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Abstract. This workshop brought together experts in modeling and analysis
of organising principles of multiscale biological systems such as cell assemblies,
tissues and populations. We focused on questions arising in systems biology
and medicine which are related to emergence, function and control of spa-
tial and inter-individual heterogeneity in population dynamics. There were
three main areas represented of differential equation models in mathematical
biology. The first area involved the mathematical description of structured
populations. The second area concerned invasion, pattern formation and col-
lective dynamics. The third area treated the evolution and adaptation of
populations, following the Darwinian paradigm. These problems led to dif-
ferential equations, which frequently are non-trivial extensions of classical
problems. The examples included but were not limited to transport-type
equations with nonlocal boundary conditions, mixed ODE-reaction-diffusion

models, nonlocal diffusion and cross-diffusion problems or kinetic equations.
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Introduction by the Organisers

Despite the immense progresses made over the last decades in mathematical bi-
ology, the multifaceted nature of biological processes still represents an enormous
challenge for mathematical modeling. Technological advances lead to generation
of massive data sets, which can then be used to improve the accuracy of modeling.
This, in turn, contributes to a better understanding of the underlying complex bi-
ological processes. As a result, sophisticated mathematical methods have become
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crucial for addressing the key questions and paradigms in diverse biological sys-
tems and for making predictions of the effects of system perturbations. In addition
to providing an insight into the design principles of individual biological systems,
mathematical modeling also allows comparative analyses across divergent systems
and species, even in cases when direct molecular analogies are limited, such as
when contrasting plants and animals.

This workshop brought together experts in modeling and analysis of organising
principles of multiscale biological systems such as cell assemblies, tissues and pop-
ulations. We focused on specific questions arising in systems biology and medicine
and related to emergence, function and control of spatial and inter-individual het-
erogeneity in population dynamics. There were three main areas represented of
differential equation models in mathematical biology. The first area involved the
mathematical description and effective dynamics of structured populations. The
second area concerned problems of control of the heterogeneity and synchronisa-
tion principles. The third area treated the evolution and adaptation of systems,
following the Darwinian paradigm. This includes emergence and structure of the
heterogeneity with their mathematical formulation using the selection-mutation
models. These areas are intertwined and stimulated each other. They have con-
tributed to progress in the fields of partial differential equations, asymptotic and
multiscale analysis, singular perturbation methods, instability analysis, gradient
flows, kinetic modelling, mean-field limits, cellular automata, hydrodynamic clo-
sures, entropy methods, semigroup theory and functional analytic methods.

One of the major aims of the workshop was an extensive exchange of ideas and
techniques between experts from modeling and analysis of different self-organisa-
tion and structure formation mechanisms, as the corresponding mathematical
problems are often tightly connected. This was very well accomplished as we
corroborated with our colleagues that the activity level of information exchange
during the workshop was quite high. We now elaborate a bit more in each of the
subareas in which we focused during this workshop.

A.- Structured population dynamics: A typical feature of mathematical
models based on biology is that multiple structuring variables appear, which are
not only the spatial coordinates. Model equations typically describe the time
dynamics of a population density n(t, x) where x may represent a physiological,
genetic or other characteristic of the individuals. The structure variables may
be multidimensional, which leads to significant mathematical difficulties in model
analysis and simulation, and often requires model reduction. Another challenge
is understanding the difference between discrete and continuous structures, their
impact and the choice of appropriate modeling approach.

A typical class of examples fitting into this area are the size-structured models
and coagulation-fragmentation equations. They arise for instance in description of
the dynamics of cluster growth, such as protein polymerization or in description of
size distributions in bacterial populations. Structured population models also play
an important role in mathematical epidemiology. Difficulties arise in linking the
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dynamics in the environment to the within-host dynamics and accounting for pro-
cesses taking place on very different time scales. Indeed, epidemiological processes
run on a time scale of months or weeks, symptoms and infectiousness onset occur
in few days, whereas the infection process at cellular level is usually completed
within few hours from viral entry. Innovative modeling approachea accounting for
the function of the immune system lead to new types of equations. The PDE for
immune cell population couples a continuous transport process describing gradual
decay of the immune status with jumps in the opposite direction modeling boost-
ing of the immune system. Such reversible processes, often coupling continuous
and jump-discontinuous transitions, appear also in cancer modeling due to the
plasticity of cancer cells or in the modeling of tissue regeneration, e.g. when it is
needed to take into account transitions between active and quiescent stem cells.

Another large class of structured population models appears in computational
neuroscience. For instance voltage and conductance are typical structured vari-
ables in models of neural networks such as the integrate-and-fire neuron models.
Among the different modeling approaches, the mean-field theory has proven to
play a crucial part in investigating neural networks’ dynamics. This leads to a
formulation of population dynamics in terms of the Fokker-Planck type equations.
However, the Fokker-Planck equations arising are far from standard since they
frequently have atypical boundary conditions or stiff right-hand sides to take into
account the firing and relaxation of neurons beyond voltage threshold values. The
nonlinearity enters through the drift caused by the flux of neurons at the firing
voltage. This nonlinearity and the firing mechanism are main challenges in the
mathematical analysis of these models. There are clearly two future directions
in this field that need to be addressed. On the one hand finding periodic solu-
tions to some of the models will clarify the questions of synchronization in neuron
models. Regularizing some of these models based on the biological observations
including time delays and relaxation may lead to existence proofs of the sustained
oscillations. There are other models which involve relaxation times and more
classical structured population models such as age-structured equations. These
connections should also be explored further. Spatial versions of the models with
neurons labeled according to their location in the cortex constitute another inter-
esting direction where interaction with groups working in synchronization might
be interesting.

B.- Invasion, pattern formation and collective dynamics: At a certain
scale, the spatial-temporal dynamics of biological populations can be modelled by
a reaction-diffusion equation

∂tu− ai,j(x, t)∂iju− bi(x, t)∂iu = f(x, u).

In case of constant coefficients, these equation have interesting particular solu-
tions, so-called travelling waves. Their level-sets move at constant speed and can
be interpreted as an invasion front. Showing existence of traveling waves when
the coefficients depend on (x, t) and characterising their speed are challenging
mathematical problems.
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In case of systems of reaction-diffusion equations or their shadow type limits
leading to equations with nonlocal terms, the lack of maximum principle leads
to a complex dynamics. Different diffusion rates or nonlocal terms may lead to
diffusion-driven instability (Turing mechanism) and emergence of asymptotically
stable spatially heterogenous patterns (Turing patterns), while a lack of diffusion
in a subsystem may induce formation of non-Turing patterns in the form of as-
ymptotic spikes or transition layers with jump-discontinuities. Such systems arise
from modeling of interactions between cellular processes and diffusing signaling
factors. They proved to be very different from the classical reaction-diffusion
models. Since stationary solutions for the non-diffusing variables are discontin-
uous, linearised stability analysis cannot be directly applied. Another problem
encountered is that of existence of an infinite number of solutions with changing
connecting point. Such problems and models are important in developmental bi-
ology. Moreover, there are crosslinks to the models of tumour growth and invasion
of surrounding tissue.

Another well-established discipline, which generates interesting nonlinear math-
ematical problems is spatial ecology. This research is usually interdisciplinary and
involves a variety of approaches, ranging from model analysis to field work. It
is of immense practical importance, since it involves modeling of movements of
populations and their interaction, under changing environmental conditions. Ex-
amples include invasion of aquatic species under pressure from ocean warming.
Mathematically, it includes systems of nonlinear differential equations, which may
or may not involve structure. Behaviors of interest include extinctions, periodicity
and chaotic beahavior.

By including velocity as a structure variable, we arrive at models for populations
structured by position and velocity. They can be used to explain self-organized
dynamics of agents and their tendency to align. Dynamics of such systems are
governed solely by interactions among individuals or agents, with the tendency
to adjust to their environmental averages. This, in turn, leads to the formation
of clusters, such as colonies of ants, flocks of birds, parties of people, rendez-

vous in mobile networks, and so forth. A natural question which arises in this
context is when and how clusters emerge through the self-alignment of agents,
and what types of rules of engagement influence the formation of such clusters. Of
particular interest are cases where the self-organized behavior tends to concentrate
into a single cluster, reflecting a consensus of opinions, flocking of birds, fish, or
cells, rendezvous of mobile agents, and, in general, concentration of other traits
intrinsic to the dynamics.

This area has been particularly active in the last decade using models ranging
from transport equations, kinetic equations, to parabolic Fokker-Planck equations
such as the famous Keller-Segel system. The extremely rich qualitative behaviours,
including clustering and concentration, has led to a variety of mathematical meth-
ods adapted to each particular situation, including gradient flows, entropy meth-
ods, and self-similar solutions. In addition to that, hierarchies of models are also
crucial because of the many scales, from the individual to the population and
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multiscale analysis plays an important role in this field. The tools connecting the
different levels of description such as mean-field limits or closure assumptions will
be explored and expanded in other directions such as cell polymerization and cell
movement.

The case of cells within a tissue is particularly relevant for this field but also
much more challenging. A major outcome of this workshop will be to orient a part
of the community to this important challenge for medical science including topics
such as tumor growth, tissue repair and cell adhesion. Several species interaction
is another major topic of expansion with very interesting biological implications in
organogenesis such as neural crest or lumen formation, or in developmental biology
such as stripe patterns organization by pigment cells in zebra fish. Here models
for cell adhesion or pattern formation may be stimulated by feedback from groups
working in collective behavior of animals. Taking into account nonlocal cell-to-cell
interactions may bring new concepts and insights into the tissue self-organisation
and patterning.

Models closely related to those of swarming and chemotaxis cell movement that
have been used for the activation/deactivation of actine-myosin polymers in cells to
model their movement. Cytoskeleton dynamics are usually modelled by gradient
flows of energies involving the cross linking of polymer fibers. The mathematical
analysis and modelling of these phenomena has been recently tackled and the cross
fertilization of these ideas with modern techniques in simulation/understanding
of steepest descent settings and kinetic approaches will certainly lead to further
advances.

C.- Dynamics of adaptation: Models for population dynamics are moti-
vated, in part, by the desire to understand how species evolve. This fascinating
research area aims to understand Evolution, which is one of the fundamental prin-
ciples in nature. At the same time, it has promising applications, including a
better understanding of the emergence of resistance to antibiotics, chemotherapy
or insecticides.

To build a model of evolution that includes selection and mutations, we start
with a population structured by a physiological characteristic x ∈ R

d. We assume
that this characteristic confers a fitness advantage, and directly influences the
competitiveness of an individual in the population.

