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Abstract. This workshop brought together two distinct communities: “flat”
geometers, studying the moduli of flat surfaces, and Teichmüller dynamics,
and algebraic geometers studying the moduli space of curves. While both
communities study similar or often the same objects, very different view-
points and toolboxes lead to different questions being addressed, and differ-
ent progress being made. The workshop sought to educate each community
about the techniques of the other, and to foster communication between the
two groups. One particular focus was enumerative geometry.
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Introduction by the Organisers

The workshop “Flat surfaces and algebraic curves” aimed at creating a bridge
between two communities working with the moduli space of curves and various
related moduli spaces. A flat surface is a complex algebraic curve, with the ad-
ditional datum of a holomorphic one-form. The moduli space of flat surfaces is
the total space of the Hodge vector bundle over the moduli space of curves. It is
stratified according to the multiplicities of zeroes of the one-form. Each stratum
admits an action of the group SL2(R), and the study of the properties action is a
vibrant field of mathematics called Teichmüller dynamics. Many of the leaders of
Teichmüller dynamics were present at the workshop.

The moduli space of (complex algebraic compact genus g) curves is one of the
classical central objects of study in algebraic geometry. While the beginnings of the
subject go back to the 19th century school, tremendous progress has been made
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in the last 50 years by utilizing modern techniques, starting with the Deligne-
Mumford construction of a natural compactification of the moduli space. Many of
the experts working on the birational geometry of the moduli space of curves, on
its homology, and on related counting/enumerative problems participated in the
workshop.

In recent years, it has become obvious in the flat surface community that the
strata of flat surfaces are amenable to a study from the viewpoint of algebraic
geometry, and that the techniques of algebraic geometry may provide key in-
sights to questions of dynamics. The breakthrough results of Eskin-Mirzakhani-
Mohammadi and Filip showed in particular that the topological closure of any
SL2(R) orbit is an algebraic variety — and can be studied as such. For algebraic
geometers, flat surfaces have been providing new geometric constructions, and a
source of questions, while the enumerative geometry is in some ways paralleled by
the actively studied double ramification loci in moduli spaces.

The aim of the workshop was to bridge the gaps in background, and to update
both communities on the developments and questions arising in both.

One tool to achieve these goals was a series of overview talks from both view-
points. These were given on the Kodaira dimension of moduli spaces (Farkas),
affine invariant submanifolds (Apisa), enumerative aspects of moduli of curves
(Pixton), higher Teichmüller theory (Wienhard), Lyapunov exponents (Filip) and
tropical curves (Ulirsch). These talks allowed all the participants to understand
the language of each other, and to discuss the problems of mutual interest. The
wealth of the resulting common background then allowed faster communication,
and allowed us to have shorter (half-hour) research talks, and more of these.

Perhaps the main focus of research interface between the two communities dur-
ing the workshop was around the enumerative aspects of flat surfaces and of moduli
curves. On the flat surfaces side, these were discussed as Masur-Veech volumes,
and related properties of strata, in the talks of Aggarwal, Goujard, Masur, while
on the algebraic geometry side, Buryak, Norbury and Rossi, discussed the geom-
etry of the double ramification cycle; the talk of Sauvaget brought techniques of
algebraic geometry proper to bear on a counting problem in flat surfaces.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Jayadev S. Athreya in the “Simons Visiting Professors”
program at the MFO.
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Abstracts

Large Genus Asymptotics for Volumes of Strata of Abelian
Differentials

Amol Aggarwal

1. Background and Results

Fix a positive integer g > 1, and let H = Hg denote the moduli space of Abelian
differentials of genus g. For any partition m = (m1,m2, . . . ,mn) of 2g − 2, let
H(m) ⊂ H denote the associated stratum; the period map Φ : H(m) → C2g+n−1

defines a local coordinate chart for H(m).
Pulling back the Lebesgue measure on C2g+n−1 yields a measure ν on H(m).

To ensure finiteness of this measure, let H1(m) ⊂ H(m) denote the moduli space
of pairs (X,ω) ∈ H(m) with ω of area one. Let ν1 denote the measure induced
by ν on H1(m). It was established independently by Masur [5] and Veech [7] that
the volume ν1

(
H1(m)

)
is finite for each m. This volume ν1

(
H1(m)

)
is called the

Masur-Veech volume of the stratum indexed by m.
Based on the representation theory of the symmetric group and asymptotic

Hurwitz theory, Eskin-Okounkov [3] proposed a general algorithm that, given an
integer g > 1 and partitionm = (m1,m2, . . . ,mn) of 2g−2, determines the volume
of the stratum ν1

(
H1(m)

)
. This algorithm was reasonably intricate, in the sense

that the time taken to implement it grows exponentially in g.
Once it is known that these volumes are finite and can in principle be deter-

mined, a question of interest is to understand how they behave as the genus g
tends to ∞. To that end, the algorithm of Eskin-Okounkov enabled Eskin to write
a computer program to evaluate the volumes ν1

(
H1(m)

)
with g ≤ 10. Based on

the numerical data provided by this program, Eskin and Zorich predicted (see
Conjecture 1 and equations (1) and (2) of [4]) that

ν1
(
H1(m)

)
=

4 + o(1)∏n
i=1(mi + 1)

,(1)

uniformly in g andm. Before this work, the asymptotic (1) had been verified in two
cases, namely for the principal stratum (when m = 12g−2) by Chen-Möller-Zagier
[2] and the minimal stratum (when m = (2g − 2)) by Sauvaget [6].

We establish the asymptotic (1) for all strata, as indicated by the following
theorem.

Theorem 1. Let g > 1 be a positive integer, and let m = (m1,m2, . . . ,mn) denote
a partition of size 2g − 2. Then,

4∏n
i=1(mi + 1)

(
1− 22

200

g

)
≤ ν1

(
H1(m)

)
≤ 4∏n

i=1(mi + 1)

(
1 +

22
200

g

)
.(2)
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The proof of Theorem 1 is based on a combinatorial analysis of the original algo-
rithm proposed by Eskin and Okounkov for evaluating ν1

(
H1(m)

)
in [3]. However,

as mentioned previously, this algorithm is intricate; it expresses the Masur-Veech
volume through the composition of three identities, each of which involves a sum
whose number of terms increases exponentially in the genus g. To establish (2),
one shows that each of these sums is dominated by a single term, and the re-
maining (non-dominant) terms in the sum decay rapidly and can be viewed as
negligible. However, instead of explaining this method in full generality, let us
provide a heuristic in a special case.

2. A Heuristic for the Principal Stratum

The proof of Theorem 1 simplifies considerably in the case when m = 12g−2

corresponds to the principal stratum, due to a result of Eskin-Okounkov [3] that
provides an explicit expression for the volume ν1

(
H1(1

2g−2)
)
. To state it, we

define the quantity

z(k) =
(
2− 22−k

)
ζ(k)1k∈2Z≥0

,

where ζ(k) denotes the Riemann zeta function and 1E denotes the indicator for
any event E. Furthermore, for any partition µ, let ℓ(µ) denote the number of
parts of µ; moreover, for any integer j ≥ 1, let Mj(µ) denote the number of
indices 1 ≤ i ≤ ℓ(µ) such that µi = j.

Lemma 2 ([3, Theorem 7.1]). For any even positive integer n, we have that

ν
(
H(1n)

)
= 2n!

∑

µ

(−1)ℓ(µ)−1

(
2n− ℓ(µ) + 2)!

∏∞
i=2Mi(µ)!

ℓ(µ)∏

i=1

(2µi − 3)!!z(µi),(3)

where µ is summed over all partitions of n+2 with only even parts, and a!! denotes
the product of all odd positive integers at most equal to a.

Now let us explain how one might use (3) to provide a heuristic for the asymp-
totic (2) when m = 12g−2. In this case, (2) states that ν1

(
H(12g−2)

)
≈ 24−2g.

To that end, observe that the product
∏ℓ(µ)

i=1 (2µi − 3)!! is maximized (over all
partitions µ of n + 2 with all even parts) when µ = (n + 2) consists of one part.
In this case, we have that ℓ(µ) = 1, and Mi(µ) ∈ {0, 1} for all i. Thus, the
contribution of the µ = (n+ 2) term to the right side of (3) is given by

2n!
(2n+ 1)!!z(n+ 2)

(2n+ 1)!
= 21−nz(n+ 2),

where we have used the fact that (2n+ 1)! =
∏n+1

i=1 (2n− 1)(2i) = 2nn!(2n+ 1)!!.
Since z(n+2) = (2− 2−n)ζ(n+2) ≈ 2 for n large, it follows that the contribution
to (3) from the µ = (n + 2) term is approximately 22−n = 24−2g. This is the
leading order term predicted by (2), which suggests that the right side of (3) is in
fact dominated by the µ = (n+ 2) term.

This can indeed be shown to be the case but, instead of detailing such a proof
here, let us explain how the above heuristic can be extended to guess the second
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order correction to the approximation ν1
(
H(12g−2)

)
≈ 24−2g. To that end, observe

that the maximum of the product
∏ℓ(µ)

i=1 (2µi − 3)!! over all even partitions µ of
n + 2 with at least two parts (equivalently, when µ 6= (n + 2)) is obtained when
µ = (n, 2). Then, ℓ(ν) = 2 and Mi(ν) ∈ {0, 1} for all i (if n ≥ 4). Thus, the
contribution to (3) resulting from this term is

−2n!
(2n− 3)!!z(2)z(n)

(2n)!
= −4n!(1− 21−n)(2n− 3)!ζ(2)ζ(n)

2n−2(n− 2)!(2n)!
≈ −22−n ζ(2)

2n

≈ −24−2g π
2

24g
,

where we used the fact that ζ(2) = π2

6 and n = 2g − 2. This leads to the guess

ν1
(
H1(1

2g−2)
)
= 24−2g

(
1− π2

24g
+O

(
1

g2

))
,

which was in fact shown to be correct in earlier work of Chen-Möller-Zagier (see
the proof of Theorem 19.3 of [2]) through an entirely different method.

By following the above sort of reasoning, one might predict that the contribution
of an individual summand on the right side of (3) corresponding to some partition
µ decays exponentially in the length ℓ(µ) of µ. Such a statement can be proven
and used to bound the contribution from the (large number of) remaining terms
in (3), leading to a justification of the above volume asymptotic heuristic.
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Around the Classification of Affine Invariant Submanifolds

Paul Apisa

The moduli space ΩMg of Abelian differentials on genus g Riemann surfaces ad-
mits actions of complex scalar multiplication and Teichmüller geodesic flow, which
generate a GL(2,R) action. The space ΩMg admits a GL(2,R)-invariant stratifi-
cation by specifying the number and order of zeros of the Abelian differentials. By

https://arxiv.org/abs/1804.05431
https://arxiv.org/abs/1801.01744
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work of Eskin-Mirzakhani [6] and Eskin-Mirzakhani-Mohammadi [7], the closure
in a stratum of any GL(2,R) orbit is a linear manifold that is locally defined by
real homogeneous linear equations in period coordinates. Such a manifold is called
an affine invariant submanifold.

The goal of the talk was to describe recent work that develops tools for classi-
fying affine invariant submanifolds. The first progress on this problem was made
by McMullen [9], who classified affine invariant submanifolds in genus two.

In the first part of the talk, examples of affine invariant submanifolds were
presented and used to illustrate the natural identification of the tangent space at
a point of an affine invariant submanifold with a subspace of relative cohomology.
Results of Avila-Eskin-Möller [5] and Wright [12] were described in order to define
the notion of the rank of an affine invariant submanifold. Finally, results of Filip
[8] were described which provided a completely algebraic characterization of affine
invariant submanifolds.

In the second part of the talk, the Mirzakhani-Wright partial compactification
of an affine invariant submanifold was described (see [10]). Using the cylinder
deformation theorem of Wright (see [12]), an example of a cylinder degeneration
was given and used to illustrate how studying the boundary objects produced by
such degenerations greatly constrain the original affine invariant submanifolds.

In the third and final part of the talk, work of Apisa [1] and Mirzakhani-Wright
[11] that classifies affine invariant submanifolds of complex-dimension at least three
in hyperelliptic components and of full rank respectively were presented. The
proof sketches were presented in a united way that highlighted the similarity of
the two strategies. It was remarked that a similar strategy might potentially be
employed to prove a conjecture of Mirzakhani characterizing the affine invariant
submanifolds of rank at least g

2 . The approach would use the classification of rank
two affine invariant submanifolds achieved by Aulicino, Nguyen, and Wright [2],
[3], [4].

References

[1] Apisa, Paul. GL2R orbit closures in hyperelliptic components of strata, Duke Math J. (2018)
Vol. 167 No. 4, 679-742.

[2] Aulicino, David and Nguyen, Duc-Manh. Rank two affine submanifolds in H(2, 2) and
H(3, 1), Geom. Topol. (2016). Vol 20 No. 5, 2837-2904.

[3] Aulicino, David and Nguyen, Duc-Manh. Rank Two Affine Manifolds in Genus 3,
arXiv:1612.06970 (2016).

[4] Aulicino, David and Nguyen, Duc-Manh and Wright, Alex. Classification of higher rank
orbit closures in Hodd(4), J. Eur. Math. Soc. (JEMS) (2016) Vol. 18 No. 8, 1855-1872.
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Geodesics on Platonic solids and flat surfaces

Jayadev Athreya

(joint work with David Aulicino, Pat Hooper)

Platonic solids are among the oldest objects of recorded mathematical study. In
1906-07, Rodenberg [7] and Stäckel [8] (in discussions with each other, but sepa-
rate papers) initiated the study of the surfaces of these solids (and more generally
convex polyhedra) as geometric objects, by considering the natural (singular) flat
metric coming from the flat metric on faces. The singularities occur at vertices
where the total angle is not 2π. They discussed how geodesics could be unam-
bigously extended over sides but not through vertices. This leads naturally to the
question of understanding saddle connections, geodesic trajectories connecting two
vertices (with none in the interior)- for example, edges of the polyhedra are saddle
connections.

The next important development was the 1936 paper [4] of Ralph Fox and
Richard Kershner (who were 23-year-old graduate students at the time the paper
was written) which described an unfolding procedure which turned rational poly-
hedra (polyhedra with angles which are rational multiples of π) into singular flat
surfaces described by polygons and identifications of sides by translations, what
we know in modern language as translation surfaces. In fact, in complex analytic
terms what they describe is a method to take a k-differential on CP 1 (here k is
the smallest integer so that kθ is an integer multiple of 2π for all angles θ of the
polyhedron) and take the canonical k-cover to obtain an abelian differential on a
higher-genus surface.

For example, the process they describe would take the tetrahedron, view the
net for the tetrahedron as a triangle with each side cut in two and identified via
rotation by π, and double it along one edge to obtain a rhombus with parallel
sides identified by translation, that is, a flat torus (with one marked point). This
is a covering map of a quadratic differential on CP 1 with four simple poles by a
flat torus, branched over the singular points.

A natural question is to understand the closed saddle connections on Platonic
solids, namely, the saddle connections that start and end at the same vertex.
Using the basic theory of Weierstrass points (fixed points of involutions) and the
symmetries of polyhedra and covers, it is not hard to show:

There are no closed saddle connections on the tetrahedron, octa-
hedron, cube, or icosahedron.
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This result was known, and in fact, Fox-Kershner observed that the study of
geodesics on these solids was closely related to the fact that they are tiled by
polygons that tile the plane.

Proofs of the above result are given in Fuchs [6], Fuchs-Fuchs [5], and Davis-
Dodds-Traub-Yang [2], and in these and other related papers, they posed the
natural question: What about the dodecahedron? Fuchs conjectured that there
should exist such a trajectory based on numerical evidence.

In joint work with D. Aulicino [1], we found such a closed saddle connection,
and in subsequent work with D. Aulicino and P. Hooper, we have classified all such
closed saddle connections up to the equivalence relation of affine automorphisms
on a natural cover.

