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Introduction by the Organisers

This workshop continues a series of conferences on enveloping algebras, as the first
part of the title suggests, but the organisers and also the focus of these meetings
have changed over the years to reflect the newest developments in the field of
algebraic Lie theory. This year the main focus was on geometric and categorical
methods, with an eye to explicit and combinatorial formulas.

The meeting was attended by over 50 participants from all over the world, many
of them young researchers. Typically, we had three talks in the morning and two
in the afternoon, and with one exception all talks were given on the blackboard.
On Tuesday we had three shorter talks by younger mathematicians. Wednesday
afternoon was reserved for a walk to Sankt Roman and on Thursday evening there
was a little concert in the music room.

A particular highlight seemed to us the announcement by Geordie Williamson
of his joint work with Simon Riche giving a new formula for calculating characters
of simple G-modules in terms of periodic p-polynomials. This is part of a big
project solving the combinatorial questions of modular representation theory in
equal characteristic in terms of these p-variants of the Kazhdan-Lusztig polyno-
mials, which are themselves notoriously difficult to compute, but still give us new
information in small cases and a better conceptual picture. The proof might be
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interpreted as a particular instance of categorification. A talk of Achar on nearby
cycles in these strange world of parity sheaves might be seen as a further step
in this direction. Very remarkable was also a conjectural description presented
by Olivier Dudas of his joint work with Raphael Rouquier on decomposition ma-
trices of finite general unitary groups in non describing characteristics in terms
of Macdonald theory and the geometry of Hilbert schemes. Together these two
breakthroughs well illustrate the fundamental divide in modular representation
theory between the cases of equal and unequal characteristic as well as the funda-
mental impact of geometrical methods and categorification on both sides of this
divide.

Many lecturers presented work that involved affine Grassmannians and Satake
categories. By looking at combinatorics we do know that the dual group plays a
central role in many representation theoretic questions; but Satake and the affine
Grassmannian produce the only conceptual reason known currently. In this vein,
Michael Finkelberg explained joint work with Vasily Krylov culminating in proof
of Schieder’s conjecture for a Coulomb branch realization of the enveloping algebra
U(n), Harold Williams described his joint with Sabin Cautis, where they construct
a cluster structure for the coherent Satake theory based on factorization properties
of the Beilinson-Drinfeld Grassmannians, and Peng Shan presented joint work
with Eric Vasserot describing an isomorphism from the cohomology ring of affine
Springer fibres to the center of the category of deformed G1T -modules introduced
by Andersen, Jantzen and Soergel.

Also, quiver varieties are still a central object of study and a successful method
to advance on other problems, and were central in the talks of Kevin McGerty,
David Hernandez and Peter Tingley. Related to this is also the talk of Christof
Geiss. On the other hand, there is still much activity in studying the questions
we are all interested in from the combinatorial side: Leonardo Patimo reported on
new results on the q-coefficients of Kazhdan-Lusztig polynomials, Jacinta Torres
generalized her work on Lakshmibai-Seshadri galleries,

We are happy to conclude that the representation theory and geometry born
from the study of enveloping algebras is in excellent health and developed into a
thriving multifaceted domain of research closely interconnected with lots of other
areas of mathematics which are blooming at the moment.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Christof Geiß in the “Simons Visiting Professors” pro-
gram at the MFO.
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Abstracts

The nearby cycles formalism for parity sheaves

Pramod N. Achar

This talk is based on the results of [1, 6]. Let X be a complex algebraic variety,
and let f : X → C be an algebraic map. Consider the diagram

X0 X Xη

{0} C C×

i

f0 ff

j

fη

Let Db
c (X,C) be the derived category of constructible complexes of sheaves of

C-vector spaces on X . The classical (unipotent) nearby cycles functor is a functor

Ψf : Db
c (Xη,C)→ Db

c (X0,C)

Following [7, 12], this functor can be defined as

Ψf(F) = i∗j∗(f
∗
ηL∞ ⊗L F),

where L∞ is the (infinite-rank) pro-unipotent local system on C×. This functor
enjoys the following properties:

(1) The object Ψf(F) is equipped with a canonical unipotent automorphism
T : Ψf (F)→ Ψf (F), called the monodromy automorphism.

(2) The object Ψf (F) is constructible. (Since L∞ is not constructible, this
statement is nontrivial.)

(3) The functor Ψf is t-exact for the perverse t-structure.

If we take the logarithm of the operator T , we can replace (1) above by:

(1′) The object Ψf(F) is equipped with a canonical nilpotent endomorphism
N : Ψf(F)→ Ψf(F).

Here are some ways in which one might hope to generalize this theory:

• One can replace ordinary constructible sheaves by mixed sheaves—either
mixed Hodge modules or mixed ℓ-adic sheaves. In both settings, the “log-
arithm of monodromy” becomes a map of weight 2, i.e., we have a map

N : Ψf (F)→ Ψf (F)(−1).
• One can replace constructible C-sheaves by constructible k-sheaves, where
k is a field of positive characteristic. In this case, “logarithm” no longer
makes sense, but properties (1), (2), and (3) still hold.

A third setting where one might want to have a nearby cycles formalism is that
of the mixed modular derived category from [4]. This notion is based on the theory
of parity sheaves [10], and it exists and behaves well only under very restrictive
circumstances, such as on flag varieties. Nevertheless, it has found important appli-
cations in a number of recent advances in modular geometric representation theory



3086 Oberwolfach Report 52/2018

(see, for instance, [5, 3]). Building on these results, it has long been expected that
there should be a mixed modular analogue of Gaitsgory’s construction of central
sheaves on the affine flag variety [9]. This expectation is the main motivation to
look for a nearby cycles formalism for parity sheaves.

The principal difficulty is that it is rather difficult to even define a sheaf functor
on Dmix(X, k) if its classical version does not send parity sheaves to parity sheaves.
Even worse, the classical nearby cycles construction involves the nonconstructible,
nonsemisimple local system L∞. The framework of [10, 4] does not allow for
nonconstructible objects or for nonsemisimple local systems.

The goal of this talk is to explain a way around these difficulties. A key technical
tool in [1] is a new category Dmix

mon(X, k), called the monodromic derived category.
This category (whose definition is closely modeled on that of the “free-monodromic
category” in [2]) is still defined in terms of the homological algebra of parity
sheaves, but it does allow both nonconstructible objects and nonsemisimple local
systems. One preliminary result of [1] is the existence of a fully faithful functor

Mon : Dmix(X, k)→ Dmix
mon(X, k).

Its image is precisely the subcategory of constructible objects.
Under some assumptions on X , the paper [1] also defines a functor

J : Dmix
Gm

(X, k)→ Dmix
mon(X, k)

that can be thought of as a parity-sheaf analogue of the operation f∗
ηL∞ ⊗L (−).

Its output is always nonconstructible, and is equipped with a endomorphism N of
weight 2.

Theorem ([1]). For any F ∈ Dmix
Gm

(Xη, k), the object i∗j∗J (F) is constructible.

The main content of [1] is a definition, rather than a theorem. Thanks to the
result above, it makes sense to define a functor

Ψf : Dmix
Gm

(Xη, k)→ Dmix(X0, k) by Ψf (F) = Mon−1(i∗j∗J (F)(1)).
(The (1) is a Tate twist that is included as a normalization.) It comes with a
canonical nilpotent endomorphism

N : Ψf (F)→ Ψf (F)(−1).
This map plays the same conceptual role as the “logarithm of the monodromy” in
the classical setting, but here, it is not the logarithm of anything. (When k has
positive characteristic, it does not make sense to exponentiate N .) It is reasonable
to expect Ψf to be t-exact for the perverse t-structure, but this remains conjectural
at the moment.

In the companion paper [6], L. Rider and I explicitly computed Ψf(k) in the
mixed modular derived category in two important and related settings:

(1) X = Cn, and f : X → C is the function f(x1, . . . , xn) = x1 · · ·xn.
(2) X is the “global Schubert variety” associated to the first fundamental

coweight of the group PGLn. This variety comes equipped with a map
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to C. Its generic fibers are isomorphic to Pn−1, and its special fiber is
identified with a certain closed subset of the affine flag variety of PGLn.

In the former case, we obtained results that closely resemble known facts about
the classical nearby cycles functor for mixed ℓ-adic sheaves [11, 13].

The latter case is the first nontrivial example where one might hope to obtain
instances of Gaitsgory’s central sheaves. The explicit objects obtained in [6] as the
nearby cycles sheaves on the affine flag variety were discovered independently by
Elias [8] from a different perspective, not involving the nearby cycles formalism.
Elias has shown that these objects enjoy many of the expected properties of central
sheaves.
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Center of G1T -modules and cohomology of affine Springer fibres

Peng Shan

(joint work with Eric Vasserot)

In geometric representation theory, it occurs often that the center of a category
of representations can be realised as cohomology of certain algebraic varieties. An
important example, due to Soergel, is an isomorphism between the center of the
principal block of the BGG category O for a complex semi-simple Lie algebra and
the cohomology of its flag variety. Moreover, in the case of sln, the center of
parabolic category O is isomorphic to the cohomology of certain Springer fibres,
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by results of Brundan, Stroppel. In this talk, we establish analogous results for
representations of G1T -modules.

Let G be a connected and simply-connected semi-simple algebraic group over
an algebraic closed field of characteristic zero. Fix T a maximal torus in G. The
kernel of the Frobenius map on G defines an infinitesimal group subscheme G1,
whose representation is equivalent to representation of the restricted enveloping
algebra. We consider the category C of (G1, T )-bimodules overwhich the action
of T1 as subgroups of G1 and T coincide. Andersen-Jantzen-Soergel introduced
a deformed version of this category CR in [1], where R is certain commutative
algebra. We choose it to be the symmetric algebra of Lie(T ) localized at zero.
The category CR splits into blocks according to the usual linkage principle.

On the geometric side, we consider the affine flag variety for the Langlands dual
group G∨ over C. Pick γ = zγ0, with γ0 a semi-simple regular element in Lie(G∨),
and z is the formal variable in the definition of the loop group. We consider the
affine Springer fibre Xγ associated with γ. It is an equidimensional projective
ind-scheme. The action of the dual maximal torus T∨ on the affine flag variety
restricts to an action on Xγ . This T

∨-action has isolated fixed points and satisfies
GKM condition.

Our main result gives a ring isomorphism between the center of the deformed
G1T -category CR and the T∨-equivariant cohomology of the neutral connected
component ofXγ , base changed fromH∗

T∨(pt) to R. Moreover, we show that under
such an isomorphism, the Springer action on the cohomology corresponds to the
action of the affine Weyl group on the center via Bernstein operators associated
with translation functors. We also show that a similar ring isomorphism exists
between the center of any block of CR and equivariant cohomology of some affine
Spaltenstein varieties.

Some conjectures on the center of the non-deformed categories and the center
of G1 in type A were presented at the end of the talk.

Note that Romain Bezrukavnikov and You Qi also have some closely related
results.

References
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Harish-Chandra bimodules over quantized symplectic singularities

Ivan Losev

This talk is based on [L2].
Let A be a finitely generated positively graded Poisson algebra over C with

bracket of degree −d for some d ∈ Z>0. We will assume throughout that X :=
Spec(A) has symplectic singularities. Examples include the algebras A = C[N ] of
regular functions on the nilpotent cone N in a semisimple Lie algebra g and the
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algebras C[V ]Γ, where V is a finite dimensional symplectic vector space and Γ is
a finite subgroup of Sp(V ).

Let A be a filtered quantization of A. In the case when A = C[N ] we can take
A to be the central reduction Uλ of the universal enveloping algebra U(g). Here
λ ∈ h∗/W , where h is a Cartan subalgebra of g and W is the Weyl group. In the
case when A := C[V ]Γ, we can take the spherical symplectic reflection algebras of
Etingof and Ginzburg, [EG]. In fact, thanks to results of [L1], these families of
algebras exhaust filtered quantizations of A = C[N ] and A = C[V ]Γ, respectively.

Definition 1. Let B be anA-bimodule. We say that B is Harish-Chandra (shortly,
HC) if it admits a bimodule filtration B =

⋃
i>0 B6i such that [A6i,B6j ] ⊂

B6i+j−d for all i, j, and grB is a finitely generated A-module.

For example, the regular bimodule A is HC. The category of HC bimodules
(where the morphisms are bimodule homomorphisms) will be denoted by HC(A).

In this talk we are interested in the structure of a certain quotient category of
HC(A). Namely, to a HC bimodule B we can assign its support Supp(B) defined
as the support in X of grB with respect to any filtration on B as in Definition
1. Let HC(A) be the quotient of the category HC(A) by the full subcategory of
all bimodules whose support is a proper subvariety of X . Note that HC(A) is a
monoidal category with respect to the tensor product of bimodules and HC(A)
carries an induced monoidal structure.

It turns out that HC(A) is equivalent to the category of representations of a
certain finite group. Namikawa in [N] proved that the algebraic fundamental group

πalg1 (Xreg) is finite. For example, for X = V/Γ, this group coincides with Γ. So

we write Γ for πalg1 (Xreg) in the general case too.
It turns out, see [L2, Section 4], that there is a natural monoidal embedding

HC(A) →֒ RepΓ. The image depends on the choice of quantization. For example,
when X = C2/Γ is a Kleinian singularity, the parameter space for quantizations
is h∗/W , where h,W are the Cartan space and the Weyl group of the same ADE
type as Γ. In [L2, Section 5] we construct a normal subgroup Γλ ⊂ Γ from a
parameter λ ∈ h∗/W and prove that, for the corresponding quantization Aλ, the
image of HC(Aλ) in RepΓ coincides with Rep(Γ/Γλ) provided Γ is not of type E8.

Now let us proceed to the case of general X . The variety X has finitely many
symplectic leaves by a result of Kaledin. Let L1, . . . ,Lk be the codimension two
leaves. For i =, 1 . . . , k, we write Σi for a formal slice to Li, it is a formal neigh-
borhood of zero in C2/Γi for a suitable subgroup Γi ⊂ SL2(C). Quantizing the
slice construction, we see that A gives rise to a filtered quantization of C[Σi], let
us denote that quantization by Ai. The latter, in its turn, gives rise to a normal
subgroup Γi,A ⊂ Γi as mentioned in the previous paragraph.

Now note that there is natural homomorphism Γi → Γ. Indeed, Γi = πalg1 (Σi \
{0}) and Γ = πalg1 (Xreg). The inclusion Σi \ {0} →֒ Xreg give rise to a group
homomorphism Γi → Γ to be denoted by ϕi.

Let ΓA be the minimal normal subgroup in Γ containing ϕi(Γi,A) for all i =
1, . . . , k. The following is the main result of [L2].
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Theorem 2. Suppose that none of the subgroups Γi ⊂ SL2(C) is of type E8. Then
the image of HC(A) in Rep(Γ) coincides with Rep(Γ/ΓA).
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Differential operators on G/U and the Gelfand-Graev action

Victor Ginzburg

(joint work with David Kazhdan)

Let G be a complex connected semisimple group and U a maximal unipotent
subgroup of G. The ring D(G/U) of algebraic differential operators on G/U has a
rich structure. In an unpublished paper written in the 1960’s, I. Gelfand and M.
Graev have constructed an action of the Weyl group W on D(G/U) by algebra
automorphisms. This action is somewhat mysterious due to the fact that it does
not come from a W -action on the variety G/U itself. In rank 1, the action of the
nontrivial element ofW = Z/2Z is, essentially, the Fourier transform of polynomial
differential operators on a 2-dimensional vector space. In the case of higher rank,
the action of each individual simple reflection is defined by reducing to a rank
1 case, but it is not a priori clear that the resulting automorphisms of D(G/U)
satisfy the Coxeter relations.

One of the goals of the present paper is to provide a different approach to
the Gelfand-Graev action. Specifically, we will present the algebra D(G/U) as a
quantum Hamiltonian reduction in such a way that the W -action on the algebra
becomes manifest.

To explain this, recall the general setting of quantum Hamiltonian reduction.
Let A be an associative ring and I a left ideal of A (there is also a counterpart
of the construction for right ideals). Thus, A/I is a left A-module. The quantum

Hamiltonian reduction of A with respect to I is defined to be
(
EndA A/I

)op
, an

opposite of the associative ring of A-module endomorphisms of A/I. More explic-
itly, let N(I) = {a ∈ A | Ia ⊆ I} be the normalizer of I in A. By construction,
N(I) is a subring of A such that I is a two-sided ideal of N(I). For any a ∈ N(I),
the assignment fa : x 7→ xa induces an endomorphism of A/I. Moreover, this
endomorphism only depends on a mod I and we have

(
EndA A/I

)op fa֋a←−−−−
∼=

N(I)/I = {a ∈ A | (xa− ax) mod I = 0 ∀x ∈ I}/I.
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The following special cases of quantum Hamiltonian reduction will be especially
important for us.