We refer to this characteristic as a phenotypic trait. The population density
n(t, x) provides the number of individuals with trait x at time t. The population
density changes over time by a growth/death term selecting for the fittest trait
and a mutation term, leading to the following equation

∂tn(t, x) =

growth/death
︷ ︸︸ ︷

n(t, x)R
(
x, I(t)

)
+

mutations
︷ ︸︸ ︷

∆n(t, x),

with the total number of individuals defined as

I(t) :=

∫

Rd

n(t, x) dx.
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The trait changes due to mutations are given by the Laplace operator. The
growth/death term R models competition for a common resource, such as food or
nutrients. The availability of the common resource depends on the total number
I(t) of individuals. In particular, the net growth rate R(x, I) can become nega-
tive for I large enough. A typical example is R(x, I(t)) = p(x) − d(x)I(t), where
p(x) models proliferation and d(x)I(t) death/competition for a common resource.
The question “what is the selected trait?” corresponds to the long-time behaviour
of the equation. A Gaussian-like concentration effect arises which leads to the
so-called constrained Hamilton-Jacobi equations

{
∂
∂tu = R

(
x, ρ̄(t)

)
+ |∇u|2,

maxx u(x, t) = 0,

The selection-mutation models can be further generalized to account for more
realistic description of the mutation process, such as in case of genetic mutations
which take place during DNA replication. Such description is based on integral
operators or infinite systems of ordinary differential equations, which lead to new
challenges in mathematical analysis. New biological insights into the mutation
process may also suggest a new generation of models defined on a metric space
reflecting geometry of the space of mutations.

Another direction of further developments of selection-mutation models is re-
lated to coupled systems of equations accounting for a competition and cooperation
among different populations. For systems, the classical approach to prove long-
time behaviour is not feasible. Difficulty of the analysis is caused by the specific
nonlinearities in the model, which do not allow for component-wise estimates. En-
tropy methods work only in some cases due to the lack of a rich class of entropies.
We need, therefore, novel approaches to establish long-time behaviour for these
coupled systems.

Final Outcome and Participants: The organizers were very positively sur-
prised by the great thrive and enthusiasm that the conference produced in the
international mathematical biology community based on PDE models. It has been
several years that there were no conferences in the subject in Oberwolfach. This
occasion, in the framework of the Year of Mathematical Biology 2018 organized by
the EMS and the ESMTB, has served to structure a community of researchers with
common goals and clear agendas in the use of mathematical modelling based on
differential equations in the increasingly important area of Mathematical Biology.
This is one of the most positive outcome of the meeting.

We had plenty of excellent talks given by senior and junior speakers with a high
percentage of female and young participants. We had the participation of biolo-
gists and physicists interested in the mathematical modelling based on differential
equations, this is essential for an interdisciplinary area to be able to overcome bar-
riers and setting a common language of interaction. We made use of the Simons
Program for Visiting Professors and the US Junior Oberwolfach fellows for Shigeru
Kondo and Alexandria Volkening respectively.
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The quality of the mathematical techniques used in the talks was very high
and diverse using techniques of upscaling, mean-field limits, stochastic processes,
kinetic theory, statistical mechanics, probability theory, numerical analysis apart
from the obvious ones in differential equations such as bifurcation theory, long
time asymptotics, pattern formation, travelling waves, concentrations, entropies,
modelling, numerical simulations, and qualitative behavior tools.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
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program at the MFO.
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Abstracts

Multi-scale models of deformation and embolization of blood clots

under variable shear flow

Mark Alber

Thromboembolism, one of the leading causes of morbidity and mortality world-
wide, is characterized by formation of obstructive intravascular clots (thrombi) and
their mechanical breakage (embolization). A novel two-dimensional multi-phase
computational model will be described that simulates active interactions between
the main components of the clot, including platelets and fibrin. It can be used
for studying the impact of various physiologically relevant blood shear flow condi-
tions on deformation and embolization of a partially obstructive clot with variable
permeability. Simulations provide new insights into mechanisms underlying clot
stability and embolization that cannot be studied experimentally at this time. In
particular, model simulations, calibrated using experimental intravital imaging of
an established arteriolar clot, show that flow-induced changes in size, shape and
internal structure of the clot are largely determined by two shear-dependent mech-
anisms: reversible attachment of platelets to the exterior of the clot and removal
of large clot pieces [1]. Model simulations also predict that blood clots with higher
permeability are more prone to embolization with enhanced disintegration under
increasing shear rate. In contrast, less permeable clots are more resistant to rup-
ture due to shear rate dependent clot stiffening originating from enhanced platelet
adhesion and aggregation. Role of platelets-fibrin network mechanical interactions
in determining shape of a clot will be also discussed and quantified using analysis
of experimental data leading to calibration of the SCE model. These results can be
used in future to predict risk of thromboembolism based on the data about compo-
sition, permeability and deformability of a clot under specific local haemodynamic
conditions.
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The effect of environmental stochasticity on a class of nonlocal

hyperbolic models for self-organised biological aggregations

Raluca Eftimie

The collective movement of animals occurs as a result of communication between
the members of the community. However, inter-individual communication can
be affected by the stochasticity of the environment, leading to changes in the
perception of neighbours and subsequent changes in individual behaviour, which
then influence the overall behaviour of the animal aggregations. To investigate
the effect of noise on the overall behaviour of animals, we start with a class of
nonlocal hyperbolic models for the collective movement of animals introduced in
[1], which we then adapt to model the effect of noise on animal perception of their
conspecifics and on their turning rates [2]. We show that for some parameters the
increase in noise can lead to a sequence of transitions between different spatial and
spatio-temporal patterns, and these transitions are quite similar to the transitions
obtained when we perturb deterministically these parameters. Moreover, we show
numerically the existence of multiple stable bifurcation branches (with different
amplitudes) for the stationary pulses and rotating pulses.

References

[1] R. Eftimie, G. de Vries, M.A. Lewis, Complex spatial group patterns result from different
animal communication mechanisms, Proc. Natl. Acad. Sci. USA 104(7), 6974-6979.

[2] R. Eftimie, The impact of environmental noise on animal communication: pattern forma-
tion in a class of deterministic and stochastic hyperbolic models for self organised biological
aggregations, Biomath 7(1) (2018), Article ID 1807217.

Evolutionary stability of ideal free dispersal under spatial

heterogeneity and time periodicity

Chris Cosner

(joint work with Robert Stephen Cantrell)

A population is said to have an ideal free distribution on a spatial region if all
of its members can and do locate themselves in a way that optimizes their fit-
ness, allowing for the effects of crowding. Dispersal strategies that can lead to
ideal free distributions of populations using them have been shown to exist and to
be evolutionarily stable in a number of modeling contexts in the case of habitats
that vary in space but not in time. Those modeling contexts include reaction-
diffusion-advection models and the analogous models using discrete diffusion or
nonlocal dispersal described by integro-differential equations. Furthermore, in the
case of reaction-diffusion-advection models and their nonlocal analogues in tempo-
rally constant, there are strategies that allow populations to achieve an ideal free
distribution by using only local information about environmental quality and/or
gradients. This talk will present recent results showing that for reaction-diffusion-
advection models for time-periodic environments with spatially varying resource
levels, where the total level of resources in the environment remains fixed but
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the spatial distribution of resources varies seasonally, there are strategies that
allow populations to achieve an ideal free distribution. Furthermore, those strate-
gies are evolutionarily stable, where evolutionary stability is defined in terms of
pairwise invasability analysis. However, achieving an ideal free distribution in a
time-periodic environment requires the use of nonlocal information about the en-
vironment such as might be derived from experience and memory, social learning,
or genetic programming.

References

[1] R. S. Cantrell and C. Cosner, Evolutionary stability of ideal free dispersal under spatial
heterogeneity and time periodicity, Mathematical Biosciences, in press.

Renewal equations arising from bookkeeping principles in population

biology

Odo Diekmann

Renewal equations provide a general and flexible formalism for structured popu-
lation models. The key idea is to start a clock when an event (birth, infection,
jump, ...) happens and to use the state of an individual immediately after the
event, together with the time on that clock, for bookkeeping purposes. In our
formulation below we always speak about ’birth’. The renewal equation expresses
the rate at which at time t newborns enter the population with a certain state-
at-birth, in terms of contributions of individuals born at time t-a, for any positive
age a and any feasible state-at-birth. The population state (a measure on the
state space of the individuals), is given by an explicit expression in terms of the
history of the birth rate. For given constant environmental condition E, the basic
reproduction number R0 and the Malthusian parameter r are defined. The sign
of R0 − 1 equals the sign of r. When individuals interact via feedback to the
environment, the equation R0(E) = 1 is part of the characterization of steady
states. As a concrete example I discussed waning and boosting of immunity [1].
Moreover, I speculated about deriving Keller-Segel type aggregation models from
renewal equations. Then I discussed dynamical systems aspects in the spirit of
[2], so by considering renewal equations as delay equations, i.e., as rules for ex-
tending a function of time towards the future on the basis of the (assumed to be)
known past. I showed how generation expansion (i.e., successive approximation)
leads to a constructive definition of the extension for a given history. A dynamical
system is defined by updating the history, i.e., by translation along the extended
function. The choice of the space of histories is a subtle issue. Ideally, one would
like to have a space such that translation is continuous and the rule for extension
is represented by a bounded operator. As such spaces don’t seem to exist, one
either needs to work with two related spaces, like in sun-star calculus, see [2], or
to sacrifice strong continuity, see [3]. Concerning numerical bifurcation analysis
via pseudospectral approximation see [4]. As a closing remark I mentioned that
Feller (in the chapter on Jump Processes in the second volume of his treatise on
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Probability Theory and Its Applications) first formulates a renewal equation and
then derives the Kolmogorov backward and forward equation from the renewal
equation and that, in my opinion, it is a good idea to formulate models in terms of
these Kolmogorov equations when diffusion guarantees that derivatives do indeed
exist, but that when these Kolmogorov equations are first order PDE with nonlocal
terms, one can better formulate the model in terms of the renewal equation.
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Nonlinear partial differential equations modelling evolutionary

dynamics of cancer cell populations

Tommaso Lorenzi

We consider a well-mixed population of cancer cells structured by the expression
level of a gene which is linked both to the cell proliferation rate and to the cel-
lular level of cytotoxic-drug resistance. Cells inside the population proliferate or
die, compete for limited resources, and undergo phenotype variations due to spon-
taneous epimutations – i.e. heritable changes in gene expression that leave the
sequence of bases in the DNA unaltered. Furthermore, a cytotoxic drug can be
present, which acts by increasing the death rate of cancer cells.

