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Abstract. Computational Complexity Theory is the mathematical study
of the intrinsic power and limitations of computational resources like time,
space, or randomness. The current workshop focused on recent developments
in various sub-areas including arithmetic complexity, Boolean complexity,
communication complexity, cryptography, probabilistic proof systems, pseu-
dorandomness, and quantum computation. Many of the developments are
related to diverse mathematical fields such as algebraic geometry, combinato-
rial number theory, probability theory, representation theory, and the theory
of error-correcting codes.
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Introduction by the Organisers

The workshop Complexity Theory was organized by Peter Bürgisser (TU Berlin),
Irit Dinur (Weizmann Institute), Oded Goldreich (Weizmann Institute), and Salil
Vadhan (Harvard). The workshop was held on November 11th–17th 2018, and
attended by approximately fifty participants spanning a wide range of interests
within the field of Computational Complexity. The plenary program, attended by
all participants, featured fifteen long lectures and nine short (5-minute) reports
by students and postdocs. In addition, intensive interaction took place in smaller
groups.

The Oberwolfach Meeting on Complexity Theory is marked by a long tradition
and a continuous transformation. Originally starting with a focus on algebraic and
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Boolean complexity, the meeting has continuously evolved to cover a wide variety
of areas, most of which were not even in existence at the time of the first meeting
(in 1972). While inviting many of the most prominent researchers in the field, the
organizers try to identify and invite a fair number of promising young researchers.

Computational complexity (a.k.a. complexity theory) is a central field of com-
puter science with a remarkable list of celebrated achievements as well as a vibrant
research activity. The field is concerned with the study of the intrinsic complexity
of computational tasks, and this study tends to aim at generality: it focuses on nat-
ural computational resources, and considers the effect of limiting these resources
on the class of problems that can be solved. Computational complexity is related
to and has substantial interaction with other areas of mathematics such as alge-
bra, analysis, combinatorics, geometry, number theory, optimization, probability
theory, and representation theory.

The workshop focused on several sub-areas of complexity theory and its nature
may be best illustrated by a brief survey of some of the meeting’s highlights.

Boolean Circuit Lower Bounds. Ryan Williams presented his joint work
with Cody Murray that obtains circuit lower bounds for Nondeterministic Quasi-
Polynomial-time. This works follows a framework presented by Ryan in 2010,
translating algorithmic improvements over exhaustive search into circuit lower
bound for functions computable in NEXP (or smaller amount of NTIME). The
framework has two version, one relating to the problem of deciding circuit satis-
fiability for circuits of a target class C, and the other relating to the problem of
distinguishing circuits (in C) that are satisfied by at least half of the possible inputs
and circuits that are unsatisfiable, a problem which is easily solved in probabilistic
polynomial-time.

The framework was originally applied to algorithms that run in time 2n/nc, for
some sufficiently large constant c, where n denotes the length of the input to the
circuit, and has yielded size lower bounds for functions in NEXP . The current
work employs this framework to algorithms that present a more significant im-

provement in the running time; specifically, to algorithms running in time 2n−nc′

,
for some constant c′ > 0. In doing so this work obtains size lower bounds for
functions in quasi-polynomial NTIME.

A point worthy highlighting is that algorithms solving the satisfiability problem
in time 2(1−Ω(1))·n are unlikely to exist even for the class of CNFs of bounded clause
length, provided that the strong ETH holds (i.e., solving the satisfiability problem
for O(1)-CNFs requires time 2(1−o(1))·n). On the other hand, such (deterministic)
algorithms (i.e., solving the distinguishing problem in time 2(1−Ω(1))n) are widely
believed to exist for the derandomization problem (e.g., BPP = P (in promise
versions) yields much stronger results).

The new results are based on an analogous scaled-down versions of the easy
witness lemma, which seem harder to prove. This lemma refer to a generic verifier
of proofs, denoted V , where these proofs are called witnesses. It asserts that
if the set S of valid assertions accepted by V (along with an adequate proof)
can be recognized by circuits of small size, then each input in S has proofs (or
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witnesses) accepted by V that can be described by circuits of relatively small size.
The original lemma referred to sets in NEXP and poly-size circuits, whereas the
current lemma refers to a smaller gap between the NTIME bound and the circuit
size bound. For example, it can refer to any super-polynomial NTIME bound and
the circuit class P/poly. Alternatively, it refers to NP and translates a bound of

nc on the size of circuits for the decision problem to a bound of nO(c3) on the size
of circuits describing witnesses.

Probabilistic Checkable Proofs carried to an extreme. Dor Minzer pro-
vided an overview of a sequence of works culminating in demonstrating the ex-
pressive power of so called 2-to-2 games, which are closely related to 1-to-1 games
(a.k.a unique games). In contrast, standard Probabilistic Checkable Proofs with
soundness error ǫ > 0 correspond to M -by-M games with M = poly(1/ǫ).

The Unique Game Conjecture refers to distinguishing instances of a two-variable
Constraint Satisfaction Problem (CSP) for which almost all constraints can be
simultaneously satisfied from instances for which only few constraints can be si-
multaneously satisfied. Specifically, the constraints refer to two variables assigned
values in a fixed alphabet, and the uniqueness condition postulates that for each
value assigned to one variable in a constraint there exists at most one satisfying
value for the other variable. The conjecture asserts that, for any ǫ > 0, it is hard
to distinguish instances in which at least a 1− ǫ fraction of constraints can be si-
multaneously satisfied from instances in which at most an ǫ fraction of constraints
can be simultaneously satisfied.

The Unique Game Conjecture (UGC) yields optimal inapproximation thresh-
olds for many natural problems (of the CSPs type), and the most acute challenge
to it has arose from sub-exponential algorithms that solve this problem; specif-

ically, their running time is 2n
β

, where β = β(ǫ) is a constant that depends on
ǫ such that β(ǫ) vanishes with ǫ > 0. The point is that an NP-hard problem is
unlikely to have such algorithms (certainly, if the ETH holds), unless the reduction
has a polynomial blow-up in which the degree of polynomial is 1/β(ǫ).

Interestingly, the foregoing algorithms apply also for the problem of distinguish-
ing instances in which at least half of constraints can be simultaneously satisfied
from instances in which at most an ǫ fraction of constraints can be simultaneously
satisfied, where half can be replace by any fixed constant (that is independent
of ǫ). This is interesting since the current work shows that the latter problem is
NP-hard, while indeed using a reduction with a polynomial blow-up where the de-
gree of the polynomial grows with 1/ǫ. Hence, it seems that the doubts regarding
UGC cast by these algorithms are eliminated.

The foregoing NP-hardness result follows by establishing the NP-hardness of an
analogous 2-by-2 game in which the instances are two-variables constraints such
that for each value assigned to one variable there exist at most two satisfying
values for the other variable. The main result is that, for any positive ǫ, it is
NP-hard to distinguish 2-by-2 game instances in which at least a 1 − ǫ fraction
of constraints can be simultaneously satisfied from instances in which at most an
ǫ fraction of constraints can be simultaneously satisfied. Furthermore, assuming



3028 Oberwolfach Report 51/2018

ETH, the time complexity of this problem, which is upper bounded by 2n
β(ǫ)

, is

lower bounded by 2n
α(ǫ)

, where α(ǫ) ∈ (0, 1) for every ǫ > 0.

High Dimensional Expanders. Tali Kaufman provided a brief introduction
to High Dimensional Expanders (HDE), which are O(1)-dimensional simplicial
complexes that possess some expansion properties, and their potential application
in complexity theory. The local definition of HDE refers to the expansion of the
“links” of the various lower dimensional “faces” (e.g., vertices), where the link of
a face is the collection of all subsets that are disjoint of the face and form a higher
dimensional face when added to the said face. (Indeed, the link of a vertex in a
graph is the set of all its neighbors, and in a random simplicial complex (almost
all) the links consist of isolated vertices.)

Amazingly, HDE exist and can be explicitly constructed; in fact, the current
proofs of their existence are inherently constructive. An indication to their useful-
ness to complexity theory is provided by the fact that they can be used to construct
an agreement test of parameters not achieved before. The global-vs-local behavior
that they exhibit raises hope that they can be used towards constructing better
locally testable codes and proofs (i.e., PCPs).

On the foundation of program obfuscation. While a strong notion of
program obfuscation (knows as virtual black-box) is known to be unimplementable,
a weak notion that only requires that obfuscated versions of functionally-identical
programs be indistinguishable is not ruled out and (in contrast to initial beliefs)
found many applications in cryptography. In particular, such indistinguishability
obfuscators (iO) exist (in an uninteresting sense) if P = NP . Of course, believing
that P 6= NP , the latter assertion only indicates that the impossibility of iO is
hard to establish. But can we show that iO exists in a world in which P 6= NP ,
let alone assuming various reasonable complexity assumptions?

Rachel Lin surveyed work aimed at this direction. In particular, these works rely
on the difficulty of the so called DDH problem w.r.t “multilinear maps”. Specif-
ically, this works attempt to base iO on various incarnations of the “multilinear
assumption”, while seeking to minimize the “level” of “linearity” with the hope
of reaching the level two. Currently the basing of iO on level three seems most
promising, while first attempts to base iO on level two have failed (in ways that
leave the door open to more sophisticated attempts).

Doubly-efficient interactive proof systems. The invention of
interactive proof systems and the exploration of their power are among the great-
est success stories of computational complexity. While research in the 1980s
referred to polynomial-time verification aided by a computationally unbounded
prover, the term doubly-efficient refers to almost linear-time verification aided by
a polynomial-time prover. Clearly, only polynomial-time solvable problems can
have such a proof system. Furthermore, such problems have almost linear space
complexity.

Ron Rothblum presented a joint work with Omer Reingold and Guy Rothblum
that provides a (constant round) doubly-efficient interactive proof systems for any
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set that can be decided by a machine that runs in polynomial-time and uses small
space (e.g., space n0.499, where n is the length of the input). The gap towards the
aforementioned upper bound is both quantitative (i.e., n0.499 versus n1.001) and
qualitative (i.e., whether the same algorithm or two different algorithms should
satisfy the two complexity bounds).

On Classical verification of quantum computations. Thomas Vidick pre-
sented a work by Urmila Mahadev that refers to an incarnation of the doubly-
efficient paradigm. Specifically, it refers to proof systems in which an efficient
quantum-computation prover can convince an efficient classical-computation veri-
fier of the correctness of an assertion that can be decided by an efficient quantum
algorithm such that the soundness holds (only) computationally (i.e., w.r.t efficient
quantum cheaters). The main result is that, under a rather standard assumption
(i.e., quantum-hardness of LWE with exponential modulus and subexponential
noise ratio), every set in QBP has a (four-round) proof system of the foregoing
type.

The fine-grained complexity of approximation. A relatively recent di-
rection of research in complexity theory refers to the study of problems that are
known to have polynomial-time algorithms, where the aim is to provide evidence
that the known algorithms are actually the best possible. Aviad Rubinstein pre-
sented the first result that refers to the fine-grained complexity of approximation
versions of optimization problems that were previously studied in the fine-grained
context. The focus of his presentation was on closest pair problems, which can be
solved exactly in quadratic time. Assuming the strong ETH, it was shown that
these problems cannot be approximated to within a factor of exp((logn)1−o(1)) in
time n2−ǫ, for any constant ǫ > 0.

Other plenary presentations. In addition to the aforementioned presenta-
tions, the plenary session featured a few additional talks, some providing high-level
overview to novel research directions and some reporting of a single result. These
included:

• Recent developments related to RL versus L. Omer Reingold briefly out-
lined three directions of research that are aimed at obtaining better de-
randomization of randomized computation of (logarithmically) bounded
space.

• Invariant theory and complexity theory. Avi Wigderson presented a brief
introduction to invariant theory, highlighting the fact that many central
questions in complexity theory can be formulated or rather cast as ques-
tions that refer to the most basic concepts of invariant theory.

• Matrix Multiplication and the Tensor/Waring Rank. Joseph Landsberg
presented the discovery that the exponent of matrix multiplication is also
determined by the Waring rank of the matrix multiplication polynomial,
and its potential to lead to improvements in the upper bound on that
exponent.
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• Pseudodeterministic Algorithms and Proofs. The presentation of Shafi
Goldwasser focused on the notion of pseudodeterministic algorithms, which
are randomized algorithms for search problems that (whp) return the same
“canonical” solution, whenever the instance does have a solution.

