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Introduction by the Organisers

The workshop Free Probability Theory, organised by Alice Guionnet (Lyon),
Roland Speicher (Saarbrücken), and Dan Voiculescu (Berkeley), was well attended
with over 50 participants with broad geographic representation.

Free probability theory is a line of research which parallels aspects of classi-
cal probability, in a non-commutative context where tensor products are replaced
by free products, and independent random variables are replaced by free random
variables. It grew out from attempts to solve some longstanding problems about
von Neumann algebras of free groups. In the almost 35 years since its creation,
free probability has become a subject in its own right, with connections to several
other parts of mathematics: operator algebras, the theory of random matrices,
classical probability, the theory of large deviations, and algebraic combinatorics.
Free probability also has connections with some mathematical models in theoret-
ical physics and quantum information theory, as well as applications in statistics
and wireless communications.

Free probability is certainly a very active area, with many unsolved problems
ahead, as well as various recent new exciting developments. The Oberwolfach
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workshop brought together various mathematical backgrounds and was strong on
the connections of free probability with other fields, with particular emphasis on
the random matrix perspective. The diversity of the participants and the ample
free time left in the programme stimulated a lot of fruitful discussions.

The programme consisted of 23 lectures of 40 minutes. Because of the various
backgrounds of the participants much emphasis was put on making the lectures ac-
cessible to a broad audience; most of them provided a survey on the background as
well as highlighting some recent developments in connection with free probability.

Instead of going into more detail we will let the following abstracts speak for
themselves.

On behalf of all participants, the organizers would like to thank the staff and
the director of the Mathematisches Forschungsinstitut Oberwolfach for provid-
ing such a stimulating and inspiring atmosphere, and for taking care of all local
arrangements with extreme efficiency.

1. Special Activities

In addition to the regular talks we also scheduled three sessions of 10 minutes
announcements of research results. This was mainly, but not exclusively, intended
for young researchers, who could so give an idea of their work to the general
audience; quite often those announcement resulted in more in depth discussions
in small groups afterwards.

1.1. List of 10 minutes research announcements.

• Akemann: Orthogonal polynomials in the complex plane
• Augeri: Large deviations of non-commutative polynomials
• Cebron: Existence of free Stein kernels
• Cook: Limiting spectral distribution for polynomials of Ginibre matrices
• Huang: Non-intersecting random walks and quantized free convolution
• Jekel: Entropy and transport for free Gibbs laws given by convec potentials
• Lehner: Quadratic and other forms
• Levy: About Collins & Sniady’s integration formula
• Maurel-Segala: Matricial cumulants, applications to limit of families of
classical matrices and kernel matrices

• Nelson: Free products of finite-dimensional von Neumann algebras and
free Araki-Woods factors

• Pluma: Multi-variable SYK model
• Skoufranis: Bi-free entropy
• Tarnowski: Spectral universality of the input-output Jacobians in residual
neural networks

• Yin: Regularity property of noncommutative distributions: atoms and
Atiyah property
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Abstracts

Noncommutative extreme values based on the Ando-max

Dan–Virgil Voiculescu

The beginning of the study of extreme values in free probability is in my joint
work with G. Ben Arous [1]. We had found that the appropriate notion of max to
be used was the max with respect to the Ando spectral order and we found the
univariate free max stable laws, a Bercovici-Pata type correspondence between free
and classical max-stable laws based on coincidence of domains of attraction and
the construction of free extremal projection-valued processes over a set, related to
free Poisson processes.

Recently in joint work with J. Garza -Vargas [2] we found that also with respect
to the non-commutative Boolean independence basic objects for extreme value
theory exist, provided one restricts considerations to positive noncommutative
random variables. We showed that the Boolean max-stable laws are a class of
Dagum distributions and that there is also a Bercovici-Pata type correspondence
with classical Frechet laws.

A third context, where such studies can be carried out, is the bi-free probability
framework [6] and where I had found the max-convolution formula for bivariate
cumulative distribution functions [7], which reduces the study in one of the simplest
cases to a classical analysis problem. Very recently H. W. Huang and J. C. Wang
[5 ] have carried this investigation one step further and have found the bi-free
bivariate max-stable laws.

The study of non-commutative extreme values based on the spectral order for
various types of independence is at an early stage and there are many open prob-
lems and things to wonder about. I would like to mention two kinds of questions
that arise naturally. On one hand, since classical extreme value theory has been
highly successful in applications one should wonder whether similar applications
for the noncommutative extreme value results can be found ( I sometimes refer
jokingly to these questions, ” a free dam for a free flooding in free Amsterdam
....” ). Other questions are about the correspondences between classical and free.
Besides Bercovici-Pata type results there are also Hasebe-Kuznetsov factorization
correspondences in work of T. Hasebe, T. Simon and M.Wang [4] and it is quite
intriguing whether there isn’t more structure around these correspondences. Free
max-stable laws coincide with the limit laws in peaks over thresholds and J. Grela
and M. Nowak [3] gave an interpretation of this coincidence. It is natural to won-
der whether the bi-free max-stable found by Huang and Wang have also some
classical role or to try to find other ways to understand the occurrence of Dagum
distributions as Boolean max-stable laws.
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Mixing time of covered random walks

Charles Bordenave

(joint work with Hubert Lacoin)

We connect the mixing properties of random walks on a finite regular graph to the
strong convergence of certains Markovian matrices.

Minimal mixing time for the simple random walk. Let 3 ≤ d ≤ n − 1 be
integers with nd even and let Gn = (Vn, En) be a finite simple d-regular graph on
a vertex set Vn of size #Vn = n. Let (Xt)t≥0 be the simple random walk on Gn,
which is the Markov process with transition matrix, for all x, y ∈ Vn

Pn(x, y) =
1{{x,y}∈En}

d
.

The uniform measure on Vn denoted by πn is reversible for the process. Fur-
thermore if Gn is connected, then πn is the unique invariant measure of Pn, Gn is
not bipartite, then P t

n(x, ·) converges to πn when t tends to infinity.

We are interested in estimating the time at which P t
n(x, ·) falls in a close neigh-

borhood of πn in terms of the total variation distance. More formally, the total
variation mixing time associated with threshhold ε ∈ (0, 1) and initial condition
x ∈ Vn, is defined by

Tmix
n (x, ε) := inf {t ∈ N dn(x, t) < ε} ,

where dn(x, t) is the total variation distance to equilibrium

dn(x, t) := ‖P t
n(x, ·) − πn‖TV =

1

2

∑

y∈Vn

∣∣P t
n(x, y)− πn(y)

∣∣

= max
A⊂Vn

{
P t
n(x,A) − πn(A)

}
.

(1)

The worst-case mixing time is classically defined as

Tmix
n (ε) = max

x∈Vn

Tmix
n (x, ε).
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The mixing properties for the random walk are intimately related to the spec-
trum of Pn. An illustration of this is the classical computation based on the
spectral decomposition of Pn (see [8, Lemma 12.16]) allows to control the distance
in function of the spectral radius of Pn projected onto the orthogonal of πn: for
all x ∈ Vn,

(2) dn(x, t) ≤
√
n− 1

2
ρtn.

where

(3) ρn := max
λ∈Sp(Pn)\{1}

|λ|.

This yields in particular that

(4) Tmix
n (ε) ≤ 1

| log ρn|

(
1

2
logn− log(2ε)

)
.

The following improvement has been proved in [9] (see also [7]):

Theorem 1 ([9]). Let d ≥ 3 be an integer and let (Gn) be a sequence of connected
d-regular graphs on n vertices such that their spectral radius satisfy limn→∞ ρn =
ρ = 2

√
d− 1/d. Then for any ε ∈ (0, 1), we have

(5) lim
n→∞

Tmix
n (ε)

logn
=

d

(d− 2) log(d− 1)
.

Theorem 1 is an illustration of the cutoff phenomenon. We refer to [5, 8] for an
introduction and to [2] for an alternative characterization of cutoff.

The principal aim of this talk is to obtain a better understanding of this phe-
nomenon via bringing the question to a larger setup.

Minimal mixing time for the anisotropic random walk. A first possible
extension is to consider a random walk with biased directions. We consider an
involution ∗ : i 7→ i∗ of [d] = {1, . . . , d}. We make the assumption that Gn is a
Schreier graph: the graph may have loops or multiple edges and we assume that
its adjacency matrix may be written as

(6)

d∑

i=1

Si,

where, for each i, Si is a permutation matrix of a permutation σi on Vn and
σi∗ = σ−1i .

Now given a Schreier graph Gn with #Vn = n and given a probability vector
p = (p1, . . . , pd) (with positive coordinates summing to one) such that

(7) pi > 0 and pi∗ = pi, for all i ∈ [d],

we consider the matrix

(8) Pn,p =

d∑

i=1

piSi.
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Note that by construction Pn,p is a symmetric Markovian matrix. This is the
transition kernel of a random walk on Gn which is called the anisotropic random
walk. Again, πn, the uniform measure on Vn, is reversible for this process. The
spectral radius of Pn,p projected on the orthogonal of πn is

(9) ρn,p := max
λ∈Sp(Pn,p)\{1}

|λ|.

From what precedes, we may also define the anisotropic random walk on the
infinite d-regular tree Td with probability vector p = (p1, . . . , pd). We denote
by Pp its transition kernel. From [6, 4], the Alon-Bopanna lower bound for the
spectral radius of Pn,p is

(10) ρn,p ≥ (1 + o(1))ρp,

where ρp is the spectral radius of Pp, given by the classical Akemann-Ostrand
formula [1].

The mixing time of the random walk admits a minimal asymptotic value. Con-
sider (Xt)t≥0 an anisotropic random walk on Td with transition kernel Pp and
starting from the root of Td denoted by e. The entropy rate h(p) of Pp is defined
as

(11) h(p) := lim
t→∞

−1

t

∑

x∈Td
Pt
p(e, x) logPt

p(e, x),

We have that for any fixed ε ∈ (0, 1), uniformly in x ∈ Vn,

(12) Tmix
n,p (x, 1 − ε) ≥ (1 + o(1))

logn

h(p)
.

In the spirit of Theorem 1, we have the following result.

Theorem 2. Let d ≥ 3 be an integer, ∗ an involution on [d] and let p be a prob-
ability vector on [d] which satisfies the condition (7). Then, there exists another
probability vector p′ which satisfies the condition (7) such that the following holds.
If a sequence of connected Schreier graphs Gn on n vertices as in (6) satisfies

(13) lim
n→∞

ρn,p′ = ρp′ ,

then for every ε ∈ (0, 1)

(14) lim
n→∞

Tmix
n,p (ε)

logn
=

1

h(p)
.

The condition (13) can be thought as a Ramanujan property for the anisotropic
random walk with probability p′. In some cases, this condition (13) can be relaxed
to allow no(1) eigenvalues outside the interval [−ρp′ , ρp′ ]. An expression for the
vector p′ is provided in the proof. In particular we have that p′ = p if and only
if p is the uniform vector. This result is thus a generalization of Theorem 1.

For p different from the uniform vector, a source of example for Theorem 2
is in [3]. Up to the involution, we consider independent permutations σi on [n]
vertices: if i 6= i∗, σi is a uniform permutation on n elements and, if i∗ = i, we
take n even and σi is a uniform matching on n elements (where a matching is an
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involution without fixed point). Then, in probability, the condition (13) is true
for any probability vector p′ which satisfies the condition (7).

In this talk, we will also discuss other extensions of this type of results which
applies notably to Markov chains covered by a random walk on a non-amenable
group.
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Shuffle groups in free probability

Frédéric Patras

(joint work with Kurusch Ebrahimi-Fard)

Commutative shuffle products are known to be intimately related to universal for-
mulas for products as well as exponentials and logarithms in group theory and
in the theory of free Lie algebras. Familiar examples are the Baker–Campbell–
Hausdorff (BCH) formula or the analytic expression of a Lie group law in expo-
nential coordinates in the neighbourhood of the identity [16].

Non-commutative shuffle (aka dendriform) products appear classically in several
areas, including algebraic topology [8], the non-commutative representation theory
of the symmetric group (e.g. through the shuffle product naturally defined on
the direct sum of the symmetric group algebras [12, 15]), algebraic combinatorics
(where many combinatorial Hopf algebras can be shown to carry a shuffle product)
and the theory of operads (through the associated brace algebra structures) [9].

Gerstenhaber and Voronov’s notion of brace operations [10] provides actually
a way to understand why non-commutative shuffle products appear naturally in
Voiculescu’s free probability theory [18]. Let us recall that a brace algebra is a
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vector space V equipped with a map: {−;−} from V ⊗ T (V ) to V , where T (V )
denotes the tensor algebra with unit 1 over the vector space V , such that:

• ∀v ∈ V , {v;1} = v.
• ∀v, y1, . . . , yk ∈ V , ∀w = v1 · · · vn ∈ T (V ) :

{{v; y1 · · · yk};w} =
∑

w=w1···w2k+1

{v;w1{y1;w2}w3 · · ·w2k−1{yk;w2k}w2k+1}.

The last sum runs over all decompositions of the word w ∈ T (V ) as a concatenation
product of (possibly empty) subwords. An associative product ∗ on T (V ) is then
obtained from the brace operations as follows (see, e.g., [2] for details). Given a
non-empty word w ∈ T (V ): ∀v1, . . . , vk ∈ V

v1 · · · vk ∗ w :=
∑

w=w1···w2k+1

w1{v1;w2}w3 · · ·w2k−1{vk;w2k}w2k+1.

This product is a non-commutative shuffle (aka dendriform) product, that means,
it splits into two half-products (∗ =≺ + ≻):

v1 · · · vk ≺ w :=
∑

w=w1···w2k

{v1;w1}w2 · · ·w2k−2{vk;w2k−1}w2k,

v1 · · · vk ≻ w :=
∑

w=w1···w2k+1
w1 6=∅

w1{v1;w2}w3 · · ·w2k−1{vk;w2k}w2k+1

that satisfy the Eilenberg–MacLane shuffle (aka dendriform) relations:

(x ≺ y) ≺ z = x ≺ (y ∗ z)
x ≻ (y ≺ z) = (x ≻ y) ≺ z

x ≻ (y ≻ z) = (x ∗ y) ≻ z.

It turns out that these shuffle structures can be defined in the context of free
probability. Indeed, when suitably interpreted in terms of (dual) brace operations,
Speicher’s original ansatz for the definition of free cumulants [13] can be shown
to give rise to such structures on T (T (A))∗, i.e., the dual of the double tensor
algebra over a probability space (A,ϕ), where A is an associative algebra and
ϕ is a linear unital map. On T (T (A)) this process defines in particular a graded
connected non-commutative and non-cocommutative Hopf algebra structure [3, 4].
The group G of characters and the Lie algebra g of infinitesimal characters on this
Hopf algebra can then be shown to be related by three exponential-type maps,
E≺, E≻, E∗ : g → G and corresponding logarithms, L≺, L≻, L∗ : G → g, that are
naturally defined. This construction holds more generally for all bialgebras arising
from brace algebra structures and leads to a theory of “shuffle groups” with the
setting of free probability as a natural area of application [5].