We represent the expression level of the gene under consideration by a contin-
uous variable y ∈ R+. We assume that there is a level of expression yH which
endows cells with the highest level of cytotoxic-drug resistance and a level of ex-
pression yL < yH which gives to the cells the highest proliferation rate when the
drug is not present. We model the phenotypic state of each cell in the population
by means of the rescaled variable x ∈ R with

x =
y − yL

yH − yL
,

so that the state x = 1 corresponds to the highest level of cytotoxic-drug resistance,
whereas the state x = 0 corresponds to the highest proliferation rate in the absence
of the drug.

At any time t ∈ R+, we describe the cell population density (i.e. the phenotypic
distribution of cells at time t) by means of the function n(x, t) ≥ 0 and we use the
function u(t) ≥ 0 to model the (rescaled) dose of the cytotoxic drug. Moreover,
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we compute the total number of cells (i.e. the population size) ρ(t) and the cell
mean phenotypic state µ(t), respectively, as:

(1) ρ(t) =

∫

R

n(x, t) dx and µ(t) =
1

ρ(t)

∫

R

x n(x, t) dx.

The evolution of the population density function n is governed by the following
nonlocal parabolic equation:

(2) ∂tn = R
(
x, ρ(t), u(t)

)
n

︸ ︷︷ ︸

proliferation/death

+ β ∂2
xxn,

︸ ︷︷ ︸

spontaneous
epimutations

(x, t) ∈ R+ × R.

In equation (2), the diffusion term models the effects of spontaneous epimuta-
tions, which occur at rate β > 0 and are assumed to cause infinitesimally small
phenotypic modifications. The reaction term takes into account the effects of cell
proliferation, natural death, competition for resources and the cytotoxic action of
the drug. The functional R

(
x, ρ(t), u(t)

)
represents the fitness of cancer cells in

the phenotypic state x under the environmental conditions determined by the pop-
ulation size ρ(t) and the drug dose u(t). We make use of the following definition
for the fitness functional:

(3) R
(
x, ρ(t), u(t)

)
= p(x) − d ρ(t)− k(x, u(t)).

In the definition given by equation (3), the term p(x) is a smooth function that
stands for the net proliferation rate of cancer cells (i.e. the difference between the
rate of cell division and the rate of natural death) in the phenotypic state x, while
the term k(x, u) is a smooth function that models the rate of death caused by the
cytotoxic drug. Moreover, the saturating term d ρ(t) translates to mathematical
terms the idea that higher total numbers of cells correspond to less available re-
sources in the system, and thus to more intense intrapopulation competition. The
parameter d > 0 models the rate of cell death due to intrapopulation competition.
Since the phenotypic state x = 1 corresponds to the highest level of cytotoxic-
drug resistance, we assume k to be a strictly convex function of x with minimum
in x = 1. Furthermore, because the death rate of cancer cells will increase as the
concentration of the cytotoxic drug increases, we let k be an increasing function
of u. On the other hand, to take into account the fact that the phenotypic state
x = 0 corresponds to the highest level of proliferative potential when u ≡ 0, we
assume that p is a strictly concave function with maximum in x = 0.

We study the long-time behaviour of the solution to equation (2). The results of
our analysis clarify the conditions for the successful adaptation of cancer cells faced
with environmental changes. Furthermore, our asymptotic results demonstrate
that the same cell population exposed to different concentrations of the same
cytotoxic drug can take different evolutionary trajectories, which culminate in the
selection of phenotypic variants characterised by different levels of drug tolerance.
This suggests that the response of cancer cells to cytotoxic agents is more complex
than a simple binary outcome – i.e. extinction of sensitive cells and selection
of highly resistant cells. Also, our mathematical results formalise the idea that
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the use of cytotoxic agents at high doses can act as a double-edged sword by
promoting the outgrowth of drug resistant cellular clones. Overall, our theoretical
work offers a formal basis for the development of anti-cancer therapeutic protocols
that go beyond the ‘maximum-tolerated-dose paradigm’, as they may be more
effective than traditional protocols at keeping the size of cancer cell populations
under control while avoiding the expansion of drug tolerant clones.
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The interactions of singular patterns & the process of desertification

Arjen Doelman

Singular patterns appear in multi-scale systems. These systems exhibit the rich
behavior of general systems, their singular nature provides a structure by which
this may be understood. Moreover, many natural phenomena are modeled by
such systems. A central theme of the talk was the strong cross-fertilization be-
tween applications and the development of mathematical theory. Unravelling the
nature of patterns exhibited by specific chemical or ecological models goes hand
in hand with uncovering novel generic destabilization mechanisms as the Hopf
dance. Understanding realistic patterns requires analytical descriptions of defor-
mations, bifurcations and annihilation of interacting localized structures – from an
ecological point of view preferably under varying (climatological) circumstances:
desertification can be seen, better: should be seen, as the coarsening process of a
multi-pulse pattern induced by slowly varying parameters (that ends in the trivial
‘bare soil’ state). By this point of view, the mathematical theory of singular pulse
interactions may explain why desertification sometimes is a sudden catastrophic
event, while it is a gradual process in other situations.
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Two attempts to promote the fusion of experiment and theory in the

study of skin pattern formation

Shigeru Kondo

The reaction-diffusion model presented by Alan Turing has recently been sup-
ported by experimental data and accepted by most biologists. However, scientists
have recognized shortcomings when the model is used as the working hypothesis
in biological experiments. In this lecture, I will introduce two of my attempts to
use the Turing model for research more effectively.

The first attempt is for the case where the detailed elementary process is not
yet understood in the experimental system. There are many mathematical mod-
els with the same pattern forming ability as the reaction diffusion system, which
are based on functions of different cells and molecules. Therefore, if cytologic
factors involved in pattern formation have not been elucidated, researchers do
not know which one to choose. In such case, I propose to use a variant of Tur-
ing model in which the interactions are not represented by partial differential
equations, but rather by the shape of an activation-inhibition kernel(KT model).
Simulation of the KT model with kernels of various shapes showed that it can
generate all standard variations of the stable 2D patterns (spot, stripes and net-
work), as well as some complex patterns that are difficult to generate with con-
ventional mathematical models. The KT model can be used even when the de-
tailed mechanism is poorly known, as the interaction kernel can often be detected
by a simple experiment and the KT model simulation can be performed based
on that experimental data. These properties of the KT model complement the
shortcomings of conventional models and will contribute to the understanding of
biological pattern formation. The KT model simulator and the original paper
can be found at: http://www.fbs.osaka-u.ac.jp/labs/skondo/simulators/

KernelPatternGeneraterGauss_Web/KernelPatternGeneraterGauss.html.
The second attempt is to help the construction of detailed agent-based simu-

lation model for the skin pattern formation (see Figure 1). Especially in case of
zebrafish skin pattern formation, information about the cells and molecular path-
ways involved in the pattern formation is getting accumulated. To construct the
agent based model, it is required to determine the values of many parameters using
the result of experiment. However, in vivo experiment is not much quantitative
or flexible. to solve this problem, we developed an easy and effective method with
which one can randomize the placement of all pigment cell by only irradiating blue
light. This method (1) is able to disarrange all three types of pigment cell as any
time point during zebrafish development, (2) does not cause the death of pigment
cells, (3) does not affect to the initial movement of pigment cells, and (4) normal
pattern formation is resumed immediately after switching off the blue light. This
method can be easily performed even by theoretical researchers without experience
in molecular biology.

http://www.fbs.osaka-u.ac.jp/labs/skondo/simulators/KernelPatternGeneraterGauss_Web/KernelPatternGeneraterGauss.html
http://www.fbs.osaka-u.ac.jp/labs/skondo/simulators/KernelPatternGeneraterGauss_Web/KernelPatternGeneraterGauss.html
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Figure 1. Forced melanophore movement resets the established
stripe pattern. (A) mitfa:ChR2(C128S/D156A) transgenic fish
was grown in the dark until 6.5 wpf. Well-established stripe pat-
tern is shown. (B) The same transgenic fish were irradiated with
blue light for 4 weeks. The stripe pattern was almost disrupted.
(C) After regeneration in dark for 5 weeks, stripe pattern was
regenerated but partially lost directionality. (D-F) Melanophores
are shown in bright field images. (G-I) Green autofluorescence of
xanthophores in fluorescence images. (J-L) Light reflection from
iridophores in dark field images. Configurations of three types
of pigment cells were rearranged after the blue light irradiation.
Black scale bar, 10 mm. White scale bar, 500 µm.
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Mathematic models of dynamic instabilities of microtubules and effect

of antimicrotubule drugs

Florence Hubert

Microtubules (MTs) are protein filaments found in all eukaryotic cells which are
crucial for many cellular processes including cell movement, cell differentiation,
and cell division. Due to their role in cell division, they are often used as targets
for chemotherapy drugs used in cancer treatment. Experimental studies of MT
dynamics have played an important role in the development and administration
of many novel cancer drugs, however, a complete description of MT dynamics is
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lacking. Here, we propose new mathematical models for MT dynamics, that can
be used to study the effects of chemotherapy drugs on MT dynamics.
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How turtles get home

Kevin Painter

The green turtles of Ascension Island are renowned navigators, traversing thou-
sands of kilometres of open ocean every 3-4 years and laying eggs on the same
beaches from which they hatched. The question of which cues are used has fasci-
nated researchers as far back as Darwin. I will use a biased random walk model
to describe movements of this form and employ scaling techniques to derive the
corresponding continuous and macroscopic model: an equation of drift/anisotropic
diffusion form. This model is shown to have wide applicability in modelling move-
ment paths, for example predicting the increased density distribution of wolves
along seismic lines. Utilising ocean current data, we analyse the model and deter-
mine the critical swimming speeds and navigating strengths required for turtles to
return to their island goal. As a prelude to the main talk, I present a tongue-in-
cheek model to explain how academics self-organise into social cliques, aggregating
their line of research into hot topics within their academic field.

