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Abstract. This mini-workshop focused on Positional Games and related
fields. Positional Games Theory is a branch of Combinatorics whose main
aim is to systematically develop an extensive mathematical basis for a variety
of two-player games of perfect information and without chance moves, usually
played on discrete objects. These include popular recreational games such as
Tic-Tac-Toe and Hex as well as purely abstract games played on graphs and
hypergraphs. Though a close relative of the classical Game Theory of von
Neumann and of Nim-like games, popularized by Conway and others, Po-
sitional Games are quite different and are more of a combinatorial nature.
The subject is strongly related to several other branches of Combinatorics
like Ramsey Theory, Extremal Graph and Set Theory, and the Probabilistic
Method. It has also proven to be instrumental in deriving central results in
Theoretical Computer Science, in particular in derandomization and algorith-
mization of important probabilistic tools. Despite being a relatively young
topic, there are already three textbooks dedicated to Positional Games as well
as one invited talk at the International Congress of Mathematicians. Dur-
ing this mini-workshop, several new exciting developments in the field were
presented and discussed. We have also made some progress towards solving
various open problems in Positional Games Theory and related areas.
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Introduction by the Organisers

Positional games involve two players who alternately occupy the free elements of
a given set V , which we call the board of the game. The focus of their attention is
a given family F = {E1, . . . , Ek} ⊆ 2V of subsets of V , usually referred to as the
winning sets. In the general version there are two additional parameters – positive
integers p and q, where the first player claims p free board elements per turn and
the second player responds by claiming q free elements (in the basic version we
have p = q = 1, the so-called unbiased game). It remains to specify who wins the
game, each such specification leading to a standard type of positional games.

There are several standard types of Positional Games. The most frequently
played is probably the so-called strong game, where both players compete to be
the first to claim a winning set. Both Tic-Tac-Toe and 5-in-a-row are of this type.
Tools such as strategy stealing and Ramsey-type statements are of utmost value
here. Strong games are well-known to be hard to analyze. Nevertheless, various
interesting results on strong games were obtained recently. A close relative is the
Maker-Breaker game, where the first player, called Maker, wins if he fully claims a
winning set by the end of the game, while the second player, called Breaker, aims
to prevent Maker from fulfilling his goal. For example, Hex can be cast into this
framework. In Avoider-Enforcer games, Avoider loses if he claims a winning set,
or, in other words, in order to win he has to avoid claiming a winning set to the
end of the game. Much of the ground work on Avoider-Enforcer games was layed
down by the organizers in three papers. Exciting progress on some of the questions
that were raised in those papers was achieved recently. In recent years, various
other types of positional games have attracted growing attention. For example, in
Waiter-Client and Client-Waiter games, the first player, called Waiter, offers the
second player, called Client, p + q board elements. Client then chooses p of these
elements which he claims and the remaining q elements are claimed by Waiter.
Client wins (respectively, loses) the Client-Waiter (respectively, Waiter-Client)
game if he fully claims a winning set by the end of the game.

Typical general results in Positional Games include winning criteria for one of
the players, in some cases also supplying an efficient winning strategy for that
player. The proofs utilize an array of various combinatorial arguments (Ramsey
Theory, Extremal Graph and Set Theory, etc.); sometimes – perhaps somewhat
surprisingly – probabilistic strategies are used to analyze completely determin-
istic games of perfect information. This connection was first indicated by Paul
Erdős. Subsequently, it was discussed in detail and masterfully implemented by
József Beck. Recent developments in the field have affirmed the crucial role of
probabilistic arguments in positional games.

The mini-workshop on Positional games was attended by 17 people, arriving
from various geographic regions (namely, England, Germany, Israel, the Nether-
lands, Poland, Serbia, Switzerland, and the United States). The participants
had different backgrounds in Positional Games Theory (though all of them had
a considerable level of familiarity with the field) and different levels of research
experience ranging from M. Sc. students to Full Professors.
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In the first few days, most participants gave research talks (13 in total) which
presented many interesting new developments in Positional Games and related
fields (in particular, in Ramsey Theory and Random Graphs). The talks also
included many open problems which indicated new research directions to be ex-
plored.

In the evening of the first day of the mini-workshop we held an open prob-
lems session in which participants offered many “good” open problems (some were
good problems in the sense that solving them is likely to have an impact on the
field, others were good in the sense that it seemed plausible one could make some
progress towards solving them in a week, some were perhaps good in both ways).
After this session, the participants were divided into four groups. Starting on the
second day, these groups have engaged in focused open problem solving activities.
This continued until the end of the week and will hopefully continue (in one way
or another) for a much longer period. We have tried to form the groups in a way
which will foster new and lasting collaborations between researchers with different
levels of experience. All groups have reported some progress during the week and
we expect several publications to result from this mini-workshop. All in all, we
believe the mini-workshop was a great success.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Miloš Stojaković (joint with Nikola Trkulja)
Making Hamiltonian cycles on small graphs . . . . . . . . . . . . . . . . . . . . . . . . . 2728

Michael Krivelevich (joint with Nadav Trumer)
Waiter-Client Maximum Degree Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2730

Tobias Müller (joint with Peter Heinig, Marc Noy, Anusch Taraz)
Monadic second order logic and random graphs from minor closed classes 2731

Adva Mond (joint with Jan Corsten, Alexey Pokrovskiy, Christoph Spiegel,
Tibor Szabó)
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Abstracts

