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Introduction by the Organisers

This Computational Engineering Workshop covered mathematical and numeri-
cal aspects of finite-element methodologies with applications in computational
engineering. The presentations established novel methods for various problems
next to innovative mathematical aspects of state-of-the-art finite element meth-
ods. The presented numerical schemes included mixed finite elements methods,
multiscale methods, isogeometric analysis, mapped tent-pitching methods, dis-
continuous Galerkin methods, discontinuous Petrov-Galerkin methods, stress re-
construction, spectral methods, adaptive methods, hybrid high-order methods,
the tangential-displacement normal-normal-stress method, Hodge decomposition
methods, local orthogonal decomposition methods, proper generalized decompo-
sition, meshfree methods, and cut finite-element methods. The thirty talks, in-
cluding an evening session, fostered fruitful discussions between mathematicians
and engineers and layed the groundwork for future collaborations in and beyond
the context of the Priority Program 1748 “Reliable simulation techniques in solid
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mechanics. Development of non-standard discretization methods, mechanical and
mathematical analysis” of the German Research Foundation. In particular, the
interest and need of DG methods for engineering applications were the focus of
discussion within the Engineering community. The Workshop was useful for the
engineering community to clarify the differences between the different possible
formulations and to address the practical aspect of implementation while opening
the mathematical community to challenging problems not properly analyzed so
far. The remainder of this report contains the extended abstracts and illustrates
the plethora of applications of the abovementioned methods ranging from solid
and fluid mechanics to electrodynamics.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Pedro Morin and Thirupathi Gudi in the “Simons Vis-
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Abstracts

Mapped tent pitching methods: explicit methods for hyperbolic
systems on unstructured tent meshes

Jay Gopalakrishnan

(joint work with Joachim Schöberl, Christoph Wintersteiger)

Solutions of hyperbolic partial differential equations propagate at finite speed.
Hence tent-shaped spacetime regions appear to be natural for solving hyperbolic
equations. By constraining the height of the tent pole, one can ensure causality
within the tent. This talk will focus on a numerical technique which proceeds by
progressively meshing a spacetime domain by tent-shaped objects. The solution
can be computed on an unstructured advancing front composed of tent canopies.
Such methods are naturally high order in both space and time variables whenever
the solution is smooth. The ability to advance in time by different amounts at
different spatial locations distinguishes such schemes. We present the history of
such techniques and our new additions to improve these schemes. A new twist
[1] is to use certain maps, that make fully explicit schemes possible even while
using unstructured tents. These degenerate maps transform tents into domains
where space and time are separated, thus allowing standard methods to be used
within tents. A structure-aware Taylor scheme can be used to perform explicit
time stepping within tents.

References

[1] J. Gopalakrishnan, J. Schöberl, and C. Wintersteiger, Mapped tent pitching schemes
for hyperbolic systems, SIAM Journal on Scientific Computing, 39 (2017), pp. B1043–B1063.

Numerical homogenization of heterogeneous fractional Laplacians

Joscha Gedicke

(joint work with Donald L. Brown, Daniel Peterseim)

In the modeling and simulation of porous media or composite materials, the mul-
tiscale nature of the materials is a challenging mathematical problem. In addition,
the modeling of non-local behavior that naturally occurs in particular media is of
great interest. Therefore, one is interested in the heterogeneous fractional Lapla-
cian model problem:

LsAu = f in Ω, and u = 0 on ∂Ω.(1)

This is the Darcy flow model with a multiscale permeability coefficient A and a
fractional derivative power s ∈ (0, 1) to incorporate the non-local behavior.

To efficiently approximate the fractional diffusion problem in heterogeneous
media, we employ in [1] the local orthogonal decomposition (LOD) method. The
key idea of this multiscale method is to incorporate scales on the fine-grid to the
coarse-grid in a computationally feasible way.
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It is well known that fractional Laplacian problems are non-local. Therefore,
applying standard two-grid techniques to handle heterogeneous coefficients locally
is not possible as the sub-grid problems will too be non-local and not decaying
exponentially. However, due to the Caffarelli-Silvestre extension [2], one is able
to rewrite the non-local fractional Laplacian as a Dirichlet-to-Neumann mapping
problem with coefficient yα in the extended domain C = Ω× (0,∞):

−div (yaB(x)∇U) = 0 in C,
∂U

∂νa
= −ya ∂U

∂y

∣∣∣∣∣
y=0

= csf(x) on Ω,

U = 0 on ∂LC = ∂Ω× [0,∞).

(2)

The solution to (1) is then given by u(x) = U(x, 0) for x ∈ Ω, and the tensor
B ∈ R

d+1 × R
d+1 is given by B(x) = [A(x), 0d×1; 01×d, 1] for a = 1− 2s ∈ (−1, 1)

or s = a−1
2 ∈ (0, 1). Here, ∂U

∂νa is the co-normal exterior derivative with outer unit

normal ν and cs = 21−2s Γ(1−s)
Γ(s) > 0 is a positive constant that solely depends on s.

This problem is localizable at the cost of a one dimension higher infinite domain
and singular or degenerate coefficients depending on the fractional degree s. To
be able to approximate the solution to (2) numerically, we truncate the infinite
domain C to the finite domain CT = Ω × (0, T ) with zero Dirichlet boundary
condition at T , cf. [3].

Constructing a quasi-interpolation operator IH onto the coarse-scale finite ele-
ment space VH with interpolation and stability estimates in ya-weighted Sobolev
norms, and a fine-scale (global) projection operator QCT

, we are able to apply the
LOD method to the extension problem (2). The LOD method leads to the orthog-

onal decomposition of H̊1
L(CT , ya) into a multiscale space V msH = (VH −QC(VH))

and a fine scale space V f = {v ∈ H̊1
L(CT , ya) | IHv = 0}, which is the kernel of the

quasi-interpolation operator. For the resulting multiscale method, we can prove
the following error estimate.

Theorem. Suppose that u ∈ H̊1
L(CT , ya) is the solution of the truncated extension

problem, umsH ∈ V msH is the multiscale approximation, and the data is such that
f ∈ L2(Ω). Then, we have the following error estimate

‖∇u−∇umsH ‖L2(CT ,ya) . Hs‖f‖L2(Ω).

To design a numerically efficient scheme, we show that the approximation of
the fine-scale projection operator QCT

can be localized, due to the exponential
decay of the corrector problems. Utilizing a separate quasi-interpolation on the
boundary, we are able to show improved convergence rates. Numerical experiments
demonstrate those higher rates and the computational efficiency of the method
using local corrector problems.
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Stress approximation and reconstruction with application to solid
mechanics

Fleurianne Bertrand

(joint work with B. Kober, M. Moldenhauer, G. Starke)

Due to the fact that large local stresses are related to failure, accurate stress ap-
proximations are of interest in many applications in solid mechanics. In particular,
they play an important role in the approximation of surface traction forces.

The finite elements method for elasticity usually consists in minimizing an en-
ergy depending on the displacement variable in an appropriate finite element space.
An additional pressure variable can be considered such that the approache remain
uniformly accurate in the limit of incompressible materials. This leads in general
to discontinuous stresses, and the reconstruction of accurate stresses in a localiz-
able post-processing step for elasticity is an ongoing research field see [1, 2]. In the
best case, this reconstruction can be build on each element or on vertex-patches,
is involving constants depending only of the shape regularity, and remains stable
in the incompressible limit. In particular, the asymmetry of such a reconstruction
has to be controlled. A further challenging step ist the extension on hyperelastic
material models involving geometrical and material nonlinearities.

An alternative approach minimizes a dual energy under the constraints of mo-
mentum and leads to an approximation of the stress directly in an H(div) con-
forming space (see e.g. [3]). This approach is of saddle-point type and the com-
patibility of the FE spaces has to be proven. In particular, the asymmetry of the
stress tensor has to be controlled. To circumvent this restriction, the hyperelas-
ticity problem can be considered directly in the deformed configuration. Here,
parametric Raviart-Thomas elements (see [4, 5, 6] ) are essential to deal with a
domain with curved boundaries.

A third approach consists in the Least-Squares Formulation ([7, 8]). Stress-
based variational principles for hyperelastic material models has been studied in
[9] using a reference configuration. This work can be extended to a consideration
in the actual configuration. The relations between this approach and the stress-
based mixed method will be investigated in detail. We aimed to extend the results
of [10] to proove that the error associated with the momentum balance and the
error between the two stress approximations are of higher order than the overall
error for the least-squares approach. Since the Least-Squares Formulation has
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an inherent error estimator, this would lead to an error estimator for the mixed
approach.
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Model Order Reduction in high-dimensional parameter space

Pierre Ladevèze

(joint work with C. Paillet, D. Néron ; ENS Paris-Saclay)

Model reduction techniques such as Proper Orthogonal Decomposition, Proper
Generalized Decomposition and Reduced Basis are decision-making tools which
are about to revolutionize many domains. Unfortunately, their calculation remains
problematic for problems involving many parameters, for which one can invoke the
“curse of dimensionality”. The today practical limit is about a dozen parameters
and much less for nonlinear engineering problems.

The talk will introduce a general answer to this challenge [1]. This MORmethod
named the parameter-multiscale PGD is based on the Saint-Venant’s Principle
which works for numerous models in Physics. Such a principle highlights two
different levels of parametric influence, which drives us to introduce a multiscale
description of the parameters and to separate a macro and a micro scale, as it is
classically done for space or time. A first implementation of this vision has been
done using a Discontinuous Galerkin spacial formulation and applied to an elas-
ticity 3D-problem composed of up to a thousand parameters. Last developments
concern its extension to classical finite element solvers and nonlinear problems [2].
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The talk will give the basic features of the parameter-multiscale PGD, espe-
cially its mechanical bases, and presents its extensions. Elasticity 3D-problems
will be used to illustrate its performance as well as its current limits.The latest
developments and perspectives will also be shown.

References
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Sparse Compression of Expected Solution Operators

Daniel Peterseim

(joint work with Michael Feischl)

For a random (or parameterized) family of prototypical linear elliptic partial dif-
ferential operators A(ω) = − div(A(ω)∇•) and a given deterministic right-hand
side f , we consider the family of solutions u(ω) := A(ω)−1f with events ω ∈ Ω in
some probability space Ω. We define the harmonically averaged operator

A :=
(
E[A(ω)−1]

)−1

.

The idea behind this definition is that E(u) satisfies E[u] = A−1f . In this sense,
A may be understood as a stochastically homogenized operator and A−1 is the
effective solution operator. Note that this definition does not rely on probabilistic
structures of the random diffusion coefficient A such as stationarity, ergodicity
or any characteristic length of correlation. However, we shall emphasize that A
does not coincide with the partial differential operator that would result from the
standard theory of stochastic homogenization (under stationarity and ergodicity).
Recent work on discrete random problems on Z

d with iid edge conductivies indi-
cates that A is rather a non-local integral operator [1]. Our paper [2] shows that,
even in the more general PDE setup without any assumptions on the distribution
of the random coefficient, the expected solution operator A−1 can be represented
accurately by a sparse matrices Rδ in the sense that

‖A−1 −Rδ‖L2(D)→L2(D) ≤ δ

for any δ > 0 while the number of non-zero entries of Rδ scales like δ−d up to
logarithmic-in-δ terms.

