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Abstract. In multiscale modeling hierarchy, kinetic theory plays a vital role
in connecting microscopic Newtonian mechanics and macroscopic continuum
mechanics. As computing power grows, numerical simulation of kinetic equa-
tions has become possible and undergone rapid development over the past
decade. Yet the unique challenges arising in these equations, such as high-
dimensionality, multiple scales, random inputs, positivity, entropy dissipa-
tion, etc., call for new advances of numerical methods. This mini-workshop
brought together both senior and junior researchers working on various fast-
paced growing numerical aspects of kinetic equations. The topics include, but
were not limited to, uncertainty quantification, structure-preserving meth-
ods, phase transitions, asymptotic-preserving schemes, and fast methods for
kinetic equations.
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Introduction by the Organisers

The mini-workshop Innovative Trends in the Numerical Analysis and Simulation

of Kinetic Equations was devoted to the numerical novel aspects of kinetic mod-
elling. Kinetic modelling has become one of the most powerful tools in applied
mathematics to bridge microscopic and macroscopic descriptions of many body
systems during the last 30 years, see [12] for a review. The flexibility of the meth-
ods stemming from kinetic and large deviation theories have had numerous appli-
cations in physical, biological and technological problems. They typically involve
a huge number of individuals, showing some sort of “collective behaviour”, from
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which we want to extract average or macroscopic information, see [2, 5, 7, 10, 12]
and the references therein. Some classical and modern instances of applications
are: molecules in gases, electron transport in semiconductor materials, ions and
electrons in plasmas, grains or beads in granular gases, stars or galaxies in astro-
physics, endothelial cells in chemotactic movement for angiogenesis, neurons spike
dynamics in neuroscience, fuel droplets in Diesel engines, dust particles in atmo-
spheric pollution, animals in a swarm, agents in an economic market, pedestrians
strolling around complex building geometries...

This diversity of applications should not hide the common underlying methods,
models and structural equations derived in all of these problems. Not only the
beauty of applications but also the inherent mathematical difficulty of these models
have attracted the attention of leading mathematicians from the modelling, analy-
sis and numerical viewpoints as international scientific databases demonstrate. In
all of these models, a fine study of the stability properties, the long-time asymp-
totics [12], the numerical methods and their simulation in the applications are
relevant questions [7].

The individual behaviour of the “particles” is typically modelled via stochas-
tic or deterministic ODEs from which one obtains mesoscopic descriptions based
on kinetic type PDEs, while the average dynamics is usually described via con-
tinuum mechanics systems of hyperbolic, diffusive, or hydrodynamic type. The
interplay between the long- and short-range interactions, transport and diffusion,
and their nonlocal and nonlinear features are the main mathematical difficulties
in understanding equilibrium states, their stability and asymptotic analysis.

On the other hand, the relation between kinetic equations and nonlinear non-
local aggregation diffusion equations appears at the level of homogeneous kinetic
models and Fokker-Planck type equations in which the exchange of different meth-
ods and techniques has recently provided important advances [1, 4, 8]. Hydrody-
namic models are usually derived from kinetic equations via moment closures or
via asymptotic limits. Nevertheless, plenty of challenging related questions remain
at the hydrodynamic and kinetic description levels.

Finally, the development of numerical schemes for both the microscopic and
the kinetic level descriptions [7] faces the curse of the high dimensionality of the
problems, not to mention the intricate structure of the convolution-like operators
involved. The connection to macroscopic problems is then obtained through as-
ymptotic limits, sometimes performed even at the level of the numerical schemes.
These asymptotic preserving schemes are certainly a strategy to attack the re-
duction of computational cost at the kinetic level while keeping track of the mi-
croscopic dynamics if needed. On the other hand, numerical discretisations of
macroscopic equations should reflect their structural properties. Therefore, one
natural idea is to take advantage of the gradient flow structure in the macro-
scopic equations to construct numerical schemes based on calculus of variations or
optimal transport viewpoint.

The mini-workshop Innovative Trends in the Numerical Analysis and Simula-

tion of Kinetic Equations, organized by Jose A. Carrillo (London), Martin Frank
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(Karlsruhe), Jingwei Hu (West Lafayette), and Lorenzo Pareschi (Ferrara) was
well attended by 17 participants, including both junior and senior researchers and
3 females. We brought researchers working on various numerical aspects of kinetic
modelling, their numerical analysis and their applications to exchange ideas and
promote collaborations. Every participant contributed a talk which makes a total
of 17 talks. In particular, there was a joint session on Thursday that gathered
all the participants from the three mini-workshops held concurrently in the same
week (all focused on numerics). Antoine Cerfon from our workshop gave a talk on
kinetic simulation of plasmas in the joint session.

Several topics on various numerical aspects of kinetic equations were addressed
in the mini-workshop. Here is a brief summary.

Uncertainty quantification (UQ) for kinetic equations. The kinetic equa-
tions often contain uncertainties in their collision kernels or scattering coefficients,
initial or boundary data, forcing terms, geometry, etc. Quantifying the uncer-
tainties in kinetic models have important engineering and industrial applications.
There was a big emphasis in the mini-workshop on this topic. Specifically, the
opening talk by Shi Jin conducted the sensitivity analysis for kinetic equations and
used it to prove the spectral convergence of the stochastic Galerkin (sG) method.
The talks by Giacomo Dimarco and Lorenzo Pareschi focused on the Monte Carlo
(MC) method, where a control variate approach was introduced to reduce the vari-
ance of standard MC techniques. Finally, the talk by Mattia Zanella considered
the UQ for kinetic equations arising in collective dynamics and a hybrid sG-MC
method was presented.