When playing randomly is optimal

Tibor Szabó

(joint work with Christopher Kusch, Juanjo Rué, Christoph Spiegel)

The concept of biased Maker-Breaker games, introduced by Chvtal and Erdős,
is a central topic in the field of positional games, with deep connections to the
theory of random structures. For any given hypergraph H the main questions is
to determine the smallest bias q(H) that allows Breaker to force that Maker ends
up with an independent set of H. Here we prove matching general winning criteria
for Maker and Breaker when the game hypergraph satisfies a couple of natural
‘container-type’ regularity conditions about the degree of subsets of its vertices.
This will enable us to derive a hypergraph generalization of the H-building games,
studied for graphs by Bednarska and  Luczak. Furthermore, we investigate the
biased version of generalizations of the van der Waerden games introduced by Beck.
We refer to these generalizations as Rado games and determine their threshold
bias up to constant factors by applying our general criteria. We find it quite
remarkable that a purely game theoretic deterministic approach provides the right
order of magnitude for such a wide variety of hypergraphs, when the generalizations
to hypergraphs in the analogous setup of sparse random discrete structures are
usually quite challenging.

Lengths of strong Ramsey games

Alexey Pokrovskiy

(joint work with Dan Hefetz, Christopher Kusch, Lothar Narins, Clément
Requilé, Amir Sarid)

For an arbitrary graph G and n ∈ N, the strong Ramsey game SR(G,n) on n
vertices with target graph G is defined as follows:

• The board consists of the edges of Kn.
• The winning sets consist of copies of the graph G
• The players alternate choosing edges. The first player to occupy a winning

set wins.

Strategy stealing implies that the second player can never win SR(G,n) for any G
and n. Ramsey’s theorem implies that for sufficiently large finite n, there are no
final drawing positions in the strong Ramsey game. Thus the first player always
has a wining strategy—however we have no idea what this strategy is for most
target graphs G.

Define the length of the strong Ramsey game, denoted L(G,n), to be the number
of moves that SR(G,n) lasts under optimal play by both players. Formally, when
studying L(G,n) player 1 plays a winning strategy for SR(G,n) which guarantees
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him a win in as few moves as possible, while player 2 plays a losing strategy which
keeps the game going for as long as possible.

The following is the central conjecture in strong Ramsey games

Conjecture 1 (Beck). For every t, there is a constant ct such that L(Kt, n) ≤ ct.

This conjecture is known to hold for t ≤ 4. For t ≥ 5, this conjecture is
extremely difficult since the only known method for proving the finiteness L(Kt, n)
is to find an explicit wining strategy for the first player. Known explicit strategies
in strong games tend to be complicated with no hope of being generalised to higher
t. Even the t = 5 case of the above conjecture is a separate problem of Beck.

More generally, one can ask whether L(G,n) ≤ ct for every graph G. The main
result I presented at Oberwolfach was a construction of hypergraphs for which this
is not the case.

Theorem 2 (Hefetz, Kusch, Narins, Pokrovskiy, Requilé, Sarid, [1]). There exists
a 5-uniform hypergraph H such that L(H, n) ≥ Ω(n).

I also proposed the following problem for the workshop.

Problem 3. Show that L(K5, n) ≤ o(n2).

At first glance the above problem looks as difficult as Beck’s Conjecture since it’s
not clear how one can find bounds on L(K5, n) without giving explicit strategies
for the players. However occasionally techniques from extremal combinatorics can
be used to give bounds on L(G,n) without working out explicit strategies:

Proposition 4. For any bipartite graph G we have L(G,n) ≤ o(n2).

Proof. By the Kovari-Sos-Turán Theorem ex(G,n) ≤ o(n2). After ex(G,n) moves,
both players must have a copy of G in their graph and so the game must have
ended before this point. �

Of course K5 is non-bipartite, so ex(K5, n) only gives a quadratic bound on
L(K5, n). However sometimes by combining extremal and game-theoretic argu-
ments it is possible to give a subquadratic upper bound on L(G,n) even for non-
bipartite G.

Proposition 5. Let G be a nonbipartite graph with an edge e such that G− e is
bipartite. Then L(G,n) ≤ o(n2).

Proof. By the Kovari-Sos-Turán Theorem, after o(n2) moves, player 1 will have a
copy of K|G|,|G|. Let X and Y be the parts of K|G|,|G|. If player 2 controls all the
edges in X and Y then he has a copy of G (and so the game would have ended
by now). Otherwise, since player 1 is playing optimally, on his next move player
1 should claim a non-edge in X or Y in order to win the game. �

Since K5 is reasonably close to a complete biparite graph, I think there’s a
chance that L(K5, n) ≤ o(n2) could be proved by a more complicated version of
the arguments in the above propositions. Natural intermediate steps towards this
would be to first prove that L(G,n) ≤ o(n2) for G = Km,m + e + f and then
G = Km,m + e + f + h.
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Strong Ramsey Games in Unbounded Time

Marius Tiba

(joint work with Stefan David, Ivailo Hartarsky)

For two graphs B and H the strong Ramsey game R(B,H) on the board B and
with target H is played as follows. Two players alternately claim edges of B.
The first player to build a copy of H wins. If none of the players win, the game
is declared a draw. A notorious open question of Beck [1, 2] asks whether the
first player has a winning strategy in R(Kn,Kk) in bounded time as n → ∞.
Surprisingly, in a recent paper [3] Hefetz, Kusch, Narins, Pokrovskiy, Requilé and
Sarid constructed a 5-uniform hypergraph H, for which they prove that the first

player does not have a winning strategy in R(K
(5)
n ,H) in bounded time. They

naturally ask whether the same result holds for graphs. In this paper we make
further progress in decreasing the rank.