• Interlacing Polynomials, Free Probability, and Random Matrices. Nikhil
Srivastava presentation focused on the connections between the “interlac-
ing polynomials” method, free probability, and random matrix theory.

• Near-optimal constructions of epsilon-biased sets. Amnon Ta-Shma pre-
sented a construction of a sample space of size O(n/ǫ2+o(1)) of ǫ-biased se-
quences of length n, improving over prior bounds of O(n2/ǫ2) and O(n/ǫ3).

• Algebraic CSP dichotomy theorem. Venkat Guruswami outlined the proof
of this theorem, which is pivoted at the notion of a polymorphism (i.e., a
local mapping of several valid solutions to a CSP (wrt a fixed predicate)
to a valid assignment).

In addition, the following graduate students and post-doctoral fellows presented
brief reports of their research agenda: Ankit Garg, Mika Göös, Rohit Gurjar,
Pravesh Kothari, Inbal Livni, Cody Murray, Tselil Schramm, Roei Tell, and Jeroen
Zuiddam.

Informal specialized sessions. Apart from the formal plenary program, in-
tense interaction between the participants took place in smaller groups. Some of
these took place in the form of specialized sessions, featuring the following presen-
tations.

• Circuit lower bounds for Nondeterministic Quasi-Polynomial-time. As a
follow-up on the overview provided by Ryan Williams in the plenary ses-
sion, Ryan and Cody Murray provided more details in a specialized session.

• On the hardness of 2-to-2 games. As a follow-up on the overview provided
by Dor Minzer in the plenary session, Dor and Muli Safra provided more
details in a specialized session.

• On Classical verification of quantum computations. As a follow-up on the
overview provided by him in the plenary session, Thomas Vidick provided
more details on Mahadev’s scheme, focusing on the security requirement
for the underlying cryptographic primitive (a trapdoor claw-free function
pair), and how this security requirement translates into soundness of the
verification procedure.

• Pseudorandom Generators for Obfuscation. As a follow-up on Rachel Lin’s
plenary talk, Zvika Brakerski, Pravesh Kothari, and Rachel reviewed the
different suggestions of using low-locality and low-degree pseudorandom
generators in order to construct iO from multilinear maps with low level
of multilinearity, and in particular from bilinear maps. They discussed the
required properties for such generators, went over prior suggestions that
were attacked, and finally discussed the most recent family of candidates
and their properties.

• Recent developments related to RL versus L. Following-up on his plenary
presentation, Omer Reingold discussed a notion of a “mild pseudorandom
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restriction generator” and an approach pursued by a sequence of works
that applies such generators to fool read-once constant-width branching
programs with close to logarithmic seed. Raghu Meka discussed a recent
result that provided a generator that fools read-once width three branching
programs with close to logarithmic seed. David Zuckerman discussed a
simple construction of a hitting-set generator for polynomial-width read-
once branching programs in which the dependence of the seed-length on
the error parameter is close to optimal. Lastly, Salil Vadhan discussed two
recent works that give small memory algorithms (close to logarithmic) for
evaluating various parameters of random walks in undirected graphs (e.g.,
hitting time).

• Matrix Multiplication Upper Bounds. Following-up on Joseph Landsberg’s
plenary presentation, Chris Umans reported on several paths to proving
the exponent of matrix multiplication is two using group theoretic meth-
ods and their generalizations, leading to a few seemingly unrelated open
questions that may each imply ω = 2 (if resolved affirmatively). Jeroen
Zuiddam gave an introduction to Strassen’s theory of asymptotic spectra
and briefly discussed the new construction of elements in the asymptotic
spectrum of complex tensors via moment polytopes. Virginia Vassilevska-
Williams reported on a recent work extending the limitations results of
prior work to a much broader class of tensors.

• Operator scaling and moment polytopes. Following-up on Avi Wigderson’s
plenary presentation, Ankit Garg and Avi presented new algorithms de-
veloped for polyhedral optimization, which constitutes one of the most
exciting developments in the interaction of Complexity and Optimization
(on the CS side) and Invariant Theory (on the other side). This follows
the “emergence of polytopes from group actions”, Specifically, to every
linear group action on a linear space (and indeed in much more general
situations) one can associate a so-called “moment polytope”. The new
algorithms (both alternate minimization and geodesically convex) for the
general “null cone problem” in invariant theory turn out to provide new,
efficient separation oracles for this wide class of polytopes.

• Computationally Sound Proof Systems. This session featured three loosely
related presentations. The first presentation, given by Yael Kalai, was
about constructing highly efficient non-interactive computationally-sound
proof systems in the common reference string (CRS) model, while allowing
for public verifiability (i.e., anyone can verify the proof, and no secret infor-
mation about the CRS is needed for verification). The second presentation,
given by Guy Rothblum, showed that solving PPAD complete problems
is no easier than breaking the soundness of the Fiat-Shamir transforma-
tion when it is applied to the sum-check protocol. The third presentation,
given by Ron Rothblum, was about a recent sequence of papers that con-
struct explicit hash functions that can be used to realize the Fiat-Shamir
transformation, for any (statistically sound) interactive proof.
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• The Real Tau Conjecture and Variants. Pascal Koiran surveyed various
variants of the Real Tau conjecture, showing that they all imply Valiant’s
conjecture (which is an arithmetic version of the widely believed P 6= NP).
The original variant claims that the number of real zeros of a univariate
real polynomial given by a depth four circuit (sum of products of sparse
polynomials) is polynomially upper-bounded in the size of circuit. Peter
Bürgisser outlined a recent result saying that the Real Tau Conjecture
is true on average for any depth four circuit with independent standard
Gaussian coefficients.

• A deterministic PTAS for the Algebraic Rank of Bounded Degree Poly-
nomials. Markus Bläser presented a deterministic polynomial-time ap-
proximation scheme (PTAS) for computing the algebraic rank of a set of
bounded degree polynomials. More specifically, on input a set, f, of n
m-variate polynomials of degree at most d over F, and a rational number

ǫ > 0, the algorithm runs in time O((nmd)O(d2/ǫ)), and outputs a number
in [(1− ǫ)r, r], where r is the algebraic rank of f.

• The status of geometric complexity theory. Christian Ikenmeyer led a dis-
cussion of the recent developments in geometric complexity theory (GCT)
and how they relate to each other, focusing on representation theoretic
multiplicities in coordinate rings of orbits and orbit closures. The GCT
approach is highly adjustable to a lot of situations and its flagship perma-
nent vs ”border determinant” conjecture can be equivalently phrased in
many ways that each feature significantly different geometry and represen-
tation theory. The nonexistence of different types of occurrence obstruc-
tions in several of these computational models was discussed. Although
the proofs of these “no-go” results about separating complexity classes us-
ing occurrences of irreducible representations are fairly robust, there seems
to be no such no-go result yet about separating complexity classes using
representation theoretic multiplicities.

• Quantum Fully Homomorphic Encryption. Quantum FHE is a scheme that
allows a quantum server to apply a quantum function on encrypted data
in a blindfolded manner, without learning anything about the contents of
the encryption. The session, led by Zvika Brakerski, included a review of
recent constructions.

• Tensor decomposition and Sum of Squares. Tensor decomposition is hard,
even to approximate, in the worst case. Nonetheless, recently, there have
been algorithmic developments for the tensor decomposition problem in
certain special cases (which are relevant for machine learning and data
science applications). Specifically, for tensors with certain low-rank struc-
tures, the sum-of-squares algorithm gives polynomial time algorithms.
These developments were surveyed by Tselil Schramm, who provided a
high-level outline of the algorithms and the proofs.

• Lifting theorems for communication complexity and beyond. Lifting the-
orems give a powerful general methodology for proving lower bounds in
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various models of communication complexity by “lifting” the hardness of
some Boolean function f in various models of computation (e.g., decision-
trees) to lower bounds on the communication complexity of some com-
putation associated with f (via some appropriately chosen “gadget” Two
sessions focused on the recent resurgence of lifting theorems and their ap-
plications in areas beyond communication complexity. In the first session,
Mika Göös, provided a brief survey on recent progress in lifting. The sec-
ond session featured presentations of Linear Programming lower bounds
for Max-CSPs via Lifting Theorems by Pravesh Kothari, a Lifting Theo-
rem for Non-Negative Rank by Raghu Meka, and a a Lifting Theorem for
Monotone Circuit Complexity by Mika Göös.

• Lossless dimension expanders. A dimension expander for a vector space
Fn is a collection of d linear maps such that for every low-dimensional
subspace U of Fn, its image under all the maps has dimension at least
a · dim(U), where a is the “expansion factor”. Dimension expanders are
the linear-algebraic analog of vertex expanders. Over finite fields, w.h.p., a
random collection of d = O(1) linear maps offers excellent lossless expan-
sion (with expansion factor almost equal to d). But explicit constructions
(for growing n and fixed d) with even modest expansion factors are non-
trivial to obtain. Venkat Guruswami described a recent work on explicit
lossless dimension expanders over large fields (previously even construc-
tions with expansion proportional to the degree were not known).

• The KRW Conjecture: Results and Open Problems. Proving
super-logarithmic lower bounds on the depth of circuits is one of the main
frontiers of circuit complexity. In the early 1990s, Karchmer, Raz and
Wigderson observed that this question can be resolved by proving the fol-
lowing conjecture: For two (non-constant) Boolean functions, the depth
complexity of their composition is about the sum of their individual depth
complexities. While the conjecture is still open, there has been some excit-
ing progress toward such a proof, some of it in the last few years. Or Meir
surveyed the known results and discussed future directions for research on
the KRW conjecture.

• Algorithmic Fairness. Omer Reingold and Guy Rothblum discussed a
complexity-theoretic perspective on Algorithmic fairness. Often, defini-
tions of fairness are based on socially identified groups, requiring that a
given statistic be equal across a few demographic groups that are identified
as deserving protection. Such broad-stroke statistical guarantees tend to
be relatively easy to satisfy, but tend to be weak in the protections they
provide. In contrast, recent research provides efficient learning algorithms
that ensure protection (according to some fairness notion) to every sub-
population within some rich class of sets, where the classes are defined in
complexity-theoretic terms. This research aims at obtaining the strongest
fairness guarantees that can be obtained with the available computational
resources.
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Abstracts

Pseudo Deterministic Algorithms and Proofs

Shafi Goldwasser

Probabilistic algorithms for both decision and search problems can offer significant
complexity improvements over deterministic algorithms. One major difference,
however, is that they may output different solutions for different choices of ran-
domness. This makes correctness amplification impossible for search algorithms
and is less than desirable in setting where uniqueness of output is important such as
generation of system wide cryptographic parameters or distributed setting where
different sources of randomness are used.

Pseudo-deterministic algorithms are a class of randomized search algorithms,
which output a unique answer with high probability. Intuitively, they are indis-
tinguishable from deterministic algorithms by a polynomial time observer of their
input/output behavior.

In this talk I described what is known about pseudo-deterministic algorithms
in the sequential, sub-linear and parallel setting. For example, there exist pseudo-
deterministic algorithms for number theory problems finding a generator for Z∗

p

when the factorization of p−1 is known and contains a large prime divisor [GG11];
algebraic problems: finding a point x where p(x) 6= 0 for multivariate polynomial
p over a finite field [GG11]; graph problems finding a perfect matching in a graph
(bipartite and recently extended to general graphs) in parallel time(RNC [GG17]).

In the sub-linear search algorithms domain, we can show strict separations
in the number of queries necessary for deterministic, randomized and pseudo-
deterministic algorithms for some search problems [GGR12] when the problem
exhibits high input sensitivity (informally, the set of solutions for x and x′ (x with
1 bit flipped) have an empty intersection).

In interesting works of [OS17, OS18] they allow the pseudo-deterministic algo-
rithm to run in sub-exponential time and relax the algorithm to work for infinitely
many input lengths. They show how to obtain such relaxed pseudo-deterministic
algorithms for ”dense” search problems where it is possible to sample solutions
efficiently for the underlying search problems – in particular they show as a spe-
cial case that generating ”canonical” primes is possible infinitely often in sub-
exponential time. They also show to obtain pseudo-deterministic approximations
for integer valued functions if randomized-approximation schemes exist, again in-
finitely often using sub-exponential time.

Another relaxation of pseudo-deterministic algorithms considered by [GL18] is
algorithms which are guaranteed to output logarithmic number of solutions (rather
than unique). The show such algorithms for any problem in randomized log space.

