluid region Ωf , (uf , pf) satisfy the Stokes equations

−∇ · σf (uf , pf ) = ff in Ωf × (0, T ](2)

∇ · uf = qf in Ωf × (0, T ],(3)

where T > 0 is the final time. Let σe(ηp) and σp(ηp, pp) be the elastic and
poroelastic stress tensors, respectively:

σe(ηp) = λp(∇ · ηp)I+ 2µpD(ηp), σp(ηp, pp) = σe(ηp)− αppI,

where 0 < λmin ≤ λp(x) ≤ λmax and 0 < µmin ≤ µp(x) ≤ µmax are the Lamé
parameters and 0 ≤ α ≤ 1 is the Biot-Willis constant. The poroelasticity region
Ωp is governed by the quasi-static Biot system

−∇ · σp(ηp, pp) = fp, µK−1up +∇pp = 0, in Ωp × (0, T ],

∂

∂t
(s0pp + α∇ · ηp) +∇ · up = qp in Ωp × (0, T ],

where s0 ≥ 0 is a storage coefficient and K the symmetric and uniformly positive
definite rock permeability tensor.

Previous work has involved developing and analysis of variational formulations,
robust, stable, and accurate discretization techniques, and efficient coupling and
time-splitting algorithms.

A non-iterative time-partitioned scheme with applications to blood flow is de-
veloped in [7]. The arterial wall is modeled with a thin permeable elastic lamina
and a poroelastic structure, leading to a coupled Navier-Stokes and Biot system
with an elastic interface. This work includes the development of a mathematical
model with physically justifiable interface conditions, deriving an energy estimate
of the fully coupled weak formulation, and analyzing the stability and approxima-
tion error of an efficient time-partitioned scheme. The effect of poroelasticity is
studied in [5].

A Nitsche’s coupling approach for coupled fluid flow with poroelastic media
based on the Stokes-Biot problem is developed in [6], which allows for non-matching
grids and time-partitioning for the mixed Darcy formulation. The continuity of
normal flux condition, which is essential for the mixed Darcy problem, is imposed
weakly using a penalty term. In addition to a complete stability and error analysis
of the time-partitioned scheme, it is shown that it provides an optimal precondi-
tioner for the monolithic scheme.
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An alternative formulation using a Lagrange multiplier to impose weakly the
normal flux interface condition is developed in [4, 3]. The advantage of this
approach is improved accuracy of the interface coupling, ability to handle non-
matching grids through mortar finite elements, and the suitability of the formu-
lation for multiprocessor parallel implementation via non-overlapping domain de-
composition. The well-posedness of the semidiscrete formulation is established
using tools from differential algebraic equations. Stability and finite element error
analysis is also performed.

In [8] we develop a reduced model for the Stokes-Biot system for flow in fractured
media using a lower dimensional model in the fracture by averaging the Stokes
equation in the transverse direction and deriving appropriate interface conditions
between the fracture and the reservoir. This approach has improved efficiency and
similar accuracy when compared to the full-dimensional model. We analyze the
stability and temporal and spatial accuracy of the discrete formulation.

In [2] we study flow and transport in fractured poroelastic media using Stokes
flow in the fractures and the Biot model in the porous media. The Stokes-Biot
model is coupled with an advection-diffusion equation for modeling transport of
chemical species within the fluid. The stability and convergence of the coupled
finite element scheme are analyzed.

In [1] we propose and analyze a nonlinear model for fluid-poroelastic structure
interaction with quasi-Newtonian fluids that exhibit a shear-thinning property. We
establish existence and uniqueness of the solution for two alternative formulations
of the proposed model. The analysis is performed in non-Hilbert spaces.

References

[1] I. Ambartsumyan, V. J. Ervin, T. Nguyen, and I. Yotov. A nonlinear Stokes-Biot model
for the interaction of a non-Newtonian fluid with poroelastic media I: well-posedness of the
model. arXiv:1803.00947, 2018.

[2] I. Ambartsumyan, E. Khattatov, T. Nguyen, and I. Yotov. Flow and transport in fractured
poroelastic media. Submitted to International Journal on Geomathematics.

[3] I. Ambartsumyan, E. Khattatov, I. Yotov, and P. Zunino. Simulation of flow in fractured
poroelastic media: a comparison of different discretization approaches. In Finite difference
methods, theory and applications, volume 9045 of Lecture Notes in Comput. Sci., pages
3–14. Springer, Cham, 2015.

[4] I. Ambartsumyan, E. Khattatov, I. Yotov, and P. Zunino. A Lagrange multiplier method for

a Stokes–Biot fluid–poroelastic structure interaction model. Numer. Math., 140(2):513–553,
2018.

[5] M. Bukac, I. Yotov, R. Zakerzadeh, and P. Zunino. Effects of poroelasticity on fluid-structure
interaction in arteries: a computational sensitivity study. volume 14 ofMS&A. Model. Simul.
Appl., pages 197–220. 2015.

[6] M. Bukac, I. Yotov, R. Zakerzadeh, and P. Zunino. Partitioning strategies for the interaction
of a fluid with a poroelastic material based on a Nitsche’s coupling approach. Comput.
Methods Appl. Mech. Engrg., 292:138–170, 2015.



2438 Oberwolfach Report 39/2018

[7] M. Bukac, I. Yotov, and P. Zunino. An operator splitting approach for the interaction be-
tween a fluid and a multilayered poroelastic structure. Numer. Methods Partial Differential
Equations, 31(4):1054–1100, 2015.

[8] M. Bukac, I. Yotov, and P. Zunino. Dimensional model reduction for flow through fractures
in poroelastic media. ESAIM Math. Model. Numer. Anal., 51(4):1429–1471, 2017.

Computational models for the interaction of fractures and wells with
poroelastic media

Paolo Zunino

The simulation of multiscale, multiphysics, multimodel systems is among the grand
challenges in Computational Science & Engineering. In this context, the applica-
tion of topological (or geometrical) model reduction techniques plays an essential
role. For example, small inclusions of a continuum can be described as zero-
dimensional (0D) or one-dimensional (1D) concentrated sources in order to reduce
the computational cost of simulations. However, concentrated sources lead to
singular solutions that still require computationally expensive graded meshes to
guarantee accurate approximation. Many problems in this area are not well investi-
gated yet, such as the coupling of three-dimensional (3D) continua with embedded
(1D) networks, although it arises in applications of paramount importance such as
microcirculation, flow through perforated media and the study of reinforced ma-
terials. We will shed light on these unexplored mathematical problems by casting
them in a new unified framework to formulate and approximate coupled partial
differential equations (PDEs) on manifolds with heterogeneous dimensionality aris-
ing from topological model reduction. The main computational barrier consists in
the ill-posedness of restriction operators (such as the trace operator) applied on
manifolds with co-dimension larger than one.

Our ultimate objective is to exploit topological model reduction to perform large
scale simulations of biomechanics of tumor micro-environment and geomechanics
of fractured reservoirs. In this way, we will help the constantly growing effort to
create a cyber-infrastructure among quantitative sciences and medicine. Similar
considerations apply to geomechanics, where we will enable to combine state of
art fracture propagation models with large scale reservoir simulation, for a better
exploitation of the geological resources and safer control of the environmental
impact.

We will overcome the computational challenges of approximating PDEs on man-
ifolds with high dimensionality gap by means of nonlocal restriction operators that
combine standard traces with mean values of the solution on low dimensional man-
ifolds. This approach was originally proposed in [3, 4]. It has recently attracted
the attention of several researchers from the perspective of theory and applications.
On one hand, it requires particular attention to prove existence of a solution in
the weak (or variational) sense [6, 5, 7, 10]. On the other hand, it is relevant
for applications to microcirculation [1, 2, 8, 9]. This new approach has the fun-
damental advantage to enable the approximation of the problem using Galerkin
projections on Hilbert spaces, which can not be otherwise applied because of reg-
ularity issues. The corresponding error analysis will naturally inform about the
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concurrent modeling and discretization errors in the approximation of the orig-
inal fully dimensional problem. In the case of problems with many inclusions
organized in complex geometrical structures (such as networks), we will avoid ex-
cessively refined computational meshes exploiting finite element approximations
enriched with specific non polynomial basis functions (XFEM) that depend on the
proposed model reduction strategy and on the dimensionality of the problem. We
call this new computational approach the geometric embedded multiscale method
(GEMME).
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Fully-implicit solvers for coupled poromechanics of fractured reservoirs

Nicola Castelletto

(joint work with Massimiliano Ferronato, Andrea Franceschini, Randolph R.
Settgast, Joshua A. White)

Accurate modeling of poromechanical effects in subsurface formations can play a
significant role in making predictions, quantifying uncertainty, and assessing risk
in many systems, such unconventional oil and gas reservoirs, hydraulic fracturing
operations, and geologic carbon storage. The coupled behavior of this multiphysics
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problem is notoriously difficult to model, primarily due to large time- and length-
scale disparities, nonlinearities introduced as a result of the coupling between
mechanics and flow, and nonlinear constitutive relationships.