Example 1. (i) Let k be a Lie algebra and ı : k → A a Lie algebra map
into an associative algebra A, i.e., a linear map such that ı([x, y]) = ı(x)ı(y) −
ı(y)ı(x), ∀x, y ∈ k. We let I = Ak be a left ideal of A generated by the image
of ı. In this case, we have N(I)/I = (A/Ak)k, the centralizer of ı(k) in A/Ak.
Similarly, one can consider a right ideal, kA, generated by the image of ı and the
corresponding algebra (A/kA)k.

(ii) Let A1, A2, Z, be a triple of associative rings and ιi : Z → Ai, i = 1, 2, a
pair of ring homomorphisms. Let I be a right ideal of Aop1 ⊗ A2 generated by the
elements ι1(z)⊗ 1− 1 ⊗ ι2(z), z ∈ Z. Then, we have (Aop1 ⊗A2)/I = A1 ⊗Z A2.
Therefore, in this case, we obtain

N(I)/I={a1⊗a2 ∈ A1⊗ZA2 | ι1(z)a1⊗a2 = a1⊗a2ι2(z), ∀z ∈ Z}=(A1⊗ZA2)
Z ,

where for any Z-bimodule M we put MZ := {m ∈ M | zm = mz, ∀z ∈ Z}.
Multiplication in the ring N(I)/I reads as follows:

(a1 ⊗ a2) · (a′1 ⊗ a′2) = (a′1 · a1)⊗ (a2 · a′2), ∀a1, a′1 ∈ A1, a2, a
′
2 ∈ A2.

By construction, the space A1⊗Z A2 comes equipped with the structure of a left
(A1 ⊗Z A2)

Z-module given by the ‘inner’ action a1 ⊗ a2 : (a′1 ⊗ a′2) 7→ (a′1 · a1)⊗
(a2 · a′2), and the structure of a right Aop1 ⊗A2-module given by the ‘outer’ action
a1 ⊗ a2 : (a′1 ⊗ a′2) 7→ (a1 · a′1)⊗ (a′2 · a2).

We use the notation Sym k, resp. Uk, for the symmetric, resp. enveloping,
algebra of a vector space, resp. Lie algebra, k. For any scheme X put C[X ] :=
Γ(X,OX). Let T ∗X , resp. DX and D(X), denote the cotangent bundle, resp. the
sheaf and ring of algebraic differential operators, on a smooth algebraic variety X .

Let G be a complex semisimple group with trivial center, and U, Ū , a pair of
opposite maximal unipotent subgroups of G. Let g, resp. u, ū, denote the Lie
algebra of G, resp. U, Ū . We fix a nondegenerate character ψ : ū → C, i.e., such
that ψ(fi) 6= 0 for every simple root vector fi ∈ ū.

The action of U , resp. Ū , on G by right translations gives a Lie algebra map
g → D(G). Let ı, resp. ı̄, denote its restriction to the subalgebra u, resp. ū.
It is well known that using the notation of Example 1(i), one has D(G/U) ∼=
(D(G)/D(G)u)u. Let ūψ be the image of the map ū → D(G), x 7→ ı̄(x) − ψ(x).
The algebra of Whittaker differential operators on G/Ū is defined as a quantum

hamiltonian reduction Dψ(G/Ū) := (D(G)/D(G)ūψ)ū
ψ

. The differential of the
action of G on itself by left translations induces an algebra homomorphism i :
Ug→ D(G/U), resp. iψ : Ug→ Dψ(G/Ū).

Let T be the abstract maximal torus of G, and t = LieT . We have an imbedding
iT : Ut →֒ D(T ) as the subalgebra of translation invariant differential operators.
There is a natural T -action on G/U by right translations. The differential of this
action induces an algebra homomorphism ir : Ut→ D(G/U).
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Let W be the (abstract) Weyl group, Zg the center of the algebra Ug, and hc :
Zg ∼→ (Ut)W the Harish-Chandra isomorphism. One has the following diagram of
algebra homomorphisms:

Dψ(G/Ū) Ugiψoo Zg? _oo hc

∼=
// (Ut)W � � // Ut � � iT // D(T ).

Let ι1 : Zg→ D(T ), resp. ι2 : Zg→ Dψ(G/Ū), be the composite homomorphism.
We apply the construction of Hamiltonian reduction in the setting of Example
1(ii) for the triple A1 = D(T ), A2 = Dψ(G/Ū), Z = Zg, and the homomorphisms
ι1, ι2.

With the above notation, our main result reads as follows.

Theorem. There is a natural algebra isomorphism

D(G/U) ∼=
(
D(T )

⊗
Zg D

ψ(G/Ū)
)Zg

,

such that the map iT , resp. i, corresponds via the isomorphism to the map u 7→
iT (u)⊗ 1, resp. u 7→ 1⊗ iψ(u).

The Weyl group acts on the RHS of the isomorphism via its natural action
on D(T ), the first tensor factor. Thanks to the theorem, one can transport the
W -action on the RHS to the LHS. We obtain a W -action on D(G/U) by algebra
automorphisms. One can check, although we will not do that in the present
paper, that the W -action thus obtained is the same as the Gelfand-Graev action
(it is sufficient to check this for simple reflections, which reduces to a rank one
computation).

A tale of two modules

Geordie Williamson

(joint work with Simon Riche)

Let G denote a reductive group over an algebraically closed field of characteristic
p > 0. Let T denote a maximal torus, X its character lattice, and X+ the
dominant weights with respect to some choice of positive roots. To any λ ∈ Chi+
we can associate a simple highest weight module Lλ. The Lλ are pairwise non-
isomorphic and any simple algebraic representation of G is isomoprhic to some Lλ.
We would like to know how big each Lλ is, and what its character is.

For SL2 one can do everything by hand. I’m not sure who first wrote it down.
The answer for SL3 was obtained by Mark (1939) and Braden (1967). In the 70s
Jantzen discovered his sum formula [6]. The sum formula gives a complete answer
for Sp4, SL4 and G2.

How far does one get with Jantzen’s sum formula? Careful calculations of
Jantzen reduce the problem to one undetermined a ∈ {1, 2} for SL5, one undeter-
mined d ∈ {1, 2} for Sp6 and a few undetermined quantities for Spin7. (This does
not mean that there is only one unknown character in each case. Jantzen shows
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that there are a few ambiguities in each type, but that these ambiguities are all
connected via the parameters above.) Groups of rank 4 and above presumably
involve many more complications!

I recalled the periodic form of Lusztig’s character formula [7] from 1980. It is
the statement

(1) [P̂A] =
∑

dB,Ã(1)[L̂B]

where we are now working in the principal block of G1T -modules. For a p-alcove

A, we let L̂A denote the simple module of highest weight λ, where λ is the unique

weight in A in the orbit under the p-dilated affine Weyl group, and P̂A denotes its
projective cover. The dB,A are Lusztig’s periodic polynomials [7]. Here A 7→ Ã
is the operation on p-alcoves which is uniquely determined by the following two
properties: it is invariant under translations in pX ; on alcoves of the form w0A
with A in the fundamental block, it is given by w0A 7→ A.

Statement (1) implies (via Brauer-Humphreys reciprocity) character formulas
for simple G1T -modues. This in turn provides character formulas for the simple
G-modules. (The key fact is that it is enough to know the character of Lλ for
restricted weights, and these simple modules stay simple for G1T .) Statement (1)
is known to hold for large p above an explicit bound [2, 4]. It is also known that
it is not true for many primes between h and some exponential function of h [8].
Thus it is desirable to have a feasible method of calculating these characters for
small and even “medium sized” primes. For example, it would be nice if we could
tell Jantzen whether a = 1 or 2 for SL5!

The purpose of the lecture was to state the following new formula:

[P̂A] =
∑

pdB,Ã(1)[L̂B]

This formula is valid for p ≥ 2h − 2, where h is the Coxeter number, and has
a chance to hold for all p. Here the pdB,A are periodic p-polynomials. Lusztig
observed that one may express the canonical basis in the periodic module via
Kazhdan-Lusztig polynomials in the spherical module [7]. Because we know that
spherical p-polynomials are, this allows us to define periodic p-polynomials via
Lusztig’s lemma.

Although the pdB,A are complicated, this formula probably represents the eas-
iest way to calculate the characters of simple G-modules beyond the cases where
Jantzen’s sum formula provides the answer, or where Lusztig’s formula is valid.
For example, Jensen and Scheinmann (work in progress) were able to verify by
hand that a = 1 in the SL5 case above.

The proof has three main ingredients:

(1) for A in the fundamental box, we have

(2) P̂A ∼= (TÃ)|G1T

(proved by Jantzen [5] and Donkin [3]). This is only known to be true
for p ≥ 2h − 2, and explains why we must assume p ≥ 2h − 2 above.
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Donkin conjectures that (2) holds for all p. If his conjecture is true then
our formula is valid for p ≥ h.

(2) A formula for tilting characters recently established by Achar, Makisumi,
Riche and the author [1].

(3) An embedding of the spherical category into the anti-spherical category,
categorifying a well-known embedding.

Point three provides us with the two modules of our tale. I hope they live happily
ever after.
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Macdonald polynomials and decomposition numbers for finite unitary
groups

Olivier Dudas

(joint work with Raphaël Rouquier)

We are interested in computing the decomposition numbers of finite groups, and
more specifically of finite reductive groups (such as GLn(q), SOn(q),. . . , E8(q)).
These numbers are numerical invariants of the category of representations, encod-
ing the behaviour of irreducible representations when going from characteristic
zero coefficients to positive characteristic ℓ > 0.

There is a somewhat similar situation for highest weight categories: computing
the multiplicities of the simple objects (here, the irreducible representations in
characteristic ℓ) in the standard ones (here, the irreducible representations in
characteristic zero).

1 - Finite general linear groups. Let G = GLn(q) be the finite general linear
group over a field with q elements. There is a distinguished set {∆(λ)}λ⊢n of
irreducible representations over Qℓ, called unipotent, which are parametrized by
partitions of n. The representation ∆(n) is the trivial representation, whereas
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∆(1n) is the Steinberg representation (of dimension qn(n−1)/2). When ℓ ∤ q, the
irreducible unipotent representations over Fℓ can also be labeled by partitions
{L(λ)}λ⊢n in such a way that the matrix encoding the decomposition numbers —
the decomposition matrix — has the following shape

L(n) ··· L(1n)



1 (0)
. . .

(∗) 1

(non-unipotent)




∆(n)

...
∆(1n)

When ℓ is large enough, the unitriangular square matrix coincides with the decom-
position matrix of a q-Schur algebra [5], which is computable by the LLT algorithm
[3]. It depends only on the multiplicative order d of q in F×

ℓ . In addition, the cat-
egory of unipotent representations for various GLn(q) when n varies categorifies a

level 1 Fock space for ŝld.

2 - Finite general unitary groups. Let us now consider the finite unitary
group

GUn(q) := {M ∈ GLn(q
2) |M tM = In}

where the conjugate is obtained from the involution x 7−→ xq of Fq2 . The unipotent
representations (in characteristic 0 or ℓ) are also labelled by partitions of n and the
decomposition matrix has the same shape as the one for GLn(q). In addition, the
category of unipotent representations categorifies a level 2 Fock space. However,
the decomposition numbers are not computable from the corresponding canonical
bases.

The representation theory of GUn(q) is closely related to the representation
theory of GLn(−q) (which is generic in q as far as only unipotent representations
are concerned). Here are some evidence for this relation:

• The order of the groups are the same (up to a sign).
• The dimension of unipotent representations in characteristic zero (which
are polynomials in q) satisfy

dim∆GUn(λ)(q) = (−1)A(λ) dim∆GLn(λ)(−q)
where A(λ) =

(
n
2

)
−∑(

λi
2

)
.

• The partition of unipotent characters in the ℓ-blocks of GUn(q) when d is
the multiplicative order of q in F×

ℓ is the same as the one for GLn(q) when
d is the order of −q.

In fact, we expect the categories of unipotent representations for GUn(q) and
GLn(−q) to be derived equivalent. The equivalence should be perverse with respect
to the dominance order and the A-function, and should send the cohomology
of a Deligne–Lusztig variety X(w) to the cohomology of X(ww0), where w0 =
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(1, n)(2, n − 1) · · · . Such an equivalence is predicted by the geometric version of
Broué’s abelian defect group conjecture.

If this derived equivalence is performed “twice” (in the sense that X(w) is sent
to X(ww2

0)), we obtain a derived self-equivalence of GLn(−q) with perversity 2A.
Such an equivalence exists at the local level, where it has a geometric interpreta-
tion in the derived category of coherent sheaves on Hilbn(C2). We explain below
only the numerical aspect of this equivalence, which we will need to compute the
decomposition numbers.

3 - Macdonald polynomials. Let Symu,v be the space of symmetric functions

in infinitely many variables x1, x2, . . . with coefficients in Q[u±1, v±1]. The Mac-
donald polynomials Hλ(u, v) form a basis of Symu,v satifying some triangularity
property with respect to the Schur functions (transformed by a plethysm, see for
example [1, §9]). One can define a linear operator ∇ on Symu,v by

∇Hλ(u, v) := ua(λ)va(λ
∗)Hλ(u, v)

where λ∗ is the conjugate partition and a(λ) =
∑

(i − 1)λi =
(
n
2

)
−A(λ∗).

The homogenous component of degree n of Symu,v is naturally isomorphic to

the equivariant K-theory of Hilbn(C2). Under this isomorphism, the Macdonald
polynomials correspond to the skyscraper sheaves supported on the fixed points of
(C×)2 on Hilbn(C2), and the operator∇ is given by tensoring with the tautological
line bundle [2].

We will be interested in the matrix Mn(u, v) defined as the transposed of the
matrix of∇ in the basis of the plethystic transformed Schur functions sλ[X/(1−u)]
for λ ⊢ n. It has the following properties:

• Mn(u, v) is lower-triangular with respect to the antidominance order (the
partition (n) labels the first row and first column), with diagonal terms

equal to ua(λ
∗)va(λ);

• Mn(1, 1) is the identity matrix; and
• Mn(u, v)

−1 =Mn(u
−1, v−1).

4 - Computing the decomposition numbers. The matrix Mn(u, v) encodes
the local derived self-equivalence for the general linear group. The unitary group
should be obtained “half-way” through this equivalence. The numerical counter-
part is a matrix Dn(u, v) with the following properties:

• Dn(u, v) is lower-triangular with respect to the antidominance order, with

diagonal terms equal to Dλ,λ :=
√
ua(λ∗)va(λ);

• the terms of Dn(u, v) satisfy

Dλ,µ

Dµ,µ
∈ Z[u−1] + vZ[u−1, v];

• Mn(u, v) = Dn(u, v)Dn(u
−1, v−1)−1.
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Such a matrix exists and is unique by the properties of Mn(u, v). The value at
u = v = 1 should then give the decomposition numbers of the finite unitary groups,
taking into account the parity of the A-function (the perversity of the equivalence).

Conjecture. Assume ℓ | q+1. Then Dn(1, 1) is the square part of decomposition
matrix of the unipotent blocks of GUn(q), up to multiplication by the diagonal
matrix (−1)A(λ) on both sides. In other words

[∆(λ) : L(µ)] = (−1)A(λ)+A(µ)Dn(1, 1)λ,µ.

Example. For n = 3 we have

M3(u, v) =




u3 · ·
(1− uv)(u + u2) uv ·

(1− uv)(1− uv(u+ v)) (1− uv)(v + v2) v3




and

D3(u, v) =




1 · ·
u−1 − v 1 ·

v2 − u−1v2 − u−1v −v − v2 1





√
u3 · ·
· √

uv ·
· ·

√
v3




which gives

D3(1, 1) =




1 · ·
· 1 ·
−1 −2 1


 =



−1 · ·
· −1 ·
· · 1






1 · ·
· 1 ·
1 2 1





−1 · ·
· −1 ·
· · 1


 ·

We recover the decomposition matrix of GU3(q) for ℓ | q + 1 computed in [4].
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Representations of sl(∞) arising from categorical action

Vera Serganova

(joint work with Crystal Hoyt, Ivan Penkov)

Let g = sl(∞) denote the Lie algebra of traceless matrices {(aij) | i, j ∈ Z} with
finitely many non-zero entries. One can consider g as a Kac–Moody Lie algebra
with infinite Dynkin diagram

· · · − ◦ − ◦ − ◦ − . . .
We denote ea, fa, a ∈ Z the Chevalley–Serre generators of g. By V and V∗ we
denote the standard and costandard representation of g and by Tg the abelian
monoidal category of g-modules generated by V and V∗. This category was studied
in [3] and [7]. For a partition λ of n and a g-moduleM denote by Sλ(M) the Schur
functor of M which is the image of a Young projector in M⊗n, associated with λ.

