
Mathematisches Forschungsinstitut Oberwolfach

Report No. 50/2018

DOI: 10.4171/OWR/2018/50

Combinatorial Optimization

Organised by
Jesus De Loera, Davis
Satoru Iwata, Tokyo

Martin Skutella, Berlin

4 November – 10 November 2018

Abstract. Combinatorial Optimization is an active research area that de-
veloped from the rich interaction among many mathematical areas, including
combinatorics, graph theory, geometry, optimization, probability, theoretical
computer science, and many others. It combines algorithmic and complex-
ity analysis with a mature mathematical foundation and it yields both basic
research and applications in manifold areas such as, for example, commu-
nications, economics, traffic, network design, VLSI, scheduling, production,
computational biology, to name just a few. Through strong inner ties to
other mathematical fields it has been contributing to and benefiting from ar-
eas such as, for example, discrete and convex geometry, convex and nonlinear
optimization, algebraic and topological methods, geometry of numbers, ma-

troids and combinatorics, and mathematical programming. Moreover, with
respect to applications and algorithmic complexity, Combinatorial Optimiza-
tion is an essential link between mathematics, computer science and modern
applications in data science, economics, and industry.

Mathematics Subject Classification (2010): 90C10 Integer programming, 90C27 Combinatorial

optimization.

Introduction by the Organisers

The workshop Combinatorial Optimization was organized by Jesús A. De Loera
(Davis), Satoru Iwata (Tokyo), and Martin Skutella (Berlin). It was well at-
tended, with 51 participants from a broad geographic and thematic representation
within the field (e.g., some participants came from Mathematics departments,
some came from CS departments, some came from Economics or Operations Re-
search schools). We are particularly proud of the gender diversity of participants
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and speakers. Moreover, in compiling the list of invitees we put particular empha-
sis on excellent young scientists.

Recent advances in Combinatorial Optimization have seen an acceleration due
to the fact that the subject seats at the intersections of several mathematical and
computational methods (e.g., Combinatorics, Graph Theory, Convex Analysis,
Game Theory, Probability, Discrete Geometry, etc.) and it is required in several
modern application fields such as data science, energy logistics, and transporta-
tion. Our workshop brought together scholars from different perspectives, e.g.,
people interested in structural results, approximation algorithms, mixed integer
optimization, and algebraic techniques. Together they exchanged experience and
identified promising topics for future research.

The workshop’s program reflected the diversity of methods in our subject. On
the other hand, there was enough overlap among individual expertise to generate
new ideas and obtain input from other directions. In particular, the flash intro-
ductory talks (2 minutes per speaker to present their key research concerns), the
27 regular talks, together with two problem brainstorming session on Monday and
Wednesday evening provided the basic impulse for stimulating discussions covering
a broad spectrum of topics. More than ten problems are posed and at least two
of them received partial answers from the participants during the workshop.

The workshop was extremely successful and this is evident from the results
presented. We highlight just a few here.

The past two decades have seen notable progress in developing structural insight
and improving algorithmic capabilities in solving global optimization problems
with non-linear constraints. The incorporation of computational algebraic geome-
try to address non-convexity and integrality has become very exciting. Methods of
real algebraic geometry allows us to deal with non-convex optimization problems
such as minimizing a polynomial over a compact convex set. Monique Laurent
presented some exciting recent results on this direction where she showed that
such problems can be reduced to eigenvalue problem computation. Another talk
that touched on the topic of non-convex problems, with integer variables, was the
presentation by Michele Conforti who discussed some exciting new construction
on cutting planes for compact non-convex sets based on lexicographic variable
orders (close related to the theory of Gröbner bases, a core subject in algebraic
geometry).

The most famous problem in Combinatorial Optimization is the Traveling Sales-
person Problem (TSP). In particular, the TSP has been as a great source of inspira-
tion for every generation of researchers to develop new techniques and algorithms,
from the early days of the field until today. Jens Vygen gave a survey lecture
on several recent breakthrough results concerning the algorithmic approximability
of the TSP as well as the integrality gap of well-known linear programming re-
laxations of the problem. Ola Svensson presented the first known constant-factor
approximation algorithm for the asymmetric version of the problem (ATSP), which
is considerably more difficult than the classical symmetric TSP and whose approx-
imability with constant performance guarantee had been open for decades. Finally,
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Vera Traub, a young PhD student from Bonn, gave a remarkable presentation of
her recent result that the integrality gap of the asymmetric traveling salesman
path LP is constant.

Our subject is closely related to famous problems in Computational Complexity
of Theoretical Computer Science. Parameterized complexity is a branch of com-
putational complexity theory that focuses on classifying computational problems
according to their inherent difficulty with respect to multiple parameters of the in-
put or output. The complexity of a problem is then measured as a function of those
parameters. This allows the classification of NP-hard problems on a finer scale
than in the classical setting, where the complexity of a problem is only measured by
the number of bits in the input. During our workshop, at least two presentations
dealt with parametrizing the problems. First was the talk of Robert Weismantel
who showed us that for an integer optimization problem (IP), one important data
parameter is the maximum absolute value, ∆, among all square submatrices of
the constraint matrix. He showed how the running times and complexity depend
on ∆.

Another example of parametrized analysis was the presentation of Shmuel Onn.
In his account he explained how optimality certificates involving Graver sets for
block-structured integer programs can be used to prove a strongly polynomial re-
sult on parametrized integer programming in terms of the combinatorial complex-
ity of the system (tree-depth). Recent results on improved complexity estimates
for augmentation algorithms with Graver-type improving vectors make this the
only such method of proof.

A notable subject of the workshop was related to computation of mathematical
equilibria on markets. László Végh presented a strongly polynomial time algo-
rithm for market equilibrium problems generalizing famous results of Éva Tardos
for network flow problems. He showed that convex separable optimization over
networks can be done in strongly polynomial time. Neil Olver also presented his
joint work with László Végh that derives a simpler and faster strongly polynomial
algorithm for the maximum generalized flow problem.

Submodularity is a key concept that has played a fundamental role in combi-
natorial optimization. In fact, the talk of Rico Zenklusen showed that one can
minimize a submodular function over all subsets of a specified nonzero cardinality
modulo a constant prime power. The technique comes from purely combinatorial
arguments that establish the non-existence of a certain type of set systems. Yu
Yokoi presented a generalization of Galvin’s list edge coloring theorem for bipartite
graphs to the framework of supermodular coloring introduced by Lex Schrijver in
the 1980s.

The submodularity is recognized as a discrete counterpart of convexity. Extend-
ing this viewpoint has led to the theory of Discrete Convex Analysis that deals with
discrete convex functions over the integer lattice, which can be viewed as a direct
product of paths. Hiroshi Hirai gave a survey talk on his recent results that pro-
vided further extensions. His approach deals with discrete convex functions over
more general combinatorial structures. Concrete outcomes include a dichotomy
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theorem on the multifacility location problems. The talk nicely demonstrated the
utility of novel geometric concepts such as Euclidean building and CAT(0) space
in combinatorial optimization.

Finally the growing interest in data-driven analysis stimulates the study of
combinatorial optimization techniques too. Among the aspects discussed at the
workshop were the study of solution of sparse regression problems presented by
Santanu Dey.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
The organizers and participants are truly grateful to the MFO staff for making
this a productive and enjoyable meeting.
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The asymmetric traveling salesman path LP has constant integrality
ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2982
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László Végh
Open Problem: A special case of submodular function minimization . . . . 3018

László Végh
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Abstracts

Integer optimization from the perspective of subdeterminants

Robert Weismantel

We discuss several recent developments in establishing a refined theory of integer
optimization. The goal is to understand complexity questions for instances of linear
integer optimization problems based on the dimension and a data parameter that
corresponds to the largest absolute value of the determinant of a submatrix of the
constraint matrix. The talk will in particular focus on two questions:

(a) Given an optimal solution of the linear programming relaxation. How
close is an optimal integer solution measured in l1- or l∞-norm?

(b) Given a system of linear equations with nonnegativity conditions for the
variables and a linear objective function. How sparse is an optimal integer
solution?

This talk is based on the papers [1, 2, 3].

References

[1] F. Eisenbrand, R. Weismantel, Proximity results and faster algorithms for integer Program-
ming using the Steinitz Lemma. Proceeding of the 29th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2018, 806–816.

[2] I. Aliev, J. De Loera, F. Eisenbrand, T. Oertel, R. Weismantel, The support of integer
optimal solutions. SIAM J.Optim. 28, 2018, 2152–2157.

[3] J. Paat, R. Weismantel, S. Weltge, Distances between optimal solutions of mixed integer
programs. Mathematical Programming 2018, to appear.

The packing property and intersecting clutters

Gérard Cornuéjols

(joint work with Ahmad Abdi, Dabeen Lee)

A clutter is intersecting if the members do not have a common element yet ev-
ery two members intersect. It has been conjectured that for clutters without an
intersecting minor, total primal integrality and total dual integrality of the corre-
sponding set covering linear system must be equivalent. In this paper, we provide
a polynomial characterization of clutters without an intersecting minor.

One important class of intersecting clutters comes from projective planes, namely
the deltas, while another comes from graphs, namely the blockers of extended odd
holes. Using similar techniques, we will provide a polynomial algorithm for finding
a delta or the blocker of an extended odd hole minor in a given clutter. This result
is quite surprising as the same problem is NP-hard if the input were the blocker
instead of the clutter.
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[1] A. Abdi, G. Cornuéjols, D. Lee, Intersecting restrictions in clutters. Working paper,
Carnegie Mellon University, October 2018.

A Friendly Smoothed Analysis of the Simplex Method

Daniel Dadush

(joint work with Sophie Huiberts)

Explaining the excellent practical performance of the simplex method for linear
programming has been a major topic of research for over 50 years. One of the
most successful frameworks for understanding the simplex method was given by
Spielman and Teng [2], who developed the notion of smoothed analysis. Start-
ing from an arbitrary linear program (LP) with d variables and n constraints,
Spielman and Teng analyzed the expected runtime over random perturbations of
the LP, known as the smoothed LP, where variance σ2 Gaussian noise is added
to the LP data. In particular, they gave a two-stage shadow vertex simplex

algorithm which uses an expected Õ(d55n86σ−30 + d70n86) number of simplex
pivots to solve the smoothed LP. Their analysis and runtime was substantially
improved by Deshpande and Spielman [3] and later Vershynin [4]. The fastest
current algorithm, due to Vershynin, solves the smoothed LP using an expected
O
(
log2 n · log logn · (d3σ−4 + d5 log2 n + d9 log4 d)

)
number of pivots, improving

the dependence on n from polynomial to logarithmic.
While the original proof of Spielman and Teng has now been substantially

simplified, the resulting analyses are still quite long and complex and the parameter
dependencies far from optimal. In this work, we make substantial progress on this
front, providing an improved and simpler analysis of shadow simplex methods,
where our main algorithm requires an expected

O(d2
√
logn σ−2 + d5 log3/2 n)

number of simplex pivots. We obtain our results via an improved shadow bound,
key to earlier analyses as well, combined with algorithmic techniques of Borg-
wardt [1] and Vershynin [4]. As an added bonus, our analysis is completely modu-
lar, allowing us to obtain non-trivial bounds for perturbations beyond Gaussians,
such as Laplace perturbations.

References

[1] K.-H. Borgwardt, The average number of pivot steps required by the simplex-method is
polynomial, Z. Oper. Res. Ser. A-B, 26(5):A157–A177, 1982.

[2] D.A. Spielman, S.-H. Teng, Smoothed analysis of algorithms: why the simplex algorithm
usually takes polynomial time. J. ACM, 51(3):385–463 (electronic), 2004.
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[3] A. Deshpande, D.A. Spielman, Improved smoothed analysis of the shadow vertex simplex
method. Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science, FOCS ‘05, pages 349–356, 2005.

[4] R. Vershynin, Beyond Hirsch conjecture: walks on random polytopes and smoothed com-
plexity of the simplex method. SIAM J. Comput., 39(2):646–678, 2009. Preliminary version
in FOCS ‘06.