From a mathematical standpoint, isothermal multiphase flow in a deforming
reservoir is governed by a set of coupled partial differential equations (PDEs)
enforcing mass and linear momentum conservation, possibly subject to appropri-
ate constraint equations that govern the contact behavior whenever faults and/or
fractures are present. Generally speaking, the discretization and linearization of
coupled poromechanics PDEs produce sequences of challenging Jacobian linear sys-
tems, irrespective of the numerically discretization used. The simplest approach
to seek the solution would consist of splitting the global multiphysics problem into
single-physics sub-problems that are addressed exploiting one-way or staggered
in-time coupling strategies. Although appealing, it is typically hard to determine
a priori when such decoupling assumptions produce an accurate approximation.
Therefore, a fundamental requirement to obtain reliable modeling predictions is
the availability of tools allowing for robust two-way coupling. Two-way coupled
algorithms can be grouped into two families, namely sequential–implicit (SI) and
fully–implicit (FI) methods. Here, we focus on FI approaches, which can provide
unconditionally stable schemes and good convergence properties.

The main objective of this work is to develop efficient preconditioning tech-
niques for accelerating the fully-implicit solution by a Krylov solver of linear sys-
tems encountered in two relevant applications: (i) Lagrange multiplier-based fault
mechanics simulations based on a mixed finite element approach, and (ii) multi-
phase poromechanics based on a mixed finite element-finite volume formulation.
A unified preconditioning strategy is devised based on a block triangular factor-
ization that exploits the inherent block structure of the Jacobian matrix, the focus
being on the design of effective approximations for the Schur complement and its
inverse. We propose novel Schur complement approximations that are designed
using either physically-based or pure algebraic arguments. For the fault mechan-
ics application we explored two strategies. The first option is based on a Least
Square Commutator (LSC) strategy [2] and provides an explicit representation
of the Schur complement inverse that can be applied via three matrix-by-vector
products involving sparse and block-diagonal matrices. The second alternative
makes use of a Factorized Sparse Approximate Inverse (FSAI) technique [3] that
constructs an approximate Schur complement replacing the displacement stiffness
matrix by an explicit sparse approximate inverse. As to multiphase poromechan-
ics, the proposed approach builds upon the Fixed-Stress strategy [6, 4, 5, 7] to
construct a reduced saturation-pressure Schur complement for which a two-stage
Constrained Pressure Residual (CPR) preconditioning approach [8, 9, 1] is then
used. Robustness and scalability of the proposed framework is investigated on
numerical examples based on synthetic and realistic datasets.

Acknowledgement: Portions of this work were performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory under
Contract DE-AC52-07NA27344.
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Towards the fully dynamic system of poroelasticity: Efficient
variational space-time methods

Markus Bause

(joint work with M. Anselmann, S. Becher, U. Köcher, G. Matthies, F. A. Radu,
F. Schieweck)

Information on flow in deformable porous media has become of increasing impor-
tance in various fields of natural sciences and technology. Consequently, quanti-
tative methods, based on numerical simulations, are desirable in analyzing exper-
imental data and designing theories based on mathematical concepts. Typically,
the quasi-steady Biot system (cf. [7]) is used to model flow in deformable porous
media. However, in the case of larger contrast coefficients that stand for the ra-
tio between the intrinsical characteristic time and the characteristic domain time
scale the full hyperbolic-parabolic Biot–Allard system with memory (cf. [5]) has
to be considered. Such applications can be found in, for instance, noise protec-
tion, material science polymers for lightweight design and filter technology. In
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dimensionless form the Biot–Allard system is given by

κ ∂2tu−∇ · (C : ε(u)−α p) + ∂t

∫ t

0

A
(
(t− ζ)/κf

)

·
(
ψfF (x, ζ)−∇p(x, ζ)− κf∂

2
ζu(x, ζ)

)
dζ = ψF ,

(1)

M∂tp+∇ · (α ∂tu) +∇ ·
∫ t

0

A
(
(t− ζ)/κf

)

·
(ψf

κf
F (x, ζ)− 1

κf
∇p(x, ζ)− ∂2ζu(x, ζ)

)
dζ = 0 .

(2)

Here, the unknown u is the effective solid phase displacement and the unknown
p is the effective pressure. Moreover, ε(·) denotes the symmetrized gradient or
strain tensor and A(·) the dynamic permeability (cf. [5]).

The numerical approximation of (1), (2) comprises several complexities:

A.) A unified discretization technique in space and time for second-order hy-
perbolic and parabolic equations is required.

B.) An efficient treatment of the convolution integrals within this discretiza-
tion framework has to be developed.

C.) A monolithic solver or an iterative splitting scheme with guaranteed sta-
bility properties needs to be provided for the fully-discrete system.

The first of these three requirements is particularly addressed here. We aim at
approximating Eqs. (1), (2) by generalized space-time finite element methods that
admit solutions of higher-order regularity in the time variable. They offer the
potential that the convolution integrals involving second order time derivatives
of the displacement variable can be approximated in a natural way. Here we
introduce such schemes for the scalar-valued wave equation that can be studied as
a prototype model for Eq. (1) if the convolution term is omitted. Variational space-
time discretization schemes for parabolic problems and iterative coupling schemes
for the quasi-static Biot system were recently investigated in, e.g., [2, 3, 6].

Prototype model (wave equation). Let X := L2(0, T ;V )× L2(0, T ;H), with
H = L2(Ω) and V = H1

0 (Ω). Further, let the right-hand side function f ∈
L2(0, T ;H) and the initial values u0 ∈ V and u1 ∈ H be given. With F = {0, f}
and U0 = {u0, u1} we consider the scalar-valued wave problem rewritten as first-
order in time evolution problem:

Find u ∈ X, with U = {u0, u1}, such that

(3) ∂tU +AU = F for t ∈ (0, T ) , U(0) = U0.

The operator A : V ×H 7→ H ×V ′ is defined by A =

(
0 −I
A 0

)
with the identity

mapping I : H 7→ H and A : V 7→ V ′ is given by 〈Au, v〉 = 〈∇u,∇v〉 for all v ∈ V .

Continuous Galerkin–Petrov approximation with C1-regular lifting. For
a time mesh Mτ := {I1, . . . , In}, with In = (tn−1, tn] and I = I1 ∪ · · · ∪ In, let

Pk(In;Vh) :=
{
wτ : In 7→ Vh | wτ (t) =

∑k
j=0W

jtj ,W j ∈ Vh

}
,
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with a conforming finite element space Vh ⊂ V , for brevity. Choosing a discontin-
uous discrete test basis with basis functions supported on a single subinterval In,
our space-time discretization of Eq. (3) reads as follows (cf. [1] for details):

For n = 1, . . .N find Uτ,h ∈ (Pk(In;Vh))
2, with Uτ,h(tn−1) = Uτ,h|In−1

(tn−1)
for n > 1 and Uτ,h(t0) = U0,h, such that

(4) B̃n
h (Uτ,h, Vτ,h) = Qn(〈〈F, Vτ,h〉〉)

for all Vτ,h ∈ (Pk−1(In;Vh))
2 is satisfied.

In Eq. (4), the bilinear form B̃n
h (·, ·) is defined by

B̃n
h (W,V ) := Qn(〈〈∂tW,V 〉〉) +Qn(〈〈AhW,V 〉〉) ,

with the inner product 〈〈·, ·〉〉 of (L2(Ω))2 and the Gauß-Lobatto quadrature for-

mula Qn(g) :=
τ
2

∑k
µ=0 ω̂µg(tn,µ) ≈

∫
In
g(t) dt.