Structure-preserving methods for kinetic equations. Kinetic equations
model the time evolution of the probability density function (PDF) and is usu-
ally endowed with an entropy functional. As such, the numerical methods that
can preserve the properties of the solution, e.g., positivity, conservation, entropy-
decay, are highly-desirable. Furthermore, the kinetic equations are connected to
macroscopic fluid equations as the Knudsen number (ratio of the mean free path
and typical length scale) goes to zero. A numerical scheme that can capture the
fluid limit without resolving the small scale, i.e., asymptotic-preserving (AP), is
also attractive, especially for handling multiscale problems. Several talks in the
mini-workshop focused on the design of structure-preserving methods for kinetic
equations. Jingwei Hu introduced a time discretization method for a class of stiff
kinetic equations that is both positivity-preserving and AP. Thomas Rey proposed
a finite volume scheme for the linear kinetic equation that is able to capture the
solution in long time and diffusive limit. Both Li Wang and Jose A. Carrillo stud-
ied a general nonlinear nonlocal Fokker-Planck type equation with a gradient flow
structure: Li presented an optimization method based on Wasserstein metric and
Jose presented a finite volume method. Both approaches are able to preserve the
positivity and energy decay of the solution. Finally Giovanni Russo introduced
a high-order semi-Lagrangian method for the BGK and Vlasov-Poisson equation
whose key property is the conservation of mass.
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Fast deterministic methods for kinetic equations. A prominent feature
of many kinetic equations, for instance, the Boltzmann equation, is a nonlinear,
nonlocal, high-dimensional collision operator. Numerically approximating these
operators has been a big challenge in science and engineering for decades, and
the Monte Carlo based stochastic method has been historically popular due its
low complexity and simplicity. In recent years, the deterministic numerical meth-
ods (e.g., spectral method, discontinuous Galerkin (DG) method) have seen their
revival as the computing power grows. We have two talks in our mini-workshop
addressing the deterministic approximation of the Boltzmann type equations. The
talk by Ralf Hiptmair reported the recent progress of constructing finite element
approximation of the Boltzmann equation. The talk by Zheng Ma introduced a
fast Fourier spectral method for the inelastic Boltzmann collision operator.

Numerical methods in plasma physics. Kinetic description plays an impor-
tant role in plasma physics where the underlying equation is the Vlasov-Poisson
(or Maxwell) equations. If the collision is desired (for example, in hot plasmas),
a term such as the Fokker-Planck or Landau operator would be added as well.
This mini-workshop gathered both mathematicians and plasma physicists to dis-
cuss many challenging problems in plasma simulations. The talk by Francis Filbet
addressed the asymptotics of the Vlasov equation in a strong magnetic field. The
talk by Luis Chacon focused on the collisional plasmas. The talk by Antoine
Cerfon introduced a sparse grid technique to speed up large scale computations.

Other topics. A few other topics were also presented. Axel Klar’s talk was on the
derivation of coupling conditions in a domain decomposition method in networks.
Qin Li’s talk focused on the inverse problem aspect of kinetic equations. Martin
Frank’s talk proposed a new moment closure method to reduce the dimension of
kinetic equations.

Summary. The aims of the conference were all achieved, new collaborations were
established between different groups present in the workshop, and the results will
be seen in the next following years in terms of common publications in this thriving
area of research in Numerical Analysis of PDEs.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Hypocoercivity based sensitivity analysis for multiscale kinetic
equations with uncertainties

Shi Jin

In this talk we will study the generalized polynomial chaos-stochastic Galerkin
(gPC-SG) approach to kinetic equations with uncertain coefficients/inputs, and
multiple time or space scales, and show that they can be made asymptotic-
preserving, in the sense that the gPC-SG scheme preserves various asymptotic
limits in the discrete space. This allows the implementation of the gPC meth-
ods for these problems without numerically resolving (spatially, temporally or by
gPC modes) the small scales. Rigorous analysis, based on hypocoercivity of the
collision operator, will be provided for general kinetic equations to prove uniform
convergence toward the local or global equilibrium, and the spectral convergence
of the gPC-SG method.

Kinetic layers and coupling conditions for hyperbolic PDEs on
networks

Axel Klar

(joint work with Raul Borsche)

Networks of hyperbolic PDEs arise in different applications, e.g. modeling water-
or gas-networks, road traffic or the human circulatory system. In this talk a
new approach for deriving coupling conditions based on an underlying kinetic
description is discussed. Starting from the kinetic equation on the network we
derive coupling conditions for the macroscopic limit equations via an analysis of
kinetic half space problems

v∂xϕ = Q(f) , x ∈ [0,∞] .

Combining such half-space problems for all edges α connected to a node, leads to
a fix-point problem at each node involving the Albedo operator A. This opera-
tor gives the outgoing solution of a half-space problem depending on the ingoing
solution bα. The fix point problem reads for outward oriented edges α

bα(v) =
∑

α′

cαα′A[bα
′

](−v), v > 0.

Solving this problem approximately and determining, in particular, the values at
∞ yields finally the coupling conditions for the corresponding macroscopic equa-
tions. We consider linearized BGK equations and simple hyperbolic relaxation
models and their limit equations, i.e. the wave equation and the nonlinear Burg-
ers’ problem on networks and discuss more complicated nonlinear hyperbolic relax-
ation systems. Numerical comparisons between the solutions of the macroscopic
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equation and the kinetic solution show the properties of the different coupling
conditions.
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Asymptotics of the three dimensional Vlasov equation in the large
magnetic field limit

Francis Filbet

(joint work with Luis Miguel Rodrigues and Hamed Zakerzadeh)

Since fusion configurations involve very hot plasmas, they typically require a care-
ful design to maintain fast moving particles inside the core of the device on suffi-
ciently long times. In the magnetic confinement approach [1, 7, 11], in particular
in tokamak plasmas, a strong external field is applied to enforce the oscillatory
nature of the fast motions.