Figure 1. A closed saddle connection on the dodecahedron

Namely, associated to each of the platonic solids is a natural cover which is
an abelian differential on a higher-genus surface given by unfolding. The covers
associated to the solids tiled by squares or triangles yield arithmetic or square-
tiled surfaces. The cover associated to the dodecahedron instead covers the double
pentagon surface. Symmetries of translation surfaces have natural affine automor-
phism groups, and if surfaces are square-tiled these are finite index subgroups of
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Polyhedron Stratum of Stratum of Genus of
k-differentials unfolding unfolding

Tetrahedron H2(−14) H1(0
4) 1

Octahedron H3(−16) H1(1
6) 4

Cube H4(−18) H1(2
8) 9

Icosahedron H6(−112) H1(4
12) 25

Dodecahedron H10(−120) H1(8
20) 81

Table 1. Strata of the Platonic solids and their unfoldings.

SL(2,Z), the affine automorphism group of the torus. For the platonic solids, these
indices are in fact relatively small, with the largest being 10 (for the icosahedron).

In contrast, the double pentagon has affine symmetry group given by Hecke
triangle group ∆(2, 5,∞), and the unfolded dodecahedron, which is a degree 60
cover of the double pentagon, has affine symmetry group Γ which is index 2106
in this group! The associated hyperbolic surface H2/Γ, known as the Teichmüller
curve, has genus 131.

We use Sage, and in particular the packages flat_surf and surf_dynamics [3]
to compute Γ, and then to analyze equivalence classes of saddle connections under
the action of Γ. We say two objects on the dodecahedron are unfolding equivalent
if they have lifts to the cover which are Γ-equivalent. We conclude:

Up to unfolding equivalence, there are 31 equivalence classes of
closed saddle connections on the dodecahedron.
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Rank 3 Affine Submanifolds of H(10) Are Arithmetic

David Aulicino

The work of Eskin, Mirzakhani, and Mohammadi [EM18, EMM15] established
that all GL2(R) orbit closures have a very nice structure in the moduli space of
translation surfaces. They are affine immersed suborbifolds (which will be referred
to as submanifolds here) with local coordinates given by period coordinates, which
is modeled on first relative cohomology. Locally, the affine submanifold is a linear
subspace of first relative cohomology. The rank of an affine submanifold M is half
the total degrees of freedom to vary absolute periods of M ∈ M such that the
resulting surface remains in M. The degree of M is the degree of the smallest
(real) extension over Q needed to contain the coefficients of the linear equations
in periodic coordinates defining the charts of M.

Veech [Vee89] found the first examples of rank one affine submanifolds (Te-
ichmüller curves in his case) with degree two in the moduli space H(2) of genus
two translation surfaces with a double order zero. Infinitely many more were
discovered in H(2) by McMullen and Calta. More recently, Wright discovered
evidence for a rank two quadratic affine submanifold in H(6). Its existence was
established by [EMMW18] and its uniqueness in H(6) by [Api17]. This was discov-
ered in spite of a belief that higher rank should preclude such exceptional behavior,
i.e. higher rank affine submanifolds should only arise from branched coverings of
strata.

This left the door open to determine if a quadratic rank three affine submanifold
could exist. By work of [Wri15], genus six is the smallest genus in which it could
exist, and H(10) is the smallest stratum in genus six.

Theorem 1. Let M be a rank k affine submanifold in H(4k − 2). If k > 2, then
M is arithmetic.

This is the first indication that exceptional behavior might not occur for rank
three affine submanifolds.

Proof Sketch and Ideas. The proof primarily uses degeneration techniques to
leverage the uniqueness results of [Api17]. Several new techniques are introduced
to address the distinct challenges of this problem. The first key result of [BM12]
is that the quadratic assumption implies that the existence of one hyperbolically
short curve in a non-trivial absolute homology class implies the existence of a
second one. This allows the degeneration from genus six directly to genus four.

Seconly, we prove that it is always possible to degenerate from a rank k affine
submanifold in H(4k− 2) to rank three in H(10) and to rank two in H(6). More-
over, we must always be able to degenerate from rank three in H(10) to rank two
in H(n,m, ℓ), where n + m + ℓ = 6 is a non-negative partition. Then we argue
that no such affine submanifold in the boundary of a rank three affine submanifold
H(10) could exist.

To do this we classfy 4-cylinder diagrams in the quadratic rank two affine sub-
manifold N ⊂ H(6). Then we consider all possible ways of splitting the zero of



Flat Surfaces and Algebraic Curves 2595

order six into three zeros and exclude each case to show that no such intermediate
affine submanifold could exist.

To address the combinatorics of splitting the zero, we use a classical concept
from graph theory called a subdivision of a graph. A cylinder diagram is the
topological data consisting of cylinders with marked saddle connections in their
boundaries and identifications specified among them. The dual graph of a cylinder
diagram is the directed graph where each vertex represents a cylinder and each
directed edge corresponds to a saddle connection connecting the bottom cylinder
of the saddle connections to the top one. A simple cylinder is a cylinder with
exactly one saddle connection in each boundary. Adding a simple cylinder to a
saddle connection corresponds to subdividing an edge of a dual graph. We prove
that a hypotheticalM′ ⊂ H(ℓ,m, n) must have a cylinder diagram with two simple
cylinders. By considering all admissible subdivisions of the dual graphs, we deduce
all necessary cases to analyze. A depiction of this procedure is provided in the
figure below.
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Enumerative geometry of the moduli space of curves and integrable
systems

Alexandr Buryak

We consider the moduli space Mg,n of stable algebraic curves of genus g with n
marked points. In order to describe the class of enumerative invariants on the
moduli spaceMg,n, we have to introduce the notion of a cohomological field theory,
first appeared in the work of M. Kontsevich and Yu. Manin [9].

Let V be a finite dimensional vector space over C with a fixed basis e1, . . . , eN ∈
V and N := dimV . Let us also fix a non-degenerate symmetric matrix η =
(ηαβ)1≤α,β≤N with complex coefficients. Denote by Heven(Mg,n,C) the even part

in the cohomology of Mg,n. A cohomological field theory (CohFT) is a collection

of linear homomorphisms cg,n : V
⊗n → Heven(Mg,n,C), defined for all g and n,

and satisfying the following properties:

1. The map cg,n is Sn-equivariant.

2. We have ηαβ = c0,3(eα ⊗ eβ ⊗ e1) ∈ H∗(M0,3,C) = C.

3. For the forgetful map π : Mg,n+1 → Mg,n, which forgets the last marked
point, we have π∗cg,n(eα1

⊗ · · · ⊗ eαn
) = cg,n+1(eα1

⊗ · · · ⊗ eαn
⊗ e1).

4. a) For the gluing map gl : Mg1,n1+1 × Mg2,n2+1 → Mg,n, n = n1 + n2,
g = g1 + g2, we have

gl∗cg,n(⊗n
i=1eαi

) =
∑

α,β

cg1,n1+1(⊗n1

i=1eαi
⊗ eα)× cg2,n2+1(⊗n2

j=1eαn1+j
⊗ eβ)η

αβ ,

where the coefficients ηαβ are defined by (ηαβ) := η−1.
b) For the gluing map gl : Mg−1,n+2 → Mg,n we have

gl∗cg,n(⊗n
i=1eαi

) =
∑

α,β

cg−1,n+2(⊗n
i=1eαi

⊗ eα ⊗ eβ)η
αβ .

The class ψi ∈ H2(Mg,n,C) is defined as the first Chern class of the line bundle

over Mg,n formed by the cotangent lines at the i-th marked point. The correlators
of our CohFT are defined by

〈τα1,d1
τα2,d2

· · · ταn,dn
〉g :=

∫

Mg,n

cg,n(eα1
⊗ · · · ⊗ eαn

)

n∏

i=1

ψdi

i .

The Gromov–Witten invariants of algebraic varieties are particular examples of
such correlators [9]. The so-called Fan–Jarvis–Ruan–Witten invariants [7, 11] are
also contained in the class of correlators of CohFTs.

Among the variety of techniques developed for the description of the correlators
of CohFTs, we would like to mention the following:

• Mirror symmetry of different kinds.
• Modular forms: the Gromov–Witten invariants of some classes of target
varieties can be effectively described using modular forms.

• Integrable systems.
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Here we would like to focus on the approach, based on the theory of integrable
systems. The starting point for it was the conjecture of E. Witten [10]. Consider
the trivial cohomological field theory, given by

V = C = 〈e1〉 , η1,1 = 1, cg,n(e
⊗n
1 ) = 1 ∈ H0(Mg,n,C).

Let ε and t0, t1, t2, . . . be formal variables and consider the generating series

F (t0, t1, . . . , ε) :=
∑

g,n

ε2g

n!

∑

d1,...,dn≥0

〈τ1,d1
τ1,d2

· · · τ1,dn
〉g

n∏

i=1

tdi
∈ C[[t0, t1, . . . , ε]].

E. Witten conjectured that the second derivative w := ∂2F
∂t2

0

satisfies the Korteweg

– de Vries (KdV) hierarchy

∂w

∂t1
= wwx +

ε2

12
wxxx,

∂w

∂t2
=
w2wx

2
+ ε2

(wwxxx

12
+
wxwxx

6

)
+ ε4

wxxxxx

240
,

∂w

∂t3
=
w3wx

6
+ ε2

(
w2wxxx

24
+
w3

x

24
+
wwxwxx

6

)
+

+ ε4
(wwxxxxx

240
+
wxxxxwx

80
+
wxxxwxx

48

)
+ ε6

wxxxxxxx

6720
,

...

where we identify x = t0. The famous KdV equation is the first equation of the
hierarchy. Witten’s conjecture was proved by M. Kontsevich [8]. This result allows
to determine the generating function F uniquely.

Consider now an arbitrary cohomological field theory. Let wα
d , 1 ≤ α ≤ N ,

d ≥ 0, be formal variables; we also use the notations wα
0 = wα, wα

1 = wα
x , w

α
2 =

wα
xx, . . . . A differential polynomial is a polynomial in the variables wα

d , d ≥ 1,
with coefficients in the ring of formal power series C[[w1, . . . , wN ]]. The set of
differential polynomials forms a ring, which we denote by AN . Let tαd , 1 ≤ α ≤ N ,
d ≥ 0, be formal variables and consider the generating series

F (t∗∗, ε) :=
∑

g,n

ε2g

n!

∑

1≤α1,...,αn≤N
d1,...,dn≥0

〈τα1,d1
τα2,d2

· · · ταn,dn
〉g

n∏

i=1

tαi

di
∈ C[[t∗∗, ε]].

Theorem 1. [4] If the CohFT satisfies an additional assumption of semisimplicity,
then there exist unique elements Kα

β,d ∈ AN [[ε]], such that the functions wα :=

ηαµ ∂2F
∂t1

0
∂tµ

0

satisfy the system of PDEs

∂wα

∂tβd
= Kα

β,d, 1 ≤ α, β ≤ N, d ≥ 0,(1)

where we identify x = t10.
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The semisimplicity condition is satisfied in a large class of interesting examples.
In [4] we also constructed a Hamiltonian structure for the system (1). B. Dubrobin
and Y. Zhang conjectured that in the case of a homogeneous cohomological field
theory the system (1) possesses a bi-Hamiltonian structure [6]. As it is well-known,
such a structure gives an efficient reconstruction procedure for the functions Kα

β,d.
This conjecture is one of the most important open problems in the area.

Trying to find new approaches to the systems (1) and, in particular, to the
Dubrovin-Zhang conjecture, in [1], I introduced a new construction of a Hamil-
tonian system of PDEs associated to an arbitrary CohFT. The key role in the
construction is played by the double ramification (DR) cycle. I also conjectured
that the new system, called the DR hierarchy, is related to the system (1) by a
polynomial change of variables.

During the last several years, together with Paolo Rossi and also with B.
Dubrovin and J. Guéré, we were studying the structure of the DR hierarchy and
its relation to the system (1) (see e.g. [2, 3, 5]). Parts of this project are presented
in the companion talk of Paolo Rossi.
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Moduli of Differentials

Dawei Chen

Let µ = (m1, . . . ,mn) be a collection of integers such that
∑n

i=1mi = 2g − 2. Let
PH(µ) be the projectivized stratum parameterizing differentials ω (up to scale) on
genus g Riemann surfaces such that the associated divisor of ω is of zero and pole
type µ, i.e. (ω) =

∑n
i=1mipi for distinct points p1, . . . , pn. In this talk we study

some aspects of PH(µ) from the viewpoint of algebraic geometry and compare
them to the moduli space of pointed genus g curves Mg,n.

First we consider complete subvarieties. Diaz ([7]) first proved that any com-
plete subvariety in Mg has dimension bounded above by g − 2. The bound is not
known to be sharp in general. In particular we do not know whether M4 contains
a complete surface. For the case of differentials, the author ([3]) proved that the
strata of meromorphic differentials (i.e. some mi < 0) do not contain any com-
plete curve. It remains to be an open question whether the strata of holomorphic
differentials can contain a complete curve.

Next we consider tautological rings. The tautological ring of Mg,n is gener-
ated by Mumford’s κj classes and the ψi classes associated to each marked point.
In general the tautological ring structure of Mg,n can be complicated. We de-
fine the tautological ring of the strata PH(µ) to be generated by the tautological
classes pulled back from Mg,n together with the tautological line bundle class
η = c1(O(−1)) of the projective Hodge bundle. The author ([4]) proved that
the tautological ring of the strata of differentials without simple poles (i.e. all
mi 6= −1) is generated by η only. It remains to be an open question which powers
of η vanish on the strata.

Finally we consider positivity of divisor classes. Cornalba and Harris ([6])
proved that aλ − bδ is ample on the Deligne-Mumford compactification Mg if
and only if a > 11b > 0, where λ is the first Chern class of the Hodge bundle and
δ is the total boundary divisor class. The author ([5]) proved that a(κ1 + ψ)− bη
is ample on the compactified stratum PHg,n(µ) (in the sense of [1]) if and only
if a > b > 0, where ψ =

∑n
i=1 ψi is the total ψ class. It remains open to study

positivity of other divisor classes on the compactified strata.
We remark that the above results and questions can be generalized to the strata

of k-differentials for all k ([2, 3, 4, 5]).
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differentials, Algebr. Geom., to appear.

[3] D. Chen, Affine geometry of strata of differentials, J. Inst. Math. Jussieu, to appear.
[4] D. Chen, Tautological ring of strata of differentials, Manuscripta Math., to appear.



Flat Surfaces and Algebraic Curves 2601

[5] D. Chen, Positivity of divisor classes on the strata of differentials, arXiv:1803.11268.
[6] M. Cornalba and J. Harris, Divisor classes associated to families of stable varieties, with

applications to the moduli space of curves, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 3,
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The Masur-Veech volume of principal strata of quadratic differentials

Vincent Delecroix

(joint work with Élise Goujard, Anton Zorich, Peter Zograf)

The cotangent space to the moduli space Mg,n of complex curve of genus g and
n marked points can be identified to Qg,n the moduli space of pairs (C, q), where
C is a hyperbolic surface of genus g with n cusps and q is a holomorphic qua-
dratic differential on C with finite volume

∫
C |q| <∞ (it can be checked that this

condition is equivalent to the fact that q as at most simple poles at the punctures).
This cotangent space Qg,n comes with a natural symplectic form and associated

volume form called the Masur–Veech volume form. In this article we provide a
formula for the volume of the level hypersurface of quadratic differentials of area 1.
We also provide a formula of similar nature for the so called Siegel–Veech constant
of Qg,n.

As a concrete application, we get a large table of exact numerical values of the
volumes and Siegel–Veech constants for all small g and n extending previously
known data of Goujard [4, 5] based on completely different approach designed by
Eskin and Okounkov [3].

Both the volume and the Siegel–Veech constant are expressed as polynomials
in the intersection numbers of ψ-classes supported on the boundary components
of the Deligne-Mumford compactification Mg,n. The formula we obtain are de-
rived from lattice point counting involving the Kontsevich [6] volume polynomials
Ng,n(b

2
1, . . . , b

2
n) that also appear in Mirzakhani [7] topological recursion for the

Weil–Petersson volumes of the moduli space Mg,n. See also [8].
One can recover the g = 0 formulas from [1] by using the explicit values of the

intersection of ψ-classes in genus 0.
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Structural stability in the moduli space of algebraic foliations of the
complex projective plane

Bertrand Deroin

(joint work with Aurélien Alvarez)

I showed the existence of a non trivial stability component in the space of de-
gree two algebraic foliations of the complex projective plane, consisting of foli-
ations having a non trivial Fatou component: a fibration by discs over a Rie-
mann surface of genus three. This result can be opposed to the famous result
of Y.Iliashenko (adressed at the ICM 78) establishing minimality, ergodicity and
rigidity for generic foliations of the plane that preserve a line, and its generaliza-
tions by F.Loray/J.Rebelo or T.Golenishcheva-Kutusova/V.Kleptsyn.