To lift the approximation Uτ,h ∈ (Xk
τ,h(Vh))

2 of Eq. (4), where Xk
τ,h(Vh) :=

{wτ ∈ C(I ;Vh) | wτ |In ∈ Pk(In;Vh)}, to a function that is C1-regular in time, we
introduce an operator Lτ that is defined recursively by

Lτ : Xk
τ (B) 7→ Xk+1

τ (B) ∩C1(Ī , B) , Lτwτ (t) = wτ (t)− cn−1(wτ )ϑn(t) ,

cn−1(wτ ) :=

{
∂twτ |In(tn−1)− ∂tLτwτ (0) , for n = 1 ,

∂twτ |In(tn−1)− ∂tLτwτ |In−1
(tn−1) , for n > 1 ,

and with ϑn ∈ Pk+1(In;R) such that ϑn(tn,µ) = 0 for the Gauss–Lobatto quadra-
ture points tn,µ, for µ = 0, . . . , k on In and dtϑn(tn−1) = 1.

In [1], for k ≥ 2 and the discrete initial value U0,h := {Rhu0, Rhu1}, with the
Ritz projection Rh : V 7→ Vh, the following estimates of optimal order are proved

for the error Ẽ(t) = {ẽ 0(t), ẽ 1(t)} = U(t)−LτUτ,h(t) of the lifted approximation:

‖ẽ 0(t)‖+ ‖ẽ 1(t)‖ . τk+2 + hr+1 , ‖∇ẽ 0(t)‖ . τk+2 + hr , t ∈ I ,

‖ẽ 0‖L2(I;H) + ‖ẽ 1‖L2(I;H) . τk+2 + hr+1 , ‖∇ẽ 0‖L2(I;H) . τk+2 + hr .

The first two estimates show superconvergence of the scheme (4) in the nodes tn.
Beyond the increased order of convergence in time, the computationally cheap
lifting offers potential for a-posteriori error control and adaptive time stepping.

Generalized Galerkin–Petrov approximation with higher-order regular-
ity in time. The previous framework can be exploited further to construct space-
time finite element approximations of higher-order regularity in time. For this, we
combine the concept of variational time discretization with the idea of collocation;
cf. [4] for ode systems. This yields the following family of schemes:
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Let k ≥ 3. For n = 1, . . . , N and given Uτ,h|In−1
(tn−1) for n > 1 and

Uτ,h|I1(t0) = U0,h for n = 1, find Uτ,h|In ∈ (Pk(In;V ))2 such that

Uτ,h|In(tn−1) = Uτ,h|In−1
(tn−1) ,

∂stUτ,h|In(tn−1) = −Ah∂
s−1
t Uτ,h|In(tn−1) + Ph∂

s−1
t F (tn−1) ,

∂pt Uτ,h|In(tn) = −Ah∂
p−1
t Uτ,h|In(tn) + Ph∂

p−1
t F (tn) ,

for 1 ≤ s ≤ ⌊k−1
2 ⌋ =: S and 1 ≤ p ≤ ⌊k

2 ⌋ and
∫

In

(
〈〈∂tUτ,h, Vτ,h〉〉 + 〈〈AhUτ,h, Vτ,h〉〉

)
dt = QH

n (〈〈F, Vτ,h〉〉)

for all Vτ,h ∈ (P0(In;Vh))
2.

The discrete solution satifies Uτ,h ∈ (CS(I;Vh))
2. Our first numerical experiments

yielded very promising results with respect to accuracy and efficiency for this fam-
ily of generalized variational space-time approximation schemes. For a challenging
test problem, its superiority over the C0-regular scheme of Eq. (4) is observed.

References
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Pore Scale Simulation — Potential and Limitations

Ulrich Rüde

(joint work with Dominik Bartuschat, Martin Bauer, Simon Bogner, Sebastian
Eibl, Ehsan Fattahi, Christian Godenschwager, Harald Köstler, Christoph

Rettinger, Florian Schornbaum, Christoph Schwarzmeier)

By definition exa-scale computers, as they will will soon become available, will
perform 1018 operations per second. Thus, if a porous medium consisted of 109

grains, we can perform a Gigaflop, i.e. 109 operations per particle and in each
second. Furthermore, if the pore space were to be resolved by 103 cells for each
of the 109 particles, then the flow domain were resolved by 1012 cells. Even
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then an exascale system would deliver a MegaFlop —that is the a performance
of a high end PC in 1990— for each of these cells. This simple argument shows
that technological progress in computer technology may open the door to new
approaches end will enable simulations of quite large systems on the particle or
pore scale.

This, however, requires novel mathematical models, fundamentally new meth-
ods, and ultra scalable algorithms that can be implemented for modern super-
computer architectures. This is necessary since computer technology will in the
forseeable future not be able to produce processing units operating at much more
than one GHz, i.e. each stream of operands will produce results at a rate of ap-
proximately 109 per second. Exascale can thus only be reached when at any time
109 such operand streams are executed concurrently.

The dominating constraint is that the algorithms must be massively parallel.
Therefore models and modeling approaches must be carefully chosen to permit a
scalable implementation. Additionally, we must expect that the models must have
significant size for being suitable for exascale systems. E.g. we may expect that
a finite element or finite volume model will only be able to exploit a degree of
concurrency of 109 when it has significantly more than 109 degrees of freedom.

As an alternative and as a complement to macroscopic and homogenized models
for porous media processes, we present here parallel algorithms for coupling multi-
body systems with hydrodynamics as a way to model multiphase flows in 3D
that have a fluid carrier phase and a suspended solid phase. Specifically, we
study a fully resolved approach where each particle is represented as an individual
geometric entity. Moving particles are represented with a Lagrangian approach
and are treated as rigid objects that can interact through frictional collisions. The
fluid is simulated by the Lattice Boltzmann method (LBM) and interacts with the
particulate phase via fluid-structure interaction techniques. The simulations rely
critically on parallel algorithms and their efficient implementation.

For the massively parallel granular dynamics simulations on distributed memory
architectures [25, 21] a domain partitioning approach is proposed [34]. Special
algorithms for massively parallel granular dynamics simulations [2, 20] with fully
resolved rigid particles on distributed memory architectures are developed, where
collisions are geometrically detected [8, 12] and the physical response is modelled
with hard contacts [24, 27] using the paradigm of measure differential inclusions.

The global frictional multi-contact problem leads to a complementarity problem
[2] that is solved using a parallel non-linear block Gauss-Seidel method. Excel-
lent strong and weak scaling has been demonstrated [26]. The robustness and
scalability is assessed on peta-scale supercomputers with up to 458 752 processor
cores. Such granular media simulations can reach an unprecedented resolution of
up to ten billion (1010) non-spherical particles and contacts [26]. This approach
has shown promising results when used to set up virtual porous media [32] and
can thus be used as a basis for porous media flow simulations, such as in [10, 11].
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For modeling the fluid phase, the LBM is employed [7, 23, 13, 1]. Many im-
plementations of the LBM [18, 19, 16] are specifically desigend for parallel com-
puters. A carefully crafted architecture-aware implementation is realized in the
waLBerla framework [14] that achieves excellent absolute performance so that
complex flow computations with more than a trillion (1012) lattice cells can be
performed [17]. These methods can be extended with adaptive mesh refinement
techniques (AMR). [30, 31] demonstrate the scalability to the range beyond a
million parallel processes for AMR methods including load balancing.

Coupled simulations with particles embedded in the fluid add additional com-
plexity. Here it is essential that the coupling mechanism is designed so that both
the Lagrangian particle simulation and the Eulerian flow simulation can be par-
allelized together without excessive communication. The simulation model devel-
oped here and its implementation allows fluid simulations in 3D with millions of
interacting particles [15] suspended in the flow. The fluid-structure-interaction
relies on explicit time stepping [29, 28]. This simulation framework can model
particles of arbitrary shape [4], includes the so-called lubrication correction [22, 9]
and can be extended to include electrostatic effects [3, 5]. A thorough analysis
demonstrates that these techniques achieve excellent computational performance
[3, 28]. Future research will also address multiphase flows involving a particulate
phase combined with a liquid and a gaseous phase [6].