In our first main result, we construct a graph G (in fact G = K6 \ K4) and
prove that the first player does not have a winning strategy in R(Kn ⊔Kn, G) in
bounded time. As an application of this result we deduce our second main result
in which we construct the 4-uniform hypergraph G′ (in fact G′ is obtained from G
by adding two new vertices and extending each edge to include them) and prove

that the first player does not have a winning strategy in R(K
(4)
n , G′) in bounded

time. This improves the result in the paper above.
By compactness, an equivalent formulation of our first result is that the game

R(Kω ⊔Kω, G) is a draw. Another reason for interest in the board Kω ⊔Kω is a
folklore result that the disjoint union of two finite positional games both of which
are first player wins is also a first player win. An amusing corollary of our first
result is that at least one of the following two natural statements is false: (1) for
every graph H , R(Kω, H) is a first player win; (2) for every graph H if R(Kω, H)
is a first player win, then R(Kω ⊔Kω, H) is also a first player win. Surprisingly
we cannot decide between the two.

Inspired by the idea in [3], we view the graph G = K6 \K4 composed of a core
C = K5\K3 and a pair of connected edges P , and we construct a drawing strategy
for the second player in R(Kω ⊔Kω, G) as follows. The strategy is divided into
3 stages. In the first stage, the second player builds the core C in K2

ω assuming
that the first player played her first edge in K1

ω. Though the second player cannot
promise to construct the core directly and can be delayed by the first player, the
second player can promise that in K2

ω he is always ahead of the first player. At the
end of this stage, the first player could have a threat in K1

ω. In the second stage,
the second player responds to a possibly infinite sequence of consecutive threats in
K1

ω. However, the first player cannot force a win in K1
ω by repeating threats and



2724 Oberwolfach Report 44/2018

eventually she must play somewhere else. In the third stage, the second player
makes a infinite sequence of threats in K2

ω using the core C and playing one of
the edges of a free pair P that, together with the core C, forms G. Moreover
the second player makes sure that the responses of the first player to his threats
cannot be used by the first player in a threat of her own.

By increasing the rank, we show that R(K
(4)
ω , G′) is a draw as follows. The

idea is to cover the board K
(4)
ω by a family of almost disjoint copies of the board

K
(2)
ω and to use a slightly simplified version of the strategy above that makes use

of the extra freedom provided by the higher rank. To do this note that for a fixed

pair of vertices {A,B} we can identify the set of hyperedges of the board K
(4)
ω

that contain {A,B} with a copy of the board Kω, and hence we can obtain a

cover K
(4)
ω := ∪A,BK

A,B
ω . Moreover, note that any copy of G′ in the board K

(4)
ω is

contained in some board KA,B
ω , and for any two disjoint pairs {A,B} and {C,D}

the boards KA,B
ω and KC,D

ω intersect only in one hyperedge {A,B,C,D}.
One natural question that arises after this analysis is whether there exist a

graph H such that R(Kω, H) is a first player win, but R(Kω ⊔Kω, H) is a draw.
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Positional games on the vertex set of random graphs

Gal Kronenberg

(joint work with Adva Mond and Alon Naor)

In a (graph) Maker-Breaker game there are two players, claiming edges (or
vertices) of some graph. In the (1 : b) Maker-Breaker game, in each round Maker
claims one element from the board, while Breaker claims b elements. For the
random graph version of the H-game, the goal is to determine who is the typical
winner in a game in which Maker is trying to build a predetermined graph H
from his elements, and Breaker is trying to prevent Maker from achieving this
goal. Stojaković and Szabó [3] were the first to study games played on the edge

set of a random graph, and since then the subject has become quite popular. In
particular, the study of Maker-Breaker H-games in this setting was continued by
Müller and Stojaković [1], who found the threshold probability for the unbiased
Kk-game where k ≥ 4, by giving a lower bound on the threshold probability
matching the upper bound given in [3]. For the K3-game they provided a hitting
time result, thus achieving a better understanding of this game, whose threshold
probability was already determined in [3]. In [2], Nenadov, Steger, and Stojaković
solved the unbiased Maker-Breaker H-game for almost all H , showing that the
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threshold probability is determined by the maximum 2-density of the graph H .
In a joint work with Mond and Naor, we study Maker-Breaker games, as well as
other positional games, where the board of the game is the vertex set of G(n, p)
(as opposed to the previously prevalent setting of games played on the edges of
G(n, p)) and the winning sets are all spanning subgraphs containing a fixed graph
H . It is important to note that for a fixed graph H , the vertex H-game is bias
monotone: if Maker wins the game with bias (1 : b), he also wins this game with
bias (1 : b′), for every b′ ≤ b. In other words, claiming more vertices cannot
harm Maker. Furthermore, given a graph H and an integer b ≥ 1, “being Maker’s
win in the (1 : b) vertex H-game” is also a monotone increasing graph property.
Thus we can study the threshold function for this game, namely the function
p∗ = p∗(n, b,H) that satisfies

lim
n→∞

Pr [G ∼ G(n, p) is Maker’s win in the (1 : b) vertex H-game]