Various models are in use to describe such phenomena. In the kinetic modeling,
the unknowns are the number densities of particles, f ≡ f(t,x,v) depending on
time t ≥ 0, position x ∈ Ω ⊂ R3 and velocity v ∈ R3. Such kinetic models pro-
vide an appropriate description of turbulent transport in a fairly general context,
but in fusion configurations their numerical simulations require to solve a stiff
six-dimensional problem, leading to a huge computational cost. To bypass this
obstacle, it is classical — see for instance [8] — to use reduced asymptotic models
that describe only the slowest part of the plasma dynamics hence effectively re-
ducing both the stiffness of the problem and the number of variables (since fastest
variables are omitted). Over the years, due to its rich and fundamental nature,
the physically-based derivation of such models has grown as a — still very active
— field of its own, often referred to as gyrokinetics. Besides the already mentioned
general monographs [1, 7, 11, 16, 17], the reader may consult [3, 12] and references
therein as more specialized entering gates to the field.

Despite considerable efforts in recent years, concerning mathematically rigor-
ous derivations from collisionless kinetic equations, unfortunately the state of art
is such that one must choose between linear models that neglect couplings due to
self-consistent fields or nonlinear ones set in a deceptively simple geometry. See for
instance the introductions and bibliographies of [10] for relatively recent panora-
mas on the question. For instance, for the kind of problem considered here, on the
nonlinear side of the literature the most significant mathematical result — which



Innovative Trends for Kinetic Equations 3319

requires a careful analysis — is restricted to a two-dimensional setting with a con-
stant magnetic field and interactions described through the Poisson equation, and
yet validates only half of the slow dynamics; see [19], building on [9] and recently
revisited in [15].

We consider here a plasma confined by a strong unsteady inhomogeneous mag-
netic field without any a priori geometric constraint but, in order to allow for
such a generality, we do neglect effects of self-consistent fields. The plasma is thus
entirely modeled with a scalar linear kinetic equation, where the unknown is one
of the number densities of particles. The approach that we follow focuses on the
characteristic equations associated with the kinetic conservation law. By itself
the study of those equations may follow the classical roadmap of the averaging of
ordinary differential equations, as expounded in [20]. Yet, here, beyond the body
of work already required to follow this road in usual ODE problems, a careful
track of the dependence of averaging estimates on initial data, living here in an
unbounded phase space, is necessary so as to derive asymptotics for the solutions
of the original partial differential equations problem.

To be more specific, the Lorentz force term in our original nondimensionalized
kinetic equation is scaled by a large parameter, 1/ε, where ε stands for the typical
cyclotron period, i.e. the typical rotation period of particles about a magnetic field
line (or Larmor rotation). The dynamical time scales we focus on are in any case
much larger than the cyclotron period and we establish asymptotic descriptions
in the limit ε → 0. As is classical in the field, we distinguish between short-
time scales that are O(1) with respect to ε, and long time scales that are ∼ 1/ε
in the limit ε → 0. Correspondingly, slow dynamics refer to dynamics where
typical time derivatives are at most of order O(1) on short-time scales, and at
most of order O(ε) on long-time scales so that on long time scales two kinds
of fast dynamics may co-exist, principal ones at typical speed of order 1/ε and
subprincipal ones at typical speed of order 1; see for instance [4] for a description
of those various oscillations in a specific class of axi-symmetric geometries, without
electric field and with a magnetic field nowhere toroidal and whose angle to the
toroidal direction is also independent of the poloidal angle. With this terminology
in hands, our results may be roughly stated as the identification and mathematical
proofs of

(1) a second-order — that is, up to O(ε2) — description of the slow dynamics
on short time scales but in arbitrary geometry;

(2) a first-order description of the slow dynamics on long time scales but in
an axi-symmetric geometry with a magnetic field everywhere poloidal and
an electric field everywhere orthogonal to the magnetic field.

The geometry of the latter is very specific and the proof of such a description is
mostly carried out here to illustrate that the short-time second-order description
contains all the ingredients to analyze long-time dynamics at first-order. Note
that in any case, on long-time scales some restrictions are indeed necessary to
ensure that sub-principally fast dynamics do not prevent long-time confinement
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and are of oscillatory type so that the issue of the identification of a long-time
slow dynamics becomes meaningful.

A key feature of our analysis that underpins a treatment of essentially arbi-
trary fields is that we make no explicit use of any geometric structure, neither
Hamiltonian (see for instance [2, 14]) nor Lagrangian (see [18]). The main role of
these structures in the averaging process is to ease the identification of terms that
are asymptotically irrevelant as time-derivatives of small terms. Instead, in the
present contribution this explicit identification hinges heavily on the linearity of
principal oscillations. As an upset, besides generality, we gain the freedom to use
change of variables that are also arbitrary and to focus on slow variables instead
of carrying geometric constraints all along.

A key motivation for our methodology is that in the design of well-adapted
numerical schemes, that capture the slow part of the dynamics even with dis-
cretization meshes too rough to compute stiff scales, one might correspondingly
aim at large classes of schemes of arbitrary order; see for instance [5, 6, 13].
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Polar Spectral Polynomial Schemes for Boltzmann Evolutions

Ralf Hiptmair

(joint work with Philipp Grohs and Simon Pintarelli)

Boltzmann evolution. We consider the spatially inhomogeneous transient Boltz-
mann equation (kn > 0 the Knudsen number)

∂tf + v ·∇xf =
1

kn
Q(f, f) on [0, T ]× Ω ,(1)

for a time-dependent distribution function f = f(t,x,v) defined on 2-dimensional
phase space Ω := D × R

d, D ⊂ R
d a bounded “physical domain”. The bilinear

collision operator Q is of the usual form with a collision kernel satisfying Grad’s
cut-off assumption so that it can be split into a gain and loss term. We remind
that the collision operator Q(f, f)

(Q1) involves integration over Rd × S
d−1, Sd−1 the sphere in R

d,
(Q2) does neither depend on the spatial variable x nor on time t,
(Q3) and commutes with translations and rotations in velocity direction v.