This work illuminates the potential of pore scale resolved models on supercom-
puters. However, many aspects of the methods are still poorly understood and
thus significant further research will be needed to better understand their proper-
ties and to develop them into reliable predictive tools.
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Steps towards lattice Boltzmann methods for deformable media

Ehsan Fattahi

(joint work with Ivan Pribec, Thomas Becker)

In the past three decades, the lattice Boltzmann method (LBM) has been de-
veloped into a powerful simulation tool for generalized hydrodynamics, covering
diverse fields [1]. These capabilities make LBM an attractive option also for de-
formable systems arising in the life sciences such as biological tissues or food
products and their intermediates (e.g., bread and pasta dough). In both of these
applications mass (and heat) transfer is intricately coupled with fluid flow and
mechanical deformation.

Existing approaches to simulate deformable media with LBM include diffuse-
interface methods (in connection with a multiphase description), level-set meth-
ods, immersed boundary methods, and coordinate transformations. All of these
methods build upon the rigid (Eulerian) lattice structure of LBM. For specific
deformable systems, however, a Lagrangian perspective, where the computational
nodes follow the material, might be preferred. This requires significant changes
in the lattice Boltzmann method, either by modifying the lattice velocities and
equilibria or, by switching to an off-lattice Boltzmann method (OLBM). For the
latter case, we have developed a new meshfree lattice Boltzmann method.

Our first example comes from the pasta industry. If pasta is dried too fast,
excessive internal moisture gradients will result in stresses and ultimately a failure
in the form of cracks. The drying-induced stresses can be avoided by appropriate
temperature and humidity control. This requires an understanding of the internal
moisture movement. Mathematically, this process can be described by

(1)
∂m

∂t
+ us · ∇m = ∇ · (D(m)∇m),
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where m(x, t) is the moisture concentration, D(m(x, t)) is the moisture diffusivity
that depends on the local moisture content, and us(x, t) is the shrinkage velocity
of the solid matrix. The drying air acts on the surface of the pasta and can be
abstracted to a Robin boundary condition:

(2) −D(m)
∂m

∂n
= k (y(m)− y∞) .

Here, n is the normal vector at the boundary, k is the convective mass transfer
coefficient, y∞ is the specific humidity of the bulk air and y = y(m) is a suitable
moisture desorption isotherm. Equations similar to (1) and (2) can also be written
for the transport of heat. Finally, a link is needed between the solids velocity us

and the changes in moisture content. In general, this missing link can be obtained
from a momentum balance along with a model of the rheological behavior of pasta.
In the one-dimensional case, the shrinkage velocity can be determined using some
simplifying assumptions on the dough and moisture incompressibility.

To solve Eq. (1) we have used the deformable-lattice Boltzmann method devel-
oped in Ref. [2]. This method uses a non-equidistant spatial grid and changing
lattice velocities in order to allow for shrinkage. Furthermore, the collision step
is performed in moment space in order to subtract the convective term associated
with shrinkage from the local moisture diffusion. Instead of a first-order finite
difference at the boundary, we apply a quadratic polynomial (or cubic spline)
extrapolation method 3.

The deformable-lattice Boltzmann method does not generalize directly to the
multi-dimensional case of Eq. (1). A workaround is to preserve the static velocity
lattice and use an off-lattice Boltzmann method where time and space are dis-
cretized separately instead. Since we would like to move the nodes dynamically,
a flexible spatial discretization method is needed. Meshless methods, based upon
scattered point interpolation techniques such as moving least squares or radial ba-
sis functions, can fulfill this requirement. As a first step towards a meshless lattice
Boltzmann method, we have implemented an incompressible flow solver for a static
domain. The solver is based upon Strang splitting of the discrete Boltzmann equa-
tion [3] combined with a Lax-Wendroff method for the simple convection equation.
As a first test case we have solved the lid-driven cavity flow (see Fig. 2) using a
weighted least squares approach and monomial basis functions. These allow us to
use non-uniform point sets, non-integer velocity lattices.

Future work will focus on merging the deformable-lattice collision step with
the meshless discretization for a multi-dimensional deformable-lattice Boltzmann
method.
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Figure 1. The D2Q7, D2Q9, D2S9, and D2Q11 velocity sets.
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Figure 2. Lid-driven cavity flow with a non-uniform point set
calculated by the meshless LBM algorithm.
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Upscaling of a phase field formulation for reactive transport

Carina Bringedal

(joint work with Iuliu Sorin Pop)

Reactive flow with changing pore geometry includes a free boundary at the pore
scale. Chemical reactions as mineral precipitation and dissolution can alter the
pore structure, where the fluid-grain interface evolves according to a reaction rate.
Problems with evolving interfaces are usually formulated through the location
of the sharp interfaces, but we here propose a phase field formulation that allows
formulating the relevant processes on a larger, stationary domain with the evolving
interface appearing as a diffuse transition of non-zero width. In the limit as the
diffuse interface width approaches zero, the usual sharp interface formulation is
obtained. The pore scale phase field formulation is upscaled to the Darcy scale
using homogenization. For the momentum equation, Darcy’s law is obtained where
the permeability depends on the evolving phase field.

We consider a simple reactive transport problem, where a fluid of constant
density ρf and viscosity µ flow through a domain, transporting a solute which
can precipitate and become a mineral, and where the mineral also can dissolve.
Extending the phase field models for mineral precipitation and dissolution found
in [4, 6] to include fluid flow, we can formulate the phase field model

αξ2∂tφ+ 6P ′(φ) =
3

4
ξ2∇2φ− 4αξφ(1 − φ)f(u),(1a)

∂t
(
φ(u − u∗)

)
+∇ · (φqu) = D∇(φ∇u),(1b)

∇ · (φq) = 0,(1c)

ρf∂t(φq) + ρf∇ · (φq ⊗ q) = −φ∇p+ µ∇2(φq) − (1− φ)q,(1d)

where q is the fluid velocity, p fluid pressure, u solute concentration, D is ion
diffusivity, and u∗ is the mineral concentration. The reaction rate f(u) depicts
precipitation minus dissolution rate and can be as in [1, 5]. Further, φ is a phase
field having the value 1 in the fluid and 0 in the mineral, with a smooth transition
of width O(ξ) between them. The double well potential P (φ) = φ2(1−φ)2 ensures
that φ is attracted to these two values. The constant α is connected to the strength
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of the surface tension [4]. Note that the phase field model is formulated for both
fluid and mineral, and is hence on a stationary domain. Using matched asymptotic
expansions with suitable matching conditions, as outlined in [3], and following
similar steps as in [4], one can show that the phase field formulation (1) reduces to
the expected sharp interface model (similar as those found in e.g. [1, 5, 6]) when
ξ approaches zero.

We formulate the phase field model equations (1) on a domain Ωε with small,
periodically distributed perforations, mimicking a porous medium, as sketched in
Figure . The perforations are non-reactive grains which the phase field equations
are not defined on. Hence, the perforations do not change with time.

Figure 1. Structure of porous medium.