Proximity results and faster algorithms for Integer Programming
using the Steinitz Lemma

Friedrich Eisenbrand

(joint work with Robert Weismantel)

We consider integer programming problems in standard form max{cTx : Ax =
b, x ≥ 0, x ∈ Zn} where A ∈ Zm×n, b ∈ Zm and c ∈ Zn. We show that such an
integer program can be solved in time (m∆)O(m) ·‖b‖2∞, where ∆ is an upper bound
on each absolute value of an entry in A. This improves upon the longstanding best

bound of Papadimitriou [1] of (m ·∆)O(m2), where in addition, the absolute values
of the entries of b also need to be bounded by ∆. Our result relies on a lemma of
Steinitz that states that a set of vectors in Rm that is contained in the unit ball of
a norm and that sum up to zero can be ordered such that all partial sums are of
norm bounded by m. We also use the Steinitz lemma to show that the ℓ1-distance
of an optimal integer and fractional solution, also under the presence of upper
bounds on the variables, is bounded by m · (2m · ∆ + 1)m. Here ∆ is again an
upper bound on the absolute values of the entries of A. The novel strength of our
bound is that it is independent of n. We provide evidence for the significance of
our bound by applying it to general knapsack problems where we obtain structural
and algorithmic results that improve upon the recent literature.

References

[1] C.H. Papadimitriou, On the complexity of integer programming. Journal of the ACM
(JACM) 28.4 (1981), 765-768.

Approximation algorithms for the symmetric (path) TSP

Jens Vygen

We survey the recent progress on approximation algorithms for the (symmetric)
traveling salesman problem and its path variant: Given a finite metric space
(V, c) and s, t ∈ V , find a sequence s = v0, v1, . . . , vn−1, vn = t containing all
elements of V and minimizing

∑n
i=1 c(vi−1, vi). We also study the integrality

ratio of the standard LP relaxation. The worst known examples are graph in-
stances (where c(v, w) = distG(v, w) for an undirected unweighted graph G); this
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is why this special case received a lot of interest. Here is the state of the art:

s = t s 6= t

general integrality ratio ∈ [ 43 ,
3
2 ]

[1] [ 32 , 1.5284]
[4]

approximation ratio ≤ 3
2

[2,3] 3
2

[5]

in graphs integrality ratio ∈ [ 43 ,
7
5 ]

[6] 3
2

[6]

approximation ratio ≤ 7
5

[6] 1.497 [7]

References

[1] L.A. Wolsey, Heuristic analysis, linear programming and branch and bound. Mathematical
Programming Study 13 (1980), 121–134.

[2] N. Christofides, Worst-case analysis of a new heuristic for the traveling salesman prob-
lem. Technical Report 388, Graduate School of Industrial Administration, Carnegie-Mellon
University, Pittsburgh 1976.

[3] A.I. Serdjukov, Some extremal bypasses in graphs [in Russian]. Upravlyaemye Sistemy 17

(1978), 76–79.
[4] V. Traub, J. Vygen, An improved upper bound on the integrality ratio for the s-t-path TSP.

ArXiv:1808.10734.
[5] R. Zenklusen, A 1.5-approximation for path TSP. ArXiv:1805.04131; to appear in SODA

2019.
[6] A. Sebő, J. Vygen, textitShorter tours by nicer ears: 7/5-approximation for graphic TSP, 3/2

for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica 34 (2014),
597–629.

[7] V. Traub, J. Vygen, Beating the integrality ratio for s-t-tours in graphs. ArXiv:1804.03112.
Preliminary extended abstract in the Proceedings of the 59th Annual IEEE Symposium on
Foundations of Computer Science (FOCS 2018), 766–777.

Efficient Submodular Minimization under Congruency Constraints

Rico Zenklusen

(joint work with Martin Nägele, Benny Sudakov)

Submodular function minimization (SFM) is a fundamental and efficiently solvable
problem class in Combinatorial Optimization with various applications. Surpris-
ingly, only very little is known about constraint classes under which SFM remains
efficiently solvable. The arguably most influential such constraint class are par-
ity constraints. They capture classical combinatorial optimization problems like
the odd-cut problem, and they are a key tool in a recent technique to efficiently
solve integer programs with a constraint matrix whose subdeterminants are within
{−2,−1, 0, 1, 2}.

By introducing a new approach combining techniques from Combinatorial Op-
timization, Combinatorics, and Number Theory, we show that efficient SFM is
possible even over all sets of cardinality r mod m, for m being a constant prime
power. This covers generalizations of the odd-cut problem with relevance in the
context of integer programming with constraint matrices with subdeterminants
bounded by m. Moreover, our results settle two open questions raised by Geelen
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and Kapadia [Combinatorica, 2017] in the context of computing the girth and
cogirth of certain types of binary matroids.

A Constant-Factor Approximation Algorithm for the Asymmetric
Traveling Salesman Problem

Ola Svensson

(joint work with Jakub Tarnawski, László A. Végh)

The traveling salesman problem is one of the most fundamental optimization prob-
lems. Given n cities and pairwise distances, it is the problem of finding a tour of
minimum total distance that visits each city once. In spite of significant research
efforts, current techniques seem insufficient for settling the approximability of the
traveling salesman problem. The gap in our understanding is especially large in
the general asymmetric setting where the distance from city i to j is not assumed
to equal the distance from j to i.

Indeed, until recently, it remained an open problem to design an algorithm with
any constant approximation guarantee. This status is particularly intriguing as
the standard linear programming relaxation is believed to give a constant-factor
approximation algorithm, where the constant may in fact be as small as 2.

In this talk, we will give an overview of old and new approaches for settling this
question. We shall, in particular, talk about our new approach that gives the first
constant-factor approximation algorithm for the asymmetric traveling salesman
problem. Our approximation guarantee is analyzed with respect to the standard
LP relaxation, and thus our result confirms the conjectured constant integrality
gap of that relaxation. The main idea of our approach is to first give a generic
reduction to structured instances and on those instances we then solve an easier
problem (but equivalent in terms of constant-factor approximation) obtained by
relaxing the general connectivity requirements into local connectivity conditions.

References

[1] O. Svensson, J. Tarnawski, L.A. Végh, A Constant-Factor Approximation Algorithm for the
Asymmetric Traveling Salesman Problem. Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC, pages 204–213, 2018.
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The asymmetric traveling salesman path LP has constant integrality
ratio

Vera Traub

(joint work with Anna Köhne, Jens Vygen)

The path version of the asymmetric traveling salesman problem is the variant in
which the endpoints of the tour are given and distinct. In a recent breakthrough,
Svensson, Tarnawski, and Végh [6] found the first constant-factor approximation
algorithm for the asymmetric TSP (ATSP), and they also proved that its standard
LP relaxation has constant integrality ratio.

Feige and Singh [1] showed that any α-approximation algorithm for ATSP im-
plies a (2α + ǫ)-approximation algorithm for its path version (for any ǫ > 0).
However, their proof does not imply any bound on the integrality ratio of the LP.

Nagarajan and Ravi [5] proved that the integrality ratio of the LP relaxation
for the path version of ATSP is O(

√
n) (where n is the number of vertices). This

bound was improved to O(log n) by Friggstad, Salavatipour, and Svitkina [3] and
to O(log n/ log logn) by Friggstad, Gupta, and Singh [2].

We show that the LP relaxation of the asymmetric traveling salesman path
problem has constant integrality ratio [4]. To this end we give a black-box reduc-
tion to ATSP: if ρ denotes the integrality ratio for ATSP, then the integrality ratio
for its path version is at most 4ρ− 3.

References

[1] U. Feige, M. Singh, Improved approximation algorithms for traveling salesperson tours and
paths in directed graphs. Proceedings of the 10th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems; LNCS 4627 (M. Charikar, K. Jansen,
O. Reingold, J.D.P. Rolim, eds.), Springer, Berlin 2007, 104–118.

[2] Z. Friggstad, A. Gupta, M. Singh, An improved integrality gap for asymmetric TSP paths.
Mathematics of Oper.ations Research 41 (2016), 745–757.

[3] Z. Friggstad, M.R. Salavatipour, Z. Svitkina, Asymmetric traveling salesman path and di-
rected latency problems. SIAM Journal on Computing 42 (2013), 1596–1619.

[4] A. Köhne, V. Traub, J. Vygen, The asymmetric traveling salesman path LP has constant
integrality ratio. ArXiv:1808.06542.

[5] V. Nagarajan, R. Ravi, The directed minimum latency problem. Proceedings of the 11th In-
ternational Workshop on Approximation Algorithms for Combinatorial Optimization Prob-
lems; LNCS 5171 (A. Goel, K. Jansen, J.D.P. Rolim, R. Rubinfeld, eds.), Springer, Berlin
2008, pp. 193–206.

[6] O. Svensson, J. Tarnawski, L.A. Végh, A constant-factor approximation algorithm for the
asymmetric traveling salesman problem. Proceedings of the 50th Annual ACM Symposium

on Theory of Computing (STOC 2018), 204–213.



Combinatorial Optimization 2983

Blended Conditional Gradients

Sebastian Pokutta

(joint work with Gábor Braun, Dan Tu, Stephen Wright)

We present a blended conditional gradient algorithm [2] for minimizing a smooth
convex function over a polytope P , that combines gradient projection steps with
conditional gradient steps, achieving linear convergence for strongly convex func-
tions. It does not make use of away steps or pairwise steps, but retains all favorable
properties of conditional gradient algorithms, most notably not requiring projec-
tions onto P and maintaining iterates as sparse convex combinations of extreme
points. The algorithm decreases measures of optimality (primal and dual gaps)
rapidly, both in the number of iterations and in wall-clock time, outperforming
even the efficient lazified conditional gradient algorithms of [1]. We also present
a streamlined algorithm for the special case in which P is a probability simplex,
called simplex gradient descent.
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Gomory’s mixed-integer cuts are optimal

Marco Di Summa

(joint work with Amitabh Basu, Michele Conforti, Giacomo Zambelli)

Among many families of cutting planes for integer programming proposed in the
literature, Gomory mixed-integer cuts seem to stand out for at least two reasons:
(i) they can be derived via a simple closed formula from the optimal tableau of
the continuous relaxation; (ii) in practice, they tend to perform better than other
types of general-purpose cutting planes. However, a formal justification for this
behavior has not been given up to now.

We give a rigorous theoretical explanation for the empirical superiority of Go-
mory mixed-integer cuts by working in the context of the pure integer infinite
group relaxation proposed by Gomory and Johnson [1, 2], which is an infinite-
dimensional model that encompasses all possible integer programming problems
at the same time. We show that for this model, Gomory mixed-integer cuts are the
valid inequalities that cut off the maximum volume from the nonnegative orthant,
and therefore can be seen as the optimal cutting planes if the volume cut off is
chosen as a criterion to measure the strength of a cutting plane.
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Integer Programming in Parameter-Tractable Strongly-Polynomial
Time

Shmuel Onn

We consider the general integer programming problem in standard form:

IP : max{wx : Ax = b , l ≤ x ≤ u , x ∈ Zn} .

We consider two parameters which control the matrix A defining the program: its
“numeric complexity” a = ‖A‖∞ := max{|Ai,j |}, and its “combinatorial complex-
ity” d = min{td(A), td(AT )}, where td(A) is the tree-depth of the matrix A.

We prove the following.

Theorem. The integer programming problem IP can be solved in parameter-
tractable strongly-polynomial number of arithmetic operations f(a, d)poly(n) for
some function f of the parameters a, d and some polynomial in the dimension n.