The sparse matrix representation of A−1 is based on multiresolution decom-
positions of the energy space in the spirit of numerical homogenization by local-
ized orthogonal decomposition (LOD) [4, 6, 3] and, in particular, its multi-scale
generalization that is popularized under the name gamblets [5]. The gamblet
decomposition of [5] is slightly modified by linking it to classical Haar wavelets
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via L2-orthogonal projections and conversely by corrections involving the solu-
tion operator. The resulting problem-dependent multiresolution decompositions
block-diagonalize the random operator A for any event in the probability space.
The block-diagonal representations (with sparse blocks) are well conditioned and,
hence, easily inverted to high accuracy using a few steps of standard linear itera-
tive solvers. The sparsity of the inverted blocks is preserved to the degree that it
deteriorates only logarithmically with higher accuracy.

While the sparsity pattern of the inverted block-diagonal operator is indepen-
dent of the stochastic parameter and, hence, not affected when taking the ex-
pectation (or any sample mean) the resulting object cannot be interpreted in a
known basis. This issue is circumvented by reinterpreting the approximate inverse
stiffness matrices in terms of the deterministic Haar basis before stochastic av-
eraging. This leads to an accurate representation of A−1 in terms of piecewise
constant functions. Sparsity is not directly preserved by this transformation but
can be retained by some appropriate hyperbolic cross truncation which is justified
by scaling properties of the multiresolution decomposition.

Apart from the mathematical question of sparse approximability of the expected
operator, the above construction leads to a computationally efficient method for
approximating A−1 when combined with any sampling approach for the approxi-
mation of the expectation.

For details we refer to [2].
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Robust discretization of the Reissner–Mindlin plate with Taylor–Hood
FEM

Mira Schedensack

(joint work with D. Gallistl)

The Reissner-Mindlin plate model for a moderately thick plate covering the domain
Ω ⊆ R

2 under a load f ∈ L2(Ω) seeks a displacement u ∈ H1
0 (Ω) and a rotation

φ ∈ Φ := H1
0 (Ω;R

2) with

(1) a(φ, ψ)+ t−2(∇w−φ,∇v−ψ)L2(Ω) = (f, v)L2(Ω) for all (v, ψ) ∈ H1
0 (Ω)×Φ.

Here, a(·, ·) is a coercive and continuous bilinear form on Φ, and the thickness t
is rescaled by certain material constants. The phenomenon that low-order finite
element methods behave poorly for this model when t is small compared to the
mesh size, is known as shear locking.

Under the assumption that some η ∈ H(div,Ω) with − div η = f is known,
problem (1) can be reformulated in terms of the gradient, i.e., ∇w (and corre-
spondingly ∇v can be replaced by σ ∈ Z := ∇H1

0 (Ω). Furthermore, Z can be
characterized via the Helmholtz decomposition as

Z = {σ ∈ [L2(Ω)]2 | ∀q ∈ (H1(Ω) ∩ L2
0(Ω)) : (σ,Curl q)L2(Ω) = 0}.

Here, the operator Curl is defined as Curl v := (−∂2v, ∂1v)⊤. The work [4] mimics
this relation in the discretization, i.e, the discretization of Φ and Z is defined by

Φh := [Pk+2(T ) ∩H1
0 (Ω)]

2, Xh := [Pk(T )]2, Qh := Pk+1(T ) ∩H1(Ω) ∩ L2
0(Ω),

Zh := {σh ∈ Xh | ∀qh ∈ Qh : (σh,Curl qh)L2(Ω) = 0}.

Note that Zh 6⊆ Z leads to a nonconforming method. The discrete approximations
σh and φh of ∇w and φ are then defined by

a(φh, ψh) + t−2(σh −Πkφh, τh −Πkψh)L2(Ω) = (η, τh)L2(Ω)

with L2 projection Πk onto Pk(T ).
The definition of Zh directly implies the discrete Helmholtz decompositionXh =

Zh ⊕ CurlQh. With this the discrete problem can be reformulated into a mixed
system similar to [1], which then (together with the inf-sup condition of the Taylor–
Hood pair (Φh, Qh) [2]) leads to a quasi-optimal error estimate simultaneously in
all variables. In this error estimate the error in φ is measured in the H1 norm
and the error of σ := ∇w is measured in the L2 norm. However, in those norms,
the discretization spaces Φh and Xh are not balanced and this would lead to a
suboptimal predicted convergence rate of φ. The results of [4] prove that this error
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estimate is indeed not sharp in the sense that the error in φ can be bounded by

|φ− φh|H1(Ω) ≤ C

(
inf

ψh∈Φh

|φ− ψh|H1(Ω)

+min
{

inf
βh∈Qh

(
‖α− βh‖L2(Ω) + t |α− βh|H1(Ω)

)
,

hs inf
sh∈Qh

|p− sh|H1(Ω) + hs inf
δh∈Qh

|γ − δh|H1(Ω) + h‖η −Πkη‖L2(Ω)

})
,

where s denotes the elliptic regularity constant from the Poisson-Neumann prob-
lem. If all variables are smooth, the first term in the minimum converges with
rate hk+2 + thk+1, while in the asymptotic regime h ≤ t, the second term in the
minimum converges as hk+1+s.

The proposed method is related to those introduced in [1, 3] with the difference
that in those works (Φh, Qh) is discretized with a (generalization of) the Mini
finite element pair.
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DPG for plate problems — traces

Norbert Heuer

(joint work with Thomas Führer, Alexander Haberl, Antti H. Niemi)

The discontinuous Petrov–Galerkin method with optimal test functions (DPG
method) is a family of schemes that combine the use of product test spaces with
so-called optimal test functions to automatically satisfy the discrete inf-sup con-
dition. In this form it has been proposed by Demkowicz and Gopalakrishnan [1],
initially for transport problems. Further advantages of the DPG method are that
linear systems have symmetric positive definite matrices, and that it has a built-in
a posteriori error estimator.
Practical and theoretical reasons suggest to base DPG approximations on ultra-
weak variational formulations. In this case, field variables are considered L2-
variables so that test functions carry all the appearing derivatives. Transferring
derivatives to test functions by integrating by parts, this gives rise to trace terms
and thus, trace operators. In the ultraweak case, trace operators carry all the
regularity weight of the problem. They have to be defined in appropriate domain
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spaces with corresponding images. Furthermore, whereas discretizations of L2-
field variables are straightforward to implement, discretizations of trace variables
are more involved, particularly for problems of higher order.
We discuss strategies and arising difficulties in the case of second and fourth-order
operators, specifically for plate problems. Already for the Poisson problem, trace
variables live in product spaces, having one component for each element of the
mesh. This is due to the fact that test functions are taking from corresponding
mesh-related product spaces. There are two natural norms for theses traces, one
of quotient space type related to taking traces, and a second one stemming from
the duality pairing with test functions of product spaces. It is critical for the
DPG analysis (well-posedness and quasi-optimal convergence) that both norms be
equivalent.
We motivate the study of trace operators by considering the biharmonic problem.
Introducing two variables (the deflection and its Laplacian), an ultraweak formula-
tion generates two trace variables stemming from formally identical integrations by
parts. In fact, there are four different possibilities to define related trace operators.
We illustrate the effect of different selections with numerical experiments.
As a second problem we consider the Kirchhoff–Love plate bending model with the
deflection, rotation (gradient of the deflection) and bending moments as unknowns
[2, 3]. In this case, the deflection becomes an L2-variable by twice integrating by
parts. Therefore, the resulting trace operation produces two components. It turns
out that in general, these components are not independent. We discuss the exact
meaning of this fact, and how the operator can be defined in a well-posed way.
Afterwards, we discuss a conforming approximation of this trace variable. In order
to be able to use local basis functions (associated with edges and vertices of the
mesh) one has to consider a dense subspace of higher regularity. This is similar
to the Raviart–Thomas interpolation and the space H(div, T ) (with element T )
where normal boundary traces are usually assumed to be L2-regular, generating a
dense subspace H(div, T ) ⊂ H(div, T ).
As main results we present a well-posed ultraweak formulation of the Kirchhoff–
Love model and a quasi-optimally converging fully-discrete DPG scheme. Numeri-
cal results confirm expected convergence rates both for quasi-uniform and adaptive
mesh refinements.
As a conclusion of the discussion of trace operators in the ultraweak setting we
stress the following facts: (i) The regularity of the problem is passed onto the trace
variables. (ii) The selections of the domain and test spaces for a trace operator
are not necessarily unique but critical for the well-posedness of the formulation.
(iii) A stable approximation of trace variables requires to identify components of
trace variables that can be separated in a stable way. (iv) In comparison with field
variables of corresponding regularity, trace variables are easier to discretize in a
conforming way.
Support by CONICYT through FONDECYT projects 1150056 and 11170050 is
gratefully acknowledged.
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Hybridizable discontinuous Galerkin formulations with
strongly-enforced symmetry of the stress tensor

Antonio Huerta

(joint work with Matteo Giacomini, Ruben Sevilla)

The difficulty of discretizing symmetric second-order tensors in the framework of
mixed finite element methods has represented a major limitation to the application
of these techniques to engineering problems in computational fluid dynamics and
computational solid mechanics for the last 40 years. Owing to its mixed method
nature, the hybridizable discontinuous Galerkin (HDG) method is not immune to
these issues. A novel HDG formulation exploiting Voigt notation to strongly en-
force the symmetry of second-order tensors, by storing solely their non-redundant
components, is discussed. When equal polynomials approximations of degree k are
used of the primal, u, mixed, L, and hybrid, û, variables, optimal convergence of
order k+1 is obtained. In particular, this optimal converge of the approximated
strain rate tensor Lh≈−(∇u +∇uT )/2, being u velocity/displacement field al-
lows to obtain a superconvergent approximation u⋆. Namely, for each element
Ωe, e = 1, . . . , nel by solve

{
∇·
(
∇

Su⋆e) = −∇·Lhe in Ωe,

ne·∇Su⋆e = −ne·Lhe on ∂Ωe,

in the space of polynomials of complete degree at most k+1 in each element Ωe.
In order for u⋆ to be well-defined, the proposed novel post-processing procedure
accounts for both translational and rotational rigid-body motions by means of
additional solvability constraints, namely,

∫

Ωe

u⋆e dΩ =

∫

Ωe

uhe dΩ, and

∫

Ωe

∇×u⋆e dΩ =

∮

∂Ωe

û
h·τe dΓ.

Numerical evidence of optimal convergence and superconvergence in 2D and 3D
and for different mesh elements has been provided for both incompressible flow
and linear elasticity problems. In the latter, locking-free results are also obtained.
Finally, note that also for k = 0 optimal convergence is obtained for the primal,
mixed, and hybrid variables.
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Trace Theorems for the Exact Sequence Energy Spaces and
Polyhedral Domains

Leszek F. Demkowicz

(joint work with Federico Fuentes)

The presentation was concerned with the classical subject of proving Trace Theo-
rem for the exact sequence energy spaces.

Theorem 1
Let s ∈ (− 1

2 ,
1
2 ) and let Ω ⊂ R

3 be a piece-wise smooth (polyhedral) domain with
boundary Γ. There exist three continuous trace operators mapping the differential
complex of energy spaces onto the corresponding trace energy spaces defined on the
boundary, and forming a 2D differential complex, with the following commuting
diagram.