The starting point are the moment-cumulant relations, which are naturally
expressed in terms of the shuffle algebra structure on T (T (A))∗. Given a character
Φ ∈ G, which is induced by the linear unital map ϕ : A → K, one can show
that the three logarithms applied to Φ encode the three families of free, boolean
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and monotone cumulants. In other words, one can compute three infinitesimal
characters ρ, κ and β such that

Φ = E∗(ρ) = E≺(κ) = E≻(β).
For instance, applying Φ = E≺(κ) to a word in w ∈ T (A) ⊂ T (T (A)) expresses
the multivariate moment Φ(w) in terms of free cumulants. Indeed, from the alge-
braic computation of E≺(κ)(w) one recovers the free cumulant expansion of Φ(w)
expressed in terms of non-crossing set partitions [14]. Analog results hold for the
monotone [11] and boolean cases [17]. The combinatorial relations between these
three families of cumulants [1], classically obtained by Möbius inversion techniques,
can be recovered from this purely algebraic point of view [6]. For instance, the
relation between free and boolean cumulants is given through

κ = L≺ ◦ E≻(β), β = L≻ ◦ E≺(κ).
The existence of three exponential/logarithmic bijections between groups and Lie
algebras results also in several new formal group laws together with new operations
on the group and the Lie algebra, generalizing the BCH group law. For example
a new notion of shuffle adjoint action particularly well fitted to the new theory:
indeed, it turns out that the aforementioned relations between cumulants can also
be expressed in terms of the shuffle adjoint action. For instance, one has

β = Φ−1 ≻ κ ≺ Φ.

Again, through the purely algebraic computation of (Φ−1 ≻ κ ≺ Φ)(w) for w ∈
T (A) one recovers the result from [1], giving the expansion of the multivariate
boolean cumulant β(w) in terms of free cumulants and irreducible non-crossing set
partitions. The shuffle adjoint action gives rise to further applications, including,
among others, new algebraic approaches to

• Universal products [5]
• Additive free, monotone, and boolean convolutions [5]
• Subordination products [5]
• The Bercovici–Pata correspondence [5]
• Conditionally free probability [7].

We close this short summary by noting that following [2] one can show that the
shuffle adjoint action can be naturally expressed in terms of brace operations.
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Stable distributions in classical, free and Boolean probabilities

Takahiro Hasebe

In classical probability theory central limit theorem was extended to the case where
random variables are iid but not necessarily of finite variance or finite mean. The
possible limit distributions of affine transformations of the sums of such iid random
variables form the set of stable distributions. A lot of properties of stable laws (in
one dimension) are collected in [7]. Stable distributions have also been defined in
free/Boolean probabilities by Bercovici-Voiculescu/Speicher-Woroudi. The main
purpose of this talk is to overview known results on all these stable distributions.

Philippe Biane showed several properties of free stable distributions, including
descriptions of the density, unimodality and the Zolotarev duality. Demni pointed
out that the density of positive stable laws can be written in terms of a function
introduced by Kanter in 1975 [4]. Hasebe and Kuznetsov proved a factorization
of a classical stable r.v. into a free stable one and a power of a gamma r.v. [5] as
an independent product. Arizmendi and Hasebe proved several convolution iden-
tities involving classical, free and Boolean stable laws [1]. Arizmendi and Hasebe
pointed out that the exponential of some free stable r.v. has the Dykema-Haagerup
distribution [2]. This is a singular value distribution of upper-triangular random
matrices with independent complex Gaussian entries, but there is no interpretation
or explanation about why such a limiting distribution is related to a free stable
distribution.
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There are also identities between stable distributions and extreme value dis-
tributions [6], the latter being classified into three types: Frechet, Weibull and
Gumbel. It turns out that a classical Frechet r.v. factorizes into a free Frechet
r.v. and a power of a gamma r.v. as an independent product. This gamma r.v.
also appears in the stable case as mentioned above, but there is no further inter-
pretation of this co-appearance of gamma random variables. A similar mysterious
connection also exists between Boolean and classical worlds. To summarize, there
are many mysterious identities, which still lack reasonable interpretations.
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Representing interpolated free group factors as group factors

Dimitri Shlyakhtenko

(joint work with Sorin Popa)

Let (M, τ) be a tracial von Neumann algebra (so that τ : M → C is a normal
tracial state), and assume that M is a factor (i.e., the center of M is trivial). It
is a classical result of Murray and von Neumann [MvN36, MvN43] that for any
integer n and any projection p in the algebraMn(M) of n×n matrices with entries
from M , the isomorphism class of pMn(M)p depends only on the value t of the
non-normalized trace of p computed in Mn(M). The resulting isomorphism class
is denoted by Mt.

For each integer n, denote by Fn the free group on n generators, and let L(Fn)
be the associated group factor. Using random matrix techniques, Voiculescu has
showed in [Vo89] that

(1) (L(Fn))t ∼= (L(Fm))s

whenever s, t ∈ (0,+∞) and n,m ∈ {2, 3, . . . ,+∞} satisfy

(2) t−2(n− 1) = s−2(m− 1).

Following his work, Dykema and Rădulescu introduced interpolated free group
factors [Dyk94, Rad94, Rad92]: for each α ∈ (1,+∞] they defined an isomorphism
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class L(Fα) so as to make equations (1) and (2) true for non-integer values of n
and m (thus, e.g., L(Fα) = L(F2)1/

√
α−1).

The interpolated free group factors are a very natural class of algebras. For
example, one has the following remarkable result due to Dykema [Dyk93]: any
factorial free product of amenable (in particular, finite dimensional) algebras is an
interpolated free group factor.

A number of intriguing questions about interpolated free group factors remain.
The most famous one is whether or not they are isomorphic for different values
of α. Results of Dykema and Rădulescu [DR00] imply that there is a dichotomy:
either L(Fα) 6∼= L(Fβ) for all α 6= β, or they are isomorphic for all values of α
and β. Another is the extension of formulas (1)–(2) to arbitrary index subfactors:
presumably, if N ⊂ M ∼= L(Fα) is a subfactor of index λ = [M : N ], then
N ∼= L(Fβ) with β = λ(α− 1) + 1. This is open even in index 2.

Another question left open is whether interpolated free group factors are actu-
ally themselves group factors: for each α, is there a group Γα so that L(Γα) =
L(Fα)? Of course, this is true for integer α. In [HV93], de la Harpe and Voiculescu
conjectured that group factors associated to lattices in PSL2(R) are also interpo-
lated free group factors. This conjecture is only known for certain groups admitting
a free product decomposition (e.g., L(PSL(2,Z)) ∼= L(F7/6)). It is worth men-
tioning that by the results of [IPV10] there exist groups G with the property that
for any t 6= 1, L(G)t is not isomorphic to the factor of any group.

Our main result is:

Theorem 1 ([PS18]). For any α ∈ (1,+∞], there exists a discrete group Γα so
that L(Γα) ∼= L(Fα).

Sketch of proof. We first construct the group Γα. Let Sn be the permutation group
on n letters, and let S∞ =

⋃
n Sn. The von Neumann algebra R = L(S∞) is the

hyperfinite II1 factor.
Given α ∈ (1,+∞] choose integers k0, k1, . . . so that

α = 1 +
∑

n≥0

kn
n!
.

Let Hn = Sn × Fkn
and define recursively

G0 = H0, Gn+1 = Gn ∗Sn
Hn+1.

Finally, let

Γα =
⋃

n≥0
Gn.

To prove our theorem, we show that L(Γα) ∼= L(Fα).
The key step in the proof is to represent L(Γα) as the von Neumann algebra

generated by the hyperfinite II1 factor R = L(S∞) and a family of R-valued

semicircular variables {X(n)
j : n = 1, 2, . . . , j = 1, 2, . . . , kn}. These variables are

defined by requiring that they be free with amalgamation over R and that X
(n)
j

has as its covariance the completely positive map η : R → R given by conditional
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expectation onto L(Sn) ⊂ R. It turns out that W ∗(R,X(n)
j ) ∼= L(F1+|Qn|−1)

[Shl99], and this allows us to conclude the proof. �

The construction of the groups Gn is inspired by the work of G. Hjorth [Hjo06]
on treeable equivalence relations. He proved that any treeable ergodic equivalence
relation of cost α can be generated by a free ergodic action of a certain group,
whose construction is very close to that of our group Γ (Hjorth’s construction is
similar to ours with the groups Sn replaced by the abelian groups (Z/2Z)n). Our
group Γα has a similar property: any treeable ergodic equivalence relation of cost
α can also be generated by an action of Γα.
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Fluctuations of outliers for Hermitian polynomials in a Wigner matrix

and a spiked deterministic matrix, and operator-valued subordination

property

Mireille Capitaine

Let WN = (Wij)1≤i,j≤N be a N × N Hermitian Wigner matrix such that the

random variables {Wii,
√
2RWij ,

√
2IWij}1≤i<j are independent identically dis-

tributed with law µ, µ is a centered distribution, with variance 1, and satisfies a
Poincaré inequality.
Let us consider a deterministic real diagonal matrix AN :

AN = diag(θ, AN−1)
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where θ ∈ R is independent ofN and AN−1 is a N−1×N−1 deterministic diagonal
matrix. We assume that AN−1 ∈ (MN−1(C),

1
N−1 Tr) converges strongly in dis-

tribution towards a non commutative random variable a in some W∗-probability
space (A, φ), with φ faithful. Note that this implies that, for all large N , all the
eigenvalues of AN−1 are in any small neighborhood of the spectrum of a. We
assume that θ does not belong to the spectrum of a.

Fix a selfadjoint polynomial P ∈ C < X1, X2 >. The matrix model we are
interested in is

MN = P

(
WN√
N
,AN

)
.

Denote by λi(MN ), i = 1, . . . , N , its eigenvalues and by

µMN
=

1

N

N∑

i=1

λi(MN )

its empirical spectral measure. According to [3, Theorem 5.4.5], we have

lim
N→∞

µMN
= µP (x,a)

almost surely in the weak∗ topology, where x is a standard semicircular non com-
mutative random variable in (A, φ) (i.e dµx = 1

2π

√
4− x2 11[−2,2](x)), a and x are

freely independent, and µP (x,a) denotes the distribution of P (x, a).

The set of outliers of MN , that is eigenvalues that move away from the rest
of the spectrum, is calculated in [4] from the spiked eigenvalue θ of AN us-
ing a so-called linearization trick and Voiculescu’s matrix subordination func-
tion [9] as follows. We use the linearization procedure introduced in [1, Propo-
sition 3]. Given a polynomial R ∈ C〈X1, . . . , Xk〉, we call linearization of R

any LR ∈ Mm(C) ⊗ C〈X1, . . . , Xk〉 such that LR :=

(
0 u
v Q

)
where m ∈ N,

Q ∈ Mm−1(C) ⊗ C〈X1, . . . , Xk〉 is invertible, u is a row vector and v is a column
vector, both of size m − 1 with entries in C〈X1, . . . , Xk〉, the polynomial entries
in Q, u and v all have degree ≤ 1, and R = −uQ−1v. It is shown in [1] that,
given a polynomial R ∈ C〈X1, . . . , Xk〉, there exist m ∈ N and a linearization
LR ∈ Mm(C) ⊗ C〈X1, . . . , Xk〉. It turns out that if R is self-adjoint, LR can be
chosen to be self-adjoint.
Thus, choose a linearization LP of P : LP = γ ⊗ 1 + α⊗X1 + β ⊗X2, α, β, γ are
selfadjoint matrices in Mm(C). In (Mm(A), idm ⊗ φ), α ⊗ x is a Mm(C)-valued
semicircular of variance η : b 7→ αbα which is free over Mm(C) from β ⊗ a and the
subordination function has the following explicit form (see [8, Chapter 9] and the
end of the proof of Theorem 8.3 in [2]): for b ∈Mm(C),ℑb > 0,

idm ⊗ φ
[
(b⊗ 1A − α⊗ x− β ⊗ a)−1

]
= idm ⊗ φ

[
(ωm(b)⊗ 1A − β ⊗ a)−1

]
,

where

(1) ωm(b) = b− αidm ⊗ φ
[
(b⊗ 1A − α⊗ x− β ⊗ a)

−1
]
α.
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Denote by e11 ∈ Mm(C), the matrix such that for any 1 ≤ i, j ≤ m, (e11)ij =
δi1δj1. ωm extends as an analytic map z 7→ ωm(ze11 − γ) to C \ supp(µP (x,a)).
For any ρ 6∈ supp(µP (x,a)), define m(ρ) as the multiplicity of ρ as a zero of
det(ωm(ρe11 − γ)− θβ). [4] establishes the following.

Theorem 1. [4] There exists δ0 > 0 such that, for any 0 < δ ≤ δ0, a.s for all large

N , there are exactly m(ρ) eigenvalues of P
(

WN√
N
, AN

)
in ]ρ − δ; ρ + δ[, counting

multiplicity.

Now, assume that there exists some real number ρ 6∈ supp(µP (x,a)) such that ρ
is a zero with multiplicity one of det(ωm(ρe11 − γ) − θβ) = 0, that is such that
m(ρ) = 1. Therefore, for δ > 0 small enough, a.s for all largeN , there is exactly one

eigenvalue of P
(

WN√
N
, AN

)
in ]ρ− δ; ρ+ δ[, say λ(N, ρ). The following main result

establishes the fluctuations of λ(N, ρ) around a mobile point ρN defined through
a “deterministic equivalent operator”. Let aN−1 be a selfadjoint noncommutative
random variable in (A, φ) such that ∀k ∈ N, 1

N−1 Tr(A
k
N−1) = φ((akN−1)) and

which is free with the semicircular variable x. Define for any b ∈Mm(C),ℑb > 0,

ω(N)
m (b) = b− αidm ⊗ φ

[
(b ⊗ 1A − α⊗ x− β ⊗ aN−1)

−1]α.
By Hurwitz theorem, for all large N , there exists one and only one ρN in a small

neighborhood of ρ such that det(ω
(N)
m (ρNe11 − γ)− θβ) = 0.

Theorem 2. [5] Define

Cm =t Com(ωm(ρe11 − γ)− βθ),

R∞(ρe11 − γ) = ((ρe11 − γ)⊗ 1A − α⊗ x− β ⊗ a)−1,

C(1)
ρ = Trm (Cm [e11 + αidm ⊗ φ(R∞(ρe11 − γ) (e11 ⊗ 1A)R∞(ρe11 − γ))α]) ,

C(2)
ρ = Trm [Cmα] ,

vρ =
(
E
(
|W21|4

)
− 2

) ∫ [
Trm

(
αCmα (ωm(ρe11 − γ)− tβ)−1

)]2
dµa(t)

+φ
(
[Trm ⊗idA {R∞(ρe11 − γ)(αCmα)⊗ 1A}]2

)
,

where µa denotes the distribution of a and ωm is defined by (1).

C
(1)
ρ

√
N(λ(N, ρ)− ρN ) converges in distribution to the classical convolution of the

distribution of C
(2)
ρ W11 and a Gaussian distribution with mean 0 and variance vρ.

This extends the non universality phenomenon established in [6] for additive
deformations of Wigner matrices when the eigenvectors associated to the spiked
eigenvalues of the deformation are localized. Using the unitarily invariance of the
distribution of a G.U.E. matrix, we can readily deduce the following result.

Corollary 1. Assume that WN is a G.U.E. matrix. Let AN be a deterministic
Hermitian matrix such that its spectral measure µAN

weakly converges towards a
compactly supported measure µa, θ is a spike of AN with multiplicity one whereas
the other eigenvalues of AN converge uniformly to the compact support of µa.
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Then, for any real number ρ 6∈ supp(µP (x,a)) such that ρ is a zero with multiplicity

one of det(ωm(ρe11−γ)−θβ) = 0, C
(1)
ρ

√
N(λ(N, ρ)−ρN ) converges in distribution

to a Gaussian distribution with mean 0 and variance

ṽρ = (C(2)
ρ )2 + φ

(
[Trm ⊗idA {R∞(ρe11 − γ)(αCmα)⊗ 1A}]2

)
.