Fractional Diffusion in E.coli Chemotaxis

Min Tang

(joint work with Benôıt Perthame, Weiran Sun)

Kinetic-transport equations that take into account the intra-cellular pathways are
now considered as the correct description of bacterial chemotaxis by run and tum-
ble. Recent mathematical studies have shown their interest and their relations to
more standard models. For example when the adaptation is fast and the run-and-
tumble processes are sensitive to the outside signal, kinetic-transport equation
without intra-cellular information have been derived. Macroscopic equations of
Keller- Segel type have been obtained using parabolic scaling as well.
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Due to the randomness of receptor methylation or intra-cellular chemical reac-
tions, noise occurs in the signaling pathways and affects the tumbling rate. Then,
comes the question to understand the role of an internal noise on the behavior of
the full population. Using a kinetic model for chemotaxis which includes biochem-
ical pathway with noises, we show that under proper scaling and conditions on the
tumbling frequency as well as the form of noise, fractional diffusion can arise in
the macroscopic limits of the kinetic equation. This gives an explicit and rigorous
explanation about how long jumps can be due to the internal noise of the bacteria.
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A model of emergent blood capillary network

Pierre Degond

(joint work with P. Aceves-Sánchez, B. Aymard, D. Peurichard, P. Kennel, F.
Plouraboué, A. Lorsignol, L. Casteilla)

We propose a new model for blood vessel formation. It relies on a hybrid approach
featuring an agent-based model for the formation of new capillaries and a fluid
model for blood and oxygen flows. Through the interactions between these three
components a positive feedback takes place which triggers the formation of new
capillary elements and in fine the creation of a network of branching capillaries.
The topological and geometrical properties of this network are emergent properties
as they are not encoded explicitly in the agents’ interaction rules. This talk reports
on [1] and is based on earlier work on ant trail network formation [2]
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Singular limits for models of selection and mutations with heavy-tailed

mutation distribution

Sepideh Mirrahimi

In this work [10] we are interested in the following selection-mutation model

(1)

{

∂tn+ (−∆)αn = nR(x, I),

n(x, 0) = n0(x), x ∈ R,

with

I(t) =

∫

R

n(t, x)dx.

Here, α ∈ (0, 1) is given and the term (−∆)α denotes the fractional Laplacian:

(−∆)αn(t, x) =

∫

h∈Rd

[n(t, x)− n(t, x+ h)]
dh

|h|d+2α
.

Equation (1) has been derived from a stochastic individual based model describing
the evolutionary dynamics of a phenotypically structured population [7]. Here, t
corresponds to time and x corresponds to a phenotypic trait. The function n rep-
resents the phenotypic density of a population. The term I(t) corresponds to the
total population size. The growth rate of the individuals is denoted by R(x, I)
which depends on the phenotypic trait and the total population size, taking into
account in this way competition between the individuals. The fractional laplacian
term models the mutations. The choice of a fractional laplacian rather than a
classical laplacian or an integral kernel with thin tails, allows to take into account
large mutation jumps with a high rate [7].

In this talk, we provide a nonstandard rescaling of (1) that leads to the concen-
tration of the solution n as an evolving Dirac mass, corresponding to a dominant
trait which varies with time. Such behavior can be described by a Hamilton-Jacobi
equation.

This result extends an approach based on Hamilton-Jacobi equations with con-
straint that has been developed during the last decade for the study of quan-
titative genetics models, to the case of fat-tailed mutation kernels. There is a
large literature on this approach which was first suggested by [3]. See for instance
[11, 2, 8] where the basis of this approach for models from evolutionary biology
were established. Note that this method has also been used to study the propa-
gation phenomena in local reaction-diffusion equations (see for instance [5, 6, 4, 1]).

The possibility of big jumps in (1) changes drastically the behavior of the solutions
and leads to much faster dynamics of the phenotypic density, comparing to a case
with a classical diffusion. Therefore, a sginifcantly different rescaling must be
used. Such rescaling is derived thanks to an analogy to the fractional Fisher-
KPP equation and a suitable rescaling which allows to capture the exponential
speed of propagation associated with such equation [9]. Another main difference
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with previous results within this approach, is that the WKB transformation of the
solution does not converge to a viscosity solution of a Hamilton-Jacobi equation
but to a viscosity supersolution of such equation which is minimal in a certain
class of supersolutions.
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Lineage tracking in hematopoiesis: the role of self-renewal and

generational aging in clonal extinction and resurrection

Tom Chou

(joint work with Song Xu, Renaud Dessalles, Sanggu Kin, Irvin Chen)

In recent experiments, individually tagged hematopoietic stem cells (HSCs) were
autologously transplanted into rhesus macaques and peripheral blood cells sampled
over fourteen years. Peripheral blood samples were sequenced quantified. Analysis
of clone sizes using a rescaled neutral growth model indicated rapid equilibration
of clone size distributions after transplantation. Besides a heterogeneous clone
size distribution, the data revealed large temporal variations of individual clone
populations that included occasional extinctions and resurrections.

We developed hybrid stochastic-deterministic birth-death-immigration (BDI)
models to address these long-term experiment. The stochastic BDI models were
developed in both the cell count and clone count representations. Analytic steady-
state distributions of the multispecies process were derived in the presence of
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carrying capacity interactions [1, 2]. Rather than counting the numbers of cells ni

in species i, we use the the clone count variable

(1) ck =

∞∑

i=1

1(ni, k),

representing the number of clones represented by k cells. A mean-field equation for
the expected clone counts 〈ck(t)〉 was derived. After sampling from this population
(corresponding to a small blood sample from the animals), the expected clone
counts were compared with experimental data. After rescaling and renormalizing
the data, we find that the underlying process had reached a stationary state.
Fitting our model to the data allowed us to estimate the total number of active
stems cells ∼ 103 − 104 and their differentiation rate α ∼ 1/month [3].

We then reverted back to the cell count representation to analyze the large
temporal fluctuations in the individual clones. A stochastic model describing HSC
self-renewal was used to determine the population of each stem cell clone. This
population then feeds the progenitor cell pool through differentiation. Progenitor
cells were assumed to carry a finite proliferative potential corresponding to L gen-
erations of replication. This limited amplification following each differentiation
event allowed us to generate the highly variable clone populations, resulting in
temporal extinctions and resurrections of individual clones. Within this mecha-
nistic picture, we use the data to infer estimates for the total HSC differentiation
rate and a consistent maximum number of progenitor cell divisions. By developing
a statistical measure for the number of extinctions seen in an experiment, we find
a least-squares fit of L∗ ≈ 24.
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Free Boundary PDE Models of Active Gels

Leonid Berlyand

We consider free boundary PDE models of active gels that arise in the studies
of motility of eukaryotic cells. Our goal is to capture mathematically the key
biological phenomena such as steady motion with no external stimuli, spontaneous
breaking of symmetry, and rotation.
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We first review our past work on phase field models [1] and then present recent
work on the two types of the free boundary models : curvature driven motion [2]
and a generalized Hele-Show flow for nonlinear PDEs [3].

In the analysis of the above models our focus is on proving existence of the
traveling wave solutions that are the signature of the cell motility. We also study
breaking of symmetry by proving existence of non-radial steady states. Bifurca-
tion of traveling waves from steady states is established via the Schauder’s fixed
point theorem for the phase field model and the Leray-Schauder degree theory
and Crandal-Rabinowitz theorem for the free boundary problem models. These
are joint works with V. Rybalko (ILTPE, Kharkiv, Ukraine, J. Fuhrman (PSU &
Mainz, Germany)
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A bulk–surface reaction–diffusion system for driven cell polarization

Matthias Röger

(joint work with B. Niethammer, J. J. L. Velázquez)

The polarization of a biological cell, for example characterized by a heterogenous
distribution of certain proteins, is key to many functions. We study here a simple
polarization module with two types of a certain protein on the cell surface, which
are either in an active or in an inactive state. We denote the first surface con-
centration as u and the second as v. Furthermore the inactive proteins can move
to the interior of the cell and vice versa, we denote the corresponding concentra-
tion by w. We are interested in the response to a given signal, in the form of a
concentration c of a certain chemical messenger on the surface.

This setup leads to a system of bulk diffusion and surface reaction–diffusion
equations. The coupling is via a Robin-type boundary condition for w and a
source term in the v equation. To give a more precise formulation let a open,
bounded set Ω ⊂ R

3 with smooth boundary Γ := ∂Ω describe the cell interior and



Differential Equations arising from Organising Principles in Biology 2677

cell surface. We then consider the following system.

∂tu = ∆u + cv −
a4u

1 + u
on Γ× (0, T )(1)

∂tv = ∆v − cv +
a4u

1 + u
− a5v + a6w on Γ× (0, T )(2)

∂tw = D∆w in Ω× (0, T )(3)

−D
∂w

∂n
= −a5v + a6w on Γ× (0, T ).(4)

For the parameters we assume a3, a4, a5, a6 > 0, D ≥ 1 and for the messenger
concentration that c : Γ → R+ is continuous and strictly positive. With some
abuse of notation ∆u and ∆v denote the Laplace-Beltrami operator on the surface
Γ, while ∆w is the usual Laplacian.

Solutions satisfy the mass conservation property
∫

Ω

w(x, t) dx +

∫

Γ

(u(y, t) + v(y, t)) dH2(y) = M for all t ≥ 0.

Our goal is to study for given c = c(x) stationary states of (1)-(4) in certain
parameter regimes and to examine when polarization patterns appear.

We start our analysis by showing that for given initial data there exists a unique
solution of the system (1)-(4). We also deduce uniform bounds that only depend
on the parameter and the total mass, but not on the initial conditions. Together
with a smoothing property for positive times this allow to prove the existence of
stationary states by a fixed point argument.

Our main results then concern the following rescaled stationary system

0 = ∆uε + cvε −
a4uε

ε+ uε
on ∂Ω× (0, T )(5)

0 = ε∆vε − cvε +
a4uε

ε+ uε
− a5vε + a6wε on ∂Ω× (0, T )(6)

0 = D∆wε in Ω× (0, T )(7)

−D
∂wε

∂n
= −a5vε + a6wε on ∂Ω× (0, T ),(8)

with the property
∫

Γ

(uε + εvε) +

∫

B

εwε = m.

From a mathematical point of view, the most remarkable feature is the convergence
to a generalized obstacle problem. Responsible for this feature is the presence
of the Michaelis-Menten reaction term, see [1] for a corresponding result for a
standard reaction–diffusion system.

Theorem. Consider a sequence (wε, uε, vε) of solutions to (5)-(8) with total mass

m. Then there exists a subsequence ε → 0 and nonnegative functions (w, u, v) such
that

uε ⇀ u in H2(Γ) , vε ⇀ v in L2(Γ) , wε ⇀ w in H1(Ω) .
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Moreover there exists ξ ∈ L∞(Γ) with 0 ≤ ξ ≤ 1 such that

0 = ∆u+ cv − a4ξ on Γ,(9)

0 = −cv + a4ξ − a5v + a6w on Γ,(10)

0 = D∆w in Ω,(11)

−D
∂w

∂n
= −a5v + a6w on Γ(12)

and such that uξ = u and
∫

Γ
u = m hold. Moreover, w, u and v are all nonnegative,

u ∈ W 2,p(Γ), w ∈ W 2− 1

p
,p(Ω) for any 1 ≤ p < ∞, and v ∈ L∞(Γ).