Finally, we describe an extension of pseudo-deterministic algorithms to pseudo-
deterministic proofs: interactive proofs for search problems where the verifier
on input x, is given a solution to some search problem and is guaranteed with
high probability to output the same solution on different executions, regardless of
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an(untrusted) prover strategies. We show how to do this for the graph isomor-
phism problem.
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Algebraic CSP dichotomy theorem: A polymorphic gateway between
structure and algorithms

Venkatesan Guruswami

One of the major goals of the theory of computation is to classify broad classes of
computational problems as easy (e.g., polytime solvable) or intractable (e.g., NP-
hard), along with some structural understanding of what governs its complexity.
Given the vast landscape of problems and the diverse algorithms to solve them,
no single mathematical theory can hope to explain the underpinnings of the eas-
iness/hardness of all problems. There is, however, one broad class of problems
called constraint satisfaction problems (CSPs) for which an elegant mathematical
theory has managed to establish a complexity dichotomy: every CSP is either
polynomial time tractable or NP-complete. This dichotomy was first conjectured
in an influential paper by Feder and Vardi [FV98].

A refinement of this conjecture, called the algebraic dichotomy conjecture
[BJK05], further pinpoints the distinguishing feature between the easy and the
hard cases: the existence of non-trivial operations called polymorphisms under
which the solution space is closed. For instance, for linear equations, if v1, v2, v3
are three solutions, then so is v1 − v2 + v3, and the underlying polymorphism is
f(x, y, z) = x−y+z. This algebraic formulation enabled tapping into the deep and
rich methods of universal algebra to tackle the complexity of CSPs. After a long
line of work resolving several special cases (eg., in [Sch78, HN90, Bul06, Bar11,
BK14], etc.), the algebraic dichotomy conjecture was established in full generality
in two recent independent breakthroughs [Bul17, Zhu17].
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The talk was meant to be a broadly accessible survey into some of the backdrop
and developments surrounding the algebraic CSP dichotomy conjecture (now the-
orem), focusing on the interplay between polymorphisms and complexity of CSPs
via some illustrative special cases.

To state the algebraic dichotomy theorem precisely, let us first define CSPs
and polymorphisms more formally. A CSP over domain D is specified by a finite
collection Λ of relations over D (called a template), and is denoted as CSP(Λ). An
instance of CSP(Λ) consists of a set of variables V and a collection of constraints
{(τ, P )} where P ∈ Λ and τ is a tuple of k distinct variables where k is the arity
of P (i.e., P ⊆ Dk). The goal is find an assignment σ : V → D that satisfies
all constraints, i.e., (σ(τ1), . . . , σ(τk)) ∈ P for each constraint (τ, P ). For example
when D = {1, 2, 3}, and Λ consists of the single arity two relation {(a, b) | a 6=
b} ⊆ D2, we have the problem of telling if a graph is 3-colorable.

Polymorphisms. Polymorphisms are operations that preserve membership in
a relation. Formally, f : Dm → D is a polymorphism of a relation P ⊆ Dk, denoted
f ∈ Pol(P ), if for every choice ofm k-tuples from P , applying f component-wise to

these tuples results in a tuple in P , i.e., for all (a
(i)
1 , . . . , a

(i)
k ) ∈ P , i = 1, 2, . . . ,m,

we have
(

f(a
(1)
1 , a

(2)
1 , . . . , a

(m)
1 ), · · · , f(a(1)k , a

(2)
k , . . . , a

(m)
k )

)

∈ P . In other words,
for every m × k matrix whose rows belong to P , applying f column-wise gives a
new row also belonging to P .

For a template Λ of relations, one defines Pol(Λ) = ∩P∈ΛPol(P ) to be those
operations that preserve all relations in Λ. For any instance of CSP(Λ), its set
of satisfying assignments are closed under combinations by polymorphisms of Λ.
Every Λ admits some trivial polymorphisms, namely dictator functions f where
f(x1, . . . , xm) = xi for some i (the polymorphism just “copies” the i’th row when
applied to m tuples from the relation). Informally, a CSP is tractable if it has
a “non-trivial” (roughly something non-dictatorial) polymorphism. The formal
statement is below.

Theorem 1 (Algebraic dichotomy theorem). For a template Λ over domain D,
the associated CSP(Λ) is polynomial tractable if Pol(Λ) includes a Weak-Near-
Unanimity (WNU) function f , namely a function of some arity m ≥ 2 such that
f(a, b, b, . . . , b) = f(b, a, b, . . . , b) = · · · = f(b, b, . . . , b, a) for all a, b ∈ D; otherwise
it is NP-complete. (Note that the WNU condition rules out dictator functions.
For the Boolean domain, the condition for tractability is equivalent to having a
polymorphism that is not a dictator or its complement.)

The hardness part of this link between (lack of) polymorphisms and compu-
tational complexity has been long known; the highly non-trivial algorithmic part
took until recently to establish completely. The talk discussed the following results
to shed light on the polymorphic principle behind the complexity of CSPs.

• The Galois connection which shows that polymorphisms capture the com-
plexity of CSPs: Pol(Λ) ⊆ Pol(Γ) if and only if CSP(Γ) pp-reduces to
CSP(Λ). That is, richer the polymorphisms, easier the problem. Here
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pp-reduction captures the simple local gadget reductions that express con-
straints of Γ as a CSP instance over Λ with auxiliary variables. The survey
[Che09] can be referred to for a proof.

• One of the key properties of polymorphisms is that they form a clone: they
contain all dictators and are closed under arbitrary composition. This
gives them a rich structure. There are many equivalent conditions for
tractability: the existence of WNU polymorphism is equivalent to the
existence of a Taylor polymorphism (a weaker symmetry requirement) and
a cyclic polymorphism (a stronger symmetry).

• The use of cyclic polymorphisms to prove the Hell-Nesetril theorem on the
complexity dichotomy of graph homomorphism problems [HN90], following
the survey [BKW17]. We note that every CSP is equivalent to a digraph
homomorphism problem, so a dichotomy for the latter is equivalent to the
dichotomy for CSPs.

• Polymorphic statement of Schaefer’s classic dichotomy theorem for
Boolean CSPs [Sch78], and hints at how one deduces the structured poly-
morphisms that correspond to the tractable cases (constant functions,
AND, OR, 3-bit Majority, and 3-XOR).

• The algorithmic part of the dichotomy theorem was established via a pro-
gram that gave algorithms under successively weaker assumptions about
the polymorphisms, culminating with the WNU case that forms the bound-
ary with the intractable. Toward illustrating how polymorphisms enable
efficient algorithms, the talk presented algorithms in the case of symmet-
ric polymorphisms of all large enough arities (using linear programming),
3-bit majority polymorphism (using a local propagation algorithm), and
a Mal’stev polymorphism (using an iterative algorithm that maintains a
compact respresentation of the solutions as constraints as added, giving
an abstract generalization of Gaussian elimination).

• CSPs for which local propagation correctly decides satisfiability are called
bounded width. An important milestone in the algebraic study of CSPs
was the result of Barto and Kozik [BK14] that bounded width CSPs are
precisely those that cannot express linear equations. The non-trivial as-
pect of completing the algorithmic part of CSP dichotomy was the many
complicated ways in which CSPs could encode linear equations, and how
to combine linear equation solving with local propagation algorithms. This
was successfully achieved in the works of Bulatov and Zhuk [Bul17, Zhu17].

The excellent survey [BKW17] is recommended for further understanding of
polymorphisms and their relation to CSP complexity. The resolution of the Feder-
Vardi conjecture might seem like the end of the road, but the scope of polymorphic
inquiries extends to many variants of CSPs, including optimization, counting, and
approximation. Fascinatingly, partial polymorphisms govern the best exponential
runtime for the case of NP-hard CSPs. A recent study has extended the polymor-
phic framework to the promise version of CSPs (that captures many interesting
problems including approximate graph coloring), and has established several cases
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where rich enough families of polymorphisms lead to algorithms, and limited poly-
morphisms leads to hardness [AGH17, BG18, BG19]. The dividing line between
these cases is far from clear, and holds many exciting challenges for the future.
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High Dimensional Expanders

Tali Kaufman

High dimensional expanders are high dimensional analogues of the well studied
expander graphs. As opposed to expander graphs that are abundant (e.g. a ran-
dom bounded degree graph is an expander with high probability), bounded degree
high dimensional expanders are rare objects and their only known constructions
are explicit and are based on sophisticated mathematics [LSV05, KO18].
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Simplicial complexes. The object of study is a simplicial complex. A d-dimensional
simplicial complex X is a collection of sets (X(0), X(1), ..., X(d)), X(i) contains
sets of size i+1, with a closure property: every set in the collection all its subsets
are also there. A graph is a 1-dimensional simplicial complex. The underlying
graph of a complex X is (X(0), X(1)). In order to define high dimensional ex-
panders we should introduce links of simplicial complexes: For X , a d-dimensional
simplicial complex; a link of σ ∈ X(i) is a d− i−1 complex Xσ obtained by taking
all d-cells containing σ and removing σ from them.
What is a High Dimensional Expander? Roughly speaking: A sparse complex
whose links are dense or ”similar” to the complete complex (A ”sparsifier” of the
complete complex).

A spectral definition of high dimensional expander is as follows.
X = (X(0), X(1), ..., X(d)) is γ-local spectral expander if

• The graph (X(0), X(1)) is connected.
• For every s ∈ X(i): i < d − 1 the graph (Xs(0), Xs(1)) is a γ-expander
(i.e., has second largest e.v. bounded by γ).

On global expansion from local expansion. Oppenheim [Opp18] has shown that
local expansion of the links of a complex imply global expansion of its underlying
graph! A family of (underlying) graphs of high dimensional expanders are expander
graphs, whose expansion can be proven by local arguments! (compare to other
known expanders whose expansion can not relay on local arguments).
High order random walks. Similar to graphs, it is possible to study high order
random walks on high dimensional expanders. High order random walk refers to a
walk from a k cell to a k cell via a k+1 cell that contains them. Expanding links
imply fast mixing of high order Random walks! [KM17, DK17, KO18b, DDF+18].
High dimensional expanders imply local to global phenomena. On the complete
complex various computational tasks are relatively understood. In high dimen-
sional expanders links are similar to the complete complex. Thus, the ideology
that we have demonstrated in this talk is that one can pull the behaviour of the
links to the whole sparse complex. This is manifested in the following works:

• Global spectrum of the underlying graph of the complex from local spec-
trum of its links [Opp18].

• Use high dimensional expanders to construct codes with global list decod-
ing property, by local list decoding of their restriction to links [DHK+19].

• Global agreement expansion (aka ’direct product testing) from local agree-
ment expansion [DK17]

• Global co-systolic expansion (high dimensional ”edge expansion”) from
local co-systolic expansion [KKL14, EK16].

Edge expansion in high dimensions. We have discussed only spectral definition of
high dimensional expanders. For graphs: spectral definition and ”edge expansion”
definition are equivalent. In high dimensions ”edge expansion” is called co-systolic,
co-boundary expansion, and it has important topological implications. ”Edge ex-
pansion” in high dimensions involves the notions of homology and cohomology,
and it is beyond our scope. Different than graphs: spectral expansion and ”edge
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expansion” in high dimensions are not known to be equivalent; They are conjec-
tured to be different. Interestingly, ”Edge expansion” in high dimensions have
natural interpretation as a local testability of some code [KL14].
Some Open Questions.

• Find better/different LTCs using high dimensional expanders.
• Find better/different PCPs using high dimensional expanders.
• More applications of high dimensional expanders.
• Random model of high dimensional expanders?
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The complexity of matrix multiplication: developments since 2014

J.M. Landsberg

The complexity of all operations in linear algebra is governed by the complexity of
matrix multiplication. In 1968 V. Strassen [Str69] discovered the way we usually
multiply matrices is not the most efficient one and initiated the central problem
of determining the complexity of matrix multiplication. He defined a fundamental
constant ω, called the exponent of matrix multiplication, that governs its complex-
ity. For a tensor T ∈ Cm⊗Cm⊗Cm, let R(T ) denote its tensor rank, the smallest
r such that T may be written as a sum of r rank one tensors, and R(T ) its tensor
border rank, the smallest r such that T may be written as a limit of a sequence
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of rank r tensors. Bini [Bin80] proved the border rank of the matrix multipli-
cation tensor R(M〈n〉) asymptotically determines ω. More precisely, considering
R(M〈n〉) as a function of n, ω = infτ{R(M〈n〉) = O(nτ )}.