The partial differential equation (1) has to be supplemented with boundary con-
ditions on the inflow boundary Γ− := {(x,v) ∈ ∂D × R

d, v · n(x) < 0}, n the
exterior normal at ∂D. Direct inflow conditions, and specular or diffusive reflection
are commonly employed.

Tensor-product Galerkin discretization. An approximation of the distribu-
tion function is sought in a finite-dimensional tensor-product space Vx × Vv with
Vx ⊂ L2(D) and Vv contained in the Schwarz space S(Rd) of smooth rapidly de-
caying functions. For fixed v, (1) represents a pure linear transport equation and
stabilization is required for any piecewise polynomial finite element discretization
in physical space.

In [3] we opted for least-squares stabilization of the transport operator com-
bined with split-step timestepping. Let M be a finite-element mesh of D. The
distribution function is approximated in VΩ := P0

n(M)×Vv with P0
n(M) the space

of continuous M-piecewise polynomials of total degree n. Then a single timestep
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f
(n−1)
h → f

(n)
h of size τ > 0 amounts to solving [7, Ch. 3]

(I): f∗
h = argmin

fh∈VΩ

∥∥∥∥
1

τ
(fh − f

(n−1)
h ) + v ·∇xfh

∥∥∥∥
2

L2(D×Rd)

,

(II)

∫

D

∫

Rd

f
(n)
h − f∗

h

τ
Φdvdx =

∫

D

∫

Rd

Q(f∗
h , f

∗
h)Φdvdx ∀Φ ∈ VΩ .

(2)

The second step is purely local in space und involves decoupled updates for indi-
vidual basis functions of P0

n(M).
In [5, 6] the authors propose spatial semi-discretization by means of an upwind

discontinuous Galerkin method Based on a mesh M of D, they choose Vx =
P−1
n (M), the space of discontinuous M-piecewise polynomials of total degree n

and arrive at the semi-discrete variational formulation: seek fh ∈ Pn(M) × Vv

such that [5, Sect. 3]

(3)
∑

K∈M

∫

K

∫

Rd

∂tfhΦ− fh∇xΦdvdx+

∫

∂K

∫

Rd

F̂ (x,v)Φ dvdS(x)

=

∫

D

∫

Rd

Q(fh, fh)Φ dvdx ∀Φ ∈ Pk(M)× Ṽv ,

where Ṽv is the trial space in velocity direction, and F̂ is the upwind numerical flux :

for x ∈ ∂K ∩ ∂K ′, K,K ′ cells of the mesh, F̂ (x,v) agrees with fh(x,v)n(x) · v
where fh is take from that cell, for which v points in the direction of the outward

normal n. On ∂D the boundary conditions enter F̂ . Temporal discretization of
(3) can rely on explicit Runge-Kutta methods.

Approximation in velocity. Based on [1, Sect. 4], in [3, Sect. 3] the choice for
Vv was Gaussian-modulated polynomials of fixed total degree

Vv := {v 7→ exp(− 1
2 ‖v‖

2)p(v), p ∈ Pn(R
2)} ,

dimVv =

(
n+ d

d

)
= O(nd) .

(4)

The same space is used as trial space in (2). The work [2] also relies on the
trial space from (4), but, in the spirit of Petrov-Galerkin approaches, uses plain

polynomials as test functions: Ṽv = Pn(R
d). A standard polynomial test space is

also embraced in [6]. In this work, in the context of (3) and breaking the simple
tensor-product structure, the velocity trial spaces are chosen differently for each
mesh cell K ∈ M as Maxwellian-modulated polynomials:

Vk(K) := {v 7→ exp
(
− 1

2

(v − vK

TK

))
· p(v), p ∈ Pn(R

d)} ,(5)

where vK and TK are cell-local approximations of momentum density and tem-
perature that are dynamically adjusted during timestepping.

Remark. Using a polynomial test spaces in velocity of degree ≥ 2 ensures the
conservation of collision invariants in semi-discrete spatially homogeneous Boltz-
mann evolutions [2, Sect. 3.1.3].
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Basis functions for Vv. Assuming exact arithmetic the choice of basis functions
for Vv does not affect the solution. Yet, it makes a huge difference for numerical
stability and computational efficiency. We discuss the approach of [3] in two
dimensions (d = 2). For Vv as in (4) we use the L2(Rd)-orthogonal polar Laguerre

basis, here written in 2D polar coordinates, [3, Sect. 3]

Vv = span



(r, ϕ) 7→ Ψa

k,j(r, ϕ),
k = 0, . . . , n ,
j = 0, . . . ⌊k/2⌋ ,
a ∈ {sin, cos} ,



(6a)

Ψa
k,j(r, ϕ) := e−

1

2
r2r2j ·

{
L
(2j)
k/2−j(r

2)a(2jϕ) for even k ,

rL
(2j+1)
(k−1)/2−j(r

2)a((2j + 1)) for odd k ,
(6b)

where L
(α)
ℓ are the associated Laguerre polynomials. Beside orthogonality the big

benefit of this basis is that the bulk of the O(n6) entries of the third-order tensor

Q :=

[∫

R2

Q(bj , bk)(v)bi(v) dv

]N

j,k,i=1

(7)

will vanish: only O(n5) are non-zero [3, Sect. 4.3]. This also determines the
asymptotic effort for the evaluation of the discrete collision operator.