=

{

1p = ω(p∗),

0p = o(p∗)

We give an exact solution (that is, find the threshold probability) for the case
that the target graph is a clique or a cycle, and show the analogy between the vertex
version and the edge version of the game. In particular, we show that, similarly to
the edge version of the game, there is a strong connection between the threshold
probability for these games and the one for the vertex-Ramsey property (that is,
the property that every r-vertex-coloring of G(n, p) spans a monochromatic copy
of H). We also show that the cases where H is a triangle or a forest sometimes have
a different behavior. Among other things, we prove the following. Let d1(H) =
|E(H)|

|V (H)|−1 be the 1-density of H and let m1(H) = max{d1(H ′) | H ′ ⊆ H, |V (H ′)| ≥
2} be its maximum 1-density.

Theorem 1. Let k, b be constant integers such that k ≥ 4, b ≥ 1 or k = 3, b ≥ 2.
Let H be a graph for which there exists H ′ ⊆ H such that d1(H ′) = m1(H) and
H ′ = Kk or H ′ = Ck. Consider the (1 : b) Maker-Breaker H-game played on
V (G) where G ∼ G(n, p). Then there are constants c := c(b,H) and C := C(b,H)
such that

lim
n→∞

Pr [G is Maker’s win in the (1 : b) H-game on V (G)]

=

{

1p ≥ Cn−1/m1(H),

0p ≤ cn−1/m1(H).

Note that the case H ′ = K3 and b = 1 was excluded from Theorem 1.It turns
out, that in this case Maker wins at the game in the exact same moment that the
special graph appears.

Let GDD and G2DD be the graph properties of containing one or two vertex
disjoint copies of the graph DD as a subgraph, respectively. Note that when
fixing a graph H and the bias b ≥ 1, the graph property of “being Maker’s win
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in the (1 : b) H-game” is a monotone increasing graph property. We show the
following.

Theorem 2. Let MF
K3

and MS
K3

be the graph properties of being Maker’s win in
the (1 : 1) triangle game played on the vertex set of the graph, where Maker moves

first or second, respectively. For a random graph process G̃, w.h.p. τ(G̃,MF
K3

) =

τ(G̃,GDD) and τ(G̃,MS
K3

) = τ(G̃,G2DD).

We also study other classical positional games under this setting such as
Avoider-Enforcer games, Waiter-Client and Client-Waiter games.
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[2] R. Nenadov, A. Steger, and M. Stojaković, “On the threshold for the Maker-Breaker H-
game”, Random Structures and Algorithms 49 (2016), 558–578.
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The threshold bias of the clique-factor game

Rajko Nenadov

Two milestones in the extremal and probabilistic combinatorics are a result by
Hajnal and Szemerédi, which determines the best possible minimum degree condi-
tion which enforces a Kr-factor, and a result by Johansson, Kahn, and Vu which
determines the threshold for the appearance of a Kr-factor in the random graph
G(n, p). Our goal is to establish a similar result in the realm of Maker-Breaker
games.

Let r > 3 be an integer and consider the following game on the complete graph
Kn such that r|n: Two players, Maker and Breaker, alternately claim previously
unclaimed edges of Kn such that in each turn Maker claims one and Breaker
claims b edges. Maker wins if her graph contains a Kr-factor, that is a collection
of n/r vertex-disjoint copies of Kr, and Breaker wins otherwise. In other words, we
consider a b-biased Kr-factor Maker-Breaker game. We show that the threshold
bias for this game is of order n2/(r+2). This makes a step towards determining the
threshold bias for making bounded-degree spanning graphs and extends a result
of Allen et al. who resolved the case r = 3 and r = 4 up to the logarithmic factor.
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The random strategy in Maker-Breaker graph minor games

Ander Lamaison

We consider a biased Maker-Breaker game played on the edge set of Kn. The
bias is (1 : b), that is, in every round Maker claims one edge and Breaker claims b
edges. We say that a function f(n) is a threshold bias, and denote it by b∗CC ∼ f
if Maker wins for b = o(f(n)) and Breaker wins for b = ω(f(n)). Similarly f(n) is
a sharp threshold, and denote it by b∗CC ≈ f , if Maker wins for b = (1 + o(1))f(n)
and Breaker wins for b = (1− o(1))f(n). This assumes that both players use their
best strategy possible.

One could ask what would happen if one or both players are limited in the kind
of strategies that they can use. A particularly interesting case takes place when
one or both players is forced to play uniformly at random on every move. We are
interested in the case where Maker plays randomly and Breaker follows the best
counterstrategy available. We call the players Clever- or Random- depending on
the strategy used. As in the previous case, we denote by b∗RC ∼ f or b∗RC ≈ f
whenever the winner of the game is determined with high probability whenever
the bias differs from f by a factor of at least ω(1) or 1 + o(1), respectively.

We are interested in finding games for which the two biases defined previously
are close to each other, with b∗CC ∼ b∗RC or even b∗CC ≈ b∗RC . This implies that the
random strategy is in some sense close to optimal. This phenomenon was proved
to hold for the H-subgraph game by Bednarska and  Luczak, in the weaker sense
of b∗CC ∼ b∗RC , and has since been observed to hold in other settings.