This talk has two goals: (i) report on progress in the last four years regarding
upper and lower bounds for the complexity of matrix multiplication and tensors
in general, and (ii) to explain the utility of algebraic geometry and representation
theory for matrix multiplication and complexity theory in general.

Lower bounds. Strassen-Lickteig (1983, 1985) [Str83, Lic84] showed R(M〈n〉) ≥
3n2

2 + n

2 − 1. Then, after 25 years without progress, Landsberg-Ottaviani (2013)

[LO15] showed R(M〈n〉) ≥ 2n2 − n. Around 2014 several authors [EGO+17,
DM18, Gal17] independently proved that the existing lower bound methods would
not go much further. In [LM17b] the border substitution method was developed,
which led to the current best lower bound R(M〈n〉) ≥ 2n2 − log2(n)− 1 [LM18].

The geometric approach to lower bounds is as follows: let
σr := {T ∈ Cm⊗Cm⊗Cm | R(T ) ≤ r}, the set of tensors in Cm⊗Cm⊗Cm

of border rank at most r. This set is an algebraic variety, i.e., it is the zero
set of a collection of (homogeneous) polynomials. Näıvely expressed, to prove
R(M〈n〉) > r, or to prove lower border rank bounds for any tensor, one sim-
ply looks for a polynomial in the ideal of σr (that is a polynomial P such that
P (T ) = 0 for all T ∈ σr) such that P (M〈n〉) 6= 0 (here m = n2). But how can
one find such polynomials? This is where representation theory comes in. The
variety σr is invariant under changes of bases in the three spaces. That is, write
Cm⊗Cm⊗Cm = A⊗B⊗C, and let GL(A) etc.. denote the invertible m×m ma-
trices. There is a natural action of G := GL(A) ×GL(B) ×GL(C) on A⊗B⊗C:
on rank one tensors (gA, gB, gC) · (a⊗b⊗c) := (gAa)⊗(gBb)⊗(gCc), and the action
on A⊗B⊗C is defined by extending this action linearly. Then for all g ∈ G and
x ∈ σr, one has g · x ∈ σr. Whenever a variety is invariant under the action of
a group, its ideal is invariant under the group as well via the induced action on
polynomials. One can then attempt to use representation theory to decompose
the space of all polynomials and systematically check which irreducible modules
are in the ideal. This works well in small dimensions, e.g., to show R(M〈2〉) = 7
[HIL13], but in general one must use additional methods. A classical approach is
to try to embed A⊗B⊗C into a space of matrices, and then take minors, which
(in a slightly different context) dates back at least to Sylvester. The advance here
was to look for G-equivariant (G-homomorphic) embeddings. This idea led to the
2013 advance, but the limits described in [EGO+17, DM18, Gal17] exactly apply
to such embeddings, so to advance further one must find new techniques.

At this point I should mention the general hay in a haystack problem of finding
explicit sequences of tensors Tm ∈ Cm⊗Cm⊗Cm of high rank and border rank.

The maximum border rank is ⌈ m3

3m−2⌉ for m > 3, and the maximum possible rank

is not known. The current state of the art are explicit tensors with R(Tm) ≥
3m− o(m) [AFT11, Lan14] and others with R(Tm) ≥ 2m− 2 [Lan15]. The border
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substitution method promises to at least improve the state of the art on these
problems.

A last remark on lower bounds: in the past two months there has been a very ex-
citing breakthrough due to Buczynska-Buczynski (personal communication), that
avoids the above-mentioned barriers in the polynomial situation. The method
is a combination of the classical apolarity method with the border substitution
method. Buczynski and I are currently working to extend these methods to the
tensor situation.

Upper bounds. The Kronecker product of T ∈ A⊗B⊗C and T ′ ∈ A′⊗B′⊗C′,
denoted T⊠T ′, is the tensor T⊗T ′ ∈ (A⊗A′)⊗(B⊗B′)⊗(C⊗C′) regarded as 3-way
tensor. The Kronecker powers of T , T⊠N ∈ (A⊗N )⊗(B⊗N)⊗(C⊗N ) are defined
similarly. Also let T ⊕T ′ ∈ (A⊕A′)⊗(B⊕B′)⊗(C ⊕C′) denote the direct sum.
Let M〈l,m,n〉 denote the rectangular matrix multiplication tensor. The matrix
multiplication tensor has the remarkable property that M〈l,m,n〉 ⊠M〈l′,m′,n′〉 =
M〈ll′,mm′,nn′〉 which is the key to Strassen’s laser method.

Following work of Strassen, Bini [Bin80] showed that for all l,m,n, setting

q = (lmn)
1
3 , that

ω ≤ log(R(M〈l,m,n〉))

log(q)
.

This was generalized by Schönhage [Sch81]. A special case is as follows: say that
for 1 ≤ i ≤ s, limini = q3, then

ω ≤ log(1sR(
⊕s

i=1M〈li,mi,ni〉))

log(q)
.

Schönhage also showed that border rank can be strictly sub-additive, so the
result is nontrivial. This immediately implies that if T is a tensor such that
⊕s

i=1M〈li,mi,ni〉 ∈ G · T , i.e., T degenerates to
⊕s

i=1M〈li,mi,ni〉, then

ω ≤ log(1sR(T ))

log(q)
.

This can be useful if the border rank of T is easier to estimate than that of the
direct sum of matrix multiplication tensors. One should think of R(T ) as the
cost of T and s and log(q) as determining the value of T . One gets a good upper
bound if cost is low and value is high. Strassen [Str87] then showed that the same
result holds if the matrix multiplication tensors are nearly disjoint (i.e., nearly
direct sums) by taking Kronecker powers of T and degenerating the powers to
disjoint matrix multiplication tensors. This method was used by Coppersmith and
Winograd [CW90] with the now named “little Coppersmith-Winograd tensor”:

Tcw,q :=

q
∑

j=1

a0⊗bj⊗cj + aj⊗b0⊗cj + aj⊗bj⊗c0,

to show

ω ≤ log( 4
27R(Tcw,q)

3)

log(q)
.
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Since R(Tcw,q) = q + 2, this implies ω < 2.41 when q = 8. They improved this
to ω ≤ 2.3755 using a slightly more complicated tensor (the Kronecker square of
the big Coppersmith-Winograd tensor TCW,q) which held the world record until
2012-3, when it was lowered to ω ≤ 2.373 [Sto10, Wil18, Le G14] using higher
Kronecker powers of TCW,q. Then in 2014, Ambainus, Filmus and LeGall [AFL15]
proved that coordinate restrictions of Kronecker powers of the big Coppersmith-
Winograd tensor could never be used to prove ω < 2.3. This was generalized in
[AW18b, AW18] to a larger class of tensors and degenerations, albeit with weaker
bounds on the limitations. Regarding Kronecker powers, one also has

(1) ω ≤
log( 4

27R(T⊠k
cw,q)

3
k )

log(q)
,

for any k.
I point out that all the above has little to do with practical matrix multiplica-

tion, the only better practical decomposition to arise since Strassen’s 1968 work
is due to V. Pan [Pan84].

Given the barriers from [AFL15, AW18b, AW18], it makes sense to ask what
geometry can do for upper bounds.

First idea: study known rank decompositions of M〈n〉 to obtain new ones. For
a tensor T , let GT := {g ∈ G | g · T = T }, denote the symmetry group of T .
For example GM〈n〉

is the image of GL×3
n

in GL×3
n2 . In [CIL+18, BIL+18] we

studied decompositions and noticed that many of the decompositions had large
symmetry groups, where if ST is a rank decomposition of a tensor T , if one applies
an element of GT to the decomposition, it takes it to another rank decomposition of
T , which sometimes is the same as the original. Let ΓST

:= {g ∈ GT | gST = ST },
denote the symmetry group of the decomposition. Then the decomposition may
be expressed in terms of the orbit structure. For example, Strassen’s 1968 rank 7
decomposition of M〈2〉 may be written

M〈2〉 = Id⊗3 +Γ ·
[(

0 0
1 0

)

⊗
(

0 0
1 1

)

⊗
(

0 1
0 −1

)]

where Γ ≃ S3 ⋊ Z2, and Γ· denotes the sum of the terms in the Γ-orbit. Here
the orbit consists of six terms. The identity is acted on trivially by Γ, so the
decomposition is a union of two orbits. This is work in progress.

Second idea: expand the playing field. Given any tensor, one can symmetrize
it to get a cubic polynomial. Let sM〈n〉 denote the symmetrized matrix multipli-

cation tensor, the polynomial X 7→ trace(X3). In [CHI+18] we showed that the
Waring rank of sM〈n〉 also governs the exponent of matrix multiplication, where
the Waring rank of a cubic polynomial is the smallest r such that the polynomial
may be written as a sum of r cubes.

Third idea: combine the first two. A Conner [Con17] found a remarkable Waring
rank 18 decomposition of sM〈3〉, with symmetry group that of the Hasse diagram,

namely (Z×2
3 ⋊ SL2(F3))⋊ Z2. He also found a Waring rank 40 decomposition of

sM〈4〉 with symmetry group that of the cube. For comparison, the best known rank
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decompositions of M〈3〉,M〈4〉 respectively are of ranks 23 and 49. This launched
his program to find explicit sequences of finite groups Γn ⊂ GsM〈n〉

such that

the space of Γn-invariants in the space of cubic polynomials in n2 variables only
contains polynomials of low Waring rank, translating the study of upper bounds
on ω to a study of properties of sequences of finite groups, in the spirit of (but
very different from) the Cohn-Umans program [CU03].

Fourth idea: the Ambainus-Filmus-LeGall challenge: find new tensors useful
for the laser method. Michalek and I [LM17] had the idea to isolate geometric
properties of the Coppersmith-Winograd tensors and to find other tensors with
similar geometric properties, in the hope that they might also be useful for the
laser method. We succeeded in isolating many interesting geometric properties.
Unfortunately, we then proved that the Coppersmith-Winograd tensors were the
unique tensors with such properties.

Fourth idea, second try: In [CGL+18] we examine the symmetry groups of the
Coppersmith-Winograd tensors. We found that the big Coppersmith-Winograd
tensor has the largest dimensional symmetry group among 1-generic tensors in
odd dimensions (1-genericity is a natural condition for implementing the laser
method), but that in even dimensions, there is an even better tensor, which we
call the skew big Coppersmith-Winograd tensor. We also found other tensors with
large symmetry groups. Unfortunately, none of the new tensors with maximal or
near maximal symmetry groups are better for the laser method than TCW,q.

Fifth idea: Go back to the inequality (1) and upper bound Kronecker powers
of Tcw,q (this was posed as an open question for the square as early as [Bla13]),
which could even (when q = 2) potentially show ω = 2. Unfortunately, we show
in [CGL+18] that 15 ≤ R(T⊠2

cw,2) ≤ 16, and we expect 16, and for q > 2, that

R(T⊠2
cw,q) = (q + 2)2.

Sixth idea: Combine the last two ideas. The skew cousin of the little
Coppersmith-Winograd tensor also satisfies (1). It has the same value, but un-
fortunately, it has higher cost. For example, R(Tskew−cw,2) = 5 > 4 = R(Tcw,2).

However, we show it satisfies R(T⊠2
skew−cw,2) = 17 ≪ 25 = R(Tskew−cw,2)

2. This is
one of the few explicit tensors known to have strictly submultiplicative border rank
under Kronecker square (the first known being M〈2〉), and if this drop continues,
it would be very good indeed for the laser method.
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On the Foundation of Program Obfuscation

Huijia (Rachel) Lin

(joint work with Christian Matt, Stefano Tessaro)

Indistinguishability obfuscation (IO), first defined in the seminal work of Barak
et. al. [BGI+01], aims to obfuscate functionally equivalent programs into indis-
tinguishable ones while preserving functionality. IO is an extraordinarily powerful
object that has been shown to enable a large set of new cryptographic applications.

Starting from [GGH+13], the first-generation IO constructions rely on polyno-
mial-degree multilinear maps. An L-linear map [BS03] essentially allows to evalu-
ate degree-L polynomials on secret encoded values, and to test whether the output
of such polynomials is zero or not. While bilinear maps (i.e., L = 2) can be effi-
ciently instantiated from elliptic curves, instantiation of L-linear maps for L ≥ 3
has remained elusive—so far, vulnerabilities were demonstrated against all known
candidates based on Lattices.