We discuss some of the applications of this theorem, which extends, improves,
unifies and simplifies many results of the last decade. The talk is based on [1, 2].
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Representability of optimization models

Amitabh Basu

(joint work with Christopher T. Ryan, Sriram Sankaranarayanan)

We review representability theorems for mixed-integer linear and convex optimiza-
tion. We then describe recent new results on mixed-integer bilevel optimization.
Mixed-integer bilevel linear (MIBL) programs of the form

(1)

max
x,y

c⊤x+ d⊤y

s.t. Ax+By ≤ b

y ∈ argmax
y
{f⊤y : Cx+Dy ≤ g, yi ∈ Z for i ∈ IF }

xi ∈ Z for i ∈ IL
where x and y are finite-dimensional real decision vectors, b, c, d, f and g are
finite-dimensional rational data vectors and the constraint matrices A, B, C, and
D have conforming dimensions (notation for the dimensions of these objects is
given below). The decision-maker who determines x is called the leader, while the
decision-maker who determines y is called the follower. The sets IL and IF are
subsets of the index sets of x and y (respectively) that determine which leader and
follower decision variables are integers.

Bilevel programming has a long history, with traditions in theoretical economics
(see, for instance, [12], which originally appeared in 1975) and operations research
(see, for instance, [5, 9]). While much of the research community’s attention has
focused on the continuous case, there is a growing literature on bilevel programs
with integer variables, starting with early work in the 1990s by Bard and Moore
[13, 2] through a more recent surge of interest. Research has largely focused on
algorithmic concerns, with a recent emphasis on leveraging advancements in cut-
ting plane techniques. Typically, these algorithms restrict how variables appear
in the problem. For instance, [14] consider the setting where all variables are
integer-valued. [7] allow for continuous variables but restrict the leader’s contin-
uous variables from entering the follower’s problem. Only very few papers have
studied questions of computational complexity in the mixed-integer setting, and
also often with restricting the appearance of integer variables (see, for instance,
[10]).

To our knowledge, a thorough study of general MIBL programs with no addi-
tional restrictions on the variables and constraints has not been undertaken in the
literature. The contribution of this paper is to ask and answer a simple question:
what types of sets can be modeled as feasible regions (or possibly projections of
feasible regions) of such general MIBL programs? Or put in the standard termi-
nology of the optimization literature: what sets are MIBL-representable?

Separate from the design of algorithms and questions of computational com-
plexity, studying representability shows the reach of a modeling framework. The
classical paper of [8] provides a characterization of sets that can be represented by
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mixed-integer linear feasible regions. They show that a set is the projection of the
feasible region of a mixed-integer linear problem (termed MILP-representable) if
and only if it is the Minkowski sum of a polytope and a finitely-generated integer
monoid (concepts more carefully defined below). This result is the gold standard in
the theory of representability, as it answers a long-standing question on the limits
of mixed-integer programming as a modeling framework. Jeroslow and Lowe’s re-
sult also serves as inspiration for recent interest in the representability of a variety
of problems.

To our knowledge, questions of representability have not even been explicitly
asked of continuous bilevel linear (CBL) programs where IL = IF = ∅ in (1).
Accordingly, our initial focus concerns characterizations of CBL-representable sets.
In the first key result of our paper, we show that every CBL-representable set can
also be modeled as the feasible region of a linear complementarity (LC) problem
(in the sense of [6]). Indeed, we show that both CBL-representable sets and LC-
representable sets are precisely finite unions of polyhedra. Our proof method
works through a connection to superlevel sets of piecewise linear convex functions
(what we term polyhedral reverse-convex sets) that alternately characterize finite
unions of polyhedra. In other words, an arbitrary finite union of polyhedra can
be modeled as a continuous bilevel program, a linear complementarity problem,
or an optimization problem over a polyhedral reverse-convex set.

A natural question arises: how should we relate CBL-representability and
MILP-representability? Despite some connections between CBL programs and
MILPs (see, for instance, [1]), the collection of sets they represent are incompa-
rable. The Jeroslow-Lowe characterization of MILP-representability as the finite
union of polytopes summed with a finitely-generated monoid has a fundamentally
different geometry than CBL-representability as a finite union of polyhedra. It is
thus natural to conjecture that MIBL-representability should involve some com-
bination of the two geometries. We will see that this intuition is roughly correct,
with an important caveat.

A distressing fact about MIBL programs, noticed early on in [13], is that the
feasible region of a MIBL program may not be topologically closed (maybe the
simplest example illustrating this fact is Example 1.1 of [10]). This throws a
wrench in the classical narrative of representability that has largely focused on
closed sets. Indeed, the recent work of [11] is careful to study representability
by closed convex sets. This focus is entirely justified. Closed sets are indeed
of most interest to the working optimizer and modeler, since sets that are not
closed may fail to have desirable optimality properties (such as nonexistence of
optimal solutions). Accordingly, we aim our investigation on closures of MIBL-
representable sets. In fact, we provide a complete characterization of these sets
as unions of finitely many MILP-representable sets. This is our second key result
on MIBL-representablility. The result conforms to the rough intuition of the last
paragraph. MIBL-representable sets are indeed finite unions of other objects, but
instead of these objects being polyehdra as in the case of CBL-programs, we now
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take unions of MILP-representable sets, reflecting the inherent integrality of MIBL
programs.

To prove this second key result on MIBL-representability we develop a general-
ization of Jeroslow and Lowe’s theory to mixed integer sets in generalized polyhe-
dra, which are finite intersections of closed and open halfspaces. Indeed, it is the
non-closed nature of generalized polyhedra that allows us to study the non-closed
feasible regions of MIBL-programs. Specifically, these tools arise when we take
the value function approach to bilevel programming. Here, we leverage the char-
acterization of [4] of the value function of the mixed-integer program in the lower
level problem. Blair’s characterization involves analyzing superlevel and sublevel
sets of Chvátal functions when incorporated into the value function approach. A
Chvátal function is (roughly speaking) a linear function with integer rounding (a
more formal definition later). [3] show that superlevel sets of Chvátal functions
are MILP-representable. Sublevel sets are trickier, but for a familiar reason —
they are, in general, not closed. This is not an accident. The non-closed nature
of mixed-integer bilevel sets, generalized polyhedra, and sublevel sets of Chvátal
functions are all tied together in a key technical result that shows that sublevel sets
of Chvátal functions are precisely finite unions of generalized mixed-integer linear
representable (GMILP-representable) sets. This result is the key to establishing
our second main result on MIBL-representability.

In fact, showing that the sublevel set of a Chvátal function is the finite union of
GMILP-representable sets is a corollary of a more general result. Namely, we show
that the collection of sets that are finite unions of GMILP-representable sets forms
an algebra (closed under unions, intersections, and complements). We believe this
result is of independent interest.

In summary, we make the following contributions. We provide geometric char-
acterizations of CBL-representability and MIBL-representability (where the latter
is up to closures) in terms of finite unions of polyhedra and finite unions of MILP-
representable sets, respectively. In the process of establishing these main results,
we also develop a theory of representability of generalized mixed-integer polyhedra
and show that finite unions of GMILP-representable sets form an algebra. This
last result has the implication that finite unions of MILP-representable sets also
form an algebra, up to closures.
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Lattice Reformulation Cuts

Karen Aardal

(joint work with Frederik von Heymann, Andrea Lodi, Andrea Tramontani,
Laurence A. Wolsey)

Here we consider the question whether the lattice reformulation of a linear integer
program can be used to produce effective cutting planes. We consider integer
programs (IP) in the form max{cx | Ax = b, x ∈ Zn

+} , where the reformulation
takes the form max{cx0+cQµ | Qµ ≥ −x0, µ ∈ Zn−m} , where Q is an n×(n−m)
integer matrix. Working on an optimal LP tableau in the µ-space allows us to
generate n −m Gomory mixed-integer inequalities (GMIs) in addition to the m
GMIs associated with the optimal tableau in the x-space. These provide new cuts
that can be seen as GMIs associated to n − m non-elementary split directions
associated with the reformulation matrix Q. On the other hand it turns out that
the corner polyhedra associated to an LP basis and the GMI or split closures are
the same whether working in the x- or µ-spaces. Computationally we show that
the effectiveness of the cuts generated by this approach depends on the quality
of the reformulation obtained by the reduced basis algorithm used to generate Q
and that it is worthwhile to generate several rounds of such cuts. However, the
effectiveness of the cuts deteriorates as the number of constraints is increased.
Acknowledgements. The research has been financed in part by The Netherlands
Organisation for Scientific Research, NWO, grant number 613.000.801, which we
gratefully acknowledge.
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List Supermodular Coloring

Yu Yokoi

(joint work with Satoru Iwata)

In 1995, Galvin [4] provided an elegant proof for the list edge coloring conjecture
for bipartite graphs. That is, he showed that the list edge chromatic number of any
bipartite graph equals its edge chromatic number. A surprising aspect of Galvin’s
proof is that it utilizes a famous result of Gale and Shapley [3] on the existence of
stable matchings in bipartite graphs.

We generalize Galvin’s result to the setting of supermodular coloring, intro-
duced by Schrijver [6]. In the proof, we utilize the monochromatic path theorem
of Sands, Sauer and Woodrow [5], which is shown by Fleiner [1] to be a generaliza-
tion of the result of Gale and Shapley. Our result can be extended to the setting
of skew-supermodular coloring [2]. Also, our proof naturally suggests an efficient
algorithm for finding a list supermodular coloring.
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Progress on Seymour’s Flowing Conjecture

Bertrand Guenin

(joint work with Ahmad Abdi)

A clutter C is a family of sets over a ground set E(C) with the property that no set
properly contains another. The blocker b(C) of clutter C is the set of all inclusion-
wise minimal sets that intersect every set in C. A clutter C is binary if for every
set S ∈ C and B ∈ b(C), |S ∩B| is odd. Let

P (C) :=
{
x ∈ R

E(C)
+ :

∑
(xe : e ∈ S) ≥ 1, for all S ∈ C

}
.
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A clutter C is ideal, if P (C) is an integral polyhedron. The polyhedron obtained
from P (C) by setting some variables to zero and projecting variables is another
set covering polyhedron P (D) for some clutter D. We say that D is a minor of C.
A clutter is minimally non-ideal if it is non-ideal, but every minor is ideal. O5 is
the clutter corresponding to triangles and pentagons of K5 and L7 is the clutter
corresponding to the lines of the Fano matroid. If a clutter is ideal (resp. binary)
then so is any minor and so is its blocker. In 1977, Seymour [1] proposed the
Flowing Conjecture,

Conjecture 1. If C is a minimally non-ideal binary clutter, then C or b(C) is O5

or L7.
A triangle in clutter F is a set of cardinality three. Since both O5 and L7 have

a triangle, a special case of the Flowing Conjecture is given by the,

Conjecture 2. If C is a minimally non-ideal binary clutter, then C or b(C) has a
triangle.

With Ahmad Abdi we proved that both conjectures are in fact equivalent.
Namely, we proved that,

Theorem 1. The only minimally non-ideal binary clutters that have a triangle
are L7 and O5.

The result will appear in Combinatorica [2].
The two-point Fano clutter, is defined as follows,

D7 =
{
{1, 2, 6}, {3, 4, 5, 7}, {1, 3, 5}, {2, 4, 6, 7},

{2, 3, 4}, {1, 5, 6, 7}, {4, 5, 6}, {1, 2, 3, 7}
}
.

It can be viewed as the clutter whose sets are the lines and their complements of
the Fano plane, that intersect two fixed elements exactly once. We showed that,

Theorem 2. If C is a minimally non-ideal binary clutter, then C or b(C) is O5 or
L7 or D7.

An extended abstract has appeared in the Integer Programming and Combi-
natorial Optimization conference [3]. A full version of the paper will appear in
Combinatorica [4].
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Convergence analysis of Lasserre measure-based approximations for
polynomial optimization

Monique Laurent

(joint work with Etienne de Klerk)

We consider the optimization problem

(1) pmin = min
x∈K

p(x),

asking to minimize an n-variate polynomial p ∈ R[x] over a compact set K ⊆ Rn.
This is a hard problem, already for simple regionsK like the standard simplex ∆n,
the cube [0, 1]n, a ball, or a sphere. For instance, given a graph G = (V,E) the
hard combinatorial optimization problem asking to compute the maximum cardi-
nality α(G) of a stable set in G can be reformulated via the following polynomial
optimization problems:

1

α(G)
= min

x∈∆n

xT (In +AG)x, α(G) = max
x∈[0,1]n

∑

i∈V

xi −
∑

{i,j}∈E

xixj ,

2
√
2

3
√
3

√
1− 1

α(G)
= max

y∈Rn,z∈Rm



2

∑

{i,j}∈E

zijyiyj : (y, z) ∈ Sn+m





(as shown by Motzkin-Straus [8] and Nesterov [9]).
Lasserre [7] has introduced a hierarchy of tractable upper bounds for pmin. The

starting point is to reformulate problem (1) as the problem

(2) pmin = min
µ

{∫

K

p(x)dµ(x) : µ is a probability measure on K

}
,

which follows from the fact that an optimal measure is the Dirac measure δa at a
global minimizer a of f over K.