Note that [7] previously established Gaussian fluctuations for any outlier of a full
rank additive deformation of a G.U.E. matrix using scalar-valued free probability
theory.
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Large deviations for the largest eigenvalue of the addition of random

matrices

Mylène Mäıda

(joint work with Alice Guionnet)

Since the pioneering works [4] of D. Voiculescu , we know that free probability
provides efficient tools to describe, at least asymptotically, the spectrum of the
sum of two large Hermitian matrices in generic position from one another. More
precisely, if AN and BN are two deterministic N×N Hermitian matrices and UN is
a unitary random matrix distributed according to the Haar measure, then, in the
large N limit, AN and UNBNU

∗
N are asymptotically free and the limiting spectral

distribution of HN := AN + UNBNU
∗
N is given by the free convolution of the

limiting spectral distributions of AN and BN .One can also describe the asymptotic
behavior of the largest eigenvalue of HN in terms of subordination functions (for
more details, we refer to the talk of Mireille Capitaine in the same workshop).
In particular, if AN and BN have no outliers, then the largest eigenvalue of HN
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converges to the right edge of the support of the free convolution of the limiting
spectral distributions of AN and BN . In this talk, based on the preprint [3], we
investigate the large deviations of this extreme eigenvalue.

Let us now introduce some notations.
Let (AN )N≥1 and (BN )N≥1 be two sequences of deterministic real diagonal

matrices, with AN and BN of size N ×N. We denote by λ
(AN )
1 ≥ . . . ≥ λ

(AN )
N and

λ
(BN )
1 ≥ . . . ≥ λ

(BN )
N their respective eigenvalues in decreasing order, by

‖AN‖ := max(|λ(AN )
1 |, |λ(AN )

N |) and ‖BN‖ := max(|λ(BN )
1 |, |λ(BN )

N |)
their respective spectral radius and by

µ̂AN
:=

1

N

N∑

j=1

δ
λ
(AN )

j

and µ̂BN
:=

1

N

N∑

j=1

δ
λ
(BN )

j

their respective spectral measures.

For β = 1 or 2, we denote by mβ
N the Haar measure on the orthogonal group

ON if β = 1 and on the unitary group UN if β = 2. For any N ×N matrix U, we
denote by HN (U) := AN +UBNU

∗ and by λNmax the largest eigenvalue of HN (U).
Our main result is a large deviation principle for the law of λNmax under the Haar

measure mβ
N . It holds under some mild assumptions, that we now detail.

For µ a compactly supported probability measure on R, we denote by r(µ) the
right edge of the support of µ and by Gµ the Stieltjes transform of µ : for λ ≥ r(µ),

Gµ(λ) :=

∫
1

λ− y
µ(dy).

It is decreasing on the interval (r(µ),∞). By taking the limit as λ decreases to
r(µ), one can also define Gµ(r(µ)) ∈ R+ ∪∞.

We assume the following :

(H1) The sequences of spectral empirical measures (µ̂AN
)N≥1 and (µ̂BN

)N≥1
converge weakly as N grows to infinity respectively to µa and µb, com-
pactly supported on R. Moreover, supN≥1(‖AN‖+ ‖BN‖) <∞.

(H2) The largest eigenvalues λ
(AN )
1 and λ

(BN )
1 converge as N grows to infinity

to ρa and ρb respectively.
(H3) The following condition holds:

Gµa⊞µb
(r(µa ⊞ µb)) ≤ min (Gµa

(ρa), Gµb
(ρb)) ,

where µa ⊞ µb stands for the free convolution of the two measures µa and
µb.

Note that the latter condition ensures that (HN )N≥1 has no outlier, namely that

λ
(HN )
1 converges to r(µa ⊞ µb).
We can now state the main result:

Theorem 1. Under Assumptions (H1, 2, 3), for β = 1 or 2, the law of λNmax under

mβ
N satisfies a large deviation principle in the scale N with a good rate function
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Iβ , that will be defined below. It means that, for any x ∈ R, we have the upper
bound

lim sup
δ↓0

lim sup
N→+∞

1

N
logmβ

N

(
λNmax ∈ [x− δ, x+ δ]

)
≤ −Iβ(x),

and the lower bound

lim inf
δ↓0

lim inf
N→+∞

1

N
logmβ

N

(
λNmax ∈ [x− δ, x+ δ]

)
≥ −Iβ(x).

A key argument of the proof of the theorem is a tilt of the measure mβ
N by a

rank one spherical integral. Similar strategies are used in the companion paper [1]
to study some classes of sub-Gaussian Wigner matrices. The rank one spherical
integral is defined as follows: for any θ ≥ 0 and MN an Hermitian matrix of size
N,

IβN (θ,MN ) :=

∫
eNθ(UMNU∗)11mβ

N(dU) and Jβ
N (θ,MN ) :=

1

N
log IβN (θ,MN ).

The rate function of our large deviation principle involves the limit of Jβ
N (θ,HN ) as

N grows to infinity, which we now describe. For β = 1 or 2, θ ≥ 0, µ a compactly
supported probability measure and ρ ≥ r(µ):

Jβ
µ (θ, ρ) :=





β
2

∫ 2θ
β

0 Rµ(u)du, if 0 ≤ 2θ
β ≤ Gµ(ρ),

θρ− β
2 log θ − β

2

∫
log(ρ− y)µ(dy) + β

2

(
log β

2 − 1
)
, if 2θ

β > Gµ(ρ),

where Gµ has been defined above and Rµ is the R-transform of the measure µ.
For any θ ≥ 0 and x ≥ r(µa ⊞ µb), we denote by

Iβ(θ, x) := Jβ
µa⊞µb

(θ, x)− Jβ
µa
(θ, ρa)− Jβ

µb
(θ, ρb),

and

Iβ(x) :=

{
supθ≥0 I

β(θ, x), if x ≥ r(µa ⊞ µb),
+∞, otherwise.

It is easy to check that Iβ is indeed a good rate function. The key ingredients
of the proof are the following : we first use the concentration of the spectral

measure of HN around its expectation in the scale e−N
2

, that is much faster
than the deviations we are looking at; then, if we look at the deviations towards

x > r(µa ⊞ µb), we have to tilt the measure mβ
N by a rank one spherical integral

in such a way that the typical behaviour of the largest eigenvalue under the tilted
measure is now x and we conclude by using the asymptotics of the spherical integral
obtained in [2].

If we could get the asymptotics of any finite rank sphrerical integral, we could
extend this results to the joint deviations of a finite number of extreme eigenvalues
of HN .
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Free perturbations, mild operators and invariant subspaces

Ken Dykema

(joint work with Fedor Sukochev, Dmitriy Zanin)

Let M ⊆ B(H) be a von Neumann algebra with normal, faithful tracial state
τ . Let S(M, τ) denote the ∗-algebra of (possibly unbounded) closed, densely
defined operators T on H that are affiliated to M. The last condition means that
if T = U |T | is the polar decomposition of T , then U ∈ M and every spectral
projection of the form 1[0,r](|T |) of |T | for r ≥ 0, belongs to M. Then we can
define τ on positive operators |T | ∈ S(M, τ) by setting

τ(|T |) = sup
r>0

τ
(
|T |1[0,r](|T |)

)
} ∈ [0,+∞].

When p > 0, we consider the usual noncommutative Lp-space

Lp(M, τ) = {T ∈ S(M, τ) | ‖T ‖p := τ(|T |p)1/p < +∞}.
Recall that when p < 1, then ‖ · ‖p is a quasi-norm, not a norm, but that

dp(S, T ) := ‖S − T ‖pp
is a metric on it. We also consider the noncommutative space of log-integrable
operators,

Llog(M, τ) = {T ∈ S(M, τ) | τ(log(1 + |T |)) < +∞}.
Recall that the Brown measure (see [1]) of an operator T ∈ M is a Borel

probability measure νT , whose support is contained in the spectrum of T , and that
serves as a sort of spectral distribution measure for T . We may, alternatively, write

ν
(M)
T for νT . Its definition uses the Fuglede–Kadison determinant (see [6]). Uffe
Haagerup and Hanne Schultz showed, in [7], that there are good extensions of the
notions of the Fuglede–Kadison determinant ∆(T ) = exp(τ(log(|T |))) ∈ [0,+∞)
and the Brown measure νT , defined for all operators T ∈ Llog(M, τ).

Definition 1. We say that T ∈ Llog(M, τ) is mild if

(a) ∀λ ∈ C, ∆(T − λ) > 0,
(b) νT is absolutely continuous (on C),
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(c) the function λ 7→ (λ − T )−1 is locally Lipscitz from C into Lp(M, τ)
(endowed with the metric dp) for some p ∈ (12 , 1).

In [8], Haagerup and Schultz proved that if X and Y are ∗-free circular elements
in M, then Z := XY −1 belongs to Lp(M, τ) for all p ∈ (0, 1), and that if T ∈
Llog(M, τ) is ∗-free from {X,Y }, then the free perturbation T + Z is mild.

It’s good to be mild:

Theorem 2 ([8]). Suppose A ∈ Llog(M, τ) is mild. Suppose D ⊆ C is a closed
disk. Then there exists a projection q = Q(A,D) ∈ M such that

(i) Aq = qAq,

(ii) ν
(qMq)
Aq (C \D) = 0,

(iii) ν
((1−q)M(1−q))
(1−q)A (D) = 0.

Main Idea of Proof. The Riemann integral 1
2πi

∫
∂D(λ − A)−1 dλ converges and

yields an idempotent E, whose range projection is q, which has the desired prop-
erties. �

Haagerup and Schultz used these to prove existence of hyperinvariant subspaces
for elements of M whose Brown measures are not concentrated at single points:

Theorem 3 ([8]). Let T ∈ M. Then for all Borel sets B ⊆ C, there is a unique
projection p ∈ M such that

(i) Tp = pTp,

(ii) ν
(pMp)
Tp (C \B) = 0,

(iii) ν
((1−p)M(1−p))
(1−p)T (B) = 0.

Moreover, we have that

(iv) τ(p) = νT (B)

and that p is T -hyperinvariant, meaning that for all S ∈ B(H) that commute with
T , we have Sp = pSp.

Main Idea of Proof. Embed M in a free product M̃ = M∗ L(F4), which ensures

that there is a copy of Z = XY −1 ∈ M̃ that is ∗-free from T . In the case of a
closed disk B = D such that νT (δD) = 0, for every n ∈ N, let

qn = Q(T +
1

n
Z,D) ∈ M̃

be the projection from Theorem 2 and, in an ultrapower von Neumann algebra

(M̃)ω, consider the projection p = [(qn)
∞
n=1]. Then p is T -hyperinvariant, so must

actually be an element of the von Neumann algebra generated by T , inM ⊆ (M̃)ω ,
and satisfies the desired properties.

From these projections for disks D, the requisite projections for arbitrary Borel
sets B can be constructed. �

Notation 4. The projection p from Theorem 3 is called the Haagerup–Schultz
projection for T and B, and is denoted p = P (T,B).
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The Haagerup–Schultz projections were used to construct analogues of Schur
upper triangular forms of elements of T , which yield the following:

Theorem 5 ([3]). Let T ∈ M. Then there exist N,Q ∈ M such that

(i) T = N +Q,
(ii) N is normal,
(iii) νN = νT ,
(iv) νQ = δ0.

An analoguous (but somewhat weaker) result was proved for unbounded affili-
ated operators:

Theorem 6 ([4]). Let T ∈ Llog(M, τ). Then there exists a von Neumann algebra

M̃ containing a copy of M and with a normal, faithful tracial state τ̃ whose

restriction to M is τ , and there exust N,Q ∈ Llog(M̃, τ̃ ) such that (i)-(iv) of
Theorem 5 hold.

The proof of this theorem was analogous to the proofs of the previous sequence
of results, but involved many technical difficulties. In particular, the lack of a good
notion of hyperinvariant subspace for unbounded (affiliated) operators meant we
could not realize N and Q in M itself. However, this weekeness did still allow the
application described below. This application can be described as saying: every
Dixmier trace is spectral. It is a very general answer to a question of Pietsch [9].

We consider a subbimodule B̃ of Llog(M, τ), namely a vector subspace closed
under left- and right-multiplication by elements of M. A trace (or Dixmier trace)

on B̃ is a linear functional φ on B̃ such that φ(AX) = φ(XA) for all A ∈ B̃ and

all X ∈ M. We say that B̃ is closed under log-submajorization if, given T ∈ B̃
and S ∈ S(M, τ) and supposing that for all x ∈ (0, 1) we have

∫ x

0

log(µt(S)) dt ≤
∫ x

0

log(µt(T )) dt,

where µt(X) is the generalized singular number of X ∈ S(M, τ) (see [5]), it follows

that S ∈ B̃.

Theorem 7 ([4]). If B̃ is a subbimodule of Llog(M, τ) and if B̃ is closed under

log-submajorization and if φ is a trace on B̃, then for every T ∈ B̃, φ(T ) depends
only on νT .

Idea of Proof. Using the decomposition T = N +Q from Theorem 6, B̃ and φ can

be extended to B̃ ⊆ Llog(M̃, τ̃ ) and φ̃ : B̃ → C. We have N,Q ∈ B̃ and it suffices

to show φ̃(Q) = 0. This follows from results of [2]. �
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Simple maps, free cumulants and topological recursion

Gaëtan Borot

(joint work with Elba Garcia Failde)

Collins, Mingo, Speicher and Śniady [6] introduced a theory of n-th order freeness
for n ≥ 2. Using the combinatorics of non-crossing partitions on n circles, they de-
fined n-th order free cumulants, which are additive under addition of “higher order
free” elements. For instance, independent unitarily invariant matrices admitting
large N limits for their cumulants are higher order free of higher non-commutative
probability spaces. This theory suffers from the lack of analytic results on the
relation between generating series of nth order free and nth order ordinary cumu-
lants. We propose in [4] a different combinatorial perspective on higher order free
cumulants, exploiting two standard tools in random matrix theory

• its relation with map enumeration;
• the computation of topological expansions via the Eynard-Orantin topo-
logical recursion.

which may give some insight into the analytic theory.
Let HN be the space of hermitian matrices of size N , and M ∈ HN be ran-

dom with a UN invariant distribution. The space of U(N)-invariant polynomial
functions on HN is spanned by the power sum functions, indexed by partition
λ = (λ1 ≥ · · · ≥ λℓ). By unitary invariance, the expectation value of any polyno-
mial function of M (of degree L) must be a linear combination of

(1) E[pλ(M)] = E

[ n∏

i=1

TrMλi

]
, (with |λ| = L)

We will be interested in another set of observables, which we call “fully simple”

E[qλ(M)] = E

[ n∏

i=1

(
M

a
(i)
1 ,a

(i)
2

· · ·M
a
(i)
λi

,a
(i)
1

)]

where a
(i)
j are fixed (but arbitrary) pairwise disjoint elements of {1, . . . , N}

(this makes sense at least for N ≥ L). By unitary invariance we have E[qλ(M)] =
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∫
UN

dU E[qλ(UMU †)] leading us to decompose, in principle, the fully simple ob-
servables on the basis of ordinary observables. Our first result is a nice combina-
torial description for this “change of basis”.