Remark. Thanks to (Q2) the same precomputed tensor Q can be used every-
where in space and for all timesteps.

The number of basis functions needed for the accurate evaluation of the collision
tensor can be reduced substantially by recentering the local velocity approximation
to momentum = 0. This shift in velocity space entails transforming the basis
expansion coefficients. This can be done efficiently with an asymptotic effort
of O(n3) via representations through tensor products of Hermite polynomials [7,
Sect. 2.1].

Conclusion. Gaussian/Maxwellian-modulated polynomial spectral approxima-
tion schemes of distribution functions in velocity usually offers exponential con-
vergence in the polynomial degree. Their computational cost scales worse than
that for steady state preserving Fourier spectral methods with FFT-boosted fast
approximate evaluations. Yet, for spatially inhomogeneous Boltzmann evolutions
modulation with spatially varying local Maxwellians [4, Sect. 4.4] may pave the
way for extremely efficient approximation in v-direction, which promises to offset
the higher effort needed for the evaluation of the discrete collision operator [6].
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Optical tomography and the Calderéon problem

Qin Li

(joint work with Ke Chen, Ru-Yu Lai, Andrew Stuart, Gunther Uhlmann, Li
Wang)

It is a summary talk on a number of works in the same direction. Optical tomogra-
phy and the Calderéon problem are medical and mathematical terms for the same
problem: photons (high/low energy) are sent into biological tissues and measure-
ments are taken at the surface, and with the incoming and outgoing light intensity
data, one can reconstruct optical properties of the bio-tissue. However, it has
been longly known that high energy photons give sharp reconstruction while low
energy photons give blurred image. We address the reason in this talk. The for-
ward model for photon propagation is the radiative transfer equation, and in small
Knudsen number (Kn) regime, photon particles scatter frequently, and mathemat-
ically, the radiative transfer equation (RTE) is asymptotically equivalent to the
diffusion equation (DE). Correspondingly, the albedo operator that maps incom-
ing to outgoing data for RTE converges to the Dirichlet-to-Neumann (DtN) map
for DE. Generally speaking, the inverse problem for the radiative transfer equa-
tion is well-posed and well-conditioned, while the inverse problem for the limiting
diffusion equation (the Calderéon problem) is severely ill. We try to understand
the connection. In the linearized setting (work with Chen and Wang): we study
the conditioning of the linearized albedo operator, and it can be proved that the
conditioning of the operator blows up algebraically in Kn; In the non linear setting
(work with Lai and Uhlmann): we separate singularities of the albedo operator and
compare it with X- ray transform, upon which uniqueness is shown. We also show
that the difference between the albedo operator and the X-ray solution enlarges
exponentially fast in the small Kn regime, which leads to exponential instabil-
ity. Numerically, both Bayesian formulation and PDE-constraint minimization
are applied. Bayesian formulation studies the posterior distribution of the to-be-
reconstructed parameter given the collected data and the visualization is done
through Markov-chain Monte Carlo (in the work with Newton and Stuart), and
the PDE-constraint minimization looks for the smallest mismatch upon Tikhonov
regularization (work with Chen).
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Multiscale, Conservative, Implicit Algorithms for the Multispecies
Vlasov-Fokker-Planck-Landau Equation

Luis Chacón

(joint work with W. Taitano, A. Simakov)

Kinetic physics in semi-collisional plasmas is governed by the multispecies Vlasov-
Fokker-Planck-Landau equation, which is a high-dimensional (three physical+three
velocity+time), multiscale set of equations supporting very disparate time and
length scales. The Fokker-Planck-Landau [1, 2] collision operator is nonlinear
and nonlocal, and features strict conservation invariants in the continuum (mass,
momentum, and energy) that must be enforced numerically for asymptotic well-
posedness and long-term accuracy. While this equation system has attracted a lot
of attention in the literature over the years (see e.g. [3]), a conservative multiscale
algorithm capable of spanning temporal and spatial scales has not been available.

We introduce a fully conservative, adaptive, fully implicit algorithm for the
multispecies Vlasov-Rosenbluth-Fokker-Planck equation in 1D-2V. The approach
achieves exact numerical conservation by nonlinearly enforcing the collision oper-
ator symmetries and by enslaving numerical truncation errors in the Vlasov equa-
tion [4–7]. Positivity is enforced by taking advantage of the advection-diffusion
structure of the Fokker-Planck collision operator, and by careful advection of the
Vlasov equation. The approach features a moving mesh in physical space [7], and
an adaptive scheme in velocity space [5,7] that optimally resolves the distribution
function locally regardless of temperature and bulk flow spatio-temporal dispari-
ties. Solver-wise, the code relies on optimal multigrid-preconditioned Jacobian-free
Newton-Krylov strategies [8], which we have generalized to deal with multiple ion
species [4].