Lasserre [7] shows that we may restrict in (2) to the measures having a sum-of-
squares density function:

(3) pmin = inf
h

{∫

K

p(x)h(x)dµ0(x) s.t. h ∈ Σ,

∫

K

h(x)dµ0(x)

}
,

where µ0 is a given reference measure whose support is K, and Σ denotes the
set of sums of squares of polynomials. If we impose a degree bound 2r on the
sum-of-squares densities we get the parameters

(4) p(r) = inf
h

{∫

K

p(x)h(x)dµ0(x) : h ∈ Σ, deg(h) ≤ 2r,

∫

K

h(x)dµ0(x)

}
,

which provide a hierarchy of upper bounds: pmin ≤ p(r+1) ≤ p(r) converging
to pmin as r → ∞. For each integer r, the parameter p(r) can be computed
via semidefinite programming and, in fact, it reduces to a generalized eigenvalue
computation (since the semidefinite program has just one affine constraint) [7].

We discuss some known results about the convergence rate of the hierarchy
(p(r) − pmin)r≥0 and give a few hints about the proof techniques.
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(1) Assume K is a compact set which satisfies an interior cone condition (see
[3]) and µ0 is the Lebesgue measure. Then it is shown in [3] that

p(r) − pmin = O

(
1√
r

)
.

Roughly speaking the condition we need on K is that there is a global
minimizer of p in K which is not a cusp point. The key idea is to construct
a sum-of-squares polynomial h with degree 2r that ‘looks like’ the delta
function at a global minimizer a of p in K. For this consider the Gaussian
distribution

G(x) =
1

(2πσ2)n/2
exp

(−‖x− a‖2
2σ2

)
,

and the polynomial

h(x) =
1

(2πσ2)n/2

2r∑

k=0

(−1)k
k!

(−‖x− a‖2
2σ2

)k

obtained by considering the Taylor expansion of e−t truncated at degree
2r. Since this truncation gives a univariate polynomial nonnegative on R

it is a sum of squares and thus h is a sum of squares. When selecting
σ ∼ 1/r one can show the desired rate of convergence.

(2) Assume K is a convex body and µ0 is the Lebesgue measure. Then it is
shown in [1] that

p(r) − pmin = O

(
1

r

)
.

This relies on a link to the simulated annealing bounds for convex opti-
mization established in [6]. Namely, instead of the Gaussian distribution
one uses now the Boltzman distribution

H(x) =
exp(−p(x)/T )∫

K
exp(−p(x)/T )dx ,

with ‘temperature’ parameter T ∼ 1/r, and its truncated Taylor expansion
as sum of squares density h. By replacing p by a convex upper estimator
one can use the analysis in [6] to derive the desired convergence result.

(3) Assume K is the unit sphere and p is a homogeneous polynomial. Then it
is shown in [4] that

p(r) − pmin = O

(
1

r

)
.

This relies on combining tools about spherical harmonics and a quantum
analogue of the classical De Fineti theorem.

(4) Assume K = [−1, 1]n and µ0 is the measure
∏n

i=1(1 − x2
i )

−1/2dxi. Then
it is shown in [2] that

p(r) − pmin = O

(
1

r2

)
.
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This relies on using the reformulation of the parameter p(r) as smallest
eigenvalue of the associated matrix

Ap(r) =

(∫

K

p(x)bα(x)bβ(x)dµ0

)

|α|,|β|≤r

,

where {bα(x)} is an orthonormal basis of polynomials with respect to the
measure µ0. In the univariate case K = [−1, 1] when p(x) = x it turns out
that the parameter p(r) coincides with the smallest root of the polynomial
br+1 [5]. When selecting for µ0 a Chebyshev (or Jacobi) type measure
then the rate of convergence to −1 of this smallest root is known to be in
Θ(1/r2), which settles the rate of convergence of the bounds p(r). This also
permits to settle the case of a univariate quadratic polynomial and finally
the general case which can be shown to be reducible to this situation.

Understanding the exact regime for the rate of convergence of the bounds p(r)

for general convex bodies remains an open question.
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Strongly polynomial algorithms for market equilibrium computation

László Végh

(joint work with Jugal Garg)

Most known strongly polynomial algorithms are for special classes of linear pro-
grams, and only few examples are known in nonlinear optimization. The talk will
give an overview of two such results. The first result [1] gives a strongly poly-
nomial algorithm for some instances of flows with separable convex objectives,
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including separable convex quadratic objectives, as well as market equilibrium in
linear Fisher markets. The second, more recent result [2] provides the first strongly
polynomial algorithm for exchange markets with linear utilities. These results can
be obtained by extending the classical technique of variable fixing from linear pro-
grams to the convex settings. The main progress in both algorithms is gradually
identifying edges in the support of the optimal solutions.
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A faster and simpler strongly polynomial algorithm for generalized
flow maximization

Neil Olver

(joint work with László Végh)

Consider linear programming:

min cTx subject to Ax ≤ b A ∈ Rm×n, c ∈ Rn, b ∈ Rm.

One of the major open problems in optimization concerns the existence of a strongly
polynomial algorithm for this, that is, a polynomial time algorithm in which the
number of arithmetic operations is polynomially bounded by the dimensions of
the problem. Progress has been made on special cases: for example, Tardos [1]
gave an algorithm that is strongly polynomial as long as the entries of the matrix
A are integral and bounded, with no restriction on the vectors b and c.

A further special case was recently solved by Végh [3]. It concerns the case
where A has at most two nonzero entries per column, and where the cost vector
c has only a single nonzero entry. This yields the maximum generalized flow
problem. Given is a directed graph G = (V,E), node demands b : E → R, a sink
node t ∈ V , and also gains γ : E → R>0. The goal is to maximize the amount
of flow arriving at t, while ensuring that the net flow arriving at any other node
matches its demands. But unlike with the standard maximum flow problem, flow
traversing arc e ∈ E is scaled by a factor γe; if flow fe enters the arc, γefe will
leave.

I will discuss a dramatically simpler, and also faster, strongly polynomial algo-
rithm for this problem. Even for small numerical parameter values, our running
time bound is comparable to the best weakly polynomial algorithms. The al-
gorithm maintains a primal solution f and a dual solution µ satisfying certain
complementary slackness conditions. The key new technical idea is the relaxation
of primal feasibility conditions (crucial in all previous approaches) in a novel way.
This allows us to maintain an integral “relabelled” flow throughout the main steps
of the algorithm. Our algorithm has a clean and natural primal-dual structure:
primal updates augment the integral relabelled flow by discrete units, and dual
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updates scale µ uniformly on a subset of nodes. The integrality we maintain is
quite surprising, since the optimal solution itself does not satisfy strong integrality
properties.
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Discrete Convex Analysis beyond Zn

Hiroshi Hirai

Discrete Convex Analysis (DCA) [14], developed by Murota and his collaborators,
is a theory of “convex” functions on integer lattice Zn, which provides a unified
theoretical framework to well-solvable combinatorial optimization problems related
to network flow and submodular/matroid optimization. One of main concepts of
DCA is L-convexity, which generalizes the submodularity to the integer lattice Zn.
An L♮-convex function is a function g : Zn → R ∪ {∞} satisfying

g(x) + g(y) ≥ g(⌊(x+ y)/2⌋) + g(⌈(x+ y)/2⌉) (x, y ∈ Zn),

where ⌊·⌋ and ⌈·⌉ are componentwise rounding up and down operators, respectively.
The central of my recent research is generalizations of L-convexity to more gen-

eral structures beyond Zn (= grid graph) and its applications to combinatorial
optimization problems that had not been captured by DCA. In [5, 7, 6, 9], I pre-
sented results concerning two new classes of discrete convex functions, submodular
functions on modular semilattices and L-convex functions on oriented modular
graphs. Here a modular semilattice is a semilattice generalization of a modular
lattice, and an oriented modular graph is a kind of an amalgamation of modular
lattices and semilattices. The highlight of the results is summarized as follows:

• Our submodular function is minimizable under valued-CSP model. For
special modular semilattices, our submodular functions are identical to
several other submodular-type functions, such as bisubmodular, k-sub-
modular, and α-bisubmodular functions.
• Our L-convex functions have several properties analogous to that L♮-
convex functions in DCA have, and coincide with L♮-convex functions if
the underlying graph is a grid graph. Analogous to L♮-convex functions,
our L-convex functions are minimized by the steepest descent algorithm
(SDA), where each descend step is the minimization of a submodular func-
tion on a modular semilattice.
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• Our theory is motivated by the complexity classification of themultifacility
location problem (a.k.a. minimum 0-extension problem) on graph G:

Min.
∑

1≤i≤n

∑

v∈V (G)

bivdG(v, xi) +
∑

1≤i<j≤n

cijdG(xi, xj)

s.t. (x1, x2, . . . , xn) ∈ (V (G))n.

This classification problem was raised by Karzanov [13], who showed that
the multifacility location problem is NP-hard if the underlying graph G is
not orientable modular. In [7], I showed the converse: if G is orientable
modular, then the multifacility location problem on G is an L-convex func-
tion minimization, and is polynomially solvable. This establishes the de-
sired complexity classification.
• Dual objectives arising from classes of well-behaved multicommodity flow
problems are submodular or L-convex in suitable sense. The DCA-oriented
algorithm design (based on SDA) leads to efficient combinatorial polyno-
mial time algorithms for some classes of minimum-cost and node-capacitat-
ed multiflow problems [5, 6], where such algorithms had not been known
before.
• The underlying structures, modular semilattices and oriented modular
graphs, have rich connections to other fields of mathematics that include
incidence geometries (projective and polar spaces), Euclidean building, and
metric spaces of global nonpositive curvature (CAT(0) spaces) [1]. For
some cases, our submodular/L-convex function is naturally extended to a
function on a CAT(0) space via an analogue of the Lovász extension, and
is characterized by its convexity relative to the CAT(0)-metric [9].

See also survey [8]. The last property enables us to apply continuous optimization
methods on CAT(0)-spaces to submodular optimization on modular lattice.

In [4], we applied this idea to the following optimization problem (Maximum
Vanishing Subspace Problem; MVSP).

Max. dimX + dimY

s.t. Ai(X,Y ) = {0} (i = 0, 1, 2, . . . ,m),

X, Y ⊆ Kn (vector subspaces),

where Ai are given n × n matrices over field K viewed as bilinear form Kn ×
Kn → K. This problem arises from the dual of the non-commutative rank (nc-
rank) [2, 11] of symbolic matrix A0 + A1x1 + · · · + Amxm, where variables xi

are non-commutative, i.e., xixj 6= xjxi. For this problem, Garg et al [3] and
Ivanyos et al [11, 12] gave polynomial time algorithms. MVSP is viewed as a
submodular optimization on the modular lattice of vector subspaces, and has a
continuous relaxation, via Lovász extension, that is a convex optimization on a
CAT(0)-space. Based on this, [4] developed a conceptually-simple polynomial time
algorithm for MVSP.

In [10], I consider a weighted generalization of nc-rank, i.e., the degree of the
Dieudonne determinant Det of A0 + A1x1 + · · · + Amxm, where Ai is a matrix
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over K[t] and variables xi are non-commutative. I established a duality theorem
in which the dual is viewed as an L-convex optimization on the modular lattice
of certain modules (= Euclidean building of SL(K(t)n)), and developed a DCA-
oriented algorithm to compute degDet.
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A Faster Way to Determine the Minimal Feasible Time Horizon of a
Quickest Transshipment Problem

Miriam Schlöter

We study a classical flow over time problem that captures the essence of evacuation
planning: Given a dynamic network N = (D = (V,A), u, τ, S+, S−) consisting of
a directed graph D with capacities u and transit times τ on the arcs and sets of
sources S+ and sinks S− with integral supplies and demands b, respectively, the
quickest transshipment problem (N , b) is the problem of computing a flow over
time f that fulfills all supplies and demands as quickly as possible.