Theorem 1. Let λ ⊢ L and σ be a fixed permutation in the conjugacy class λ.
Let T ≥k (resp. T >

k ) be the set of transpositions τ1 = (a1, b1), . . . , τk = (ak, bk) such
that max(ai, bi) increases weakly (resp. strictly) with i. We introduce the weakly
monotone double Hurwitz numbers,

[Hk]λ,µ = |Autµ|−1#
{
(τ1, . . . , τk) ∈ T ≥k | σ ◦ τ1 ◦ · · · ◦ τk ∈ Cµ

}

and their strictly monotone analog [Ek]λ,µ. We have the formulas

E[qλ(M)]

|Autλ| =
∑

µ⊢|λ|
N−|µ|

∑

k≥0
(−N)−k [Hk]λ,µ E[pµ(M)]

E[pλ(M)]

|Aut λ| =
∑

µ⊢|λ|
N |µ|

∑

k≥0
N−k [Ek]λ,µ E[qµ(M)]

We have at the moment two proofs of this result. The first proof is in [4]
and relies on the Weingarten calculus [2] to evaluate moments of the entries of
U for the Haar measure and invoke the relation between representation theory of
the symmetric group and Hurwitz numbers (via Jucys-Murphy correspondence).
Notice that the right-hand side of the first formula is subtraction-free. Garcia-
Failde and Do, and independently Charbonnier and I, could give it a second proof
via bijective combinatorics using the interpretation of the two sets of observables
in terms of enumeration of maps. This interpretation and its consequences is the
topic of the rest of the talk.

Now let us assume that the distribution of M is of the form

(2) Z−1N dM exp

(
− N TrM2

2
+

∑

h≥0, k≥1
ℓ1,...,ℓk≥0

N2−2h−k

k!
t
(h)
ℓ1,...,ℓk

TrM ℓ1 · · ·TrM ℓk

ℓ1 · · · ℓk

)

Up to our choice of dependence in N and regularity assumptions, this is the gen-
eral form of a U(N) invariant Gibbs measure on HN . Wick theorem shows that
observables are weighted enumerations of “maps”. The quotes mean that, unlike
standard maps, faces here need not be homeomorphic to disks: they can have
genus h and k boundary components of respective lengths ℓ1, . . . , ℓk, and each of

them is counted with a Boltzmann weight t
(h)
ℓ1,...,ℓk

. There is also an overall factor

of Nχ where χ is the Euler characteristic. It is well-known that E[pλ(M)] counts
“maps” with n rooted labeled boundary faces ∂1, . . . , ∂n homeomorphic to disks
and of respective lengths λ1, . . . , λn. It is not hard to see that E[qλ(M)] is counting
fully simple “maps”.

Definition 1. A “map” is simple if each vertex in ∂i is incident to atmost two
edges in ∂i. It is fully simple if each vertex in ∂i is incident to atmost two edges
in

⋃
j ∂j.
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In other words, boundary faces cannot touch each other in fully simple maps:
this is forbidden by the index structure in qλ(M) and the Wick contraction rules.
Considering the classical cumulant instead of the moments

κn
[
TrMλ1 , . . . ,TrMλn

]
, κn

[(
M

a
(i)
1 a

(i)
2

· · ·M
a
(i)
λi

a
(i)
1

)n
i=1

]

amounts to enumerating only the connected maps (ordinary or fully simple). In
fact, unitary invariance and Weingarten calculus also shows that

(3) κn

[(
M

a
(i)
1 a

(i)
2

· · ·M
a
(i)
λi

a
(i)
1

)n
i=1

]
= κL

[(
M

a
(i)
j ,a

(i)
j+1

)
i,j

]

Assuming that limN→∞Nn−2 κn[pλ(M)] = κ
(0)
n [pλ(M)] exist, it enumerates

planar “maps” with n boundaries. In virtue of Theorem 1 one can show that

limN→∞N |λ|+n−2κn[qλ(M)] = κ
(0)
n [qλ(M)] exist, and it enumerates planar fully

simple “maps”. According to [6] and (3), κ
(0)
n [qλ(M)] are the n-th order free

cumulants of M . Our goal is to relate their respective generating series. We
introduce the formal (Laurent) series

W (0)
n (x1, . . . , xn) =

1

x
+

∑

ℓ1,...,ℓn≥0
κ(0)n [TrM ℓ1 , . . . ,TrM ℓn ]

n∏

i=1

x
−(ℓi+1)
i

X(0)
n (w1, . . . , wn) =

1

w
+

∑

ℓ1,...,ℓn≥1
κ(0)n [q(ℓ1,...,ℓn)(M)]

n∏

i=1

wℓi−1
i

and the simplified notation W (x) =W
(0)
1 (x) and X(w) = X

(0)
1 (w).

Theorem 2. [6, 4] We have X(W (x)) = x and
(4)

B =

(
W

(0)
2 (x1, x2)+

1

(x1 − x2)2

)
dx1dx2 =

(
X

(0)
2 (w1, w2)+

1

(w1 − w2)2

)
dw1dw2

where we impose wi =W (xi) – or xi = X(wi).

This theorem is a difficult result in [6] starting from the combinatorics of par-
titioned permutations. We offer in [4] a simpler proof, by turning into functional
relations the bijective decompositions of ordinary disks and cylinders shows in
Figure 1: after removal of the proliferation of ordinary disks, one obtains a fully
simple map.

For instance, the first picture tells us that

(5) mℓ =
∑

ℓ′,m1,...,mℓ′≥0
m∗ℓ′

ℓ′∏

l=1

mℓ

where mℓ (resp. m∗ℓ ) are the first order (free) moments. If one iterates this
relation until the right-hand side only involves the m∗, one arrives to a sum over
noncrossing partitions which are the well-known combinatorial objects underlying
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1
2 3

`
0

Figure 1. The coloured faces are the boundaries.

Voiculescu R-transform. If one make a generating series for (5) one arrives to
X(W (x)) = x.

Let us specialize further to distributions of the form (2) with t
(h)
ℓ1,...,ℓk

= 0 unless

(h, k) = (0, 1) and (0, 2) (called “double trace models”), and assume there exists
a (formal or asymptotic) expansion of the form

κn[pλ(M)] =
∑

g≥0
N2−2g−n κ(g)n [pλ(M)] +O(N−∞)

and this again will imply the existence of κ
(g)
n [qλ(M)]. We then form the generating

series

Wg,n(x1, . . . , xn) =
∑

ℓ1,...,ℓn≥0
κ(g)n [TrM ℓ1 , . . . ,TrM ℓn ]

n∏

i=1

x
−(ℓi+1)
i

Xg,n(w1, . . . , wn) =
∑

ℓ1,...,ℓn≥0
κ(g)n [q(ℓ1,...,ℓn)(M)]

n∏

i=1

wℓi−1
i

Sufficient conditions for the existence of such an asymptotic expansion are given in
[5], and then theWg,n can be computed by induction on 2g−2+n through Eynard-
Orantin topological recursion [3]. In particular, Wg,n analytically continue to
meromorphic functions on Cn where C is the spectral curve of equation w =W (x)
– or x = X(w), and it can be obtained by residue computations at the zeroes of
dx on C. The initial data for the topological recursion is (C, x, w,B). We notice
that looking at fully simple maps, at least for disks and cylinders, just amount to
exchanging the role of x and w while keeping the same B (4). This exchange is
a “symplectic transformation”, i.e. it preserves |dx ∧ dw| in C2. In the general
theory of the topological recursion, it is conjectured (although the precise form
that should be given to this conjecture is still disputed) that Wg,0 is insensitive to
symplectic transformations. This squares here with the factWg,0 enumerates maps
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without boundaries, so the distinction between ordinary or fully simple boundaries
becomes irrelevant. This led us to conjecture

Conjecture 1. X
(g)
n continues analytically to Cn, and is computed by the Eynard-

Orantin topological recursion for the spectral curve (C, w, x,B).

We stress that the enumeration of fully simple maps is encoded in the series

expansion of X
(g)
n with respect to the variables wi → ∞. For g = 0, this would

give a direct computation of the nth order free cumulants for the double trace
models. It also suggests the existence a universal theory of freeness for all genera.

For the model Z−1N dM e−NTr(M2/2+tM4/4) which generate quandragulations with
weight (−t) per quadrangle the spectral curve C is

x(z) = c(z + 1/z), w(z) =
1

cz
+
tc3

z3
, B(z1, z2) =

dz1dz2
(z1 − z2)2

with c =
√

1−
√
1+12t
−6t . We checked that the topological recursion for the initial

data (C, w, x,B) produces Laurent series X
(0)
3 and X

(1)
1 with nonnegative coeffi-

cients (when t < 0) which are much smaller than the corresponding number of
quadrangulations with ordinary boundaries. This is a non trivial fact in support

of the conjecture: at least X
(g),TR
n should enumerate certain type of maps with

some restriction. We also have some partial checks that X
(0),TR
3 reproduces recent

formulas for quadrangulated fully simple pairs of pants [1].

References

[1] O. Bernardi and É. Fusy, Bijections for planar maps with boundaries, J. Combin. Theory
Ser. A 158 (2018), 176–227, math.CO/1510.05194

[2] B. Collins, Moments and cumulants of polynomial random variables on unitary groups,
the Itzykson-Zuber integral and free probability, Int. Math. Res. Not. 17 (2003), 953–982,
math-ph/0205010

[3] G. Borot, B. Eynard and N. Orantin, Abstract loop equations, topological recursion, and
applications, Commun. Number Theory and Physics 9 1 (2015), 51–187, math-ph/1303.5808

[4] G. Borot and E. Garcia-Failde, Simple maps, Hurwitz numbers and topological recursion,
math-ph/1710.07851

[5] G. Borot, A. Guionnet and K.K. Kozlowski, Large-N asymptotic expansion for mean field
models with Coulomb gas interaction, Int. Math. Res. Not. 20 (2015), 10451–10524, math-
ph/1312.6664
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Regularity properties of noncommutative distributions

Tobias Mai

(joint work with Marwa Banna, Roland Speicher, Moritz Weber, Sheng Yin)

Noncommutative distributions are a cornerstone of free probability theory since
they connect various of its facets in a unifying probabilistic language. An appro-
priate framework especially for applications at the interface of operator algebras
and random matrix theory is that of a tracial W ∗-probability space (M, τ), i.e.,
a von Neumann algebra M that is endowed with a faithful normal tracial state
τ . If, for instance, a tuple X = (X1, . . . , Xn) consisting of selfadjoint operators
X1, . . . , Xn ∈ M is given, then its joint noncommutative distribution is defined by

µX : C〈x1, . . . , xn〉 → C, xi1 · · ·xik 7→ τ(Xi1 · · ·Xik),

where C〈x1, . . . , xn〉 denotes the ∗-algebra of noncommutative polynomials in the
formal selfadjoint variables x1, . . . , xn.

In recent years, much progress has been made in the understanding of how
properties of X = (X1, . . . , Xn) affect regularity properties of the associated non-
commutative distribution µX ; see, for instance, [10, 3, 8, 1, 9, 2]. But what does
“regularity” actually mean here? Because a measure theoretic description of µX

is not available in full generality, this indeed requires clarification. The strategy
that one often follows is that regularity of µX – no matter what rigorous mean-
ing one could give to this phrase – should be reflected in properties of all those
operators Y = f(X) that arise as evaluations of suitable noncommutative test
functions f . Recall that if Y is selfadjoint, its noncommutative distribution can
be identified with the unique Borel probability measure µY on R that satisfies∫
R
tk dµY (t) = τ(Y k) for all integers k ≥ 0; the latter, to which we refer as the an-

alytic distribution of Y , can be studied by classical means: we may ask whether µY

has atoms, and if not, we can check for finer properties such as Hölder continuity of
its cumulative distribution function FY which is defined by FY (t) := µY ((−∞, t]),
or absolute continuity of µY with respect to the Lebesgue measure on R.

However, even for a single operator Y = Y ∗ ∈ M, it is far from being obvious
how properties of µY can be detected from Y . What one is aiming at are char-
acterizations that are accessible to operator algebraic means. Existence of atoms,
for instance, is intimately related to zero divisors : µY has an atom at s ∈ R, i.e.,
µY ({s}) 6= 0, if and only if we find a non-zero spectral projection p of Y such
that (Y − s)p = 0. Moreover, if there are constants α > 1 and c > 0 such that
‖(Y − s)p‖2 ≥ c‖p‖α2 holds for all s ∈ R and all spectral projections p of Y , then
FY is Hölder continuous with exponent 2

α−1 ; see [9, 2] and [3].
Among the classes of noncommutative test functions f which were treated in

course of these investigations are

• noncommutative polynomials P ∈ C〈x1, . . . , xn〉;
• matrices of noncommutative polynomials and affine linear pencils in par-
ticular, i.e., elements P ∈ MN (C〈x1, . . . , xn〉) that are of the form P =
b0+b1x1+· · ·+bnxn with scalar coefficient matrices b0, b1, . . . , bn ∈MN(C);
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• noncommutative rational functions, i.e., elements r in the universal field
of fractions C (<x1, . . . , xn )> of the ring C〈x1, . . . , xn〉, called the free field.

While noncommutative polynomials and matrices thereof are rather straightfor-
ward to deal with, the theory of noncommutative rational functions is signifi-
cantly more involved; see [4]. Nonetheless, it leads finally to the crucial and
appealing insight that C (<x1, . . . , xn )> can be understood entirely via matrices
over C〈x1, . . . , xn〉. It is true, for instance, that a matrix Q in MN (C〈x1, . . . , xn〉)
becomes invertible in MN (C (<x1, . . . , xn )>) if and only if Q is full; and the lat-
ter condition can be checked without referring to the free field: the inner rank
ρ(Q) of a matrix Q ∈ MN (C〈x1, . . . , xn〉) is defined as the least integer k ≥ 1
for which Q admits a decomposition Q = R1R2 with rectangular matrices R1 ∈
MN×k(C〈x1, . . . , xn〉) and R2 ∈ Mk×N (C〈x1, . . . , xn〉); we say that Q is full if it
has full inner rank, i.e., if ρ(Q) = N holds.

The operators X = (X1, . . . , Xn) that were studied align themselves roughly
into two groups. In [10, 1], the case of freely independent operators X1, . . . , Xn

was considered; a more general approach using completely different techniques
was developed in [3, 8, 9, 2]. The latter made contact to the groundbreaking
work [11, 12, 13, 14, 15, 16, 17] of Voiculescu on analogues of entropy and Fisher
information in the realm of free probability theory. Following especially the non-
microstates approach [16], one can associate to the given tuple X quantities such
as the free Fisher information Φ∗(X), the free entropy χ∗(X), and the free entropy
dimension δ∗(X); a variant of the latter, denoted by δ⋆(X), was introduced in [5].

It is a common point of view – inspired primarily by results in the case n = 1
of a single variable – that the associated conditions δ∗(X) = n and δ⋆(X) = n
rule out the atomic part in µX . Evidence was given to this in [3, 8, 9]; more
precisely, it was shown that under the weaker condition δ⋆(X) = n the analytic
distribution µY of Y = P (X) for any non-constant selfadjoint P ∈ C〈x1, . . . , xn〉
cannot have atoms. Consequently, each of the stronger conditions χ∗(X) > −∞
and Φ∗(X) < ∞ is expected to entail further regularity properties of µX . First
steps in this direction are [3, 2]; it was shown in [2] that if Φ∗(X) <∞ is assumed,
then the cumulative distribution function FY of Y = P (X) for any non-constant
selfadjoint P ∈ C〈x1, . . . , xn〉 is Hölder continuous with exponent 2

3(2d−1) , where

d ≥ 1 is the degree of P . Furthermore, inspired by [1], Hölder continuity of FY for
operators Y = P(X) that come from certain selfadjoint affine linear pencils P ∈
MN(C〈x1, . . . , xn〉) was established in [9]; note that the resulting operators live in
the tracial W ∗-probability space (MN (M), 1

N TrN ◦τ (N)), where TrN denotes the

trace on MN(C) and τ (N) : MN(M) → MN (C) the matricial amplification of τ
which is given by τ (N)(Y) := (τ(Ykl))

N
k,l=1 for every Y = (Ykl)

N
k,l=1 ∈MN (M).