Hs+1(Ω)
∇−→ Hs(curl,Ω)

∇×−→ Hs(div,Ω)

↓ γ ↓ γt ↓ γn

Hs+ 1
2 (Γ)

∇Γ−→ Hs− 1
2 (curlΓ,Γ)

curlΓ−→ Hs− 1
2 (Γ)

Contrary to the original results of A. Buffa, P. Ciarlet, M. Costabel and D.
Sheen, [1, 2], construction of the traces follows the classical approach based on the
three steps: a) trace theorems for a half-space. b) trace theorems for a hypograph
domain. c) trace theorems for a general piece-wise smooth (polyhedral) domain
(partition of unity argument).

The ǫ-novelty of the presented results include:

• a unified presentation for the range s ∈ (− 1
2 ,

1
2 including density results,

• discussion of minimum-energy extension norms, and
• proofs based on the so-called Duality Lemma [3] based on the following
elementary observation.
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Consider the PDEs resulting from the minimum-energy extension problem for the
exact energy spaces:

grad extension:

(1) ∇ · (∇u) + u = 0 ,

curl extension:

(2) ∇× (∇× E) + E = 0 ,

div extension:

(3) ∇(∇ · v) + v = 0 .

If u solves (1) then ∇u solves (3). Conversely, if v solves (3) then ∇ · v solves (1).
In the same way, if E solves (2) then so does ∇×E. Moreover, Dirichlet problems
are turned into Neumann problems and vice versa.

It turns out that these simple relations allow for (in our opinion) simplified
proofs of major results on the subject. For a complete presentation and details,
see [4].
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Rayleigh–Ritz approximation of the inf-sup constant for the
divergence

Dietmar Gallistl

Let Ω ⊆ R
n, n ≥ 2, be a bounded Lipschitz polytope and let V := H1

0 (Ω;R
n)

denote the space of L2 vector fields over Ω with generalized first derivatives in
L2(Ω) and vanishing trace on the boundary, and let Q := L2

0(Ω) denote the space of
L2 functions with vanishing average over Ω. It is known [1, 3] that the divergence
operator div : V → Q possesses a continuous right-inverse, i.e., there exists a
positive constant β such that for any q ∈ Q there exists some v ∈ V with div v = q
and β‖Dv‖ ≤ ‖q‖ (here ‖ · ‖ is the L2(Ω) norm). The largest number β with this
property is characterized by

β = inf
q∈Q\{0}

sup
v∈V \{0}

(q, div v)L2(Ω)

‖q‖‖Dv‖ .
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The numerical approximation of β with stable standard finite element pairings is
problematic because convergence cannot be guaranteed in general [2]. Since, with
the space of velocity gradients Γ := DV , the constant β can be rewritten as

β = inf
q∈Q\{0}

sup
γ∈Γ\{0}

(q, tr γ)L2(Ω)

‖q‖‖γ‖ ,

numerical schemes that directly approximate the space Γ are applicable. The
classical Helmholtz decomposition [with ⊥ denoting L2 orthogonality in Σ :=
L2(Ω;Rn×n)] reads

Γ := Z⊥, with Z := [H(div0,Ω)]n = {σ ∈ Σ : all rows of σ are divergence-free}.
The work [5] proposed a discrete analogue in Σh := Pk(Th;Rn×n), the space of
piecewise polynomial (of degree ≤ k) tensor fields with respect to a simplicial
triangulation Th of Ω, as follows

Γh := Z⊥
h , with Zh := (RT k(Th)n ∩ Z) ⊆ (Z ∩ Σh),

where ⊥ denotes L2 orthogonality in Σh and RTk(Th)n denotes the subspace of Σ
whose rows belong to the Raviart–Thomas finite element space. of degree k. The
property Zh ⊆ Σh is well known. One should note that in general Γh 6⊆ Γ.

LetQh denote the subspace ofQ consisting of Th-piecewise polynomial functions
of degree ≤ k. The approximation βh is defined as

βh = inf
qh∈Qh\{0}

sup
γh∈Γh\{0}

(qh, tr γh)L2(Ω)

‖qh‖‖γh‖
.

For the convergence analysis, the following equivalent formulation of the prob-
lem turns out useful. It is well known [2] that

(1) β2 = inf
v 6=0

‖div v‖2
‖Dv‖2

where the infimum is taken over the V -orthogonal complement (that is, with re-
spect to the inner product (D·, D·)L2(Ω)) of the divergence-free functions in V .

Theorem [4]. Let (Th)h be a sequence of nested partitions such that the mesh
size function h uniformly converges to zero. Then the sequence (βh)h converges
monotonically from above towards the inf-sup constant β, i.e.,

βh ց β under mesh refinement.

Provided that the square of the inf-sup constant β2 is an eigenvalue of (1) with
normalized eigenfunction u ∈ H1+s(Ω;Rn) for some 0 < s <∞, then for small h
the following error bound holds

β2
h − β2

β2
≤ C‖h‖2rL∞(Ω)‖u‖2H1+s(Ω)

for the rate r := min{k + 1, s} and some mesh-size independent constant C > 0.
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Finite element methods for nonsmooth problems and application to a
problem in optimal insulation

Sören Bartels

Given a hot metal ball and a small amount of insulation material how should
one arrange an insulating film on the surface of the ball so that the heat inside
the ball is conserved as long as possible? This question can be reformulated as a
minimization of the principal eigenvalue of the partial differential operator related
to the Laplace operator with Robin-type boundary condition, i.e., the operator Aℓ

related to the boundary value problem

−∆u = f in Ω, ℓ ∂nu+ u = 0 on ∂Ω.

Here, ℓ : ∂Ω → [0,∞) is a function that defines the thickness of the insulating
film. The eigenvalue λm is determined by minimizing a Rayleigh quotient, i.e.,

λℓ = min
‖u‖L2(Ω)=1

‖∇u‖2 +
∫

∂Ω

ℓ−1u2 ds.

Minimizing the eigenvalue over insulating films ℓ of fixed total mass m > 0 leads
after an exchange of the order of minimization and elimination of ℓ to the nonlinear
eigenvalue problem

λm = min
‖ℓ‖L1(∂Ω)=m

λℓ = min
‖u‖L2(Ω)=1

‖∇u‖2 +m−1
( ∫

∂Ω

|u| ds
)2
.

For an optimal nonnegative eigenfunction um the optimal insulating film is pro-
portional to the trace of u, i.e., ℓ(s) = mum(s)/‖um‖L1(∂Ω). By comparing the
eigenvalue λm to the smallest nontrivial Dirichlet and Neumann eigenvalues of the
Laplace operator one observes a surprising break of symmetry.

Theorem ([3]). Let Ω = Br(0) be a ball of radius r > 0. There exists a constant
m0 > 0 such that for every 0 < m < m0 eigenfunctions um are nonradial. In
particular, corresponding optimal films have gaps, i.e., the zero set of every optimal
film ℓ has positive Hausdorff measure on ∂Ω.

The proof of this result is nonconstructive and does not provide information
about the geometry and regularity of the insulating film ℓ. To reliably approximate
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optimal films we numerically solve the nonsmooth eigenvalue problem defining
λm. For this, we apply techniques recently developed for the approximation of
nonsmooth variational problems, in particular for problems involving the total
variation. An important model problem is the related gradient or subdifferential
flow which is formally given by

∂tu = div
∇u
|∇u| , u(0) = u0.

A natural discretization uses the backward difference quotient operator dta
k =

(ak − ak−1)/τ for a step-size τ > 0, a regularization of the modulus and a semi-
implicit treatment of the nonlinear term, i.e., we compute a sequence (uk)k=0,1,... ⊂
H1(Ω) via the recursion

dtu
k = div

∇uk
|∇uk−1|ε

.

Here, e.g., |a|ε = (a2+ ε2)1/2 for some ε > 0. A recent result in [2] shows that this
iteration is unconditionally energy stable in the sense that

TVε(u
K) + τ

K∑

k=1

‖dtuk‖2L2(Ω) ≤ TVε(u
0), TVε(u) =

∫

Ω

|∇u|εdx.

holds for all K ≥ 0. This unexpected result is a consequence of certain delay prop-
erties of discrete quotient and product rules, e.g., dt(1/ck) = −dtck/(ck−1ck). The
regularization and the semi-implicit treatment do not lead to stability restrictions
but affect the approximation properties, we refer the reader to [2] for details.

We also use a gradient flow to determine the eigenvalue λm, i.e., using the L2

scalar product (·, ·) we define a sequence of functions (uk)k=0,1,... ⊂ H1(Ω) via

(dtu
k, v) + (∇uk,∇v) +m−1‖uk−1‖L1(∂Ω)

∫

∂Ω

ukv

|uk−1|ε
ds = 0

for all v ∈ H1(Ω) subject to the linearized normalization conditions (dtu
k, uk−1) =

0 and (v, uk−1) = 0. The iteration is stable under mild conditions and provides
accurate approximations of λm, see [1]. Numerical experiments reported therein
show that optimal insulating films are continuous leaving a gap on one side of a
ball and have maximal thickness on the opposite side.
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Efficient spectral methods for nonlinear Hamiltonian systems

Zhimin Zhang

(joint work with Jing An, Waixiang Cao)

Hamiltonian dynamical systems have applications in classical mechanics, molecular
dynamics, hydrodynamics, electrodynamics, plasma physics, relativity, astronomy,
and other scientific fields [16, 17]. However, for most nonlinear Hamiltonian sys-
tems, it is impossible to find exact solutions and efficient numerical methods are
desired. On the other hand, a Hamiltonian system has some remarkable properties,
most important among which are its symplectic structure and energy preservation.
A good numerical scheme should be able to mimic as many of these physical prop-
erties as possible.

The symplectic geometry algorithm that maintains the symplectic structure for
Hamiltonian systems appeared in literature as early as 1984 by Feng [6]. Since then
symplectic algorithms have been intensively studied. We refer to [7, 8, 9, 10, 14, 20]
for an incomplete list of references. However, none of the symplectic algorithms
are energy-preserving. In fact, it was proved in [5, 24] that there exists no energy-
preserving symplectic algorithm for general nonlinear Hamiltonian systems. On
the other hand, it is well known that Galerkin-type methods such as finite element
methods preserve energy. Then we face a dilemma and have to choose between
preserving energy and preserving symplectic structure. Many scholars pointed out
that preserving energy may be more important than the symplectic structure for
highly oscillatory problems [14, 22, 2, 19].

In the last decade, much insight into the properties of energy conservation for
Hamiltonian systems has also been gained. In [23], Chen et al. used finite ele-
ment methods to solve ordinary differential equations and proved that the linear
element was a second-order pseudo-symplectic scheme, the quadratic element was
a third-order pseudo-symplectic scheme, respectively, and both linear and qua-
dratic elements preserved energy. However, to predict orbital evolution, linear
and quadratic finite elements require a tremendous amount of computation, and
accumulation of round-off errors will be eventually dominant. Other numerical
methods have been proposed in the literature to study the long-time energy con-
servation. In [1], Cohen used a modulated Fourier expansion to show long-time
near-conservation of the total and oscillatory energies for Hamiltonian systems
with highly oscillatory solutions. In a more recent work [13], Hairer and Lubich
studied the long-time behavior of the Störmer-Verlet-leapfrog method for highly
oscillatory Hamiltonian systems with a slowly varying, solution-dependent high
frequency, and proved that the proposed method conserved approximately a mod-
ified total energy over a long time interval. We also refer to [3, 12] for some more
works in this direction. In the spirit of high-order methods, Kanyamee and Zhang
[18], Huang and Zhang [15] proposed algorithms based upon the spectral collo-
cation method to preserve both energy and volume (symplectic structure) up to
numerically negligible errors. Numerical evidence demonstrated their algorithms
are energy and volume preserving in practice. This approach, although is lack of
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theoretical analysis, works well for some problems, especially in simulating long
time behavior. The drawback is that the differential matrices are usually full and
the condition number of the stiffness matrix increases dramatically with increasing
polynomial degrees. Large condition numbers lead to instability of the algorithm
in some situations, e.g., the calculation of many-body problems.