The concept of flows over time has already been introduced by Ford and Fulk-
erson [1, 2] in the 1950s. Ford and Fulkerson also came up with a way to reduce
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flow over time problems to classical static flow problems by getting rid of the time-
dependent aspect of the dynamic network – the transit times. Instead of a solving
flow over time problem directly they showed that instead one can also solve a static
flow problem in the so-called time-expanded network, a network that consists of
one copy of the original dynamic network per time unit. The time-expanded net-
work thus gives us a way to solve quickest transshipment problems. However, the
size of the time-expanded network grows linearly with the time horizon and hence
one can only achieve algorithms with pseudo-polynomial running time by using
time-expansion.

The first strongly polynomial time algorithm for the quickest transshipment
problem is due to Hoppe and Tardos [3]. A slight improvement over the algorithm
of Hoppe and Tardos has only recently been achieved by Schlöter and Skutella [4].
Both algorithms have in common that they work in two parts. The first part is the
computation of the minimal feasible time horizon T of a given quickest transship-
ment problem (N , b), while in the second part the actual quickest transshipment
f is computed. Here, we only concentrate on the first part. One important object
in the context of quickest transshipments is the following parametrized submod-
ular function oθ that was first introduced in [3]. For each θ ≥ 0 the set function

oθ : 2S
+∪S−→ R+ is defined as follows,

oθ(X) :=
max. amount of flow that can be sent from

S+ ∩X towards S− \X until time θ,

for all X ⊆ S+ ∪ S−. Hoppe and Tardos showed that oθ is submodular for all
θ ≥ 0 [3] and it is due to a result by Ford and Fulkerson [1, 2] that the func-
tion oθ can be evaluated at every set X ⊆ S+ ∪ S− by one minimum-cost flow
computation and thus in strongly polynomial time. Together with a feasibility
criterion by Klinz [5] – a time horizon θ ≥ 0 is feasible for a given quickest trans-
shipment problem (N , b) if and only if oθ(X) ≥ b(X) for all X ⊆ S+ ∪ S− –
and the fact that submodular functions can be minimized in strongly polynomial
time if they can be evaluated in strongly polynomial time, these results imply that
we can check in strongly polynomial time whether a given time horizon θ ≥ 0 is
feasible for a quickest transshipment problem by one submodular function min-
imization. The so far only known way to determine the minimal feasible time
horizon T of a quickest transshipment problem (N , b) in strongly polynomial time
is coupling submodular function minimization with Megiddo’s parametric search
framework [6]. However, using parametric search to determine T can in the worst
case dramatically increase the running time of the algorithm used for submodular
function minimization. Moreover, Megiddo’s search framework is hard to imple-
ment and thus not applicable in practice. These two facts make it an interesting
task to come up with new ways to determine T that do not rely on parametric
search.

We present a new strongly polynomial time algorithm for determining T for the
special cases of quickest transshipment problems in dynamic networks with only
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Algorithm 1: Algorithm to determine the minimal feasible time horizon T
for a quickest transshipment problem (N , b) in a dynamic network with a
single sink t

Input : A dynamic network N = (D = (V,A), u, τ, S+, t) and a
supply/demand function b

Output: The minimal feasible time horizon T for the quickest
transshipment problem (N , b)

1 i ← 0, Si ← S+, θi ← 0

2 while Si 6= ∅ do
3 θi+1 ← Minimal value with o

θi+1

Si
(Si)− b(Si) = 0

4 Si+1 ← Minimal minimizer of o
θi+1

Si
− b

5 i ← i+ 1

6 end

7 return T := θi, S
∗ := Si

a single source or only a single sink that gets completely rid of using paramet-
ric search (see Algorithm 1) and as a consequence achieves a huge running time
improvement compared to the old approach. Here, we only consider the case of
networks with a single sink. The single source case is completely symmetric. Our
main result is the following theorem.

Theorem 1. Algorithm 1 returns the minimal feasible time horizon T of a given
quickest transshipment problem (N , b) in a dynamic network with only a single
sink and it terminates after at most |S+| many iterations.

The proof of Theorem 1 especially exploits the fact that the parametrized sub-
modular functions oθ are connected by a so-called strong map. For networks with
only a single sink this was shown by Baumann and Skutella [7], while for networks
with only a single source this is a new results. Using a result by Topkis [8], this
implies that the minimal minimizers Si computed during the course of the algo-
rithm are strictly contained in one another which then yields that the algorithm
terminates after at most |S+| iterations. That the algorithm computes the correct
minimal feasible time horizon immediately follows from Klinz’ feasibility crite-
rion [5]. Since each step of the algorithm can be computed in strongly polynomial
time (minimizing a submodular function and solving a quickest flow problem [9]),
it follows from Theorem 1 that in the considered special case Algorithm 1 enables
us to determine the minimal feasible time horizon T in strongly polynomial time
without using parametric search. A more careful analysis shows that Algorithm 1
achieved at least a running time improvement of |S+|2 log |S+| compared to the
parametric search approach.
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When do Gomory-Hu Subtrees Exist?

Bruce Shepherd

(joint work with Guyslain Naves)

Gomory-Hu (GH) Trees are a classical sparsification technique for graph connec-
tivity [1]. It is one of the fundamental models in combinatorial optimization which
also continually finds new applications, most recently in social network analysis.
For any edge-capacitated undirected graph G = (V,E) and any subset of terminals
Z ⊆ V , a Gomory-Hu Tree is an edge-capacitated tree T = (Z,E(T )) such that
for every u, v ∈ Z, the value of the minimum capacity uv cut in G is the same as
in T . Moreover, the minimum cuts in T directly identify those in G. It is well-
known that there does not always exist a GH tree which is a subgraph of G. For
instance, every GH tree for the vertices of K3,3 is a 5-star. We characterize those
graph and terminal pairs (G,Z) which always admit such a tree. We show that
these are the graphs which have no terminal-K2,3 minor. That is, no K2,3 minor
whose vertices correspond to terminals in Z. We also show that the family of pairs
(G,Z) which forbid such K2,3 “Z-minors” arises, roughly speaking, from so-called
Okamura-Seymour instances. More precisely, they are subgraphs of Z-webs. A
Z-web is built from planar graphs with one outside face which contains all the
terminals and each inner face is a triangle which may contain an arbitrary graph.
This characterization yields an additional consequence for multiflow problems. Fix
a graph G and a subset Z ⊆ V (G) of terminals. Call (G,Z) cut-sufficient if the cut
condition is sufficient to characterize the existence of a multiflow for any demands
between vertices in Z, and any edge capacities on G. Then (G,Z) is cut-sufficient
if and only if it is terminal-K2,3 free.
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Synchronized Traveling Salesman Problem

Gyula Pap

(joint work with József Varnyú)

We consider a variation of the well-known traveling salesman problem in which
there are multiple agents who all have to tour the whole set of nodes of the same
graph, while obeying node- and edge-capacity constraints that require no two
agents may “crash”. We consider the simplest model in which the input is an
undirected graph with all edge lengths and capacities equal to one. A solution to
the synchronized traveling salesman problem is called an “agency”, which maps the
respective agents with time-indexed traveling salesman tours. Our model puts the
synchronized traveling salesman problem in a similar relation with the traveling
salesman problem as the so-called evacuation problem, or the well-known dynamic
flow (flow-over-time) problem is in relation with the minimum cost flow problem.
We measure the strength of an agency in terms of number of agents which should
be as large as possible, and the time horizon which should be as small as possible.

Let G = (V,E) be an undirected graph with n = |V |. A sequence v(0), v(1),
v(2), · · · , v(T ) of nodes v(t) ∈ V is called a traveling salesman tour (with
parking), or a tour, for short, if v(0) = v(T ), for all t = 0, 1, · · · , T − 1 we have
either v(t) = v(t + 1) or v(t)v(t + 1) ∈ E, and all nodes of V appear in this
sequence at least once. T is called the time horizon, as is commonly referred to
in the theory of flows over time. A similar definition may be given for a traveling
salesman tour without parking, or in case of a directed graph. In the synchronized
traveling salesman problem, we consider an “agency” of a number of salesmen
so that each one of them has to do a tour with the same time horizon, though
they need to start from different initial nodes, and must not “crash” into each
other. This may be thought of as a unit capacity for each node or each edge.
More precisely, we define an agency as follows.

Definition 1. Let k, T ∈ Z+ be positive integers. k denotes the number of sales-
men, or agents, and T denotes the joint time horizon. Let ai(t) ∈ V be the node
where agent i is supposed to be at time t, where i = 1, 2, · · · , k, and t = 0, 1, · · · , T .
This is called a (feasible) agency with time horizon T and k agents if for any fixed
i, ai(t) is a tour, and there is no value of t and agents i 6= j that crash in a node
i.e. ai(t) = aj(t), or crash in an edge i.e. ai(t) = aj(t + 1), ai(t + 1) = aj(t). In
practical terms, this may be understood as a set of agents moving along the unit-
length edges of the graph so that they avoid crashing into each other, each of them
manages to visit every node at least once, before finally arriving at their respective
nodes of origin.
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We may investigate various question related to this notion of an agency – the
one that we would consider in this talk are, given an input graph, to maximize k
and minimize T . Note that k ≤ n ≤ T , so our goal may be to try to get both k
and T as close to T as possible. There may be various objectives: 1. minimize
T/k, 2. maximize k, 3. minimize α(G) := max{T/n, n/k} ≥ 1. It is a hard
problem to solve any of these optimization problems, because of the following easy
observation.

Theorem 1. For a given graph there is an agency with α = 1 if and only if there
is a Hamiltonian cycle.

Because of the following observation, any bound on T/k or α will also imply a
bound on the value of the other one.

Claim 1. For any graph and any agency we have
√
T/k ≤ α ≤ T/k.

We may consider the question of bounding T/k or α if the graph is assumed to
be a tree, and obtain the following lower bound.

Theorem 2. If G is a tree, then for any feasible agency we have T/k ≥ 4 and
α ≥ 2.

Theorem 3. If G is a tree, then for a feasible agency with T = 2n− 2 we have
T/k ≥ 5 and α ≥

√
5.

An infinite family of trees, and an agency constructed show that these bounds
on k/T are tight. Those examples will give a nice upper bound on α, too, but not a
tight bound: in case of Theorem 2 the examples only achieve α = 16

7 +o(1) ≈ 2.285
which is greater than the lower bound of 2, and in case of Theorem 3 the examples
only achieve α = 2.5 + o(1) which is greater than the lower bound of

√
5 ≈ 2.236.

Based on a result of Boyd, Iwata, Takazawa, 2013, if n ≥ 5 then in a 3-regular
3-connected graph there is a 2-factor with only cycles of length at least 5. Using
this result we can prove the following constructive bound, which holds for all 3-
regular 3-connected graphs, but is in no way tight, it is just to claim that an
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agency with this many agents and that value of time horizon may be constructed
in polynomial time.

Theorem 4. If G = (V,E) is a 3-regular 3-edge-connected graph, then there is an
agency (with parking) such that T/k = 4, T = 2n, k = n/2 and α = α1 = α2 = 2.

Further, we may consider optimization problems, that is, given an input graph,
optimize either of the above mentioned objectives. We would mention the following
two observations that are to find out if the extreme case of k = n may be achieved
for the given input graph, either with parking, or without, and without any bound
on the time horizon.

Theorem 5. There is a feasible agency with parking of k = n agents if and only
if G is 2-edge-connected.

Theorem 6. There is a feasible agency without parking of k = n agents if and
only if the edges of G which are contained in a 2-factor form a connected spanning
subgraph.