Motivated by the state-of-affairs, several recent works [Lin16, AS17, Lin17,
LT17, Agr18a, AJS18, LM18] focused on building IO from minimal degree mul-
tilinear maps, leading to new constructions from trilinear or even bilinear maps.
These new constructions crucially rely on Pseudo Random Generators (PRGs)
with special simple structures. In this talk, we give an overview of some of the
new constructions.

In the first line of works [Lin16, AS17, Lin17, LT17], we show that PRGs with
small output locality, or even a relaxed notion of block-locality, can be instru-
mental for constructing IO. A PRG has block locality L if every output bit de-
pends on at most L input blocks, each consisting of up to log λ input bits. We
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show a construction of IO from block-locality L PRGs and L-linear maps, as-
suming additionally the Learning With Errors (LWE) assumption. PRGs with
block-locality L ≥ 3 can be instantiated by generalizing Goldreich’s local func-
tions [Gol00, MST03, OW14, AL16]. Unfortunately, PRGs with block-locality
L ≥ 2 have been shown vulnerable to attacks [LV17, BBKK18].

Towards the goal of constructing IO from bilinear maps, we [LM18] seek PRGs
with alternative structures and weak security guarantees that are useful for con-
structing IO and can be evaluated using just bilinear maps. To this end, we
introduce Pseudo Flawed-smudging Generators (PFGs). A PFG is a function
g : Zn

p → Zm
p with a polynomial stretch m = n1+ǫ for ǫ > 0, and an input

distribution X . Its output distribution g(X ) is i) polynomially bounded (i.e., ev-
ery output has polynomial infinity norm), and ii) can be used to partially hide
a small noise vector with inverse polynomial probability. Assuming LWE and
the existence of constant-locality PRGs, we show a construction of IO from PFGs
computable by degree-d polynomials and d-linear maps. Candidate degree 2 PFGs
that are special instances of multivariate quadratic polynomials over Zp have been
proposed, which gives the first candidate IO from bilinear maps.
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On the Hardness of 2-to-2 Games

Dor Minzer

(joint work with Irit Dinur, Subhash Khot, Guy Kindler and Muli Safra)

Background. The PCP Theorem [FGL+96, AS98, AKM+98] is a major result in
Theoretical Computer Science from the 90’s, giving a new characterization of the
computational class NP, using highly efficient probabilistic verification. This result
has many implications throughout TCS, in particular in the field of Hardness of
Approximation.

Definition 1. An instance of the Label-Cover problem is
ψ = (G = (U ∪V,E),ΣU ,ΣV ,Φ) where G is an undirected bipartite graph, ΣU are
finite set of labels, and Φ = {φe | e ∈ E} is a set of constraints φe : ΣU → ΣV ,
one for each edge.

The value of an instance, denoted by val(ψ), is the maximum fraction of con-
straints an assignment of labels to U (by ΣU symbols) and to V (by ΣV symbols)
satisfies.

For s < c between 0 and 1, the gap-LabelCoverk[c, s] is the promise problem in
which one is given a Label-Cover instance ψ with alphabet sizes at most k. The
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goal is to accept an instance if it has value at least c, and reject it if it has value
at most s. One of the many formulations of the PCP Theorem states:

Theorem 2 (The PCP Theorem). There are s < 1 and k ∈ N such that gap-

LabelCoverk[1, s] is NP-hard.

The hardness of Label-Cover is one of the most popular starting points for
hardness of approximation results. The above formulation however, is often times
too weak to yield strong inapproximability results, and one has to use stronger
versions. The two most useful strengthenings of the PCP theorem address the fol-
lowing points: (1) decrease the soundness value, s, for which the problem remains
NP-hard (preferably close to 0), (2) obtain strong structure on the constraints in
the Label-Cover instance. The first of these points was largely achieved: first, by
amplification of the soundness parameter s using Raz’s Parallel Repetition Theo-
rem [Raz98] 1, and secondly by a more direct construction of Moshkovitz and Raz
[MR10, DH13]. Using low soundness PCPs, along with the Long-Code [BGS95]
and Fourier analysis, one can prove numerous strong hardness of approximation
results, see for instance [Has96, Has97, ABH+05, Fei96, ST06, DKS98, DS05]. The
second point, of imposing strong structure from the constraints of the Label-Cover
instance, is still largely an open question. In its most extreme form, this problem
is known as Khot’s Unique-Games Conjecture.

The d-to-1 Games Conjectures. A label cover instance is called d-to-1 Game
if for every edge e and every σ ∈ ΣV , the pre-image of σ under φe contains at
most d elements. This notion was first studied (somewhat implicitly) in the work
of Dinur and Safra [DS05], wherein they prove it is NP-hard to approximate the
minimum Vertex-Cover within factor ≈ 1.36.

Let d-to-1 Gamesk be the maximization problem where on is given a d-to-1
Label-Cover instance with alphabet size k, and the goal is to find an assignment
satisfying maximum fraction of constraints. The d-to-1 Games Conjecture of Khot
[Kho02] states that for d ≥ 2, distinguishing between satisfiable instances, and at
most o(1)-value instances, is NP hard:

Conjecture 3. For any d ≥ 2 and s > 0, there exists k > 0 such that d-to-1

Gamesk[1, s] is NP-hard.

A related, more well known problem, is the Unique-Games Conjecture, stating
that for d = 1 (in which case the 1-to-1 Games problem is often referred to as
the Unique-Games problem), it is NP-hard to distinguish 1− o(1)-value instances
from o(1)-value instances.2

Conjecture 4 (Khot’s Unique-Games Conjecture [Kho02]). For any ε > 0, there
exists k > 0 such that Unique-Gamesk[1− ε, ε] is NP-hard.

1By now there are multiple simplifications and strengthenings of Raz’s result, for instnace

[Hol07, Rao11, DS14, BG15].
2A simple propagation algorithm shows that given a satisfiable Unique-Games instance, one

can efficiently find an assignment that satisfies all constraints. Thus, for the problem to have a
chance at being NP-hard, one must settle for imperfect completeness.
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The Unique-Games Conjecture is now a prominent open question, known to
have vast implications. Research into the conjecture has mainly developed in
three directions:

(1) Attempting to refute the conjecture by designing algorithms, for instance
[Kho02, GT06, CMM06, Tre08, AKK+08, Kol10, ABS15, BBH+12]. All
of these algorithms fall short of refuting the Unique-Games Conjecture.

(2) Proving consequences of the conjecture. Much progress has been achieved
in this direction, see for instance [KKM+07, KR08, CKK+05, DMR09],
and the surveys [Kho14, Tre12]. A striking result in this direction by
Raghavendra [Rag08], states that assuming the Unique-Games Conjec-
ture, the best efficient approximation algorithm for the class of Constraint
Satisfaction Problems, is a simple Semi-Definite Programming algorithm.

(3) Partial results and candidate hard constructions. Among these are the
work of O’Donnell and Wright [OW12], who proved it is NP-hard to dis-
tinguish between instances whose value is ≥ 1

2 and instances whose value is

≤ 3
8 , and the work of Khot and Moshkovitz [KM16], who gave a candidate

construction for a hard Unique-Games instance.

The works discussed in this talk [KMS17, DKK+18, DKK+18, KMS18, BKS18]
belong to the third direction. The main result proved therein asserts that the 2-
to-1 Games Conjecture holds, albeit with imperfect completeness.

Theorem 5. For every ε > 0 there exists k ∈ N such that 2-to-1 Gamesk[1− ε, ε]
is NP-hard.

This result has several consequences: for combinatorial optimization problems
(such as Vertex-Cover, Max-Cut-Gain and Approximate-Coloring, see [DKK+18,
KMS18]), and for Unique-Games (achieving, for the first time, a hard gap known
with constant completeness and vanishing soundness).

Theorem 6. For every ε > 0 there exists k ∈ N such that Unique-Gamesk[
1
2 , ε] is

NP-hard.

This talk discussed some ideas that go into the proof of the 2-to-1 Games Con-
jecture with imperfect completeness, such as smooth parallel repetition, the Cov-
ering Property [KS11], the reduction and the Grassmann Test [KMS17, DKK+18],
and its analysis via structure of non-optimally expanding sets on the Grassmann
Graph [DKK+18, KMS18, BKS18].
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Recent Developments Related to RL vs. L

Omer Reingold

One of the most important complexity-theoretic challenges is showing that ran-
domized algorithms are not much more powerful than deterministic algorithms.
Specifically, the two main challenges are to show that randomness “cannot save
time” and that randomness “cannot save memory”. Our focus here is on the lat-
ter. More precisely, the ultimate goal is to show that every problem solvable by
a randomized space-bounded algorithm is also solvable by a deterministic algo-
rithm that only uses a constant factor more space (where space refers to memory).
By standard padding arguments, this is equivalent to showing that randomized
logspace equals deterministic logspace (i.e. RL = L or BPL = L, depending on
whether we consider 1-sided or 2-sided error). This problem has drawn a consider-
able attention in recent decades, leading to exciting research, and here we discuss
some fundamental progress from the last couple of years.

A major tool in the study of the RL vs. L problem is pseudorandom-generators
that fool bounded space computations. For technical reasons, these generators
need to fool a stronger (non-uniform) model of computation of a (layered) read-
once branching-programs (ROBP). In this model, each of n layers contain w ver-
tices (we refer to w as the width of the program and to n as its length). Each
vertex in layer i < n is connected to two vertices in layer i+1. One of these edges
is labeled 0 and the other is labeled 1. One of the verices in layer one is the start
vertex and one of the vertices in layer n is an accept vertex. Most of these gen-
erators apply to ordered ROBP. Such a program accepts the string x = x1x2...xn
if following the path made of edges labeled x1, x2, . . .xn from the start vertex
leads to the accept vertex (and it rejects x otherwise). We will also consider un-
ordered ROBP, where the order of reading the bits can be arbitrary (but fixed
for all computation paths). The Nisan generator [Nis92, INW94] expands a short
seed of O(log n log(wn/ǫ)) bits to n bits that fool (ordered) ROBP up to error ǫ.

We discuss three recent threads of research:

• Hitting-set generators and pseudorandom pseudo-distributions with better
dependence on the error parameter than Nisan’s generator.

• Small memory algorithms for analyzing the behavior of random walks in
undirected graphs.

• Pseudorandom generators that fool constant-width ROBPs (w = O(1))
with close to optimal seed.

Dependence on the error parameter. To prove that RL=L, using a pseudorandom
generator, we would like the seed length to be O(log(wn/ǫ)). Nevertheless, sig-
nificant improvements towards derandomizing RL can be obtained already if the
dependence of rhe seed on the width and the error improves. In two recent works
[BCG18, HZ18], objects that are somewhat weaker than pseudorandom generators
with a close to optimal dependence on the error parameter ǫ. We focused on the
result of [BCG18] that provided seed-Õ(log n log(wn) + log(1/ǫ)) pseudorandom
pseudo-distributions. Specifically, we considered the notion of pseudo-distributions
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that was introduced by this work into this area and is quite intriguing. Consider a
collection D̃ of pairs (ρi, si), where each ρi is a real number (a weight) and each si
an n-bit string. If the the weights are all non-negative and sum to one, then D̃ de-
fines a distribution on n-bit strings. If the weights are allowed to be negative, then
this is a pseudo-distribution. Generating a pseudorandom pseudo-distribution us-
ing a short seed could still derandomize (1-sided) random computations (thus
it can prove RL=L). We hinted on the way pseudo-distributions come about in
[BCG18] through an analogy to a recursive construction of averaging samplers.
Undirected random walks. Connectivity in undirected graphs have been shown to
be computable in logarithmic space [Rei08]. The result also implies a particular
kind of pseudorandom walks known as pseudo-converging walks [Rei08, RTV06]
that behave like random-walks in the limit. In other words, these walks converge
to the stationary distribution of the random walk (in number of steps that is
polynomially related to the convergence time of the random walk). We discussed
recent works [MRS+17] (as well as a more recent, unpublished work) that give (al-
most) logarithmic-space computations of various parameters of the random walks
on undirected graphs such as hitting times, commute times, escape probabilities
and t-step conductance. This is obtained through small space computations of the
Laplacian of undirected graphs and t-step Laplacian of such graphs. The results
combine techniques from small-space derandomization with techniques that arise
in the literature on almost linear time Laplacian solvers.
Constant-width ROBP. The last thread we discussed has to do with pseudorandom
generators that fool constant-width ROBP. Such pseudorandom generators gener-
alize many fundamental pseudorandom objects (such as epsilon-bias distributions).
We discussed the more complete history, leading to several recent milestones, in
two directions:

• [CHR+18, FK18] give polylogarithmic seed (in fact, Õ(log2 n)-long seed)
pseudorandom generators that fool unordered ROBP (major progress over
previous results).