The main purpose of the current work is to present and study a class of ef-
ficient high accuracy polynomial spectral methods that preserve the energy and
symplectic structure simultaneously in practice (with numerically neglectable er-
rors) for nonlinear Hamiltonian systems. By “spectral” we mean the convergence
is achieved by increasing polynomial degrees rather than decreasing the step-size
in time (as most of ODE and Hamiltonian solvers in the literature). Different
from earlier works [18] and [15] in this direction, we provide rigorous mathemat-
ical analysis to show the high-order accuracy (actually spectral accuracy under
reasonable assumptions) of these spectral methods, as well as energy and sym-
plectic structure conservation. To be more precise, we present three polynomial
spectral methods: spectral Petrov-Galerkin method (which is not discussed in the
literature for Hamiltonian systems), spectral Gauss collocation method (which has
been used before), and spectral Galerkin method, and prove that they share the
same property of high-order (spectral) rate of convergence and are capable of long
time simulation. Furthermore, we investigate properties of symplectic structure
and energy conservation for the three numerical methods and establish theoretical
results including:

(1) The Petrov-Galerkin method preserves the energy exactly and spectral
Galerkin method is energy conserving up to spectral accuracy.

(2) Both spectral Galerkin and Petrov-Galerkin methods are symplectic up to
spectral accuracy.

(3) Both spectral Galerkin and Petrov-Galerkin methods converge with expo-
nential rate under analytic regularity assumption, which most Hamiltonian system
satisfy.

In other words, our methods not only preserve the energy, but also preserve sym-
plectic structure with numerically negligible error in practice, due to the spectral
accuracy. We observe (theoretically and numerically) that the proposed spectral
methods have many desirable properties and are more efficient than existing sym-
plectic methods and low-order finite element methods. Moreover, the stiff matrices
of Petrov-Galerkin and spectral Galerkin methods are both sparse and hence well
conditioned. In order to overcome the large condition number problem of the
spectral Gauss collocation method [18], we propose a preconditioning technique,
which yields a sparse and well conditioned stiff matrix.

We would like to indicate that the Gauss collocation method is a well-known
symplectic scheme (see, e.g., [14]) and the spectral Gauss collocation method has
been used to solve some ordinary differential equations (see, e.g., [11]) and its
conservation of energy up to a numerical quadrature error was mentioned in [18].
However, we have not found any rigorous mathematical proof of energy conserva-
tion property for spectral Gauss collocation methods when applied to Hamiltonian
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systems. Furthermore, to the best of our knowledge, there is no any study of sym-
plectic and energy conservation for the Petrov-Galerkin method in this context,
and therefore, our spectral Petrov-Galerkin method is a new method for solving
Hamiltonian dynamical systems.

In numerical simulation, we separate the gradient of the Hamiltonian to linear
and nonlinear parts, and use implicit scheme for the linear part and explicit scheme
for the non-linear part. Numerical test data demonstrate that this approach works
very efficiently and the time accumulation of the error is linear. Comparing with
existing symplectic methods and low-order Galerkin methods, our theoretical and
numerical results have demonstrated that spectral methods have some desirable
properties and advantages.

1. They are high-order methods with spectral accuracy and hence require
less CPU time than traditional methods to achieve the same accuracy.

2. They preserve energy and symplectic structure in practice for some rea-
sonable polynomial degree N .

3. They predict more accurate trajectories in long-time.

The ability to simulate long-time behavior of Hamiltonian systems makes the
three spectral methods more appealing for solving partial different equations with
high-order derivatives.
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Weakly symmetric stress methods for elasto-plasticity

Gerhard Starke

The extension of stress-based mixed finite element methods based on the Hellinger-
Reissner variational principle to elasto-plastic deformations is investigated in this
contribution. Historically, the treatment of elasto-plasticity was one of the moti-
vations for the use of stress-based methods as can be read in one the earliest such
contributions [ABD84]: “the elimination of the stresses from the equilibrium and
constitutive equations of a material exhibiting plastic behaviour is difficult; conse-
quently, only a mixed formulation is feasible.” Our aim is to use weakly symmetric
stress approximations, in particular, starting from the finite element combination
by Boffi, Brezzi and Fortin [BBF09]. For the problem of linear elasticity, this
method consists in finding σh ∈ Σh, uh ∈ Vh and ρh ∈ Rh such that

(A(σN + σh), τ h) + (uh, div τh) + (ρh, as τ h) = 0 ,

(div (σN + σh) + f ,vh) = 0 ,

(as (σN + σh), θh) = 0

(1)

holds for all τ h ∈ Σh, vh ∈ Vh and ρh ∈ Rh holds. The finite element spaces
Σh ∈ HΓN

(div,Ω)d, Vh ∈ L2(Ω)d, Rh ∈ L2(Ω)d×d,as may be chosen as next-to-
lowest order Raviart-Thomas elements (RT d1 ), piecewise linear functions (DP d1 ),
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and skew-symmetric matrices with piecewise linear continuous entries (P d×d,as1 ).
Here, A represents the stress-to-strain map from linear elasticity given by

Aτ =
1

2µ

(
τ − λ

3λ+ 2µ
(tr τ )I

)

with Lamé parameters λ, µ. The surface tractions prescribed on ΓN are built into
σN ∈ H(div,Ω) and volume forces are given by f .

For the treatment of elasto-plastic material behaviour based on a von Mises flow
rule, the stresses are restricted further by the inequality constraint |dev σh| ≤ κ,
for the deviatoric, i.e., trace-free, stress component. It is also a time-dependent,
although quasi-static, problem which is realized, for example, by a steady increase
of the surface traction σN (t) · n = ℓ(t) on ΓN . The (discrete) admissible set of
stresses is therefore given by

Kℓ(t) ={σh ∈ σN (t) +Σh : (div σh + f ,vh) = 0 for all vh ∈ Vh ,

(as σh, θh) = 0 for all θh ∈ Rh , (|dev σh| − κ, ωh) ≤ 0 for all ωh ∈ X+
h }

for some appropriate subset of nonnegative functions X+
h of some finite element

space. The saddle-point problem (1) is replaced by the time-dependent variational
inequality of finding σh(t) ∈ Kℓ(t) such that

(Aσ̇h(t), τ h − σh) ≥ 0 holds for all τh ∈ K0

(cf. [HR13, Sect. 8.1]). The incremental formulation determines, based on the
approximation σold from the previous time-step, σh(t) ∈ Kℓ(t) such that

(2) (A(σh(t)− σold), τh − σh) ≥ 0 holds for all τh ∈ K0 .

We treat this variational inequality by a semi-smooth Newton method which re-
sults in a primal-dual active set strategy (cf. [HIK03]) and investigate the resulting
linearized problems for inf-sup stability. In the perfectly plastic case (κ constant)
in two space dimensions, it turns out that the stress space Σh needs to be aug-
mented with non-conforming bubbles of the form ∇

⊥Bnc
3 , where Bnc

3 denotes the
space of (component-wise) piecewise cubic functions such that 〈b,q〉E = 0 for all
q ∈ P1(E)2 on all edges E of the triangulation. This results in a non-symmetric
version of the symmetric stress space studied in [GG11]. In the case of elasto-
plasticity with hardening, the original stress-space from the linear elasticity case
can be used.
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Tangential Displacement Normal Normal Stress (TDNNS) Continuous
Mixed Finite Elements - New Estimates and Applications in

Nonlinear Elasticity

Joachim Schöberl

The TDNNS mixed finite element methods uses tangentially continuous Ned-
elec finite elements for the displacement variable, and normal-normal continuous
symmetric-matrix valued finite elements for the stress variable. The proper spaces

for such elements are H(curl) and H(div div) = {σ ∈ Ld×d,sym2 : div div ∈ H−1}.
We present new estimates in discrete norms mimicking this spaces. We discuss a
corresponding discretization for Reissner Mindlin plate models. As the thickness-
parameter t tends to 0, the finite element solution converges to the solution ob-
tained by the classical Hellan-Hermann-Johnson method.

We present the extension to geometrically non-linear shells, and to elastodynam-
ics. Here, the displacement is discretized in (H1)d, but the velocity in H(curl).

Toward Predictive Models of Tumor Growth

J. Tinsley Oden

(joint work with Ernesto A. B. F. Lima, Barbara Wolhmuth, Marvin Fritz, Alican
Ozkan, Neda Ghousifam , Nichole Rylander, Tom Yankeelov, and David Fuentes)

This talk begins with a brief review of the conceptual, mathematical, and statisti-
cal properties of models necessary for meaningful prediction of physical events in
the presence of uncertainties. A Bayesian framework for model calibration, selec-
tion, and validation is described that is implemented using the OPAL algorithm,
described in previous work.

The microenvironment of multicell tumors at the tissue scale is described with
reference to various key cell types, extra-cellular matrix, matrix-degenerative en-
zymes and other constituents. A general model of such systems based on contin-
uum mixture theory and the Weinberg-Hanahan hallmarks of cancers is presented.
Principal unknowns are the volume fractions of cell species. Constitutive equa-
tions governing mass flux, mass sources, mechanical deformation and velocity are
presented, the latter following a Darcy-Forchheimer-Brinkman law. By introduc-
ing a general form of the Ginsberg-Landau energy involving volume fractions of
multiple cell species and their gradients, a large family of models of tumor growth
is obtained, including reaction-diffusion and phase-field models with and without
mechanical deformations. In addition, three models of radiation therapy are in-
troduced. In total, 39 possible tumor growth models are generated within this
framework, all with multiple non-deterministic parameters.
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Applications of the OPAL algorithm for model section, calibration, and val-
idation are described for laboratory tests with murine models (laboratory rats)
injected with glioma cancer cells, with data on the subsequent growth of cancer
maintained by MRI images collected every two days over a 20-24-day period with
radiation applied around two weeks in the experiments. It is demonstrated that
the most plausible valid tumor growth models among this class of models can be
identified for given accuracy tolerances and that quite accurate predictions of tu-
mor volume or mass can be obtained by the models passing the OPAL criteria for
predictability.

Other in vitro experiments for model calibration are mentioned that involve
carefully orchestrated tests of liver cell lines growing in specifically-designed lab-
oratory environments. This data is used to calibrate phase-field models of tumor
growth. Validation tests on liver cancer using data obtained at M.D. Anderson
Cancer Center are planned for future work on these classes of models.

Discontinuous Skeletal Methods for the Obstacle Problem

Thirupathi Gudi

(joint work with Alexandre Ern, Matteo Cicuttin)

Let Ω ⊂ R
d(2 ≤ d ≤ 3) be a bounded polyhedral domain with boundary ∂Ω.