Lattice point enumeration in moduli spaces of higher differentials

Philip Engel

Let N = 1, 2, 3, 4, or 6, and let µ = (µi) be a list of non-zero integers such that
µi > −N . Define a stratum of N -ic differentials as a moduli space of pairs

HN (µ) :=
{
(Σ, ω)

∣∣ Σ a Riemann surface, ω ∈ H0(Σ, K⊗N
Σ )

such that div(ω) =
∑
µipi}.

There are local flat coordinates ζ on Σ away from pi such that dζ = ω1/N . This
endows the pair (Σ, ω) with a flat metric with cone singularities at the points pi
whose monodromy lies in the order N rotation group 〈ζN 〉. When N = 3, 4, 6
there is a natural subset of HN (µ) consisting of flat surfaces that admit a tiling
into regular hexagons, squares, or triangles respectively. This subset is defined by∫ pj

pi
ω1/N ∈ Z[ζN ], and therefore forms a lattice in the period coordinates. The

curvatures of the tiling are determined by the numbers µi. The main focus of this
talk is the following generalization of work of Eskin and Okounkov [EO06]:

Theorem 1. [Eng17] Consider a tile with cyclic order N symmetry whose trans-
lates tessellate R2. Let cd(µ) be the weighted number of tilings of a compact
oriented surface with d tiles and non-zero curvatures µi. Under the substitution
q = e2πiτ , the generating function

hN (µ, q) =
∑

d≥1

cd(µ)q
d

is in the ring of quasimodular forms for Γ1(N).
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Since quasimodular forms of given level and bounded weight form a finite-
dimensional space, the generating function for a tiling problem can be determined
by finitely many coefficients. Most of the moduli spaces HN (µ) are not arith-
metic, so the arithmetic techniques of my joint work with P. Smillie [ES18] are no
longer available. Instead, the proof relies on representation-theoretic techniques
pioneered by Bloch, Eskin, and Okounkov. They proved Theorem 1 in the cases
N = 1 [EO01, BO00] and N = 2 [EO06], generalizing work of Dijkgraaf [Dij95].

Every surface tiled by (resp.) equilateral triangles, squares, or vertex-bicolored
hexagons admits a locally isometric map to an elliptic orbifold, the quotient of an
elliptic curve by a cyclic group of order (resp.) 6, 4, or 3. Conversely, given a
covering of one of the elliptic orbifolds satisfying certain ramification conditions,
the cover admits a natural tiling. See Figure 1 for an example of such a branched
cover. Thus, the Hurwitz numbers of these elliptic orbifolds are counts of tiled
surfaces, with the ramification profile encoding the list of curvatures.

9:1−−−−→

Figure 1. A degree 9 branched cover of P3,3,3 which produces a
surface tiled by hexagons that have order 3 rotational symmetry.

There is an approach to computing Hurwitz numbers which connects to physics.
Let V := span{i : i ∈ 1

2+Z} be a vector space with basis indexed by half-integers.
Define the (charge zero subspace of) the half-infinite wedge or Fock space to be the
span of formal symbols

Λ
∞/2
0 V := span {i1 ∧ i2 ∧ · · ·

∣∣ i1 > i2 > · · · and iN = −N +
1

2
for N ≫ 0},

which are declared to be orthonormal for an inner product 〈·
∣∣ ·〉. There are two

canonical bases of this space, {wµ} and {vλ}, both indexed by the set of all parti-
tions. The representation theory of all symmetric groups is encoded by the formula
〈wµ

∣∣ vλ〉 = χλ(µ) for the character of the irreducible representation indexed by
λ, evaluated on the cycle type µ. The energy is the operator Hvλ = |λ|vλ. One
defines vertex operators E(x) acting on Fock space, that depend on an analytic
parameter x. The Hurwitz numbers of the elliptic orbifold of order N can be
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extracted from the Taylor series expansion about (x1, . . . , xn) = (0, . . . , 0) of the
so-called n-point function

FN (x1, . . . , xn) :=
tr qHE(x1) . . . E(xn)WN

tr qHWN
.

HereWN is an operator generalized from the N = 2 case [EO06]. Proving that this
trace encodes the Hurwitz numbers relies on some combinatorics, in particular,
the notions of an N -quotient and N -core—partition-theoretic analogues of the
quotient and remainder for integer division.

All these operators are tensor operators with respect to a tensor product de-
composition of Fock space. Thus, the above trace is an infinite product over the
tensor factors, and each factor is an explicitly computable rational function in xi
and q. These factors combine via the Jacobi triple product formula to give theta
functions, whose Taylor series expansions consist of quasi-modular forms, proving
Theorem 1. Furthermore, this gives an explicit formula

FN (ln x1, . . . , lnxn)=
1

(2πi)n

∮

|yi|=ci

· · ·
∮ ∏

i

dyi
yi

· ϑ(xiyi)

ϑ(xi)ϑ(yi)

∏

i<j

ϑ(yi/yj)ϑ(xiyi/xjyj)

ϑ(xiyi/yj)ϑ(yi/xjyj)

∏

i,r

ϑ(ζrNyi)
1/N

ϑ(ζrNxiyi)
1/N

for the n-point function, where ϑ(x) = ϑ(x, q) is the Jacobi theta function, with
the argument q suppressed in the notation. The proof of Theorem 1 fails for
triangulations, because of some representation-theoretic complications, but my
recent work gives the following generalization:

Theorem 2. [Eng18] All natural generating functions of Hurwitz numbers of the
quotient of an elliptic curve by 〈ζN 〉 are quasimodular forms of level Γ(N). In
particular, the generating function △(µ, q) whose qn coefficient is the number of
triangulations with 2n triangles and non-zero curvatures µi is a mixed weight quasi-
modular form for Γ1(6).

The tiled surfaces equidistribute in the moduli space with respect to the Masur-
Veech volume. We can conclude the following formula:

Vol(H1
N (µ)) = lim

q→1

hN (µ, q)(1 − q)dim

(Area of Tile)dim dim!
.

Using the (quasi)modular transformation rule for τ 7→ −1/τ allows us to extract
the asymptotic behavior of hN (µ, q) as q → 1. The rationality of hN(µ, q) implies:

Theorem 3. Let θN := ζN − ζ−1
N . When N = 3, 4, 6,

(iθN )− dimHNVol(H1
N (~µ)) ∈ Q[2πiθN ] ∪ {∞}.
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On stationary measure rigidity and orbit closures for actions of
non-abelian groups.

Alex Eskin

(joint work with Aaron Brown, Federico Rodriguez-Hertz, Simion Filip)

I described joint work in progress with Aaron Brown, Federico Rodriguez-Hertz
and Simion Filip. Our aim is to find some analogue, in the context of smooth
dynamics, of Ratner’s theorems on unipotent flows. This would be a (partial)
generalization of the results of Benoist-Quint and my work with Elon Linden-
strauss in the homogeneous setting, the results of Brown and Rodriguez-Hertz in
dimension 2, and my results with MaryamMirzakhani in the setting of Teichmüller
dynamics.

An introduction to the geometry of the moduli space of curves

Gavril Farkas

Following a principle due to Mumford, most moduli spaces that appear in alge-
braic geometry (classifying curves, abelian varieties, K3 surfaces) are of general
type, with a finite number of exceptions, which are unirational, or at least unir-
uled. Understanding the transition from negative Kodaira dimension to being of
general type is usually quite difficult. With one exception (the moduli space of
spin curves), for all these moduli spaces there are notorious open cases, when the
Kodaira dimension is not known. The aim of the talk was to shed some light on
this change of the birational nature of the moduli space of curves.

In a series of landmark papers [7], [6], [2] published in the 1980s, Harris, Mum-
ford and Eisenbud proved that Mg is a variety of general type for g > 23. This

contrasts with the classical result of Severi [9] that Mg is unirational for g ≤ 10
(see [1] for a beautiful modern treatment) and with the more recent results of
Chang-Ran, Sernesi, Verra [10] and Schreyer, which summarized, amount to the
statement that Mg is uniruled for g ≤ 16. The Slope Conjecture of Harris and

https://arxiv.org/abs/1706.06738
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Morrison predicted that the Brill-Noether divisors are the effective divisors on Mg

having minimal slope 6 + 12
g+1 . This led people to expect that the moduli space

changes from uniruledness to being of general type precisely at genus g = 23.
However the Slope Conjecture turned out to be false and there are instances of
effective divisors on Mg for infinitely many genera g ≥ 10 having slope less than
6 + 12

g+1 , see [4], [5]. In view of these examples it is to be expected that there

should be an effective divisor of slope less than 13
2 = 6+ 12

24 on M23 as well, which

would imply that M23 is of general type. The best known result on M23 is the
statement κ(M23) ≥ 2, proven in [3] via a study of the relative position of the
three Brill-Noether divisors.

The main aim of the talk was to discuss this transition case and reduce the
calculation of the Kodaira dimension of M23 to a transversality statement for
generic curves of genus 23. In two very recent breakthrough papers, this transver-
sality statement, also known as the Strong Maximal Rank Conjecture has been
established independently by Liu, Osserman, Teixidor, Zhang and Jensen, Payne
respectively.

We begin by describing our construction of an effective divisor on M23. By
Brill-Noether theory, a general curve C of genus 23 carries a two-dimensional
family of linear series L ∈ W 6

26(C), all satisfying h1(C,L) = 3. Each of these
linear series is complete and very ample. Consider the multiplication map

φL : Sym2H0(C,L) → H0(C,L⊗2).

By Riemann-Roch h0(C,L⊗2) = 30, whereas dim Sym2H0(C,L) = 28. Imposing
the condition that φL be non-injective, one expects a codimension 3 locus inside
the parameter space of pairs [C,L]. Since this parameter space has 2-dimensional
fibres over M23, by projection, one expects a divisor inside the moduli space M23.

Theorem 1. The following locus consisting of curves of genus 23

D :=
{
[C] ∈ M23 : ∃L ∈W 6

26(C) with

Sym2H0(C,L)
φL−→ H0(C,L⊗2) not injective

}

is a virtual divisor on M23. The virtual class of its compactification inside M23

equals

[D̃]virt =
4

9

(
19

8

)(
470749λ− 72725 δ0 − 401951 δ1 −

11∑

j=2

bj δj

)
∈ CH1(M23),

where bj ≥ b1 for j ≥ 2. In particular, s
(
[D̃]virt

)
= 470749

72725 = 6.473 . . . < 13
2 .

Corollary 2. Assume the virtual class of D equal its actual cohomology class.
Then M23 is a variety of general type.

The question whether the virtual divisor D is an actual divisor is much re-
lated to the Maximal Rank Conjecture, originally due to Eisenbud and Harris
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and predicting that for a pair [C,L], where C is a general curve of genus g
and L ∈ W r

d (C) is a general linear system, the multiplication of global sections

φL : Sym2H0(C,L) → H0(C,L⊗2) is of maximal rank. The conjecture has been
the focus of much attention, both a couple of decades ago using embedded degen-
erations in projective space, as well as recently using tropical geometry, or limit
linear series.

A refined version of the Maximal Rank Conjecture, taking into account every
linear series L ∈ W r

d (C) on a general curve (rather than the general one), has
been put forward by myself. The Strong Maximal Rank Conjecture, motivated
by applications to the birational geometry of the moduli space of curves, predicts
that for a general curve C of genus g and for positive integers r, d such that
0 ≤ ρ(g, r, d) ≤ r − 2, the determinantal variety

{
L ∈W r

d (C) : φL : Sym2H0(C,L) → H0(C,L⊗2) is not of maximal rank
}

has the expected dimension. The Strong Maximal Rank Conjecture in the case
g = 23, d = 26 and r = 6 amounts to the statement that the virtual divisor D on
M23 is a genuine divisor. This case of the Strong Maximal Conjecture has been
recently proved in two breakthrough papers by Liu, Osserman, Teixidor, Zhang
and by Payne and Jensen.
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Geometric Invariant Theory for syzygies, with applications to Mg

Maksym Fedorchuk

Geometric Invariant Theory (GIT) was developed by Mumford [6] to construct
orbit spaces of group actions in algebraic geometry. It quickly found applications in
moduli theory, where its most spectacular achievements hinged on Hilbert stability,
that is, GIT stability of Hilbert points of embedded varieties. For example, Hilbert
stability has played a key role in the construction of the moduli space Mg of stable
curves (by Mumford [7], and Gieseker [3]).

While Hilbert stability is a powerful tool, the moduli spaces that it produces
tend to have complicated global geometry. This is evident already in the case of
Mg, whose birational geometry quickly becomes very complex as g grows. How-

ever, GIT can also be used to produce much simpler birational models of Mg,
with the GIT moduli space of plane quartics being one such example in genus 3.

In order to generalize the example of plane quartics to higher genus, we need
to extend the notion of Hilbert stability using ideas coming from the Koszul coho-
mology theory of Green [4]. If a Hilbert point of an embedded variety X is simply
a vector space of a fixed degree equations cutting out X , then syzygy points of X
should encode relations among these equations. A machinery for defining syzygy
points is developed in [2]. We briefly describe it in what follows.

Consider a subscheme X of a fixed projective space PV ∨. Consider now the
pth-order linear syzygies among the quadrics cutting out X . These are given by
the Koszul cohomology group

Kp+1,1(X) ≃ ker
(
∧pV ⊗ (IX)2 → ∧p−1V ⊗ (IX)3

)
,

which is naturally a subspace of
∧p+1V ⊗ V

∧p+2V
. The resulting point of the Grass-

mannian

Grass

(
dimKp+1,1(X),

∧p+1V ⊗ V

∧p+2V

)

is called the (p, 2)-syzygy point of X , and will be denoted Syz(p,2)(X).

Since
∧p+1V ⊗ V

∧p+2V
is a representation of SL(V ), we have an SL(V )-action on

the corresponding Grassmannian, linearized by the Plücker line bundle, and it
is natural to ask the following question: When is the (p, 2)-syzygy point of X
semistable with respect to the SL(V )-action in the sense of GIT? This question is
wide open even when X is a canonical curve of genus g in Pg−1.

The first instance where the consideration of syzygy points leads to a genuinely
new moduli space is the case of genus 6 curves, which is the smallest genus for
which the (1, 2)-syzygy point of a canonical curve is well-defined and non-trivial.
What aids the GIT stability analysis here is the beautiful geometry of canonical
genus 6 curves, given by a well-known story, which we now recall. A smooth genus 6
curve can be exactly one of the following: hyperelliptic, trigonal, bielliptic, a plane
quintic, or a quadric section of an anti-canonically embedded degree 5 (possibly
singular) del Pezzo in P5. A generic curve appears only in the last case, and only
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on a smooth del Pezzo. Quadric sections of singular del Pezzos form a divisor in
the moduli space called the Gieseker-Petri divisor D6,4 (we follow the taxonomy
of [1] for the Gieseker-Petri divisors; in particular D6,4 is the divisor in M6 of
curves with a base-point-free g14 for which the Petri map is not injective). Since a
smooth del Pezzo Σ of degree 5 is unique up to an isomorphism, and has a group
of automorphisms isomorphic to S5, there is a distinguished birational model of
M6 given by

(1) X6 := PH0(Σ,−2KΣ)/S5.

This was the model used by Shepherd-Barron to prove rationality of M6 [8]. It
has also reappeared recently in the context of the Hassett-Keel program ofM6, as
the ultimate non-trivial log canonical model of M6 [5].

It turns out that we can reinterpret X6 using GIT of (0, 2) and (1, 2)-syzygy
points of canonical genus 6 curves. This allows us to also construct the penultimate
log canonical model of M6, which was not known previously, and to realize the
contraction of the Gieseker-Petri divisor D6,4 as a VGIT two-ray game.

To state our main result, we introduce some notation. Let V = C6. Let
H = Grass(6, Sym2 V )×Grass(5, V ⊗∧2V/∧3 V ) be the parameter space for (0, 2)
and (1, 2)-syzygy points of canonical curves of genus 6. Then H is equipped with
a two-dimensional SL(V )-ample cone, whose elements we denote by O(1)⊠O(β).