Theorem 1. [3] The category Tg has enough injective objects. Every indecom-
posable injective object is isomorphic to Sλ(V )⊗Sµ(V∗) for some partitions λ and
µ. The irreducible socle Vλ,µ of Sλ(V ) ⊗ Sµ(V∗) coincides with the kernel of all
contraction maps

Sλ(V )⊗ Sµ(V∗) →֒ V ⊗|λ| ⊗ V ⊗|µ|
∗ → V ⊗|λ|−1 ⊗ V ⊗|µ|−1

∗ .

Define a new category C as the full subcategory of g-modules consisting of
objects M satisfying the following conditions:

(1) M has finite length and all simple subquotients of M are simple objects
of Tg.

(2) For every m ∈M , eam 6= 0 and fam 6= 0 for finitely many a ∈ Z.

Theorem 2. [5] The category C has enough injective objects. The socle filtration
of the indecomposable injective hull Iλ,µ of Vλ,µ has the following layers:

[sock+1 Iλ,µ/ sock Iλ,µ : Vλ′,µ′ ] =
∑

|γ|+|δ|=k

Nλ
λ′,γ,δN

µ
µ′,γ,δ,

where Nν
ν,γ,δ denote the Littlewood–Richardson coefficients.

The socle filtrations for Sλ(V )⊗ Sµ(V∗) was described in [6]. It is proven in [3]
that Tg is Koszul and we believe that the same is true for C.

Now let Om|n denote the category O for the Lie superalgebra gl(m|n) with
integral weights. In [1] J. Brundan defined a categorical action of g on Om|n

using translation functors. More precisely, let E and E∗ denote the standard and
costandard modules of gl(m|n). Let {Xi} and {X i} be dual bases in gl(m|n)
with respect to the form strXY . The element C :=

∑
i(−1)p(Xi)Xi ⊗ X i ∈

gl(m|n)⊗gl(m|n) commutes with the action of gl(m|n) on a tensor product A⊗B
for any two gl(m|n)-modules A,B. Let A ∈ O and Ea(A) (resp., Fa(A)) denote
the generalized eigenspace of C with eigenvalue a in A⊗E (resp., A⊗E∗). Then
Ea and Fa are mutually adjoint exact endofunctors in Om|n.



Enveloping Algebras and Geometric Representation Theory 3099

Definition 3. Let A be an abelian category of modules over some superalgebra.
The reduced Grothendieck group of A is the quotient of the usual Grothendieck
group of A by the relation [M ] = −[M ⊗ C0|1].

Theorem 4. [1] Let Km|n be the complexified reduced Grothendieck group of Om|n.
Then Ei, Fi induce linear operators ei, fi : Km|n → Km|n. Furthermore ei, fi, i ∈
Z satisfy Serre’s relation for the infinite-dimensional Lie algebra sl(∞) with the
Dynkin diagram A∞. Thus, Km|n is an integrable sl(∞)-module, sl(∞)-weight
spaces correspond to the blocks in Om|n.

Theorem 5. [5],[2]

(1) Km|n is an injective object of C.
(2) The submodule V ⊗m ⊗ V ⊗n

∗ →֒ Km|n is isomorphic to the subgroup gen-
erated by the classes of all Verma modules.

(3) The socle of Km|n is isomorphic to the subgroup generated by the classes
of all projective objects in Om|n.

Let Fm|n be the category of finite-dimensional gl(m|n)-modules semisimple over
the Cartan subalgebra h and Jm|n denote its complexified reduced Grothendieck
group.

For M ∈ Om|n denote by ΓM the subset of all gl(m|n)0-finite vectors. Then

Γ defines a left exact functor Om|n → Fm|n. Its derived functor Γi is called the
Zuckerman functor.

Theorem 6. [5]

(1) Jm,n is the injective hull of V1m,1n .
(2) The map [M ] → ∑

(−1)i[ΓiM ] defines an sl(∞)-equivariant map γ :
Km|n → Jm|n.

(3) The restriction of γ to V ⊗m ⊗ V ⊗n
∗ →֒ Km|n coinsides with the natural

projector to ΛmV ⊗ ΛnV∗.

In order to understand the categorical meaning of the socle filtration of Km|n

recall the definition of DS functor, [4]. Let

X := {x ∈ gl(m|n)1 | [x, x] = 0},
Xk := {x ∈ X | rk(x) = k}, k ≤ min(m,n).

For a gl(m|n)-module M define DSxM := kerxM/ imxM .

Theorem 7. [5] Let x ∈ Xk.

(1) DSx : Om|n → Om−k|n−k is a symmetric monoidal functor which com-
mutes with translation functors Ei, Fi.

(2) Passage to the Grothendieck groups induces a homomorphism of sl(∞)-
modules dsx : Km|n → Km−k|n−k.

Remark 8. Although DSx is not exact, for an exact sequence 0 → N → M →
L→ 0 we have a canonical exact sequence

0→ R→ DSxN → DSxM → DSxL→ R⊗ C0|1 → 0.
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This ensures the existence of the corresponding map dsx for the reduced
Grothendieck groups.

Let k ≤ min(m,n), and Okm|n be the subcategory of Om|n consisting of all

modules M such that DSxM = 0 for all x ∈ Xk. This category is not abelian but
Karoubian and monoidal. Let Kk

m|n be the subgroup in Km|n generated by the

classes of all objects in Okm|n.

Conjecture 9. sockKm|n = Kk
m|n.
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Semiinfinite highest weight and ǫ-stratified categories

Catharina Stroppel

(joint work with Jon Brundan)

Highest weight categories naturally appear in representation theory and were stud-
ied in quite some detail in an impressive bulk of works by many people including
in particular Cline, Parshall and Scott, Donkin and Ringel. Slightly more general
notions of (properly) stratified categories were pioneered via different approaches
in particular by Cline Parshall and Scott [CPS1], by Dlab or in the work of Dlab,
Agoston and Lucasz [ADL]. A unifying approach seems however so far missing.
Recent developments around categorifications suggest to generalize these construc-
tions further to a semi-infinite setting. Our goal of our work is to provide such a
construction, which at the same time unifies the existing approaches to stratified
categories in the classical setting.

Let F be any field. Consider a finite Abelian category, that is, a category R
equivalent to the category A-modfd of finite-dimensional left A-modules for some
finite-dimensional F-algebra A. Let B be a finite set indexing a full set of pairwise
inequivalent irreducible objects {L(b)|b ∈ B}. Let P (b) (resp. I(b)) be a projective
cover (resp. injective hull) of L(b).



Enveloping Algebras and Geometric Representation Theory 3101

A stratification of R is the data of a function ρ : B → Λ for some poset Λ.
For λ ∈ Λ, let R≤λ (resp. R<λ) be the Serre subcategory of R generated by the
irreducibles L(b) for b ∈ B with ρ(b) ≤ λ (resp. ρ(b) < λ). Then define the stratum
Rλ to be the Serre quotient R≤λ/R<λ with quotient functor jλ : R≤λ → Rλ.
For b ∈ Bλ := ρ−1(λ), let Lλ(b) := jλL(b). These give a full set of pairwise
inequivalent irreducible objects in Rλ. Let Pλ(b) (resp. Iλ(b)) be a projective
cover (resp. an injective hull) of Lλ(b) in Rλ. Now jλ has a left adjoint jλ! and
a right adjoint jλ∗ , which we refer to as the standardization and costandardization
functors, respectively, following [LW]. Then we introduce the standard, proper
standard, costandard and proper costandard objects of R for λ ∈ Λ and b ∈ Bλ:

∆(b) := jλ! Pλ(b), ∆̄(b) := jλ! Lλ(b), ∇(b) := jλ∗ Iλ(b), ∇̄(b) := jλ∗Lλ(b).(1)

Fix a sign function ǫ : Λ→ {±} and define the ǫ-(co)standard

∆ǫ(b) :=

{
∆(b) if ǫ(ρ(b)) = +
∆̄(b) if ǫ(ρ(b)) = − , ∇ǫ(b) :=

{
∇̄(b) if ǫ(ρ(b)) = +
∇(b) if ǫ(ρ(b)) = − .(2)

Then R is a finite ǫ-stratified category if for every b ∈ B, the projective object
P (b) has a ∆ǫ-flag with sections ∆ǫ(c) for c ∈ B with ρ(c) ≥ ρ(b).

This definition includes the classical highest weight categories (the case when
all strata are simple) and the finite (co)standardly stratified categories from the
existing literature (as the cases when ǫ is constant − respectively +). It also in-
cludes the cases of fully stratified categories [ADL, Definition 1.3], that is categories
which are both standardly and costandardly stratified.

Many fully stratified categories arise in the context of categorification. This in-
cludes the pioneering examples of categorified tensor products of finite dimensional
irreducible representations for the quantum group attached to slk, see [FKS, in
particular Remark 2.5], but more importantly the axiomatix definition of tensor
product categorification by Losev and Webster [LW]. On such categories, there
is a fully stratified structure which gives a categorical interpretation of Lusztig’s
construction of tensor product of based modules for a quantum group.

We introduce the notion of a lower finite ǫ-stratified category where we allow the
poset Λ to be infinite, but require the intervals (∞, λ] for λ ∈ Λ to be finite and
adapt the definition from above to this case. The main special example for this is
the category Rep(G) of finite-dimensional rational representations of a connected
reductive algebraic group. We also introduce upper finite ǫ-stratified categories
where we allow the poset Λ to be infinite, but upper finite. One of the main
examples are the representation categories of the socalled Deligne categories.

Theorem 1. In either case ǫ-tilting objects exist (that is objects possessing both
an ascending ∆ǫ-flag and a descending ∇ǫ-flag). Isomorphism classes of indecom-
posables ǫ-tilting objects are in canonical bijection with B.

In the lower finite setting this follows easily from a truncation to the finite case,
whereas in the upper finite setting this result is rather surprising.

We introduce Ringel dual categories and Ringel duality and show the following:
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Theorem 2. Ringel duality connects lower and upper finite stratified categories:{
lower finite

ǫ-stratified categories

}
Ringel duality←→

{
upper finite

(−ǫ)-stratified categories

}
.

In particular the Ringel dual of a lower respectively an upper highest weight
category is an upper respectively a lower highest weight category. In concrete
terms the duality pairs certain categories of comodules with certain categories of
locally finite dimensional modules over locally finite dimensional algebras. Since
modules over a finite dimensional F-algebra are nothing else than comodules over
its vector space dual coalgebra, this distinction is not visible in the finite setting.
Theorem 2 in particular can be applied to pair blocks of category O for affine
Kac-Moody Lie algebras of integral weights at negative level with a corresponding
integral block at positive level via the above Ringel duality.
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Minimal reflections and the coefficient of q in Kazhdan-Lusztig
polynomials

Leonardo Patimo

Let (W,S) be a Coxeter system. For any pair of elements x, y ∈W with x ≤ y, the
Kazhdan-Lusztig polynomial Px,y(q) is defined in [1] via an elementary recursive
formula. KL polynomial are nowadays ubiquitous in representation theory as they
appear in many character formulas, e.g. for simple modules in category O. The
original definition, however, does not explain precisely what kind of information
one needs to compute the Kazhdan-Lusztig polynomial Px,y(q). To address this
question, a powerful approach is provided by the theory of moment graphs.

The Bruhat graph G associated toW is the labeled directed graph whose vertices
are the elements of W and where for any reflection t such that ℓ(xt) > ℓ(x) there
is an arrow x → xt, labeled by the positive root corresponding to t. By work of
Braden-MacPherson [2] and Fiebig [4], we can in fact compute the KL polynomials
Px,y(q) as the Poincaré polynomial of the stalks of a certain sheaves on the moment
graph G. One of the advantages of this description is that we can directly see that
the polynomial Px,y(q) depends only on the restriction of G to the Bruhat interval
[x, y].

In the 1980s, M. Dyer and G. Lusztig independently conjectured a much stronger
statement: they claimed that the polynomial Px,y(q) should only depend on the
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poset structure of the Bruhat interval [x, y]. This is today known as the “Combi-
natorial Invariance Conjecture”. It is equivalent to saying that knowledge of the
labels in the Bruhat graph is superfluous when computing the KL polynomials, or
in other words, this conjecture says that there should be a completely combina-
torial formula to compute the coefficients of Px,y(q). The goal of my work is to
describe a formula for the linear coefficient of Px,y(q). This is the main result in
[3].

Consider the Hasse diagram Hx,y of the Bruhat interval [x, y]. For a set F of
edges in Hx,y, we denote by F ⋄ the smallest set of edges which contains F and
such that whenever we have a 4-cycle D in Hx,y, if two adjacent edges of D are in
F ⋄ then also the other two edges must be in F ⋄. We call F ⋄ the diamond closure
of F , and we say that F is diamond generating if F ⋄ contains all the edges of Hx,y.
We define gx,y to be the minimal cardinality of a diamond generating set of Hx,y.

Let qx,y denote the coefficient of q in Px,y(q). Let cx,y denote the number
of coatoms in [x, y], i.e. the number of elements z in the interval [x, y] with
ℓ(z) = ℓ(y) − 1. Then we have qx,y ≥ cx,y − gx,y. If W is of type ADE, we can
also prove the opposite inequality, that is, we have

(1) qx,y = cx,y − gx,y.

To show this equality, we have to relate the coefficient gx,y to that of smaller
Bruhat intervals. This is actually an easy task if there exists a simple reflection
s such that xs > x and ys < y. Unfortunately, such a simple reflection does not
always exist.

In type ADE, we use recent work of Tsukermann-Williams [5] and Caselli-
Sentinelli [6] to obtain a workaround. For any Bruhat interval [x, y] in such groups,
these authors define a distinguished reflection t, called minimal reflection, which
retains some of the behaviour of simple reflections. They show for example that
y ≥ xt⋗ x, y ⋗ yt ≥ x and

Rx,y(q) = (q − 1)Rx,yt(q) + qRxt,yt(q).

In [3], we show that a further property of simple reflections generalizes to min-
imal reflections: if t is a minimal reflection for (x, y), maximal chains between x
and yt exist in the set W t := {x ∈ W | xt ⋗ x}. This is the crucial and final
ingredient of our proof of (1).
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Cuspidal D-modules and generalized quantum Hamiltonian reduction

Sam Gunningham

Let G be a connected complex reductive group acting on g = Lie(G) by the adjoint
action. We consider the abelian category Dmod(g)G of strongly G-equivariant D-
modules on g. In [Gun18] we proved the following generalized Springer theorem
for Dmod(g)G.

Theorem 1. There is an equivalence of abelian categories

Dmod(g)G ≃
⊥⊕

(L,E)

Dmod (z(l))
WG,L ,

where the (finite) sum is indexed by cuspidal data (L, E) in the sense of Lusztig
[Lus84].1 Here, L is a Levi subgroup of G, z(l) denotes the center of l = Lie(L)
and WG,L = NG(L)/L is the relative Weyl group.

Example 2. The block Dmod(g)GSpr corresponding to the unique cuspidal datum

(T, E) for a maximal torus T is known as the Springer block. The theorem in
particular gives an equivalence

Dmod(g)GSpr ≃ Dmod(t)W = Dt#W −mod

where W is the Weyl group of G (with respect to T ). In the case G = GLn (or
PGLn) the Springer block is the entire category. Thus there is an equivalence

Dmod(gln)
GLn ≃ Dmod(An)Sn ≃ DAn#Sn −mod

Example 3. In the case G = SL2, there is a unique simple cuspidal D-module E

supported on the nilpotent cone of G. It may be characterized as the intersection
cohomology (IC) extension of the unique non-trivial local system on the regular
nilpotent orbit.2 In this case the generalized Springer decomposition has two blocks
- the Springer block and the cuspidal block:

Dmod(sl2)
SL2 ≃ Dmod(A1)Z/2Z ⊕ 〈E〉

The cuspidal block 〈E〉 is a semisimple category with a single simple object E, thus
it is equivalent to the category of vector spaces.

1A cuspidal datum consists of a pair (L, E) of a Levi subgroup of G and a simple D-module
supported on the nilpotent cone for L which is cuspidal: it vanishes upon parabolic restriction

to every proper Levi subgroup of L. Considering the simple objects of the subcategory of equi-
variant D-modules supported on the nilpotent cone of G recovers Lusztig’s generalized Springer
correspondence.