Our proposed algorithm has been specifically designed to deal with challenges
present in Inertial Confinement Fusion (ICF) capsule simulations. It treats ions
kinetically as described above, and electrons as a quasineutral, ambipolar fluid.
We will provide a number of numerical examples demonstrating the accuracy and
efficiency of the scheme, and we will use it to provide first insights into the impor-
tance of kinetic physics in the fusion reactivity of ICF capsules [9].
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A second-order asymptotic-preserving and positivity-preserving
exponential Runge-Kutta method for a class of stiff kinetic equations

Jingwei Hu

(joint work with Ruiwen Shu)

We consider the kinetic equations of the form

(1) ∂tf + v · ∇xf =
1

ε
Q(f), t ≥ 0, x ∈ Ω ⊂ R

d, v ∈ R
d,

where f = f(t, x, v) is the one-particle probability density function (PDF) of time
t, position x, and particle velocity v. Q is the collision operator which acts only
in the velocity space and models the interactions between particles. Examples of
Q include: the Boltzmann collision operator (a nonlinear integral operator), the
BGK operator (a relaxation type operator), the kinetic Fokker-Planck operator (a
diffusion type operator), among others. ε is the Knudsen number defined as the
ratio of the mean free path and typical length scale. The magnitude of ε indicates
the degree of rarefaction of the system. When ε is small, collisions happen very
frequently so that the system is close to the fluid regime. In fact, one can derive
the compressible Euler equations from (1) as the leading-order asymptotics by
sending ε → 0.

In this work, we introduce a second order time discretization method for the
equation (1). The method is asymptotic-preserving (AP) – can capture the Euler
limit without numerically resolving the small Knudsen number; and positivity-
preserving – can preserve the non-negativity of the solution which is a PDF for
arbitrary Knudsen numbers. The method can be applied to a large class of stiff
kinetic equations including the collision operators mentioned above. Furthermore,
we show that when coupled with suitable spatial discretizations the fully discrete
scheme satisfies an entropy-decay property.

The AP schemes have undergone rapid development over the past decades (see
[1,2] for an overview). To handle the kinetic equations of the form (1), essentially
one needs some implicit treatment of the stiff collision term. This is possible
under the general framework of IMEX schemes [3] or exponential integrators [4].
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However, the task becomes highly non-trivial if the positivity is also required even
for the second order scheme. In an earlier work [5], we developed an IMEX scheme
that is both AP and positivity-preserving. Yet, it relies on a correction step which
applies only to the BGK operator. The method developed in this work is more
general and is based on a new formulation of the exponential Runge-Kutta method.
In a nutshell, it can be viewed as a delicate splitting between the convection and
collision steps. Since the scheme is unconventional, it does not fit into any existing
category of the AP schemes. Hence an interesting problem is to seek some high
order extension of the method.
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Multi-scale control variate methods for uncertainty quantification in
kinetic equations

Giacomo Dimarco

(joint work with Lorenzo Pareschi)

Kinetic equations play a major rule in modeling large systems of interacting par-
ticles. Uncertainties may be due to various reasons, like lack of knowledge on
the microscopic interaction details or incomplete informations at the boundaries.
These uncertainties, however, contribute to the curse of dimensionality and the de-
velopment of efficient numerical methods is a challenge. In this talk, we consider
the construction of novel multi-scale methods for such problems which, thanks to
a control variate approach, are capable to reduce the variance of standard Monte
Carlo techniques.

We consider kinetic equations of the general form

(1) ∂tf + v · ∇xf =
1

ε
Q(f, f),

where f = f(z, x, v, t), t ≥ 0, x ∈ D ⊆ R
dx , v ∈ R

dv , dx, dv ≥ 1, and z ∈ Ω ⊆ R
dz ,

dz ≥ 1, is a random variable. The parameter ε > 0 is the Knudsen number and the
particular structure of the interaction term Q(f, f) depends on the kinetic model
considered. If z ∈ Ω is distributed as p(z) we denote the expected value by

(2) E[f ](x, v, t) =

∫

Ω

f(z, x, v, t)p(z) dz.
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The standard Monte Carlo estimator, given M independent identically distributed
(i.i.d.) samples fk(x, v, t), k = 1, . . . ,M of the solution to the Boltzmann equation,
reads

(3) EM [f ] =
1

M

M∑

k=1

fk(x, v, t).

where a standard estimation, in a suitable norm, is

(4) ‖E[f ]− EM [f ]‖ ≤ CσfM
−1/2,

with σf is the norm of the variance. A variance reduction strategy can be obtained
by modifying the Monte Carlo estimator via the following control variate estimator

(5) Ẽλ
M [f ](x, v, t) =

1

M

M∑

k=1

fk(x, v, t) − λ

(
1

M

M∑

k=1

f̃k(x, v, t)− f̃ (x, v, t)

)
.

where f̃(z, x, v, t) is the solution of a simplified model, whose evaluation is signifi-

cantly cheaper than computing f(z, x, v, t) and where f̃(x, v, t) = E[f(·, x, v, t)] or

an opportune accurate approximation of the same quantity. Finally, f̃k(x, v, t),
k = 1, . . . ,M are independent identically distributed samples. For example,
f̃(z, x, v, t) can be the solution of the BGK approximation

(6)
∂f̃

∂t
+ v · ∇xf = ν(f̃∞ − f̃)

with ν a relaxation frequency and f̃∞ the local equilibrium state. For this simpli-
fied model, we can assume that the expected value of the control variate E[f̃ ](v, t)
can be computed with much higher accuracy at a comparable cost.

Thus, if we now use the estimator

(7) E[f ] ≈ E[f̃ ] + EM [f − f̃ ]

we have an error like

‖E[f ](·, x, v, t)− E[f̃ ](·, x, v, t)− EM [f − f̃ ](·, x, v, t)‖ ≃ σf−f̃M
−1/2,

where one can show that σf−f̃ ≪ σf in many situations.

References

[1] G. Dimarco and L. Pareschi, Multi-scale control variate methods for uncertainty quantifi-
cation in kinetic equations, arXiv:1810.10844.

[2] G. Dimarco and L. Pareschi, Multi-scale variance reduction methods based on multiple con-
trol variates for kinetic equations with uncertainties, arXiv:1812.05485.