Here we turn our attention to the H-minor game: Maker wins by claiming the
edges of a graph which contains H as a minor. For every choice of H , we determine
the sharp threshold b∗CC , and show that it is matched in some cases by b∗CC . Here
τ(G) denotes the maximum number of edges in a component of G:

Theorem 1. In the H-minor game:

• b∗CC ≈ n2

2e(H)−2 ≈ b∗RC if τ(H) = 1,

• b∗CC ≈ 2n ≈ b∗RC if τ(H) = 2,
• b∗CC ≈ n ∼ b∗RC , if H is a forest with τ(H) ≥ 3,
• b∗CC ≈ n

2 ≈ b∗RC , if H is not a forest.

The natural question would be whether b∗RC ≈ n if H is a forest with τ(G) ≥ 3.
This is not always the case, with the path on eleven vertices being an explicit
counterexample:

Theorem 2. Let H be the path on eleven vertices. In the H-minor game with
b = 0.99n, CleverBreaker wins against RandomMaker with high probability.

We also study the related notion of topological minors. In the H-subdivision
game, Maker wins by claiming the edges of a subdivision of H . This game is
equivalent to the H-minor game for ∆(H) ≤ 2, so we focus on the case ∆(G) ≥ 3.
We observe the optimality of the random strategy in the weak sense:
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Theorem 3. Let H be a graph with ∆(H) ≥ 3. CleverBreaker wins against
CleverMaker for bias b = n

∆(H)−1 , while RandomMaker wins with high probability

against CleverBreaker for bias b = (1+o(1))n
2(∆(H)−1) . In particular, b∗CC ∼ b∗RC .

Making Hamiltonian cycles on small graphs

Miloš Stojaković

(joint work with Nikola Trkulja)

A positional game is a hypergraph (X,F), where X is a finite set representing the
board of the game, and F ⊆ 2X is a family of sets that we call winning sets. In
Maker-Breaker positional games, the players are called Maker and Breaker. In the
course of the game, Maker and Breaker alternately claim unclaimed elements of
the board X , one element at a time, until all of the elements are claimed. Maker
wins the game if he claims all elements of a winning set, while Breaker wins if
he claims an element in every winning set. Each game can be observed in two
variants, depending on which player is to play first. One of the main questions in
the theory of positional games is the existence of a winning strategy for one of the
players, when both are playing optimally. The player that has a strategy to win
the game is referred to as the winner of the game.

The positional games we intend to study are played on graphs, and in particular,
on the edge set of a complete graph Kn. Our prime interest lies with Hamiltonicity
game HAMn, where the winning sets are the edge sets of all Hamiltonian cycles
in Kn. The game was first introduced by Chvátal and Erdős in [1], and since then
it has been one of the most studied positional games on graphs, see [3] for details.
It was shown in [1] that Maker has a winning strategy for all sufficiently large n.
Papaioannou [5] later proved that Maker wins the game for all n ≥ 600, and at the
same time conjectured that the smallest n for which Maker can win is 8. Hefetz
and Stich [4] further improved the upper bound by showing that Maker wins for
all n ≥ 29. We note that these statements hold under the assumption that Maker
is the first to play.

We determine the outcome of Hamiltonicity game for every value of n, and for
each of the players starting the game. In particular, this resolves the mentioned
long-standing conjecture of Papaioannou in the affirmative. As the trivial cases
n ≤ 3 can be handled directly, from now on we assume n ≥ 4.

Theorem 1. In the Maker-Breaker HAMn game on E(Kn), Maker, as first or
second player, wins if and only if n ≥ 8.

Next, we look at two games where Maker’s goal is to claim a Hamiltonian path.
In Hamiltonian Path game HPn, first introduced in [5], the winning sets are the
edge sets of all Hamiltonian paths in Kn. We are able to show the following.

Theorem 2. In the Maker-Breaker Hamiltonian Path game HPn on E(Kn),
Maker, as first or second player, wins if and only if n ≥ 5.
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This theorem is a strengthening of Papaioannou’s result from [5] where he
proved that Maker, as first player, can win HPn if and only if n ≥ 5.

In Fixed Hamiltonian Path game FHPn, the goal of Maker is to claim a Hamil-
tonian path between two fixed (predetermined) vertices, u, v ∈ V (Kn). Even
though in the literature this game does not draw as much interest as HAMn and
HPn, it has appeared as an auxiliary game when studying some other games on
graphs.

Theorem 3. In the Maker-Breaker Fixed Hamiltonian Path game FHPn on
E(Kn), Maker, as first player, wins if and only if n ≥ 7, and as second player he
wins if and only if n ≥ 8.

Note that in the game FHPn the edge between the fixed vertices u and v
actually does not participate in any winning set, so right away we obtain the same
result for the game played on E(Kn) \ {(u, v)}.

Let us note that even though answering the question of who wins a game on a
small board (with n fixed) is a finite problem, it still may have a greater scientific
impact for several reasons. First of all, the approaches we use to resolve standard
positional games when n is large often do not apply for small n, and in that case
in order to determine the outcome we need to develop new methods. As we saw,
resolving the “small cases” is straightforward for some games, but not for all.