In the following we restrict ourselves to a spherical cell shape, i.e. Ω = B(0, 1).
We then can reformulate the problem (9)-(12) as a generalized obstacle problem
that involves the Dirichlet to Neumann operator N .

Proposition. Let ℓ = a6

D and define

g(x) =
c(x)

c(x) + a5
∈ (0, 1) , x ∈ Γ ,

Then (u, v, w, ξ) satisfies (9)-(12) if and only if (u, ξ, α), α ∈ R, is a solution of

0 = ∆u− a4(1 − g)ξ + αg − gℓ
(
N(u) + u− ū

)
, u ≥ 0 ,(13)

uξ = u almost everywhere on Γ , 0 ≤ ξ ≤ 1,(14)

and if

w =
1

a6

(

α− ℓ
(
N(u) + u− ū

))

, v =
1

a5
(1 − g)(a6w + a4ξ).

Observe that we obtain by integration over Γ that

α =
1

∫

Γ g

∫

Γ

(

a4(1− g)ξ + ℓg
(
N(u) + u− ū

))

.

One important property of the generalized obstacle problem is the following mono-
tonicity property.

Proposition. Let (u1, ξ1, α1), (u2, ξ2, α2) be two solutions of (13), (14) with α1 <
α2. Then u1 ≤ u2. If α1 = α2 then u1 − u2 = const..

It follows that for any m > 0 there exists exactly one solution (u, ξ, α) of (13),
(14) with

∫

Γ u = m. Moreover, the map m 7→ α is monotone.
We finally turn to a characterization of polarization in terms of the limit prob-

lem. We therefore characterize a concentration u as a polarized state if both the
set {u = 0} and the set {u > 0} have positive measure. The final outcome of our
analysis is a threshold for the occurrence of polarized states in terms of a certain
critical mass. To identify this value we first prove that there exists a unique value
α∗ for which

0 = ∆u− a4(1− g) + α∗g − gℓ
(
N(u) + u− ū

)
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can be solved. Moreover, there exists a unique solution u∗ with

min
Γ

u∗ = 0.

We then define the critical mass as

m∗ :=

∫

Γ

u∗.

The following theorem now characterizes the onset of polarized states.

Theorem. For m > 0 consider the solution (u, ξ, α) of (13), (14). If m > m∗ we

have that u > 0 in Γ and α = α∗. Moreover u = u∗ + (m−m∗)|Γ|. If m < m∗ we

have |{u = 0}| > 0 and α < α∗.

For details and additional results for a slightly extended system we refer to our
forthcoming work [2].
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Two-way coupling of growth and diffusion: Developmental PDEs

Nastassia Pouradier Duteil

Among the main actors of development are morphogens, signaling molecules that
diffuse in the developing organism and act on cells to produce local responses. One
specific example of morphogens is Gurken, whose distribution during Drosophila

oogenesis (i.e. egg formation) is related to the morphology of the fully grown egg.
In collaboration with the developmental biology laboratory of CCIB (Rutgers-
Camden), we developed a model in the aim of explaining the spatiotemporal dis-
tribution of Gurken, taking into account mechanisms such as diffusion of Gurken
on the surface of the oocyte, growth of the oocyte, and multiple reactions (bind-
ing to receptors, negative feedbacks etc.). Via numerical simulations, we are able
to compare experimental and simulated perturbations of the system [3]. This
provides a useful tool for biologists to predict numerically the outcome of pertur-
bations and to guide future experiments. The model will be used to explore the
mechanisms responsible for the diversity of Gurken distributions observed in other
Drosophila species.

In this applied model, we took into account the effect of growth on the mor-
phogen diffusion via the time-evolving Laplace-Beltrami operator, but the growth
itself was prescribed a priori by a known vector field. However, by definition, mor-
phogens are susceptible to act on the organism to influence growth. In other words,
there is a complete coupling between the diffusion of the signal and the evolution
of the surface on which it diffuses. We introduce a general mathematical model
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to investigate such coupling [1]. The surface of the growing cell is represented
by a compact Riemannian manifold Mt ⊂ R

d, that varies in time as the result
of a deformation given by a transport equation. The morphogen is represented
by a probability measure µt ∈ P (Mt), diffusing on the manifold via a diffusion
equation. Hence the Developmental PDE (DPDE) is written as:

(1) ∂tµt = ∇ · (v[µt]µt) + ∆tµt,

where ∇· denotes the divergence of Rd, ∆t represents the time-evolving Laplace-
Beltrami operator of the manifold Mt and v : Pc(R

d) → Lip(Rd,Rd) is a function
from the space of compact probability measures in R

d to Lipschitz vector fields of
R

d. We show the existence of a solution to the DPDE (1) by taking the limit of an
operator-splitting scheme in which we do alternate steps of transport and diffusion.
As a first step towards understanding what shapes of the manifold can be attained
from an initial configuration, we explore the non-commutativity of the growth
(manifold change in time) and the diffusion operator (on the manifold itself). A
newly defined concept of Lie bracket between the diffusion (2nd order operator)
and growth (1st order operator) is able to capture such non-commutativity and
thus provide new shapes towards which the manifold may evolve. We illustrate the
non-commutativity of these two operators via numerical simulations. Lastly, we
introduce a toy problem in which we explore the controlability of a one-dimensional
manifold by the source of the signal diffusing on it (see [2]).

References

[1] U. Boscain, B. Piccoli, N. Pouradier Duteil, F. Rossi, Developmental Partial Differential
Equations, Proceedings of the 2015 IEEE 54th Annual Conference on Decision and Control.

[2] B. Piccoli, N. Pouradier Duteil, F. Rossi, N. Yakoby, Control of reaction-diffusion equa-
tions on time-evolving manifolds, Proceedings of the 2016 IEEE 55th Annual Conference
on Decision and Control.

[3] B. Piccoli, N. Pouradier Duteil, N. Revaitis and N. Yakoby, Modeling the spatiotemporal
dynamics of EGFR activation in the follicular epithelium (in preparation).

Predator-prey model with competition: the emergence of territoriality

Henri Berestycki

(joint work with Alessandro Zilio)

In this talk, I report on a series of joint works with Alessandro Zilio (University
Paris-Diderot), dealing with systems of predators interacting with a single prey.

With a view to shed light on the question of territoriality formation, we intro-
duce a system describing several hostile packs interacting with each other and with
a single prey. This leads us to consider the set of classical non-negative solutions
v = (w, u) of the following system of elliptic semilinear equations in a bounded
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smooth domain Ω ⊂ R
n,

(1)







−d∆wi =
(

−ω + ku− β
∑

j 6=i wj

)

wi in Ω

−D∆u =
(

λ− µu− k
∑N

i=1 wi

)

u in Ω

∂νwi = ∂νu = 0 on ∂Ω.

Here we denote by w = (w1, . . . , wN ) the vector of predator densities. System (1)
adapts to the present context the classical model of Lotka and Volterra for preda-
tors and prey [1]. In this model, the interaction of two population is represented
by the product of their densities. We are especially interested in studying the case
where competition between predators is very strong, that is, when β → ∞.

This system models the interaction between a prey (spatially distributed as the
density u) and N groups of competing (β > 0) predators (the densities wi) in
an environment Ω ⊂ R

n. We recently introduced this model in [2, 3] to describe
the ecological impact of territorial behaviors for predatory animals. The aim
was to shed light on the basic mechanisms from which territoriality emerges, and
to understand what are the consequences of these behaviors at the scale of the
environment and the total populations of predators and prey.

More specifically, we study the stationary states of the system given by (1),
their stability and the bifurcation diagram. Then, we investigate the asymptotic
properties of the system when the intensity of the competition becomes infinite.
The main questions that we ask are: (i) under which conditions do the predators
segregate in packs, (ii) how many packs does an environment sustain, (iii) what
are the resulting shapes and sizes of territories and (iv) whether there is a benefit
for the total population in hostility between the packs.

In [2] we discuss the model and its consequences from an ecological standpoint.
There, we compare some of these outcomes with reported observations on territo-
ries formation, shape and size.

From a mathematical viewpoint, in [3] we have shown existence and uniqueness
results of the parabolic version of (1), explored the asymptotic limit when the
competition β is very large, and we have obtained results about the existence of
non-constant stationary solutions in the special case of N = 2 groups of predators.
Then, in [4] we have shown that the solutions of (1) are uniformly bounded in
Hölder norm, independently of the value of β and N . It is worth emphasizing
that the derivation of estimates independent of the number N of components is
a novel features of these works. This has allowed us to strengthen our conclusion
about the asymptotic limit of large competition that we derived in [3]. We use
these precise estimates to derive new results about the structure of the solution
set when either β is small or N is large [5].

We show in particular that the number N of different packs that an environ-
ment can sustain is a priori bounded in terms of the various biological parameters
in system (1). We also prove that in some parameter regimes, the total population
of predators increases when there is segregation (β > 0, N ≥ 2) even though the
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hostility between packs leads to a depletion of predators. This gives a quantita-
tive basis to the favorable effect of the creation of buffer zones that comes with
territoriality.
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Modelling, held by Henri Berestycki while Alessandro Zilio was a Post-Doctoral
Fellow of the research grant. This work was also partially supported by the French
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Relative entropy method for the growth-fragmentation equation with

measure data

Piotr Gwiazda

(joint work with Tomasz Debiec, Marie Doumic, Emil Wiedemann)

The aim of this study is to generalise recent results of on entropy methods for
measure solutions of the renewal equation to other classes of structured popu-
lation problems. Specifically, we develop a generalised relative entropy inequality
for the growth-fragmentation equation and prove asymptotic convergence to a
steady-state solution, even when the initial datum is only a non-negative measure.
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Nonlinear noisy leaky integrate and fire models for neural networks

Maŕıa J. Cáceres

(joint work with José A. Carrillo, Benoit Perthame, Pierre Roux, Delphine
Salort, Ricarda Schneider)

We analyse nonlinear noisy leaky integrate and fire (NNLIF) models, which de-
scribe the activity of neural networks by means of the membrane potential. These
models are based on nonlinear systems of PDEs of Fokker-Planck type. We study
the wide range of phenomena that appear in this kind of models: blow-up, asyn-
chronous/synchronous solutions, instability/stability of the steady states . . .

This talk is based on works in collaboration with Carrillo, Perthame, Roux,
Schneider and Salort [2, 3, 5, 6, 4].

In [6] we study the NNLIF system presented in [1]:














































∂ρI
∂t

(v, t) + ∂
∂v

[hI(v,NE (t − DI
E), NI(t − DI

I ))ρI(v, t)] − aI(NE(t − DI
E), NI(t − DI

I ))
∂2ρI
∂v2

(v, t)

= MI(t)δ(v − VR),

∂ρE
∂t

(v, t) + ∂
∂v

[hE(v, NE(t − DE
E ), NI(t − DE

I ))ρE(v, t)] − aE(NE (t − DE
E ), NI(t − DE

I ))
∂2ρE
∂v2

(v, t)

= ME(t)δ(v − VR).