For every smooth canonically embedded curve C ⊂ PV ∨ of genus six and Clif-
ford index 2, we have a well-defined point h(C) = (Syz(0,2)(C), Syz(1,2)(C)) ∈ H.

Denote by Q ⊂ H the Zariski closure of the locus of all such h(C) in H.
We have a natural SL(V )-action on Q, and we denote by Qss(β) the semistable

locus in Q with respect to the linearization O(1) ⊠ O(β). We also let G(β) :=
[Qss(β)/ SL(V )] be the corresponding GIT quotient stack and denote by G(β) its
moduli space. Namely, we have that

G(β) = Qss(β)// SL(V ).

In [2], we obtain the following result:

Theorem 1 (Contraction of the Gieseker-Petri divisor in M6 via VGIT).

(1) For β > 4, Qss(β) = {h(C) | C ∈ PH0(Σ,−2KΣ)}. Moreover,

G(β) ≃ [PH0(Σ,−2KΣ)/S5]

is a Deligne-Mumford stack and G(β) ≃ X6 ≃M6(α), where α ∈ (1647 ,
35
102 ).

(2) For β = 4, Qss(4) = Qss(4 + ǫ) ∪ {h(C) | C ∈ U}. Moreover,

G(4) ≃M6(35/102).

(3) For β ∈ (4 − ǫ, 4),

Qss(β) = {h(C) | C ∈ U , C 6= C0} ∪ {h(C) | C ∈ PH0(Σ,−2KΣ), C 6= C′
0}.

The stack G(β) is Deligne-Mumford, and we have

G(β) ≃M6

(
35

102
+ ǫ

)
.
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(4) We have a commutative diagram

(2)

G(4 − ǫ)
� � //

��

G(4)

��

G(4 + ǫ)

��

? _oo

M6(
35
102 + ǫ)

&&▼
▼

▼

▼

▼

▼

▼

▼

▼

▼

M6(
35
102 ) M6(

35
102 − ǫ)

∼oo

Moreover, M6(
35
102+ǫ) is isomorphic toM6 at the generic point of the Gieseker-

Petri divisor D6,4 and M6(
35
102 + ǫ) → M6(

35
102 ) is the contraction of this divisor

to [C0] ∈M6(
35
102 ).
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Around Lyapunov exponents

Simion Filip

Consider the linear ODE v̇ = Av where A is a constant matrix and v is a vector.
The exponential growth rate at infinity of the solutions, i.e. limt→∞

1
t log ‖v(t)‖

is determined by the eigenvalues of A, denoted λ1 > · · · > λn: for a typical v
the exponential growth rate is λ1, in a proper subspace typical solutions grow at
rate λ2, and so on. In other words, one gets a filtration of the space of solutions
according to the exponential growth rate.

It is rare that one gets constant matrix coefficients, however a general result
of Oseledets guarantees that in many situations one does have such asymptotic
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growth rates. Concretely, the Multiplicative Ergodic Theorem starts with a prob-
ability measure-preserving ergodic flow gt : (X,µ) → (X,µ) and a cocycle, i.e.
a vector bundle V → X such that the flow acts on the fibers by linear maps
gt(x) : V (x) → V (gtx). Under a natural boundedness assumption on the linear
maps, there exist Lyapunov exponents λ1 > · · · > λk such that for µ-a.e. x, there
exists a decomposition

V (x) =
⊕

λi

V (x)λi

such that if v ∈ V (x)λi \ {0} we have

lim
t→±∞

1

t
‖gt(x)v‖ = λi.

Note that flowing backwards one gets exponents with opposite signs; the two
filtrations given by flowing into the future/past refine to give a decomposition.

One has a priori symmetries on the Lyapunov spectrum, e.g. if the cocycle
preserves a symplectic pairing on the vector bundle, then

λ1 ≥ · · · ≥ λg ≥ −λg ≥ · · · ≥ −λ1.

In general it is difficult to compute the Lyapunov exponents and one of the central
questions is to show that they don’t vanish, and furthermore are distinct, subject
to the a priori symmetries.
Teichmüller dynamics. A key observation of Kontsevich [Kon97] was that when
the vector bundle V admits a weight 1 variation of Hodge structures, and the base
manifold X admits a compatible action of SL2(R), then there is a formula

λ1 + · · ·+ λg =
degV 1,0

χ

where χ denotes an appropriate “Euler characteristic” type term, and the degree of
the Hodge bundle is interpreted appropriately (when X is the unit tangent bundle
of a Riemann surface, the terms are the usual ones).

This observation has been clarified and generalized by many, including Forni
[For02] and Eskin–Kontsevich–Zorich [EKZ14]. It has been used in many instances
to compute Lyapunov exponents of the Teichmüller geodesic flow and has found a
diverse range of applications to the study of billiards when the tables and obstacles
have rational angles.
Higher weight. For a weight 1 variation of Hodge structure, the complexified
vector bundle decomposes as VC = V 1,0 ⊕ V 0,1 and the cocycle preserves a sym-
plectic form. In weight 2, the decomposition is VC = V 2,0 ⊕ V 1,1 ⊕ V 0,2 (with
dimensions d, k, d) and the cocycle preserves an orthogonal pairing of signature
(2d, k). The Lyapunov exponents are then (assuming k ≥ 2d):

λ1 ≥ · · ·λ2d ≥ 0 ≥ · · · ≥ 0︸ ︷︷ ︸
k−2d zeros

≥ −λ2d ≥ · · · ≥ −λ1
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and the analogous formula (proved by the speaker for d = 1, and then in general
by the speaker [Fil18] and in M. Constantini’s thesis)

λ1 + · · ·+ λd =
degV 2,0

χ

with the degree and Euler characteristic interpreted appropriately. The techniques
in both weight 1 and weight 2 are essentially the same.

Interesting behavior begins in weight 3. Kontsevich performed numerical exper-
iments with 14 examples of representations to Sp4(Z), coming from monodromies
of families of Calabi–Yau 3-folds. The expected formula is

λ1 + λ2 =
degV 3,0 + degV 2,1

χ

and by a general result of Eskin–Kontsevich–Möller–Zorich [EKMZ18] one has the
inequality ≥ above. Numerically, the 14 examples were of two sorts:

• 7 good examples: The formula holds, and the monodromy is infinite
index in Sp4(Z).

• 7 bad examples: The inequality is strict, and the monodromy is finite
index in Sp4(Z).

It was proved by Daniel–Deroin [DD18], and independently by the speaker, that
the inequality is strict in the bad examples. The equality case in the good examples
is the subject of work in progress by the speaker.
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Slicing the pillowcase

Elise Goujard

(joint work with Martin Möller)

Counting torus and sphere covers is very useful to evaluate volumes of moduli
spaces, in particular strata of moduli spaces of flat surfaces (abelian or quadratic
differentials). Evaluation of area Siegel-Veech constants for strata of abelian or
quadratic differentials can also be performed by counting these covers, with a
so-called Siegel-Veech weight.

We prove the quasimodularity of generating functions for counting such covers,
with and without Siegel-Veech weight, analyzing decompositions of flat surfaces
into horizontal cylinders (”slicing” the torus or the pillowcase), see [6] and [7]. We
show how these quasimodular forms arise as contour integral of generalized Jacobi
forms. This work provides an alternative proof of the quasimodularity results
of Bloch-Okounkov [2], Eskin-Okounkov ([4] and [5]) and Chen-Möller-Zagier [3],
with the following refinement: we show that quasimodularity holds for every type
of decomposition into cyclinders (encoded in a Feynman graph). It generalizes the
results of Böhm-Bringmann-Buchholz-Markwig [1] for simple ramification covers,
and it provides a practical method to compute area Siegel-Veech constants.

A main new technical tool is a quasi-polynomiality result for 2-orbifold Hurwitz
numbers with completed cycles.
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Quotients of the orbifold fundamental group of strata of abelian
differentials

Ursula Hamenstädt

The moduli space of abelian differentials on a closed oriented surface S of genus
g ≥ 2 decomposes into strata. Each such stratum is determined by a partition
2g−2 =

∑m
i=1 ki for some numbers ki ≥ 1, and it consists of all abelian differentials

with the same number m ≥ 1 of zeros of the same multiplicities ki. Such a
stratum, denoted by H(k1, . . . , km), is a complex orbifold of complex dimension
2g− 1+m. Strata are not necessarily connected, but their connected components
were classified by Kontsevich and Zorich [2].

They showed that each stratum consists of at most three connected components.
Hyperelliptic components are components of differentials on hyperelliptic surfaces,
and they are preimages of strata of quadratic differentials on CP 1 with simple
poles at the images of all or all but one Weierstrass point. They are fairly well
understood.

For genus g = 3, Looijenga and Mondello [3] used methods from algebraic
geometry to investigate the topology of some components of strata in genus 3.
They found that the components H(4) and H(1, 3) are classifying spaces for the
quotient of the Artin group E6 and E7, respectively, by its center.

For a component Q of a stratum consisting of differentials with m ≥ zeros call
an abelian differential q ∈ Q completely periodic admissible for Q if the following
conditions are satisfied.

(1) The differential q is horizontally and vertically periodic. Equivalently,
every regular leaf of the horizontal or the vertical foliation is closed.

(2) The core curves of the horizontal and vertical cylinders decompose S into
m disks.

(3) Any two curves from the collection C of core curves of horizontal or vertical
cylinders intersect in at most one point. Furthermore, the graph whose
vertices are the components of C and where two such vertices c, d are
connected by an edge if they intersect is a tree.

It is not hard to construct explicitly such differentials for every component of a
stratum.

The main result discussed in the talk is

Theorem 1. Let Q be a component of a stratum of abelian differentials and let
q ∈ Q be completely periodic admissible for Q. Then the image of the orbifold
fundamental group of Q in the mapping group of the surface S with m marked
points is the group which is generated by the Dehn twists about the core curves of
the horizontal and vertical cylinders of q.



Flat Surfaces and Algebraic Curves 2615

References
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How can a line bundle on a curve degenerate?

Jesse Leo Kass

(joint work with Nicola Pagani and David Holmes)

The moduli stack Mg,n of smooth n-marked curves of genus g is the base of the
universal Jacobian Jd

g,n, or moduli space of degree d lines bundles, and a basic

problem in algebraic geometry is to extend Jd
g,n to a family over the moduli space

Mg,n of stable marked curves by adding degenerate fibers called compactified
Jacobians. This problem is challenging because the obvious extension, the moduli
space of line bundles on stable marked curves, does not provide a well-behaved
moduli space. Since at least 1956, mathematicians such as Altman, Caporaso,
D’Souza, Esteves, Igusa, Kleiman, Mayer, Melo, Mumford, Oda, Pandharipande,
Seshadri, Simpson, and Viviani have worked to modify this idea to create well-
behaved extensions of Jg,n. In [KP17], we extend formalism developed Oda–
Seshadri to define and study extensions.

The essential step in defining a well-behaved extension of Jd
g,n is specifying

which line bundles to include, and the most important invariant for doing this is
the multidegree of a line bundle, which is the integral vector whose components
are the partial degrees on the irreducible components of the curve. In [OS79],
Oda and Seshadri defined a linear algebra object that describes ways of selecting
multidegrees in a manner that specifies a compactified Jacobian JC of a nodal
curve. Given an integer d, let R#Vert(ΓC) denote the vector space of real valued
functions on the vertex set Vert(ΓC) of the dual graph and let V d(C) ⊂ R#Vert(ΓC)

denote the affine subspace of vectors φ satisfying
∑
φ(v) = d. Define a line bundle

L to be φ-(semi)stable if it satisfies

(1) | degC0
(L)−

∑

v∈ΓC0

φ(v)| < #(C0 ∩ Cc
0)

2
(resp. ≤ #(C0 ∩ Cc

0)

2
).

Here C0 ⊂ C runs over the subcurves and Cc
0 denotes the closure of the complement

of C0.
The notation of φ-(semi)stability extends in a natural way to rank 1, torsion-free

sheaves (certain degenerate line bundle), and one of Oda and Seshadri’s theorems
is that there is a projective scheme J(φ) that is a suitably defined coarse space for
the moduli functor of φ-semistable sheaves. For our purposes, the most important
part of this result is that J(φ) in fact represents the moduli functor when φ-stability
coincides with φ-semistability, a condition we call nondegenerate.



2616 Oberwolfach Report 42/2018

A major goal in [KP17] is to package the different J(φ)s to produce a family
over Mg,n. We do so by defining the stability space to be the subspace

V d
g,n ⊂

∏

Γ

V d(Γ)

consisting of vectors such that the component indexed by Γ is invariant under
Aut(Γ) and the components are compatible with graph contractions. With this
definition, we can use the components of φ ∈ V d

g,n to define φ-stability for rank
1, torsion-free sheaves on genus g stable, n-marked curves. A basic result is then
that, under the assumption that φ is nondegenerate, the moduli space Jg,n(φ) of
φ-stable sheaves exists as a proper Deligne–Mumford stack.

We also describe how Jg,n(φ) depends on φ by decomposing of V d
g,n into bounded

polytopes such that Jg,n(φ) changes precisely when φ passes from one polytope to
another. This result is [KP17, Theorem 2], and it takes a particularly nice form
when specialized to the case where d = g − 1:

Theorem 1. For g ≥ 2, n ≥ 1, there is an identification V g−1
g,n = RN × Rn such

that Jg,n(φ1) = Jg,n(φ2) if and only if φ1, φ2 lie in a common polytope for the
polytope decomposition that is the product of the decomposition of RN−1 by integer
translates of the hyperplanes

(2)
{
~x ∈ RN : xℓ = 0

}
for ℓ = 0, . . . , N

and the decomposition of Rn by integer translates of
(3){

~x ∈ Rn :
∑

i∈S

xi −
ℓ

2g − 2

n∑

i=1

xi = 0

}
for ℓ = 0, . . . , 2g − 3, S ⊆ {1, . . . , n}.

The second collection of hyperplanes is a refinement of a hyperplane arrange-
ment known as the resonance hyperplane arrangement.

A long-term goal is to apply the description in (2) to describe how natural Chow
classes on Jg,n(φ) change as we change φ. Pagani, Holmes, and I [HKP17] together
with Pagani and Ricolfi [PR18] and Chiodo [Chio02] have proved results describing
how the double ramification cycle and related classes change. Recall that the
double ramification cycle DR(a) associated to weights (a1, . . . , an), a1+ · · ·+an =
0, is an extension of the fundamental class of {(C, p1, . . . , pn) : O(a1p1+. . . anpn) =
O} ⊂ Mg,n to a class on Mg,n. The double ramification cycle DR(a) exhibits
beautiful structural properties including a formula expressing DR(a) as a sum
over stable graphs with terms given by products over markings and edges. The
formula is known as Pixton’s conjecture, but it is now a theorem that is proven in
[JPPZ17].

In loc. cit., the double ramification cycle is defined using the formalism of virtual
fundamental classes and the moduli space of stable maps. The class can alterna-
tively be interpreted in terms of Jg,n(φ). Observe that {(C, p1, . . . , pn) : O(a1p1 +
. . . anpn) = O} is the pullback of the locus of trivial line bundles under the map
σa : Mg,n → J0

g,n defined by (C, p1, . . . , pn) 7→ O(a1p1 + · · ·+ anpn). Thus we can
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extend the fundamental class by picking a φ and considering σa as a morphism

Mg,n 99K Jg,n(φ). For many choices of φ, this class will not equal DR(a), but we
prove [HKP17, Theorem 5]:

Theorem 2. If φ ∈ V 0
g,n is nondegenerate and such that every multidegree 0

line bundle is φ-stable, we have [DR(a)] is the pullback of the locus of trivial line
bundles under σa : Mg,n 99K Jg,n(φ).

Strictly speaking, rather than working with the locus of trivial line bundles, in
loc. cit., we work with a related Brill–Noether cycle w(φ) that has better formal
properties.

An important issue that we have not emphasized is that σa is typically a rational
map. In proving [HKP17, Theorem 5], an essential input is work of Holmes [Hol17]
that constructs an explicit resolution of indeterminacy.