2In fact the extension is clean, so the IC extension agrees with the star and shriek extensions.
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The goal of this project is to understand the interaction of the generalized
Springer decomposition with the underlying G-representation on the global sec-
tions of the D-module.

To give a sense of of what such an understanding might look like, let us first ex-
amine the Springer block. Consider the equivariant D-module P := Dg/Dgad(g),
which represents the functor of quantum Hamiltonian reduction (i.e. G-invariants
of the global sections of a strongly equivariant module). Combining the results of
Hotta-Kashiwara [HK84] with Theorem 1 one can show the following:

Theorem 4. The Hamiltonian reduction D-module P is a projective generator of
the Springer block; under the generalized Springer correspondence

Dmod(g)GSpr ≃ Dmod(t)W

it corresponds to the object Dt (with its canonical W -equivariant structure). In
particular the Springer block is characterized by the property that any non-zero
object has a G-invariant vector.

It is natural to ask: is the a similar characterization of the other generalized
Springer blocks?

Let us first describe a natural generalization of the quantum Hamiltonian re-
duction D-module P. For each (finite dimensional) representation V of G, there
is a canonical strongly equivariant D-module

P(V ) := Dg ⊗Ug V

where the homomorphism ad : Ug→ Dg is induced from the infinitesimal adjoint
action. The modules P(V ) are compact and projective; they represent the functor
which assigns to each equivariant D-module its V -multiplicity space. The collec-
tion of all P(V ) as V ranges over finite dimensional representations of G forms a
set of compact projective generators of Dmod(g)G.

Now our question can be made more precise: how do the modules P(V ) under
the generalized Springer decomposition?

This question has a nice partial answer in the caseG = SLn (though we shall see
that the situation is necessarily more complicated for other types). In general, the
component group π0Z(G) = Z(G)/Z◦(G) acts on the category Dmod(g)G, giving

an orthogonal decomposition indexed by the characters ̂π0Z(G). In the case G =
SLn, we may show that this decomposition agrees with the generalized Springer

decomposition, in the sense that for each character k ∈ ̂π0Z(G) ≃ Z/nZ there is
a corresponding cuspidal datum (Lk, Ek) such that the corresponding generalized

Springer block is characterized by the fact that π0(Z(G)) acts via the character k.
In particular, for an irreducible representation V , Z(G) acts on V via a character
k and the D-module P(V ) lies entirely in the corresponding generalized Springer
block. If the central character k of V is relatively prime to n then the D-module
P(V ) is a direct sum of a number of copies of the unique simple cuspidal object
with the same central character.
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Example 5. If G = SL2 and Vn = Symn(C2) the irreducible representation of
dimension n+ 1, P(Vn) is cuspidal exactly when n is odd. In that case P(Vn) ≃
E⊕mn for some non-negative integers mn. By the universal property of the objects
P(Vn), the multiplicities mn may also be interpreted as the multiplicity of the
representation Vn in the global sections of E.3 On the other hand, for even values
of n P(Vn) lies in the Springer block which is equivalent to Dmod(t)W . Under
this equivalence, P(Vn) corresponds to Dt (respectively Dt⊗ sgn) if n ≡ 0 mod 4
(respectively n ≡ 2 mod 4).

One can see that the situation for G = SLn cannot hold in general: there are
groups G of adjoint type (so Z(G) = 1) which admit non-trivial cuspidal data.
In those cases one can show that the D-module P(V ) always have a summand
which is contained in the Springer block (controlled by the zero weight space of
V together with its Weyl group representation). But for certain representations
there may be other summands which live in other generalized Springer blocks.

This naturally leads to the following set of problems, which the author hopes
to investigate in forthcoming work.

• Let us call a representation quasi-cuspidal if P(V ) admits a cuspidal sum-
mand (equivalently, submodule or quotient). How to characterize the
quasi-cuspidal representations?
• Find a minimal set of irreducible representations V1, . . . Vn such that
P(V1), . . . ,P(Vn) generate the category Dmod(g)G.
• For each cuspidal datum (L, E), characterize the corresponding block of
Dmod(g)G in terms of the irreducible representations of G appearing as a
summand of the global sections.
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Generalized Lakshmibai-Seshadri galleries

Jacinta Torres

Let g be a complex, simple Lie algebra, and L(λ) a simple module over the complex
numbers of highest weight λ ∈ X+. Consider the set

Γ = {γ : [0, 1] −→ XR : γ(1) ∈ X, γ(0) = 0}
of piecewise linear paths starting at the origin and ending at an integral weight. In
[2], Littelmann defined a finite set of paths P(γλ) ⊂ Γ depending on a single path
γλ ∈ Γ with endpoint γλ(1) = λ and contained in the dominant Weyl chamber,
for which the character of L(λ) is a generating function in the following sense:

ch(L(λ)) =
∑

γ∈P (γλ)

xγ(1).(1)

The set P(γλ) is constructed by applying certain root operators fα, one for every
simple root α, to γλ. Together with their partial inverses eα, they endow the set
P(γλ) with the structure of a crystal isomorphic to B(λ).

Question. Given a path γ ∈ Γ, how can one decide if it belongs to P (γλ) for
some γλ contained in the dominant Weyl chamber?

In this note, we give necessary conditions for galleries of alcoves, that is, certain
sequences of alcoves in the corresponding affine Coxeter complex (which has the
same underlying space XR), with the first alcove containing the origin and a choice
of integral weight contained in the last one. Our ongoing work generalizes work of
Gaussent-Littelmann in [1], where they introduce so-called Lakshmibai-Seshadri
galleries, for which the formula (1) makes sense and still holds after replacing η(1)
for a path η by the endpoint e(γ) of a gallery γ.

1. Galleries

A gallery of alcoves, or just a gallery, is a sequence

γ := (v0, a0, p1, · · · , pr, ar, vr)(2)

of alcoves and panels (i.e. codimension one faces of alcoves) ai−1 ⊃ pi ⊂ ai for
i ∈ [1, r]. In addition we require a choice of a final vertex vr ∈ X , an integral weight
contained in the last alcove, and ask that the first alcove a0 contains the origin
v0 = 0. The integral weight vr is the endpoint e(γ) of the gallery γ. By labelling
the codimension one faces of the fundamental alcove with colours I = {i0, ..., in},
where n is the rank of the Lie algebra g, we obtain a labelling of every panel.
The label of a panel p will be denoted by t(p) and referred to as the type of the
panel. The type of a vertex v is the set t(v) = {t(p) : v ∈ p} of types of the panels
containing v. The type of γ is the sequence of types

t(γ) := (t(p1), ..., t(pr))
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of its panels and endpoint. Given a dominant integral weight λ ∈ X+, we will
denote by

γλ := (v′0, a
′
0, p

′
1, · · · , p′r, a′r, v′r)(3)

a gallery with v′r = λ and such that each one of its alcoves and panels is contained
in the dominant Weyl chamber. We will call such a gallery dominant.

1.1. Dimension and properties of galleries. Let γ be a gallery, with nota-
tion as in (2). A hyperplane H is a load-bearing wall for γ at i ∈ [0, r] if it
contains the i-th panel pi ⊂ H (or the origin v0 ∈ H if i = 0) and if ai ⊂ H−.
The dimension of the gallery γ is the number of load bearing walls, counting
repetitions:

dim(γ) = ♯ {j| there exists a load-bearing wall H for γ at j} .
We say that there is a fold at a panel pi if ai = ai−1, and a crossing if ai−1 6= ai.
The fold or crossing is positive (respectively negative) if ai ⊂ H+ (respectively
ai ⊂ H−), where H is the hyperplane on which the panel pi is contained.

Figure 1. A dominant gallery of dimension 10 for the simple
exceptional Lie algebra of type G2. It consists of six alcoves: the
five distinct ones a0, the fundamental alcove, a1, a2, a3, a4, which
are noted in the picture, and a5 = a4. The corresponding fold at
the panel p5 is negative. The panels are indicated by the black
path, and the origin and endpoint are indicated by thick black
dots.

Let γλ be a dominant gallery, with notation as in (3). Let D ⊂ [1, r] be the set

of indices i such that there is a negative crossing or fold in γλ at p
′

i. Consider the
set of galleries of the same type as γλ. Within this set, we look at those which
at the panels with indices in D have either a negative crossing or a negative fold.
Out of these, we restrict ourselves to those which, at every other panel, have either
a crossing or a positive fold. We will denote this set by Γ+(γλ). Now, for every
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µ ≤ λ consider the subset of Γ+
max(γλ, µ) ⊂ Γ+(γλ) of galleries γ with maximal

dimension having endpoint e(γ) = µ, and

Γ+
max(γλ) =

⋃

µ≤λ

Γ+
max(γλ, µ).

Remark 1. If γλ is minimal as defined in [1], then the set Γ+
max(γλ) is the set

of Lakshmibai-Seshadri galleries (LS galleries for short) introduced by Gaussent-
Littelmann in a geometric context. If this is the case, an LS gallery γ ∈ Γ+

max(γλ)
has dimension 〈λ+ e(γ), ρ∨〉.

We are now ready to state our result which generalizes work of Gaussent-
Littelmann and partially answers Question 1.

Theorem 2. The set Γ+
max(γλ) is stable under the action of the root operators

fα. Moreover, it only contains one dominant gallery, that is γλ.
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Semisimplification of representation categories

Thorsten Heidersdorf

(joint work with Rainer Weissauer)

0.1. Semisimplification. Let C denote a k-linear (k a field) braided rigid
monoidal category with unit object 1 and End(1) ∼= k. For such a category
one can define the trace Tr(f) ∈ End(1) ∼= k of an endomorphism f ∈ End(X)
for any X ∈ C and the dimension of X via dim(X) = Tr(idX). The negligible
morphisms

N (X,Y ) = {f : X → Y | Tr(g ◦ f) = 0 ∀g : Y → X}

can be seen as an obstruction to the semisimplicity of C. The negligible morphisms
form a tensor ideal of C and the quotient category C/N is again a k-linear braided
rigid monoidal category. Under some mild assumptions on C [AK02] the quotient
is semisimple. We call this the semisimplification of C.
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0.2. Representation categories. Examples of such categories are often coming
from representation theory.

(1) C = Rep(G, k), the category of finite dimensional representations of an al-
gebraic group over a field k; or C = T ilt(G,Fq) ⊂ Rep(G,Fq), the category
of tilting modules for a semisimple, simply connected algebraic group G.

(2) C = Rep(Uq(g)), finite dimensional modules of type 1 for Lusztig’s quan-
tum group Uq(g) for a complex semisimple Lie algebra g; or
C = T ilt(Uq(g)), the subcategory of tilting modules.

(3) C = Delt, one of the Deligne categories associated to GL(n), O(n) or Sn
for t ∈ C, or its abelian envelope.

Of particular importance in this list is T ilt(Uq(g)) (studied e.g. in [AP95])
since the semisimple quotient is a modular tensor category. For other examples
see [EO18]. André and Kahn [AK02] studied the case where C = Rep(G), the
category of representations of an algebraic group over a field k of characteristic 0.
In this case C/N is of the form Rep(Gred) where Gred is a pro-reductive group,
the reductive envelope of G (this is false in char(k) > 0).

0.3. Representations of supergroups. The results of [AK02] generalize par-
tially to algebraic supergroups if k is algebraically closed. Using a characterization
of super tannakian categories by Deligne [Del02], the quotient Rep(G) of repre-
sentations of an algebraic supergroup on finite dimensional super vector spaces
by the negligible morphisms is of the form Rep(Gred, ε) where Gred is an affine
supergroup scheme and ε : Z/2Z→ Gred such that the operation of Z/2Z gives the
Z2-graduation of the representations [He15]. A determination of Gred is typically
out of reach. More amenable is the full monoidal subcategory Rep(G)I of direct
summands in iterated tensor products of irreducible representations of Rep(G).
The irreducible representations of the quotient category Rep(G)I/N ∼= Rep(H, ε′)
correspond to indecomposable direct summands of non-vanishing superdimension
in such iterated tensor products. The aim is then to determine H . For an ir-
reducible representation L(λ) consider its image in Rep(H) and take the tensor
category generated by it. This category is of the form Rep(Hλ, ε

′) for a reductive
group Hλ and L(λ) corresponds to an irreducible faithful representation Vλ of Hλ.

0.4. The category Rep(GL(m|n)). Let Tm|n be the category of finite dimensional
representations of GL(m|n). The categories Tm|n are not semisimple for m,n ≥ 1.
As above we consider only objects that are retracts of iterated tensor products of
irreducible representations L(λ). This subcategory is called T Im|n and we denote

the pro-reductive group of its semisimple quotient by Hm|n. The crucial tool
to determine Hm|n is the Duflo-Serganova functor [DS05] [HW14] DS : Tm|n →
Tm−1|n−1. It allows us to reduce the determination of Hm|n to lower rank.

Theorem. [HW18, Theorem 5.15] a) Hm|n is a pro-reductive group. b) DS

restricts to a tensor functor DS : T Im|n → T Im−1|n−1 and gives rise to a functor

DS : T Im|n/N → T Im−1|n−1/N . c) There is an embedding Hm−1|n−1 → Hm|n and

DS can be identified with the restriction functor.
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We specialize now to GL(n|n) and use the notation Gn = (Hn|n)
0
der and Gλ =

(Hλ)
0
der. We also suppose that sdim(L(λ)) > 0 since we can replace L(λ) by its

parity shift. We say a representation is weakly selfdual (SD) if it is selfdual after
restriction to SL(n|n).
Theorem. [HW18, Theorem 6.2] Gλ = SL(Vλ) if L(λ) is not (SD). If L(λ) is
(SD) and Vλ|Gλ′ is irreducible, Gλ = SO(Vλ) respectively Gλ = Sp(Vλ) according
to whether L(λ) is orthogonal or symplectic selfdual. If L(λ) is (SD) and Vλ|Gλ′
decomposes into at least two irreducibe representations, then Gλ ∼= SL(W ) for
Vλ|Gλ′ ∼=W ⊕W∨.

We conjecture that the last case in the theorem doesn’t happen. The ambiguity
in the determination of Gλ is only due to the fact that we cannot exclude special
elements with 2-torsion in π0(Hn|n).

Theorem. [HW18, Theorem 6.8] Let λ ∼ µ if L(λ) ∼= L(µ) or L(λ) ∼= L(µ)∨ after
restriction to SL(n|n). Then

Gn ∼=
∏

λ∈X+/∼

Gλ.

In down to earth terms, these theorems give

• the decomposition law of tensor products of indecomposable modules in
T Im|n up to indecomposable summands of superdimension 0; and

• a classification (in terms of the highest weights of Hλ and Hµ) of the in-
decomposable modules of non-vanishing superdimension in iterated tensor
products of L(λ) and L(µ).

We remark that the statement about Gn|n implies a strange disjointness prop-
erty of iterated tensor products of irreducible representations of non vanishing
superdimension. For the general Tm|n-case ((where m ≥ n) recall that every max-
imal atypical block in Tm|n is equivalent to the principal block of Tn|n. We denote

the image of an irreducible representation L(λ) under this equivalence by L(λ0).

Conjecture. (work in progress) Suppose that sdim(L(λ)) > 0. Then Hλ
∼=

GL(m − n) × Hλ0 and L(λ) corresponds to the representation LΓ ⊗ Vλ0 of Hλ.
Here LΓ is an irreducible representation of GL(m− n) which only depends on the
block Γ (the core of Γ).
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Braidings, cacti and crystals

Jacob Greenstein

(joint work with Arkady Berenstein and Jian-Rong Li)

Let g be a reductive Lie algebra and let Uq(g) be the corresponding quantized
universal enveloping algebra (in fact our results can be formulated in a more
general framework of symmetrizable Kac-Moody algebras with extended weight
lattices). Consider the category Ointq (g) whose objects are direct sums (possibly
infinite) of simple finite dimensional Uq(g)-modules. Let W be the Weyl group
of g. After Lusztig ([Lus]), the braid group BrW corresponding to W acts on
the category Ointq (g). This means that for every object V in Ointq (g) we have
a group homomorphism BrW → GL(V ), and these homomorphisms are natural
with respect to morphisms in Ointq (g).

On the other hand, let CactW be the cactus group associated with W (cf [Los,
B, DJS]). For W = Sn the corresponding group appeared in the study of Deligne-
Mumford compactification of the moduli space of stable rational curves with n+1
marked points and their applications in mathematical physics, as well as in the
context of coboundary categories introduced by Drinfeld [D]. One example of
such categories is provided by crystals, and the corresponding action of CactSn ,
was studied in [HK, S].