These results have some applications in random matrix theory. It was shown

in [6] that tuples X(N) = (X
(N)
1 , . . . , X

(N)
n ) of N ×N hermitian random matrices

which follow general Gibbs laws are described in the limit N → ∞ by operators
X = (X1, . . . , Xn) that satisfy Φ∗(X) < ∞. This, as proven in [2], not only
implies that various “composed” random matrices Y (N) = f(X(N)) have a limiting
eigenvalue distribution with Hölder continuous cumulative distribution function,
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but ensures also convergence in the Kolmogorov metric, in the GUE case even
with an explicit rate.

Because some of the strong regularity results that were obtained in [10, 1] rely on
case-specific methods, the question suggests itself how far one can still go without
assuming freeness. For instance, it was proven in [10] that wheneverX1, . . . , Xn are
freely independent and none of the individual analytic distributions µX1 , . . . , µXn

has atoms, then the measure of a possible atom in the analytic distribution µY

of Y = P(X), for any selfadjoint matrix P ∈ MN (C〈x1, . . . , xn〉), can only be
an integer multiple of 1

N . The authors of [10] generalized for that purpose the
framework of the Strong Atiyah Conjecture (see [7] for more details on the latter)
and proved that it includes the above situation: a tuple X = (X1, . . . , Xn) of (not
necessarily selfadjoint) operators in M is said to have the Strong Atiyah Property
if rank(P(X)) is a nonnegative integer for every matrix P ∈ MN (C〈x1, . . . , xn〉)
of arbitrary size N ; recall that rank(Y) := N − (TrN ◦τ (N))(pker(Y)) for any Y ∈
MN(M), where pker(Y) ∈ MN (M) is the orthogonal projection onto the kernel
ker(Y) of Y. It was conjectured (see [3], for instance) that these results of [10]
remain true in the more general situation δ⋆(X) = n. Indeed, it was shown in
[9] that every tuple X with δ⋆(X) = n has the Strong Atiyah Property and that
one even has rank(P(X)) = ρ(P) for every matrix P ∈ MN(C〈x1, . . . , xn〉) of
arbitrary size N . It follows that under the assumption δ⋆(X) = n every operator
Y = P(X) for a selfadjoint P ∈ MN(C〈x1, . . . , xn〉) has atoms precisely at the
points in the set {λ ∈ C | P− λ1N is not full} and µY({λ}) = 1− 1

N ρ(P − λ1N ).
This has some consequences regarding evaluations of noncommutative ratio-

nal functions. Let A be the ∗-algebra of all closed and densely defined linear
operators affiliated with M. In [9], the existence of an injective homomorphism
evX : C (<x1, . . . , xn )> → A extending the canonical evaluation P 7→ P (X) on
C〈x1, . . . , xn〉 was shown; this excludes not only non-trivial rational relations
among X1, . . . , Xn but also atoms in the analytic distribution of r(X) := evX(r)
for every selfadjoint r ∈ C (<x1, . . . , xn )>. This culminates in the result that if
δ⋆(X) = n, then the rational closure and the division closure of C〈X1, . . . , Xn〉,
the subalgebra of M generated by X1, . . . , Xn, in A agree and are furthermore
isomorphic to the free field; in other words, we can realize C (<x1, . . . , xn )> natu-
rally inside A, where the concrete operators X1, . . . , Xn take over the role of the
formal variables x1, . . . , xn.
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[1] J. Alt, L. Erdös, and T. Krüger, The Dyson equation with linear self-energy: spectral bands,
edges and cusps, arXiv:1804.07752v1 (2018).
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Macroscopic fluctuations for products of random matrices

Vadim Gorin

(joint work with Yi Sun)

Let Y 1
N , . . . , Y

M
N be i.i.d. N × N random matrices which are right-unitarily in-

variant, and let YN := Y 1
N · · ·YM

N be their product. The (squared) singular values
µN
1 ≥ · · · ≥ µN

N > 0 of YN occur classically in the study of ergodic theory of
non-commutative random walks, and the corresponding Lyapunov exponents have
a limit as M → ∞ by Oseledec’s multiplicative ergodic theorem. These Lyapunov
exponents for various ensembles of matrices have been the object of extensive
study in the dynamical systems literature, beginning with the pioneering result of
Furstenberg-Kesten for matrices with positive entries. In an applied context, sin-
gular values for similar models have appeared in the study of disordered systems in
statistical physics, in the study of polymers, and in the study of dynamical isom-
etry for deep neural networks as the Jacobians of randomly initialized networks.

The goal of this work is to study the global fluctuations of the squared singular
values µN for a variety of different distributions for Y i

N , including rectangular
Ginibre matrices (i.e., matrices with i.i.d. complex Gaussian elements), truncated
Haar-random unitary matrices, and right-unitarily invariant matrices with fixed
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singular values. In each of these cases, we study the normalized log-spectrum

λNi :=
1

M
logµN

i

via the height function

HN (t) := #{λNi ≤ t}.
We study limit shapes and fluctuations for the height function in two limit regimes,
one where N → ∞ with M fixed, and one where N,M → ∞ simultaneously.

When M is fixed, results from free probability of Voiculescu and Nica-Speicher
imply that the empirical measure dλN of λNi converges to a deterministic measure
dλ∞, which implies that HN (t) concentrates around a deterministic limit shape, a
result we refer to as a law of large numbers. In this work we prove that the fluctu-
ations of the height function around its mean converge to explicit Gaussian fields.
We further show that these fields are log-correlated under a technical condition on
the smoothness of the limit shape. Namely, this means that for polynomials f, g,
we have

lim
N→∞

Cov

(∫
(HN (t)− E[HN (t)])f(t)dt,

∫
(HN (s)− E[HN (s)])g(s)ds

)

=

∫ ∫
K(t, s)f(t)g(s)dtds

for an explicit covariance kernel K(t, s) which satisfies

K(t, s) = − 1

2π2
log |t− s|+O(1)

for |t− s| → 0.
When M,N → ∞ simultaneously, the λNi are the Lyapunov exponents first

studied by Newman and Isopi-Newman. Again, their empirical measure converges
to the deterministic measure

− e−z

S′µ̃(S
−1
µ̃ (e−z))

1[− logSµ̃(−1),− logSµ̃(0)]dz,

where Sµ̃ is the limiting S-transform of the spectral measure of (Y i
N )∗Y i

N . This
yields concentration of the height function around a deterministic limit shape. In
this work we prove that the rescaled fluctuations of the height function around its
mean

M1/2(HN (t)− E[HN (t)])

again converge to explicit Gaussian fields. However, in these cases, we find that
the field has a white noise component, meaning that for |t− s| → 0 the covariance
satisfies

K(t, s) = δ(t− s) +O(1),

where δ denotes the Dirac delta function. In particular, as M → ∞, we see a
transition from a log-correlated Gaussian field to a Gaussian field with a white
noise component. For this result, the relative growth rates of N and M are not
important; in particular, we observe the same white noise component both for M
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growing to infinity much faster than N and much slower than N . This behavior
is very different from that seen in recent work of Akemann-Burda-Kieburg and
Liu-Wang-Wang, where the local limit for the singular values of the products of
Ginibre matrices depends on the ratio M/N .

The transition between white noise (corresponding to M → ∞) and log-correlated
(for finite M) statistics can be compared with a similar transition for the Dyson
Brownian Motion (DBM) started from a deterministic initial condition and in
which the time t is taken to be equal toM−1. For DBM such transition was studied
in detail for β = 2 by Duits–Johansson, for general β DBM by Huang-Landon and
for a finite-temperature version of the DBM ensemble by Johansson-Lambert.

Our technique is based on the study of multivariate Bessel generating functions
for log-spectral measures, which are continuous versions of the Schur generating
function defined and studied by Bufetov-Gorin. Recall that for sets of variables
a = (a1, . . . , aN ) and b = (b1, . . . , bN), the multivariate Bessel function is defined
by

B(a, b) := ∆(ρ)
det(eaibj )Ni,j=1

∆(a)∆(b)
,

where ρ = (N−1, . . . , 0) and ∆(a) :=
∏

1≤i<j≤N (ai−aj) denotes the Vandermonde

determinant. For an N -tuple χN = (χN,1 ≥ · · · ≥ χN,N), the multivariate Bessel
generating function of a measure dµN (x) on N -tuples x = (x1 ≥ · · · ≥ xN ) with
respect to χN is defined by

φχ,N (s) :=

∫ B(s, x)
B(χN , x)

dµN (x).

The proofs combine the extraction of the asymptotic information about the mea-
sures from their multivariate Bessel generating functions through differential op-
erators with the asymptotic analysis of the multivariate Bessel functions through
double contour integrals and determinantal representations.

The details of this talk can be found in [GS].

References

[GS] V. Gorin, Y. Sun, Gaussian fluctuations for products of random matrices. arXiv:1812.06532



Free Probability Theory 3183

Unitary half-liberations

Moritz Weber

(joint work with Alexander Mang)

Summary We classify all unitary easy quantum groups between the unitary group
UN and the free unitary quantum group U+

N .

SN ON

UN

✑
✑
✑
✑

✑
✑
✑
✑

S+
N O+

N

U+
N

✑
✑
✑
✑

✑
✑
✑
✑

⊆

⊆

⊆

In some sense, such intermediate quantum groups interpolate the classical and
the free world resembling the passage from classical to free independence. On
the combinatorial side, this amounts to the following complete list of categories
between NC◦•2,nb and P ◦•2,nb, see [7, 8]:

P P2

P ◦•2,nb = S1

✑
✑
✑
✑

✑
✑
✑
✑

NC NC2

NC◦•2,nb = IN0

✑
✑
✑
✑

✑
✑
✑
✑

⊇

⊇

⊇

⊇

ID, with D ⊆ N0 semigroup

⊇S0 = I∅

⊇

Sk, with k ∈ N0

⊇

Previous classification results. The following results on the classification of
the above cube scheme of all easy quantum groups have been obtained before:

✑✑

✑✑

✑✑

✑✑

[3, 16] ✑✑

✑✑

✑✑

✑✑

[2, 16] ✑✑

✑✑

✑✑

✑✑

[2, 16] ✑✑

✑✑

✑✑

✑✑

[10, 11]

✑✑

✑✑

✑✑

✑✑

[12, 13] ✑✑

✑✑

✑✑

✑✑

[6] ✑✑

✑✑

✑✑

✑✑

(partially)

[4, 5, 1] ✑✑

✑✑

✑✑

✑✑

open!
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Liberation and half-liberation. In the 1980’s, Woronowicz [19, 21] introduced
compact quantum groups in order to provide an appropriate notion of quantum
symmetry in the context of operator algebras, in particular in the noncommutative
setting. In the 1990’s, Sh. Wang [15] introduced a quantum version U+

N of the
group UN of unitary complex-valued N×N -matrices. Wang’s quantum group can
be seen as a quantization of the unitary group which is “as free/noncommutative”
as possible. It is hence also addresses as a “liberated” version of UN . An important
task is to find “half-liberated” versions of the unitary group, i.e. quantum groups
G with

UN ⊂ G ⊂ U+
N .

Such quantum groups G can be seen as a somewhat moderate step from the classi-
cal world into the quantum world; or in other words: as an interpolation between
the classical and the free world. See for instance [14, 9] for more on compact
quantum groups.

Easy quantum groups. In 2009, Banica and Speicher [3] provided a powerful
machine in order to produce examples of (orthogonal) compact quantum groups;
their approach has been extended by Tarrago and the author [12, 13] to the unitary
setting. These so called easy quantum groups are governed by the same combi-
natorics as in free probability theory: by partitions of finite sets. More precisely,
we consider diagrams of the following form consisting in points colored either in
black or in white, which are connected by some strings representing the blocks of
the partition:

We consider sets C of partitions which are closed under horizontal and vertical
concatenation as well as under swapping the upper and the lower row of points.
Moreover, the partitions , , , and are supposed to be in C. If a set C
of partitions satisfies these properties, we call it a category of partitions. To
any partition p, we may associate a certain linear map Tp. Banica and Speicher
observed that given a category of partitions C, the linear span of all maps Tp
of partitions p ∈ C forms a tensor category in Woronowicz’s sense — and by
Woronowicz’s Tannaka-Krein Theorem [20], we obtain a compact quantum group:
an easy quantum group.

The study and classification of easy quantum groups is hence equivalent to deal-
ing with the underlying categories of partitions, which are purely combinatorial
objects. See for instance [18] for an overview on easy quantum groups and [17] for
links to free probability.
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Some technical details from the work on unitary half-liberations. Recall
from [15] that the free orthogonal quantum group O+

N is defined via the universal
C∗-algebra Ao(N) generated by self-adjoint elements uij , 1 ≤ i, j ≤ N and the
relations

∑
k uikujk =

∑
k ukiukj = δij turning the matrix u = (uij) into an

orthogonal one. The group ON of orthogonal real-valued matrices however can
also be seen as a quantum group, and its algebra C(ON ) is the quotient of Ao(N)
by the relations that all uij shall commute. Conversely, one can view Ao(N)
as an algebra which is a “liberated” version of C(ON ), in the sense that the
commutativity condition on the generators is dropped. Now, in [3], Banica and
Speicher defined the half-liberated orthogonal quantum group O∗N via the quotient
of Ao(N) by the relations

abc = cba

where a, b, c ∈ {uij}. Hence, the commutativity condition is not completely
dropped but rather “half-dropped”. Since the algebra corresponding to O∗N is
a quotient of Ao(N) and since C(ON ) in turn is a quotient of the former one, we
have the following chain of inclusions:

ON ⊂ O∗N ⊂ O+
N

These relations abc = cba are induced by the following partition:

For the unitary situation, the main issue is that the generators uij are no longer
self-adjoint. Therefore, one needs two colors for the points, one for the generators
uij themselves and one for their adjoints. If one wants to find examples of compact
quantum groups G with

UN ⊂ G ⊂ U+
N ,

a first guess would be to color the points of the above diagram in different ways in
black and white; equivalently, one would impose relations abc = cba with specific
choices for a, b, c ∈ {uij, u∗ij}. This has been done in [4, 5], but this yields only
two examples of such intermediate quantum groups; further ones have been found
in [1]. However, in order to achieve a full classification of all such intermediate
quantum groups, we proposed a change of paradigm in [7, 8] and to consider
diagrams of the type

rather than .

These partitions of a “bracket type” are the key to our combinatorial classification
results of all unitary easy quantum groups in between UN and U+

N , see [7, 8].
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Interval partitions and noncrossing partitions

Philippe Biane

(joint work with Matthieu Josuat-Vergès)

Since the work of Roland Speicher (see e.g. [2] for a recent exposition), it is known
that noncrossing partitions can be used to give a combinatorial treatment of free
independence. Soon after this discovery, Speicher and Woroudi [1] analogously in-
troduced Boolean independence, which uses the lattice of interval partitions. It is
known that the lattice of noncrossing partitions embeds into the symmetric group
and this embedding can be given a geometric description: the permutations cor-
responding to noncrossing partitions are the permutation which are smaller than
the full cycle (123 . . . n) for the absolute order. This absolute order can be defined
smilarly for any finite Coxeter group and one can define noncrossing partitions
as the set of elements of the group which are smaller than a Coxeter element.
The study of these generalized noncrossing partitions has become an important
branch of Coxeter group theory since the beginning of this century. We show that
interval partitions can be characterized geometrically as the permutations which
are smaller than (123 . . . n) for the Bruhat order. Since the Bruhat order can be
defined for any finite Coxeter group, we can define again interval partitions as-
sociated with any standard Coxeter element in a finite Coxeter group. We study
the relations between interval and noncrossing partitions by introducing two order
relations on the Coxeter group ⊏ and ≪ which refine the absolute order, taking
into account the Bruhat order (in the context of symmetric groups and for the set
of noncrossing partitions the order ≪ was considered by Belinschi and Nica [3]).
We show that intervals for these orders can be enumerated and are in bijection
with faces of the cluster complex and we also make connections with Chapoton’s
F and H-triangles. A crucial property is that the two orders ⊏ and ≪ are related
by the Kreweras inversion.
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Local law and complete eigenvector delocalization for supercritical

Erdős–Rényi graphs

Antti Knowles

(joint work with Yukun He, Matteo Marcozzi)

Let A ∈ {0, 1}N×N be the adjacency matrix of the Erdős-Rényi random graph
G(N, p), where p ≡ pN ∈ (0, 1). That is, A is real symmetric, and its upper-
triangular entries are independent Bernoulli random variables with mean p. The
Erdős-Rényi graph exhibits a phase transition in its connectivity around the crit-
ical expected degree pN = logN . Indeed, for fixed ǫ > 0, if pN ≥ (1 + ǫ) logN
then G(N, p) is with high probability connected, and if pN ≤ (1 − ǫ) logN then
G(N, p) has with high probability isolated vertices. The aim of our work is to
investigate the spectral and eigenvector properties of G(N, p) in the supercritical
regime, where G(N, p) is connected with high probability.