In view of Theorem 2, an important project is to understand how the pullback
of the locus of the trivial line bundle, or better w(φ), changes as we change φ.
An important step in this direction was taken by Pagani and Ricolfi in [PR18]
and Chiodo [Chio02]. While the map σa is, in general, only a rational map and
pullbacks by rational maps can be difficult to compute, for some important special
choices of a the map is regular. For these choices, Chiodo, Pagani, and Ricolfi
compute the pullback of the zero section as well as more general Brill–Noether
cycles. The most general formula is given as [PR18, Theorem 1], and we omit
it as it is rather complicated. The stability parameter φ considered in loc. cit. is
typically different from the one appearing Theorem in 2, and the formula appearing
in loc. cit. is different from Pixton’s formula. Both formulas do, however, display
rich combinatorial structure, and an ongoing challenge is to understand how to
interpolate between the two structures when varying φ.
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Complete cycles in the moduli space of curves

Igor Krichever

The goal of the talk is to present new upper bound on the dimension of a complete
(complex) cycle in the moduli space Mct

g of genus g stable curves of compact type.
The upper bound for the case of moduli Mg space of smooth curves is celebrated

Diaz’ theorem (1986):
•There does not exist a complete (complex) cycle in Mg of dimension greater

than g − 2.
Then easy induction arguments prove (Diaz):
• There is no complete cycle in the moduli space Mct

g of stable curves of compact
type of dimension greater that 2g − 3.

Keel and Sadun improved this bound:
• For g ≥ 3 there do not exist complete complex subvarieties of Mct

g of dimen-
sion greater than 2g − 4.

This seemingly humble improvement of the previous bound is quite significant
in relation to Faber’s conjectures or, more precisely, in relation to their analog for
Mct

g (see extensive discussion in [1]). In this connection, our main result looks
even more striking:

Theorem 1. There do not exist complete complex subvarieties of Mct
g having

non empty intersection with Mg of dimension greater than g − 1. For g ≥ 2 the
maximum dimension of complete complex subvarieties in Mct

g is 3
2 g − 2.

The proof is based on a study of the period map defined by real normalized
differentials. By definition a real normalized meromorphic differential is a differ-
ential whose period over any cycle on the curve is real. As easily follows from
the positive-definiteness of the imaginary part of the period matrix, for any fixed
singular parts at marked points with imaginary residues summing up to zero there
exists a unique meromorphic differential with prescribed singular parts, and with
all periods real.

The general notion of real normalized differential was introduced in the frame-
work of the Whitham perturbation theory of soliton equations [2]. Their system-
atic study and applications to the study of geometry of moduli spaces of curves
was initiated in our joint paper [3] with S. Grushevsky.

Let M≤n,τ
g,1 := {C,Ψ,Ψ1} be the moduli space of smooth genus g algebraic

curves C with a pair of real normalized differentials having pole of order at most
n+ 1 at one marked point p0, whose singular parts σ and σ1 satisfy the equation
σ = τσ1 with τ ∈ C, Im τ > 0. This space was central in the construction of
elliptic families of solutions of the Kadomtsev-Petvishavili equation [5].

The (local) period map is defined as

Π : M≤n,τ
g,1 →

(∮

γi

Ψ,

∮

γi

Ψ1

)
∈ R2g ⊕ R2g

For any Y ⊂ Mg the preimage of Y under the forgetful map M≤n,τ
g,1 → Mg will

be denoted by Y ≤n,τ . It is of dimension dimY + n+ 1
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The following unexpected result is crutial in the proof of our main theorem:

Lemma 2. Let Z be a complete cycle in Mct
g of dimension g − 1, then for any τ

the period map

Π : (Z ∩Mg)
≤g,τ → R2g ⊕ R2g

fails to be injective at every point.
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Cohomology classes of singularity loci in Hurwitz spaces

Sergey Lando

(joint work with Maxim Kazarian, Dimitry Zvonkine)

The subject of the talk are the universal formulas for cohomology classes in spaces
of meromorphic functions on complex curves represented by subspaces of func-
tions with singularities of prescribed types. The study is based on the principles
by R. Thom and M. Kazarian that guarantee the existence of such universal ex-
pressions in the case when all the local singularities are isolated. We extend these
principles to the case of nonisolated singularities, allowing contracting of a ratio-
nal curve. We deduce recurrence relations for such cohomology classes in Hurwitz
spaces of rational functions and use the results to obtain new formulas for rational
double Hurwitz numbers.

Double Hurwitz numbers enumerate possible ways to represent the identical
permutation as the product of two permutations of given cyclic types and a given
number of transpositions. In topological terms, they describe topologically distinct
meromorphic functions on Riemann surfaces of given genus with prescribed orders
of poles and zeroes and prescribed nonzero simple critical values. In the case
when the underlying surface has genus zero, and one of the two distinguished
permutations is identical, a closed formula for these numbers was proposed by
Hurwitz more than a century ago. In the general case, explicit formulas not for the
numbers themselves but for the generating function of these numbers are known.
In spite of existence of such formulas and a variety of modern proofs, many natural
questions concerning these numbers remain open.

https://arxiv.org/abs/1108.4211
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Hurwitz’s argument was algebraic, based on the study of combinatorics of the
permutation group. On the other hand, Hurwitz numbers are related to the geom-
etry of spaces of rational functions. We propose a new way to compute Hurwitz
numbers that has a topological origin: it is derived from cohomological information
contained in the stratification of the Hurwitz space according to multisingularities
of the functions. We expect that variations of this approach could be adopted to
other families of Hurwitz numbers for which effective formulas are not known at
the moment, including those for curves of higher genera.

According to our approach, the classes of (multi)singularities of maps are ex-
pressed by universal formulas involving characteristic classes of manifolds partic-
ipating in the mapping. The terms of these formulas are actually independent of
the particular mapping, they are totally determined by the degeneracy types of the
mapping. The formulas can be applied provided the mapping is generic, that is,
certain transversality condition must be satisfied. We formulated these transver-
sality conditions explicitly. The cyclic types of the two permutations used in the
definition of the double Hurwitz numbers enter our formulas in a non-symmetric
way: the cyclic type of one of them denotes the multisingularity type of a rational
function which is simplified step by step in the recursive procedure, while the other
one is just used in the definition of the suitable ambient Hurwitz space and could
be arbitrary; it does not affect the structure of the recursive relation.
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The shape of large genus translation surfaces

Howard Masur

(joint work with Kasra Rafi, Anja Randecker)

For this talk we consider the stratum H(2g − 2) of genus g surfaces with a single
zero of order 2g − 2.This is the minimal stratum in that genus. We are interested
in the expected or average diameter of a surface (X,ω) ∈ H(2g − 2) as g → ∞.
We let ν be normalized Lebesgue measure on the stratum.

Our result is ∫
H
diam(X,ω)dν(X,ω)

ν(H)
= O(

√
log g

g
)

as g → ∞.

https://arxiv.org/abs/1512.03285
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The proof consists of using several ideas. The first is the Siegel-Veech formula
which says that if one wants to count cylinders, for example, on a translation
surface, (X,ω), each cylinder has a holonomy vector v so that one gets a discrete
set Λω. There is a constant c called the Siegel-Veech constant so that for f a

compactly supported function on R2 if we let f̂(X,ω) =
∑

v∈Λω
f(v) then

∫

H

f̂ = c

∫

R2

f.

The constant c depends on volumes of strata [EMZ] and their asymptotics have
recently been found [A],[S]. This information put together allows one to compute
volumes of sets in terms of their diameter and this is what allows us to prove the
theorem.
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Arithmetic Kontsevich–Zorich monodromies

Carlos Matheus

(joint work with Pascal Hubert)

Let G be an algebraic Lie group and consider a Z-form of GZ. Given Γ ⊂ GZ

Zariski-dense in G, we say that Γ is thin, resp. arithmetic if the index of Γ in
GZ is infinite, resp. finite. For example, when GZ = SL(2,Z), one has that

〈
(

1 2
0 1

)
,

(
1 0
2 1

)
〉 is arithmetic and 〈

(
1 3
0 1

)
,

(
1 0
3 1

)
〉 is thin.

The notion of thin groups was introduced by Sarnak [10] partly because some
counting or sieving problems in Number Theory become easier / harder when deal-
ing with arithmetic / thin groups: in a nutshell, arithmeticity is relevant thanks
to the so-called property (T), while thinness creates some difficulties especially in
the regime of small Hausdorff dimension of certain limit sets.

Moreover, it is often interesting to establish the arithmeticity of certain Zariski-
dense subgroups because this might provide new extra informations: for instance,
the proof of arithmeticity of Rauzy–Veech groups by Gutiérrez-Romo [5] led him
to discover new tools allowing to obtain in [6] the first cases of the analog of Avila–
Viana theorem [1] for moduli spaces of half-translation surfaces (almost 10 years
after the first attempts by Avila, Lanneau and Resende).

https://arxiv.org/abs/1804.05431
https://arxiv.org/abs/1801.01744
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1. How often is Γ thin?

It is known that the presence or absence of thin groups depends on the precise
setting. For example, Fuchs and Rivin [4] showed that the group 〈A,B〉 generated
by two matrices A,B ∈ SL(n,Z) is “typically” thin, and Singh–Venkataramana
[11] and Brav–Thomas [2] proved that we have 7 arithmetic cases and 7 thin cases
among the 14 examples of monodromy representations coming from Dwork families
of Calabi–Yau 3-folds.

In this direction, Sarnak asked Eskin how frequently are thin Kontsevich–Zorich
monodromies. For the sake of simplicity, we shall restrict our discussion of this
question to the context of square-tiled surfaces X of genus g ≥ 2 without au-
tomorphisms in what follows. In this setting, we recall that the Kontsevich–
Zorich monodromy ΓX is simply the image ρX(SL(X)) of the Veech group SL(X)
of X under the natural monodromy representation (Kontsevich–Zorich cocycle)

ρX : SL(X) → Sp(H
(0)
1 (X)) ≃ Sp(2g − 2,Z), where H

(0)
1 (X) is the subspace of

zero holonomy elements of H1(X,R).
As it was pointed out by Möller, the Kontsevich–Zorich monodromy ΓX of a

square-tiled surface X of genus 2 is always arithmetic: roughly speaking, this
happens because the period map gives a non-constant holomorphic map from
H/SL(X) to H/ΓX .

Therefore, the next question is: what happens in genus 3? Here, it is worth
to point out that the question makes sense because ΓX is “usually” Zariski-dense
when X has genus 3: for instance, ΓX is Zariski-dense in Sp(4,R) for “most”
square-tiled surfaces X in the minimal stratum H(4) thanks to our joint work [8]
with Möller and Yoccoz and the work [9] of Prasad–Rapinchuk.

2. Thin Kontsevich–Zorich monodromies in genus 3?

If X is a square-tiled surface of genus 3 such that SL(X) is virtually free, ρX :
SL(X) → Sp(4,Z) is faithful (i.e., injective), and ΓX = ρX(SL(X)) is Zariski-
dense in Sp(4,R), then ΓX is thin (because Sp(4,Z) has property (T)).

On the other hand, ρX is not faithful when X decomposes into a single cylin-
der in some rational direction (because the multi-twist stabilising such a cylinder
belongs to the kernel of ρX).

Hence, it is natural to look for some examples of thin ΓX among square-
tiled surfaces of genus 3 without one-cylinder decompositions. After a quick
computer search (with Sage), Delecroix discovered that the square-tiled surface
O associated to the pair of permutations h = (1)(2, 3, 4, 5)(6, 7, 8, 9) and v =
(1, 8, 9, 2)(3, 5, 4, 6)(7) has these properties.

Thus, it is tempting to investigate the features of ΓO. For this sake, we note
that ΓO is generated by two matrices: indeed, one can check that the Veech group
SL(O) of O is

SL(O) = 〈a〉 ∗ 〈b〉 := 〈
(

0 −1
1 −1

)
〉 ∗ 〈

(
1 −3
1 −2

)
〉 ≃ Z/3 ∗ Z/3,
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so that ΓO is generated by A := ρO(a) and B := ρO(b). In particular, one can use
[8] and [9] to show that ΓO = 〈A,B〉 is Zariski-dense in Sp(4,R).

Nevertheless, Kohl found out that ρ is not faithful because

ρ

(
−24587 42408
15048 −25955

)
= ρ((aba−1ba−1bab−1)3) = Id4×4.

As it turns out, there is a good reason for the non-faithfulness of ρ: in our joint
work [7] with Hubert, we showed that ΓO is arithmetic.

The proof of this result relies on the following particular case of a conjecture of
Margulis recently established by Benoist–Miquel [3] (after important partial results
by Raghunathan, Venkataramana and Oh): if Γ ⊂ Sp(4,Z) is a Zariski-dense
subgroup intersecting the unipotent radical of the parabolic subgroup stabilising
the flag {0} ⊂ Re1 ⊂ (Re1)

† ⊂ R4 (where V † stands for the symplectic orthogonal
of V ) in a lattice, then Γ is arithmetic.

In summary, despite testing some natural candidates (such as O above), Hubert
and the author were not able to locate thin Kontsevich–Zorichmonodromies among
square-tiled surfaces of genus 3.
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Exploring the moduli space of spherical surfaces with conical points

Gabriele Mondello

(joint work with Dmitri Panov)

We consider compact, connected, oriented surfaces S of genus g with n distinct
marked points x = (x1, . . . , xn) on it and an n-uple ϑ = (ϑ1, . . . , ϑn) of positive
number. A spherical metric on (S,x) with conical singularities of angles 2πϑ is a

Riemannian metric h on Ṡ := S \ x with curvature 1 such that it has a conical
point at xi of angle 2πϑi for all i = 1, . . . , n.

Monodromy and CP
1-structures. Here we recall that, since metrics of

K = 1 are locally isometric to S2, a spherical surface (S,x, h) come endowed

with a SO3(R)-valued monodromy representation of π1(Ṡ) and a locally isometric
developing map to S2. In particular, a spherical metric induces a CP

1-structure
on S with singularities at x. The case in which the monodromy of h is co-axial
(i.e. contained in a one-parameter subgroup of SO3(R)) is somehow a degenerate
one, whereas the study of non-coaxial spherical metrics are essentially equivalent
to the study of their associated CP1-structures.

Simple cases. We remark that the case n = 0 with no singularities is not
very interesting, since all such surfaces would be isometric to the standard sphere
S2. In fact, for every Riemann surface S of genus 0 there exist a family of
H3 = PSL2(C)/SO3(R) conformal spherical metrics. Troyanov [10] showed that
for (g, n) = (0, 1) there are no spherical metrics (unless smooth), and that for
(g, n) = (0, 2) the metrics look like a double bigon (with ϑ1 = ϑ2 > 0 and
d(x1, x2) = π) or a cyclic cover of degree r ≥ 2 of the standard S2 branched
at two points (so that ϑ1 = ϑ2 = r and d(x1, x2) ∈ (0, π)).

Spherical triangles. In the case (g, n) = (0, 3) all such surfaces are double
triangles. Eremenko [5] showed that there exist at most one such triangle for each
ϑ and he determine exactly for which ϑ such triangle exists.

Moduli space and forgetful map. We denote by MSphg,n(ϑ) the moduli
space of spherical surfaces of genus g with n conical points of angles 2πϑ, and
by Mg,n the moduli space of Riemann surfaces of genus g with n distinct marked
points. Let Fg,n,ϑ : MSphg,n(ϑ) → Mg,n be the map that sends forgets the metric
and only remembers the underlying conformal structure. It can be shown that
such forgetful map is a real-analytic map between real-analytic orbifolds (both of
which have real dimension 6g − 6 + 2n, if the metrics are not co-axial). Most
problems can be formulated in terms of properties of MSphg,n(ϑ) or of Fg,n,ϑ.
As a warning, we stress that the moduli space of spherical surfaces displays quite
different features than the analogous moduli spaces of flat or hyperbolic surfaces.
Indeed, the existence of a metric in each conformal class is not guaranteed due
to possible bubbling phenomena; moreover, the uniqueness of a metric in each
conformal class is not guaranteed either, since the positive sign of the curvature
makes the maximum principle not available.