(1)

This study was possible because we analysed some simplified versions of the model
previously in [2, 3, 5]. The probability densities ρα(t, v) describe the limiting
probability of a neuron of the excitatory population (α = E) or of the inhibitory
one (α = I), with a membrane potential v at time t, when the total number of
neurons of the network, n, goes to infinity. Moreover, for each population, Rα(t)
represent the limiting proportion of neurons that do not respond to stimuli. The
drift and diffusion coefficients are given by hα(v,NE , NI) = −v+ bαENE − bαINI +
(bαE − bEE)vE,ext and aα(NE , NI) = dαEvE,ext+ dαENE + dαINI , respectively, and are
delayed in terms of the synaptic delays Dα

E and Dα
I . The rest of parameters (dαE ,

dαI , vE,ext, b
α
E and bαI ), are non negative constants. The main parameters of the

model are the connectivities of the network bαE and bαI and the synaptic delay DE
E .

The coupling of the system (1) is given by the mean firing rates Nα, which obey
to

Nα(t) = −aα (NE(t), NI(t))
∂ρα
∂v

(VF , t) ≥ 0 α = E, I,

and, therefore the model is nonlinear.
The right hand sides in (1) describe the fact that when neurons reach the

threshold potential VF , they emit a spike over the network, reset their membrane
potential to the reset value VR and remain some time in a refractory period τα,
(see [1, 3] for different choices of Mα(t)). The system (1) is completed with two
ODEs for Rα(t), the limiting probabilities to find a neuron from population α in
the refractory state,

(2)
dRα(t)

dt
= Nα(t)−Mα(t), ∀α = E, I,
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Dirichlet boundary conditions: ρα(−∞, t) = 0 and ρα(VF , t) = 0, and initial data:
Rα(0) = R0

α ≥ 0 and ρα(v, 0) = ρ0α(v) ≥ 0, α = E, I.

First, we prove that the NNLIF model presents the blow up phenomenon: If
DE

E = 0 the system can blow-up in finite time in two case:

• For initial data fixed and bEE > 0 large enough.
• For bEE > 0 fixed, when the initial datum is concentrated enough around
VF .

This phenomenon was first analysed in the simpler models studied in [2, 3, 5], and
it was also described at a microscopic level in [10, 9]. In [7] some existence results
were proven for the simplest NNLIF model, where only one population of neurons is
considered (in average excitatory or inhibitory) and where neither synaptic delays
nor refractory periods were taken into account. The authors showed a criterium
to determine the maximum time of existence: the solutions exist for every time for
which the firing rate does not diverge. Therefore, the maximum time of existence is
T ∗ := Sup{t ≥ 0 : N(t) < ∞}. In the average inhibitory case, where the solutions
do not blow up, T ∗ = ∞, while for the average excitatory case T ∗ < ∞, because
blow up was proved in [2]. Recently, in [4], we have proved the global existence of
solutions in the case where a synaptic delay between excitatory neurons is taken
into account. In other words, DE

E > 0 avoids the blow-up. Moreover, in [6], we
show numerically that the remaining delays do not avoid the blow-up phenomenon.

Studing the number and shape of steady states is a complicated issue. In a few
words we can say that, in terms of the values of the parameters, with refractory
states there is always an odd number of steady states, while without refractory
states there are some values of the parameters for which the model has an even
number of steady states, and in other case there is an odd number of them. Some
interesting situations are:

• If bEE is small enough then there is a unique stationary solution.
• If bEE is large enough and there are not refractory states, then there are no
steady states.

In [2] we studied the long time behaviour of the simplest NNLIF model in the
linear case (b = 0) and proved the exponential convergence to the unique steady
state, by means of the entropy method. Then, in [8] this results was extended
for the non linear case but with |b| small, where there is a unique steady state.
Recently, in [5, 6, 4] we have proved the exponential convergence of the solutions
to the unique steady states of the more general NNLIF models.

Numerically we have found periodic solutions in the general NNLIF system,
where all the phenomena of the network are included in the model (two popula-
tions of neurons: excitatory and inhibitory, synaptic delays and refractory periods)
[6]. We do not observe periodic solutions if the synaptic delays and the refractory
periods are not taken into account. In this simpler situation, we find periodic so-
lutions only if we consider a modification of the model (see [3]), where randomness
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is included on the firing potential VF , instead of a fixed value of the threshold
potential. In this case the model does not present blow-up and there are strong
controls on the firing rate (or total activity of the network) N(t).

The properties of the solutions of the NNLIF models, which we proved ana-
lytically or showed numerically, can be related to neurophysiological phenomena.
For instance, the blow-up can be interpreted as a synchronization of a part of the
network, maybe associated with epilepsy. The presence of several steady states,
with multi-stable phenomena, could be related, for example, to visual perception
and decision making. And periodic or oscillatory states are also related to neuro-
physiological phenomena, for instance those observed during cortical processing.

Finally, we point out several open problems, the analytical study of:

• The stability of the models when there is more than one stationary solu-
tion.

• Criteria to have oscillatory states.
• A more general notion of solution that allows to continue after blow-up.
• Relations with other PDE models which describe the activity of the net-
works at the level of the membrane potential.
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Ecological invasion in competition-diffusion systems when the exotic

species is either very strong or very weak

Danielle Hilhorst

(joint work with L. Contento, M. Mimura)

Reaction-diffusion systems with a Lotka-Volterra-type reaction term, also known
as competition-diffusion systems, have been used to investigate the dynamics of
the competition among m ecological species for a limited resource necessary to
their survival and growth. Notwithstanding their rather simple mathematical
structure, such systems may display quite interesting behaviours. In particular,
while for m = 2 no coexistence of the two species is usually possible, if m ≥ 3
we may observe coexistence of all or a subset of the species, sensitively depending
on the parameter values. Such coexistence can take the form of very complex
spatio-temporal patterns and oscillations.

Unfortunately, at the moment there are no known tools for a complete analytical
study of such systems for m ≥ 3. This means that establishing general criteria
for the occurrence of coexistence appears to be very hard. Instead we give some
criteria for the non-coexistence of species, motivated by the ecological problem
of the invasion of an ecosystem by an exotic species. We show that when the
environment is very favorable to the invading species the invasion will always be
successful and the native species will be driven to extinction. On the other hand,
if the environment is not favorable enough, the invasion will always fail.

The understanding of the mechanisms behind the rich biodiversity observed in
nature is a central problem in theoretical ecology. It is a generally accepted fact
that when two or more species are competing for the same limited resources in a
constant and homogeneous environment which is isolated from external influences,
they cannot coexist and all but one species will become extinct; this is known as
the competitive-exclusion principle and has been experimentally confirmed for cul-
tures of microorganisms. However, in real ecosystems a high number of coexisting
species is often observed also in places where resources are scarce. A famous ex-
ample of this apparent contradiction with the principle is Hutchinson’s paradox
of the plankton: a high number of phytoplankton species are able to coexist, even
if they all compete for the same resources. Traditionally theoretical ecologists
have explained this biodiversity by observing that natural environments are in-
homogeneous in space and/or time, so that the principle does not apply. Thus,
even species which are competing for the same resource may coexist, each being
dominant in a particular zone or season, without any equilibrium being reached.

Mathematical models for the competition between species can aid in the un-
derstanding of this problem. In the case where only two species are present,
it has been shown that a reaction-diffusion system with Lotka-Volterra-like re-
action terms (from here on called a competition-diffusion system) with constant
parameters (i.e., modeling a homogeneous environment) always displays compet-
itive exclusion if the space domain is convex. Non-convex domains may allow
for stable coexistence equilibria in which the species segregate spatially, but this
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can be interpreted ecologically as being due to immigration effects, a violation
of the hypotheses of the competitive-exclusion principle. Another example of a
mechanism which leads to coexistence is the addition of cross-diffusion; since this
amounts to the species avoiding each other and nearly not competing, it is again
a failure of the principle’s hypotheses.

It has been recently shown that, when three or more species are considered,
dynamical coexistence is possible even in convex homogeneous environments with
only random dispersal. This is due to the effect of indirect competition between
the species, under the form of the so-called cyclic competition. The competition-
diffusion system in this case has the form

ut = Du∆u+ (r1 − u− b12v − b13w)u,

vt = Dv∆v + (r2 − v − b21u− b23w) v,

wt = Dw∆w + (r3 − w − b31u− b32v)w.

In particular, the following ecological situation is considered. An ecosystem which
is inhabited by two native species u and v which are usually unable to coexist is
invaded by a third, exotic species w from outside. The parameter r3 represents the
suitability of the new environment for the invader. Intuitively, if r3 is very small
the invasion should fail, while if r3 is very large the two native species should be
supplanted by w. Then, coexistence is possible only for intermediate values of r3.

This line of reasoning can be extended to the general case in which we have
m different competing species. Let us choose one species, which without loss of
generality can always be thought to be the m-th one. If rm, the intrinsic growth
rate of the m-th species, is very large, then the m-th species will be able to invade
an ecosystem occupied by the first m− 1 species, completely replacing them.

If on the other hand rm is very small, the invasion will not succeed and the
m-th species will go extinct. Note that if m > 3 the remaining species may still be
able to coexist. Then, coexistence of all species is possible only for intermediate
values of rm, when the invasion by the m-th species is successful but its strength
is not sufficient to drive the native species to extinction.

We are mainly concerned with studying the dependence of the system’s behavior
on the parameter rm. We will only consider the extreme cases in which such
parameter is very large or very small. The intermediate value case, while very
interesting since it allows for coexistence of all species, is much more challenging
to study analytically and will not be considered here. We recall the basic properties
of the solutions of the m-species competition-diffusion system. We first study the
scalar case m = 1, i.e., the Fisher-KPP equation, and its limiting behavior. We
then consider the case in which rm is large and show that the first m− 1 species
become extinct. We study this case first as a singular limit problem, keeping the
time interval fixed and letting rm go to infinity, and then as a large-time problem,
choosing rm sufficiently large but finite and studying the behavior of the solutions
as time tends to infinity. Finally, we study in a similar way the case where rm is
small and the m-th species disappears.
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Mathematical modeling of the spread of Wolbachia for dengue control

Nicolas Vauchelet

(joint work with P.-A. Bliman, G. Nadin, M. Strugarek, J. Zubelli)

Bacteria Wolbachia has gain a lot of attention since scientists discover that in-
fected mosquitoes with this bacteria cease to transmit some disease like dengue,
chikungunya and Zika. Moreover, this bacteria is maternally transmitted from
mother to offsprings. Then a strategy of control of dengue transmission consists
in releasing Wolbachia infected mosquitoes in the aim to replace to natural popu-
lation of mosquitoes by infected mosquitoes. In this work, we are concerned with
the spatial spread of Wolbachia infected mosquitoes into a host population. We
focus on the following questions: How the spatial repartition of the releases will
influence the spread of the bacteria into the population ? Once the spread is
initiated, is it possible that environmental characteristics stop the spread ?