In this talk we discuss an action of CactW on the category Ointq (g) ([BGL1])
which is connected to Lusztig’s symmetries. Our action on modules preserves their
lower and upper crystal lattices of Kashiwara and factors through to an action on
the corresponding crystal bases. We also study the action of the “largest cactus”
(the standard generator of CactW which is mapped to the longest element of W
under the natural surjection CactW → W ) on Gelfand-Kirillov model for the
category Ointq (g). We prove that it is an algebra anti-involution, and show that it
preserves the upper global crystal basis and hence the upper global crystal basis
in each simple highest weight module. In fact, these involutions are closely related
to remarkable quantum twists studied by Kimura and Oya ([KO]).

Our motivation stems from the study of monomial braidings ([BGL2]). Namely,
starting from a vector space V and a braiding on V ⊗ V , we obtain families of
braidings on V ⊗n ⊗ V ⊗n parametrized by bi-transitive (also known as bipartite)
relations on {1, . . . , n}. This can be further generalized and yields the notion, as
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well as infinite families of examples, of multibraidings. The first example was con-
structed in [BG] in connection with quantum folding. Using the results of [BGL1]
and quantum Howe duality ([TL]) we connect the study of spectral properties
of such (multi)braidings to the purely combinatorial question of determining the
multiplicities of ±1 eigenvalues of certain involutions in the cactus group on tensor
products of highest weight modules.
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On the pure cohomology of multiplicative quiver varieties.

Kevin McGerty

(joint work with Tom Nevins)

The study of moduli spaces of classes of representations of quivers has a long
and important history: A celebrated example of the structures such study has
revealed is Lusztig’s geometric construction of the canonical basis. The perverse
sheaves which occur in Lusztig’s canonical basis can be characterised microlocally
in terms of the moduli spaces of representations of the preprojective algebra of
Dlab and Ringel, and framed versions of these moduli spaces also arose in the
work of Kronheimer and Nakajima on moduli spaces of instantons. Nakajima’s
later generalization of this work, and the rich theory that revealed have made
quiver varieties central objects of geometric representation theory.

More recently, the study of moduli spaces of connections, and in particular the
Deligne-Simpson problem, led Crawley-Boevey and Shaw [2] to introduce certain
“multiplicative” analogues of quiver varieties: these are symplectic varieties which
are moduli spaces for a multiplicative version of the preprojective algebra, and they
include as special cases character varieties of Riemann surfaces with punctures.
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Work of Boalch [1] has also show how such varieties arise as moduli spaces of
irregular connections. In the present talk we describe recent joint work with T.
Nevins on the pure cohomology of multiplicative quiver varieties, showing that
it is generated by the Chern classes of tautological bundles. (Unlike the setting
of Nakajima’s quiver varieties, the full cohomology ring of a multiplicative quiver
variety need not be pure, so the pure part is the largest subalgebra one can hope
to generate by tautological classes.) Our main tool in establishing this result is the
construction of a compactification of a multiplicative quiver variety to which the
tautological bundles naturally extend. To find such a compactification, we study
the moduli space of graded representations of a kind of “graded version” of the
Crawley-Boevey-Shaw multiplicative preprojective algebra.
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The Coherent Satake Category

Harold Williams

(joint work with Sabin Cautis)

Let G be a complex reductive group. The Satake category PG(O)(GrG) of G(O)-
equivariant perverse sheaves on the affine Grassmannian GrG plays a fundamental
role in geometric representation theory and, in particular, the geometric Langlands
program. Its structure is well understood via the geometric Satake equivalence of
[11, 5, 13], which states that PG(O)(GrG) is monoidally equivalent to the repre-
sentation category of the Langlands dual group G∨.

Like its constructible counterpart, the derived category of G(O)-equivariant
coherent sheaves on GrG has a perverse t-structure [2] which is finite length and

stable under convolution. This gives us the coherent Satake category PG(O)
coh (GrG).

In contrast with PG(O)(GrG) this monoidal category is not semi-simple and is
poorly understood.

In the joint work [3] we pursue the structure theory of the coherent Satake
category. Our main results are that

(1) PG(O)
coh (GrG) admits renormalized r-matrices,

(2) PG(O)
coh (GrG) is rigid as a monoidal category (i.e. every object has a left

and right dual), and

(3) PGLn(O)
coh (GrGLn) is a monoidal cluster categorification.

By saying PG(O)
coh (GrG) admits renormalized r-matrices, we mean that for any

nonzero objects F ,G ∈ PG(O)
coh (GrG) there is a canonical nonzero map

rF ,G : F ∗ G → G ∗ F ,
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and that collectively these maps satisfy a list of several axioms. Roughly, these
axioms say that although the maps rF ,G do not constitute a braiding (F ∗ G and
G ∗F are not isomorphic in general), their failure to do so is controlled in a precise
sense by certain inequalities. The construction and characteristic properties of the
maps rF ,G are similar to those of the renormalized r-matrices which appear in the
representation theory of quantum loop algebras [7] and KLR (or quiver Hecke)
algebras [8], hence our terminology.

The origin of renormalized r-matrices in PG(O)
coh (GrG) is the Beilinson-Drinfeld

(BD) Grassmannian [1]. The BD Grassmannians of A1 and its powers are ind-
schemes GrG,An overAn for n > 0. Collectively they form the prototypical example
of a factorization space, meaning they satisfy certain compatibility conditions on
their restrictions to diagonals and disjoint loci. Their role in the construction of
renormalized r-matrices is closely related to their role in establishing the commu-
tativity constraint used to prove the geometric Satake equivalence.

As in the setting of quantum loop algebras and KLR algebras [9], renormalized
r-matrices together with certain properties implied by rigidity strongly constrain
the behavior of real simple objects – that is, objects whose convolution square is
again simple. On the other hand, the coherent Satake category has an abundance
of real simple objects: for any integer ℓ and dominant coweight λ∨ an example is
given by the restriction of the line bundle O(ℓ) on GrG to the G(O)-orbit closure
Gr

λ∨

G , shifted to lie in cohomological degree − 1
2 dimGr

λ∨

G .

Since PG(O)
coh (GrG) is finite length, the classes of simple objects form a basis in

its Grothendieck ring KG(O)(GrG). Following the framework developed in [10] to
study the upper global or dual canonical bases of quantum groups [12, 6], results
(i) and (ii) above provide a mechanism by which this basis – in particular, the
subset formed by classes of real objects – may come to include the structure of a
cluster algebra.

A cluster algebra is a ring with a partial basis of a certain form: it contains
special elements (cluster variables) grouped into overlapping subsets (clusters)
such that the monomials in any cluster are again basis elements [4]. Any two
clusters are connected by a sequence of mutations, an operation which creates a
new cluster by exchanging a single cluster variable for a new one.

For any particular G, to deduce that the classes of simple perverse coherent
sheaves endowKG(O)(GrG) with the structure of a cluster algebra (i.e. to dedue re-
sult (iii)) from results (i) and (ii) using the strategy of [10] one must show, by hand,
that a finite subset of would-be cluster variables and mutations in KG(O)(GrG)
lift to suitable real simple objects and exact sequences. In [3] this is carried out
fully in the case G = GLn, however a similar result is anticipated in the case of a
general reductive group.
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Grothendieck ring isomorphisms, cluster algebras and
Kazhdan-Lusztig polynomials

David Hernandez

(joint work with Hironori Oya)

1. Main question

Let g be a simple complex finite-dimensional Lie algebra and Lg = g⊗ C[t±1] its
loop algebra. Drinfeld and Jimbo associated to each complex number q ∈ C∗ a
Hopf algebra Uq(Lg) called a quantum group. Its representation theory is impor-
tant, in particular from the point of view of quantum integrable systems. Though
it has been intensively studied from several geometric, algebraic, combinatorial
perspectives, some basic questions are still open, such as the dimension and char-
acter of simple finite-dimensional modules.

Inspired by the general framework of monoidal categorification of cluster alge-
bras [HL1], we get new results in this direction.

2. Quantum Grothendieck ring

Let C be the monoidal category of finite-dimensional modules of Uq(Lg). We as-
sume q ∈ C∗ is not a root of unity. The category C is non semi-simple, and non
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braided. It has a very intricate structure. The simple objects in C have been classi-
fied by Chari-Pressley in terms of Drinfeld polynomials. The fundamental modules
in C are distinguished simple modules whose classes generate the Grothendieck ring
K(C).

For simply-laced types, Nakajima [N] established a remarkable Kazhdan-Lusztig
algorithm to compute the multiplicity Pm,m′ of a simple module L(m′) in a stan-
dard module M(m), that is a tensor product of fundamental modules. Here m, m′

belong to an ordered set of monomials (M,≤) which parametrizes both simple and
standard objects. This allows to calculate the classes [L(m)] in terms of the classes
of standard modules whose dimensions and characters are known. This gives an
answer to the initial problem : the multiplicities Pm,m′ are proved to be the eval-
uation at t = 1 of analogues Pm,m′(t) of Kazhdan-Lusztig polynomials. These
polynomials are constructed from the structure of the quantum Grothendieck ring
Kt(C) which is a t-deformation of K(C) in a certain quantum torus [N, VV]. The
polynomials Pm,m′(t) are defined as the transition matrix from a basis [M(m)]t
obtained as a t-deformation in Kt(C) of [M(m)], to a basis [L(m)]t which is char-
acterized as being canonical. Besides the coefficients of the polynomials Pm,m′(t)
are positive [N]. These results are based on the geometric realization of standard
modules in terms of quiver varieties known only for simply-laced types (note how-
ever that geometric characters formulas for standard modules have been obtained
in [HL3] for all types).

For general types, the question is still open. A conjectural answer was pro-
posed by the speaker in [H] by giving a different construction of the quantum
Grothendieck Kt(C) and the corresponding polynomials Pm,m′(t) and canonical
basis [L(m)]t which can be extended to general types. The ambient quantum
torus is not obtained from a convolution product for quiver varieties, but by con-
sidering properties of vertex operators appearing in the theory of q-characters of
Frenkel-Reshetikhin [FR].

This leads to a general precise conjectural formula for the multiplicity of simple
modules in standard modules :

Conjecture 1 (Hernandez, 2004).

(1) [M(m)] = [L(m)] +
∑

m′<m

Pm,m′(1)[L(m′)],

and the polynomials Pm,m′(t) are positive.

The first point of the conjecture above means that [L(m)]t is [L(m)] at t = 1.
In the ADE-cases, a submonoidal category C′ of C is introduced in [HL2] so

that Kt(C′) ≃ Ut(n), the canonical bases being identified with the Lusztig dual
canonical bases. The corresponding polynomials Pm,m′(t) are the actual Kazhdan-
Lusztig polynomials expressing dual PBW -bases in terms of the dual canonical
bases.

3. Isomorphisms and cluster algebras

We denote by CX the category C for g of type X .
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Theorem 2 (Hernandez-Oya, 2018). There is a ring isomorphism

Kt(CBn) ≃ Kt(CA2n−1)

preserving the canonical bases. Moreover the polynomials Pm,m′ are positive in
type Bn.

A crucial point in the proof is the input from cluster algebra theory. In-
deed the quantum Grothendieck rings are subrings of quantum tori, respectively
Yt,A2n−1 ,Yt,Bn , which a priori are different. However, using cluster algebra struc-
tures introduced in [HL3], these quantum tori can be mutated in the sense of the
theory of quantum cluster algebras. After a distinguished sequence of mutations
that we introduce, the ambient quantum tori can be identified and the quantum
Grothendieck rings are proved to be isomorphic :

Yt,A2n−1

mutation///o/o/o/o Y ′
t,A2n−1

// Yt,Bn

Kt(CA2n−1)
S3

ff▼
▼

▼

▼

▼

▼

▼

▼

▼

▼

?�

OO

// K(CBn)
?�

OO

4. Application to the Kazhdan-Lusztig algorithm

Simultaneously, Kashiwara-Kim-Oh [KKO] introduced functors

CBn ←− KLR-algebra modules −→ CA2n−1

from a category of module of a quiver-Hecke (KLR) algebras of type A∞ and the
categories of finite-dimensional modules under study. The functors are obtained
as Schur-Weyl dualities generalizing quantum affine Schur-Weyl dualities [CP]. It
implies the existence of an isomorphism between classical Grothendieck rings

K(CBn) ≃ K(CA2n−1)

preserving the basis of simple modules.
We prove that our isomorphism of quantum Grothendieck rings specializes at

t = 1 to the isomorphism of [KKO] (note that, as far as the speaker knows, the
isomorphism of quantum Grothendieck rings can not be deduced directly from the
result of [KKO]). The following diagram is commutative :

Kt(CBn)
[HO] //

t=1
����

Kt(CA2n−1)

t=1
����

K(CBn)
[KKO]// K(CA2n−1)

Hence, combining all these results, from geometric representation theory, cluster
algebras isomorphism and quiver Hecke functors, we obtain that for the category
CBn the classes [L(m)]t are specialized to the classes [L(m)] :
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Theorem 3 (Hernandez-Oya, 2018). The conjecture of [H] is true in type B : a
Kazhdan-Lusztig algorithm gives the dimensions and characters of simple finite-
dimensional modules.
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The classification of Gelfand-Tsetlin modules and the
Braverman-Finkelberg-Nakajima construction

Ben Webster

(joint work with Oded Yacobi, Alex Weekes)

One very challenging problem in the representation theory of the Lie algebra gln
is the classification of Gelfand-Tsetlin modules, that is, the finitely generated
modules where the Gelfand-Tsetlin subalgebra Γ generated by the centers of the
universal enveloping algebras U(gl1) ⊂ U(gl2) ⊂ · · · ⊂ U(gln) acts locally finitely.
See [FGR, H] for a more general discussion of this problem.

The heart of our approach is the use of the generalized weight functors

Wm(M) = {m ∈M | mNm = 0 ∀N ≫ 0}
for the different maximal ideals m ∈ MaxSpec(Γ). These functors are exact, and
for any Gelfand-Tsetlin module M ∼=

⊕
m∈MaxSpec(Γ)Wm(M). On very general

grounds, the category of Gelfand-Tsetlin modules is thus controlled by the cate-
gory whose objects are these functors, with morphisms given by natural transfor-
mations.

This category becomes much easier to analyze when we realize U(gln) as a
quantum Coulomb branch, in the sense of [BFN]. This allows us to identify the
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space of natural transformations between two weight functors as the homology
of a Steinberg type space; in fact, when we consider the endomorphisms of an
appropriate sum of weight spaces, it is precisely a completed weighted KLR algebra
as defined in [W2], following the approach of [W1, KTWWY]. This fact allows
us to complete the desired classification, and answer many questions about the
structure of simple Gelfand-Tsetlin modules, by giving a finite dimensional algebra
whose simple representations are in bijection with Gelfand-Tsetlin modules of a
fixed weight. In particular, we identify the set of simple integrable Gelfand-Tsetlin
modules with fixed central character with the dual canonical basis of the zero
weight space of a tensor product of U(n) ⊗ (Cn)⊗n of the inversal enveloping
algebra of lower triangular matrices n with n copies of the standard representation
of sln. The other weight spaces of this tensor product correspond to similar module
categories for W-algebras or orthogonal Gelfand-Tsetlin algebras [M].

This same approach can be applied to other quantized Coulomb branches, such
as rational Cherednik algebras, as well as other principal Galois orders (as in-
troduced in [H]). However, such algebras which are not Coulomb branches will
require new calculations.
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Nilpotent Slodowy slices and collapsing levels for W -algebras

Anne Moreau

(joint work with Tomoyuki Arakawa)

Let G be a complex connected simple algebraic group of adjoint type, with Lie
algebra g. The nilpotent Slodowy slice associated with a nilpotent orbit O in g and
an sl2-triple (e, h, f) of g is the intersection

SO,f := O ∩Sf ,

where Sf
∼= f+ge is the Slodowy slice of the sl2-triple (e, h, f). Nilpotent Slodowy

slices associated with the principal nilpotent orbit Oprin and a subregular nilpotent
element fsubreg for the types A,D,E have a simple singularity of the same type
as G. More generally, the singularities of an arbitrary nilpotent Slodowy slices are
understood best for Gf a minimal degeneration of O [13, 14, 10].