Our main result is a local law for the adjacency matrix A in the supercritical
regime C logN ≤ pN ≪ N , where C is some universal constant. In order to
describe it, it is convenient to introduce the rescaled adjacency matrix

A :=

√
1

p(1− p)N
A

so that the typical eigenvalue spacing of A is of order N−1. A local law provides
control of the matrix entries Gij(z) of the Green function

(1) G(z) := (A− z)−1 ,

where z = E + iη is a spectral parameter with positive imaginary part η ≫ N−1

defining the spectral scale. Our main result states that that the individual entries
Gij(z) of the Green function concentrate all the way down to the critical scale
pN = C logN : the quantity

max
i,j

|Gij(z)− δijm(z)|

is small with high probability for all η ≫ N−1; here m(z) is the Stieltjes transform
of the semicircle law.

Such local laws have become a cornerstone of random matrix theory, ever since
the seminal work [3, 4] on Wigner matrices. They serve as fundamental tools in the
study of the distribution of eigenvalues and eigenvectors, as well as in establishing
universality in random matrix theory.

A local law has two well-known easy consequences, one for the eigenvectors and
the other for the eigenvalues of A.

(i) The first consequence is complete eigenvector delocalization, which states
that the normalized eigenvectors {ui} of A satisfiy with high probability

(2) max{‖ui‖∞ : 1 ≤ i ≤ N} ≤ N−1/2+o(1) .
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(ii) The second consequence is a local law for the density of states, which
states that the Stieltjes transform of the empirical eigenvalue distribution

s(z) :=
1

N
TrG(z) =

1

N

N∑

i=1

1

λi(A) − z

satisfies |s(z) − m(z)| = o(1) with high probability for all η ≫ N−1.
Informally, this means that the semicircle law holds down to very small
spectral scales.

It is a standard exercise to show that if pN → ∞ then the (global) semicircle
law for s(z) holds, stating that s(z) → m(z) with high probability for any fixed
z /∈ R. On the other hand, it is not hard to see that both consequences (i) and (ii)
are wrong in the subcritical regime pN ≤ (1− ǫ) logN . Indeed, in the subcritical
regime there is with high probability an isolated vertex, with an associated eigen-
vector localized at that vertex. Hence, the left-hand side of (2) is equal to one
and (i) fails. Moreover, computing the expected number of isolated vertices in the
subcritical regime pN ≪ logN , it is not hard to find that the number of isolated
vertices is large enough to preclude (ii) because of the resulting atom at zero for
the empirical spectral measure.

Thus, our assumption pN ≥ C logN is optimal up to the value of the numerical
constant C. A local law for the Erdős-Rényi graph was previously proved in [1, 2]
under the assumption pN ≥ (logN)6, and the contribution of our work is therefore
to cover the very sparse range C logN ≤ pN ≤ (logN)6. Our main result takes
the following form.

Theorem 1. There is a universal constant C∗ ≥ 1 such that the following holds.
Let r ≥ 10, 1 ≤ q ≤ N1/2, and t > 0. Define the fundamental error parameter

ζ ≡ ζ(N, r, q, η, f) :=

(
r

q2

)1/4

+
r

(Nη)1/6
+

r

(log η + logN)q

and suppose that
tζ ≤ 1 .

Then

P

(
max
i,j

|Gij(z)−m(z)δij | > tζ
)
≤ N5

(
C∗
t

)r

,

for N−1 ≤ η = Im z ≤ 1.

Our proof strategy is based on the approach introduced in [3, 4, 5] and subse-
quently developed for sparse matrices in [1, 2]. Thus, we derive a self-consistent
equation for the Green function G using Schur’s complement formula and large
deviation estimates, which is then bootstrapped in the spectral scale η to reach
the smallest scale N−1. The key difficulty in proving local laws for sparse matrices
is that the entries are sparse random variables, and hence fluctuate much more
strongly than in the Wigner case p ≍ 1. To that end, new large deviation estimates
for sparse random vectors were developed in [1], which were however ineffective
below the scale (logN)6.
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The key novelty of our approach is a new family of multilinear large deviation
bounds for sparse random vectors. They are optimal for very sparse vectors, and in
particular allow us to reach the critical scale pN = C logN . They provide bounds
on multilinear functions of sparse vectors in terms of mixed ℓ2 and ℓ∞ norms of
their coefficients. We expect them to be more generally useful in a variety of
problems on sparse random graphs. To illustrate them and how they are applied,
consider a sparse random vector X ∈ RN which is a single row of the matrix
A − EA. Let (aij) be a symmetric deterministic matrix. Then, for example, we
have the Lr bound

(3)

∥∥∥∥
∑

i6=j

aijXiXj

∥∥∥∥
r

≤
(

4r

1 + (log(ψ/γ))+
∨ 4

)2

(γ ∨ ψ) ,

where

γ :=

(
max

i

1

N

∑

j

|aij |2
)1/2

, ψ :=
maxi,j |aij |

pN
.

We first remark that we have to take r to be at least logN . Indeed, our proof
consists of an order NO(1) uses of such large deviation bounds. To compensate the
factor NO(1) arising from the union bound, we therefore require bounds smaller
than N−D on the error probabilities for any fixed D > 0, which we obtain (by
Chebyshev’s inequality) from the large deviation bounds for r = logN . The crucial
feature of the bound (3) is the logarithmic factor in the denominator. Without
it, there is nothing to compensate the factor r2 ≥ (logN)2 in the numerator, as
ψ ≍ (pN)−1 ≍ (logN)−1 in the critical regime. Thus, the applicability of (3)
hinges on the fact that ψ/γ is sufficiently large; this assumption can in fact be
verified in all of our applications of (3).
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Extreme values versus extreme random matrices

Maciej A. Nowak

(joint work with Jacek Grela)

Using the introduced by us thinning method [1], we explain the link between clas-
sical Fisher-Tippett-Gnedenko classification of extreme events and their free ana-
logue obtained by Ben Arous and Voiculescu [2] in the context of free probabil-
ity calculus. In particular, we present explicit examples of large random matrix
ensembles, realizing free Weibull, free Fréchet and free Gumbel limiting laws, re-
spectively. We also explain, why these free laws are identical to Balkema-de Haan-
Pickands limiting distribution for exceedances, i.e. why they have the form of
generalized Pareto distributions. Finally, we derive a simple exponential relation
between classical and free extreme laws. The above relations and correspondences
can be visualized with the help of flow diagram:
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Operator-valued matrices: the noncommutative Lindeberg method

Marwa Banna

(joint work with Guillaume Cébron)

We consider operator-valued Wigner and Wishart matrices whose entries are free
or exchangeable elements in some tracial W ∗-probability space (M, τ). We prove
that their distribution is close to that of an operator-valued semicircular element
over some subalgebra B ⊂ M. More precisely, we provide quantitative estimates
on the associated Cauchy transforms that give in turn explicit estimates on the
Kolmogorv distance for some cases. Applications to block random matrices with
a Wigner or circulant structure and in independent or correlated blocks are also
given.

Our approach relies on the Lindeberg method which we extend to the noncom-
mutative setting to approximate Cauchy transforms of linear maps in noncommu-
tating elements. In the free with amalgamation case, this gives the following:

Theorem 1. Let (M, τ) be a tracial W ∗-probability space and B be a von Neu-
mann subalgebra of M. Let (x1, . . . , xn) and (y1, . . . , yn) be two n-tuples of self-
adjoint elements in M which are free with amalgamation over B and such that
τ [xi|B] = τ [yi|B] = 0 and τ [xibxi|B] = τ [yibyi|B] for any b ∈ B and 1 ≤ i ≤ n.
Setting

x =

n∑

i=1

xi and y =

n∑

i=1

yi

then, for any z ∈ C+, we have

∣∣τ [Gx(z)]− τ [Gy(z)]
∣∣ ≤ K∞K2

2

Im(z)4
n,

where K∞ = maxi
(
‖xi‖∞ + ‖yi‖∞

)
and K2 = maxi(‖xi‖L2 + ‖yi‖L2).

Applying Theorem 1 to N × N Wigner and Wishart matrices in free entries
with possibly different variances, we prove that their distribution is close to that
of an operator-valued semicircular element over some subalgebra. More precisely,
we provide explicit quantitative estimates for the associated Cauchy transforms
which can be passed in some cases to estimates on the Kolmogorov distance.

Random block matrices are special cases of operator-valued matrices for they
can be seen as matrices with entries in some noncommutative algebra. In par-
ticular, i.i.d. random matrices are exchangeable in the noncommutative space of
random matrices and many random block matrix models fit nicely in the frame-
work of matrices with exchangeable entries. We relax the freeness hypothesis in
Theorem 1 and consider instead a finite family of exchangeable elements in (M, τ).

Theorem 2. Let (M, τ) and (N , ϕ) be two tracial W ∗-probability spaces. Let
(x1, . . . , xn) be an n-tuple of exchangeable elements in M. Consider a family
(Ni,k)1≤i,k≤n of independent standard Gaussian random variables and let
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(y1, . . . , yn) be the n-tuple of random elements in M given by

yi =
1√
n

n∑

k=1

Ni,k


xk −

1

n

n∑

j=1

xj


 .

Let (a1, . . . , an) be an n-tuple of elements in N and set

x =

n∑

i=1

xi ⊗ ai + x∗i ⊗ a∗i and y =

n∑

i=1

yi ⊗ ai + y∗i ⊗ a∗i .

Then, for any z ∈ C+,

∣∣τ ⊗ ϕ(Gx(z))− E[τ ⊗ ϕ(Gy(z))]
∣∣

≤ C·
(

K1

Im(z)2
‖x1‖∞+

K2
2

Im(z)3
‖x1‖2∞

√
n+

K∞K2
2

Im(z)4
‖x1‖3∞n+

K2
∞K

2
2

Im(z)5
‖x1‖4∞n

)
,

where K∞ = maxi ‖ai‖∞,K2 = maxi ‖ai‖L2 , K1 = ‖∑n
i=1 ai‖L1 and C is a

universal constant.

Theorem 2 shows that sums of exchangeable operators are close in distribution
to the expectation of sums in independent averaged Gaussian operators. The
appearance of independent Gaussian operators and the independence structure
hidden behind exchangeability might be surprising or seem unnatural but it could
be explained by the fact that invariance under permutations is a commutative
concept. Applying this approximation to N × N Wigner and Wishart matrices
in exchangeable entries, we show that their distribution is close to that of an
operator-valued semicircular element by providing quantitative estimates on the
associated Cauchy transforms.

As applications to random block matrices, we consider random matrices with
independent blocks and random matrices in which the blocks are themselves corre-
lated but have i.i.d. entries. We also present an example of random block matrices
where the distribution of the operator-valued semicircular element can be explic-
itly computed. This is the case of block matrices having a circulant block structure
in i.i.d. Wigner blocks. In each of the above cases, we give quantitative estimates
on the associated Cauchy transforms which lead in the latter case to quantitative
estimates on the Kolmogorov distance.
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Representations of Free Commutators

Friedrich Götze

(joint work with Gennadii Chistyakov)

Let a and b be free random variables with distributions µa and µb respectively.
Consider their hermitean commutator c = i(ab − ba). Then µc can be described
by combinatorial moment formulas, see [2], whereas µc has been characterized by
five functional equations for analytic functions in C \R with a special asymptotic
behavior for |ℑz| ≤ |ℜz|, z → ∞ [1].

Here we provide a characterization of µc via multiplicative free convolutions of
the symmetrization µas

:= µa ⊞ µ̄a of µa with µ̄a, where µ̄a(A) := µa(−A) for all
Borel sets, with respect to the additive free convolution ⊞. Similarly define µbs .
We have

Theorem 1 (Chistaykov-G. (2018)). Let a and b be free random variables with
nonzero variances. The distribution µc2 satisfies

µc2 ⊠ µ0 = µa2
s
⊠ µb2s

,

where µ0 is the multiplicative infinitely divisible probability measure with
the density 1

π
1√

x(4−x)
1[0,4](x).

We formulate the next results using the Σ transform of a measure µ on R+

related to its S transform via Σµ(z) = Sµ(
z

1−z ). The function Σµ(z) has the form

Σµ(z) = K
(−1)
µ (z)/z, where Kµ(z) belongs to the class of the Krein functions as

defined in [3].
Let a and b be even free random variables.

Theorem 2 (Chistyakov-G. (2018), [2]).

Σµ
c2
(z) =

1

4
(2 − z)Σµ

a2

( z

2− z

)
Σµ

b2

( z

2− z

)

holds for z, where Σµc2
(z), Σµa2

(
z

2−z

)
and Σµb2

(
z

2−z

)
are defined,

equivalently

µc2 = µ0 ⊠ µνa ⊠ µνb ,

where the probability measures νa, νb on [0,+∞) are determined via

Σνa(z) := Σµa2 (Kκ0(z)), Σνb(z) := Σµb2
(Kκ0(z))

with κ0 = 1
2δ0 +

1
2δ1 and Kκ0(z) =

z
2−z .

For general free a, b we get that if

(1) µas
= µg ⊞ µg and µbs = µh ⊞ µh

with even g, h, there exist probability measures νg, νh as above such that

(2) µc2 = µ0 ⊠ µνg ⊠ µνh .
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Consider even free random variables a and b, with distributions µa and µb.
Define Ns as subclass of Nevanlinna functions f(z) with f(iR+) ⊂ iR. In the

following result we characterize in the symmetric case the distribution µc of the
commutator c via functional equations for the Cauchy-transform Gµc

(z) of µc in
terms of subordination functions from Ns. We have

Theorem 3 (Chistyakov-G. (2018)). There exist unique subordination functions
−N1(z),−N2(z) ∈ Ns

1

z
Nj(z) = −γ−1/2j + o(1), |ℜz| ≤ |ℑz|, j = 1, 2,

such that, for z ∈ C+, and Q(z) := 4z3(1− 2z)−2(1− z)−1

N1(z)
2N2(z)

2 = −1

4
z2Q(N1(z)Gµb

(N1(z))),

1

2
(1 + zGµc

(z)) = N1(z)Gµb
(N1(z)) = N2(z)Gµa

(N2(z)).

The proofs are based on the characterization of the multiplicative free convolu-
tion in terms of Krein functions as described in [3] combined with the characteri-
zations of µc in [2] and [1].

In the symmetric case Vasilchuk introduced in [1] three functional equations for
analytic functions Γ1,Γ2 characterizing the Cauchy transform Gµc

of the commu-
tator of even free random variables a and b, see [1]. From Theorem 3 it follows

now that the transforms
1+zGµc (z)

2Γ1(z)
and

1+zGµc (z)
2Γ2(z)

have to be of Nevanlinna class.