In order to answer to these questions, we introduce a simple competition
reaction-diffusion model for two species : Wolbachia-infected mosquitoes and
Wolbachia-free mosquitoes. We first reduce this model to a simple scalar reaction-
diffusion equation thanks to an asymptotics analysis [3]. The limiting system is a
bistable scalar reaction-diffusion equation for the fraction of infected mosquitoes
for which we know the existence of traveling waves. Thanks to this simple model,
we are able to state sufficient conditions on the initial release to initiate the spatial
spread of Wolbachia-infected mosquitoes [4]. We also look for an active control
in time of the release [1]. Finally, we study the effect of heterogeneities on the
environment which may block the propagation [2].
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Coupled bulk-surface free boundary problems from a model for

receptor-ligand dynamics

Chandrasekhar Venkataraman

(joint work with Charles M. Elliott, Thomas Ranner)

Let Γ be a smooth, compact closed n-dimensional hypersurface contained in a
domain D ⊂ R

n+1, n = 1, 2. The surface Γ separates a domain D into an interior
domain I and an exterior domain Ω. We will denote by ∂0Ω the outer boundary
of Ω, i.e., the boundary ∂D. We will assume that this boundary is Lipschitz. We
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consider the following problem: Find u : Ω × [0, T ] → R and w : Γ × [0, T ] → R

such that

δΩ∂tu−∆u = 0 in Ω(1a)

∇u · ~ν = −
1

δk
uw on Γ(1b)

u = uD or ∇u · ~νΩ = 0 on ∂0Ω(1c)

∂tw − δΓ∆Γw = µ∇u · ~ν on Γ(1d)

u(·, 0) = u0(·) in Ω(1e)

w(·, 0) = w0(·) on Γ,(1f)

where δΩ, δΓ, δk > 0 are given model parameters and the initial data are bounded,
non-negative functions, i.e., u0 ∈ L∞(Ω), w0 ∈ L∞(Γ) and u0, w0 ≥ 0. In the
above ∆Γ denotes the Laplace-Beltrami operator on the surface Γ and ∆ the
usual Cartesian Laplacian in R

n+1.
Problem (1) may be regarded as a basic model for receptor-ligand dynamics in

cell biology, modelling the dynamics of mobile cell surface receptors, w reacting
with a mobile bulk ligand, u. The model arises, after nondimensionalisation, as
a large binding affinity reduction of a model including receptor-ligand complexes,
in which we neglect the complexes. Taking biologically realistic parameter val-
ues for the characteristic scales used to nondimsionalise the model, motivates the
consideration of the following three biologically relevant asymptotic limits

(1) δk → 0, (2) δΓ = δk → 0, and (3) δΩ = δΓ = δk → 0.

We prove the existence and uniqueness of a (weak) solution pair (u,w) to (1) to-
gether with rigorous convergence of (u, v), with v = −w to weak solutions of three
limiting bulk-surface free boundary problems in the biologically relevant limits
above. The limiting problems correspond to interesting free boundary problems
due to the complementarity nature of the fast reaction limit (δk → 0), i.e., in the
limit one has

u ≥ 0, w ≥ 0, uw = 0 on Γ.

The details are given in [2], here we focus only on the case (3). The limiting
problem corresponds to
Elliptic limit problem with dynamic boundary conditions (δΩ = δk = δΓ → 0):

−∆û = 0 in Ω× (0, T )(2a)

∇û · ~ν + ∂tv̂ = 0 on Γ× (0, T )(2b)

v̂ ∈ β(û) on Γ× (0, T )(2c)

û = uD on ∂0Ω× (0, T )(2d)

v̂(·, 0) = v0(·) ≤ 0 on Γ,(2e)
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the complementarity is encoded in the constraint v ∈ β(u) with β defined by

β(r) =







∅ if r < 0

[−∞, 0] if r = 0

{0} if r > 0.

We are further able to prove that the solution to (2) is unique. Moreover, we may
write the problem as an abstract degenerate parabolic equation holding on the
surface Γ which reveals the structure. Introducing a Dirichlet to Neumann (DtN)
map A0 (see [2] for details), we may write problem (2) as follows.
Elliptic problem with dynamic boundary condition (δk = δΓ = δΩ = 0)

∂tv̂ +A0û+∇UD · ν = 0 in L2(0, T ;H−1/2(Γ)),(3)

with v ∈ β(u), v0 = −w0, and with UD an extension associated with the boundary
data for u. Written in this way, one sees that (3) may be thought of as a Hele-Shaw
or steady one phase Stefan problem on the surface Γ with the operator A0 in place
of the usual Laplacian. Interpreting the operator A0, as (−∆Γ)

1/2 we may think
of (3) as a surface Hele Shaw problem with the half-Laplacian in place of the usual
Laplacian.

Following techniques employed for the resolution of the one-phase Stefan and
Hele Shaw problems [3] we may integrate in time and reformulate (3), as an elliptic
variational inequality of obstacle type. The obstacle problem lies on the surface Γ
and time simply enters as a parameter, hence the problem may be solved at any
given time independent of the values at other times leading to significant speed
up in terms of computations.
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A two species hyperbolic-parabolic model of tissue growth

Agnieszka Świerczewska-Gwiazda

(joint work with Piotr Gwiazda, Benôıt Perthame)

Models of tissue growth are now well established, in particular in relation to their
applications to cancer. They describe the dynamics of cells subject to motion
resulting from a pressure gradient generated by the death and birth of cells, itself
controlled primarily by pressure through contact inhibition. In the compressible
regime we consider, when pressure results from the cell densities and when two
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different populations of cells are considered, a specific difficulty arises from the
hyperbolic character of the equation for each cell density, and to the parabolic
aspect of the equation for the total cell density. For that reason, few a priori
estimates are available and discontinuities may occur. Therefore the existence of
solutions is a difficult problem.

In [4] we established the existence of weak solutions to the model with two cell
populations which react similarly to the pressure in terms of their motion but
undergo different growth/death rates:







∂tn1 − div[n1∇p] = n1F1(p) + n2G1(p), x ∈ R
d, t ≥ 0,

∂tn2 − div[n2∇p] = n1F2(p) + n2G2(p),

with

n := n1 + n2, p = nγ , γ > 1.

We assume that there is a value PH > 0 such that the smooth functions Fi, Gi,
describing the division/death rates of cells, satisfy the properties

F (p) := F1(p) + F2(p) ≤ 0, G(p) := G1(p) +G2(p) ≤ 0, ∀p ≥ PH .

In opposition to the method used in the recent paper [2], our strategy is to ignore
compactness on the cell densities and to prove strong compactness on the pressure
gradient. We improve known results in two directions; we obtain new estimates,
we treat higher dimension than one and we deal with singularities resulting from
vacuum.

We have started to work on this problem during the visit of Benoit in Poland
and continued during the visit of Piotr and myself in Paris. We have proposed a
strategy to prove existence of weak solutions for this two species model of tumor
invasion. It relies on the extension of the Aronson-Benilan ([1]) regularizing effect
for porous media equations which provides estimates of the Laplacian of the pres-
sure. The most important limitation so far is a combined condition on the two
bulk growth terms which we assumed

sup
0≤p≤PH

|F (p)−G(p)|2

p1/γ
≤ CH .

and it is an open question to remove it.
A question which we have not handled is the strong compactness of nǫ

i in the
stability result of the approximation process. The bounds on ∆p are too weak for
the L1 theory of renormalized solutions (Di Perna - Lions) and are boarder line to
apply the compactness theorems (Ambrosio, Bouchut and Crippa) which require
that D2p is a bounded measure.

The extension to more than two species, with the present strategy, requires
combined conditions on the three growth terms which read, in the case of three
species for instance, c1F (p)+ c2G(p)+ c3H(p) ≤ Cp1/γ whenever the nonnegative
ci satisfy c1+c2+c3 = 1. Then, the analysis goes through without major changes.

An interesting question concerns an incompressible limit, γ → ∞, which has at-
tracted much attention recently because of its relation to congested traffic. Clearly
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the bounds provided here are not enough to investigate this question. For the re-
cent studies in one dimensional case see [3].

Another question is about different mobilities, where the parabolic aspects of
the equation for n = n1 + n2 do not apply, see e.g. [5].
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Two models of tumour growth with emergence of heterogeneity, in the

framework of chemotherapies

Cécile Carrère

The resistance of tumours to chemotherapies is a main reason of treatment fail-
ure in classical protocols. We present here two models that exhibit how clonal
heterogeneity can give rise to such resistance.

The first model is a competition-diffusion model, with two cell species (sensitive
or resistant to the drug) invading an empty territory while competing with each
other. The growth function for each species is logistic, with different growth
factors and competition rates. Using successive sub- and super-solutions of the
equation, the long time behaviour of the system is described for a large class of
initial conditions. For a certain range of parameters, even if the resistant cells
population is weaker than the sensitive cells population (i.e. it is replaced in each
bounded interval), if its Fischer-KPP speed is faster, then it will invade the empty
environment first, creating a growing ring of resistant cells around a slower growing
core of sensitive cells[1].