Also, standard positional games, like Hamiltonicity, Hamiltonian Path, Con-
nectivity, etc. are often used as auxiliary games when studying other positional
games on graphs. Sometimes these auxiliary games have boards of fixed size, and
knowing their outcome is essential for completing the analysis. An example of that
can be found in [2], where one of the problems tackled was to estimate the smallest
number of edges m̂(n) a graph on n vertices can have, knowing that Maker as first
player can win the Maker-Breaker Hamiltonicity game played on its edges. It was
proved in [2] that 2.5n ≤ m̂(n) ≤ 21n, for all n ≥ 1600. We show how to apply our
results about Hamiltonicity game in Theorem 1 and Fixed Hamiltonian Path game
in Theorem 3 to improve this upper bound, eventually obtaining the following.

Theorem 4. For n ≥ 336, we have m̂(n) ≤ 4n.

Positional games are combinatorial games (sequential two player games with
perfect information and no randomness involved), and it is well known that we can
find out which of the players has a strategy to win by simply traversing the whole
game tree of the game. But this fact alone is of limited practical use, knowing that
already for games on relatively small boards the game trees are way too big (they
are exponentially large in the size of the game board) to be completely traversed
by a computer. In particular, if the board of the game is E(Kn), its size is

(

n
2

)

, so

there are
(

n
2

)

! different game plays.
Often there is no need to search through the whole game tree, as some moves

are “analogue” to the others, we may arrive to the same game position more
than once, and on top of that some game positions are “similar” to the others.
We devise a sophisticated set of algorithms that formalizes and exploits these
“similarities” as part of the optimization of the brute force search algorithm. This
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enables us to write a computer program that efficiently calculates the outcome of
all three mentioned games for enough initial values of n to inductively determine
the outcome of the game for every n.

When implementing the algorithms we aimed at doing it in a generic way to
make our code easily adaptable for other positional games on graphs. Even though
some algorithms are tailored to fit the particularities of the games we analyzed,
most of them are generally applicable for determining the outcome of positional
games on graphs with the help of a computer.
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Waiter-Client Maximum Degree Game

Michael Krivelevich

(joint work with Nadav Trumer)

The Waiter-Client maximum degree with bias q is played by Waiter and Client
on the edges of the complete graph Kn on n vertices. In each round of the game,
Waiter offers to Client q+1 previously unoffered edges, Client claims one of them,
and the rest goes to Waiter. If at most q edges are left unclaimed on the board,
Waiter claims all of them. Client’s goal is to minimize the maximum degree in the
graph of his edges by the end of the game.

We determine the asymptotic value of Client’s maximum degree for all values
of the bias q(n) outside of the critical region q(n) = Θ(n/ logn). Also, for the
very important unbiased case q = 1, we show that, assuming the perfect play of
both players, Client’s maximum degree D satisfies: D = n/2 + Θ(

√
n logn). The

obtained results comply very well with the probabilistic intuition, derived from
observing the typical maximum degree of the random graph G(n,m) with the

corresponding value of of m(n): m = n2

2(q+1) .
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Monadic second order logic and random graphs from minor closed

classes

Tobias Müller

(joint work with Peter Heinig, Marc Noy, Anusch Taraz)

A classical result of Glebskii et al. 1969 and independently Fagin 1976 states that
in the Erdos-Renyi model with edge-probability p = 1/2 every graph property that
can be expressed as a sentence in first order logic holds with probability tending
to either zero or one.

A class of graphs is minor closed, if it is closed under the operations of removing
edges and of ”contracting” edges. (An example of a minor closed class of graphs
is the class of all graphs that have a crossing-free drawing on some fixed surface
S.) I will discuss a recent work, joint with P. Heinig, M. Noy and A.Taraz, on
analogues of the classical result of Glebskii et al./Fagin for random graphs from
a minor closed class (i.e. we sample a graph uniformly at random from all graphs
on n vertices from some minor closed class), where we consider monadic second
order logic sentences. The proofs build on the major progress that was made in
recent years in the study of these random graph models.

The odd-cycle game

Adva Mond

(joint work with Jan Corsten, Alexey Pokrovskiy, Christoph Spiegel, Tibor
Szabó)

In the (1 : b) Maker-Breaker game (X,F), the two players, called Maker and
Breaker, claiming previously unclaimed elements of the board. In each round
Maker claims one element and Breaker claims b. Maker wins if at some point of
the game she claimed all elements of some winning set F ∈ F and Breaker wins
otherwise (there are no draws). Here assume that Maker starts the game.

It is well-known that Maker-Breaker games are bias monotone, i.e. if Breaker
wins the (1 : b) game F then he also wins the (1 : b′) game F for every b′ ≥ b.
Therefore, we define the threshold bias to be the maximal value of b for which
Maker wins the (1 : b) Maker-Breaker game F and denote it by bmb(F). Deter-
mining the threshold bias for various natural games is one of the central problems
in the study of Maker-Breaker games.

Considering the cycle game, the game where Maker’s goal is to occupy the edges
of a cycle of any length, denoted by Cn, Bednarska and Pikhurko proved in [1] that
bmb(Cn) = ⌈n/2⌉ − 1. Furthermore, Krivelevich [3] proved that Maker can always
build a linearly-long cycle when b ≤ (1/2− o(1))n. In [2] Bednarska and Pikhurko
discussed the even-cycle game and the odd-cycle game, denoted by ECn and OCn

respectively. In these games Maker’s goal is to occupy the edges of some cycle
of an odd/even length. Since building a cycle of a certain parity is more difficult
for Maker than building just any cycle, we have bmb(ECn), bmb(OCn) ≤ bmb(Cn) =
⌈n/2⌉− 1. The authors of [2] proved that asymptotically the threshold bias of the
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even cycle game behaves the same as the one of the cycle game, i.e. bmb(ECn) =

(1/2+o(1))n. Furthermore, they also proved that bmb(OCn) ≥ (1−1/
√

2−o(1))n
(approximately 0.2929n). However, no upper bound separating the parameters
bmb(OCn) and bmb(Cn) is known yet. Hence, in [2] the authors asked the following
question

Question 1. Do we have bmb(OCn) = (1/2 + o(1))n?