We identify the scale separator as ε = l/L, where l is a typical length scale
at the pore (e.g., the width of the right-most box in Figure ) and L is a typical
length scale at the larger domain scale (e.g., the width of the domain seen to
the left in Figure ). We reformulate the phase field model slightly to incorporate
dependence on ε. Since the volume of a grain is proportional to εd, d being the
spatial dimension, so is the volume of the surrounding phases. Hence, the width
ξ should be proportional to ε. The relaxation parameter α is scaled so that αξ2

remains constant. To ensure we are in the viscosity dominated regime where Darcy
law is valid, ρf and µ is scaled using ρf = ε2ρf0 and µf = ε2µf0. Hence,

α1∂tφ
ε + 6P ′(φε) = α2ε

2∇2φε − α3φ
ε(1− φε)f(uε) in Ωε,(2a)

∂t
(
φε(uε − u∗)

)
+∇ · (φεqεuε) = D∇(φε∇uε) in Ωε,(2b)

∇ · (φεqε) = 0 in Ωε,(2c)

ρf0ε
2
(
∂t(φ

εqε) +∇ · (φεqε ⊗ qε)
)
= −φε∇pε

+ µf0ε
2∇2(φεqε)− (1− φε)qε in Ωε,(2d)

∇φε · nε = 0 on Γε,(2e)

φε∇uε · nε = 0 on Γε,(2f)

qε = 0 on Γε.(2g)

In the phase field equation, α1 = α0ξ
2
0 , α2 = 3ξ20/4, α3 = 4α0ξ0. We have used

supscript ε in the unknowns to indicate dependence on the highly oscillatory be-
havior. Further, Γε is the union of all the internal boundaries for the perforations.
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We apply the homogenization ansatz, namely that the unknowns can be written
as a series expansion in terms of ε with explicit dependence on the microscopic
variable;

φε(t,x) = φ0(t,x,y) + εφ1(t,x,y) + ε2φ2(t,x,y) + . . . ,

where a local variable y is introduced to describe the highly oscillatory dependence,
and where x will see the effective behavior. Hence, y is only defined for single pores
P , as seen in the right-most part in Figure . Following steps similar as in [2, 5],
an upscaled, effective model for (2) is obtained: For macroscopic x,

∂t
(
φ0(u0 − u∗)

)
+∇x · (φ0q0u0) = D∇x(A∇xu0) in Ω,

∇x · (φ0q0) = 0 in Ω,

φ0q0 = −K∇xp0 in Ω,

where the fluid geometry φ0 is updated by solving

α1∂tφ0 + 6p′(φ0) = α2∇2
yφ0 − α3φ0(1 − φ0)f0(u0) in P,

∇yφ0 · nP = 0 on ΓP ,

and effective matrices A and K are found through

aij(t,x) =
1

|P |

∫

P

φ0(δij + ∂yi
vj)dy, where

∇y · (φ0∇yv
j + φ0ej) = 0 in P,

φ0(∇yv
j + ej) · nP = 0 on ΓP ,

and

kij(t,x) =
1

|P |

∫

P

φ0w
j
i dy, where

φ0(ej +∇yΠ
j) +∇2

y(φ0w
j)− (1− φ0)w

j = 0 in P,

∇y · (φ0wj) = 0 in P,

wj = 0 on ΓP ,

together with periodicity requirements in y across ∂P . Note that u0 and p do
not depend on y, while the macroscopic phase field φ0 is defined as φ0(t,x) =
1
|P |

∫
P
φ0(t,x,y)dy.

Due to the periodicity, the cell problems are decoupled. Each cell problem must
be solved for every macroscopic point x, but due to the decoupling they can be
solved in parallell. Hence, from an implementation point of view, the separation
between x and y can speed up a numerical simulation. However, the micro scale
y still needs to resolve the evolution of the phase field. This usually requires a fine
enough grid to resolve the interface width.
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Model reduction for parameterized systems and inverse problems

Mario Ohlberger

(joint work with Stephan Rave, Felix Schindler, Tobias Wedemeier)

The numerical approximation of mathematical models for reactive flow in de-
formable complex structures naturally leads to large scale (non-)linear systems
that have to be solved repeatedly for many time steps and parameter variations.
Modern model order reduction methods are able to reduce the computational com-
plexity of such problems drastically by taking advantage of the smoothness and
approximation properties of the solution manifold of the underlying parameterized
systems, where time is also considered as a parameter. Particular instances of pro-
jection based model order reduction methods are Reduced Basis Methods (RBM)
or Balanced Truncation (BT). We refer e.g. to [1] for tutorials on these methods.
As a particular application we consider mathematical modeling and simulation
of degradation processes in batteries. In order to capture detailed dynamics of
the underlying electrochemical processes, we consider simulation in spatially re-
solved porous electrodes. The charge rate is considered as a parameter and a
full charging or discharging sweep is simulated. Model reduction of the resulting
non-linear advection-diffusion-reaction system is obtained by the POD(-Greedy)
RBM, where the nonlinearities are interpolated using our framework of empirical
operator interpolation [2]. With these reduction techniques, the CPU time of a
resolved Finite Volume approximation could be reduced from about 7.5 hours to
1.5 minutes [8]. As there is no robust and efficient rigorous a posteriori error esti-
mate for this system, we have used the hierarchical error indicator from [7] for a
detailed degradation model with lithium plating in [6].

While the online efficiency of these model reduction methods is very convincing,
there are still major drawbacks and limitations. Most importantly, the construc-
tion of the reduced system in the offline phase is extremely CPU-time and memory
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consuming. For practical applications, it is thus necessary to derive model reduc-
tion techniques that do not rely on a classical offline/online splitting but allow for
more flexibility in the usage of computational resources. A promising approach
with this respect is localized model reduction with adaptive enrichment [12, 3],
which can also be combined with local randomized training as recently investi-
gated in [4]. Efficient a posteriori error estimates for parabolic problems were
derived in [10] and a first proof of concept for the application to a nonlinear Finite
Volume battery model with resolved electrode geometry is given in [9].

As a next step, we investigate the benefits of localized model reduction with
adaptive enrichment for the solution of large scale inverse problems or PDE con-
strained optimization [13, 11], i.e.

(1)

Find µ∗ = argmin J
(
u(µ), µ

)

subject to Cj

(
u(µ), µ

)
≤ 0 ∀j = 1, . . . ,m,

µ ∈ P





with a compact parameter set P ⊂ RP for P ∈ N. In (1), the state variable u(µ)
is given as the weak solution of the following parameterized problem

(2)
−∇ ·

(
A(µ)∇u(µ)

)
= f(µ) (in Ω)

u(µ) = 0 (on ∂Ω)

}

In (2), Ω ⊂ Rd for d = 1, 2, 3 is a bounded domain and A denotes a diffusion
tensor.

To this end, we derive rigorous a posteriori error estimations for the state vari-
able u(µ) and its first and second derivatives with respect to the parameters. As
the derivatives are solutions of variational problems that are very similar to that
of the state equation itself, we adopt the locally conservative flux reconstruction
technique from [12] to obtain suitable error estimates for the derivatives. Under
certain regularity assumptions on the objective functional J , we can then also con-
trol the first and second order derivatives of the objective functional with respect
to the parameters, i.e. for a localized reduced basis approximation uN (µ) of u(µ)
we have computable upper bounds ηJ (µ), η∇J (µ) and η∇2J (µ) such that

|J(u(µ))− J(uN (µ))| ≤ ηJ (µ),

||∇µJ(u(µ))−∇µJ(uN (µ))||2 ≤ η∇J (µ),

||∇2
µJ(u(µ))−∇2

µJ(uN (µ))||2 ≤ η∇2J(µ).

Following the ideas in [5], we finally derive the following a posteriori error
estimate for the approximation of the optimization problem.

Theorem 1. Let µ∗ denote the exact solution of (1) and µ∗
N the solution of the

PDE constrained optimization, where the exact weak solution u(µ) of the state
equation (2) is replaced by a localized reduced basis approximation uN(µ). Let the
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condition ||(∇2
µJ(uN (µ∗

N )))−1|| η∇2J(µ
∗
N ) < 1 be satisfied and let us define

ζN := ||∇J(uN (µ∗
N ))||2 + η∇2J (µ

∗
N ),

ρN :=
||∇2J(uN (µ∗

N ))
−1||2

1− ||∇2J(uN (µ∗
N ))

−1||2η∇2J (µ
∗
N )
,

LN(r) := sup
µ∈Br(µ∗

N
)

||∇2J(uN (µ∗
N ))−∇2J(uN(µ))||2 + η∇2J (µ) + η∇2J(µ

∗
N ).

If the saturation condition 2ρNLN(2ρNζN ) ≤ 1 is satisfied, we have the following
a posteriori error bound on the optimal parameter:

||µ∗ − µ∗
N ||2 ≤ 2ρNζN .
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by Karasözen B, Manguoglu M, Teuer-Sezgin M, Göktepe S, Ugur Ö, 317–331, Springer,
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A simple a posteriori estimate on general polytopal meshes with
applications to complex porous media flows

Martin Vohraĺık

(joint work with Soleiman Yousef)

The present contribution shows how to derive simple a posteriori error estimates
applicable on general polytopal meshes. For the model steady linear single-phase
Darcy porous media flow, they take the form

‖K−1/2(u− uh)‖L2(Ω) ≤
{
∑

K∈TH

η2K

}1/2

,

where K is the diffusion tensor, u is the unknown exact Darcy velocity, uh is its
available numerical approximation, TH is a mesh of the computational domain Ω
where each elementK is a polygon (in two space dimensions), polyhedron (in three
space dimensions), or a polytope in general, and ηK can be completely calculated
from uh.