Suppose that f ∈ L2(Ω), χ ∈ H1(Ω) ∩ C(Ω̄) and g ∈ H1/2(∂Ω) are given such
that χ ≤ g on ∂Ω. Define K := {v ∈ H1(Ω) : v ≥ χ a.e. in Ω, v = g}. The elliptic
obstacle problem is to find u ∈ K such that

(∇u,∇(v − v)) ≥ (f, v − u) ∀v ∈ K,

where (·, ·) denotes the L2(Ω) inner-product for both scalar and vector valued
functions. Let Th denote the partition of Ω into polyhedral meshes with matching
interfaces. The set of cell interfaces in Th is denoted by Fh. Let k ∈ {0, 1}. The
global discrete space is defined by

Ukh :=
(
×T∈Th

P
0
d(T )

)
×
(
×F∈Fh

P
k
d−1(F )

)
.

For all T ∈ Th, we define the local space UkT := P
0
d(T )×

(
×F∈FT

P
k
d−1(F )

)
, here

FT denotes the set of all faces on ∂T . We define the local reconstruction operator
pk+1
T : UkT → P

k+1
d (T ) so that, for all vh = (vT , v∂T ) ∈ UkT ,

(∇pk+1
T (vh),∇w)T = (∇vT ,∇w)T + (v∂T − vT ,∇w · nT )∂T ∀w ∈ P

k+1
d (T ),

(pk+1
T (vh), 1)T = (vT , 1)T .

Let π0
T be the L2-projection onto P

0
d(T ) and let πk∂T be the L2-projection onto

P
k
d−1(∂T ). We define the local stabilization operator Sk∂T : UkT → P

k
d−1(∂T ) such

that, for all vh = (vT , v∂T ) ∈ UkT , we have

Sk∂T (vh) := πk∂T
(
v∂T − pk+1

T (vh)
)
− π0

T

(
vT − pk+1

T (vh)
)
|∂T

.



Computational Engineering 2887

We define the local discrete bilinear form aT : UkT × UkT → R by

aT (wh, vh) := (∇pk+1
T (wh),∇pk+1

T (vh))T + (η∂TS
k
∂T (wh), S

k
∂T (vh))∂T ,

with the piecewise constant weight η∂T defined on ∂T such that η∂T |F = h−1
F for

all F ∈ FT . The global discrete bilinear form ah on Ukh × Ukh is defined by

ah(wh, vh) :=
∑

T∈Th

aT (wh, vh) +
∑

F∈Fb
h

aF b(wT (F ), vT (F )),

with the Nitsche-type boundary penalty bilinear form

aF b(wT (F ), vT (F )) := −(∇pk+1
T (F )(wT (F )) · nΩ, vF )F − (wF ,∇pk+1

T (F )(vT (F )) · nΩ)F

+ ςh−1
F (wF , vF )F ,

where ς > 0 is the boundary penalty parameter and nΩ is the unit outward normal
to Ω. Here Fb denotes the set of faces on ∂Ω and for F ∈ Fb, T (F ) is the cell
sharing the face F . The linear form ℓh on Ukh is defined by

ℓh(vh) :=
∑

T∈Th

(f, vT )T − (g,∇pk+1
T (F )(vT (F )) · nΩ)F + ςh−1

F (g, vF )F .

The discrete admissible set Kkh is defined by

Kkh :=
{
vh ∈ Ukh : (vT , 1)T ≥ (χ, 1)T , ∀T ∈ Th

}
.

The discrete elliptic obstacle problem consists of finding uh ∈ Kkh such that

ah(uh, vh − uh) ≥ ℓh(vh − uh) ∀vh ∈ Kkh.
The following theorem establishes energy norm error estimates of order 1 for k = 0,
and of order 3/2− ǫ for k = 1.
Theorem. If k = 1, let ǫ ∈ (0, 12 ], set r =

3
2 − ǫ, and assume that u ∈ H1+r(D) =

H
5
2−ǫ(D), (u−χ) ∈ W 2+ 1

p
− ǫ

2 ,p(D) with p = 2(d−1)
ǫ ∈ (1,∞), and λ := −f−∆u ∈

W 1−ǫ,1(D). If k = 0, set r = 1, let τ ∈ (0, 1), and assume that u ∈ H1+r(D) =
H2(D), (u − χ) ∈ W 2,p(D) with p = d

τ ∈ (1,∞), and λ := −f −∆u ∈ W τ,1(D).
Then, there is C, uniform with respect to h, such that the following holds true:
( ∑

T∈Th

‖∇(u− pk+1
T (uh))‖2T +

∑

F∈Fb
h

h−1
F ‖u− uF‖2F

) 1
2

≤ C
(
|u|H1+r(D) +Φu,λ

)
hr.

where

Φu,λ =




‖u− χ‖

1
2

W
2+ 1

p
−

ǫ
2
,p
(D)

|λ|
1
2

W 1−ǫ,1(D) if k = 1,

‖u− χ‖
1
2

W 2,p(D)|λ|
1
2

W τ,1(D) if k = 0.
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Hodge decomposition methods for electromagnetics

Li-yeng Sung

(joint work with S.C. Brenner, J. Cui, J. Gedicke, Z. Nan, J. Sun)

Let Ω ⊂ R
2 be a bounded polygonal domain. The Hodge decomposition (cf. [6])

of a vector field u ∈ H(div0; Ω) is given by

(1) u = curlφ+

m∑

j=1

cj gradϕj

where φ ∈ H1(Ω) has zero mean, m + 1 equals the number of the components
of ∂Ω, c1, . . . , cm are constants, and ϕ1, . . . , ϕm are harmonic functions such that
ϕi equals 1 on the i-th inner component of ∂Ω and vanishes at all the other
components of ∂Ω.

For the Maxwell equations with the perfectly conducting boundary condition

curl (curlu) + αu = f in Ω(2a)

divu = 0 in Ω(2b)

n× u = 0 on ∂Ω(2c)

where α is not a Maxwell eigenvalue, the idea of the Hodge decomposition approach
is to find u by obtaining the function φ and the coefficients c1, . . . , cm in (1).

First we find ξ = curlu ∈ H1(Ω) with zero mean that satisfies

(3) (curl ξ, curlψ) + α(ξ, ψ) = (f , curlψ) ∀ψ ∈ H1(Ω)

where (·, ·) is the inner product of L2(Ω). Then we determine φ ∈ H1(Ω) with
zero mean by

(4) (curlφ, curlψ) = (ξ, ψ) ∀ψ ∈ H1(Ω)

If Ω is not simply connected (and hence α 6= 0), we can find c1, . . . , cm by solving
the m×m system

(5)

m∑

j=1

(gradϕj , gradϕk)cj =
1

α
(f , gradϕk) for 1 ≤ k ≤ m

Finally we recover u through (1).
This procedure converts the boundary value problem (2) for the Maxwell equa-

tions into standard second order scalar elliptic boundary value problems (3)–(5)
that can be solved by many numerical schemes (cf. [1, 2]).

The Hodge decomposition approach can also be applied to the general time-
harmonic Maxwell equations

curl (µ−1curlu)− k2ǫu = f in Ω

div (ǫu) = 0 in Ω

with general boundary conditions (cf. [3, 4]).
Application of the Hodge decomposition approach to a boundary value problem

involving the operator curl4 can be found in [5].
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Surrogate model of a random two-phase material using Gaussian
Random Field of Matérn covariance

Barbara Wohlmuth

(joint work with J. Tinsley Oden, Ustim Khristenko)

We are interested in a fast technique for generating synthetic samples of a random
two-phase composite, given only a small number of original samples of the real
material (e.g. tomography image). For this purpose, we aim to construct an
appropriate surrogate model. We define our surrogate phase field as in [1, 2, 3]
through the level-cut of some intensity field u(x;ω):

χ(x;ω) =

{
1, if u(x;ω) ≥ τ, inclusions

0, if u(x;ω) < τ, matrix

ω ∈ Ω – a suitable sample space, where the level τ controls the volume fractions of
inclusions. We consider the intensity u(x) as a zero-mean Gaussian random field
with covariance of Matérn class, that is of the form

C(x, y) = σ2

2ν−1Γ(ν)
(
√
2ν r)ν Kν(

√
2ν r), r =

√
(x− y)Θ−1(x− y),

with unit standard deviation σ = 1, where Γ and Kν denote the Euler Gamma
function and the modified Bessel function of the second kind, respectively. The
scalar parameter ν > 0 defines differentiability (smoothness) of the field, while the
second order tensor Θ defines the shape of inclusions [5]. In particular, Θ = ℓ2 Id
corresponds to an isotropic covariance with correlation length ℓ.

It was shown in [4] that u(x;ω) solves a fractional SPDE in R
d, d ∈ N, namely,

(
Id− 1

2ν
∇ · (Θ∇)

) 1
2 (ν+

d
2 )

u(x;ω) = η Ẇ(x;ω),
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where Ẇ is a spacial white noise in R
d, and η is a normalization coefficient:

η2 =
(4π)

d
2 |Θ | 12 Γ(ν + d/2)

(2ν)
d
2 Γ(ν)

.

This equation is solved by using a Fast Fourier Transform on an extended do-
main [6], which leads to fast sampling of the phase field χ(x, ω).

Such a surrogate material is entirely described by the design parameters ν,
Θ and τ , which control smoothness, shape and volume fraction of inclusions,

respectively. In the isotropic case Θ = ℓ2 Id , a mapping from a real material to

the design parameter space (ν, ℓ, τ) can be constructed using the first two moments
of the random field χ(x, ω):

S1 = φ =
1

2π

∫ ∞

τ

e−
1
2 t

2

dt,(1)

S2(x, y) =
1

2π

∫ C(x,y)

0

e−
τ2

1+t
dt√
1− t2

+ φ2,(2)

where φ is the expectation of the volume fraction of the inclusions. From (1), the
parameter τ is uniquely defined through the given volume fraction expectation φ:

τ =
√
2 erf−1(1− 2φ),

where erf(x) denotes the Gauss error function. Then, the parameters ν and ℓ can
be approximated using nonlinear least squares regression to fit the real material
covariance (original image autocorrelation) with the surrogate covariance (2).

Having now a construction algorithm for samples at hand, we can easily evaluate
statistical properties for different quantities of interest in a given material class.
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Multivariate Adaptive Splines: Theory and Applications

Bert Jüttler

The mathematical technology of tensor-product NURBS (Non-Uniform Rational
B-spline) forms the basis for the representations of shapes in Computer Aided Geo-
metric Design [8] and for numerical simulation via Isogeometric Analysis (IGA) [4].
However, this technology does not provide the possibility of adaptive refinement,
a feature which is highly useful for geometric modeling and strongly desired in
numerical simulation. In order to overcome this limitation, several generalizations
of tensor-product NURBS representations have been proposed. These include T-
splines, locally refined B-splines, and hierarchical B-splines.

Figure 1. Bilinear T-, LR and hierarchical B-splines on a T-mesh.

T-splines were introduced in 2003 by Sederberg et al. [16]. Their construction
is based on a box mesh with hanging nodes, which is used to derive a collection of
tensor-product B-splines with individual knot vectors. The original construction
does not guarantee the linear independence of the blending functions. Analysis-
suitable T-splines, which were also characterized as dual compatible T-splines,
impose certain restrictions on the underlying meshes that imply this property
[2, 14]. A refinement algorithm with optimal complexity, which creates nested
sequences of spline spaces, was studied in [15]. Starting with the two articles
[1, 6], T-splines found numerous applications for adaptive numerical simulation.