In another direction, it is known that nilpotent Slodowy slices appear as associ-
ated varieties ofW -algebras [2, 5], as we explain below. With every vertex algebra
V one associates a Poisson algebra RV , called the Zhu C2-algebra, as follows. Let
C2(V ) be the subspace of V spanned by the elements a(−2)b, where a, b ∈ V , and
set RV = V/C2(V ). Here a(n), n ∈ Z, stands for the Fourier mode of the field

a(z) =
∑

n∈Z
a(n)z

−n−1 corresponding to a ∈ V . Then RV has naturally a Pois-
son algebra structure and the associated variety of V is the affine Poisson variety
XV := SpecmRV .

The universal W -algebra associated with (g, f) at level k ∈ C is

Wk(g, f) := H0
DS,f (V

k(g)),

whereH•
DS,f (?) is the BRST cohomology functor of the quantized Drinfeld-Sokolov

reduction associated with (g, f), [8, 11]. The associated varietyXWk(g,f) is isomor-
phic to the Slodowy slice Sf , [9]. For any quotient V of the universal affine vertex
algebra V k(g) associated with g at level k, H0

DS,f (V ) is a quotient of Wk(g, f)

provided that it is nonzero, and we have [2]: XH0
DS,f

(V ) = XV ∩ Sf , which is a

C∗-invariant subvariety of Sf .

In particular, if XLk(g) is the Zariski closure O of some nilpotent orbit O

in g, where Lk(g) is simple quotient vertex algebra of V k(g), and if f ∈ O, then
XWk(g,f) ⊂ SO,f (conjecturally, the equality holds), where Wk(g, f) is the simple
quotient vertex algebra of Wk(g, f). It is known that this occurs if k is an ad-
missible level1 by [2], or else if g belongs to the Deligne exceptional series and if
k = −h∨/6− 1 + n, where n ∈ Z≥0 is such that k 6∈ Z≥0 by [4].

Definition 1. Let g♮ be the centralizer in g of the sl2-triple (e, h, f). We say
that the level k is collapsing if Wk(g, f) ∼= Lk♮(g

♮), where k♮ is a complex number
entirely determined by the level k and the reductive Lie algebra g♮. For example,
if Wk(g, f) ∼= C, then k is collapsing.

1A level k is admissible if Lk(g) is an admissible ĝ-module which happens if and only if
k = −h∨ + p/q, with p, q ∈ Z>0, (p, q) = 1 and either (q, r∨) = 1 and p ≥ h∨, or (q, r∨) = r∨

and p ≥ h. Here r∨ is the lacety of g, and h (resp. h∨) is its (resp. dual) Coxeter number [12].
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The notion of collapsing levels goes back to Adamović et al. [1]. There is a full
classification of collapsing levels for the case where f = fmin is a minimal nilpotent
element2 [1], as well as of pairs (g, k) such that Wk(g, fmin) ∼= C, [4, 1].

Although the minimal nilpotent case is well-understood, little or almost nothing
is known for collapsing levels for non-minimal nilpotent elements. In this context,
associated varieties and singularities of nilpotent Slodowy slices are proving to be
very useful tools to find new collapsing levels. Let us outline the main idea.

It may happen that a nilpotent Slodowy slice SO,f is isomorphic to a nilpotent

orbit Zariski closure O♮ in the reductive Lie algebra g♮. Many examples can be

exhibited from [13, 14, 10]. If so, and if O and O♮ are the associated varieties of
some affine vertex algebras Lk(g) and Lk♮(g

♮), respectively, one may ask whether
k is a collapsing level. Naturally, the knowledge of the associated varieties is far
from sufficient to ensure that given vertex algebras are isomorphic, but in some
favourable cases we are able to conclude.

If k is an admissible level, and if V is either the simple affine vertex algebra Lk(g)
or its Drinfeld-Sokolov reduction H0

DS,f (Lk(g)), then its normalized character χV
admits a “nice” asymptotic behavior [12]. Then we prove the following.

Theorem 2 (Arakawa-Moreau). Assume that k and k♮ are admissible levels for
g and g♮, respectively, that f ∈ XLk(g) and that χH0

DS,f
(Lk(g))(τ) ∼ χLk♮ (g♮)(τ), as

τ ↓ 0. Then H0
DS,f(Lk(g))

∼=Wk(g, f) is simple and k is a collapsing level.

In this way we discovered a large number of collapsing levels for f 6= fmin.

Theorem 3 (Arakawa-Moreau). Assume that g = sln (we have similar results
for son and spn). Write n = mq + s, with m, q > 0 and s ≥ 0. Assume that
(q, s) = 1 and that the partition associated with the nilpotent orbit Gf is (qm, 1s).
Then W−n+n/q(sln, f) ∼= L−s+s/q(sls) so that k = −n+ n/q is a collapsing level.

Example 4. Here are a few examples in the exceptional types (we do not list all the
examples obtained), where we write for f the label in the Bala-Carter classification
of its nilpotent orbit:

W−12+12/5(E6, A4) ∼= L−2+2/5(A1), W−18+18/3(E7, E6) ∼= L−2+2/13(A1),
W−18+18/7(E7, (A5)

′′) ∼= L−4+4/7(G2), W−9+9/7(F4, B3) ∼= L−2+2/7(A1), etc.

All these examples are obtained by exploiting [2] and [10] to detect the levels, and
then applying Theorem 2 to prove that the isomorphisms indeed hold.

It was observed by physicists that nilpotent Slodowy slices appear as the Higgs
branches of Argyres-Douglas theories in four-dimensional N = 2 superconformal
field theories (see e.g. [15]). The Higgs branch of a four-dimensional N = 2
superconformal field theory T is conjecturally [7] isomorphic to the associated
variety of the vertex algebra corresponding to T via the 4d/2d-duality discov-
ered in [6]. The reader is referred to [3] for a recent survey on this conjecture.
Now, typical examples of vertex algebras corresponding to the Argyres-Douglas
theories are the vertex algebras L−h∨+h∨/q(g), W−h∨+h∨/q(g, f), for g of type

2The work of Adamović et al. [1] includes the case where g is a simple affine Lie superalgebra.
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A,D,E. Such exemples have occured in Theorem 3 and Example 4. As noticed
in [15], a given Argyres-Douglas theory can be realized in several ways. When-
ever this happens, it means that we have an isomorphisms between W -algebras.
We believe that such a phenomenon essentially reflects that the level is collaps-
ing, provided that one of the W -algebras in an affine vertex algebra. Actually,
from the geometry of nilpotent Slodowy slices, it is sometimes possible to predict
isomorphisms between non-trivial W -algebras. For example, we conjecture that
W−7+7/3(sl7, f) ∼= W−4+4/3(sl4, f

′), where f belongs to the nilpotent orbit of sl7
associated with the partition (3, 22) and f ′ to that of sl4 associated with (22).
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Quiver varieties and crystals in symmetrizable type via modulated
graphs

Peter Tingley

(joint work with Vinoth Nandakumar)

Kashiwara and Saito [2] gave a geometric construction of the infinity crystal for
any symmetric Kac-Moody algebra. The underlying set consists of the irreducible
components of the nilpotent representation varieties of Lusztig’s preprojective al-
gebra from [3]. We generalize this to symmetrizable types by replacing Lusztig’s
preprojective algebra with a more general one due to Dlab and Ringel [1]. We also
discuss extensions and relationships to other recent constructions. Much of this
can be found in more detail in [5].

1.1. Crystals. The infinity crystal B(∞) is a combinatorial object which, among
other things, parameterizes a basis for U−

q (g), the lower triangular part of a quan-
tized universal enveloping algebra. It consists of a set along with some partial
permutations fi, and is usually defined algebraically using Kashiwara’s modifica-

tion F̃i of the Chevalley generators. One can also realize the same combinatorics
in other ways. For example, for sln, the infinity crystal is realized using multi-
segments, and the related finite crystals are realized using Young-tableaux. These
realizations can shed light on the underlying representation theory. For instance,
the connection with Young tableaux gives a way to see how Littlewood-Richardson
coefficients are given by counting Littlewood-Richardson tableaux (which was
known before crystals were around, but it is still a nice example!)

1.2. Kashiwara and Saito’s construction. We will mostly review this using
the example of A3 (so sl4). This has Dynkin diagram

✈ ✈ ✈

1 2 3

The path algebra has a basis consisting of paths, and multiplication is concatenation
if possible, and 0 otherwise. The preprojective algebra Λ is the quotient by a generic
relation between 2-step paths starting and ending at each vertex.

For v ∈ NI (I indexes nodes of the diagram), let Λ(v) be the variety of nilpotent
representations of Λ on ⊕ICvi , where each lazy path ei projects onto the corre-
sponding subspace. Kashiwara and Saito showed that ⊔vIrrΛ(v) realizes B(∞)
with the crystal operators fi acting as follows: Fix X ∈ IrrΛ(v). Let Si be the
simple one-dimensional module over i. For generic x ∈ X and a generic extension

0→ Si → (V ′, x′)→ (V, x)→ 0,

(V ′, x′) is in a single irreducible component Y ∈ IrrΛ(V ′). Then Y = fiX .
Proving this is not particularly hard! There is a second set of operators, f∗

i , de-
fined in the same way, but adding Si to the head instead of the socle. B(∞) also has
a second set of operators, those twisted by Kashiwara’s involution. In fact B(∞)
can be characterized as a set with operators fi and f

∗
i satisfying some straightfor-

ward conditions, including that fi, f
∗
j commute except occasionally when i = j.

Now it is just a matter of checking the conditions match exactly, which they do.
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1.3. Punch line. About 8 years ago, two things bothered me about this:

• Every proof using this realization was only valid in symmetric type, even
though most of the combinatorial results could be extended to symmetric
type by “folding.” It was annoying to have this extra step!
• The name preprojective algebra. It seemed like it should mean something,
but the people I asked didn’t know where it came from (other than that
it is the term Lusztig used).

Then, at the 2010 Auslander Lectures, several talks mentioned “preprojective
modules,” and even a preprojective algebra! A mystery was about to be resolved!
Next, Hugh Thomas pointed me to a paper of Dlab and Ringel [1] studying prepro-
jective algebras in symmetrizable types...which actually dates to before Lusztig’s
work! Now for my punchline: Dlab and Ringel’s preprojective algebra (over infi-
nite fields) can be used to realize B(∞) for any symmetrizable Kac-Moody algebra,
with everything analogous to Kashiwara-Saito’s work. Let me explain a bit more.

1.4. Symmetrizable quiver varieties. Consider e.g. B2, with Dynkin diagram
✈ ✈<
1 2

We need a field extension of degree 2 to handle the different length roots, so we use
R ⊂ C. We also need a pair of bimodules for each edge, one for each orientation.
We use CMR and RMC, where both M and M are copies of C, and all actions are
just multiplication. Here M corresponds to orienting the edge left to right.

The path algebra is replaced by the tensor algebra: a copy of R at vertex 1, a
copy of C at 2, M , M , M ⊗CM, M ⊗RM , M ⊗C M ⊗RM , etc. Multiplication is
tensor product, or 0 if the ends don’t match up. The preprojective algebra is the
quotient by a degree 2 element starting and ending at each vertex. Here we use

τ1 = 1⊗ 1 ∈M ⊗C M and τ2 = 1⊗ i+ i⊗ 1 ∈M ⊗R M.

We need these to satisfy the condition that zτ2 = τ2z for any z ∈ C, which is
clearly true above. Dlab and Ringel use the canonical elements for non-degenerate
bilinear forms, which implies the necessary condition in general.

The variety Λ(v) (overR) consists of representations of this algebra onRv1⊕Cv2 .
IrrΛ(V ) is the set of irreducible components of Λ(V ), considered as a subset of

HomC(M ⊗R Rv1 ,Cv2)⊕ HomR(M ⊗C Cv2 ,Rv1).

We mean this in a naive sense, not considering components of the abstract variety
that do not have sufficient R points to appear. Now the definition of the crystal
operators is like in the symmetric case, and so is the proof that this realizes B(∞)!

1.5. Affine sl2. This case is symmetric, but we have more freedom to choose the
relations in the preprojective algebra than usual, and this gives non-isomorphic
algebras that can still realize B(∞). Studying those may be interesting.
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1.6. Relation with folding. Our construction is related to the method of folding
by a diagram automorphism to realize symmetrizable types: Taking the fixed
points of the composition of a diagram automorphism and a Galois automorphism
of the same order acting on the symmetric quiver variety gives an instance of our
construction. Well, conjecture I guess, this certainly hasn’t been written up.

1.7. Relation to work of Geiss, Leclerc and Schroer. In [4] they consider
a similar construction, but using nilpotent polynomial rings in place of our fields.
They can then work over an algebraically closed field, a clear advantage. But
there are disadvantages as well. For instance, they must restrict to only consider
representations that admit a filtration of a fixed form. They also find irreducible
components of lower dimension which they must ignore.

Anyway, they use C and C[ǫ]/ǫ2 where we use R and C above. It seems there
should be a direct relationship with our construction, roughly as follows:

• Our construction works fine using the field extension C((ǫ2)) ⊂ C((ǫ)).
• One would look for an “integral” part, defined over C[[ǫ2]] ⊂ C[[ǫ]].
• One would then set ǫ2 = 0, and hope nothing important collapses...

Much needs to be checked, and it is probably more complicated than this. Christof
Geiss will discuss something kind of like this in his talk.
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Drinfeld-Gaitsgory-Vinberg interpolation Grassmannian and
geometric Satake equivalence

Michael Finkelberg

(joint work with Vasily Krylov)

0.1. Let Λ =
⊕

n Λ
n be the ring of symmetric functions equipped with the base

of Schur functions sλ. It also carries a natural coproduct. The classical Schubert
calculus is the based isomorphism of the bialgebra Λ with H•(Gr,Z) (doubling the
degrees) taking sλ to the fundamental class of the corresponding Schubert variety
σλ. Here Gr is the infinite Grassmannian Gr = lim

→
Gr(k,m) ≃ BU(∞), and the

coproduct on H•(Gr,Z) comes from the H-space structure on the classifying space
BU(∞).
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Here is a more algebraic geometric construction of the coproduct on H•(Gr,Z).
We have H2n(Gr,Z) = H2n(Schn,Z) = H2n

c (Schn,Z) = H2n
c (Schn,Z) where

Schn ⊂ Gr (resp. Schn ⊂ Gr) stands for the union of all n-dimensional (resp.
≤ n-dimensional) Schubert cells (with respect to a fixed flag).

Recall the Calogero-Moser phase space Cn: the space of pairs of n×n-matrices
(X,Y ) such that [X,Y ] + Id has rank 1, modulo the simultaneous conjugation of
X,Y . The integrable system πn : Cn → A(n) takes (X,Y ) to the spectrum of X .
Wilson [10] has discovered the following two key properties of the Calogero-Moser
integrable system:

(a) for n1 + n2 = n, a factorization isomorphism

Cn ×A(n) (A(n1) × A(n2))disj
∼−→ (Cn1 × Cn2)×(A(n1)×A(n2)) (A

(n1) × A(n2))disj.

(b) For x ∈ A1, an isomorphism π−1
n (n · x) ∼−→ Schn.

Now the desired coproduct

∆ =
⊕

n1+n2=n

∆n1,n2 : H
2n
c (Schn,Z)→

⊕

n1+n2=n

H2n1
c (Schn1 ,Z)⊗H2n2

c (Schn2 ,Z)

is nothing but the cospecialization1 morphism for the compactly supported coho-
mology of the fibers of πn restricted to the subfamily π−1

n (n1 · x + n2 · y) ⊂ Cn
(from the fibers over the diagonal x = y to the off-diagonal fibers x 6= y), cf. [5].

0.2. Given a reductive complex algebraic group G, Schieder [9] constructed a
bialgebra A playing the role of

⊕
nH

2n
c (Schn,C) for the affine Grassmannian GrG

in place of Gr. In order to explain his construction, we set up the basic notations
for G and GrG.

We fix a Borel and a Cartan subgroup G ⊃ B ⊃ T , and denote by W the Weyl
group of (G, T ). Let N denote the unipotent radical of the Borel B, and let N−

stand for the unipotent radical of the opposite Borel B−. Let Λ (resp. Λ∨) be
the coweight (resp. weight) lattice, and let Λ+ ⊂ Λ (resp. Λ∨+ ⊂ Λ∨) be the cone
of dominant coweights (resp. weights). Let also Λ+ ⊂ Λ (resp. Λ∨

+ ⊂ Λ∨) be the
submonoid spanned by the simple coroots (resp. roots) αi, i ∈ I (resp. α∨

i , i ∈ I).
We denote by G∨ ⊃ T∨ the Langlands dual group, so that Λ (resp. Λ∨) is the
weight (resp. coweight) lattice of G∨.