We develop a framework including any lowest-order locally conservative method
like the mimetic finite difference [3], multi-point finite volume [1], hybrid and
mixed finite volume [4], multipoint flux mixed finite element [10], mixed virtual
element [2], or mixed finite element [7, 8] ones. Our focus is to derive estimates
that can be easily coded, cheaply evaluated, and efficiently used in practical simula-
tions. In particular, we want to avoid the physical construction and coding of any
simplicial submesh as well as solution of local problems that are sometimes used
in a posteriori error estimation. The evaluation of our estimates is fully explicit
and merely consists in a matrix-vector multiplication of the form

(1)

η2K := (Uext
K )tÂMFE,KU

ext
K + S

t
K ŜFE,KSK + 2(Uext

K )tSextK − 2FK |K|−1
1
tM̂FE,KSK .

Here Uext
K is an algebraic vector collecting the degrees of freedom corresponding

to normal fluxes of uh over the faces of the mesh element K, SextK and SK are
respectively algebraic vectors collecting the degrees of freedom corresponding to
pressure values in element faces/vertices, FK expresses the element sources, |K| is
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the measure of the elementK, and ÂMFE,K , ŜFE,K , and M̂FE,K are three small ma-
trices immediately constructed from the element geometry (respectively the mixed
finite element mass matrix, the finite element stiffness matrix, and the finite ele-
ment mass matrix). This probably gives the easiest and most practically accessible
application to polytopal meshes of the general methodology of H1-conforming po-
tential reconstruction and H(div,Ω)-conforming flux reconstruction, see [6] and
the references therein, as all the ingredients are readily available. A numerical
illustration can be found in Figure 1.

(a) Energy error (b) Reference triang. estimate (c) Simple polygonal estimate

Figure 1. Actual and estimated error distributions, entire do-
main (top) and zoom (bottom), single-phase Darcy flow, 2D

We next show that, in extension of [5] and the references therein, structurally the
same results can also be obtained for a model nonlinear steady diffusion problem,
where the guaranteed a posteriori error estimate takes the form

c
1/2
K ‖u− uk,i

h ‖L2(Ω) ≤ ηk,isp + ηk,ilin + ηk,ialg + ηk,irem.

Here cK is a monotonicity constant, uk,i
h is a numerical approximation available on

the current mesh TH , the current step k ≥ 1 of an iterative linearization, and the

current step i ≥ 1 of an iterative algebraic solver, and ηk,isp , ηk,ilin , and η
k,i
alg respec-

tively correspond to the three arising error components because of discretization,
linearization, and algebraic solver; ηk,irem is a small adaptively-controlled remainder
term. Importantly, all the estimators still take the form of the simple matrix-vector
multiplication (1), with the same local matrices as in the linear case.
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Finally, we apply the entire methodology to the context of numerical approxi-
mations of unsteady nonlinear systems of partial differential equations describing
multiphase compositional porous media Darcy flows. The estimates are still fully
computable and feature no unknown generic constant. They are crucially valid
at each stage of the overall solution algorithm: on each time step n ≥ 1, each
linearization step k ≥ 1, and each linear solver step i ≥ 1. They also allow to dis-
tinguish different error components and design adaptive stopping criteria for the
involved iterative solvers, as well as adaptive choice of space and time meshes; an
example of evolution of the total and algebraic estimates in function of algebraic
solver iterations can be found in Figure 2, left, whereas the benefits of the adaptive
algebraic solver stopping criterion can be appreciated in Figure 2, right.
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Figure 2. Standard resolution vs. resolution with adaptive stop-
ping criterion of the algebraic solver: total estimator and its al-
gebraic component (left) and number of BiCGStab iterations per
time step (right), black-oil model, 3D

On the practical level, this contribution presents a posteriori error estimates
that can be readily implemented into (reservoir engineering) production codes on
general polytopal meshes with a minimal overhead, yet give fully computable,
unknown-constant-free, and theoretically justified error bounds. All the details
can be found in [9].
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Effective interface transmission conditions for transport processes
through thin heterogeneous membranes

Markus Gahn

(joint work with Maria Neuss-Radu and Peter Knabner)

Introduction: We deal with the mathematical modeling of nonlinear transport
processes through a thin heterogeneous membrane. The aim is the rigorous deriva-
tion of homogenized models, where the thin layer is replaced by a lower dimen-
sional interface, and the transport processes through the membrane are described
by effective interface transmission conditions.

More precisely, in the microscopic model, we consider a system of nonlinear
reaction–diffusion equations in a domain consisting of two bulk regions separated
by a thin layer ΩM

ǫ with a periodic heterogeneous structure. The thickness of the
layer and the period within the layer are of order ǫ. Additionally, the equations
within the layer depend on the scaling parameter ǫ. The aim is the derivation of
a homogenized model for ǫ → 0, the solution of which approximates the solution
of the microscopic model. For ǫ → 0 the thin layer reduces to an interface Σ
separating the two bulk-regions. The limit equations in the bulk-regions carry
the same structure as in the microscopic model. However, the crucial point is the
derivation of the effective transmission conditions across the interface Σ. In fact,
one has to deal with the coupling between the bulk-domains and the thin layer,
the heterogeneous structure within the thin layer and the periodic coefficients
in the microscopic equations, the singular limit, when the thin layer reduces to
an interface, and the nonlinear reaction-kinetics. To overcome these difficulties,
we used the method of two-scale convergence and the unfolding operator in thin
domains.
The microscopic model: We consider a domain Ω = Σ× (−H,H) ⊂ Rn, where
Σ is a rectangle in Rn−1, which consists of two bulk-domains Ω+

ǫ and Ω−
ǫ separated

by the thin layer ΩM
ǫ = Σ× (−ǫ, ǫ) with a periodic heterogeneous structure. The
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interface between Ω±
ǫ and ΩM

ǫ is denoted by S±
ǫ , i. e., we have

Ω = Ω+
ǫ ∪ΩM

ǫ ∪ Ω−
ǫ ∪ S+

ǫ ∪ S−
ǫ .

We consider the following problem: Find u±ǫ : (0, T ) × Ω±
ǫ → Rm and uMǫ :

(0, T )× ΩM
ǫ → Rm, such that

∂tu
±
i,ǫ −D±

i ∆u
±
i,ǫ = f±

i (t, x, u±ǫ ) in (0, T )× Ω±
ǫ ,

1

ǫ
∂tu

M
i,ǫ − ǫγ∇ ·

(
DM

i

(
x
ǫ

)
∇uMi,ǫ

)
=

1

ǫ
gi
(
x
ǫ , u

M
ǫ

)
in (0, T )× ΩM

ǫ ,

with γ ∈ [−1, 1] and Neumann-zero boundary condition on the outer boundary ∂Ω
together with suitable initial conditions. The parameter γ describes the strength of
the diffusion within the thin layer and we distinguish three different cases: γ = −1,
γ ∈ (−1, 1), and γ = 1. A crucial point, is the transmission condition across the
interfaces S±

ǫ between the layer and the bulk-domains. We consider two different
types of transmission conditions:

Continuity of the solutions and the normal fluxes:

u±ǫ = uMǫ on (0, T )× S±
ǫ ,

−D±
i ∇u±i,ǫ · ν = −ǫγDM

i

(
x
ǫ

)
∇uMi,ǫ · ν on (0, T )× S±

ǫ .

Nonlinear Neumann-transmission conditions:

−D±
i ∇u±i,ǫ · ν = −h±i

(
u±ǫ , u

M
ǫ

)
on (0, T )× S±

ǫ ,

−ǫγDM
i

(
x
ǫ

)
∇uMi,ǫ · ν = −hM,±

i

(
x
ǫ , u

±
ǫ , u

M
ǫ

)
on (0, T )× S±

ǫ .

The nonlinear functions on the right-hand sides describe reaction and transport
processes and are assumed to be uniformly Lipschitz continuous. We proved exis-
tence and uniqueness of a microscopic solution uǫ = (u+ǫ , u

M
ǫ , u

−
ǫ ).