Non-emptiness problem: is MSphg,n(ϑ) 6= ∅?
Certainly one needs the obvious Gauss-Bonnet condition to be satisfied, namely
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χ(S,ϑ) := 2 − 2g + n + ‖ϑ‖1 > 0 with ‖ϑ‖1 := ϑ1 + · · · + ϑn. For g > 0, the
answer is yes [9] and the construction of a particular spherical metric is rather
explicit. For g = 0 non-emptiness depends on ϑ. In particular, in [8] it is proven
that a non-coaxial metric in such space exists if and only if d1(ϑ − 1,Zn

o ) > 1,
where ϑ− 1 = (ϑ1 − 1, . . . , ϑn − 1), Zn

o = {m ∈ Zn |m1 + · · · + mn odd} and
d1(p,m) =

∑
i |pi−mi| is the standard L1 distance in Rn. There it is also proven

that d1(ϑ − 1,Zn
o ) < 1 implies that MSphg,n(ϑ) is empty. The obstruction to

the existence here relies in the monodromy, and in particular in the possibility of
realizing a canonical SU(2)-lift of the monodromy representation associated to the
spherical surface of genus 0. The analysis of the case d1(ϑ − 1,Zn

o ) = 1 (in which
metrics are necessarily co-axial by [8]) was carried out by Eremenko [4].

Surjectivity problem: is Fg,n,ϑ surjective? In other words, does there exist
a spherical metrics in each conformal class? Analytically, the problem reduces to
finding a suitable conformal factor (with respect to a smooth background metric
on S), and equivalent to solving a suitable singular Liouville equation on S. Using
a variation approach, Troyanov [11] proved that the answer is yes in the subcritical
case 0 < χ(S,ϑ) < τ(S,ϑ) := min{2, 2ϑ1, . . . , 2ϑn}, since the functional associ-
ated to the above Liouville equation is coercive. Bartolucci-De Marchis-Malchiodi
[1] showed that the answer is again yes if g > 0 and all ϑi ≥ 1, again by considering
the variational problem and showing that its sublevels have different topology. In
this way they actually gave a lower bound (which increases with g and with ‖ϑ‖1
on the number of metrics in the general conformal class). On the other hand, if
one conical angle is small enough, it is possible to show with some minor exception
that Fg,n,ϑ cannot be surjective [9].

Holomorphicity problem: is Fg,n,ϑ holomorphic for some complex
structure on MSphg,n(ϑ)?
In some case the answer is yes, for instance if g = 0 and ϑ4 = ϑ5 = · · · = ϑn ∈ N,
since the monodromy representation is the same for every metric [6]. The answer
is yes in the case g > 0 and ϑ1 = · · · = ϑn = 2. In general, the answer is no and
an explicit example with (g, n) = (0, 4) and ϑ = (ϑ1,

1
2 ,

1
2 ,

3
2 ) with ϑ1 small can be

found in [9]. In such example the map F0,4,ϑ displays some topological behaviour
that is incompatible with holomorphicity.

Connectedness problem: is MSphg,n(ϑ) connected?
This happens to be the case, for instance, if g = 0 and all ϑi ∈ N by Liu-Osserman
[7]. In general, both MSphg,n(ϑ) and its image via Fg,n,ϑ can have many connected
components. An explicit series of examples with (g, n) = (0, 3+ k) and at least 3k

connected components is given in [9]. The angles are ϑ = (m1 +
1
2 ,m2 +

1
2 ,m3 +

1
2 , ε1, ε2, . . . , εk) for integers m1,m2,m3 ∈ N and small ε1, . . . , εk > 0. In these
examples, the conical points x4, . . . , x3+k must stay close to exactly one of the
points x1, x2, x3: the combinatorics of the configuration permits to separate (at
least) 3k connected components.

Properness problem: is Fg,n,ϑ proper?
In other words, is the space of such spherical metrics in a fixed conformal class
compact?
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This is not always the case, due to possible bubbling phenomena. Thus, we intro-
duce a non-bubbling parameter NBg,n(ϑ) := dR(χ(Ṡ),Critϑ), where dR is the usual

distance in R and Critϑ :=
{∑

i∈I ϑi −
∑

j /∈I ϑj + 2b | b ∈ N, I ⊆ {1, 2, . . . , n}
}
.

A Gauss-Bonnet-type argument shows that a family of spherical metrics in a fixed
conformal class may degenerate only if NBg,n(ϑ) = 0: in this case properness of
Fg,n,ϑ follows. A more precise quantitative statement [9] (“systole inequality”)

is that: if NBg,n(ϑ) ≥ ε and Extsys ≥ 2π‖ϑ‖1

log(1/ε) , then sys ≥ (ε/4π‖ϑ‖1)−3χ(Ṡ)
,

where the extremal systole Extsys is the minimum of the extremal lengths of sim-
ple closed curves on Ṡ and the spherical systole sys is the minimum of the lengths
(with respect to the given spherical metric) of smooth geodesic arcs with end-
points in x. Since both Extsys : Mg,n → R+ and sys : MSphg,n(ϑ) → R+ decay
to zero at infinity, the systole inequality easily implies properness of the forgetful
map. Another consequence of the systole inequality, which reminds of Carlotto’s
non-existence result [2] for solutions of singular Liouville equations is the following

[9]: given ϑ̂ = (0, ϑ2, ϑ3, . . . , ϑn) such that NBg,n(ϑ̂) > 0 and fixed a conformal
structure on (S,x), there exists a small ϑ⋆1 > 0 such that no spherical metric in
the given conformal class and angles 2π(ϑ1, . . . , ϑn) exists if ϑ1 < ϑ⋆1.
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Cones of effective cycles in moduli spaces of curves

Scott Mullane

We report on recent progress on the structure of the cones of effective algebraic
cycles in Mg,n through the use of flat geometry and the strata of abelian differ-
entials.

Investigating the codimension-one subvarieties, known as divisors, of a moduli
space is an important element in understanding the birational geometry of such
spaces and corresponds to considering the rational morphisms of the moduli space.
Harris and Mumford [HMu], Eisenbud and Harris [EH], Farkas [F1][F2], Farkas
and Verra [FV], Chen and Coskun [CC1] and many others have used geometrically
defined divisors to study many aspects of moduli spaces of curves including the
Kodaira dimension and the cone of effective divisors. Though comparatively little
is known, there has recently also been growing interest in understanding finer
aspects of the birational geometry encoded in the cones of higher codimension
cycles [CC2][FL1][FL2].

The stratum of canonical divisors of type κ = (k1, . . . , kn) is defined as

PΩMg(κ) =

{
[C, p1, . . . , pn] ∈ Mg,n |

n∑

i=1

kipi ∼ KC

}
.

This subvariety has codimension g − 1 for a holomorphic signature (all ki ≥ 0)
and codimension g for a meromorphic signature. Taking the closure of this loci
and pushing forward under morphisms forgetting marked points provides cycles of
lower codimension in moduli spaces of curves with fewer marked points. In [M1]
the author presents a closed formula for the divisor class Dκ in Mg of the closure
of all possible codimension one loci of this type. Computations for bounded genus
give bounds on the slope of these divisors

8 +
1

2g−3
= s(Deven

(4,2g−3)) ≤ s(Dκ) ≤ s(D(g+1,1g−3)) = 9 +
2

g(g + 1)
,

suggesting that asymtotically the slopes are bounded between 8 and 9.
Recently, the full compactification of the strata initiated by Farkas and Pand-

haripande [FP] was completed by Bainbridge, Chen, Gendron, Grushevsky and
Möller [BCGGM] providing a useful tool in furthering our understanding of the
birational geometry of Mg,n.

An old trick to show that a divisor is rigid and extremal in the effective and
pseudo-effective cones employs a covering curve. If irreducible curves with class
equal to [B] cover a Zariski dense subset of irreducible divisor D and [B] · [D] < 0
then D is rigid and extremal.

Considering meromorphic signatures κ = (d1, d2, d3, 1
2g−3) and

ϕ : Mg,2g −→ Mg,g+1

the forgetful morphism that forgets the last g − 1 points, we obtain the divisors

Dg+1
κ = ϕ∗(PΩMg(κ))
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in Mg,g+1. By consrtucting covering curves in [M2] we obtain these divisors are

rigid and extremal for g ≥ 2. Hence Eff(Mg,n) is not rational polyhedral for g ≥ 2,
n ≥ g + 1. Hence in these cases the Cox ring is not finitely generated, giving the
new result that M2,n is not a Mori dream space.

In [M3] using the extremal divisors from [M2] and gluing morphisms we are able
to construct infinitely many codimension two cycles supported in the boundary of
Mg,n for g ≥ 3 and n ≥ g − 1 via the strategy of [CC2].

To obtain rigid and extremal cycles supported in the interior of Mg,n we use
an inductive argument on the rigidity of the cycles using the above base case of
divisors. Let

ϕj : Mg,2g −→ Mg,2g−j

be the forgetful morphism forgetting the last j points. For g ≥ 2 the cycle

[ϕj∗PΩMg(d1, d3, d3, 1
2g−3)]

is rigid and extremal for j = 0, . . . , g − 1 with some di = 1 if g = 2.
Finally we examine the genus g = 1 case. In this case the meromorphic strata of

canonical divisors have codimension one and to produce rigid and extremal higher
codimension cycles we intersect the pullbacks of strata under forgetful morphisms
to obtain infinitely many extremal codimension k cycles in M1,n for k ≤ n− 2.
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Veech dichotomy, embedded triangles, and tessellations of the
hyperbolic plane

Duc-Manh Nguyen

Let M = (X,ω) be a translation surface, and Σ a finite subset of M that contains
all the singularities. A saddle connection for the pair (M,Σ) is a geodesic segment
of the flat metric that joins two points in Σ and does not contain any point of Σ
in its interior. Note that the endpoints of a saddle connection are not necessarily
distinct.

Given any direction θ ∈ RP
1 = R∪{∞}, one has a foliation Fθ onM by straight

lines in direction θ. If all the leaves of this foliation are either saddle connections,
or closed geodesics, Fθ is said to be periodic. On the other hand, if each of its leaf
is equidistributed in M , then Fθ is said to be uniquely ergodic.

Define Aff+(M,Σ) to be the group of orientation preserving homeomorphisms
of M that map Σ to itself and are given by affine maps v 7→ A(v) + c, with
A ∈ SL(2,R) and c ∈ R constant, in local charts associated with the flat metric.
The Veech group Γ(M,Σ) of the pair (M,Σ) is defined to be the image in SL(2,R)
of the group Aff+(M,Σ) under the derivative mapping.

In [4], Veech showed that if Γ(M,Σ) is a lattice in SL(2,R), then (M,Σ) satisfies
the following property: for any θ ∈ RP1, Fθ is either periodic, or uniquely ergodic.
This is called the Veech dichotomy.

We will say that (M,Σ) satisfies the topological Veech dichotomy if for any
θ ∈ RP

1, either Fθ is periodic, or every leaf of Fθ is dense in M . The topological
Veech dichotomy is equivalent to the following property: for any θ ∈ RP1, if there
is a saddle connection in direction θ, then Fθ is periodic. By definition, if (M,Σ)
satisfies the Veech dichotomy, then it satisfies the topological Veech dichotomy as
well. It is worth noticing that there are examples of surfaces satisfying the Veech
dichotomy, but the Veech group is not a lattice of SL(2,R) (see [1, 3]).

Let T be an Euclidean triangle whose vertices are denoted by v1, v2, v3. Let
T ∗ = T \ {v1, v2, v3}. We will say that T is an embedded triangle for the pair
(M,Σ), if there exists a map ϕ : T →M satisfying the following

• ϕ(vi) ∈ Σ,
• ϕ(T ∗) ⊂M \Σ,
• ϕ∗ω = dz,
• the restriction of ϕ to T ∗ is an embedding.

Let E(M,Σ) denote the set of Euclidean triangles that be embedded in (M,Σ) (in
the above sense).

To each embedded triangle T , we have a corresponding ideal triangle ∆T in the
hyperbolic plane H defined as follows: let k1, k2, k3 be the slopes of the sides of T
(here, the slope of a vector v = (x, y) ∈ R2 \{(0, 0)} is defined to be x

y ∈ R∪{∞}),
then ∆T is the ideal triangle whose vertices are k1, k2, k3.

Let I denote the set of ideal triangles in H that are associated with the triangles
in E. Let L denote the set of hyperbolic geodesics that are sides of the ideal
triangles in I, and C ⊂ ∂H the set of vertices of those ideal triangles.



2630 Oberwolfach Report 42/2018

Example: If M is the standard torus C/Z2, and Σ = {0}, then it is not difficult
to see that L is the Farey tessellation of the hyperbolic plane.

Theorem [2] If (M,Σ) satisfies the topological Veech dichotomy, then L defines a
tessellation Π of H. More precisely, every connected component of the complement
of L is a hyperbolic polygon with finitely many sides and area bounded by π.

Moreover, if Γ is a lattice then we have

vol(H/Γ) ≤ π#
(
I/Γ

)
.

Remarks

a) Since the ideal triangles in I may overlap, in most of the cases Π is not a
triangulation of H.

b) Since (M,Σ) satisfies the topological Veech dichotomy, C is actually the
set of the periodic directions on M .

c) Γ is a subgroup of the group of automorphisms of Π, denoted by Aut(Π).
If Γ is a lattice then its index in Aut(Π) is finite.

d) One can exhibit an algorithm to compute #(I/Γ) and get a bound on the
volume of H/Γ.

e) Let (M ′,Σ′) be another translation surface with marked points, where
M ′ = (X ′, ω′). Suppose that there is a (ramified) covering map f : X ′ →
X such that f∗ω = ω′, and f−1(Σ) = Σ′, then E(M ′,Σ′) = E(M,Σ).
Hence Π(M ′,Σ′) = Π(M,Σ).
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A new cohomology class on the moduli space of stable curves and
maps to elliptic curves.

Paul Norbury

In this talk we define a collection of cohomology classes on the moduli space of
curves. A generating function for the intersection numbers involving these coho-
mology classes is a tau function of the KdV hierarchy, analogous to the Kontsevich-
Witten theorem. These classes naturally pair with cycles defined by branched
covers of elliptic curves.

https://arxiv.org/abs/1808.09329
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1. Cohomology classes on Mg,n.

Let Mg,n be the moduli space of genus g stable curves—curves with only nodal
singularities and finite automorphism group—with n labeled points disjoint from
nodes. Define ψi = c1(Li) ∈ H2(Mg,n,Q) the first Chern class of the line bundle

Li → Mg,n with fibre above [(C, p1, . . . , pn)] given by T ∗
pi
C. Consider the natural

maps given by the gluing maps

Mg−1,n+2
φirr−→ Mg,n, Mh,|I|+1 ×Mg−h,|J|+1

φh,I−→ Mg,n, I ⊔ J = {1, ..., n}
and the forgetful map

Mg,n+1
π−→ Mg,n.

In this talk we describe cohomology classes Θg,n ∈ H∗(Mg,n) for g ≥ 0, n ≥ 0
and 2g − 2 + n > 0 satisfying the following four properties:

(i) Θg,n ∈ H∗(Mg,n) is of pure degree,
(ii) φ∗irrΘg,n = Θg−1,n+2, φ∗h,IΘg,n = π∗

1Θh,|I|+1 · π∗
2Θg−h,|J|+1,

(iii) Θg,n+1 = ψn+1 · π∗Θg,n,
(iv) Θ1,1 = 3ψ1.

A consequence of (i) and (ii) is that either degΘg,n = 0 or degΘg,n = 4g−4+2n.

The first case gives rise to the trivial cohomology class 1 ∈ H0(Mg,n). The class

1 ∈ H0(Mg,n) satisfies conditions (i), (ii), (iii
′) Θg,n+1 = π∗Θg,n (which replaces

(iii)) and (iv′) Θ1,1 = 1 (which replaces (iv)). In the second case we produce the
classes {Θg,n} of this talk.

Theorem 1 ([2]). For 2g− 2+n > 0, there exist classes Θg,n satisfying (i) - (iv)
and furthermore any such classes satisfy the following properties.

(1) Θg,n ∈ H4g−4+2n(Mg,n).
(2) Θ0,n = 0 for all n.

(3) Θg,n ∈ H∗(Mg,n)
Sn , i.e. it is symmetric under the Sn action.

(4) The following intersection numbers are uniquely determined:

∫

Mg,n

Θg,n

n∏

i=1

ψmi

i

N∏

j=1

κℓj .