Locally Refined (LR) B-splines were established in 2013 by Dokken et al. [5].
The constructions starts from the set of B-splines defined by the standard tensor
product of univariate spline bases. The associated regular grid is then refined by
inserting mesh-line segments. This triggers the subdivision of the B-splines whose
support is split by the segment. Repeated insertions define the set of LR B-splines
on the resulting box partition of the domain, which are a collection of weighted
tensor-product B-splines that form a convex partition of unity. The set of LR
B-splines is independent of the order of the mesh-line segment insertions. The
construction implies that LR B-spline refinement generates nested spline spaces,
but linear independence is not always guaranteed. Applications of LR B-splines to
adaptive numerical simulation were reported in [12]. Hierarchical mesh refinement
allows to achieve linear independence and algebraic completeness [3].

The hierarchical refinement of B-splines was first described by Forsey and Bar-
tels [9]. Nine years later, Kraft established a selection mechanism that generates
a basis of the associated spline space [13]. The construction is based on sequences
of nested spline spaces and inversely nested subdomains. A B-spline is selected
for inclusion into the basis if its support is contained in the associated subdomain
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but not in the next finer one. Starting with [17], hierarchical splines are now fre-
quently used for adaptive numerical simulation in IGA. Another basis, which was
introduced in 2012 [10], restores the partition of unity by suitable modifying the
basis functions. More precisely, its construction is based on a truncation mecha-
nism, which eliminates the contributions of functions that are selected at higher
levels. This provides substantial advantages for geometric design and numerical
simulation [11]. Generalizations of hierarchical splines to non-nested sequences
of domains have been studied recently, in order to increase the flexibility of the
refinement algorithms [7].
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A consistent and scalable meshfree mimetic method for conservation
laws

Pavel Bochev

(joint work with Nat Trask, Mauro Perego)

Mimetic PDE discretizations utilize the generalized Stokes theorem to construct
compatible grad, div and curl operators. However, meshfree methods lack innate
notions of cells, faces and edges that facilitate such a construction, causing a
dearth of truly compatible meshfree discretizations. In this work, we formulate
an abstract mimetic meshfree divergence (MMD) operator that satisfies a discrete
divergence theorem and is first-order accurate. LetX be a point cloud representing
a bounded region Ω ∈ R

d, d = 2, 3. We assume that all cloud points on Γ are
centroids of boundary segments Γi. Let χi(Γ) = Γi if xi ∈ Γ and χi(Γ) = ∅
otherwise. Let uh denote a vector field sampled on X . We define the abstract
MMD operator as

(1) (DIV uh)i :=
1

µi


 ∑

fij∈∂ωi

t
⊺

ij(u
h)µij +

∫

χi(Γ)

u · ndS


 ∀ωi

where ωi is a virtual cell corresponding to xi ∈ X with volume µi , µij ∈ R
nf is a

vector of moments assigned to virtual face fij , and tij(u
h) ∈ R

nf is a set of field
moments matching the face moments.

We consider two instantiations of (1). The first one assumes a background mesh
and uses generalized moving least squares (GMLS) to obtain the necessary field
and face moments. This MMD instance is appropriate for settings where mesh
is available but its quality is insufficient for a robust and accurate mesh-based
discretization. The second instance retains the GMLS field moments and uses the
εg-ball graph Gεg (V,E) of X , with vertices V = X and edges E as a surrogate
primal mesh. We assign a virtual dual cell and face to every vertex and edge in this
graph to obtain a virtual dual mesh. Assuming a quasi-uniform point cloud we set
µi = |Ω|/|X |. To obtain the face moments we require that (1) holds for all linear
vector fields and seek µij in terms of scalar potentials. This gives rise to a com-
putationally efficient weighted graph-Laplacian problems for the potentials. The
second MMD instance does not require a background grid and is appropriate for
applications where quality mesh generation is problematic and/or computationally
expensive. Such a discretization allows one to trade a potentially challenging mesh
generation problem for a scalable algebraic one, without sacrificing compatibility
with the divergence operator. We demonstrate the approach by using the MMD
operator to obtain a virtual finite-volume discretization of conservation laws on
point clouds. Numerical results confirm the mimetic properties of the method and
show that it behaves similarly to standard finite volume methods.
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A Priori Error Control of DGFEM for the Von Kármán Equations

Neela Nataraj

(joint work with Carsten Carstensen, Gouranga Mallik)

The article concerns discontinuous Galerkin finite element methods (DGFEM) for
the approximation of regular solution to the von Kármán equations defined on a
polygonal bounded Lipschitz domain Ω ⊂ R

2, that describe the deflection of very
thin elastic plates. Those plates are modeled by a semi-linear system of fourth-
order partial differential equations and described as: for a given load function
f ∈ L2(Ω), seek u, v such that

∆2u = [u, v] + f and ∆2v = −1

2
[u, u] in Ω, u =

∂u

∂ν
= v =

∂v

∂ν
= 0 on ∂Ω(1)

with ∆2ϕ := ϕxxxx + 2ϕxxyy + ϕyyyy, and [η, χ] := ηxxχyy + ηyyχxx − 2ηxyχxy.

Nonconforming FEMs have been analyzed for this problem in [1], a priori error
analysis for a C0 interior penalty method is studied in [2] and the results of this
article are published in [3]. Under minimal regularity assumption of the exact
solution, optimal order a priori error estimates are obtained for a DGFEM and a
novel C0 interior penalty method is recovered. The a priori analysis in [2] controls
the error in a stronger norm and is more involved.

The weak formulation for (1) seeks u, v ∈ X := H2
0 (Ω) such that for all ϕ1, ϕ2 ∈ X ,

a(u, ϕ1) + b(u, v, ϕ1) + b(v, u, ϕ1) = (f, ϕ1), a(v, ϕ2)− b(u, u, ϕ2) = 0.(2)

Here, a(η, χ) :=
∫
Ω
D2η : D2χ dx, and b(η, χ, ϕ) := − 1

2

∫
Ω
[η, χ]ϕdx for all η, χ, ϕ ∈

X. The vector form seeks Ψ = (u, v) ∈ X := X ×X such that

(3) N(Ψ;Φ) := A(Ψ,Φ) +B(Ψ,Ψ,Φ)− L(Φ) = 0 for all Φ ∈ X,

where for all Ξ = (ξ1, ξ2),Θ = (θ1, θ2), and Φ = (ϕ1, ϕ2) ∈ X, L(Φ) := (f, ϕ1),
A(Θ,Φ) := a(θ1, ϕ1) + a(θ2, ϕ2), and B(Ξ,Θ,Φ) := b(ξ1, θ2, ϕ1) + b(ξ2, θ1, ϕ1) −
b(ξ1, θ1, ϕ2). Let |||•|||2 denote the product norm onX defined by |||Φ|||2 := (|ϕ1|22,Ω+
|ϕ2|22,Ω)1/2 for all Φ = (ϕ1, ϕ2) ∈ X. The approximation of a regular solution Ψ

to the non-linear operator N(Ψ;Φ) = 0 for all Φ ∈ X of (3) is considered in the
sense that the bounded derivative DN(Ψ) of the operator N at the solution Ψ is
an isomorphism in the Banach space.



Computational Engineering 2895

Let T be a shape-regular triangulation of the domain into closed triangles with
set of edges E . Define hT (x) = hK = diam(K) for all x ∈ K, K ∈ T , and set
h := maxK∈T hK (resp. hE |E = hE = diam(E) for any E ∈ E). Let Pr(K)
denote the set of all polynomials of degree less than or equal to r and Pr(T ) :={
ϕ ∈ L2(Ω) : ∀K ∈ T , ϕ|K ∈ Pr(K)

}
and write Pr(T ) := Pr(T ) × Pr(T ). The

jump [ϕ]E and the average 〈ϕ〉E across the edges E follows the standard definition.
For any vector function, jump and average are understood componentwise. For
1/2 < α ≤ 1, let Yh := (X ∩ H2+α(Ω)) + P2(T ) and Yh := Yh × Yh. For all
η, χ ∈ Yh, ϕ ∈ X + P2(T ), let ldG(ϕ) :=

∑
K∈T

∫
K fϕdx,

adG(η, χ) :=
∑

K∈T

∫
K
D2η : D2χ dx−(J(η, χ) + J(χ, η))+Jσ1,σ2(η, χ); σ1, σ2 > 0

bdG(η, χ, ϕ) := − 1
2

∑
K∈T

∫
K
[η, χ]ϕdx,

J(η, χ) =
∑

E∈E

∫
E
[∇χ]E · 〈D2η νE〉E ds, and

Jσ1,σ2(η, χ) :=
∑

E∈E
σ1

h3
E

∫
E
[η]E [χ]E ds +

∑
E∈E

σ2

hE

∫
E
[∇η · νE ]E [∇χ · νE ]E ds.

The DGFEM of (1) seeks (udG, vdG) ∈ P2(T ) such that, for all (ϕ1, ϕ2) ∈ P2(T ),
adG(udG, ϕ1) + bdG(udG, vdG, ϕ1) + bdG(vdG, udG, ϕ1) = ldG(ϕ1),
adG(vdG, ϕ2)− bdG(udG, udG, ϕ2) = 0.
The combined vector form seeks ΨdG ≡ (udG, vdG) ∈ P2(T ) such that

(4) Nh(ΨdG; ΦdG) := AdG(ΨdG,ΦdG) +BdG(ΨdG,ΨdG,ΦdG)− LdG(ΦdG) = 0,

where for all ΞdG = (ξ1, ξ2),ΘdG = (θ1, θ2),ΦdG = (ϕ1, ϕ2) ∈ P2(T ), LdG(ΦdG) :=
ldG(ϕ1), AdG(ΘdG,ΦdG) := adG(θ1, ϕ1) + adG(θ2, ϕ2), BdG(ΞdG,ΘdG,ΦdG) :=
bdG(ξ1, θ2, ϕ1)+bdG(ξ2, θ1, ϕ1)−bdG(ξ1, θ1, ϕ2). For ϕ ∈ H2(T ) and Φ = (ϕ1, ϕ2) ∈
H2(T ) × H2(T ), define the mesh dependent norms |||Φ|||2dG := ‖ϕ1‖2dG + ‖ϕ2‖2dG,
where ‖ϕ‖2dG := |ϕ|2H2(T ) +

∑
E∈E

σ1

h3
E

‖[ϕ]E‖2L2(E) +
∑

E∈E
σ2

hE
‖[∇ϕ · νE ]E‖2L2(E).

Theorem 1 (Discrete inf-sup condition). [3] Let Ψ ∈ H2+α(Ω) ∩X be a regular
solution to (3). For sufficiently large σ2 and sufficiently small h,

0 < β̂ ≤ inf
ΘdG∈P2(T )
|||ΘdG|||dG=1

sup
ΦdG∈P2(T )
|||ΦdG|||dG=1

(
AdG(ΘdG,ΦdG) + 2BdG(Ψ,ΘdG,ΦdG)

)
.

Moreover, for a suitably chosen interpolant of Ψ denoted as ΠhΨ, the perturbed
bilinear form ÃdG(ΘdG,ΦdG) := AdG(ΘdG,ΦdG) + 2BdG(ΠhΨ,ΘdG,ΦdG) also
satisfies the discrete inf-sup condition.