Innovative Trends for Kinetic Equations 3329

Primal dual methods for Wasserstein gradient flows

Li Wang

(joint work with Jose Carrillo, Katy Craig, Chaozhen Wei)

We develop a variational method for nonlinear equations with a gradient ow struc-
ture. Such equations arise in applications of a wide range, such as porous median
flows, material science, animal swarms, and chemotaxis. Our method builds on
the JKO framework [1], which evolves the equation as a gradient ow with respect
to the Wasserstein metric. We further reformulate the Wasserstein distance into
a convex optimization subject to a linear PDE constraint. As a result, we end up
with one nested structure of optimization problem with two time scales: one ac-
counts for the inner time scale in the dynamic formulation of Wasserstein distance,
and the other is the outer time step used in the JKO scheme. We adopt a recent
primal dual three operator splitting scheme [2] with provable convergence to solve
the

nal optimization problem. Thanks to the variational structure, our method
has a built-in positivity preserving, entropy decreasing properties, and overcomes
stability issue due to the strong nonlinearity and degeneracy. Furthermore, our
method is massively parallelizable, and thus extremely efficient in high dimensions.
Upon discretization of the PDE constraint, we also prove the Γ-convergence of the
fully discrete optimization towards the continuum JKO scheme.
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Hypocoercivity and diffusion limit of a finite volume scheme for
linear kinetic equation

Thomas Rey

(joint work with Marianne Bessemoulin-Chatard, Maxime Herda)

In this work, we are interested in the asymptotic analysis (large time/small ε) of a
finite volume scheme for approximating the solutions to the following scaled, one
dimensional linear kinetic equation

(1)





ε
∂f ε

∂t
+ v

∂f ε

∂x
=

1

ε
Q(f ε),

f ε(0, x, v) = f0(x, v) ≥ 0 , x ∈ T, v ∈ R,

with either Fokker-Planck

QFP (f)(v) = ∂v (∂vf + vf) ,
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or linearized BGK collision operators

QBGK(f)(v) = ρM(v)− f(v), ρ =

∫

R

f(v) dv .

Both collision operators admit a gaussian equilibrium M(v).
When ε → 0, the first moment in velocity ρε of the solutions to this type of

equation converges toward a solution ρ to the classical heat equation

∂ρ

∂t
− ∂x(D∂xρ) = 0 , x ∈ T.

Moreover, it is known that these models exhibit an hypocoercive behavior, namely
that there are constants κ > 0 and C ≥ 1 such that the solution satisfies

‖f ε(t)−mfM‖X ≤ C‖f0 −mfM‖Xe
−κt,

where

mf =

∫∫

R×R

f0 dxdv ,

and X is some appropriate functional space. The constants C and κ can sometimes
be chosen so that the estimate holds uniformly for small ε.

In the work [1], we propose Finite Volume schemes for solving numerically (1)
for both the BGK and Fokker-Planck cases. Thanks to appropriate uniform esti-
mates valid in the fully discrete setting, we establish that the proposed schemes
are Asymptotic-Preserving [3]: in the diffusive limit ε → 0, the kinetic scheme
provides a convergent numerical scheme for the limit macroscopic heat equation.
Moreover, we adapt to the discrete framework the hypocoercivity method proposed
by J. Dolbeault, C. Mouhot and C. Schmeiser in [2] to prove the exponential re-
turn to equilibrium of the approximate solution. We obtain decay estimates that
can be proved to be uniform in the diffusive limit. In these two aspect, we prove
that our numerical schemes mimick the asymptotic properties of the continuous
kinetic equation. Finally, we present an efficient implementation of the proposed
numerical schemes, and perform numerous numerical simulations assessing their
accuracy and efficiency in capturing the correct asymptotic behaviors of the mod-
els, as shown in Figures 1 and 2.
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Figure 1. Comparison of the approximate solution to the heat
equation (solid line) with the approximate densities obtained with
the kinetic scheme for different ε, at times t = 0.1, 0.2, 0.3 and
10, in the BGK case.

Figure 2. Comparison of the rate of convergence of ‖f −
mfM‖L2(M−1) for different values of ε, in the Fokker-Planck
case, with f0 uniformly distributed in the (x, v)−phase-plane.
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Hierarchical multi-scale control variates methods for kinetic equations
with uncertainties

Lorenzo Pareschi

(joint work with Giacomo Dimarco)

Hyperbolic and kinetic equations with random inputs have attracted a lot of at-
tention in the recent years. Most of the literature on kinetic equations is based
on the use of Stochastic-Galerkin methods based on on generalized Polynomial
Chaos and only recently these problems have been analyzed in the framework of
statistical sampling methods based on Monte Carlo (MC) techniques. We refer to
[1,5,8,9] for recent results and surveys on numerical methods for kinetic equations
and uncertianty quantification.

From a mathematical viewpoint, we consider kinetic equations of the form

∂tf + v · ∇xf =
1

ε
Q(f, f),

where f = f(z, x, v, t), t ≥ 0, x ∈ D ⊆ R
dx , v ∈ R

dv , dx, dv ≥ 1, and z ∈ Ω ⊆ R
dz ,

dz ≥ 1, is a random variable. The parameter ε > 0 is the Knudsen number and the
structure of the interaction term Q(f, f) depends on the kinetic model considered.