• [MRT18] give seed-Õ(log n) pseudorandom generators that fool width-3
(ordered) ROBP (previously, no improvement over Nisan’s generator was
known even for general width 3 ROBP).

The results rely on a the mild pseudorandom restriction technique of [GMR+12],
which is significantly different than the recursive approach of [Nis92, INW94].
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Doubly Efficient Interactive Proofs

Ron Rothblum

(joint work with Omer Reingold, Guy Rothblum)

The celebrated IP = PSPACE Theorem [LFKN92, Sha92] allows an all-powerful
but untrusted prover to convince a polynomial-time verifier of the validity of ex-
tremely complicated statements (as long as they can be evaluated using polynomial
space). The interactive proof system designed for this purpose requires a polyno-
mial number of communication rounds and an exponential-time (polynomial-space
complete) prover.

In this paper [RRR16], we study the power of more efficient interactive proof
systems. In particular, we seek proof-systems in which the prescribed prover strat-
egy can be computed in polynomial-time, whereas the verifier can be computed
even faster, say in linear time. These proof-systems, called doubly-efficient inter-
active proofs, were introduced by Goldwasser et. al [GKR08] who also constructed
doubly efficient interactive proofs for all of NC (albeit with a large number of
rounds).

In the talk we presented a result showing that for every statement that can
be evaluated in polynomial time and bounded-polynomial space there exists an
interactive proof that satisfies the following strict efficiency requirements: (1) the
honest prover runs in polynomial time, (2) the verifier is almost linear time (and
under some conditions even sub linear), and (3) the interaction consists of only
a constant number of communication rounds. Prior to this work, very little was
known about the power of efficient, constant-round interactive proofs (rather than
arguments). This result represents significant progress on the round complexity of
interactive proofs (even if we ignore the running time of the honest prover), and
on the expressive power of interactive proofs with polynomial-time honest prover
(even if we ignore the round complexity). This result has several applications, and
in particular it can be used for verifiable delegation of computation.
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The new construction of the doubly interactive proof for bounded space lever-
ages several new notions of interactive proofs, which may be of independent in-
terest. One of these notions is that of unambiguous interactive proofs where the
prover has a unique successful strategy. Another notion is that of probabilistically
checkable interactive proofs1 (PCIPs) where the verifier only reads a few bits of the
transcript in checking the proof (this could be viewed as an interactive extension
of PCPs).

Beyond the aforementioned works, we also refer the interested reader to Gol-
dreich’s recent survey [Gol18].
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Distributed PCPs and applications

Aviad Rubinstein

The talk presents the notion of Distributed PCP introduced by [ARW17]. It is
a new distributed model of probabilistically checkable proofs (PCP). A satisfying
assignment x ∈ {0, 1}n to a CNF formula ϕ is shared between two parties, where
Alice knows x1, . . . , xn/2, Bob knows xn/2+1, . . . , xn, and both parties know ϕ.
The goal is to have Alice and Bob jointly write a PCP that x satisfies ϕ, while
exchanging little or no information. Unfortunately, this model as-is does not allow
for nontrivial query complexity. Instead, we focus on a non-deterministic variant,
where the players are helped by Merlin, a third party who knows all of x.

The talk surveys recent fine-grained and parametrized hardness of approxima-
tion results proved in this framework [ARW17, AR18, Rub18, KLM18, Che18,
CW19, CGL+19, CM19].

A flagship application of this framework is the Bichromatic Closest Pair
Problem. This problem can be instantiated with various similarity measures, for
example inner product (over the reals):

1An equivalent notion to PCIPs, called interactive oracle proofs, was recently introduced in
an independent work of Ben-Sasson et. al [BCS16].
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Definition 1 (The Bichromatic Closest Pair Problem with Inner Product
similarity measure (Max-IP)). Given two sets A,B, each of N binary vectors in
{0, 1}d, return a pair (a, b) ∈ A×B that maximizes the inner product a · b.

Thinking of the vectors as subsets of [d], this Max-IP problem asks to find the
pair with largest overlap, a natural similarity measure. A näıve algorithm solves
the problem in O(N2d) time, and one of the most-cited fine-grained results is a
SETH1 lower bound for this problem. Assuming SETH, we cannot solve Max-IP
exactly in N2−ε · 2o(d) time, for any ε > 0 [Wil05]. For approximation, we use
the Distributed PCP framework, to show that it is the problem remains hard for
nearly-poly(N) factors.

The talk also presents some of the speaker’s favourite open problems in this
area, desribed below (based on [ARW17, Rub18]).

LCS Problem (with two strings). The Distributed PCP framework gives
hardness of approximation for the Bichromatic Closest Pair Problem with
Longest Common Subsequence (LCS) similarity measure [ARW17]. Simple gad-
gets constructed in a similar fashion (even without the Distributed PCP), can
be combined together (along with some additional gadgets) into two long strings
A,B of length m, in a way that yields a reduction from SETH to computing
the longest common subsequence (LCS) of (A,B), ruling out exact algorithms in
O(n2−ε) [AWW14, ABV15, BI15, BK15, AHWW16]. However, in the instances
output by this reduction, approximating the value of the LCS reduces to ap-
proximating the fraction of assignments that satisfy the original formula; it is
easy to obtain a good additive approximation by sampling random assignments.
The recent works of [AR18, CGL+19] mentioned above, combines Distributed
PCP with complexity assumptions on deterministic algorithms (the latter build-
ing on [AB17]) to tackle this issue, but their ideas do not seem to generalize to
randomized algorithms.

Open Question 2. Is there a 1.1-approximation for LCS running in O(n2−ε)
time, for some ε > 0? (Open for all alphabet sizes.)

The triangle inequality barrier. Consider a naive gadget reduction for the
Bichromatic Closest Pair Problem where we construct a vector for each half
assignment. Let α1, α2 ∈ {0, 1}n/2 be partial assignments to the first half of the

variables, and β1, β2 ∈ {0, 1}n/2 for the second half. Suppose that
(α1;β1) , (α2;β1) , (α2;β2) satisfy the formula, but (α1, β2) does not. Let
aα1 , aα2 , bβ1 , bβ2 be the corresponding vectors. Then, if our reduction has com-
pleteness c and soundness s, we would like to have

∥

∥aα1 − bβ2
∥

∥ ≥ s ≥ 3c ≥
∥

∥aα1 − bβ1
∥

∥+
∥

∥aα2 − bβ2
∥

∥+
∥

∥aα2 − bβ1
∥

∥ .

But that would violate the triangle inequality. Note that this restricts our ability
to prove stronger hardness of approximation even for more complicated metrics

1The Strong Exponential Time Hypothesis (SETH) postulates that for every ε there is a
k = k (ε) such that k-SAT over n variables requires (2 − ε)n time.
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like edit distance. It is also important to remark that the reductions based on
Distributed PCP (including the ones in this talk) do not exactly fall into this
naive gadget reduction framework; nevertheless it is not at all clear that they can
overcome this obstacle.

Open Question 3 (3-approximation). Prove that, assuming SETH and for some
constant ε > 0, approximating Bichromatic Closest Pair with Euclidean met-
ric to within factor 3 requires time Ω

(

N1+ε
)

.
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Free Probability, Interlacing Polynomials, and Expander Graphs

Nikhil Srivastava

(joint work with Adam Marcus, Daniel Spielman)

1. Expanders and Td

We give a gentle introduction to Free Probability theory in the context of a very
concrete problem of interest in computer science, namely constructions of expander
graphs. We are interested in the following extremal question: for a fixed degree
d, what is the largest possible spectral gap attainable by an infinite sequence
of d−regular graphs? The Alon-Boppana bound gives a limit to how large it
can be, stating that if A is the adjacency matrix of a d−regular graph and d =
λ1, λ2, . . . , λn are its eigenvalues, then

λ2(A) ≥ 2
√
d− 1− o(1),

where the o(1) term goes to zero as the diameter tends to infinity. The num-
ber 2

√
d− 1 has a conceptual meaning: it is the spectral radius of the (infi-

nite) adjacency matrix of the infinite d−regular tree Td. A finite graph with
λ2(A) ≤ 2

√
d− 1 is called a one-sided Ramanujan graph, and a graph with

|λi(A)| ≤ 2
√
d− 1 for all i 6= 1 is called a Ramanujan graph.

There are at present two kinds of known constructions of Ramanujan graphs.
The first, due to Lubotzky-Phillips-Sarnak and Margulis [LPS88], are Cayley
graphs of certain nonabelian groups, analyzed using number theory. This proof
technique is able to show that infinite sequences of Ramanujan graphs for d = pk+1
where p is a prime. The second [MSS15b], is able to show the existence of one-sided
Ramanujan graphs for every d ≥ 3 and even integer n; see also [HPS18, Coh16].

We will explain the second construction, which begins by considering random
graphs. Let G be a union of d i.i.d. uniformly random perfect matchings on n
vertices, where n is even. Then, ifM is the adjacency matrix of a single matching,
the adjacency matrix of G is given by

A =
∑

i≤d

PiMPT
i ,

where the Pi are i.i.d. uniform permutations. Then G is regular so λ1(A) = d,
which is also the sum of the top eigenvalues of the summands PiMPi, which are
all equal to one. The relationship between the rest of the eigenvalues of A and
those of PiMPT

i is much more complicated; note that M itself has a very simple
spectrum with distribution 1

2δ−1 +
1
2δ1.
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Surprisingly, it turns out that in the case of Td itself, the relationship between
the spectra can be understood precisely. To do this we need to introduce a new
notion of convolution of probability measures, which we do in the next section.

2. Three Convolutions

Let X and Y be two independent random variables, each uniformly distributed
on a set of n real numbers. Independence implies that the moments of X + Y are
functions of the moments of X and the moments of Y individually. Letting mk

denote the kth moment of a random variable, and mk = (m1, . . . ,mk) a tuple of
moments up to k, we have for independent X and Y :

mk(X + Y ) =
∑

j≤k

(

k

j

)

mj(X)mk−j(Y ) =: Pk(mk(X),mk(Y )),

where P is an explicit polynomial depending only on k. Thus, the polynomials Pk

effectively define what convolution of discrete probability measures is.
We now write this as a statement about random matrices. Let A and B be

diagonal n × n matrics containing the supports of X and Y respectively, and let
Ac denote the cn× cn matrix containing c copies of A on the diagonal. Then it is
an easy exercise to see that for every positive integer k:

(1) EP
1

cn
Tr(Ac + PBcP

T )k = Pk(mk(X),mk(Y )) + oc(1),

where the expectation is over a uniformly random permutation on cn elements.
Thus, in the limit as c → ∞, the moments of these random matrices specify
classical convolution.

It turns out that if one replaces the random permutations by random orthogonal
matrices Q, then the limit still exists, and gives an alternate notion of convolution.
In particular, we have for every positive integer k:

(2) EQ
1

cn
Tr(Ac +QBcQ

T )k = Qk(mk(X),mk(Y )) + oc(1),

for some different polynomials Qk which again depend only on k. Voiculescu
[Voi00] defined a new convolution in terms of these Qk.
Definition. The free convolution µX ⊞ µY of two discrete measures on n atoms
is the unique measure with moments given by Qk(mk(X),mk(Y )) for all k.

The operation ⊞ is commutative and associative. The reason we care about
this is that the free convolution allows us to understand the spectrum of the Td.
The adjacency matrix A∞ of this tree may be written as a sum of d adjacency
matrices of matchings, A∞ = M1 + . . . +Md. Defining what spectral measure
means in the infinite case would take us too far afield, but let us accept that
the tree has a spectral measure µd and the matchings all have the same spectral
measure µ1 := 1

2δ−1 + 1
2δ1, which is the same as in the finite case. The punch

line is that µd = µ1 ⊞ µ1 ⊞ . . . ⊞ µ1 (d times), so the free convolution expresses
the (complicated) spectrum of the tree in terms of the (simple) spectra of the
matchings. In fact, this is essentially why it is called the free convolution — for
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even d the Td is the Cayley graph of the free group on d/2 generators. The relation
of moments prescribed by the polynomials Qk is referred to as free independence.