Both of these properties can be checked for in polynomial time.
There are many open questions concerning exact optimization and approxima-

tion of α or T/k, including the following ones. For any input graph, minimize α,
or minimize T/k. Do this under the assumption that the input graph is a tree,
or under some connectivity constraint. Find a constant lower bound on T/k for
trees with no nodes of degree 2. (Actually, as of time of writing of this report, this
latter question seems to have been resolved during the Oberwolfach workshop.)
Can we say anything about the similar definition for directed graphs?

On bounds on the Shannon capacity

Alexander Schrijver

(joint work with Sven Polak)

In our lecture, we survey and discuss old and new results of Shannon, Rosenfeld,
Lovász, Haemers, Blasiak, Shanmugan, Asteris, Dimakis, Zuiddam, Bukh, and
Cox on the Shannon capacity, and consider a few observations and questions.

The Shannon capacity Θ(G) of an (undirected) graphs is defined as follows ([8]).
For graphs G and H , the graph G ⊠ H has vertex set V (G) × V (H), where two
distinct vertices (u, v) and (u′, v′) are adjacent in G ⊠ H if and only if u and u′

are equal or adjacent in G and v and v′ are equal or adjacent in H . Then

Θ(G) := sup
d∈N

d

√
α(Gd),

where Gd is the d-th power of G with respect to ⊠.
Trivially, α(G) ≤ Θ(G) for any graph G. Shannon [8] showed that Θ(G) is

upper bounded by the clique cover number χ(G) of G, which is the minimum
number of cliques needed to cover V (G). Rosenfeld [6] showed that the bound
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χ(G) can be sharpened to the fractional clique cover number χ∗(G) of G, which is
defined as

χ∗(G) = min{
∑

C clique

y(C) | y : {cliques} → R+; ∀v ∈ V (G) :
∑

C∋v

y(C) ≥ 1}.

So α(G) ≤ Θ(G) ≤ χ∗(G). Since α(G) = χ(G) for each perfect graph G, we know
Θ(G) = α(G) for each perfect graph G. For the smallest imperfect graph C5 the
facts that α(C2

5 ) = 5 and χ∗(C5) =
5
2 then yield

√
5 ≤ Θ(C5) ≤

5

2
.

It was Lovász [4] who showed that in fact Θ(C5) =
√
5, by introducing the following

upper bound ϑ(G) on Θ(G):

Θ(G) ≤ ϑ(G) := max{1TX1 | X ∈ RV (G)×V (G) positive semidefinite;

tr(X) = 1; ∀uv ∈ E(G) : Xu,v = 0}.
As Lovász also showed that ϑ(C5) =

√
5, we know Θ(C5) =

√
5.

Lovász [4] left as open question whether Θ(G) = ϑ(G) would hold for each
graph G. Haemers [3] answered this question negatively. He introduced, for any
field F, the following upper bound hF on Θ(G):

hF(G) := min{rank(X) | X ∈ FV (G)×V (G); ∀v : Xv,v = 1; ∀uv 6∈ E(G) : Xu,v = 0}.
Haemers showed that if G is the Schläfli graph (a strongly regular graph on 27
vertices), then

Θ(G) ≤ hR(G) = 7 < 9 = ϑ(G).

Blasiak [1] (cf. [7]) sharpened Haemers’ bound by introducing the fractional
Haemers bound h∗

F(G):

Θ(G) ≤ h∗
F(G) = inf{ rank(X)

k
| k ∈ N;X ∈ (Fk×k)V (G)×V (G);

∀v ∈ V (G) : Xv = Ik; ∀uv 6∈ E(G) : Xu,v = 0}.
So X is a block matrix with each block being a k× k matrix. The rank of X then
is the rank of the corresponding (k × V (G))× (k × V (G)) matrix.

Zuiddam [10] introduced a collection ∆ of upper bounds for the Shannon ca-
pacity, proving that for each graph G, at least one of these upper bounds is tight.
More precisely, Zuiddam derived the following ‘sup-min’ relation from Strassen’s
semiring theorem [9]:

Θ(G) = min
f∈∆

f(G),

where
∆ := {f : {graphs} → R | ∀ graphs G,H :

f(G ⊔H) = f(G) + f(H),

f(G⊠H) = f(G)f(H),

if ∃ homomorphism G→ H, thenf(G) ≤ f(h),

f(K1) = 1}.
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Here G⊔H is the disjoint union of G and H . Moreover, an homomorphism G→ H
is a function h : V (G) → V (H) such that if u and v are distinct nonadjacent
vertices of G, then h(u) and h(v) are distinct nonadjacent vertices of H .

With LP-duality it can be shown that the function χ∗ indeed belongs to ∆.
Using SDP-duality, Lovász [4] showed that ϑ also has the properties that make ϑ
belong to ∆. With as clever argument, Bukh and Cox [2] showed that for each
field F the function h∗

F belongs to ∆ (basically using the duality of ‘maximally
independent’ and ‘minimally spanning’ in linear spaces).

Note that the set ∆ forms a metrizable compact space, so that each sequence
of its elements has a convergent subsequence. For instance, the sequence h∗

F2
, h∗

F3
,

h∗
F5
, . . . has a convergent subsequence. (It was shown by Bukh and Cox [2] that

these h∗
Fp

are all distinct for distinct primes p.) Similarly with other sequences we

might obtain new elements of ∆.
Another topological space is obtained by defining the following semimetric d on

the set {graphs}:

d(G,H) := max
f∈∆
|f(G)− f(H)|

for graphs G and H . The completion of this semimetric space might create ‘graph
limits’. We were however not able to construct a nonconvergent Cauchy sequence
of graphs in this semimetric space. Potential candidates to yield nonconvergent
Cauchy sequences might be the following graphs Ck,n, for k, n ∈ N: Ck,n has vertex
set V (Cn) (where Cn is the circuit with n vertices), with vertices u, v ∈ V (Cn)
being adjacent in Ck,n if and only if the distance of u and v in Cn is less than

k. One can show that d(Ck,n, Ck′,n′) = 0 ⇐⇒ n
k = n′

k′
. (This implies that

Θ(Ck,n) = Θ(Ck′,n′) and ϑ(Ck,n) = ϑ(Ck′,n′) if n
k = n′

k′
.) Now the question is

whether the function n
k 7→ Ck,n from {r ∈ Q | r ≥ 2} to the space of graphs

is continuous. If so, any convergent sequence n1

k1
, n2

k2
, n3

k3
, . . . of rationals will give

a Cauchy sequence Ck1,n1
, Ck2,n2

, Ck3,n3
, . . .. If n1

k1
, n2

k2
, n3

k3
, . . . has an irrational

limit γ, the sequence Ck1,n1
, Ck2,n2

, Ck3,n3
, . . . has no limit in {graphs}, so we

create a ‘graph limit’ being not a graph (as χ∗(G) is rational for each graph G,
while χ∗(Cki,ni

) = ni

ki
→ γ).

So far, we [5] could only prove that the function n
k 7→ Ck,n is continuous at

integer values of n
k ≥ 3, by showing that for each integer q ≥ 3 and each d ∈ N:

max
n
k
<q

α(Cd
k,n) =

q − 2

q − 1
qd +

1

q − 1
.

This implies supn
k
<q Θ(Ck,n) = q, which can be seen as the main ingredient in

proving continuity at q.
We finally mention some (of the many) open problems. Is ∆ connected? Find

f ∈ ∆ with f(C7) = Θ(C7). Is limp→∞ h∗
Fp

= h∗
Q ? Is limp→∞ h∗

Fp
= h∗

Q
? (p

running over primes.) Is the function n
k 7→ Θ(Ck,n) continuous? Is the function

n
k 7→ ϑ(Ck,n) continuous? Similar questions can be asked for Kneser graphs.



3006 Oberwolfach Report 50/2018

References

[1] A. Blasiak, A Graph-Theoretic Approach to Network Coding. Dissertation, Cornell Univer-
sity, Ithaca, N.Y., 2013 (https://ecommons.cornell.edu/handle/1813/34147).

[2] B. Bukh, C. Cox, On a fractional version of Haemers’ bound. ArXiv:1802.00476, 2018.
[3] W. Haemers, On some problems of Lovász concerning the Shannon capacity of a graph.

IEEE Transactions on Information Theory IT-25 (1979), 231–232.
[4] L. Lovász, On the Shannon capacity of a graph. IEEE Transactions on Information Theory

IT-25 (1979), 1–7.
[5] S. Polak, A. Schrijver, New lower bound on the Shannon capacity of C7 from circular graphs.

ArXiv:1808.07438, 2018 (Information Processing Letters, to appear).
[6] M. Rosenfeld, On a problem of C.E. Shannon in graph theory. Proceedings of the American

Mathematical Society 18 (1967), 315–319.
[7] K. Shanmugam, M. Asteris, A.G. Dimakis, On approximating the sum-rate for multiple-

unicasts. 2015 IEEE International Symposium on Information Theory (ISIT), pp. 381–385,
2015 (arXiv:1504.05294).

[8] C.E. Shannon, The zero error capacity of a noisy channel. IRE Transactions on Information
Theory IT-2 (1956), 8–19.

[9] V. Strassen, The asymptotic spectrum of tensors. Journal für die reine und angewandte
Mathematik 384 (1988), 102–152.

[10] J. Zuiddam, The asymptotic spectrum of graphs and the Shannon capacity.
ArXiv:1807.00169, 2018.

A Tale of Santa Claus, Hypergraphs and Matroids

Thomas Rothvoss

(joint work with Sami Davies, Yihao Zhang)

A well-known problem in scheduling and approximation algorithms is the Santa
Claus problem. Suppose that Santa Claus has a set of gifts, and he wants to
distribute them among a set of children so that the least happy child is made as
happy as possible. Here, the value that a child i has for a present j is of the
form pij ∈ {0, pj}. The only known polynomial time algorithm by Annamalai
et al. gives a 12.33-approximation algorithm and is based on a modification of
Haxell’s hypergraph matching argument. This factor compares to the value of an
exponential size configuration LP.

Formally, the Santa Claus problem takes as input a set M of children, a set J
of gifts, and values pij ∈ {0, pj} for all i ∈M and j ∈ J . In other words, a child is
only interested in a particular subset of the gifts, but then its value only depends
on the gift itself. The goal is to find an assignment σ : J →M of gifts to children
so that mini∈M

∑
j∈σ−1(i) pij is maximized.

The first major progress on this problem is due to Bansal and Sviridenko [4],
who showed a O(log logn/ log log logn)-approximation based on rounding a con-
figuration LP. The authors of [4] also realized that in order to obtain a O(1)-
approximation, it suffices to answer a purely combinatorial problem: show that
in a uniform bipartite hypergraph with equal degrees on all sides, there is a left-
perfect matching that selects a constant fraction of nodes from original edges. This
question was affirmatively answered by Feige [5] who proved a large unspecified

https://ecommons.cornell.edu/handle/1813/34147
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constant using the Lovász Local Lemma repeatedly. Then Asadpour, Feige and
Saberi [1] showed that one can answer the question of [4] by using a beautiful the-
orem on hypergraph matchings due to Haxell [6]; in fact their bound of 4 on the
integrality gap of the configuration LP for Santa Claus has not been improved1.

A hypergraph H = (X∪̇W, E) is called bipartite if |e∩X | = 1 for all hyperedges
e ∈ E . A (left-) perfect matching is a set of hyperedges F ⊆ E that are disjoint
but cover each node in X . In general, finding perfect matchings in even bipartite
hypergraphs is NP-hard, but there is an intriguing sufficient condition:

Theorem 1 (Haxell [6]). Let H = (X∪̇W, E) be a bipartite hypergraph with |e| ≤ r
for all e ∈ E. Then either H contains a left-perfect matching or there is a subset
C ⊆ X and a subset U ⊆ W so that all hyperedges incident to C intersect U and
|U | ≤ (2r − 3) · (|C| − 1).