For any ΘdG ∈ P2(T ), let µ(ΘdG) ∈ P2(T ) solve ÃdG(µ(ΘdG),ΦdG) = LdG(ΦdG)+
2BdG(ΠhΨ,ΘdG,ΦdG)−BdG(ΘdG,ΘdG,ΦdG) for all ΦdG ∈ P2(T ). Then µ is well-
defined, continuous and any fixed point of µ is a solution to (4) and vice-versa.

Theorem 2 (Existence, uniqueness and error estimates). [3] For sufficiently large
σ2 and sufficiently small h, there exists a unique solution ΨdG to the discrete
problem (4) in a ball centered at ΠhΨ and radius Chα, where the constant C ≈ 1
and α ∈ (1/2, 1] is the elliptic regularity index. Further, |||Ψ−ΨdG|||dG ≤ Chα.

The analysis extends to a C0 interior penalty method for the von Kármán
equations formally for σ1 → ∞ when σ1 disappears but the trial and test functions
become continuous. This scheme is the above dG method but with ansatz test
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function restricted to globally continuous piecewise quadratic polynomials and
excludes σ1 term. For details of numerical results, see [3].
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Optimal design of thin film solar cells

Peter Monk

We describe an ongoing project to develop a flexible and rigorously justified soft-
ware tool for optimizing the design of thin film solar cells [1]. We use the differen-
tial evolution algorithm (DEA) [2] to optimize the material parameters (such as
bandgap) and the geometry of the solar cell (for example, layer thicknesses and
surface shapes) to maximize the efficiency of the solar cell. DEA is a derivative
free optimization scheme, but requires many evaluations of the cost function (in
this case the efficiency). This implies the need for fast simulation of a given design.

There are two steps to evaluate the efficiency of a solar cell:

Photonic model: Maxwell’s equations need to be solved in the solar cell to
find the generation rate of electrons and holes (this is proportional to the
square of the magnitude of the electric field). We restrict ourselves to the
case when the thin film solar cell is translation invariant in one direction, in
which case Maxwell’s equations decouples into s-polarized and p-polarized
waves that satisfy different Helmholtz equations.

To solve the Helmholtz equations we use the Rigorous Coupled Wave
Analysis (RCWA) method [3]. This is based on using Fourier series in
the horizontal (periodic) direction, and a special linear algebra solver that
results in a very rapid prediction of the electromagnetic field. Since the
technique is meshless, it is easy to change both the geometry of the device
and the material parameters for each simulation.

Unfortunately the method is not proven to converge, but numerical tests
show quadratic convergence in the Fourier parameter for s-polarized waves,
and much slower convergence for p-polarized waves (O(N−1/3) where N
is the highest order of the Fourier mode retained in the calculation).

Electron transport: We use the drift-diffusion model to simulate electron
transport in the semiconductor layers of the device. This model involves
the density of electrons and holes in the device as well as the static electric
field generated by these entities. Diffusion dominated and transport dom-
inated processes occur in the same simulation. We average the generation
function produced by the photonic model, and use a the drift diffusion
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system in one spatial dimension to simulate the device. Using the Hy-
bridizable Discontinuous Galerkin (HDG) scheme [4], we can discretize
the system using p-degree polynomials for each unknown in the system.
The resulting system of nonlinear equations is solved by Newton’s method,
and by using different biasing voltages the optimal efficiency for a given
design can be computed. This is employed by the DEA.

Computationally we observe non optimal O(hp−1) order convergence.
This is likely due to using equal degree polynomials for each unknown in
the drift -diffusion system. Use of better balanced spaces will be investi-
gated in the future.

We have used the above algorithm to optimize a representative solar cell. Future
work will include investigating more novel designs, and implementing a full two
dimensional drift diffusion mode.
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A new framework for large strain electromechanics based on Convex
Multi-Variable (CMV) strain energies

Antonio J. Gil

(joint work with Rogelio Ortigosa, Roman Poya)

Dielectric Elastomers (DE) are a class of Electro Active Polymers with outstanding
actuation properties. Voltage induced area expansions of 1980% on a DE mem-
brane have been recently reported. In this case, the electromechanical instability
is harnessed as a means for obtaining these electrically induced massive deforma-
tions with potential applications in soft robots. Computational simulation in this
context becomes extremely challenging and must be addressed ab initio by the
definition of well-posed constitutive models.

In this presentation, we postulate a new Convex Multi-Variable (CMV) varia-
tional framework for the analysis of these materials exhibiting massive deforma-
tions [2, 3, 4]. This extends the concept of polyconvexity [1] to strain energies
which depend on non-strain based variables introducing other physical measures
such as the electric displacement. A new definition of the electro-mechanical in-
ternal energy is introduced, being expressed as a Convex Multi-Variable (CMV)
function of a new extended set of electromechanical arguments. Crucially, this
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new definition of the internal energy enables the most accepted constitutive in-
equality, namely ellipticity, to be extended to the entire range of deformations
and electric fields and, in addition, to incorporate the electromechanical energy of
the vacuum, and hence that for ideal dielectric elastomers, as a degenerate case.
Spurious numerical instabilities can then effectively be removed from the model
whilst maintaining real physical instabilities. Hyperbolicity, variational principles
and Finite Element functional spaces will be shown prior to demonstrating the
potential of the new paradigm through extremely challenging numerical examples
involving wrinkling and the onset of instabilities [5, 6].

 

Figure 1. Dielectric elastomer undergoing massive deformations
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The DPG∗ Method

Brendan Keith

(joint work with Leszek Demkowicz, Jay Gopalakrishnan)

We present a novel framework for the construction and analysis of finite element
methods with trial and test spaces of unequal dimension. At the heart of this work
is a new duality theory suitable for variational formulations with non-symmetric
functional settings [5]. The primary application of this theory, in this talk, is the
development and analysis of discontinuous Petrov-Galerkin (DPG) finite element
methods; in particular, goal-oriented adaptive mesh refinement strategies therein.

We introduce the DPG∗ finite element method [3]: the dual to the DPGmethod.
DPG, as a methodology, can be viewed as a practical means to solve overdeter-
mined discretizations of boundary value problems. In a similar way, DPG* delivers
a methodology for underdetermined discretizations. Supporting this new finite el-
ement method are new results on a priori error estimation and a posteriori error
control. Notably, it is demonstrated that the convergence of a DPG∗ method is
controlled, in part, by a Lagrange multiplier variable which plays the role of the
solution variable in DPG methods. The presented theory is applied to two repre-
sentative problems coming from linear and nonlinear partial differential equation
models. To facilitate a thorough mathematical analysis, Poisson’s equation is con-
sidered. To demonstrate the utility of the approach in less tractable scenarios, the
Oldroyd-B fluid model is also considered. Taken together, the combined analysis
of these two models effectively demonstrates the utility of the newly developed
paradigm. Taken together, the combined analysis of these two models effectively
demonstrates the utility of the newly developed paradigm. This talk is largely
based on Keith’s Ph.D. dissertation [2].
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A cut finite element method for incompressible two-phase
Navier-Stokes flows

Sara Zahedi

(joint work with Thomas Frachon)

We develop a space-time Cut Finite Element Method (CutFEM) for the time-
dependent Navier-Stokes equations involving two immiscible incompressible fluids
with different viscosities, densities, and with surface tension [1]. Due to surface
tension effects at the interface separating the two fluids and different fluid vis-
cosities the pressure may be discontinuous and the velocity field may have a kink
across the interface. In order to accurately capture these discontinuities across
evolving interfaces we build the solution during a time interval from two solutions,
one on each side of the interface with overlap on the elements cut by the interface
during the time interval, see Figure 1. Physical interface conditions such as the
jump in the normal stress are imposed weakly and glue the two solutions on the in-
terface [2]. We use a space-time strategy with discontinuous elements in time and
continuous elements in space. The cut finite element method allows the interface
to be arbitrarily located with respect to a fixed background mesh. Stabilization
terms which ensure well-posedness of the resulting algebraic system of equations,
independently of how the interface cuts through the fixed mesh, without destroy-
ing the optimal convergence order of the method are added to the variational
formulation. These stabilization terms also ensure good stability properties and
allow us to approximate space-time integrals using quadrature rules in time. Our
method has a convenient implementation as it does not reconstruct the space-time
domain but rather directly uses quadrature rules to approximate the space-time
integrals in the variational formulation [3, 4]. The time discretization given by our
method is closely related to implicit finite difference methods. The backward Euler
discretization can for example be obtained by using piecewise constant functions
in time.

We also present an accurate method for the surface tension force based on
the computation of a stabilized mean curvature vector. By stabilizing the L2

projection in the computation of the mean curvature vector with an appropriate
stabilization term we gain one order in the convergence in the L2-norm. In [5]
we prove this result for linear elements. For a stabilization term that can be used
both with linear as well as higher order elements see [4, 6].

We present a space-time cut finite element method which is able to accurately
capture both the strong discontinuity in the pressure and the weak discontinuity
in the velocity field across moving interfaces without conforming the mesh to these
interfaces or regularizing the problem.
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Figure 1. Illustration of the mesh and the pressure space asso-
ciated with a time interval In = (tn, tn+1] in a one space dimen-
sional model. The interface evolves from Γ(tn) to Γ(tn+1) during
the time interval In.
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Optimal Convergence Rates of dPG

Friederike Hellwig

(joint work with Carsten Carstensen)

The discontinuous Petrov-Galerkin methodology enjoys a built-in a posteriori error
control [1] in some computable residual term plus data approximation terms. This
talk establishes an alternative error estimator [2], which is globally equivalent,
but allows for the proof of the axioms of adaptivity and so guarantees optimal
convergence rates of the associated adaptive algorithm. The talk exemplifies the
analysis for the Poisson model problem −∆u = f with a right-hand side f ∈ L2(Ω)
in the polyhedral domain Ω simultaneously for the four lowest-order discontinuous
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Petrov-Galerkin schemes as a generalization of an approach for a lowest-order
primal dPGmethod for a nonlinear problem [3]. Those are rewritten in terms of the
first-order nonconforming Crouzeix-Raviart functions CR1

0(T ) and its conforming
subspace S1

0(T ), with respect to a shape-regular triangulation T into simplices,
some projection Q : L2(Ω) → L2(Ω) and a parameter α. For solutions (vCR, uC) ∈
CR1

0(T ) × S1
0(T ) to this reduced mixed system, the novel error estimator η(T )

consists of the expected volume contributions |T |1/n‖f − αQvCR‖L2(T ) and the
jump terms of the piecewise gradient of vCR across the sides of any simplex T ∈ T .
The estimator exclusively involves the variable vCR and seemingly ignores the
conforming contribution uC , but surprisingly also controls the error term u −
uC . The optimal convergence rates rely on standard arguments for stability and

reduction, while the discrete reliability involves an additional term h0η(T̂ ) for an

admissible refinement T̂ of T ; this eventually enforces the additional condition of
a sufficiently small initial mesh-size h0 for optimal convergence rates within the
abstract framework of [4].
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Staggered discontinuous Galerkin methods on general meshes

Eun-Jae Park

(joint work with Zhao, Lina)

In this report, we propose and analyze a locally conservative, lowest order stag-
gered discontinuous Galerkin (SDG) method of minimal dimension on general
quadrilateral/polygonal meshes for elliptic problems [5]. We define the lowest or-
der SDG method by connecting the center point of a certain quadrilateral/polygon
(primal mesh) to all the vertices, then the primal mesh is divided into the union
of triangles, which are the primal submeshes (see Figure 1 for an illustration).
Then we can define two piecewise constant finite element spaces earning continu-
ity over different edges to approximate the potential u and the vector variable p,
namely, the potential is continuous over the primal edges, and the vector variable
is continuous over the dual edges. The staggered continuity property recasts the
proposed method to be locally conservative. Since the finite element functions are
composed of piecewise constant functions, the implementation is particularly sim-
ple without complex integrations on the mesh, and affine mapping is not needed.
If the quadrilateral is reduced to a square, then the mass matrix for the vector
variable becomes just a diagonal matrix. In addition, our method can be flexibly
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applied to highly distorted grids. Moreover, hanging nodes are allowed, which
can be simply treated as additional vertices. A priori error analysis covering low
regularity can be stated in the theorem below.