We give the following small improvement for the lower bound.

Theorem 2. The threshold bias for the Maker-Breaker odd-cycle game satisfies

bmb(OCn) ≥
(

4 −
√

6

5
+ o(1)

)

n ≥ 0.3101n

Wanting to get closer to answering 1, we note that the best known strategies of
Maker are playing connected, i.e. claiming only edges incident to any vertex she
has visited so far. Both Maker’s strategies in the proof of 2 and in Bednarska’s
and Pikhurko’s proof in [2] are connected. It is therefore natural to try to answer
1 under the additional assumption that Maker follows connected rules. If indeed
playing connected is optimal for Maker then investigating this variant of the game
will lead to an answer to 1. Hence we introduce this new variant of the odd-cycle
Maker-Breaker game in which Maker is allowed to claim only edges that keep her
graph connected. We show that, under these connected rules, the answer to 1 is
no. Given that, in order to give a negative answer to 1 in general, one could show
that Maker’s optimal strategy is playing disconnected.

The (1 : b) connected Maker-Breaker game (E(Kn),F) is exactly as the (1 : b)
Maker-Breaker game (E(Kn),F) except for one additional restriction. Maker wins
the game if she claims a full winning set while keeping her graph having exactly one
non-trivial connected component during the game up to this point. Alternatively,
Breaker wins the game if one of the following happens: either the game ends with
Maker’s graph not containing any winning set, or Maker’s graph has at least two
non-trivial connected components at some point while her graph still does not
contain any full winning set. This means that in every round Maker must claim
only an edge that keeps her graph connected, or otherwise she loses. It is not
hard to see that connected Maker-Breaker games are also bias-monotone. Thus,
for every connected Maker-Breaker game (E(Kn),F), there also exists a threshold
bias bcmb(F), so that Breaker wins the (1 : b) game (X,F) if and only if b ≥ bcmb(F).
As connected games are a restriction for Maker, we have bcmb(OCn) ≤ bmb(OCn) ≤
⌈n/2⌉ − 1 for every n ∈ N.

We give the following improvement that shows that if bmb(OCn) = (1/2 −
o(1))n, it means that the threshold biases for the connected odd-cycle game and
the unrestricted one differ, and hence every optimal strategy of Maker in the
unrestricted game must not be connected during the whole game.

Theorem 3. Breaker wins the (1 : b) Maker-Breaker game under connected rules
for every large enough n and every b ≥ 0.498n, i.e. bcmb(OCn) ≤ 0.498n for every
large enough n.
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A semi-random graph game

Dan Hefetz

(joint work with Omri Ben-Eliezer, Gal Kronenberg, Olaf Parczyk, Clara
Shikhelman, Miloš Stojaković)

In this talk we introduce and analyze a general semi-random multigraph process,
which is motivated by games. It arises from an interplay between a sequence
of random choices on the one hand, and a strategy of our choice (that may also
involve randomness) on the other. The process is defined as follows. We start with
an empty graph on the vertex set [n]. In each round, Builder is offered a vertex
v, chosen uniformly at random with replacement from the set [n], independently
of all previous choices. Builder then irrevocably chooses an additional vertex u
and adds the edge uv to his (multi)graph, with the possibility of creating multiple
edges and loops.

The (possibly randomized) algorithm that Builder uses in order to add edges
throughout this process is called the strategy of Builder. As a special case, we also
show how the process can be used to approximate (using suitable strategies) some
well-known random graph models such as the Erdős-Renyi random graph model
(see [1]), the random multigraph model (see [2]), the k-out model (see [3]), and
the min-degree process (see [4]).

Given a positive integer n and a monotone increasing graph property P , we
consider the one-player game in which Builder’s goal is to build a multigraph with
vertex set [n] satisfying P as quickly as possible; we denote this game by (P , n).
The general problem discussed in this paper is to determine the typical number
of rounds Builder needs in order to construct such a multigraph under optimal
play. We mostly focus on the online version of the game, where in each round
Builder is presented with the next random vertex only after he chose a vertex in the
previous round and added the corresponding edge to his graph, but also consider
the offline version, in which Builder is given the entire sequence of random vertex
choices before the game starts.

For both the online and offline versions of the game, we prove lower and up-
per bounds (which, in most cases, are fairly close) on the typical length of play
(assuming Builder follows an optimal strategy) for the following graph properties:
admitting a copy of any fixed graph, having minimum degree k, being k-connected,
admitting a perfect matching, and admitting a Hamilton cycle.
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On the singularity probability of random symmetric matrices

Asaf Ferber

Let Mn denote a random symmetric n×n matrix whose diagonal and upper diago-
nal entries are independent and identically distributed Bernoulli random variables
(which take values 1 and −1 with probability 1/2 each). It is widely conjectured
that Mn is singular with probability at most (2 + o(1))−n. On the other hand, the
best known upper bound on the singularity probability of Mn, due to Vershynin
(2011), is 2−nc

, for some unspecified small constant c > 0. This improves on a
polynomial singularity bound due to Costello, Tao, and Vu (2005), and a bound
of Nguyen (2011) showing that the singularity probability decays faster than any
polynomial. In this talk, improving on all previous results, we show that the prob-

ability of singularity of Mn is at most 2−n1/4√logn/1000 for all sufficiently large n.
The proof utilizes and extends a novel combinatorial approach to discrete random
matrix theory, which has been recently introduced by myself together with Jain,
Luh and Samotij.