Unlike Hall’s Theorem, Haxell’s proof is non-constructive and based on a pos-
sibly exponential time augmentation argument. Annamalai, Kalaitzis and Svens-
son [3] gave a non-trivially modified version of Haxell’s argument for Santa Claus,
which runs in polynomial time and gives a 12.33-approximation2. In fact our al-
gorithm will borrow a lot from [3]. However, through a much cleaner argument we
obtain a result that works in a more general matroid setting and implies a better
approximation of 6 + ε for Santa Claus.

Our contributions. Let M = (X, I) be a matroid with groundset X and a
family of independent sets I ⊆ 2X . Recall that a matroid is characterized by
three properties:

(i) Non-emptyness : ∅ ∈ I;
(ii) Monotonicity: For Y ∈ I and Z ⊆ Y one has Z ∈ I;
(iii) Exchange property: For all Y, Z ∈ I with |Y | < |Z| there is an element

z ∈ Z \ Y so that Y ∪ {z} ∈ I.
The bases B(M) of the matroid are all inclusion-wise maximal independent sets.
The cardinalities of all bases are identical, with size denoted as rank(M). The
convex hull of all bases is called the base polytope, that is PB(M) := conv{χ(S) ∈
{0, 1}X | S is basis}, where χ(S) is the characteristic vector of S.

Now consider a bipartite graph G = (X∪̇W,E) with the ground set X on one
side and a set of resources W on the other side; each resource j ∈ W has a size
pj ≥ 0. In a problem that we call Matroid Max-Min Allocation, the goal is to
find a basis S ∈ B(M) and an assignment σ : W → S with (σ(j), j) ∈ E so that
mini∈S

∑
j∈σ−1(i) pj is maximized. To the best of our knowledge, this problem has

not been studied before. In particular if T ≥ 0 is the target objective function
value, then we can define a linear programming relaxation Q(T ) as the set of

1Note that the conference version of [1] provides a factor of 5, which in the journal version [2]
has been improved to 4.

2To be precise they obtain a (6 + 2
√

10 + ε)-approximation in time n
O( 1

ε2
log( 1

ε
))
.
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vectors (x, y) ∈ RX
≥0 × RE

≥0 satisfying the constraints

x ∈ PB(M);
∑

j∈N(i)

pjyij ≥ T · xi ∀i ∈ X ;

y(δ(j)) ≤ 1 ∀j ∈W ; yij ≤ xi ∀(i, j) ∈ E.

Here, the decision variable xi expresses whether element i should be part of the
basis, and yij expresses whether resource j should be assigned to element i. We
abbreviateN(i) as the neighborhood of i and y(δ(j)) is shorthand for

∑
i:(i,j)∈E yij .

Then our main technical result is:

Theorem 2. Suppose Q(T ) 6= ∅. Then for any ε > 0 one can find (x, y) ∈
Q((13 − ε) · T ) so that x ∈ {0, 1}X in time nΘε(1), where n := |X | + |W |. This
assumes that membership in the matroid can be tested in time polynomial in n.

Previously this result was not even known with non-constructive methods. Note
that the vector y in the claim might be fractional. Using standard arguments one
can then show the following:

Theorem 3. Suppose Q(T ) 6= ∅. Then for any ε > 0 one can find (x, y) ∈
Q
(
(13 − ε) · T − maxj∈W pj

)
with both x and y integral in time nΘε(1), where

n := |X | + |W |. This assumes that membership in the matroid can be tested in
time polynomial in n.

Although, this algorithm does not necessarily imply a multiplicative approxi-
mation for Matroid Max-Min Allocation, we see it is still useful by applying it to
the Santa Claus problem:

Theorem 4. The Santa Claus problem admits a (6 + ε)-approximation algorithm
in time nΘε(1).

In fact, once we have Theorem 3 the reasoning is simple: for a suitable threshold
0 < δ < 1, call a gift j large if pj ≥ δ ·OPT and small otherwise. Then the family
of sets of children that can get assigned large gifts forms a matchable set matroid.
We apply Theorem 3 to the co-matroid of the matchable set matroid. Then we
obtain a basis S := {i ∈M | xi = 1}, which contains the children not receiving a
large gift. These children can receive small gifts of total value (13 − ε− δ) · OPT .

Setting δ := 1
6 implies the claim. Note the approximation factor 6 + ε will be

with respect to a natural, compact linear program with O(n2) many variables
and constraints. The smallest LP that was previously known to have a constant
integrality gap was the O(n3)-size LP of [7].
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Sticky Brownian Rounding and its Applications to Constraint
Satisfaction Problems

Mohit Singh

(joint work with Abbas-Zadeh, Nikhil Bansal, Guru Guruganesh, Sasho Nikolov,
Roy Schwartz)

Sticky Brownian Rounding and its Applications to Optimization Problems We
present a new general and simple method for rounding semi-definite programs,
based on Brownian motion. Our approach is inspired by recent results in al-
gorithmic discrepancy theory. We develop and present tools for analyzing our
new rounding algorithms, utilizing mathematical machinery from the theory of
Brownian motion, complex analysis, and partial differential equations. We will
present our method to several classical problems, including Max-Cut, Max-di-
cut and Max-2-SAT, and derive new algorithms that are competitive with the
best known results. In particular, we show that the basic algorithm achieves
0.861-approximation for Max-cut and a natural variant of the algorithm achieve
0.878-approximation, matching the famous Goemans-Williamson algorithm [1] up
to first three decimal digits.
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LP Relaxation and Tree Packing for Minimum k-Cut

Chandra Chekuri

(joint work with Kent Quanrud, Chao Xu)

Karger used spanning tree packings to derive a near linear-time randomized al-
gorithm for the global minimum cut problem as well as a bound on the number
of approximate minimum cuts. This is a different approach from his well-known
random contraction algorithm. Thorup developed a fast deterministic algorithm
for the minimum k-cut problem via greedy recursive tree packings. We revisit
properties of an LP relaxation for k-cut proposed by Naor and Rabani. We show
that the dual of the LP yields a tree packing, that when combined with an upper
bound on the integrality gap for the LP, easily and transparently extends Karger’s
analysis for mincut to the k-cut problem. We will also discuss a simple proof of
the integrality gap of LP relaxation and some of its other properties.

Subset selection in sparse matrices

Santanu S. Dey

(joint work with Alberto Del Pia, Robert Weismantel)

In statistics, subset selection is also known as feature selection, attribute selection,
variable selection or variable subset selection. It is the problem of selecting a subset
of relevant variables (or features) to recover a predictor variable. Formally, subset
selection is a nonlinear optimization problem of the following form:

min ‖Mx+ cµ− b‖2
s.t. x ∈ Rn, µ ∈ R

|supp(x)| ≤ σ.
(1)

In this formulation, x is the d-vector of unknowns and µ is a scalar variable. The
remaining characters stand for data in the problem instance: M is an m × d
matrix, b and c are m-vectors, and σ is a natural number. Finally, ‖·‖2 denotes
the Euclidean norm. Note that in standard formulations of the subset selection
problem it is often assumed that c is the vector of all ones. It is often assumed
that the columns of M and b are mean-centered (i.e., the sum of entries in the
columns of M and in b is zero), in which case it can be shown that the optimal
value of µ is zero. Since we want to exploit the sparsity structure of M , we do not
assume mean-centering and therefore explicitly retain the µ variable.

We are interested in identifying sparsity conditions on the original data matrix
M that allow us to solve subset selection in polynomial time. We consider matrix
M obtained by adding a fixed number of extra columns (k) to a block diagonal
matrix, where each block (the Ai matrices below) involves a fixed number of
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variables (θ), i.e. a matrix of the following form:

M =




A1 | |
. . . c1 · · · ck

Ah | |


 .(2)

Formally our result is then stated as follows.

Theorem 1. Problem (1) with matrix of the form (2) can be solved in polynomial
time for varying n (the total number of variables), provided that k and θ are fixed
numbers.

Our approach relies on tools from discrete geometry and an analysis of the prox-
imity of optimal solutions with respect to two consecutive “support-conditions”
|supp(x)| ≤ s and |supp(x)| ≤ s+ 1.

Scanning integer points with lex-cuts: A finite cutting plane algorithm
for integer programming over compact constraint set

Michele Conforti

The area of nonlinear integer programming is rich in applications but quite chal-
lenging from a computational point of view. The tools that are mainly used are
sophisticated techniques that exploit relaxations, constraint enforcement (e.g., cut-
ting planes) and convexification of the feasible set. Reformulations in an extended
space and cutting planes for nonlinear integer programs have been investigated
and proposed for some time. This line of research mostly provides a nontrivial
extension of the theory of disjunctive programming to the nonlinear case. To the
best of our knowledge, these results are obtained under some restrictive conditions:
typically, convexity of the feasible set S, or S ⊆ {0, 1}n (these cases cover some
important areas of application).

In this paper we focus on linear inequalities that we use as cuts. As the convex
hull of S ∩ Zn is a polytope when S ⊆ Rn is compact, a finite number of linear
inequalities suffices for its characterization, and only n such inequalities determine
an optimal point. Furthermore, some relaxations are polyhedral: most notably,
Dadush, Dey and Vielma proved that if S is a compact and convex set, then its
Chvátal closure is a polytope (whereas this is not the case for the split closure of
S).

However, nonlinear inequalities are fundamental in the characterization of the
convex hull of some nonlinear sets that strengthen the original formulation. For
instance, Burer and Kılınç-Karzan, extending several results, show that the con-
vex hull of the intersection of a second-order-cone representable set and a single
homogeneous quadratic inequality can be described by adding a single nonlinear
inequality, defining an additional second-order-cone representable set.

In this paper we present a finite cutting plane algorithm for problems of the
form

(1) min{cx : x ∈ S ∩ Zn},
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where S is a compact subset of Rn (not necessarily convex or connected) and
c ∈ Zn. This algorithm uses a new family of cutting planes which includes the
Chvátal–Gomory cuts, but neither it contains nor is contained in the family of split
cuts. Furthermore, these cuts define a natural but nontrivial polyhedral relaxation
of S ∩ Zn.

The cutting planes employed in our algorithm are obtained as follows. We
consider the integer points in a unimodular cone K, ordered by a lexicographic
rule, associated with a lattice basis. To each integer point x in K, we associate a
family of inequalities (lex-cuts) that defines the convex hull of the integer points
in K that are not lexicographically smaller than x.

Our algorithm recursively solves optimization problems of the form min{cx :
x ∈ S ∩ P}, where P is a polyhedron, and we assume that an algorithm for
problems of this type is available as a black box. Note that when S is a convex
set, this is a convex program that is (in principle) efficiently solvable. To the best
of our knowledge, our work represents the first attempt to define a finite cutting
plane algorithm for the general problem (1) with S compact.

Deriving a finite cutting plane algorithm that uses a well defined family of
inequalities does not seem to be straightforward. The oldest and most notable
example is Gomory’s finite cutting plane algorithm for bounded integer programs
based on fractional cuts. Balas, Ceria and Cornuéjols give a finite cutting plane
algorithm for mixed 0/1 problems based on lift-and-project cuts. In those algo-
rithms, as well as in the method proposed here, crucial to the detection of a cutting
plane is the computation of a lexicographically optimal solution.

Open Problem: Maximum weighted assignment problem

Amitabh Basu

We consider the maximum weighted assignment problem on the complete bipartite
graph with n vertices. The weight matrix will be denoted by W ∈ Rn×n. The
Hungarian Algorithm solves the problem in O(n3) time. The question is whether
one can do better if the rank ofW is small. In particular, if the rank of W is 1, i.e.,
W = uvT for vectors u, v ∈ Rn, then the problem can be solved in O(n logn) time.
This is because the weight of any edge between nodes i and j is given by uivj .
Thus, to maximize the sum

∑n
i=1 uivσ(i) over all permutations σ of {1, . . . , n},

one simply sorts the ui and vj values and matches the values in descending order.
We do not know whether a better running time can be achieved even in the case
when the rank of W is 2. We wonder if there is an algorithm that runs in time
O(nr2 logn).
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Open Problem: Approximation and Integrality Gap for Linear k-Cut

Chandra Chekuri

In the Linear-k-Cut problem we are given a directed graph G = (V,E) and k
distinct terminal nodes s1, s2, . . . , sk. The goal is to remove the minimum number
of edges from G to ensure that si does not have a path to sj for all i < j. Note
that k = 2 to corresponds to the standard s-t mincut problem and is polynomial-
time solvable. Linear k-Cut is a special case of the well-known Multicut problem.
When k = 3 the problem is already NP-Hard and APX-Hard. Interestingly the
approximability of the k = 3 case, assuming the Unique Games Conjecture (UGC)

is
√
2 [2]. For arbitrary k an O(log k) approximation can be easily derived and

this algorithm also establishes an O(log k) upper bound on the integrality gap of
the natural LP relaxation.