Note that using the relation (2) we can prove an analogue of Theorem 3 for
probability measures µa and µb satisfying relation (1).

A remaining challenging open problem is to extend these representations to the
case of commutators of general non symmetric µa and µb.
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Infinitesimal Freeness and the GOE

James A. Mingo

We present, [7], a combinatorial approach to the infinitesimal distribution of the
Gaussian orthogonal ensemble (goe). In particular we show how the infinitesi-
mal moments are described by non-crossing pairings, but not those of type B. We
demonstrate the asymptotic infinitesimal freeness of independent complex Wishart
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matrices and compute their infinitesimal cumulants. Using our combinatorial pic-
ture we compute the infinitesimal cumulants of the goe and demonstrate the lack
of asymptotic infinitesimal freeness of independent Gaussian orthogonal ensembles.

In this talk we consider the infinitesimal freeness of Belinschi and Shlyakhtenko
[1]. Infinitesimal probability spaces have recently been used by Shlyakhtenko [10]
to understand small scale perturbations in some random matrix models. Let us
recall some of the connections between free probability and random matrix theory.

Let {AN}N and {BN}N be two self-adjoint ensembles of random matrices. By
this we mean that for each integer N ≥ 1 we have two self-adjoint matrices with

random entries. The eigenvalues of AN , λ
(A)
1 ≤ · · · ≤ λ

(A)
N , are thus random and

we form a random probability measure µ
(A)
N with a mass of 1/N at each eigenvalue

λ
(A)
i . We do the same for BN and obtain another random measure µ

(B)
N . For many

ensembles the random measures µ
(A)
N and µ

(B)
N converge to deterministic measures,

called the limit eigenvalue distributions. Two well known examples are Wigner’s
semi-circle law and the Marchenko-Pastur law.

A central problem in random matrix theory is to compute the limit eigenvalue
distribution of CN = f(AN , BN ) when f is a polynomial or a rational function in
non-commuting variables. This would not be possible without some assumptions
on the ‘relative position’ of AN and BN . By relative position we mean Voiculescu’s
notion of freeness or one of its extensions. We do not need freeness for finite N , but
only in the large N limit; when this holds we say the ensembles are asymptotically
free. When we know that AN and BN are asymptotically free then we can apply
the analytic techniques of free probability i.e. the R and S transforms to compute
the limit distribution of CN .

The first example of asymptotic freeness was given by Voiculescu [11] where he
showed that independent self-adjoint Gaussian matrices were asymptotically free.
Since then there have been many generalizations and elaborations.

Infinitesimal freeness is the branch of free probability that enables us to model
infinitesimal perturbations in the same way as Voiculescu’s theory did for
f(AN , BN ). If we start with AN as above but now assume that BN is a non-
random fixed finite rank self-adjoint matrix, recent work of Shlyakhtenko [10] and
Belinschi and Shlyakhtenko [1] shows that when AN is complex and Gaussian then
there is a universal rule for computing the effect on the outlying eigenvalues.

An infinitesimal distribution can be considered at the algebraic or the analytical
level. On the algebraic level an infinitesimal distribution is a pair (µ, µ′) of linear
functionals on C[x] such that µ(1) = 1 and µ′(1) = 0. There are a few ways
to arrive at such a pair; we shall consider the ones arising from random matrix
models. Suppose {XN}N is an ensemble of self-adjoint random matrices where
XN is N ×N and for all k we have that the limit µ(xk) := limN E(tr(Xk

N )) exists.
Then the ensemble {XN}N has a limit distribution. Suppose further that for all
k we have µ′(xk) := limN N(E(tr(Xk

N )) − µ(xk)) exists. Then we say that the
ensemble has a infinitesimal distribution. This was the context of [10].

On the analytical level one can consider a pair (µ, µ′) of Borel measures on R

with µ being a probability measure and µ′ a signed measure with µ′(R) = 0. An
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early examples of an infinitesimal distribution was that of the Gaussian orthogonal
ensemble, given by Johansson in [5], also discussed by I. Dumitriu and A. Edelman
in [3], and Ledoux in [6]. In this case µ is Wigner’s semi-circle law

dµ(x) =

√
4− x2

2π
dx on [−2, 2]

and µ′ is the difference of the Bernoulli and the arcsine law:

(1) dµ′(x) =
1

2

(δ−2 + δ2
2

− 1

π

1√
4− x2

dx
)
on [−2, 2].

Infinitesimal freeness was built on work of Biane, Goodman, and Nica [2] on free-
ness of type B. While this does provide a combinatorial basis for infinitesimal
freeness, we show that in the orthogonal, or ‘real’ case, one needs to use the an-
nular diagrams of [8]. Since there is an additional symmetry requirement (see
the caption to Fig. 1), we only need the outer half of the diagram. This places
infinitesimal freeness somewhere between freeness and second order freeness.

Another example of an infinitesimal distribution was given by Mingo and Nica
in [8, Corollary 9.4], although is was not then described as such because the in-
finitesimal terminology didn’t exist at the time. In [8] complex Wishart matrices
were considered. In particular XN = 1

NG
∗G with G a M ×N Gaussian random

matrix with independent N (0, 1) entries. When limN M/N = c and we get the
well known Marchenko-Pastur distribution with parameter c (see [9, Ex. 2.11]).
If we further assume that c′ := limN (M −Nc) exists then there is an infinitesimal
distribution with µ′ given by

(2) dµ′(x) = −c′





δ0 − x+1−c
2πx

√
(b−x)(x−a)

dx c < 1

1
2δ0 − 1

2π
√

x(4−x)
dx c = 1

− x+1−c
2πx

√
(b−x)(x−a)

dx c > 1

.

Note that the continuous part of µ′ is supported on the interval [a, b] with a =
(1 − √

c)2 and b = (1 +
√
c)2. We show that at a formal level we can consider

µ′ to be a derivative of µ. However, in [8] the distribution was given in terms of
infinitesimal cumulants: κ′n = c′ for all n, where κ′n is an infinitesimal cumulant;
the density above is obtained from the equation

g(z) = −r(G(z))G′(z)
where g and r are respectively the infinitesimal Cauchy and R-transform. The
intuitive idea is to regard c′ as the derivative, as 1/N → 0, of the shape parameter
c. For a very simple case, take c = 1 and c′ ∈ Z an integer. We let M = N + c′,
then M/N → c and M − cN = c′. Earlier authors only considered the case c′ = 0,
which one can always arrange by taking (Mk, Nk) to be the kth convergent in the
continued fraction expansion of c.

[!h] The coefficient of the 1
N term in the expansion of E(tr(Xn

N )) in the goe case
is known to count maps on locally orientable surfaces (see [4, Thm. 1.1] and [6,
§5]). What is new here is that the infinitesimal moments of the goe are described
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Figure 1. The planar objects are the
non-crossing annular pairings of [8], except in
this case the circles have the same orientation.
Moreover we require that (r − r) is never a pair
and if (r, s) is a pair then (−r,−s) is also a pair.
These are the only conditions. The same data
can be recorded and a pair (π, ǫ) where π is a
crossing of [8] and ǫ is a an assignment of signs.
See the lower figure, note that we have crossing
diagrams.

by planar objects and thus stay within the class of the non-crossing partitions
standard in free probability, but not the non-crossing partitions of type B used in
[2]. We show that independent goe’s are not asymptotically infinitesimally free,
nor are a goe and a deterministic matrix. However we present a universal rule for
computing mixed moments.
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On the number of components of random meandric systems

Ion Nechita, Alexandru Nica

(joint work with M. Fukuda, and resp. I.P. Goulden, D. Puder)

A meandric system on 2n points is obtained by independently drawing two non-
crossing pairings of the 2n points, above and respectively below a given horizontal
line (as illustrated below).

Since the set NC2(2n) of non-crossing pairings of 2n points is counted by
the Catalan number Catn, there are Cat2n meandric systems on 2n points. Let
Xn : NC2(2n)

2 → {1, . . . , n} be the random variable which gives the number
of components of a random meandric system (where all meandric systems are
assumed to have the same probability of 1/Cat2n).

In the first part of the talk, given by Alexandru Nica, we examine the expec-
tation of the random variable Xn. We conjecture that limn→∞ E(Xn)/n exists,
and in support of this conjecture we prove the bounds lim infn→∞ E(Xn)/n ≥ 0.17
and lim supn→∞ E(Xn)/n ≤ 0.5. Quite interestingly, our proof of the lower bound
uses the derivative at time t = 1 for a convolution semigroup with respect to the
operation ⊞ of free additive convolution. This part of the talk is based on a joint
work by Goulden-Nica-Puder [1].

In the second part of the talk, given by Ion Nechita, we examine the behavior
of probabilities of the form P(Xn = n− r) for a fixed value of r ≥ 0. We consider
the generating function

Fr(t) =

∞∑

n=r+1

P(Xn = n− r)Cat2nt
n,
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and we prove that upon doing the substitution t = w/(1 + w)2 one obtains an
equation of the form

Fr(t) =
wr+1(1 + w)

(1 − w)2r−1
P̃r(w),

where P̃r is a polynomial of degree ≤ 3r − 3. One has a precise algorithm for

computing the polynomials P̃r; this allows us to derive explicit formulas for P(Xn =
n−r) for fixed small values of r, and also the asymptotic behavior of P(Xn = n−r)
as n → ∞, for an arbitrary fixed value of r. This part of the talk is based on a
joint work by Fukuda-Nechita [2].
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Delocalization of Eigenvectors of High Girth Graphs

Nikhil Srivastava

(joint work with Shirshendu Ganguly)

1. Context

Spectral graph theory studies graphs via associated linear operators such as the
Laplacian and the adjacency matrix. While the extreme eigenvectors of these op-
erators are relatively well-understood and correspond to sparse cuts and colorings,
much less is known about the combinatorial meaning of the interior eigenvectors.
Most of the literature about them falls into two categories:

1. Analysis of eigenvectors of random graphs. For example, Dekel, Lee,
Linial [1] prove that any eigenvector of a dense random graph has a bounded
number of nodal domains i.e., connected components where the eigenvector does
not change sign. Following a sequence of results by various authors, in a recent
breakthrough work Bauerschmidt, Huang, Yau [2], among various other things,
show that with high probability, any ‘bulk’ eigenvector v of a random regular graph
with n vertices and a large enough but fixed constant degree, is ℓ∞ delocalized in
the following sense:

||v||∞ ≤ logC(n)√
n

||v||2,

where || · ||2, and || · ||∞ denote the usual ℓ2 and ℓ∞ norms respectively and C is
a constant. For a more precise statement see Theorem 1.2 in [2]. In all of these
works the randomness of the model is used heavily, and weaker notions of delocal-
ization are also considered (see e.g. [3]).
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2. A parallel story based on asymptotic analysis of sequences of determinis-

tic graphs. The driving force for this is the so called Quantum Unique Ergodicity
(QUE) conjecture by Rudnick and Sarnak [4]. The QUE conjecture states that
on any compact negatively curved manifold all high energy eigenfunctions of the
Laplacian equi-distribute. The conjecture is still widely open having been verified
in only a few cases; perhaps most notably for the Hecke orthonormal basis on
an arithmetic surface by Lindenstrauss [5]. Brooks-Lindenstrauss [6] initiated the
study of graph-theoretic analogues of this conjecture. The analogue of negatively
curved manifolds are high girth regular graphs — the girth is defined as the length
of the shortest cycle in a graph. Subsequently, Anantharaman and Le-Masson [7]
proved an asymptotic version of quantum ergodicity for regular expanders which
converge (in the Benjamini-Schramm local topology) to the infinite d−regular tree.

2. New Results

We improve on the beautiful result of [6], which roughly says that if a graph does
not have many short cycles, then eigenvectors cannot localize on small sets: for
any eigenvector, any subset of the vertices representing a fraction of the ℓ22 mass
must have size nδ for some δ depending on the fraction. Below is a statement of
a special case of their theorem for graphs of large girth; it also works for graphs
with few short cycles, but we do not discuss that for simplicity.
Theorem 1.(Brooks-Lindenstrauss, [6]) Suppose G = (V,E) is a (d+ 1)−regular
graph with adjacency matrix A and let g be the girth of G. Then for any normal-
ized ℓ2 eigenvector v = (vx)x∈V , of A and S ⊂ V with ‖vS‖22 :=

∑
x∈S v

2
x ≥ ǫ,

|S| ≥ Ωd(ǫ
2d2

−8ǫ2g).

Viewed in the contrapositive, the theorem therefore says that the existence of
an eigenvector of A with ǫ fraction of its mass on k = |S| coordinates implies
that the graph must contain a cycle of length O(logd(k/ǫ)/ǫ

2). In fact, a close
examination of the proof reveals that it gives an upper bound which varies between
O(logd(k/ǫ)/ǫ) and O(logd(k/ǫ)/ǫ

2) depending on the Diophantine properties of
the eigenvalue being considered.

In this paper, we contribute to the understanding of this phenomenon in two
ways.

2.1. Better Delocalization. First, we improve the above bound to
O(logd(k/ǫ)/ǫ) for all eigenvalues of d + 1-regular graphs, irrespective of the
number theoretic properties of the eigenvalue. The proof involves replacing the
approximation-theoretic component of their proof by a simpler and more efficient
method. Specifically, we prove the following
Theorem 2. Suppose G is a (d+1)-regular graph of girth g and v is a normalized
eigenvector of the adjacency matrix of G. Then any subset S with ‖vS‖22 ≥ ǫ must
have

|S| ≥ dǫg/4ǫ

2d2
.
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The contrapositive of the above theorem implies that if there exists ǫ and k and
S such that |S| = k and ‖vS‖22 = ǫ, then

g ≤ 4 logd(k/ǫ) +O(1)

ǫ
.

2.2. Sharpness of the Bound. On the other hand, for every d ≥ 2, sufficiently
large k, and ǫ ∈ (0, 1), we exhibit a (d + 1)−regular graph with a localized eigen-
vector which has girth at least Ω(logd(k)/ǫ), showing that our improved bound
is sharp up to an additive log(1/ǫ) factor in the numerator, which is negligible
whenever k = Ω(1/ǫc) for any c. We are able to construct such eigenvectors for

a dense subset of eigenvalues in (−2
√
d, 2

√
d). The proof is probabilistic, and in-

volves gluing together two trees without introducing any short cycles and while
controlling their eigenvectors.
Theorem 3. For every d ≥ 2, sufficiently large k and all ǫ > 0, there is a finite
(d+ 1)−regular graph G with the following properties.

(1) AG has a normalized eigenvector v with eigenvalue λ ∈ (−2
√
d, 2

√
d) and

‖vS‖22 = Ωλ(ǫ)

for a set S of size k, where the implicit constant Cλ depends on λ and is
bounded away from zero on any subinterval of (−2

√
d, 2

√
d).

(2) G has girth at least

Ω

(
logd(k)

ǫ

)
.

Moreover, for every fixed ǫ (or for every fixed, sufficiently large k), the set of

eigenvalues attained by the above graphs is dense in (−2
√
d, 2

√
d).

Notice that the above theorem does not provide any bound as the eigenvalue λ
approaches one of the edges ±2

√
d.