(5) ZΘ(~, t0, t1, ...) = exp
∑

g,n,~k

~g−1

n!

∫

Mg,n

Θg,n ·
n∏

j=1

ψ
kj

j

∏
tkj

is a tau function of the KdV hierarchy.

Remarks: The non-constructive uniqueness result (4)—which relies on the exis-
tence of non-explicit tautological relations—follows from the more general property

that the intersection numbers
∫
Mg,n

Θg,n

∏n
i=1 ψ

mi

i

∏N
j=1 κℓj are uniquely deter-

mined by any initial value
∫
M1,1

Θ1,1 ∈ C. The existence proof of Θg,n, which is

constructed via the push-forward of a class over the moduli space of spin curves,
requires the initial value property (iv) given by Θ1,1 = 3ψ1. The existence of Θg,n

with (iv) replaced by Θ1,1 = λψ1 for general λ ∈ C is unknown. For the initial value
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∫
M1,1

Θ1,1 = 1
8 , (4) is strengthened by (5) which allows one to recursively calculate

all intersection numbers
∫
Mg,n

Θg,n

∏n
i=1 ψ

mi

i via recursive relations coming out

of the KdV hierarchy. The proof of (5) does not directly use the KdV hierarchy.
Instead it identifies the proposed KdV tau function ZΘ with a known KdV tau
function—the Brezin-Gross-Witten KdV tau function ZBGW defined in [1]. This
identification of ZΘ(~, t0, t1, ...) with ZBGW(~, t0, t1, ...) uses a set of tautological
relations, known as Pixton’s relations, obtained from the moduli space of 3-spin
curves and proven in [5].

2. Gromov-Witten invariants

Define the moduli space of stable maps to a variety X by

Mg,n(X, β) = {(C, p1, . . . , pn) f→ X | f∗[C] = β}/ ∼

where β ∈ H2(X,Z), C is a genus g nodal curve containing n labeled point {pi}
which avoid the nodes. Furthermore, we require f to be stable meaning that it
has only finitely many automorphisms. The moduli space of stable maps has irre-
ducible components of different dimensions but it has a virtual class of dimension

dim[Mg,n(X, β)]
virt = (dimX − 3)(1− g) + 〈c1(X), β〉+ n.

Define the Gromov-Witten invariants of X coupled to Θg,n by

〈
Θ ·

n∏

i=1

τbi(αi)

〉g

d

:=

∫

[Mg,n(X,β)]vir
p∗Θg,n ·

n∏

i=1

ψbi
i ev

∗
i (αi)

for αi ∈ H∗(X) and evi : Mg,n(X, β) → X , the evaluation map for i = 1, ..., n.
Line bundles Li are defined analogously to those above by Li → Mg,n(X, β) with
fibre above [(f, C, p1, . . . , pn)] given by T ∗

pi
C and ψi = c1(Li) ∈ H2(Mg,n(X, β)).

The usual Gromov-Witten invariants of X replace p∗Θg,n with the trivial class 1.
It is useful to view the Gromov-Witten invariants of X coupled to Θg,n via the

dimension of the virtual class capped with the pull-back of Θg,n:

(1) dim
{
[Mg,n(X, β)]

virt ∩ p−1(ΘPD
g,n)

}
= (dimX − 1)(1− g) + 〈c1(X), β〉

which shows that dimX = 1 is rather special.
The Gromov-Witten invariants coupled to Θg,n have been calculated for target

X = {pt} in Theorem 1, where its partition function is shown to be related to the
KdV equation, and for X = P1 in [3] where its partition function is shown to be
related to the Toda equation. Here we make a few comments regarding the case
when X = E is an elliptic curve.

When X = E we have dim[Mg,n(E, d)]
virt = 2g − 2 + n = deg p∗Θg,n so the

two pair to give a number. This is equivalent to vanishing of the dimension given
in (1) for X = E since dimE = 1 and c1(E) = 0. It ends up that these invariants
vanish. Instead, in place of Θg,n = ψ1...ψnπ

∗Θg remove the product ψ1...ψn and
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simply consider the pull-back of Θg ∈ H∗(Mg):
∫

[Mg,n(E,d)]vir
p∗Θg ·

n∏

i=1

ev∗i (ω), ω ∈ H2(E)

which we can show does not always vanish. Oberdieck and Pixton [4] proved that

the series
∑

d≥0 q
dp∗

(
[Mg,n(E, d)]

virt · ev∗i (ω)
)
∈ H∗(Mg,n) ⊗ QMod is a cycle

valued quasi-modular form. This implies that

∑

d≥0

qd
∫

[M
g

n(E,d)]vir
p∗Θg ·

n∏

i=1

ev∗i (ω), ω ∈ H2(E)

is quasimodular which should make it calculable.
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Around enumerative aspects of moduli of curves and the double
ramification cycle

Aaron Pixton

(joint work with Georg Oberdieck)

Enumerative geometry, broadly speaking, is the study of numerical invariants of
moduli spaces. Instead of trying to count the number of geometric objects with
certain properties directly, we look at the moduli space of such objects and compute
an Euler characteristic or intersect classes in cohomology (or in the Chow ring)
to get a number. In some situations this number will match with an enumerative
count, but this isn’t necessarily the case.

Gromov-Witten theory is a good example of this method. Let X be a pro-
jective variety. We want to count maps f : C → X from a curve to X (maybe
satisfying certain constraints), so we work in the (co)homology of a moduli space
of such objects. More concretely, Mg,n(X, β) is the “moduli space of stable maps”
parametrizing maps f : C → X where C has arithmetic genus g, there are n
marked points x1, . . . , xn ∈ C, the map represents curve class β ∈ H2(X,Z) (i.e.
f∗[C] = β), and the map satisfies certain stability conditions.

This moduli space comes with a pure-dimensional virtual class [Mg,n(X, β)]
vir ∈

H∗(Mg,n(X, β)) and morphisms

p : Mg,n(X, β) →Mg,n, ev1, . . . , evn :Mg,n(X, β) → X.

http://arxiv.org/abs/1712.03662
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Gromov-Witten invariants are defined by integrating cohomology classes pulled
back along p, ev1, . . . , evn against the virtual class.

I will discuss certain cycle-valued Gromov-Witten invariants, which are a variant
of the above construction in which we consider the classes

p∗

(
[Mg,n(X, β)]

vir ∩
∏

i

ev∗i (γi)

)
∈ H∗(Mg,n)

in the cohomology of the moduli space of curves, where γ1, . . . , γn ∈ H∗(X). The
numerical Gromov-Witten invariants can be reconstructed from these by pairing
with cohomology classes of complementary degree. In this way it is natural to
focus our attention on the cohomology of the moduli space of curves; the forgetful
morphisms p : Mg,n(X, β) → Mg,n mean that all of the Gromov-Witten moduli
spaces sit above the moduli space of curves.

In particular, I will explain recent work [2] showing that these cycle-valued
Gromov-Witten invariants are quasimodular forms in the case where X = E is
an elliptic curve (and the invariants are summed over the degree of the map to
form formal power series). The key ingredient in the proof is information about
the double ramification cycle, a family of cohomology classes on Mg,n that is very
interesting in its own right.

Let A = (a1, . . . , an) be a sequence of integers with sum zero. By taking the
positive ai or the absolute values of the negative ai, we obtain two partitions µ, ν of
the same number d. Intuitively the double ramification cycle parametrizes curves
[C, x1, . . . , xn] of genus g that admit a degree dmap to P1 with ramification profiles
µ, ν over 0,∞ respectively and ramification points equal to the corresponding xi.
The precise definition of this over Mg,n is usually done using the virtual class in
relative Gromov-Witten theory. The result is a cycle

DRg,A ∈ H2g(Mg,n).

A explicit formula for the double ramification cycle DRg,A was given in [1].

References

[1] F. Janda, R. Pandharipande, A. Pixton, and D. Zvonkine, Double ramification cycles on

the moduli spaces of curves, Publ. Math. Inst. Hautes Études Sci. 125 (2017), 221–266.
[2] G. Oberdieck and A. Pixton, Holomorphic anomaly equations and the Igusa cusp form

conjecture, Invent. Math. 213 (2018), no. 2, 507–587.

The double ramification hierarchy

Paolo Rossi

The double ramification cycle can be used, together with a given cohomological
field theory, to construct an integrable hierarchy of Hamiltonian PDEs and its
quantization. This integrable system is called the double ramification hierarchy
associated to the CohFT and was introduced at the classical level by A. Buryak
and quantized and studied in a series of works with myself. I will explain how this
construction works.
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Mazur-Veech volumes and intersection theory on the Hodge bundle

Adrien Sauvaget

(joint work with Dawei Chen, Martin Möller)

Mazur-Veech volumes. Let g and n be non-negative integers such that 2g −
2 + n > 0. We denote by Mg,n the moduli space of smooth complex curves
of genus g with n distinct marked points. This moduli space admits a smooth
compactification Mg,n (of stable nodal curves) that is endowed with a universal

curve π : Cg,n → Mg,n. The Hodge bundle Hg,n is the total space of R0π∗ωC/M:

a point in Hg,n is a tuple (X,α, x1, . . . , xn) of a curve endowed with an abelian
differential and n distinct markings. We denote by Hg,n its restriction to the
smooth locus.

Let µ = (m1, . . . ,mn) be non-negative integers such that
∑n

i=1mi = 2g − 2.
We denote by H(µ) ⊂ Hg,n the locus of objects (X,α, x1, . . . , xn) such that xi is
a zero of α of order mi.

Let (X0, α0, x1, . . . , xn) ∈ H(µ) and let (γ1, . . . , γ2g−1+n) be a basis the relative
homology group H1(X0, {x1, . . . , xn},Z). Locally in H(µ), one can identify the
curves to X0 and define the periods vi =

∫
γi
α. The periods (v1, . . . , v2g−1+n) are

the local coordinates around (X0, α0, xi) (see [3]).
The period coordinates endow H(µ) with an affine integral structure and thus

with a volume form ν. We will consider the subspace H(µ)≤1 ⊂ H(µ) of objects
(X,α, x1, . . . , xn) satisfying

area(X,α) :=
i

2

∫

X

α ∧ α ≤ 1.

We denote by Vol(µ) the total volume of H(µ)≤1 for ν. It is finite (see [4] and [7])
and we call it the Mazur-Veech volume of H(µ).

Expression of Vol(µ) as an intersection number. The space H(µ) is invariant
under the C∗-action on the Hodge bundle. Thus we denote by PH(µ) ⊂ PHg,n

the projectivization of H(µ) and by PH(µ) its closure in PHg,n. The space PH(µ)
is proper, of dimension 2g − 2 + n and singular in general. We will consider two
types of classes in A∗(PHg,n,Q):

• The class ξ ∈ A1(PHg,n,Q) is the Chern class of the canonical line bundle

O(1) → PHg,n.

• For 1 ≤ i ≤ n, we denote by σi : Mg,n → Cg,n the section corresponding

to the i-th marking. Then we define ψi ∈ A1(Mg,n,Q) as the Chern class
of the line bundle σ∗

i ωC/M (the cotangent line at the marking). Besides

we denote by the same letter the pull-back of ψi under the forgetful map
PHg,n → Mg,n.

Conjecture A. For all µ the following equality holds

Vol(µ) =
2(2iπ)2g

(2g − 3 + n)!

∫

PH(µ)

ξ2g−2
n∏

i=1

ψi.
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Such a formula was expected to exist since the 90’s (see [2] for example) but it
is only with the methods developed in [5] that one could evaluate the intersection
numbers on right and side to make a precise statement. The case n = 1 of this
theorem is proved in [6] under a regularity assumption of a natural metric on the
line bundle O(1). The extension to n ≥ 1 is the object of a the current work in
progress with D. Chen and M. Möller.

Counting geodesics. We assume that µ is of length ≥ 2. Let (X,α, x1, . . . , xn)
be a point in H(µ). The differential α endows the curve with Riemannian metric
outside the zeros. A saddle-connection is a geodesics in X \{x1, . . . , xn} that links
two markings. We say that two saddle-connections γ1 and γ2 are homologuous if
X \ {γ1, γ2} is disconnected.

For all L ∈ R≥0, we denote by N17→2(X,α, L) the number of homology classes
of saddle-connections between x1 and x2 of length ≤ L
Conjecture B. For almost all (X,α, x1, . . . , xn) in H(µ), the following equiva-
lence holds

N17→2(X,α, L) ∼
L→+∞

(m1 + 1)(m2 + 1)

area(X,α)
πL2.

Surprisingly, we showed that Conjecture B implies Conjecture A. The argument
is based on the relation between the growth of the number saddle connections and
Mazur-Veech volumes established in [1].
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Gothic Teichmüller curves on Hilbert modular surfaces

David Torres-Teigell

(joint work with Martin Möller)

Teichmüller curves are complex geodesics in the moduli space of curves Mg. They
arise as the projection of SL2(R)-orbits of flat surfaces with optimal dynamics,
called Veech surfaces. If the Veech surface is not obtained by a covering con-
struction from a lower genus surface, the resulting Teichmüller curve is called
primitive. There are very few infinite families of primitive Teichmüller curves: the
Weierstrass curves in genus two (found independently by Calta and McMullen),
the Prym curves in genus three and four (found by McMullen), Teichmüller curves
uniformised by a triangle group (studied and classified by Bouw and Möller) and
two new series of Teichmüller curves in genus four (found by McMullen-Mukamel-
Wright and Eskin-McMullen-Mukamel-Wright respectively).

Each of the families lying in a fixed genus stems from an invariant submanifold
‘like the minimal stratum ΩM2(2)’ in genus two. While the geometry of ΩM2(2)
and of the Prym loci is well-understood now, the geometry of the two invariant sub-
manifolds recently discovered by Eskin-McMullen-Mukamel-Wright ([EMMW18])
is basically unexplored. We will focus on the gothic locus ΩG ⊂ ΩM4(2

3), intro-
duced already in [MMW17].

The gothic locus. The gothic locus ΩG is defined as the set of flat surfaces
(X,ω) in the stratum ΩM4(2

3) that admit (1) an involution J sending ω to −ω
and fixing the three zeros of ω and three other marked points and (2) a degree
three ‘odd’ map πB : X → B to an elliptic curve B mapping all the zeros to a
single point. Under these conditions, the involution J induces a degree two map
πA : X → A to another elliptic curve A, and the quotient P (X) of the Jacobian
of X by the subvariety generated by π∗

AA and π∗
BB is called the Prym variety of

X , and inherits a natural polarization of type (1, 6).
It is proved in [MMW17] that the gothic locus is a 4-dimensional affine invariant

manifold. Moreover, for each discriminant D > 0 the subset ΩGD consisting of
those flat surfaces (X,ω) for which the Prym variety P (X) admits real multipli-
cation by the quadratic order OD with ω as an eigenform, is a closed (possibly
empty) SL2(R)-orbit, and its projection GD to M4 is a finite union of Teichmüller
curves. These Teichmüller curves are primitive if and only if D is not a square,
which we assume throughout the talk.

Hilbert modular surfaces and Hilbert modular forms. The space of (1, 6)-
polarised abelian varieties with a choice of real multiplication by OD is parame-
terised by the Hilbert modular surfaces XD(b), where b is an OD-ideal of norm 6.
These are quotients of the bi-disc H2 by the action of a discrete group of matrices
SL(b ⊕ O∨

D) ⊂ SL2(Q(
√
D)) acting on the two copies of H by Galois-conjugate

Möbius transformations. In particular, via the Prym-Torelli map X 7→ P (X), one
can see the Teichmüller curves GD as curves inside some Hilbert modular surface
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XD(b). We will denote by GD(b) the components of GD that lie inside the Hilbert
modular surface XD(b). Our main objective is to cut GD(b) out as the vanishing
locus of certain Hilbert modular form GD on XD(b).

In order to do so, we first study the image of X inside its Prym variety P (X)
under the Abel-Prym map ϕ : X → P (X) and determine the existence of an odd
theta function θX ∈ H0(L)− such that ϕ(X) = div(θX), where L denotes the line
bundle OP (X)(ϕ(X)) determined by the image of X . This theta function fulfills
five conditions, expressed in terms of the vanishing of certain derivatives at special
points.