The main open question is whether the integrality gap of the LP relaxation
is O(1) for all k or whether it is ω(1). Under UGC [1] shows that for all fixed
k, the integrality gap of the LP coincides with the hardness of approximation.
See [1] for additional discussion and related results including its connection to the
Skew-Multicut problem.
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Open Problem: Diameter Bounds for Well-Conditioned Polyhedra

Daniel Dadush

A major open question in polyhedral theory is whether the diameter of the 1-
skeleton of a polyhedron is bounded as a polynomial in the number of facets n and
dimension d, known as the polynomial Hirsch conjecture. Recall that this diameter
here is the usual graph diameter of the graph induced by the vertices and edges of
a polyhedron. The current best worst-case bounds we have for this problem are
the O(2dn) bound of Barnette and Larman [1, 2], and the quasi-polynomial bound
of nO(log d) by Kalai and Kleitman [3] which was recently improved by Todd [6]
and Sukegawa [8].

To make progress on this question, a useful line of research has been to examine
classes of “well-conditioned” polyhedra. For polyhedra with totally unimodular
constraint matrices Dyer and Frieze [4] gave the first polynomial bound. These
bounds have recently been extended and improved to the cases where the subde-
terminants of the constraint matrix are all bounded in absolute value by ∆ [5, 7],
where the best known bound is O(d3∆2 ln(d∆)) [7]. This last bound was derived
as a consequence of a more general theorem, which says that if the normal cones
of a d-dimensional polyhedron are all τ -wide, then the diameter is bounded by
O(d/τ ln(1/τ)). A normal cone is τ -wide if it contains a ball of radius τ centered
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on the unit sphere. The τ -wideness condition intuitively asks for the facets of the
polyhedron to always meet at “sharp angles”. The proof of this diameter bound is
in fact constructive. More precisely, for two vertices v, w, one first picks objective
c, d of unit length, respectively maximized at v, w and which are at distance τ
from the boundary of the respective normal cones. One now picks an additional
uniformly chosen objective e on the unit sphere and uses it to construct the path
from v to w as follows: follow the sequence of maximizers obtained as one linearly
interpolates c → e, followed by the same for e → d. This path is the union of
two random paths followed by the so-called shadow vertex simplex method, which
in [7] was shown to induce a short expected path when the normal cones are all
wide.

A natural question to ask is whether one really needs all the normal cones to
be wide in the above setting. Indeed, one would expect that a suitable notion of
the normal cones being wide on “average” should suffice. Thus, the open problem
is to derive such a notion. One natural target, which seems to encapsulate this
problem, is to prove a diameter bound for random Gaussian polytopes. That is,
for a random polytope of the form Ax ≤ 1, where A ∈ Rn×d is random matrix
with i.i.d. N(0, 1) entries.
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Open Problem: Arborescences and NP-hardness

Volker Kaibel

Problem 1. (Why) is the following problem NP-hard?
Given an undirected graph G = (V,E) and for each node r ∈ V a cost vector

cr ∈ RA (where A is the set of all 2|E| directed versions of edges of G), find a span-
ning tree T ⊆ E that minimizes

∑
r∈V cr(T r), where T r ⊆ A is the arborescence

rooted at r induced by T .
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Motivation: This optimization problem is equivalent to the integer optimization
problem over Martin’s extended formulation of the spanning tree polytope.

Problem 2. (Why) is the following problem NP-hard?
Given a directed graph D = (V,A), a root node r ∈ V , and for each node

v ∈ V \ {r} a cost vector cv ∈ RA, find an arborescence T ⊆ A that minimizes∑
v∈V \{r} c

v(P v), where P v ⊆ T is the r-v-path in T .

Motivation: This optimization problem is equivalent to the integer optimization
problem over Wong’s extended formulation of the spanning tree polytope.

Open Problem: Sums of powers

Neil Olver

Let r1, r2, . . . , rn be given integers. Is there an algorithm running in time polyno-
mial in the input size (which is O(

∑n
i=1 log(|ri|+ 1)) to decide if

n∑

i=1

(
2
3

)ri
> 1 ?

If 2
3 is replaced by an integer or the inverse of an integer, this can be done easily.

More generally, one can ask whether

n∑

i=1

βiα
ri > 0 ,

for α a fixed rational, and β1, . . . , βn being rationals given as part of the input.

Open Problem: Optimization over degree sequences

Shmuel Onn

Given k, n,m and univariate functions f1, . . . , fn, consider the problem of finding a
k-hypergraph on [n] with m edges maximizing

∑n
i=1 fi(di) where di is the degree of

vertex i. In a recent paper (Optimization over Degree Sequences, by Deza, Levin,
Meesum, Onn, SIAM Journal on Discrete Mathematics 32:2067–2079, 2018), we
prove (among other results) that over graphs (that is, for k = 2), if all the functions
are the same (that is, f1 = · · · = fn = f for some f), then the problem is solvable
in polynomial time. What is the complexity over graphs if the functions are not
necessarily identical?
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Open Problem: Matroids with cardinality constraints on the
intersection

Britta Peis

(joint work with Stefan Lendl, Björn Tauer)

We consider the following problem:

• Given: Two matroids M1 = (E,B1), and M2 = (E,B2) on a common
ground set E with base sets B1 and B2, two cost functions c1, c2 : E → R

on E, and some integer k.
• Task: Find two bases X ∈ B1 and Y ∈ B2 minimizing c1(X)+ c2(Y ) sub-
ject to the constraint |X ∩ Y | = k. (Here, as usual, c1(X) =

∑
e∈X c1(e).)

Remark 1. If constraint |X ∩ Y | = k is replaced by either |X ∩ Y | ≤ k, or
|X ∩ Y | ≥ k, the associated optimization problems can be reduced to max-weight
matroid intersection.

Remark 2. The special case where B = B1 = B2 and lower bound constraint
|X ∩ Y | ≥ k, i.e.,

min{c1(X) + c2(Y ) | X,Y ∈ B, |X ∩ Y | ≥ k}
is known and studied under the name “recoverable robust matroid basis problem
under interval uncertainties” [1, 2].

Can the problem above, i.e., the one with equality constraint |X ∩ Y | = k, be
solved in (strongly) polynomial time, or is it NP-hard?
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Open Problem: Rainbow paths in edge-coloured graphs

Alexander Schrijver

Conjecture. Each simple k-regular properly k-edge-coloured graph has a rainbow
path of length k − 1.

Here a path is a rainbow path if all edges on it have different colours. For k ≥ 3,
the value k − 1 is best possible: for each k ≥ 3 there exists a simple k-regular
properly k-edge-coloured graph with no rainbow path of length k.

The conjecture is true for each k ≤ 11. This is shown as follows. Call a
(not necessarily regular) properly k-edge-coloured graph H a rainbow-bar if (i)
|V (H)| = k − 1, (ii) H has a rainbow Hamilton path, and (iii) for each rainbow
Hamilton path P in H , each end vertex v of P , and each colour c missing on P ,
H has an edge of colour c incident with v.
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It can be shown by computer that no rainbow-bar H exists with |V (H)| ≤ 10
(and of course ‘by hand’ for small values of |V (H)|). This implies the conjecture
for k ≤ 11. Indeed, by induction (by deleting all edges of one of the colours), G
has a rainbow path P of length k − 2. Let H be the subgraph of G induced by
V (P ). So |V (H)| = |V (P )| = k−1 and P is a rainbow Hamilton path in H . Since
|V (H)| ≤ 10, H is not a rainbow-bar. So there exist a rainbow Hamilton path Q
in H , an end vertex v of Q, and a colour c missing on Q such that v is not incident
with a c-coloured edge contained in H . So the c-coloured edge of G incident with
v extends Q to a rainbow path in G of length k − 1.

We finally mention that the conjecture with k − 1 replaced by ⌈ 23k⌉ holds true
for all k, as was shown by Babu, Sunil Chandran, and Rajendraprasad [1] (see [2]
for a short proof).
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Open Problem: Longest Kt-sequence Problem

Shin-ichi Tanigawa

(joint work with Katie Clinch, Bill Jackson)

For a positive integer n, let Kn be the complete graph on n vertices. Also, for a
graph G, let V (G) and E(G) denote the vertex set and the edge set, respectively.
We consider a sequence C = (C1, . . . , Ck) of edge sets in Kn. Such a sequence C is

said to be proper if Ci 6⊆
⋃i−1

j=1 Cj for every i, and C is said to be a Kt-sequence if
each Ci is the edge set of a copy of Kt.

The longest Kt-sequence problem is formulated as follows:

Problem 1. Given a positive integer n and F ⊆ E(Kn), compute

rt(F ) := min

{
|F ∪

k⋃

i=1

Ci| − k : a proper Kt-sequence {C1, . . . , Ck} in Kn

}

in polynomial time.

A related question is the following:

Conjecture 1 (Clinch-Jackson-Tanigawa). rt is submodular, and (E(Kn), rt)
forms a matroid.

We are especially interested in the case when t = 5. For t = 3, 4 the conjecture
is true. (If t = 2, it gives a trivial matroid in the sense that ∅ is the base.)

Fact 1. (E(Kn), r3) is the graphic matroid of Kn. (E(Kn), r4) is the generic
2-rigidity matroid of Kn.
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Our ambitious conjecture is that (E(Kn), r5) is the generic 3-rigidity matroid.

Open Problem: A special case of submodular function minimization

László Végh

Let r be the rank function on a ground set of a linear matroid on a ground set V ,
provided via an explicit representation over a field, and let z : V → R. Solving

min
S⊆V

r(S)− z(S)

is a special case of submodular function minimization. Is there a more efficient
algorithm for this special setting, by making use of the linear representation?

Open Problem: Linearly representable functions

László Végh

Let f be a polymatroid function on a ground set V : that is, integer valued, mono-
tone increasing, and submodular. Such a function is called linearly representable,
if for a field F and some integer n, there are linear subspaces Tv ⊆ Fn for each
v ∈ V , such that for any S ⊆ V , f(S) = rk(∪v∈STv).

Is the following statement true or false? Every linearly representable poly-
matroid function f can be written as a nonnegative linear combination of linear
matroid rank functions over the same field.

Open Problem: Rainbow Arborescence Problem

Yu Yokoi

For a directed graph G = (V,A), an arborescence is a directed spanning tree F ⊆ A
such that there is a special node r, called root, that has in-degree 0 and all other
nodes have in-degree 1. Our question is described as follows.

For a graph G = (V,A) with |V | = k + 1, suppose that A is partitioned into k
arborescences F1, F2, . . . , Fk. (|Fi| = k for each i = 1, 2, . . . , k.) Is there always an
arborescence F ∗ ⊆ A such that |F ∗ ∩ Fi| = 1 for every i = 1, 2, . . . , k?

Note that the assumption implies |A| = k2 and there exist parallel arcs. The
statement is true if the roots of all arborescences Fi are the same, which can be
shown by a simple extension algorithm.

Reporter: Sarah Morell, Yu Yokoi
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SWITZERLAND

Prof. Dr. Gerhard J. Woeginger

Lehrstuhl für Informatik I
RWTH Aachen
Ahornstrasse 55
52074 Aachen
GERMANY



Combinatorial Optimization 3023

Dr. Yu Yokoi

National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku
Tokyo 101-8430
JAPAN

Dr. Rico Zenklusen

Institut für Operations Research
Mathematik Department, HG G 21.3
ETH Zürich
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