Theorem 1. Assume that (p, u) ∈ (Hǫ(Ω)2 ∩ H(div,Ω)) × H1+ǫ(Ω), 0 < ǫ ≤ 1.
Here, Hm is the standard Sobolev space. Let (ph, uh) be the numerical solution
obtained from the lowest order SDG method, then there exists a positive constant
C such that

‖u− uh‖0 ≤ C(hmin{1,2ǫ}‖u‖1+ǫ,Ω + (
∑

τ∈Th

h2τ‖f‖20,τ)1/2),

‖p− ph‖0 ≤ Chǫ‖u‖1+ǫ,Ω.
On the other hand, adaptive mesh refinement is an attractive tool for general

meshes due to their flexibility and simplicity in handling hanging nodes. We
develop a reliable and efficient error estimator for the lowest order SDG method
on general quadrilateral and polygonal meshes. Notice that the potential arising
from numerical approximation is defined as a piecewise constant function over the
domain, it is impossible to measure the error estimator in the energy norm of
potential unless postprocessing is involved. Therefore, we design a residual based
error estimator on the L2 error in vector variable. In order to achieve this, the main
ingredient is the Helmholtz decomposition for the vector variable error (cf. [1, 4]).
Combining this with the standard interpolation theory, we can achieve the residual
based error estimator. Numerical results indicate that optimal convergence can
be achieved for both the potential and vector variables even for highly distorted
grids, and the singularity can be well-captured by the proposed error estimator.

S(n)

D(e)

Figure 1. Schematic of primal mesh S(ν), dual mesh D(e) and
primal submesh (triangulations).
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Heterogeneous Asynchronous time integrators for transient dynamics
co-simulations

Anthony Gravouil

(joint work with University of Lyon, INSA-Lyon, LaMCoS, CNRS, France)

In non-smooth transient structural dynamics, the choice of the time step and the
time integrator has a critical impact on the feasibility of the simulation. For
instance, during an earthquake, a bridge crane, usually located overhead in build-
ings, may be subjected to multiple impacts between crane wheels and rail. These
multiple impacts cause significant damage in the structure. Then the qualifi-
cation of these structures with respect to normative seismic design requirements,
which are continuously developing and becoming more and more stringent, requires
strengthened simulation techniques especially to model the impact phenomenon.
Furthermore, multiple time-scales coexist in a bridge crane under seismic loading.
In that case, the use of multi-time scale methods is suitable. Here, we propose a
new explicit-implicit heterogeneous asynchronous time integrator (HATI) for non-
smooth transient dynamics with possible contacts and impacts. In a first step
we introduce a Moreau-based event-capturing explicit time integrator for con-
tact/impact problems. In a second step, a two time scales explicit-implicit HATI
is developed: it consists in using an explicit time integrator with a fine time scale
in the contact area, while an implicit time integrator is adopted in the other parts
in order to capture the low frequency content of the solution and to optimize the
CPU time. 3D Transient dynamics applications illustrate the robustness and the
efficiency of the proposed approach.
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Application of assumed stress finite elements in hyperelasticity

Nils Viebahn

(joint work with Jörg Schröder, Peter Wriggers)

We discuss here an idea for the extension of an assumed stress element, see [1, 2],
to the hyperelastic framework. The crucial point is an implicit solution procedure
for the constitutive relation, based on a general free energy function ψ. The strong
form of the considered problem can be written as:

Seek the displacement u and the second Piola-Kirchhoff stresses S such that

(1)

−Div[FS] = 0 on B,
E = ∂Sχ(S) on B,
u = uD on ∂BD,

(FS) ·N = tN on ∂BN ,

with F = I +Gradu, E = 1
2 (C − I), C = F TF , the complementary stored en-

ergy χ(S) and boundary values uD, tN . The major problem in this formulation is,
that the complementary stored energy function is only defined explicitly for special
cases.In our approach, we will calculate its dependencies implicitly in each load
step, introducing an internal variable Ec which satisfies the constitutive relation

(2) r(Ec) = S − ∂E(ψ(E))|E=Ec = 0 .

Substitution of ∂Sχ(S) with Ec leads after integration by parts to the weak forms

(3)
Gu =

∫

B

δE : S dV −
∫

∂BN

δu · tN dA = 0

GS =

∫

B

δS : (E −Ec) dV = 0 with Ec = ∂Sχ(S)

and corresponding linearizations as

(4) ∆Gu =

∫

B

(∆δE : S + δE : ∆S) dV , ∆GS =

∫

B

δS : (∆E −∆Ec) dV

with the internal relationship ∆Ec =

((
∂2ψ(E)

∂E ∂E

) ∣∣∣
E=Ec

)−1

: ∆S. Discretiza-

tion of the displacements with continuous piecewise bilinear interpolation functions
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and a five parameter mode for the second Piola-Kirchhoff stress

(5) u = N d , S =



S11

S22

S12


 = Lβ =




1 0 0 η
a22
b22
ξ

0 1 0
b21
a21
η ξ

0 0 1 b1
a1
η a2

b2
ξ







β1
β2
β3
β4
β5




where the parameter ai and bj are depending on the nodal coordinates as

(6)

(
a1 b1
a2 b2

)
=

1

4

(
−1 1 1 −1
−1 −1 1 1

)



x1 y1
x2 y2
x3 y3
x4 y4


 .

This leads to the incremental system of equations as

(7) LinG =

[
δdT

δβT

]([
Kuu Kuσ

T

Kuσ Kσσ

] [
∆d

∆β

]
+

[
ru
rσ

])
= 0 .

For a typical element e the system matrices are be given by

(8)

Ke
uu :=

∫

Be

ΞS dV , Ke
uσ :=

∫

Be

L
TB dV , Ke

σσ :=

∫

Be

L
T
DLdV ,

reu :=

∫

Be

BTS dV −
∫

∂Be
N

NT tdA , reσ :=

∫

Be

L
T (E −Ec) dV ,

where B is a suitable matrix containing the spatial derivatives of N , Ξ is de-

fined by ∆B = Ξ∆d and D is the compliance matrix
((

∂2ψ(E)
∂E ∂E

) ∣∣
E=Ec

)−1

. A

numerical example depicts the potential of the proposed formulation. We consider
the Cook’s membrane problem, depicted in Figure 1 with nearly incompressible
material (Young’s modulus E = 200 and Poisson’s ratio ν = 0.4999) considering

(9) ψ =
Λ

4
(detF 2 − 1)− (

Λ

2
+ µ) + ln[detF ] +

µ

2
(trC − 3) .

Figure 1 depicts the mesh convergence of the tip displacement at the upper right
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Figure 1. Numerical Benchmark of the Cook’s membrane

node. It can be seen that the proposed formulation performs extraordinary good.
Furthermore, only a single load step was necessary in order to apply the complete
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deformation, whereas the EAS formulation requires more lode steps. Unfortu-
nately, the proposed element suffers due to nonphysical hourglassing modes. A
deeper understanding of the underlying causes for these additional modes and the
development of possible treatments are subjects of ongoing research.
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Partial Relaxation of Vertex Continuity of Nonnested (Conforming)
Methods

Jun Hu

(joint work with Carsten Carstensen, Rui Ma)

The problems that are most frequently solved in scientific and engineering comput-
ing may probably be the elasticity equations. The finite element method (FEM)
was invented in analyzing the stress of the elastic structures in the 1950s. The
mixed FEM within the Hellinger-Reissner (H-R) principle for elasticity yields a
direct stress approximation since it takes both the stress and displacement as an
independent variable; while the displacement FEM only gives an indirect stress
approximation. However, the symmetry of the stress plus the stability conditions
make the design of the mixed FEM for elasticity surprisingly hard, which has been
regarded as a long standing open problem [3]. In 2002, using the elasticity com-
plexes, Arnold and Winther designed the first family of symmetric mixed elements
with polynomial shape functions on triangular grids in 2D [4] which was extended
to tetrahedral grids in 3D [3] and to rectangular grids in 2D [2]. Recently, the au-
thor and his collaborators developed a new framework to design and analyze the
mixed FEM of elasticity problems, which yields optimal symmetric mixed FEMs.
In addition, those elements are very easy to implement since their basis functions,
based on those of the scalar Lagrange elements, can been explicitly written down
by hand. The main ingredients of this framework are a structure of the discrete
stress space on both simplicial and product grids, two basic algebraic results, and
a two-step stability analysis method, see more details in [7, 8, 10, 11, 12].

TheH(div) conformity of discrete stresses only requires the continuity of normal
components of symmetric matrix-valued piecewise polynomials. However, due to
the constraint of the symmetry, all the conforming mixed elements mentioned
above impose the C0 continuity of discrete stresses at vertices. This introduces
some inconsistency errors when discretizing some interface problems and stress
boundary condition problems. Besides, because of the C0 continuity of discrete
stresses at vertices, the stress space on the coarse mesh is not a subspace of that on
the fine mesh, which causes the difficulty of the convergence analysis of adaptive
algorithms for the aforementioned elements.

A similar situation happens for most of H2 conforming elements of fourth order
problems. In fact, one of the most popular conforming plate elements dates back
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to Argyris [1] with a quintic polynomial space P5(T ) on a triangle T and 21 linear
functionals including the function value partial derivatives of order 0, 1, 2 at each
vertex and the normal derivative at the mid-point of each edge. Even if Th is some
refinement of TH , the coarser Argyris finite element space with respect to TH is
in general not a subspace of the finer Argyris finite element space with respect to
Th. The reason is that the Argyris finite element functions are C1 conforming, but
their second derivative with respect to the normal direction is discontinuous at
the midpoint of an edge. This non-nestedness of the Argyris finite element space
under admissible refinement of the underlying triangulation leads to theoretical
difficulties in multilevel schemes such as the adaptive mesh-refining and multigrid
solver methodologies.

We present a universal way to partially relax nonnested conforming methods
for partial differential equations. We apply it to Argyris element of fourth order
problems and mixed finite elements of elasticity equations, which results in con-
forming nested methods. We design adaptive and V-cycle multigrid algorithms for
these extended methods and prove their convergence and optimality. Finally we
provide some numerical examples to illustrate the theoretical results.
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Avenida Vicuna Mackenna 4860
Estación Central Santiago
CHILE

Prof. Dr. Jun Hu

School of Mathematical Sciences
Peking University
No. 5 Yiheyuan Road
Beijing 100 871
CHINA



Computational Engineering 2911

Prof. Dr. Antonio Huerta

Laboratori de Càlcul Numèric
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