Let O denote the formal power series ring C[[z]], and let K denote its fraction
field C((z)). The affine Grassmannian GrG = GK/GO is an ind-projective scheme,

the union
⊔
λ∈Λ+ GrλG of GO-orbits. The closure of GrλG is a projective variety

GrλG =
⊔
µ≤λGrµG. The fixed point set GrTG is naturally identified with the coweight

lattice Λ; and µ ∈ Λ lies in GrλG iff µ ∈Wλ.

For a coweight ν ∈ Λ = GrTG, we denote by Sν ⊂ GrG (resp. Tν ⊂ GrG) the orbit
of N(K) (resp. of N−(K)) through ν. The intersections Sν ∩GrλG (resp. Tν ∩GrλG)
are the attractors (resp. repellents) of C× acting via its homomorphism 2ρ to the
Cartan torus T acting on GrλG : Sν ∩ GrλG = {x ∈ GrλG : lim

c→0
2ρ(c) · x = ν} and

1terminology of [9, 6.2.7].
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Tν∩GrλG = {x ∈ GrλG : lim
c→∞

2ρ(c)·x = ν}. Going to the limit GrG = lim
λ∈Λ+

GrλG, Sν

(resp. Tν) is the attractor (resp. repellent) of ν in GrG. The closure Sν is the union⊔
µ≤ν Sµ, while T ν =

⊔
µ≥ν Tµ.

Definition 1. (a) For θ ∈ Λ+ we denote by Schθ (resp. Schθ) the intersection
Sθ ∩ T0 (resp. Sθ ∩ T 0).

2 It is equidimensional of dimension 〈ρ∨, θ〉.
(b) We set Aθ := H

〈2ρ∨,θ〉
c (Schθ,C) = H

〈2ρ∨,θ〉
c (Schθ,C), and A :=

⊕
θ∈Λ+

Aθ.

Given a smooth curve X and θ ∈ Λ+, the open zastava space
◦

Zθ (see e.g. [2])

is equipped with the projection πθ :
◦

Zθ → Xθ to the degree θ configuration space
of X . It enjoys the factorization property, and for any x ∈ X , we have a canonical
isomorphism π−1

θ (θ · x) ∼−→ Schθ. Given θ1, θ2 ∈ Λ+ such that θ1 + θ2 = θ, the
coproduct ∆θ1,θ2 : Aθ → Aθ1⊗Aθ2 is defined just like in 0.1 via the cospecialization

morphism for the subfamily π−1
θ (θ1 · x+ θ2 · y).

To construct the product m :
⊕

θ1+θ2=θ
Aθ1 ⊗Aθ2 → Aθ we need the Drinfeld-

Gaitsgory interpolation S̃chθ → A1 [4] constructed with respect to the C×-action

on Schθ arising from the cocharacter 2ρ of T . The key property of S̃chθ → A1 is

that the fibers over a 6= 0 are all isomorphic to Schθ, while the zero fiber (S̃chθ)0
is isomorphic to the disjoint union

⊔
λ

Sch+,λθ × Sch−,λθ . Here λ (a coweight in

Λ+ such that λ ≤ θ) runs through the set of C×-fixed points of Schθ, and Sch+,λθ

(resp. Sch−,λθ ) stands for the corresponding attractor (resp. repellent). It is easy to

see that H
〈2ρ∨,θ〉
c ((S̃chθ)0,C) =

⊕
θ1+θ2=θ

H
〈2ρ∨,θ1〉
c (Schθ1 ,C)⊗H〈2ρ∨,θ2〉

c (Schθ2 ,C),
and the desired product m is nothing but the cospecialization morphism for the
compactly supported cohomology of the fibers of the Drinfeld-Gaitsgory family.

Schieder conjectured that the bialgebra A is isomorphic to the universal en-
veloping algebra U(n∨) of Lie(N∨) where N∨ ⊂ B∨ ⊂ G∨ is the unipotent radical
of Borel subgroup of G∨. The goal of the present work is a proof of Schieder’s
conjecture.

0.3. In order to produce an isomorphism A ∼−→ U(n∨), we construct an action of
A on the geometric Satake fiber functor. More precisely, we denote by rν,+ (resp.
rν,−) the locally closed embedding Sν →֒ GrG (resp. Tν →֒ GrG). We also denote
by ιν,+ (resp. ιν,−) the closed embedding of the point ν into Sν (resp. into Tν).

According to [1, 4], there is a canonical isomorphism of functors ι∗ν,−r
!
ν,− ≃

ι!ν,+r
∗
ν,+ : Db

GO
(GrG) → Db(Vect). For a sheaf P ∈ Db

GO
(GrG), its hyperbolic

stalk at ν is defined as Φν(P) := ι∗ν,−r
!
ν,−P ≃ ι!ν,+r

∗
ν,+P . According to [8], for

P ∈ PervGO
(GrG), the hyperbolic stalk Φν(P) is concentrated in degree 〈2ρ∨, ν〉,

and there is a canonical direct sum decomposition H•(GrG,P) =
⊕

ν∈ΛΦν(P).
Moreover, the abelian category PervGO

(GrG) is monoidal with respect to the con-
volution operation ⋆, and the functor H•(GrG,−) : (PervGO

(GrG), ⋆)→ (Vect,⊗)

2Here Sch stands for Schieder.
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is a fiber functor identifying (PervGO
(GrG), ⋆) with the tensor category Rep(G∨)

(geometric Satake equivalence).
We define a morphism of functors Aθ ⊗ Φν → Φν+θ. To this end (and also in

order to check various tensor compatibilities) we consider the Drinfeld-Gaitsgory-

Vinberg interpolation Grassmannian: a relative compactification VinGrprincG of the

Drinfeld-Gaitsgory interpolation G̃rG → A1. We also consider an extended version
VinGrG → T+

ad := SpecC[Λ∨
+] and its version VinGrG,Xn for the Beilinson-Drinfeld

Grassmannian. It was implicit already in Schieder’s work, and it was made explicit
by D. Gaitsgory (private communication, cf. an earlier work [6]). We believe it
is a very interesting object in its own right. For example, let ω ∈ Λ+ be a
minuscule dominant coweight. Then the Schubert variety GrωG is isomorphic to a
parabolic flag variety G/Pω, and the corresponding subvariety VinGrωG of VinGrG
is isomorphic to Brion’s degeneration of ∆G/Pω in Hilb(G/Pω × G/Pω) × T+

ad [3,
§3].
Remark. (a) By the geometric Satake equivalence, for P ∈ PervGO

(GrG),
the cohomology H•(GrG,P) is equipped with an action of U(g∨). For exam-
ple, the action of the Cartan subalgebra U(t∨) ⊂ U(g∨) comes from the grading
H•(GrG,P) =

⊕
ν∈Λ Φν(P). The action of U(n∨) comes from the geometric ac-

tion of the Schieder bialgebra A on the geometric Satake fiber functor, and the
isomorphism A ∼−→ U(n∨). Finally, the action of U(n∨−) is conjugate to the action
of U(n∨) with respect to the Lefschetz bilinear form on H•(GrG,P).

(b) By construction, the Schieder algebra A comes equipped with a basis (fun-
damental classes of irreducible components of Schθ). On the other hand, U(n∨)
is equipped with the semicanonical basis [7].3 In the simplest example when
G = SL(2), A is N-graded, and each graded component An is one-dimensional
with the basis vector en; one can check enem =

(
n+m
n

)
en+m. Hence the two bases

match under the isomorphism A ∼−→ U(n∨). However, J. Kamnitzer has checked
recently that for G = SL(6) the two bases do not match. Thus the Higgs branch
realization [7] of U(n∨) is different from the Coulomb branch realization [9] of
U(n∨).
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Supports for linear degenerations of flag varieties

Markus Reineke

(joint work with Xin Fang)

1. Supports

Suppose given a proper algebraic map f : X → Y between irreducible complex
algebraic varieties, with X being smooth. Then the variation of cohomology of the
fibres Xy = f−1(y) is encoded in the complex of constructible sheaves Rf∗QX , in
particular the cohomology of the fibres of f is given by the stalks of its cohomology
sheaves,

H∗(Xy) = H∗
y(Rf∗QX).

By the Decomposition Theorem, Rf∗QX is isomorphic to a finite direct sum of
shifts of intersection cohomology complexes,

Rf∗QX ≃
n⊕

i=1

IC(Si, Li)[di],

where the Si are certain locally closed subvarieties of Y , the Li are local systems
on Si, and di ∈ Z. We call {S1, . . . , Sn} the set of supports of f . This is thus an
invariant of the map f , which encodes the variation of cohomology along its fibres
in terms of the singularities (or, more precisely, their local intersection cohomology)
of the subvarieties Si.

For an introduction to the concept of supports and an overview of known results,
see [4]. For example, if f is a semismall map, the supports are precisely the so-
called relevant strata, and if f is flat with irreducible d-dimensional fibres, all
supports have codimension less than d (Goresky-Macpherson). For certain abelian
fibrations, Ngo’s support theorem describes the supports, and a result of Migliorini
and Shende localizes the supports inside so-called higher discriminant loci.

It is an interesting problem to describe the supports for proper maps featuring
in contexts of Geometric Representation Theory, which we will do in the following
for the flat family of so-called linear degenerations of flag varieties.
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2. Linear degenerations

Let n ≥ 1, and let V be an (n + 1)-dimensional complex vector space. Then the
flag variety SL(V )/B is realized as the closed subset

Fl(V ) = {U1 ⊂ U2 ⊂ . . . ⊂ Un ⊂ V | dimUi = i}

of the product Gr =
∏b
i=1 Gri(V ) of Grassmannians of V .

We would like to degenerate Fl(V ) inside Gr by relaxing the containment rela-
tion between the subspaces constituting the flag. For a tuple f∗ = (f1, . . . , fn−1) ∈
Hom(V, V )n−1, we define

Flf∗(V ) = {(U1, . . . , Un) ∈ Gr | fi(Ui) ⊂ Ui+1}

as the f∗-degenerate flag variety. For example, if all fi are isomorphisms, we
recover Fl, and in the most degenerate case fi = 0, we find Gr. We call r(f∗) =

(rank(fj−1 ◦ . . . ◦ fi))i<j the rank tuple of f∗ and note that Flf∗(V ) only depends
on r = r(f∗); thus we can denote it by Flr(V ). The following is proved in [1]:

• The degenerate flag variety Flf∗(V ) is irreducible of dimension n(n+1)/2
if and only if r(f∗) ≥ r1 = (n+ 1 + i− j)i<j .
• In this case, Flf∗(V ) is a normal locally complete intersection variety,
admitting an affine paving and an algebraic group action with a dense
orbit.
• Flr

1

is isomorphic to E. Feigin’s degenerate flag variety.
• The degenerate flag variety Flf∗(V ) is of dimension n(n+1)/2 if and only
if r(f∗) ≥ r2 = (n + i − j)i<j , in which case it is a locally complete
intersection variety admitting an affine paving.

• The number of irreducible components of Flr
2

(V ) equals the n-th Catalan
number.

Define U ⊂ Hom(V, V )n−1 as the open subset of all tuples f∗ such that r(f∗) ≥
r1, on which the group G = GL(V )n acts naturally via base change; the orbits
O(r) for this action can be indexed by rank tuples r ≥ r1. We define the linear
degeneration family

F l = {(f∗, U∗) ∈ U ×Gr | fi(Ui) ⊂ Ui+1} ⊂ U ×Gr,

which admits G-equivariant maps

Gr
p← F l π→ U

such that p is open in a homogeneous bundle (and thus identifying F l as smooth
and irreducible), and π is projective and flat with irreducible fibres π−1(f∗) =

Flf∗(V ) by the above theorem. We want to determine the supports of π.
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3. Main result

To a Motzkin path of length n, given by a tuple x∗ = (0 = x0, x1, . . . , xn = 0) such
that xi ≥ 0 and xi − xi−1 ∈ {−1, 0, 1}, we associate a rank tuple r(x∗), called a
Motzkin rank tuple, by

r(x∗)im = n+ 1− max
i≤j≤k≤l≤m

(xk−1 + xk − xj−1 − xl).

The main result is:
The set of supports of the family π : F l → U is the set of Motzkin rank tuples

O(r(x∗)). In other words, we have

Rπ∗QF l ≃
⊕

x∗

IC(O(r(x∗)))⊗ V (x∗)
•

for certain (unknown) graded Q-vector spaces V (x∗)
• encoding multiplicities and

shifts.

4. Techniques

To prove the main result, we use G. Lusztig’s geometric realization of quantized
enveloping algebras and their canonical bases [3]. Denoting by Q the linearly
oriented type An quiver, for any dimension type d ∈ Nn we consider the variety
Rd(Q) parametrizing d-dimensional representations of Q, on which an algebraic
group Gd acts naturally. The space

⊕

d

K0(Perv
Gd(Rd(Q)))⊗Z Q(v)

of suitably extended Grothendieck groups of the categories of Gd-equivariant per-
verse sheaves on Rd(Q) carries a natural Nn-graded associative convolution prod-
uct ∗, and a natural basis B given by intersection cohomology complexes along the
(finitely many) orbits of each Rd(Q). The resulting based algebra is isomorphic
to U+

v (sln+1), with Chevalley generators Ei subject to quantized Serre relations,
together with Lusztig’s canonical basis.

The relation to linear degenerations of flag varieties is provided by the observa-
tion that U ⊂ Rd(Q) for d = (n+ 1, . . . , n+ 1), that the canonical basis elements
b(r) corresponding to intersection cohomology complexes on this variety are nat-

urally indexed by rank tuples r, and that O(r) is a support of π : F l → U if and
only if b(r) appears with non-zero coefficient in the expansion of the monomial

E
(n)
1 . . . E(1)

n E
(1)
1 . . . E(n)

n =
∑

r≥r1

γ(r)b(r)

in the canonical basis. Using the Knight-Zelevinsky multisegment duality [2] and
explicit degree estimates for the coefficients γ(r), the above description of supports
is achieved.
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Elliptic quantum groups

Valerio Toledano Laredo

(joint work with Sachin Gautam)

The dynamical Yang–Baxter equations (DYBE) were introduced by Felder in 1994
to circumvent the fact that the Yang–Baxter equations do not admit elliptic so-
lutions outside of type An [3]. Felder showed that the classical DYBE possess
elliptic solutions for all Lie types, proposed that elliptic quantum groups be the
quantum groups associated to elliptic solutions of the quantum YBE via the RTT
construction of Faddeev–Reshetikhin–Takhtajan, and gave an elliptic solution of
the quantum DYBE in type A.

Jimbo–Konno–Odake–Shiraishi [11] and Etingof–Schiffmann [1] later showed
that elliptic solutions of the quantum DYBE exist for any complex semisimple
Lie algebra g and finite–dimensional representation V of the quantum loop alge-
bra Uq(Lg) of g. This led to a tentative definition of the elliptic quantum group
E~,τ (g) as the algebra Uq(Lg), where q = exp(πι~), but with a different, dy-
namical coproduct obtained by twisting the standard coproduct of Uq(Lg) by the
corresponding fusion operator.

A more intrinsic presentation was obtained by Kojima–Konno [4] for g = sln
and, more recently, by Farghly–Konno–Oshima [2] for any complex semisimple g,
under the assumption that the elliptic parameter p = exp(2πιτ) is formal, so that
the odd theta function ϑ(z) = z1/2

∏
n>0(1− zpn)(1− z−1pn−1)(1− pn)−2/2πι is

regarded as a formal power series in p with coefficients in C[z±1]. The presentation
is given in terms of Drinfeld full currents, or equivalently integer moded generators,
which satisfy commutation relations involving ϑ.

In joint work with Sachin Gautam [10], we propose a definition of the category of
finite–dimensional representations of E~,τ (g) which is intrinsic, uniform for all Lie
types, and valid for numerical values of p. Our presentation of E~,τ (g) is given in
terms of Drinfeld half rather than full currents, which are elliptic rather than distri-
butional functions of a complex parameter, and recovers Farghly–Konno–Oshima’s
presentation if p is regarded as formal. Interestingly, however, our presentation
cannot be given by canonical generators and relations for p numerical since ϑ(z)
has essential singularities at z = 0,∞ in that case.

We classify simple objects in Repfd(E~,τ (g)) in terms of elliptic Drinfeld poly-
nomials. Our classification is new even for g = sl2, and is analogous to Drinfeld’s
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and Chari–Pressley’s highest weight classification of irreducible finite–dimensional
representations of Yangians and quantum loop algebras [6, 5]. This analogy does
not extend to proofs, however, since E~,τ (g) does not seem to admit Verma mod-
ules. We circumvent this issue by constructing a functor Θ from finite–dimensional
representations of the quantum loop algebra Uq(Lg) to those of E~,τ (g), which is
such that Θ(V) is irreducible if and only if V is, and relying on the classification
of simples in Rep

fd
(Uq(Lg)).