The macroscopic model: Our aim is to pass to the limit ǫ → 0 when the thin
layer reduces to an interface Σ between the bulk-domains Ω+ and Ω−. Then, the
microscopic solutions uǫ = (u+ǫ , u

M
ǫ , u

−
ǫ ) converge in a suitable sense to a limit

function u0 = (u+0 , u
M
0 , u

−
0 ) which is the solution of a macroscopic model. The

limits in the bulk-domains u+0 and u−0 are solutions of the equation

∂tu
±
i,0 −D±

i ∆u
±
i,0 = f±

i (t, x, u±0 ) in (0, T )× Ω±.

The challenge is the derivation of the interface conditions across Σ. These condi-
tions are coupled to cell or local problems on Z = Y ×(−1, 1) = (0, 1)n−1×(−1, 1).
The case γ = 1 (low diffusion) with continuous transmission conditions in was
treated in [3]. In [1], we considered the case γ ∈ [−1, 1) for continuous trans-
mission conditions across S±

ǫ , and in [2] the case γ ∈ [−1, 1] for the nonlinear
Neumann-transmission conditions. In the following, we state some of our results
for the critical cases γ = ±1.

Theorem 1. For γ = −1 and continuous transmission conditions across S±
ǫ , the

limit function u0 = (u+0 , u
M
0 , u

−
0 ) with

uM0 ∈ L2((0, T ), H1(Σ))m ∩H1((0, T ), L2(Σ))m
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is the unique weak solution of

∂tu
±
i,0 −D±

i ∆u
±
i,0 = f±

i (t, x, u±0 ) in (0, T )× Ω±,

u+0 = u−0 = uM0 on (0, T )× Σ,

|Z|∂tuMi,0 −∇x̄ ·
(
DM,∗

i ∇x̄u
M
i,0

)
= −[Di∇ui,0 · ν]Σ

+

∫

Z

gi(y, u
M
0 )dy on (0, T )× Σ,

together with suitable initial conditions and Neumann-zero boundary conditions on

∂Ω and ∂Σ. The homogenized diffusion-coefficient DM,∗
i ∈ R(n−1)×(n−1) is given

by

(
DM,∗

i

)
kl

=

∫

Z

DM
i (y)

(
∇wi,k + ek

)
·
(
∇wi,l + el

)
dy,

and the wi,k are the solutions of the cell-problems

−∇ ·
(
DM

i

(
∇wi,j + ej

))
= 0 in Z,

−DM
i

(
∇wi,j + ej

)
· ν = 0 on S+ ∪ S−,

wi,j is Y -periodic with

∫

Z

wi,jdy = 0,

with S± = Y × {±1}.

The concentrations are continuous at Σ. However, the jump of the normal fluxes
across Σ is described by a reaction-diffusion equation i. e., a dynamic Wentzell-
boundary condition. For γ ∈ (−1, 1) the diffusion term in the equation on Σ
vanishes.

Theorem 2. For γ = 1 and nonlinear Neumann-transmission conditions across
S±
ǫ , the limit function u0 = (u+0 , u

M
0 , u

−
0 ) with

uM0 ∈ L2
(
(0, T ), L2(Σ,Hper)

)m ∩H1
(
(0, T ), L2(Σ,Hper)

′
)m
,

where Hper =
{
u ∈ H1(Z) : u is Y -periodic

}
, is the unique weak solution of

∂tu
±
i,0 −D±

i ∆u
±
i,0= f±

i

(
u±0
)

in (0, T )× Ω±,

−D±
i ∇u±i,0 · ν= −

∫

Y

h±i
(
u±0 , u

M
0 (·t, ·x̄, ·ȳ,±1

)
dȳ on (0, T )× Σ,

∂tu
M
i,0 −∇y ·

(
DM

i ∇yu
M
i,0

)
= gi

(
·y, uM0

)
in (0, T )×Σ×Z,

−DM
i ∇yu

M
i,0·ν = −hM,±

i

(
·ȳ, u±0 (·t, ·x̄, 0), uM0 (·t, ·x̄, ·ȳ,±1)

)
on (0, T )×Σ×S±,

uM0 is Y -periodic with respect to the last variable.

The system is completed by suitable initial conditions and Neumann-zero boundary
conditions at the lateral boundary.
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We see that the limit function uM0 of the membrane concentration uMǫ is de-
scribed by a local problem with respect to the microscopic variable y ∈ Z, depend-
ing on an additional parameter x̄ ∈ Σ. Hence, in every macroscopic point x̄ ∈ Σ,
we have to solve a local problem on Z.
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Upscaling reactive transport in an evolving porous medium

Nadja Ray

(joint work with Jens Oberlander, Peter Frolkovic)

We consider porous media applications that contain evolving solid phases. Deriv-
ing models that describe such structural changes at a variety of scales is essential
to understanding the intimate link between structure and function. With refer-
ence to the soil’s heterogeneity, we aim to develop a mathematical model at the
pore scale, perform its upscaling to transfer our model from the pore scale to the
macroscale and investigate the resulting model numerically.

At the pore scale, we consider a coupled system of partial differential equa-
tions. It consists of transport equations for the species’ concentrations while tak-
ing the processes of convection and diffusion into account. In our model, structural
changes in the porous medium’s composition may occur due to heterogeneous re-
actions in- or decreasing the ratio of the solid phase. The interface between an
attached layer of immobile chemical species and the fluid is characterized by means
of a level-set.

We determine a macroscopic model description based on the pore-scale model
applying two-scale asymptotic expansion in a level set framework as introduced
in [1]. A micro-macro model emerges that is comprised of several levels of cou-
plings: Macroscopic equations describing transport at the scale of the porous
medium (macro scale) include averaged time- and space-dependent coefficient
functions. These functions may explicitly be computed by means of auxiliary
cell problems (micro scale). Finally, the pore space in which the cell problems are
defined is time- and space dependent. For the fully continuum description, the
pore space’s geometry is determined by means of the level-set equation and infor-
mation from the transport equation’s solutions is used to determine the explicit
geometric structure (micro-macro scale).

For evaluation purposes, we complement our theoretical results with numerical
computations. For the level set equation an upwind scheme described by Rouy
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and Tourin in [2] is applied. (Extended) Finite Element Methods [3] are used for
the evaluation of the cell problems and the transport equation. Ultimately, we
investigate the dissolution of an array of calcite grains in the micro-macro context.
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Numerical models for fault reactivation based on Nitsche method and
XFEM

Luca Formaggia

(joint work with Anna Scotti)

The exploitation of subsoil by human activities, like oil and gas exploitation,
geothermal storage and CO2 sequestration, may alter the stress field and cause
nearby faults to activate and trigger (micro)seismicity. It is a matter of great
concern and several techniques have been developed in the last years to simulate
this phenomenon.

We are currently investigating numerical techniques based on the following as-
sumptions ad modeling choices:

• A poro-elasticity model where the effect of fault in the flow and pore
pressure field is taken into account by a hybrid dimensional technique,
following [12, 7];

• Quasi-static assumption: the time scale of mechanical response is suffi-
ciently small compared to the evolution of the flow so that it is possible
to consider the material in mechanical equilibrium at every time;

• Frictional contact only, since typically the fault is subject to a strongly
compressing stress field. The frictional contact is modeled by Coulomb’s
law;

• Use of Nitsche’s penalization approach to express the contact conditions.
This allows to employ standard functional spaces. The presence of dis-
continuities in the effective stress field and fluid velocity at the internal
interface that represents the fault is accounted for by employing eXtended
Finite Elements (XFEM), as in [7, 4] (where however the coupled poroe-
lasticity problem is not considered);

• Operator splitting technique techniques based on the so-called fixed-stress
splitting [13, 2] to be able to treat the mechanical problem separately from
the fluid problem.
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We assume that the domain Ω ⊂ R2 is completely cut by a fault Γ, modeled as a
planar interface that subdivides Ω into Ω+ and Ω−. Thus Γ = int(∂Ω+ ∩ ∂Ω−).
We can identify a normal nΓ to Γ and we use the notation [[f ]] and {f} for the
jump and average of f across Γ, respectively. We set ΩΓ = Ω \ Γ.