Unfortunately, free independence is not realizable for finite matrices. To get
around this, we consider a third convolution which works at the finite level.
Namely, given X,Y,A,B as above, consider the degree n polynomial pA,B :=
EQχ(A + QBQT ), where Q is random orthogonal and χ(M) = det(zI −M) is
the characteristic polynomial. It can be shown that the roots of pA,B are all real
whenever A and B are real.
Definition The finite free convolution of µX and µY , denoted µX ⊞n µY , is the
uniform measure on the roots of pA,B.

Moreover, one can show [MSS15] that ⊞n is dominated by ⊞ in the following
sense.
Theorem. for every µX and µY supported on n points, it holds that

λmax(µX ⊞n µY ) < λmax(µX ⊞ µY ).

where λmax is the largest point in the support of a measure, and this generalizes
to a convolution of any number of measures.

In particular, we have for our case of interest:

λmax(µ
⊞nd
1 ) < λmax(µ

⊞d
1 ) = λmax(µd) = 2

√
d− 1.

3. Ramanujan Graphs

We now use finite free convolutions to show that Ramanujan graphs exist. The
first step is to show that with nonzero probability,

λ2(A) < λ2(Eχ(A)),

where λ2 refers to the second largest root on the right. This is done by an “inter-
lacing families” argument [MSS15b], which is not the focus of this note. Thus, to
show the existence of one-sided Ramanujan graphs, we merely need to show that

the polynomial pd := Eχ
(

∑

i≤d PiMPT
i

)

has second root bounded by 2
√
d− 1.

Now a miracle happens: it turns out that it is possible to replace the random
permutations P1, . . . , Pd by random orthogonal matrices Q1, . . . , Qd, conditioned
to fix the all ones vector (i.e., Qi1 = 1 for all i, since this is what permutations
do) without changing the average. This may be seen as a sort of invariance prin-
ciple and is a consequence of the fact that the determinant is multilinear so its
restrictions are low degree polynomials. After isolating the trivial root at d, we

therefore have: pd = (x − d)Eχ
(

∑

i≤dQiM
′QT

i

)

, where M ′ is a matching with

the trivial eigenspace at 1 removed and the Qi are now fully random orthogonal
matrices. A short argument shows that we may as well assume M ′ has spectral
measure µ1, and we conclude that:

λ2(pd) ≤ λmax(µ
⊞nd
1 ) < λmax(µ

⊞d
1 ) = 2

√
d− 1,

as desired.
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Parity Samplers and Explicit, Epsilon-Balanced Codes Close to the
GV Bound

Amnon Ta-Shma

The question of finding an epsilon-biased set with close to optimal support size, or,
equivalently, finding an explicit binary code with distance 1−ǫ

2 and rate close to the
Gilbert-Varshamov bound, attracted a lot of attention in recent decades. In this
talk we present a solution of an explicit ǫ-biased set over k bits with support size
O( k

ǫ2+o(1) ). This improves upon all previous explicit constructions. The result is

close to the Gilbert-Varshamov bound which is O( k
ǫ2 ) and the lower bound which

is Ω( k
ǫ2 log 1

ǫ

).

The main technical tool we use is bias amplification with the s-wide replacement
product. The sum of two independent samples from an ǫ-biased set is ǫ2 biased.
Previous work showed how to amplify the bias more economically by choosing two
samples from a walk over an expander. We show that amplification with a random
walk over the s-wide replacement product reduces the bias almost optimally. We
abstract this approach in two ways:

• First we define parity samplers and show how they can be used to amplify
the code distance, and,

• Second, we define memory augmented random walks and show how they
can give better explicit parity samplers.

An [n, k, d]2 code is a subspace C ⊆ Fn
2 of dimension k such that the dis-

tance between any two codewords is at least d. The Gilbert-Varshamov (GV)
bound states that for every δ > 0, there exists a family {Cn} of linear codes
such that Cn has length n, relative distance δ and relative rate 1 −H(δ) − o(1),
where H is Shannon’s entropy function. The GV bound proves the existence of
a good family of codes, but does not show any specific such family. We con-
struct a fully explicit binary code approaching the GV bound for the important
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parameter regime where δ is close to half. For this parameter regime, the Gilbert-
Varshamov bound shows that random linear codes of length n = O(k/ε2) are w.h.p.
[n, k, 1−ε

2 n]2 codes. The LP bound gives an almost matching lower bound showing

that n = Ω(min
{

k
ε2log 1

ε

, 2k
}

) (see, e.g., [AGH+92][Section 7]). There were many

attempts trying to achieve the GV bound explicitly, and, roughly speaking, they
can be divided into two main approaches:

• Using concatenation: Concatenating Reed Solomon with Hadamard gives

one of the constructions in AGHP with n = O(k
2

ε2 )[AGH+92]. Concatenat-
ing Reed Solomon with the Wozencraft ensemble gives the Justensen code
[J72] with constant relative distance and constant relative rate. Start-
ing with an AG code and concatenating with Hadamard over a field of
size O( 1

ε2 ) gives a construction with about O( k
ε3 ) support size. Taking

the Hermitian code below the genus over a smaller field and concatenat-
ing with Hadamard gives the construction in [BT13] with support size
O(( k

ε2 )
5/4). All of the above bounds fall short of achieving the GV bound

which is O( k
ε2 ), and this is due, in part, to the expensive concatenation

step. The attainable parameters when concatenating with Reed Solomon
as the outer code are captured by the Zyablov bound, which for distance
1−ε
2 gives code length Θ( k

ε3 ) (see [ABN+92, Section 1]). Similarly, con-
catenating with any high genus AG code cannot attain the GV bound for
distance close to half [BT11, Section 4].

• Distance amplification: A second approach was first suggested by Naor
and Naor [NN93], and later Alon et al. [ABN+92]. The idea is to start
with a binary error-correcting code that has moderate distance (say, some
constant relative distance and constant relative rate) and amplify it to
a binary error correcting code with a higher relative distance (say, close
to half). This was done by Naor and Naor [NN93], and later Alon et
al. [ABN+92], using expanders, or more generally dispersers. This ap-
proach also gives binary error correcting codes of length n, dimension k
and distance 1−ε

2 with n = O( k
ε3 ). Nevertheless, Alon et al. show that for

a certain non-binary field size their construction lies above the Zyablov
bound.

We show:

Theorem 1. For every k = k(n) and ε > 0 there exists a fully explicit family of
linear codes {Cn} such that Cn is an [n, k, d = 1−ε

2 n]2 code and n = O( k
ε2+φ(ε) )

where φ(ε) = O((
log log 1

ε

log 1
ε

)1/3). Notice that limε→0 φ(ε) = 0.

We remark the simple corollary that for every constant α > 0 there exists a
fully explicit family of [n = O( k

ε2+α ), k,
1−ε
2 ]2 codes, where the constant in the

bigO notation may depend on α. This is because either α ≥ φ(ε) and then we
can use the construction of Theorem 1, or α ≤ φ(ε) in which case ε is a constant
and then we can use previous constructions (e.g., [NN93]) and the dependence on
ε may be absorbed into the BigO notation.
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We now strengthen the notion of an error correcting code to that of a balanced
code:

Definition 2. Let c ∈ F
n
2 . Bias(c) =

1
n |

∑n
i=1(−1)ci |, i.e., the difference between

the fraction of 0 symbols and 1 symbols in c (in absolute value). We say c is ε
balanced if Bias(c) ≤ ε. We say an [n, k]2 code is ε–balanced if every non-zero
codeword of C is ε balanced. We also say C is a [n, k, 1±ε

2 n]2 code.

We now abstract a general way of amplifying the distance of a linear error
correcting code in a black-box way:

Definition 3. (Sampler) A bipartite multi-graph Φ = (L,R, F ) is a sampler,
where each element a ∈ L corresponds to the multi-set of all its neighbours in R
(with multiplicities). The degree of the sampler is the maximal left-degree of the
bipartite graph. The size of the sampler is |L|.

We now define parity samplers. Given a bipartite graph Φ = (L,R, F ) we think
of Φ as inducing a linear map Φ : FR

2 → F
L
2 as follows. Given f : R→ F2, we think

of f as attaching the label f2(b) ∈ {0, 1} to the vertex b ∈ R. We then define a
function g = Φ(f) : L → F2, by letting g(a) be the parity (or sum over F2) of all
a’s neighbours. Formally,

Definition 4. A bipartite multi-graph Φ = (L,R, F ) induces a mapping Φ : FR
2 →

FL
2 in the following way. For every f : R → F2 and a ∈ L,

Φ(f)(a) =
∑

b:(a,b)∈F

f(b).

We say Φ is a (n, ε0) → (n′, ε) parity sampler if |L| = n′, |R| = n and Φ maps

any ε0-balanced string f ∈ Fn
2 to an ε-balanced string Φ(f) ∈ Fn′

2 .

Next we notice that we can combine an ε0 balanced code, and an (n, ε0) →
(n′, ε) parity sampler, to get a new more balanced code. Specifically, suppose: C
is an [n, k, d = 1−ε0

2 ]2 code, where the i’th coordinate of the code (for i ∈ [n]) com-

putes the linear function ℓi : F
k
2 → F2 and Φ = (L,R, F ) is a (n, ε0) → (n′, ε) parity

sampler. Define a new [n′, k]2 code C′ = φ(C) where the a’th coordinate of C′ (for
a ∈ [n′]) is the linear function ℓ′a : Fk

2 → F2 defined by ℓ′a(x) =
∑

i∈[n]:(a,i)∈F ℓi(x),

where addition is over F2. We claim:

Lemma 5. If C is an [n, k, d = 1−ε0
2 ]2 code and Φ = (L,R, F ) is a (n, ε0) → (n′, ε)

parity sampler, then C′ = Φ(C) is an [n′, k, 1±ε
2 n′]2 code. Furthermore, if C and

Φ are explicit (resp. fully explicit) then so does C′.

Our base code is the Justensen code which is asymptotically good and has
ε0 ≤ 0.8. Our construction follows by constructing a good explicit parity sampler.
Our starting point is the remarkable fact that a random walk over an expander
graph is a good parity sampler. This was observed by Noga Alon (but was not
published) and was found independently by us. We prove:

Theorem 6. Suppose G = (V,E) is an (n,D, λ) expander. Let ε0 > 0. ΦG is a
(n, ε0) → (nDt, ε) parity sampler for ε = (ε0 + 2λ)⌊t/2⌋.
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This gives an ε-balanced code of rate about O(ε4). We improve upon this by
taking a memory augmented random walk:

Definition 7. (Memory augmented random walk). Let G = (V,E) be an undi-
rected D regular graph, X an auxiliary state, f : X → [D] and g : X × [D2] → X
functions. A walk on G starting at vertex v0 ∈ V , auxiliary state x0 ∈ X and
instructions σ1, . . . , σt ∈ [D2] does the following: At step i, for i = 1, . . . , t:

• vi = vi−1[f(xi−1)], i.e., we walk on G from vi−1 according to f(xi−1) ∈
[D], and,

• xi = g(xi−1, σi), i.e., we update the auxiliary state using the instruction
σi.

A memory augmented random walk walks on a degree D graph, but at each
time step uses only D2 ≪ D edges going out of the current vertex, where the
choice of which D2 edges are used depends on the current auxilary state.

This specific memory augmented random walk that we take is based on a related
construction from [BT11]. It uses an auxilary expander graphH = (X = [Dw], E2)

of degree D2 =
√
D and the functions

• f : X → [D] that views x ∈ X as a vector of dimension w over [D] and
returns the projection on the first coordinate, and,

• The function g : X × [D2] → X that takes a step on H according to the
instruction σ and then cyclically rotates the vector.

This may be seen as extending the replacement product of [RVW00] to a mem-
ory augmented random walk. Using this memory augmented random walk we get
our explicit parity sampler:

Theorem 8. Let ε0 > 0. Define the bipartite graph that for every length t path in
the above memory augmented random walk with width w = w(1), connects the path
with all the vertices on the path. Then this bipartite graph is a (n, ε0) → (nDt, ε)
parity sampler for ε = (ε0 + 2λ)(1−o(1)t.