On minimal Ramsey graphs and Ramsey equivalence for multiple

colours

Dennis Clemens

(joint work with Anita Liebenau, Damian Reding)

For an integer q ≥ 2, a graph G is called q-Ramsey for a graph H if every q-
colouring of the edges of G contains a monochromatic copy of H . If G is q-Ramsey
for H , yet no proper subgraph of G has this property then G is called q-Ramsey-
minimal for H .

Burr, Erdős, and Lovász [5] initiated the study of properties of graphs that
are 2-Ramsey-minimal for Kk, where as usual Kk denotes the complete graph on
k vertices. Their seminal paper raised numerous questions on minimal Ramsey
graphs that were addressed by various mathematicians in subsequent years [3, 4,
7, 10, 12].

Denote with Mq(H) the sets of all graphs being q-Ramsey-minimal for H . We
are mainly interested in the interplay between Mq(H) and Mr(H ′) when q 6= r
or H 6∼= H ′. Clearly, every graph G that is a q-Ramsey-minimal graph for some
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graph H is r-Ramsey for H , for all 2 ≤ r ≤ q, and thus contains an r-Ramsey-
minimal graph as a subgraph. Our first contribution complements this observation
in the sense that every r-Ramsey-minimal graph F can be obtained this way from
a q-Ramsey-minimal graph G, as long as H satisfies some connectivity conditions.

Theorem 1. Let H be a 3-connected graph or H ∼= K3 and let q > r ≥ 2 be
integers. Then for every F ∈ Mr(H) there are infinitely many graphs G ∈ Mq(H)
such that F is an induced subgraph of G.

The result is proved by generalising an argument of Burr, Nešetřil and Rödl [7]
and Burr, Faudree and Schelp [6], giving the following more general theorem.

Theorem 2. Let H be a 3-connected graph or H ∼= K3, let q ≥ 2 be an integer
and let F be a graph which is not q-Ramsey for H. Then there are infinitely many
graphs G ∈ Mq(H) such that F is an induced subgraph of G.

For all such H considered in these two theorems, we further obtain the following
consequences.

• For every q ≥ 3, there are q-Ramsey-minimal graphs for H of arbitrarily
large maximum degree, genus, and chromatic number.

• The collection {Mq(H) : H is 3-connected or K3} forms an antichain,
where Mq(H) denotes the set of all graphs that are q-Ramsey-minimal
for H .

We also address the question which pairs of graphs satisfy Mq(H1) = Mq(H2),
a question that has been introduced by Szabó, Zumstein and Zürcher [13] in the
case when q = 2. Let H1 and H2 be called q-equivalent if this relation holds.

From results of Nešetřil and Rödl [11] as well as Fox, Grinshpun, Liebenau,
Person and Szabó [9] it follows that every graph being 2-equivalent to Kk needs
to be a disjoint union Kk + H with ω(H) < k, while Bloom and Liebenau [2] also
proved that Kk ∼2 Kk + Kk−1 for every k ≥ 4. We extend these results to more
than two colours and also show that K3 ∼q K3 + K2 for every q ≥ 3 [8].

Apart from that, we do not have a deep understanding of which connected
graphs H satisfy Kk ∼2 Kk +H . In particular, the following problem seems to be
challenging.

Problem 3. (see [8],[9]) Determine

• the largest t = t(k) such that Kk ∼2 Kk + K1,t.
• the largest t = t(k) such that there is a tree T on t vertices satisfying
Kk ∼2 Kk + T .

Indeed, looking at all the results that are known so far, it is not even clear
whether there exist two non-isomorphic connected graphs being equivalent.

Question 4. (see [8],[9]) For given q ≥ 2, are there two non-isomorphic connected
graphs H and H ′ that are q-equivalent?

From our research [8] it follows that in case the answer is yes, then at least one
of the graphs H and H ′ cannot be 3-connected.
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Theorem 5. Let H and H ′ be non-isomorphic graphs that are either 3-connected
or isomorphic to K3. Then Mq(H) 6= Mq(H ′) for all q ≥ 2.

Moreover, we wonder how the concepts of 2-minimality and q-minimality are
related to each other. While in general q-equivalence for some q ≥ 3 does not nec-
essarily imply 2-equivalence, we show that two graphs H and H ′ are q-equivalent
for every even q if they are 2-equivalent [8]. However, the following question is
still unsolved.

Question 6. (see [8]) Is it true that any two 2-equivalent graphs H and H ′ are
also 3-equivalent?

Note that Axenovich, Rollin and Ueckerdt [1] could show that 2-equivalence
implies q-equivalence for every q, when restricted to graphs H and H ′ satisfying
H ⊆ H ′. Also note that if the answer to this last question is yes, then we can
show that 2-equivalence implies q-equivalence in general [8].
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