In a second model, in a joint work with J.Clairambault, T.Lorenzi and G.Nadin,
we investigate this problem in the framework of bet hedging. We define here
bet hedging as the situation when, under stressful conditions, generalists may
win against specialists. We define a PDE model of a population structured in
epigenetic traits, with a diffusion corresponding to the epigenetic mutations and
a competition accross the whole population[2]. We study the long time behaviour
of the system under a time-periodic treatment. After proving the existance and
attractivity of time-periodic solutions, we analyse the effect of different protocols
on the mean final tumour size ρ̄. We show that, for a fixed treatment dose to
deliver during one time period, a constant dose minimizes ρ̄. Moreover, under
some hypothesis on the growth function and under bang-bang treatment protocols,
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tumours with a higher mutation rate may become larger. This situation might
cause problems for future treatments, as more plastic tumors might adapt faster
to new drugs.
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Heterogeneity in epigenetic regulatory systems: Epigenetic plasticity

in aging and cancer

Tomás Alarcón

Understanding the control of epigenetic regulation is key to explain and modify
the aging process. Because histone-modifying enzymes are sensitive to shifts in
availability of cofactors (e.g. metabolites), cellular epigenetic states may be tied to
changing conditions associated with cofactor variability. The aim of this study is
to analyse the relationships between cofactor fluctuations, epigenetic landscapes,
and cell state transitions. Using Approximate Bayesian Computation, we gener-
ate an ensemble of epigenetic regulation (ER) systems whose heterogeneity reflects
variability in cofactor pools used by histone modifiers. The heterogeneity of epige-
netic metabolites, which operates as regulator of the kinetic parameters promot-
ing/preventing histone modifications, stochastically drives phenotypic variability.
The ensemble of ER configurations reveals the occurrence of distinct epi-states
within the ensemble. Whereas resilient states maintain large epigenetic barriers
refractory to reprogramming cellular identity, plastic states lower these barriers,
and increase the sensitivity to reprogramming. Moreover, fine-tuning of cofactor
levels redirects plastic epigenetic states to re-enter epigenetic resilience, and vice
versa. Our ensemble model agrees with a model of metabolism-responsive loss
of epigenetic resilience as a cellular aging mechanism. Our findings support the
notion that cellular aging, and its reversal, might result from stochastic trans-
lation of metabolic inputs into resilient/plastic cell states via ER systems. This
is joint work with Núria Folguera-Blasco (Crick Institute, London, UK), Rubén
Pérez-Carrasco (University College London, UK), Elisabet Cuyàs (ICO-IDIBGI,
Girona, Spain), and Javier A Menéndez (ICO-IDIBGI, Girona, Spain)
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Partial Differential Equations as Models for Social Complex Systems

Nancy Rodŕıguez

We discuss two stories related to the use of Partial Differential Equations as mod-
els for social phenomena. The first part of the talk focused on discussing the
analysis of traveling waves solutions for a system which was introduced to model
riot dynamics. The existence and stability of such solutions was motivated by the
2005 French riots which displayed a “wave-like” spread of activity. Through our
analysis we conclude that this riot was likely displayed tension-inhibitive dynam-
ics where the outburst of activity helped release social tension. The second part
of the talk was devoted to the introduction of a model for wealth-dynamics. We
found parameter regimes that lead to neighborhoods of wealth concentration and
discussed the effect of economic downturns.

The interest of a microscopic approach in the study of cross diffusion

systems appearing in population dynamics

Laurent Desvillettes

In the situation when two species (represented by number densities u := u(t, x) and
v := v(t, x)) are in competition and are spatially structured, the traditional Lotka-
Volterra equations (together with homogeneous Neumann boundary conditions)
read

(1)







∂tu− du ∆xu = u (ru − ra u− rb v) in [0,∞[×Ω,

∂tv − dv ∆xv = v (rv − rc v − rd u) in [0,∞[×Ω,

∇xu · n = ∇xv · n = 0 on [0,∞[×∂Ω,

where du, dv > 0 are diffusion rates, ru, rv > 0, and ra, rb, rc, rd > 0 are related to
the intraspecific and interspecific competition.

The above model is known not to give rise to spatial patterns. Indeed, depend-
ing on the coefficients ru, rv, ra, rb, rc, rd, the stable steady states are spatially
homogeneous, of the form (ū, 0), (0, v̄), or (ū, v̄), with ū, v̄ > 0.

In order to observe patterns, it is possible to consider systems of reaction dif-
fusion (with reaction terms which are polynomials of degree 2) with strictly more
than two equations. An alternative approach consists in considering more com-
plex diffusion processes for one of the species (say, species u). If the individuals
of this species increase their diffusion rate when the other species has an higher
(local) concentration, one is led to write down the model introduced by Shigesada,
Kawasaki and Teramoto in the late 70s (cf. [7]):

(2)







∂tu−∆x(du u+ d12 u v) = u (ru − ra u− rb v) in [0,∞[×Ω,

∂tv − dv ∆xv = v (rv − rc v − rd u) in [0,∞[×Ω,

∇xu · n = ∇xv · n = 0 on [0,∞[×∂Ω.

Here, d12 ≥ 0 is an extra parameter added to the model. One can show that when
d12 is large enough, spatial patterns indeed appear.
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Following [6], this system can be seen as the formal singular limit of a (so called
microscopic) reaction diffusion system, which writes
(3)






∂tu
ǫ
A − du ∆xu

ǫ
A = [ru − ra (u

ǫ
A + uǫ

B)− rb v
ǫ]uǫ

A

+
1

ǫ
[k(vǫ)uǫ

B − h(vǫ)uǫ
A] in [0,∞[×Ω,

∂tu
ǫ
B − (du + dB)∆xu

ǫ
B = [ru − ra (u

ǫ
A + uǫ

B)− rb v
ǫ]uǫ

B

−
1

ǫ
[k(vǫ)uǫ

B − h(vǫ)uǫ
A] in [0,∞[×Ω,

∂tv
ǫ − dv ∆xv

ǫ = [rv − rc v
ǫ − rd (u

ǫ
A + uǫ

B)] v
ǫ in [0,∞[×Ω,

∇xu
ǫ
A · n = ∇xu

ǫ
B · n = ∇xv

ǫ · n = 0 on [0,∞[×∂Ω,

where dB > 0, and h, k are two (continuous) functions from [0,∞[ to [0,∞[ satis-
fying (for all v ≥ 0) the identity

dB
h(v)

h(v) + k(v)
= d12 v.

The limit holds (at the formal level) in the following sense: if uǫ
A, u

ǫ
B, and vǫ are

solutions to system (3) (with ǫ-independent initial data), the quantity (uǫ
A+uǫ

B, v
ǫ)

converges towards (u, v), where u and v are solutions to system (2).

The advantages of this microscopic approach appear at the level of modeling
as well as at the level of the mathematical analysis. From the point of view of
modeling, it shows that it is meaningful to consider a term like ∆(u v) in the model
by Shigesada, Kawasaki and Teramoto, rather than terms like ∇ · (v∇u) (or more
generally ∇ · (v∇u) + β∇ · (u∇v), where β ≥ 0 is different from 1). Of course
this is true provided that the microscopic model represents somewhat the reality,
that is, when the individuals of the species u can be in the “quiet” state uA or the
“stressed” state uB (this last state corresponding to a larger diffusion rate), and
when they switch from one state to the other according to the local value of the
concentration of v. This switch is done on a time scale ǫ which is very small in
front of the time scale of the life of a given individual.

From the point of view of analysis, it is interesting to see that the microscopic
model (that is for ǫ > 0 small) leads to pattern formation, like the model of
Shigesada, Kawasaki and Teramoto. Bifurcation diagrams are shown to converge
when ǫ → 0 at the numerical level (cf. [6]). They can also be shown to rigorously
hold thanks to computer-assisted methods (cf. [2] and [1]).

Another interesting feature of this microscopic model is the existence of func-
tionals with an interesting ǫ-invariant behavior (enabling thus to put in evidence
the same kind of functionals for the limiting model).

We present here such an estimate, valid for some p ∈]0, 1[:
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∫

Ω

[

h(vǫ(0, ·))p−1 (u
ǫ
A(0, ·))

p

p
+ k(vǫ(0, ·))p−1 (u

ǫ
B(0, ·))

p

p

]

+2 dA
1− p

p2

∫ T

0

∫

Ω

|∇x[(u
ǫ
A)

p/2]|2h(vǫ)p−1

+2 (dA + dB)
1− p

p2

∫ T

0

∫

Ω

|∇x[(u
ǫ
B)

p/2]|2k(vǫ)p−1

−
1

ǫ

∫

Ω

[k(vǫ)uǫ
B − h(vǫ)uǫ

A][(u
ǫ
B)

p−1k(vǫ)p−1 − (uǫ
A)

p−1h(vǫ)p−1] ≤ Cst(T ).

(4)

In the above estimate, Cst(T ) is a constant which depends on T and on the
parameters of the equation, but not on ǫ. From such an estimate, it is possible
to get the ingredients enabling to pass to the limit rigorously when ǫ → 0 in the
microscopic model. Indeed it yields estimates for the gradients in x of uǫ

A and uǫ
B,

which together with the use of Aubin-Lions theorem entail the strong compactness
of uǫ

A and uǫ
B. Also the last part of the estimate shows that k(vǫ)uǫ

B − h(vǫ)uǫ
A

converges to 0 a.e. (up to the extraction of a subsequence).

Finally, the microscopic model provides a well-suited approximation procedure
for showing existence to the final system (2).

Putting together the previous considerations, we end up with the following
result, published in [5].

Theorem: Let Ω be a smooth bounded domain of R
N . We suppose that

h, k are of class C1 and that the initial data uin ≥ 0, vin ≥ 0 are such that uin ∈
L2(Ω), vin ∈ L∞(Ω)∩W 2,3(Ω), and satisfy a compatibility (with the homogeneous
Neumann boudary condition) assumption.

Then, for any ǫ ∈]0, 1[, there exists a strong (global, with nonnegative compo-
nents) solution (uǫ

A, u
ǫ
B, v

ǫ) to the microscopic model (3).

Moreover, when ǫ → 0, (uǫ
A, u

ǫ
B, v

ǫ) converges, up to extraction of a subse-
quence, for almost every (t, x) ∈ R+ × Ω, to a limit (uA, uB, v) lying in
L2
loc([0,∞[×Ω)×L2

loc([0,∞[×Ω)×L∞
loc([0,∞[×Ω), and such that uA ≥ 0, uB ≥ 0,

v ≥ 0. Furthermore, ∇xv lies in L2+η
loc ([0,∞[×Ω) for some η > 0, and the quantity

u := uA+uB satisfies ∇xu,∇x(uφ(v)) ∈ L1
loc([0,∞[×Ω), and for some p > 0 (and

all T > 0),

(5) sup
t∈[0,T ]

∫

Ω

u(t) < +∞ and

∫ T

0

∫

Ω

|∇x(u
p/2)|2 < +∞.

Finally, h(v(t, x))uA(t, x) = k(v(t, x))uB(t, x) for a.e. (t, x) ∈ R+ × Ω, and
(u, v) is a (global, with nonnegative components) weak solution to (2).

A somewhat different microscopic approach was recently proposed by E. Daus,
L. Desvillettes, and H. Dietert (cf. [4]), for models of cross diffusion with an
arbitrary number of cross diffusion with the so called detailed balance condition
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(cf. [3]). It consists in introducing a Markov process which naturally possesses an
entropy, and which converges in some (mean field) limit towards a cross diffusion
model, inheriting this entropy structure.
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LAGA - CNRS, UMR 7539
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