In this short note it is not possible to give the full derivation of the model, we
just give the description of the final differential problem. We indicate with q and
p the Darcy’s velocity and pressure in ΩΓ, respectively, and by u the displacement
of the rock matrix. While, qΓ and pΓ are Darcy’s flux and pressure in the fault
Γ, respectively. The total Cauchy stress σ = σ(u, p) takes into account of the
combined action of the solid and fluid that compose the rock. According to Biot’s
theory it is expressed as

(1) σ = σ′(u)− bpI,

where I is the identity tensor and σ′ the effective stress that accounts for the action
of the solid part, and b the Biot’s coefficient. We assume small deformations and
elastic behaviour, so we define the strain tensor as ε(u) = 1

2 (∇u +∇Tu) and we
have

σ′(u) = λ tr(ε(u)) + 2µε(u),

λ and µ being the Lamè parameters, which we assume to be both strictly positive
and bounded in ΩΓ. We assume that the fluid viscosity is constant throughout the
domain, and in the following K indicates the permeability scaled with viscosity,
which, in general, is a symmetric positive definite tensor with bounded components
in ΩΓ. As detailed in [9], we assume that the permeability in the fracture can

be decomposed into a normal, K̂n and a tangential component K̂τ , to take into
account that fault resistance to flow may be different in the normal and tangential
direction. The reduced model for the fracture makes use of effective permeabilities,
which scale with fracture aperture. In particular, we define

KΓ = lΓK̂τ , η =
lΓ

K̂n

.

We assume that 0 < KΓ ≤ KΓ(x) ≤ KΓ and 0 < η ≤ η(x) ≤ η, for almost all
x ∈ Γ.

With this definitions, the differential model in the bulk and in the fracture
reads:





∂

∂t

(
1

M
p+ b divu

)
+ div q = f

K−1q+∇p = ρfg

−divσ(u, p) = −ρg

in ΩΓ t > 0,(2)




lΓ
∂

∂t

(
1

M
pΓ

)
+ divτ qΓ − [[q · nΓ]] = fΓ

K−1
Γ qΓ +∇τ pΓ = ρfg

in Γ t > 0.(3)

Here, M is the rock compressibility, f and fΓ source terms representing possible
injection/extraction of fluids, g the gravity acceleration, ρf is the (constant) fluid
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density, while ρ is the density of the rock, which is related to that of the fluid,
ρf , and that of the solid matrix, ρs, by ρ = φρf + (1 − φ)ρs, φ being the fluid
porosity (which for simplicity we assume constant). Finally, divτ and ∇τ are the
divergence and gradient operator on the fracture plane.

The problem is completed by appropriate boundary and initial conditions, which
we not deatil here for the sake of space, and coupling conditions on Γ, which can
be written for the fluid problem as

(4)

{
η{q · nΓ} = [[p · nΓ]],

η0[[q · nΓ]] = {p · nΓ} − pΓ,

where η0 = ξ0η and ξ0 > 0 is a closure parameter of the model, usually taken equal
to 1/12, while for the mechanical model we have a Coulomb friction condition since
we assume that the fault may only act as a potentially sliding surface: at each
time t > 0 and on Γ,

(5)





[[unΓ
]] = 0,

[[σnΓ
]] = 0,

[[τ ]] = 0,

G ≤ 0,

∃β ≤ 0 s.t [[u̇tΓ ]] = β{τ}
βG = 0.

We have used the following notation for the tangential and normal components of
the Cauchy stress and displacement on Γ:

σnΓ
= (σ · nΓ) · nΓ, σ′

nΓ
= (σ′ · nΓ) · nΓ,

σnΓ
= σnΓ

· nΓ, σ′
nΓ

= σ′
nΓ

· nΓ, τ = σ · nΓ − σnΓ
, τ ′ = σ′ · nΓ − σ′

nΓ
,

and unΓ
= unΓ

· nΓ = (u · nΓ)nΓ, utΓ = u− unΓ
. The quantity G is defined as

G = |{τ}|+ µfσ
′
nΓ
,

where µf is the friction coefficient and σ′
nΓ

is a reference value of the compressive
part of the normal component of the effective stress on the fault, which may be
taken as σ′

nΓ
= min(0, {σ′

nΓ
}). Thus, the friction condition states that slip may

occur only if the modulus of the tangential stress reaches the critical value −µfσ
′
nΓ

.
The problem is tackled by resorting to a particular operator-splitting tech-

nique, called fixed-stress splitting, which provides an unconditionally stable time
advancing procedure, and whose details may be found in the cited literature. An
advantage of this type of splitting for the problem at hand, is that it decouples
the fluid equations from the mechanical one. In particular, for the latter we have
that within each time step tn ≤ t ≤ tn+1, we need to solve an iterative procedure
of the type

(6) − divσ′(u(k+1) = ρg − b∇p(k) in ΩΓ,
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where p(k) comes from the solution of a modified problem for the fluid, coupled
with suitably rewritten friction conditions on Γ, namely





[[u
(k+1)
nΓ

]] = 0,

[[σ
(k+1)
nΓ

]] = 0,

[[τ (k+1)]] = 0,

G(k+1) ≤ 0,

∃β(k+1) ≤ 0 s.t.[[u
(k+1)
tΓ − un

tΓ ]] = β(k+1){τ (k+1)},
G(k+1)β(k+1) = 0.

We can then focus for the solution of a “standard” Coulomb friction problem.
Several techniques may be adopted, for instance treating the related variational
inequality by Lagrange multipliers, as in [10, 11, 8]. In our work we want to exploit
the flexibility of a Nitsche treatment of the interface conditions, a technique already
exploited for similar problems in [6, 3, 1, 5]. The main original idea in our research
is to reinterpret the problem as a control problem.

Indeed, given a slip displacement β = [[utΓ − un
tΓ ]] ∈ B ⊂ H

1/2
00 (Γ), (we are

omitting the suffix (k + 1)) the use of Nitsche approach allows us to write the
finite element discretization of (6) in the form: find u = u(β) ∈ Vh ⊂ H1(Ωγ) s.t.

(7) a(u,v) = F (v) + h(β,v), ∀v ∈ Vh,

where a(·, ·) is a symmetric and coercive bilinear form on Vh, F is a linear func-
tional that incorporates the effect of forcing terms and boundary conditions, while

h(β,v) =

∫

Γ

αtβ · [[vtΓ ]]−
∫

Γ

{τ (v)} · β,

enforces the given slip, αt > 0 being the Nitsche penalization parameter. In
operator form, we may write

Au(β) = F +Hβ.

which identifies β as the control parameter. The observed quantity is {τ (u)},
which will be written as Cu. The key is then to find a suitable functional J(γ) =
J(Cu(γ),γ) whose minimum coincides with an approximation of the Coulomb
friction conditions.

In this setting the problem may be set as: Find β such that

β = argminγ∈B J(Cu(γ),γ),

under the constraint

Au(γ) = F +Hγ.

At the time being we are trying different functionals J and different strate-
gies for the solution of the control problem. The preliminary results are rather
encouraging.

The advantage of the technique is that it can readily be implemented in a
non-conforming discretization setting, like eXtended Finite Elements, and it does
not require to add new degrees of freedom for the Lagrange multipliers. It gives
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also freedom in the choice of the functional, which may be extended to take into
account other possible constraints.
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Dr. Géraldine Pichot

INRIA Paris
Equipe SERENA
CS 42112
2, Rue Simone Iff
75589 Paris Cedex 12
FRANCE



2472 Oberwolfach Report 39/2018

Prof. Dr. Iuliu Sorin Pop

Faculty of Sciences
Hasselt University
Building D
Agoralaan
3590 Diepenbeek
BELGIUM

Prof. Dr. Mario Putti

Department of Mathematics
University of Padova
via Trieste 63
35121 Padova
ITALY

Prof. Dr. Florin Adrian Radu

Department of Mathematics
University of Bergen
Postboks 7803
5020 Bergen
NORWAY

Dr. Nadja Ray

Department Mathematik
Universität Erlangen
Cauerstrasse 11
91058 Erlangen
GERMANY

Dr. Carmen Rodrigo Cardiel

Departamento de Matematicas
Universidad de Zaragoza
Edificio de Matemáticas, planta 1
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