Now, the line bundle OP (X)(ϕ(X))) on P (X) can be consistently defined every-
where on XD(b), and the fulfillment of three of these five conditions determines a
unique theta function θX for each point τ in an open subset XD(b) \ R(b). The
last two conditions are fulfilled by being in the zero locus of a Hilbert modular
form. More precisely, for each τ ∈ H2, there are four functions θj(τ ,u) : C

2 → C

generating H0(L)−, where u = (u1, u2). One can then define the gothic modular
form as

GD(τ ) =
∂

∂u2
θ0(τ , 0) ·

∂

∂u2
θ1(τ , 0)−

∂

∂u2
θ2(τ , 0) ·

∂

∂u2
θ3(τ , 0) .

The form GD is a Hilbert modular form of weight (1, 3) with the property that, if
θX satisfies the extra two conditions at a point τ ∈ XD(b)\R(b), then GD(τ ) = 0.
In particular, GD(b) ⊂ div(GD).

The vanishing locus of the modular form. Contrary to the expectation
from the situation in genus two and in the Prym loci of genus three and four
(see [Möl14]), the vanishing locus of the gothic modular form GD does not consist
uniquely of the Teichmüller curve GD(b), but contains other ‘spurious curves’.
More precisely,

div(GD) = GD(b) + 2R(b) .

The curve R(b) is formed by the points corresponding to (1, 6)-polarised abelian
varieties isomorphic to a product E1×E2 of elliptic curves with the natural (2, 3)-
polarization. In particular, it is a collection of modular curves whose parameters
can all be computed.

Main results. We use this description to calculate the Euler characteristic of
GD.

Theorem 1 ([MTT]). Let D be a non-square discriminant. The gothic Te-
ichmüller curve GD is non-empty if and only if D ≡ 0, 1, 4, 9, 12, 16 mod 24.
In this case, GD consists of ιD different sub-curves GD(b) corresponding to the ιD
different OD-ideals b of norm 6. The Euler characteristics of all these sub-curves
agree and are equal to

−χ(GD(b)) =
3

2
χ(XD(b)) + 2χ(R(b)) .
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The number ιD of sub-curves is one if D ≡ 0, 12 mod 24, two if D ≡ 4, 9, 16 mod
24 and four if D ≡ 1 mod 24. We strongly suspect the sub-curves GD(b) to be
irreducible. The formula in the theorem can be written explicitly as

−χ(GD(b)) =
1

20
κD

∑

[a,b,c]∈P1(D)

a − 1

3ιD

∑

[a,b,c]∈P6(D)

a ,

where, for a quadratic discriminantD = f2D0 with conductor f and g = gcd(6, f),
we define κD = σ(g)/g and

Pk(D) =
{
[a, b, c] ∈ Z3 : a > 0 > c , D = b2 − 4 · k · ac
and gcd (f, b, c/c0) = 1, where c0 is the square-free part of c

}
.

We are also able to compute the Lyapunov exponent corresponding to the Prym
part of GD. Recall that Lyapunov exponents of a flat surface (X,ω) measure the
growth rate of cohomology classes in H1(X,R) under parallel transport along the
geodesic flow. In the case of flat surfaces (X,ω) in the Gothic locus, the existence
of the maps πA and πB splits the four non-negative Lyapunov exponents into
three subsets: {λA} and {λB} corresponding to A and B, and {λ1 = 1, λP },
corresponding to the ‘Prym’ complement. The existence of spurious curves in the
vanishing locus of GD causes a varying phenomenon of the exponent λP .

Theorem 2 ([MTT]). The Prym Lyapunov exponent of a gothic Veech surface
on GD is equal to λP (GD(b)) = 1 + χ(XD(b))/χ(GD(b)).

In particular, the Prym Lyapunov exponent λP of a generic surface in the gothic
locus is equal to 3/13.

The second part of the theorem is a direct consequence of some asymptotics
formulas for λP (GD(b)) and the convergence of individual Lyapunov exponents
([BEW17]), since the curves GD equidistribute towards (the Lebesque measure
on) the Gothic locus by [EMM15].
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Around tropical curves

Martin Ulirsch

1. Tropical curves

At its core, the geometry of tropical curves is based on an almost serendipitous
analogy between compact Riemann surfaces and finite graphs. For example, there
is a rich theory of divisors on finite graphs that gives rise to analogues of the
classical Riemann-Roch-Theorem and the Abel-Jacobi-Theorem [4].

Let X be a smooth projective curve over a non-Archimedean field K and let
X be a flat and proper semistable model of X , e.g. arising as the base change
of a semistable model over the unit disc ∆ of a family of Riemann surfaces over
the pointed unit disc ∆∗. The dual graph G of the special fiber X0 of X is a
finite graph whose vertices correspond to the components of X0 and whose edges
correspond to the nodes of X0.

We want to think of G as a piecewise linear limit of the degeneration X . We
further develop this analogy by endowing G with a vertex weight h : V → Z≥0

that associates to a vertex v the genus of (the normalization of) the corresponding
component Xv. This way, if we define the genus of (G, h) to be

g(G, h) = b1(G) +
∑

v∈V (G)

h(v) ,

we find that the genus is constant throughout the whole family.
Moreover, we also endow (G, h) with an edge length |.| : E → R>0 that as-

sociates to an edge e corresponding to a node with local equation xy = te the
valuation val(te) of te as its length. The geometric realization

∣∣(G, |.|)
∣∣ of (G, |.|)

is the metric space that is given by glueing intervals of length |e| for every edge e
according to the incidences given by G. The vertex weight h naturally extends to
a function on

∣∣(G, |.|)
∣∣ with finite support.

Definition 1. An (abstract) tropical curve Γ is a connected singular metric space
|Γ| together with function h : |Γ| → Z>0 with finite support that is of the form(
|(G, |.|)|, h

)
for a finite metric graph (G, |.|) with a vertex weight h.

We refer to (G, |.|, h) as a model of Γ. Given a smooth projective curve X as
above, we write ΓX for the dual tropical curve of X .

2. Moduli of tropical curves

Let g ≥ 2. Not unlike Riemann surfaces, tropical curves naturally live in a moduli
space, the moduli space M trop

g of stable tropical curves of genus g. It parametrizes
isomorphism classes of stable tropical curves of genus g. A tropical curve Γ is
hereby said to be stable if there is a model (G, |.|, h) of Γ such that

2h(v)− 2 + val(v) > 0

for all vertices v of G. See [1] for a discussion of the finer combinatorial structure
of M trop

g and [8] for the proper stack-theoretic treatment.
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In order to formalize the somewhat informal association X 7→ ΓX , we make
use of the non-Archimedean analytification Man

g of Mg in the sense of Berkovich
[6]. A point in Man

g is nothing but a K-valued point of Mg for a suitable non-
Archimedean extension of the trivially valued base field k, i.e. a smooth projective
curve X over K. Since the Deligne-Mumford compactification is proper, there is
a finite extension L of K and a unique semistable model X of XL as above. The
association X 7→ ΓX defines a tropicalization map

tropg : Man
g −→M trop

g

whose structural properties have been studied in [1].

Theorem 2 ([1]). The tropicalization map is a well-defined, continuous, proper
and closed strong deformation retraction to the non-Archimedean skeleton of Man

g .

Notice, in particular, that M trop
g completely determines the topological homo-

topy type of Man
g which is the source of the recent application of tropical methods

to study the top-weight cohomology of Mg in [9].

3. Divisors on tropical curves

As usual in modern geometry, we describe a geometric object by studying the
types of functions that naturally live on it: Let Γ be a tropical curve. A rational
function on Γ is a continuous map f : Γ → R whose restriction to every edge
–which we identify with the interval

[
0, |e|

]
– is a piecewise linear function with

integer slopes. A divisor on a tropical curve Γ is a formal finite sum
∑n

i=1 aipi
over points in Γ; its degree is given by

∑n
i=0 ai. Given a rational function, we may

define its associated principal divisor

div(f) =
∑

p∈Γ

ordp(f) · p

where ordp(f) is the sum of the outgoing slopes at the point p. Two divisors are
equivalent if there difference is principal and the (complete) linear system |D| of
a divisor D is the set of effective divisors that are equivalent to D.

Unlike in the classical world of Riemann surfaces, tropical linear systems are
far more complicated than mere projective spaces. They are not equidimensional
which requires us to use a more implicit definition of the rank of linear system.

Definition 3. The rank r(D) of the linear system |D| is the largest number r ≥ 0
such that |D−E| 6= ∅ for all effective divisors E of degree r. If |D| = ∅ we formally
set r(D) = −1.

Let Γ be a tropical curve of genus g. Define the canonical divisor on Γ to be

KΓ =
∑

p∈Γ

(
2h(v)− 2 + val(p)

)
· p

where val(p) denotes the valence of p. The Riemann-Roch-Theorem now states:



2642 Oberwolfach Report 42/2018

Theorem 4 ([4, 12, 10]). For a divisor D of degree d on Γ we have

r(D) − r(KΓ −D) = d− g + 1 .

We refer the reader to [5] for a recent survey of divisor theory on tropical curves
and its applications to the theory of limit linear series.

4. Specialization and the realizability problem

Let D be an effective Cartier divisor on a smooth projective curve X over a non-
Archimedean field K. By a version of the stable reduction theorem (see [11] for
details) there is a finite extension L of X as well as a unique semistable model X
of XL such that the special fiber D0 of the closure D of DL in X does not meet
the nodes of X0 and KX +D is relatively ample over the valuation ring of L.

We then define the specialization sp(D) of D to ΓX as the multidegree of D0 on
the semistable model of ΓX induced by X . If D is an arbitrary Cartier divisor on
X , we write it as D1 −D2 for effective divisors D1 and D2 on X and extend the
specialization linearly. Theorem 2 generalizes to this situation (see [11] for details),
which, in particular, shows that the association D 7→ sp(D) is well-defined.

The following Lemma is known as Baker’s Specialization Lemma and is an
extension of the principle of semicontinuity of ranks to the tropical limit.

Lemma 5 ([2]). For a divisor D on X we have the inequality:

rX(D) ≤ rΓ
(
sp(D)

)
.

We can formulate the following realizability problem which lies at the heart of
many of the successful applications of tropical divisors to Brill-Noether theory.

Problem 1. Let D =
∑n

i=1 aipi be a divisor of degree d and rank r on a tropical
curve Γ. Does there exist a smooth projective curve X over a non-Archimedean

field K as well as a divisor D̃ on X of multiplicity profile (a1, . . . , an) and rank r

such that Γ is the dual tropical curve of X and D is the specialization of D̃.

The realizability problem is, in general, very difficult, and, due to a version of
Murphy’s Law (see [7] for details), we do not expect to ever find a solution in full
generality. Nevertheless, in specific situations, complete solutions are possible, e.g.
in the case of effective canonical divisors.

Theorem 6 ([11]). Let g ≥ 2. An effective canonical divisor D = KΓ+div(f) on
a tropical curve Γ of genus g is realizable if and only if:

(1) For every horizontal edge e in the graph Γf of f there is a simple cycle in
Γf containing e that does not pass through any level of Γf below e.

(2) For every inconvenient point p of Γf there is a simple cycle in Γf based
at v that does not pass through any level of Γf below v.

Loosely speaking, a point is inconvenient if (the absolute value of) one of the
negative slopes of f emanating from p is bigger than the sum of all positive slopes
emanating from p. The proof of Theorem 6 is deeply rooted the recent complex
analytic results of [3] on the closure of strata of abelian differentials in Mg,n and
only applies in characteristic zero.
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Around higher Teichmüller theory

Anna Wienhard

The Teichmüller space is the universal covering of the moduli space of complex
curves. It also plays a key role in understanding flat surfaces. Higher Teichmüller
spaces have been discovered and investigated in the past twenty years from different
points of view. They share many interesting properties with classical Teichmüller
space. However, many interesting questions about higher Teichmüller spaces are
wide open, and some might be of interest to people interested in algebraic curves
and flat surfaces.

Let Σg be a closed oriented surface of genus g ≥ 2. The Teichmüller space T (Σg)
is the space of marked conformal structures on Σg. By the uniformization theorem,
there is a unique hyperbolic metric in each conformal class, and thus T (Σg) can be
identified with the space H(Σg) of marked hyperbolic structures. The holonomy
of a marked hyperbolic structure is a group homomorphism π1(Σg) → PSL(2,R),
where PSL(2,R) is the group of isometries of the hyperbolic plane. This gives a
map hol : H(Σg) → Hom(π1(Σg),PSL(2,R))/PSL(2,R), which is an embedding
onto a connected component. The image consists entirely of discrete and faithful
representations, i.e. injective homomorphisms with discrete image. In fact there
are two such components - one which parametrizes hyperbolic structures on Σg

and the other on the surface with the opposite orientation.
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Viewing Teichmüller space as a connected component of the representation vari-
ety Hom(π1(Σg),PSL(2,R))/PSL(2,R) is the starting point for higher Teichmüller
theory, where we replace PSL(2,R) by a general simple Lie group G, and in par-
ticular by a Lie group of higher1 rank.

Definition 1. A higher Teichmüller space is a union of connected components
T (Σg, G) ⊂ Hom(π1(Σg), G)/G that consists entirely of discrete and faithful rep-
resentations.

Examples of higher Teichmüller spaces have been discovered through the work
of several mathematicians coming from rather different mathematical areas, and
only a posteriori it was shown that they satisfy the property that we here use as
definition. [Hit92, Gol90, Lab06, FG05, BIW10].

Not every Lie group G admits a higher Teichmüller space. When G = SL(2,C),
or more generally a simply connected complex group, the representation variety
is irreducible and hence has only one connected component. We currently know
two families of higher Teichmüller spaces: Hitchin components, defined when G
is a split real form, e.g. PSL(n,R) or PSp(2n,R), and maximal representations,
defined when G is a Lie group of Hermitian type, e.g. PSp(2n,R) or PU(n, n).
Representations in the Hitchin component as well as maximal representations can
be characterized in terms of positivity of triples in (partial) flag varieties. This
provides a connection between higher Teichmüller spaces and commutative as well
as non-commutative cluster algebras. For a more detailed description of these
aspects and a conjecture regarding the existence of other higher Teichmüller spaces,
we refer to [GW18, Wie12].

Many recent results in higher Teichmüller theory generalize well known results
about the space of hyperbolic structures on Σg. At the same time there are
interesting features of higher Teichmüller spaces that do not appear for classical
Teichmüller space. In particular, the complex analytic theory of Teichmüller space
has not yet been generalized to the higher rank situation.

We end by discussing the action of the mapping class group and the relation
of higher Teichmüller spaces with classical Teichmüller space. As on Teichmüller
space, the mapping class group acts properly on Hitchin components and spaces
of maximal representations. The quotients are of infinite volume, contrary to the
moduli space of complex curves - the quotient of Teichmüller space by the mapping
class group - which is of finite volume. The quotient spaces are expected to be
fiber bundles over the moduli space of curves. For the Hitchin component for
PSL(n,R) Labourie proposed a precise conjecture:

Conjecture 2 (Labourie). There is mapping class group equivariant projection
from the Hitchin component for PSL(n,R) to T (Σg), where the fiber over a Rie-
mann surface X ∈ T (Σg) is ⊕n

i=3H
0(X,Ki

X), where H0(X,Ki
X) is the vector space

of holomorphic differentials on X of degree i.

This conjecture has been proven by Labourie [Lab17] for all split real Lie groups
of rank 2. An extension of the conjecture for maximal representations has been

1This accounts for the name “higher” Teichmüller theory.
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proven by Alessandrini-Collier [AC18] and Collier-Tholozan-Toulisse [CTT17] for
Hermitian Lie groups of rank 2. It is wide open for Lie groups of rank greater
than 2.

The representation variety of a surface group carries a natural symplectic struc-
ture, and the action of the mapping class group is by symplectomorphisms. We
raise the following question:

Question 3. Is there group of symplectomorphisms acting properly discontinu-
ously on the Hitchin component with finite volume quotient?

One way to approach this question might be to look at suitable families of
commuting Hamiltonian flows, which give the Hitchin component the structure of
completely integrable system, [SWZ17, SZ17]
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Université Grenoble-Alpes
BP 74
38402 Saint-Martin-d’Hères
FRANCE

Dr. Samuel Lelièvre

Laboratoire de Mathématiques
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