Altogether, Theorems 2 and 3 precisely quantify the delocalization properties
of graphs of high girth, and establish that they are considerably weaker than those
of random graphs.
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Traffic Independence implies Freeness over the Diagonal

Camille Male

(joint work with B. Au, G. Cébron, A. Dahlqvist, F. Gabriel)

Traffic probability theory was initiated in 2011 for the study of large permutation
invariant random matrices [3]. A traffic is an abstract non commutative random
variable, living in a space with more structure than the structure of associative
algebra called algebra over an operad. The traffic distribution of variables is the
knowledge of the ∗-distribution of the so-called graph polynomials in the variables.
In particular the traffic distribution of a random matrix captures much more in-
formation than its ∗-distribution. The notion of traffic independence is a central
notion in this context. In some precise sense, it encodes the different notions of
non commutative independence.

Large random matrices is the motivation to introduce this setting. In the limit
in large dimension N , many examples of random matrices show to be asymptotic
traffic independent. This is true for random matrices with independent, not only
in the Wigner regime where all entries are small but also for sparse matrices,
such has symmetric matrices with independent entries distributed according to
the Bernouilli distribution with parameter p

N for p fixed. More generally, traffic
independence is defined in order to hold for independent permutation matrices
satisfying an asymptotic factorization property.

A central question raising from this conceptual picture is how traffic probability
theory can be used in practice for the study of random matrices ? Free analysis
allows to compute efficiently a numerical approximation of the density of a self-
adjoint polynomial in free variables. Can we interpret traffic independence as some
modification of free independence in order to use free analysis theory ? Concordant
evidences from long-standing and recent results and the study of several approaches
([4, 2]) yield our research team to a first step in this approach:

Traffic Independence implies Freeness with Amalgamation over the diagonal.

In particular, the theory of free analysis with amalgamation (introduced by
Voiculescu [5]) allows to use predict numerically the spectrum of polynomials of
a large class of random matrices. Moreover, a weaker assumption than traffic in-
dependence is actually required to provide asymptotic freeness over the diagonal
of random matrices. It follows that this phenomenon still holds after applying
a variance profile to permutation invariant matrices, which recovers the original
example of Shlyakhtenko [4].

Stated in terms of large matrices, our result need the two following concepts.

Definition 1. (1) An operator-valued probability space is a triplet (A,D,∆),
where D ⊂ A are unital ∗-algebras and ∆ : A → D is a linear form such
that ∆(d1ad2) = d1∆(a)d2 for any a ∈ A, d1, d2 in D.

(2) A G-algebra is a vector space A endowed with an action of graph opera-
tions, described more precisely as follow. A K-graph operation is a finite
connected directed graph g with the data of an input and an output ver-
tex. Then for each K-graph operation g is a associated is linear map
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Zg : A⊗K → A satisfying natural properties (identity, associativity and
equivariance [3, Definition 4.6]).

Any G-algebra A has a structure of unital associative algebra for the product
× given by linear sequence of edges, namely Z· 1←· 2←·(a1⊗a2) = a1×a2. Moreover,

let g denote the graph operation consisting in a single loop. We denote the linear
form ∆ = Zg and the subspace D = ∆(A) of A. Then D is an abelian subalgebra
of A for × and the triplet (A,D,∆) is an operator-valued probability space.

The space MN of N by N complex matrices is a G-algebra, and ∆ is the
projection onto diagonal matrices ∆(A) = diag(Aii)i. Let now AN = (Aj)j∈J be
a family of random matrices. The smallest operator-valued probability sub-space
(AN ,DN ,∆) of MN containing AN is described in terms of graph operation. The
subspace DN of diagonal matrices is generated by the Zg(Aj1 ⊗ · · · ⊗ AjK ) such
that g is a well-oriented cactus with equal input and output. Hence AN is the
space DN 〈AN 〉 of operator-valued polynomials with coefficients in DN evaluated
in the AN .

Theorem 1. For each ℓ = 1, . . . , L, let A
(ℓ)
N = (A

(ℓ)
N,j)j∈J be a permutation invari-

ant family of random matrices. Assume the families are independent and satisfy
Mingo-Speicher bounds for the trace of graph polynomials in matrices (this holds
if the matrices are bounded in operator norm). Then in the smallest operator-

valued probability space (AN ,DN ,∆) containing all the families A
(ℓ)
N ’s, the fami-

lies A
(1)
N , . . . ,A

(L)
N are asymptotically free over the diagonal in the following sense.

For any n ≥ 2, any alternating sequence ℓ1 6= · · · 6= ℓn, and for any matrices Ai ∈
DN 〈A(ℓi)

N 〉, i = 1, . . . , n, such that ∆(Ai) = 0 can be written as a graph polynomial
with bounded degree and coefficients, the diagonal matrix εN = ∆(A1 · · ·An) tends
to zero in p-Shatten norm for any p ≥ 1. Namely for any p ≥ 1 the expectation of

1

N
Tr

[
(εNε

∗
N)p

]

tends to zero as N tends to infinity. Moreover, let
(
Γ
(ℓ)
N,j

)
ℓ∈[L],j∈J be a family of

random matrices with uniformly bounded entries, independent of (A
(1)
N , . . . ,A

(L)
N ).

Then the families Ã
(1)
N , . . . , Ã

(L)
N are asymptotically free over the diagonal in the

same sense, where

Ã
(ℓ)
N =

(
A

(ℓ)
N,j ◦ Γ

(ℓ)
N,j

)
j∈J

,

and ◦ denotes the entrywise product.

Thanks to Belinschi, Mai and Speicher fixed point algorithm [1] we can com-
pute numerical simulations of empirical spectral distribution (e.s.d) for the sum
of independent permutation invariant matrices sample from various models. The
deterministic equivalents given by assuming the matrices free over the diagonal
are observed to match with high precision the actual e.s.d. of the sum, even when
one consider a single realization of the matrices.
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Berry-Esseen theorems for Boolean and Monotone convolutions

Octavio Arizmendi

(joint work with Mauricio Salazar and Jiunchau Wang)

The Central Limit Theorem (CLT) is possibly the most important limit theorem
in probability, and it is used often in applications. A quantitative version of the
CLT was proved independently by Berry [3] and Esseen [6]. The Berry-Esseen
Theorem states that if µ is a probability measure vanishing mean 0, variance 1,
and

∫
R
|x|3dµ < ∞, then the distance to the standard Gaussian distribution, N ,

of the normalized n-fold convolution of µ is bounded as follows

dkol(D 1√
n
µ∗n,N ) ≤ C

∫
R
|x|3dµ√
n

,

where dkol denotes the Kolmogorov distance between measures, Dbµ denotes the
dilation of a measure µ by a factor b > 0, ∗ denotes the classical convolution, and
C is an absolute constant.

In Non Commutative Probability, as proved by Muraki [8], there are essentially
four natural notions of independence: classical, Boolean, free and monotone . For
each type of independence there exists a CLT stating that the normalized sum
of independent random variables with finite variance converges to the Gaussian,
semicircle [10], Bernoulli [9] and arcsine [7] distributions, respectively.

For the Free Central Limit Theorem, a quantitatve version analog to Berry-
Esseen Theorem was given by Kargin for the bounded case and then improved
by Chistyakov and Götze [5] for measures with finite fourth moment in the fol-
lowing form: Let us denote mn(µ) =

∫
xndµ(x), if µ is a probability measure

with m1(µ) = 0, m2(µ) = 1 and m4(µ) < ∞, then the distance to the standard
semicircle distribution S satisfies

dkol(D 1√
n
µ⊞n,S) ≤ C′

|m3(µ)|+ |m4(µ)|1/2√
n

,

where the symbol ⊞ denotes the free convolution, and C′ is an absolute constant.
In this talk we describe results regarding the quantitative versions of the mono-

tone and Boolean Central Limit Theorems.
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The first result is the main theorem from the joint work with M. Salazar [1]
which gives give a qualitative description of the Boolean Central Limit Theorem
in the case of measures with bounded support, and allows to obtain a bound for
the Lévy distance to the Bernoulli distribution b = 1

2δ−1 +
1
2δ1..

Theorem 1. Let µ be a probability measure such that m1(µ) = 0, m2(µ) = 1, and
supp(µ) ∈ [−K,K]. Then the measure µn := D 1√

n
µ⊎n satisfies for

√
n > K that:

1) suppµn ⊂ [−K√
n
, K√

n
]∪{x1, x2}, where |(−1)−x1| ≤ K√

n
and |1−x2| ≤ K√

n
.

2) For p = µn({x1}), q = µn({x2}) and r = µn([
−K√

n
, K√

n
]), we have that

p, q ∈ [ 12 − 2K√
n
, 12 + K

2
√
n
] and r < 4K√

n
.

In particular, the Lévy distance between µn and b is bounded by

L(µn,b) ≤
2K√
n
.

The above estimate for the rate of convergence is sharp in the sense that there
is an example when L(µn,b) ≥ c1√

n
, for some c1 and all n > 0.

The proof of the above result is based on a careful analysis of the zeros and
analytic continuation to the real line of the reciprocal Cauchy transform of µn,
defined as Fµ := 1

Gµ
, where Gµn

=
∫

1
z−tdµn.

The second result comes from the recent joint work with M. Salazar and J.C.
Wang [1] and describes the speed of convergence for the Monotone Central Limit
Theorem to the arcsine distribution a, with density

da(t) :=
1

π
√
2− t2

t ∈ [−
√
2,
√
2].

Theorem 2. Let µ be a probability measure with mean 0 and variance 1, and
denote µn := D 1√

n
µ⊲n. We write Fµ in its Nevanlinna integral representation

Fµ(z) = z +

∫

R

1

t− z
dν(t), z ∈ C

+.

(1) If the measure ν has the first absolute moment c ∈ (0,+∞), then

dkol(µn, a) ≤ 71 4
√
c n−1/8

for sufficiently large n.
(2) If the measure µ has finite sixth moment, then there exists some constant

K depending on µ, such that

dkol(µn, a) ≤
K

n1/4
,

for sufficiently large n.

The rate of convergence in part (2) is sharp in the sense that there is an example
when dkol(µn, a) ≥ c2n

−1/4, for some c2 and all n > 0.
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The proof of the above result is based on Bai’s inequality from [4]: If two
probability measures µ and ν, with cumulative distribution functions Cµ and Cν ,
satisfy ∫

R

|Cµ(x) − Cν(x)| dx < +∞,

then

dkol(µ, ν)≤
∫

R

∣∣∣∣
1

Fµ(x+ iy)
− 1

Fν(x+ iy)

∣∣∣∣ dx+
1

y
sup
r∈R

∫

|t|≤2
√
3y

|Cν(r + t)− Cν(t)| dt

for all y > 0.
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Invariant projections for sums of random variables free over an

Abelian algebra

Serban T. Belinschi

Consider a tracial operator-valued W∗-noncommutative probability space
(A, E,L, τ) (that is, A is a von Neumann algebra, L ⊆ A is a von Neumann
subalgebra, τ : A → C is a normal faithful tracial state, and E : A → L is the trace-
preserving conditional expectation - see [10]). Assume that X = X∗, Y = Y ∗ ∈ A
are two selfadjoint noncommutative random variables which are free over L with
respect to E (in the sense of [10]). The question considered in this talk was the
following: under what conditions on X,Y does there exist a projection 0 6= p ∈ A
and a number a ∈ R such that p = ker(X + Y − a)? A first answer to this
question in the context of free probability is due to Bercovici and Voiculescu [5],



3208 Oberwolfach Report 53/2018

in the case when L = C · 1 (and in particular E = τ). Their result states that
0 6= p = ker(X + Y − a) if and only if there exist b, c ∈ R and projections q, r ∈ A
such that a = b + c, q = ker(X − b), r = ker(Y − c), and τ(q + r) − 1 > 0. In
that case, τ(p) = τ(q + r) − 1. In the last couple of years there were several
strong results on the absence of nonzero kernels for such sums [8, 7, 2]. However,
no complete characterization of the existence of p in terms of properties of X
and Y were known until now. Motivated by the recent article [1] of Au, Cébron,
Dahlqvist, Gabriel, and Male, in which they show that, roughly speaking, inde-
pendent permutation-invariant random matrices are asymptotically free over the
algebra of diagonal matrices, we investigated the problem of kernels of sums of
selfadjoint random variables which are free with amalgamation over an Abelian
von Neumann subalgebra L of A. In this case, several explicit formulae relating p
and the kernels of certain affine deformations of X and Y can be obtained in terms
of Voiculescu’s analytic subordination functions for operator-valued distributions
[9].

In order to state those results, we need the following notations. We denote
by L〈X〉 the von Neumann algebra generated by L and X . The trace-preserving
conditional expectation from A onto L〈X〉 is denoted by EL〈X〉. In particular,
E|L〈X〉 ◦EL〈X〉 = E. An element ζ ∈ A has a unique decomposition ζ = ℜζ+ iℑζ
in real and imaginary parts, where ℜζ = ζ+ζ∗

2 and ℑζ = ζ−ζ∗

2i are selfadjoint. For
ζ ∈ A, we write ζ > 0 to signify that ζ = ζ∗ and the spectrum σ(ζ) ⊂ (0,+∞).
We also write H+(L) = {b ∈ L : ℑb > 0}. It was shown by Voiculescu [9] that
there exist two analytic maps ω1, ω2 : H

+(L) → H+(L) such that

EL〈X〉
[
(b−X − Y )−1

]
= (ω1(b)−X)−1, EL〈Y 〉

[
(b−X − Y )−1

]
= (ω2(b)−X)−1.

As a consequence of the linearizing property of the operator-valued R-transform
[10], one obtains

(1) E
[
(b −X − Y )−1

]
= (ω1(b) + ω2(b)− b)

−1
, b ∈ H+(L).

We make use of the following characterization of p via Borel functional calculus:

p = so- lim
yց0

iy

iy + a−X − Y
= so- lim

yց0

y2

y2 + (a−X − Y )2
,

where so-lim stands for limit in the strong operator topology.
Using the tools, results, and methods from [4], we show that

̟ℜj := so- lim
yց0

[
y

ℑωj(a+ iy)

] 1
2

ℜωj(a+ iy)

[
y

ℑωj(a+ iy)

] 1
2

, j = 1, 2,

exists and is a bounded, selfadjoint operator in L. The existence of the nonnegative
operator

̟ℑ1 := so- lim
yց0

y

ℑωj(a+ iy)
, j = 1, 2,

follows quite easily from properties of classical maps between upper half-planes.
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With these notations, we show that whenever 0 6= p = ker(X + Y − a), we have

ker

(√
̟ℑ1 X

√
̟ℑ1 −̟ℜ1

)
⊖ ker(̟ℑ1 ) 6= {0},

ker

(√
̟ℑ2 Y

√
̟ℑ2 −̟ℜ2

)
⊖ ker(̟ℑ2 ) 6= {0}.

Moreover,

E[p] + Ξ(2)

≤ E

[
ker

(√
̟ℑ1 X

√
̟ℑ1 −̟ℜ1

)
+ ker

(√
̟ℑ2 Y

√
̟ℑ2 −̟ℜ2

)]
,

where Ξ = limy→0
(ℑE[(a+iy−X−Y )−1])2

(ℑE[(a+iy−X−Y )−1])2+(ℜE[(a+iy−X−Y )−1])2 is a positive operator

between 4E[p]
4E[p]+1 and 1.

The fact that this result is less satisfactory than the result of Bercovici and
Voiculescu from the case L = C · 1 is due to the possibility that the Julia-
Carathéodory derivative of the subordination functions ω1, ω2 at the point a may
very well not exist. Indeed, a simple computation based on relation (1) shows that
both ω1, ω2 have a Julia-Carathéodory derivative at a if and only if E[p] > 0. In
that case, ker(̟ℑj ) = {0}, j = 1, 2, and the inequality in (2) becomes equality,
with Ξ = 1.

Joint work in progress with H. Bercovici and W. Liu covering the case E[p] > 0
and L arbitrary, and the case L finite dimensional and E[p] arbitrary, was also
reported.
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