The functor Θ is governed by the monodromy of the p–difference equations
fi(pz) = Ψi(z)fi(z) determined by the commuting (half–)currents of Uq(Lg) on a
finite–dimensional representation V . It is a trigonometric version of the functor
from finite–dimensional representations of the Yangian Y~g to those of Uq(Lg) we
constructed in our previous work [7, 8, 9].

Our presentation of E~,τ (g) is valid for an arbitrary symmetrisable Kac–Moody
algebra g, as is our classification, provided finite–dimensionality is replaced by an
integrability and category O conditions.
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Rigid indecomposable modules and real Schur roots

Christof Geiß

(joint work with Bernard Leclerc, Jan Schröer)

Let A be a finite dimensional hereditary K-algebra. Its Grothendieck group
K0(A) = ZI for I = {1, 2, . . . , n} comes with the canonical basis (αi)i∈I given
by the classes of the simple A-modules. The homological bilinear form

(M,N) 7→ dimK HomA(M,N)− dimK Ext1A(M,N),

on the category of finite dimensional A-modules descends to an integral bilinear
form on K0(A) determined by

〈αi, αj〉(C,D,Ω) =





cicij if (i, j) ∈ Ω,

ci if i = j,

0 else.

Here, C ∈ ZI×I is a symmetrizable generalized Cartan matrix, D = diag((ci)i∈I)
is a (left) symmetrizer of C and Ω ⊂ I×I is an orientation for C. We may suppose
that (i, j) ∈ Ω implies i < j. In other words, K0(A) has the structure of a general-
ized Cartan lattice with an orthogonal exceptional sequence in the sense of Hubery
and Krause [8, Sec. 3]. We can consider (C,D,Ω) as a basic combinatorial invari-
ant of A. Note that C will be symmetric if K is algebraically closed. From Kac’s
theorem and its relatives it follows that for many finite dimensional hereditary al-
gebras the classes of the finite dimensional indecomposable A-modules correspond
precisely to the positive roots of the corresponding Kac-Moody Lie algebra g(C).
This holds in particular if K is algebraically closed or finite, or if C is of finite or of
affine type. The Weyl group W ⊂ Aut(ZI) is generated by the simple reflections
(si)i∈I , where

si(α) := α− 2(α, αi)

(αi, α)
αi,

and (−,−) denotes the symmetrized bilinear form. The real roots Φre(C) :=
∪i∈IWαi can be considered as a subset of the roots of the Kac-Moody Lie algebra
g(C). The real Schur roots are a subset of the positive real roots Φ+

re(C) which
can be described combinatorially, following [8, Cor. 4.8], in terms of non-crossing
partitions, namely

ΦrS(C,Ω) = {α ∈ Φ+(C) | 1 < sα < s1s2 · · · sn},
where < denotes the absolute order on W .

By work of Crawley-Boevey [2] and Ringel [9] the real Schur roots can be iden-
tified with the classes of the rigid indecomposable A-modules for any finite dimen-
sional hereditary K-algebra A with combinatorial invariant (C,D,Ω). Here, rigid
means that the module has no self-extensions. From the work of Crawley-Boevey
and Ringel follows also that the endomorphism ring of each rigid indecomposable
A-module is isomorphic to the endomorphism ring of a simple A-module, and thus
by Schur’s Lemma it is isomorphic to a division algebra.
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In previous work [5] we introduced for any field F an 1-Iwanaga Gorenstein
F-algebra H := HF(C,D,Ω), defined in terms of a quiver with relations. Its
modules of finite projective dimension form a hereditary exact category. They
behave in many aspects like the modules over an hereditary algebra with the same
combinatorial invariants. For example the Grothendieck group of those modules
can be identified with (ZI , 〈−,−〉(C,D,Ω)). In this spirit we can now show the
following result:

Theorem. Let H = HF(C,D,Ω) be as above. Then the following holds:

(a) Taking classes in the Grothendieck group of modules of finite projective
dimension, induces a bijection between the isoclasses of indecomposable
rigid H-modules of finite projective dimension, and the real Schur roots
ΦrS(C,Ω).

(b) If M is a rigid indecomposable H-module of finite projective dimension,
we have EndH(M) ∼= F[ǫ]/(ǫci) for some i ∈ I, and M is free as an
EndH(M)-module.

(c) Taking classes in the Grothendieck group of all finite dimensional H-
modules induces a bijection between the isoclasses of left finite H-bricks
and dual real Schur roots ΦrS(C

T ,Ω).

Here, a module is called a brick if its endomorphism ring is a division algebra,
and it is called left finite if the smallest torsion class which contains it is functorially
finite.

In order to approach this result we note that the algebras (HF(C, kD,Ω))k∈N+

form a directed system with elements ǫk ∈ Z(HF(C, kD,Ω)) and canonical isomor-
phisms

HF(C, kD,Ω)/(ǫ
l
kHF(C, kD,Ω)) ∼= H(C, lD,Ω)

for l < k, such that ǫk is projected onto ǫl, see [6, Sec. 2.2]. It follows that

Ĥ := lim←−
k

HF(C, kD,Ω)

is naturally a noetherian F[[ǫ]]-algebra. Moreover we consider the localization H̃ =

H̃F((ε))(C,D,Ω) = Ĥε. It is easy to see that Ĥ is free of finite rank as an F[[ε]]-

module and (except for trivial cases) of global dimension 2. On the other hand H̃
is a finite-dimensional hereditary F((ε))-algebra of type (C,D,Ω). The diagram

Ĥ
loc //

proj

��

H̃

H

allows us to relate the F[[ε]]-lattices of Ĥ, via the reduction functor H ⊗Ĥ −, with
the finite dimensional H-modules of finite projective dimension, and similarly,

via the localization functor H̃ ⊗Ĥ −, with the finite dimensional modules of the

hereditary F((ǫ))-algebra H̃ . This is quite similar to a p-modular system.
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Although some of our basic constructions are closely related to [3], we have
to work with the exchange graph of support tilting modules rather than with
exceptional sequences. The following facts are crucial for the proof of our theorem:

• τ -rigid H-modules have in fact projective dimension at most 1 (L. De-
monet), thus the exchange graph of support tilting H-modules is |I|-
regular [1].

• The exchange graph of support tilting modules for H̃ is connected and
|I|-regular [7].
• Statement (c) is an almost formal consequence of (a) and (b) by [4,
Thm. 4.1].

Finally it is worth to mention that the algebra Ĥ = ĤF[[ε]](C,D,Ω) can be
described as

F〈〈Q(C,Ω)〉〉/I,
where F〈〈Q(C,Ω)〉〉 is the completed path algebra of the quiver Q(C,Ω), and I
is the ideal generated by the relations (H2), which were both introduced in [5,

Sec. 1.4]. In this description, Ĥ carries a F[[ε]]-algebra structure via the map

which sends ε to
∑
i∈I ε

ci
i ∈ Ĥ . For example, with

C =
(

2 −1 0
−2 2 −2
0 −1 2

)
, D =

(
2 0 0
0 1 0
0 0 2

)
, Ω = {(1, 2), (2, 3)}

we get

Q(C,Ω) = 1

ε1

��
2

αoo

ε2

��
3

βoo

ε3

��
and (H2) = (ε21α− αε2, ε2β − βε23).
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Conformal blocks for Galois covers of algebraic groups

Shrawan Kumar

(joint work with Jiuzu Hong)

1. Introduction

Wess-Zumino-Witten model is a type of two dimensional conformal field theory,
which associates to an algebraic curve with marked points and integrable highest
weight modules of an affine Kac-Moody Lie algebra associated to the points, a
finite dimensional vector space consisting of conformal blocks. The space of con-
formal blocks has many important properties including Propogation of Vacua and
Factorization. Deforming the pointed algebraic curves in a family, we get a sheaf of
conformal blocks. This sheaf admits a projectively flat connection when the fam-
ily of pointed curves is a smooth family. The mathematical theory of conformal
blocks was first established by Tsuchiya-Ueno-Yamada. All the above properties
are important ingredients in the proof of the celebrated Verlinde formula for the
dimension of the space of conformal blocks.This theory has a geometric counter-
part in the theory of moduli spaces of principal bundles over algebraic curves and
also the moduli of curves and its stable compactification.

In this paper we study a twisted theory of conformal blocks on Galois covers of
algebraic curves. More precisely, we consider an algebraic curve Σ with an action
of a finite group Γ. Moreover, we take a group homomorphism φ : Γ → Aut(g)
of Γ acting on a simple Lie algebra g. Given any smooth point q ∈ Σ, we attach
an affine Lie algebra L̂(g,Γq) (in general a twisted affine Lie algebra), where Γq
is the stabilizer group of Γ at q. The integrable highest weight representations of
L̂(g,Γq) of level c (where c is a positive integer) are parametrized by certain finite
set Dc,q of dominant weights of the reductive Lie algebra gΓq , i.e., for any λ ∈ Dc,q

we attach an integrable highest weight representation H (λ) of L̂(g,Γq) of level c
and conversely. Given a collection ~q := (q1, · · · , qs) of smooth points in Σ such

that their Γ-orbits are disjoint and a collection of weights ~λ = (λ1, . . . , λs) with

λi ∈ Dc,qi , we consider the representation H (~λ) := H (λ1)⊗ · · · ⊗H (λs). Now,
define the associated space of twisted covacua (or twisted dual conformal blocks)
as follows:

VΣ,Γ,φ(~q, ~λ) :=
H (~λ)

g[Σ\Γ · ~q]Γ ·H (~λ)
,

where g[Σ\Γ · ~q]Γ is the Lie algebra of Γ-equivariant regular functions from Σ\Γ · ~q
to g acting on the i-th factor H (λi) of H (~λ) via its Laurent series expansion at
qi.

The following Propogation of Vacua is the first main result of our work.

Theorem 1. Assume that Γ stabilizes a Borel subalgebra of g. Let q be a smooth
point of Σ such that q is not Γ-conjugate to any point ~q. Then, we have the
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following isomorphism of spaces of twisted covacua:

VΣ,Γ,φ(~q, ~λ) ≃ VΣ,Γ,φ

(
(~q, q), (~λ, 0)

)
.

In fact, a stronger version of Propogation Theorem is proved. In our equivariant
setting we need to generalize some important ingredients. Further, the fact that

“ The endormorphism X−θ ⊗ f of H is locally nilpotent for all f ∈ O(U) ”

can not easily be generalized to the twisted case. To prove an analogous result,
we need to assume that Γ stabilizes a Borel subalgebra of g. It will be interesting
to see if this assumption can be removed.

Let q be a nodal point in Σ. Assume that the action of Γ at q is stable and the
stabilizer group Γq does not exchange the two formal branches around q. Let Σ′ be
the normalization of Σ at the points Γ · q, and let q′, q′′ be the two smooth points
in Σ′ over q. The following Factorization Theorem is our second main result.

Theorem 2. Assume that Γ stabilizes a Borel subalgebra of g. Then, there exists
a natural isomorphism:

VΣ,Γ,φ(~q, ~λ) ≃
⊕

µ∈Dc,q′′

VΣ′,Γ,φ

(
(~q, q′, q′′), (~λ, µ∗, µ)

)
,

where µ∗ is the dominant weight of gΓq′ such that V (µ∗) is the dual representation
V (µ)∗ of gΓq = gΓq′ = gΓq′′ .

The formulation of the Factorization Theorem in the twisted case is a bit more
delicate, since the parameter sets Dc,q′ and Dc,q′′ attached to the points q′, q′′ are
different in general; nevertheless they are related by the dual of representations
under the assumption that the action of Γ at the node q is stable and the stabilizer
group Γq does not exchange the branches. Its proof requires additional care (from
that of the untwisted case) at several places. The assumption that Γ stabilizes
a Borel subalgebra of g also appears in this theorem as we use the Propogation
Theorem in its proof.

Given a family (ΣT , ~q) of s-pointed Γ-curves over a connected scheme T and

weights ~λ = (λ1, . . . , λs) with λi ∈ Dc,qi as above, one can attach a functorial

coherent sheaf VΣT ,Γ,φ(~q,
~λ) of twisted covacua over the base T . We prove the

following theorem.

Theorem 3. Assume that the family ΣT → T is a smooth family over a smooth

base T . Then, the sheaf VΣT ,Γ,φ(~q,
~λ) of twisted covacua is locally free of finite

rank over T . In fact, there exists a projectively flat connection on VΣT ,Γ,φ(~q, ~λ).

This theorem relies mainly on the Sugawara construction for the twisted affine
Kac-Moody algebras. In the untwisted case, this construction is quite well-known.
In the twisted case, the formulae are written in terms of the abstract Kac-Moody
presentation of L̂(g, σ), where σ is a finite order automorphism of g. For our

application, we require the formulae in terms of the affine realization of L̂(g, σ) as
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a central extension of the twisted loop algebra g((t))σ. We present such a formula
in our work, which might be new (to our knowledge).

Let H Mg,Γ,η be the Hurwitz stack of Γ-stable s-pointed Γ-curves of genus g
with marking data η at the marked points such that the set of Γ-orbits of the
marked points contains the full ramification divisor. It was proved by Bertin-
Romagny that H Mg,Γ,η is a smooth and proper Deligne-Mumford stack. We can

attach a collection ~λ of dominant weights to the marking data η, and associate a

coherent sheaf Vg,Γ,φ(η,~λ) of twisted covacua over the Hurwitz stack H Mg,Γ,η.
We prove the following theorem.

Theorem 4. Assume that Γ stabilizes a Borel subalgebra of g. Then, the sheaf

Vg,Γ,φ(η,~λ) is locally free over the stack H Mg,Γ,η .

Our proof of this theorem follows closely the work of Looijenga in the non-
equivariant setting; in particular, we use the canonical smoothing deformation of
nodal curves and gluing tensor elements. The Factorization Theorem also plays a
crucial role in the proof. In the case Γ is cyclic, this theorem together with the
Factorization Theorem allows us to reduce the computation of the dimension of
the space of twisted covacua to the case of Galois covers of projective line with
three marked points.

In the usual (untwisted) theory of conformal blocks, the space of covacua has a
beautiful geometric interpretation in that it can be identified with the space of
generalized theta functions on the moduli space of parabolic G-bundles over the
algebraic curve, where G is the simply-connected simple algebraic group associ-
ated to g. This identification was proved by Beauville-Laszlo, Faltings, Kumar-
Narasimhan-Ramanathan, Laszlo-Sorger and Pauly. In the setting of Γ-curves Σ
as well, it is expected that the space of twisted covacua can be identified with the
generalized theta functions on the moduli space of parabolic G-bundles on Σ̄, where
Σ̄ is the quotient of Σ by Γ, and G is the parahoric Bruhat-Tits group scheme over
Σ̄ obtained via the construction of Γ-invariants of the Weil restriction from Σ to Σ̄.
In fact, this natural question has been formulated earlier by Pappas-Rapoport in
a more general setting. Along this direction, there has been some results recently
by Hacen when Γ is of order 2 acting on g = sln by certain involutions.

There were some earlier works related to the twisted theory of conformal blocks.
For example Frenkel-Szczesny studied the twisted modules over Vertex algebras on
algebraic curves, and Kuroki-Takebe studied a twisted Wess-Zumino-Witten model
on elliptic curves. When Γ is of prime order and the marked points are unramified,

the space VΣ,Γ,φ(~q, ~λ) has been studied recently by Damiolini, where she proved
similar results as ours. Our work is a vast generalization of her work, since we do
not need to put any restrictions on the Γ-orbits, and the only restriction on Γ is
that Γ stabilizes a Borel subalgebra of g (when Γ is a cyclic group it automatically
holds). In particular, when Γ has nontrivial stabilizers at the marked points ~q,
twisted affine Kac-Moody Lie algebras and their representations occur naturally in
this ramification theory of conformal blocks. We also learnt from S. Mukhopadhyay
that he has obtained some results (unpublished) in this direction.
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Our work is motivated by a conjectural connection predicted by
Fuchs-Schweigert between the trace of diagram automorphism on the space of
conformal blocks and certain conformal field theory related to twisted affine Lie
algebras. A Verlinde type formula for the trace of diagram automorphism on the
space of conformal block has been proved recently by J. Hong, where the formula
involves the twisted affine Kac-Moody algebras mysteriously. We hope that it can
shed some light on the dimension of twisted conformal blocks; in particular, when
Γ acts on g by diagram automorphisms.

Reporter: Leonardo Patimo
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