Finally, this explicit parity sampler immediately gives an explicit binary code
with distance 1

2 − ε and rate about ε2 as desired.
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Classical Verification of Quantum Computations

Thomas Vidick

Quantum computing enthusiasts hope to soon reach a stage where engineered de-
vices based on the laws of quantum mechanics are able to implement computations
that can no longer be emulated on a classical computer. Once that stage is reached,
will it be possible to verify the results of the quantum device?

Recently Mahadev [Mah18] introduced a solution to the following informally
stated problem: given black-box access to a quantum device, i.e. given only the
ability to generate classical instructions and obtain classical readout information
in return, is it possible to delegate a quantum computation to the device in a
way that the outcome obtained can be verified on a classical computer — even
when the quantum device may be faulty or even adversarially designed to fool the
verification procedure?

The question has a long history, that prior to Mahadev’s work had resulted in
partial answers for different models of verification. Some of the most important
results include the concurrent works of Aharonov et al. [ABE08] and Broadbent et
al. [BFK08] showing how to achieve verification in a model where the verification
procedure itself has access to a small, trusted quantum computer, and the work
of Reichardt et al. [RUV13] in a model where the verification procedure is entirely
classical, but has access to two spatially isolated quantum computers, sharing
entanglement, whose implementation of a quantum computation it aims to verify.
In contrast to Mahadev’s result, these works achieve information-theoretic (instead
of computational) soundness guarantees in their respective models.

The most novel element of Mahadev’s solution is an ingenious use of classi-
cal cryptographic techniques to tie a “cryptographic leash” around the quantum
device. In this talk I present Mahadev’s result, focusing on the connection with
complexity theory and the use of techniques from classical cryptography. The
main result can be stated as follows.

Theorem 1. For any language L in BQP, there is a four-message argument sys-
tem for L with a classical polynomial-time verifier that has the following properties:

• There is a quantum polynomial-time prover P such that for any x ∈ L,
on input x the verifier accepts its interaction with P with probability 1 −
O(2−|x|).

• Assuming the hardness of the learning with errors problem (LWE) against
quantum polynomial-time attacks, for any x /∈ L no quantum polynomial-
time prover can convince the verifier to accept on input x with probability
larger than 1− Ω(1/poly(|x|)).
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We note that the theorem requires hardness of LWE for sub-exponential noise
ratio. The soundness parameter can be amplified by straightforward sequential
repetition.

The proof of the theorem has two main steps. The first step, essentially due to
Kitaev, with further refinements by Cubitt and Montanaro [CM16], reduces any
quantum polynomial-time computation to a decision problem about the smallest
eigenvalue of a well-structured local Hamiltonian that can be efficiently computed
from the circuit. Informally, this step is a quantum analogue of a formulation of
the Cook-Levin Theorem that would reduce the verification of correctness of the
tableau of a classical computation to the verification that a certain instance of the
MAX-CUT constraint satisfaction problem computed from the tableau has a large
enough cut.

The second step is the key contribution on Mahadev, and I will focus on it in
the talk. It is based on the introduction of a new cryptographic primitive, a “trap-
door claw-free function pair”, and using that primitive to devise a quantum qubit
commitment scheme that is computationally binding with respect to measurement
outcomes on the qubit in the computational or Hadamard bases.
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Invariant theory - a gentle introduction for computer scientists
(optimization and complexity)

Avi Wigderson

(joint work with Ankit Garg)

Invariant theory deals with understanding the symmetries of mathematical objects,
namely transformations of the underlying space which leave an object unchanged
or invariant. Here we only touch on some of its main objects, problems and results.
This study, of what does not change in certain dynamic processes (namely group
actions), interacts with many mathematical fields including group theory, commu-
tative algebra and algebraic geometry, and is a central to modern physics. We will
stress some of the many facets which interact with computational complexity and
optimization.
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Let G be a group which acts linearly on a vector space V . 1 That is g·(v1+v2) =
g · v1 + g · v2 and g · (cv) = cg · v. We assume V = Fd (and the field F is usually
C). Hence G acts naturally on F[x1, . . . , xd].
Invariant Polynomials. Invariant polynomials are polynomial functions on V left
invariant by the action of G. One simple example is

• Group G = SLn(C) × SLn(C) acts on V = Mn(C) = Cn×n (dimension
d = n2 here) by a change of bases of the rows and columns, namely left-
right multiplication: that is, (A,B) maps X to AXB. Here, det(X) is
an invariant polynomial and in fact every invariant polynomial must be a
univariate polynomial in det(X).

The above phenomenon that the ring of invariant of polynomials is generated by a
finite number of invariant polynomials is not a coincidence. The finite generation
theorem due to Hilbert [Hil90, Hil93] states that, for a large class of groups (includ-
ing the groups mentioned above), the invariant ring must be finitely generated.
These two papers of Hilbert are highly influential and laid the foundations of com-
mutative algebra. In particular, “finite basis theorem” and “Nullstellansatz” were
proved as “lemmas” on the way towards proving the finite generation theorem!
Orbits and Orbit-Closures. The orbit of a vector v ∈ V is the set of all vectors
obtained by the action of G on v. The orbit-closure of v is the closure (under the
Euclidean topology) of the orbit of v. Many fundamental problems in theoretical
computer science (and many more across mathematics) can be phrased as questions
about such orbits and orbit-closures. Here are some familiar examples:

• Graph isomorphism problem can be phrased as checking if the orbits of
two graphs are the same or not, under the action of the symmetric group
permuting the vertices.

• Geometric complexity theory (GCT) [Bür12] formulates a variant of VP
vs. VNP question as checking if the (padded) permanent lies in the orbit-
closure of the determinant (of an appropriate size), under the action of the
general linear group on polynomials induced by its natural linear action
on the variables.

Furthermore, it turns out that even the simplest concept involving
orbit-closures, namely the null cone, already captures a lot of interesting prob-
lems. A vector v is in the null cone if 0 lies in the orbit-closure of v. For different
group actions, the null cone captures concepts like nilpotency, singularity, bipartite
matching, linear programming and non-commutative rational identity testing. So
even the most basic question (from an invariant theoretic perspective) of testing if
a vector is in the null cone is already extremely interesting from a computational
point of view. And in fact, a sub-field of invariant theory, geometric invariant
theory, already provides non-trivial computational perspectives on the null cone.

1Invariant theory is nicest when the underlying field is C and the group G is either finite,
the general linear group GLn(C) (or its Abelian diagonal subgroup), the special linear group
SLn(C) (or its Abelian diagonal subgroup), or a direct product of these groups (more generally
a complex algebraic reductive group).
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Geometric invariant theory provides a geometric and analytic viewpoint to in-
variant theory. It morally puts the null cone membership problem in NP ∩ coNP.
The Hilbert-Mumford criterion [Hil93, Mum65] provides a way to certify if a vector
is in the null cone and the Kempf-Ness theorem [KN79] provides a way to certify
if a vector is not in the null cone. We elaborate a bit on the Kempf-Ness theorem
below.

Given a vector v ∈ V , consider the optimization problem which finds a vector
of minimum ℓ2-norm in the orbit-closure of v:

(1) N(v) = inf
g∈G

‖g · v‖22
It is easy to see that v is in the null cone iff N(v) = 0. For non-commutative group
actions (think of G = GLn(C) for concreteness), the function fv(g) = ‖g ·v‖22 is not
convex in the Euclidean geometry but is geodescially convex (e.g. see [Woo11]). A
consequence of geodesic convexity is the Kempf-Ness theorem [KN79], that states
that any critical point (i.e., point with zero gradient) of fv(g) must be a global
minimum. This brings us to moment maps.

Informally, the moment map µG(v) is the gradient of fv(g) at g = id, the
identity element of G. The Kempf-Ness theorem draws the following beautiful
connection between the moment map and N(v). It is a duality theorem which,
along with the Hilbert-Mumford criterion, greatly generalizes linear programming
duality to a “non-commutative” setting.

Theorem 1 ([KN79]). Fix an action of group G on a vector space V and let
v ∈ V . v is not in the null cone iff there exists a non-zero w in the orbit-closure
of v s.t. µG(w) = 0.

The Kempf-Ness theorem provides an optimization approach towards the null
cone membership problem through norm-squared minimization. For special group
actions, this optimization problem has been well studied, e.g. matrix balancing,
matrix scaling [Sin64], geometric programming, to mention a few. Recently there
has been a surge of activity on designing scaling algorithms for minimizing the
norm-squared function for an even more general class of group actions and this
has resulted in algorithms for diverse problems such as non-commutative ratio-
nal identity testing [GGOW16], testing feasibility of Brascamp-Lieb inequalities
[GGOW17], tensor scaling [BGOWW18], orbit-closure intersection for the left-
right action [AGLOW18] and the one-body quantum marginal problem
[BFGOWW18]. There is an interesting interplay of analysis and algebra here:
these are analytic algorithms for algebraic problems but at the same time, the
algebraic nature of the problem plays an important role in the analysis of the
algorithms. The potential functions are typically invariants under the action of
certain subgroups of the acting group.

Some of these analytic algorithms yield determinsitic algorithms for subclasses
of the polynomial identity testing (PIT) problem which are of a different nature
than those typically studied in the literature (namely restricted circuit classes).
One example is from [GGOW16], where one can deterministically test (in poly-
nomial time) if the polynomial det (

∑

iAi ⊗Xi) is identically zero. Here Ai’s are
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n×n matrices and Xi’s are d×d matrices with entries distinct formal commuting
variables with d = n. Note that the PIT problem corresponds to d = 1.

Several excellent resources (lecture notes, slides and videos) are available online
for the reader who wants to learn about these topics. These include Avi’s lectures
at CCC 2017, workshop at IAS, workshop at FOCS 2018 and the recent survey
[GO18]. The links for the above are below:

http://www.computationalcomplexity.org/Archive/2017/tutorial.php
https://www.math.ias.edu/ocit2018
https://staff.fnwi.uva.nl/m.walter/focs2018scaling/
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Circuit Lower Bounds for Quasi-NP

Ryan Williams

(joint work with Cody Murray)

Recall ACC0 is the class of decision problems that have polynomial-size circuit
families of constant depth, with unbounded fan-in AND, OR, and MODm gates
for a fixed integer m > 2, where a MODm is a Boolean function outputting 1 if
and only if the sum of its inputs is divisible by m [Bar89]. The class ACC0 has
been widely conjectured for over 30 years to be an extraordinarily small class of
functions (it is believed that even the simple MAJORITY function is not contained
in ACC0 [Bar89]).

However, it was only recently that any non-trivial lower bound was shown
against ACC0. In 2011, I showed the first non-trivial lower bound against polyno-
mial-size ACC0: there are functions in the (gigantic) complexity classNEXP that
do not have (quasi) polynomial-size ACC0 circuits [Wil14]. This lower bound
was proved by exploiting a long-known representation of ACC0 in a new way.
In particular, ACC0 circuits can be efficiently translated into depth-two circuits
of symmetric gates; this translation can be used to devise a Satisfiability (SAT)
algorithm for ACC0 circuits that is a notable improvement over exhaustive search,
running in 2n−nǫ

time on 2n
ǫ

-size circuits for sufficiently small ǫ > 0 (depending
on the depth and modulus m of the circuit). Furthermore, such a SAT algorithm
can be used to derive lower bounds against NEXP -complete functions.

Within the last year, the complexity of the hard-for-ACC0 function has been
significantly improved. In this talk, I gave an overview of the recent result [MW18]
(with Cody Murray) that Quasi-NP does not have ACC0 circuits of polynomial
size. This new lower bound was achieved by improving the known generic connec-
tions between SAT algorithms and circuit lower bounds (reducing the complexity
of the hard function obtained), and applying the aforementioned ACC0 SAT al-
gorithm [Wil14].

The main new ingredient in our work is an easy witness lemma for Quasi-NP
and NP , extending the easy witness lemma for NEXP [IKW02]. This lemma
effectively says that if Quasi-NP (or NP ) problems can be decided by very small
circuit families, then every verifier for every Quasi-NP (respectively, NP ) problem
has easy witnesses : every yes-instance of the problem admits a witness that can
be represented by a very small circuit. (Such a structural lemma is needed in the
connection between SAT algorithms and circuit lower bounds.) Within the proof
of the new easy witness lemma, the main ingredient is a new circuit lower bound
for Merlin-Arthur games, which shows there are Merlin-Arthur games (with mild
non-uniformity) which do not have fixed-polynomial circuits, even for relatively
“sparse” sequences of input lengths.
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ETH Zürich

CAB H 36.2
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