Recently in [2, 3] we introduced a control variate technique which takes advan-
tage of the multi-scale nature of the kinetic equation which is capable to strongly
accelerate the slow convergence of MC methods. In this talk we consider this
class of methods in the case of multiple-control variates. More precisely, first
we introduce a standard multiple control variate approach and then consider the
construction of recursive multiple control variate methods based on a hierarchical
structure. A particular attention is devoted to the case of two control variates.
Relations with multi-level Monte Carlo methods [4, 6] and multi-fidelity methods
[7] are also discussed.
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Uncertainty Quantification for Kinetic Equations of Collective
Behavior

Mattia Zanella

Kinetic equations play a leading role in the modelling of large systems of interacting
particles/agents with a proved effectiveness in describing real world phenomena
ranging from plasma physics to socioeconomic dynamics. Their formulation has
often to deal with physical, or even social, forces deduced empirically and of which
we have at most statistical information. Hence, to produce realistic descriptions of
the underlying phenomena it is of paramount importance to consider the presence
of random inputs in the form of uncertain parameters as a structural feature of the
kinetic models and to develop suitable numerical methods to capture admissible
states of the systems [2–4].

In this talk we concentrate on stochastic Galerkin methods for the uncertainty
quantification in aggregation-diffusion equations with nonlocal flux describing the
evolution of the density f = f(θ, x, v, t), θ ∈ IΘ ⊆ R

dθ , x ∈ R
dx , v ∈ R

dv , t ≥ 0,
solution of

∂tf(θ, x, v, t) + v · ∇vf(θ, x, v, t) =

∇v · [B[f ](θ, x, v, t)f(θ, x, v, t) +∇v(D(v)f(θ, x, v, t))] ,

where

B[f ](θ, x, v, t) =

∫

Rdx

∫

Rdv

P (θ, x, x∗, v, v∗)(v − v∗)f(θ, x∗, v∗)dv∗dx∗,

D ≥ 0 is a local diffusion function, and θ takes into account uncertainties in inter-
actions. We develop methods that preserve structural properties of the introduced
kinetic model and that are spectrally accurate in the random space [1,2]. Through
a micro-macro decomposition we are able to capture the long time behavior of the
solution [2]. Furthermore, we introduce novel Monte Carlo generalized polynomial
chaos (MCgPC) methods for which we develop fast algorithms for the evalua-
tions of interactions. In contrast to a direct application of classical uncertainty
quantification methods, which typically lead to the loss of positivity, the proposed
schemes are capable to achieve high accuracy in the random space without losing
nonnegativity of the expected solution. Applications of the developed methods
are presented in the context of social and swarming dynamics.
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Fighting the curse of dimensionality in kinetic simulations of plasmas

Antoine Cerfon

(joint work with M. Landreman, L. Ricketson, T. Sánchez-Vizuet, J. Wilkening)

Background – Motivation
The dynamics of hot diffuse plasmas is given by the Boltzmann equation

(1)
∂f

∂t
+ v · ∇f +

q

m
(E+ v ×B) · ∇vf =

(
∂f

∂t

)

coll

where f(x,v, t) is the phase space distribution function of the plasma at time t, x is
the three-dimensional vector for the position in configuration space, v is the three-
dimensional vector for the position in velocity space, E(x) and B(x) are the long
range electric and magnetic fields, and (∂f/∂t)coll is a quadratic parabolic collision
operator representing binary grazing collisions between charged particles, usually
called the Landau-Fokker-Planck collision operator [1]. The long range E and B
fields are given by Maxwell’s equations, in which the charge density q

∫
R3 fdv and

current density q
∫
R3 vfdv of the plasma are sources (often in addition to external

sources). Here, we have considered for simplicity a plasma composed of a single
species, with particles with charge q and mass m. Solving Eq.(1) numerically
is challenging, because 1) the equation is nonlinear; 2) f is a function of seven
variables; 3) one is often interested in physical phenomena spanning a wide range
of spatial and temporal scales. Even a modest grid resolution for each of the
six phase space dimensions pushes the limits of today’s largest supercomputers.
Properly resolving the dynamics spanning well separated spatial and temporal
scales requires simulations whose run times are measured in tens of millions of
CPU-hours, which means weeks on the largest supercomputers [2].

The curse of dimensionality, i.e. the fact that the computational complexity
of grid based algorithms scales exponentially with the number of dimensions, is
a chief reason for the large run times mentioned above. It spurred the develop-
ment of particle based algorithms, such as the Particle-in-Cell (PIC) scheme, the
most popular particle scheme in plasma physics [3]. In standard particle algo-
rithms, the distribution function f is represented in terms of a finite number of
discrete macro-particles whose trajectories are given by Newton’s laws computed
for self-consistent electromagnetic fields. Different particle schemes rely on differ-
ent methods for computing these fields. In PIC, the charge density and current
density are interpolated from the particle positions to a fixed Eulerian grid, where
they are used to solve Maxwell’s equations. Once the fields are known on the
Eulerian grid, they are interpolated back to the particle positions. The advantage
of PIC compared to a full grid based solver is that the Eulerian grid in PIC is only
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three-dimensional. However, the probabilistic nature of PIC schemes introduces
a statistical noise, which slowly decays as the inverse of the square root of the
number of simulated particles per cell. In the end, although the curse of dimen-
sionality is reduced, the additional statistical error in PIC leads to a computational
complexity which may be worse than for fully grid based solvers [4].

In this presentation, we talked about two recent methods for accelerating the
simulations of plasmas described by Eq.(1). For PIC schemes, we studied the
benefits of using the sparse grids combination technique [5] to reduce the grid
based error as well as the statistical noise. For grid based solvers, we proposed
efficient representations velocity space in simulations of magnetized confined plas-
mas, giving high accuracy with few grid points, and thereby alleviating the curse
of dimensionality.

Noise reduction in PIC simulations via sparse grids
The sparse grids combination technique [5] was invented to reduce the dependence
of computational complexity of PDE solvers on the dimension of the problem.
It is clear that it can be applied in PIC codes to reduce the grid based error
associated with interpolation as well as the calculation of the electromagnetic fields.
Remarkably, we recently showed that the sparse grids combination technique also
eliminated the curse of dimensionality for the particle sampling error. Intuitively,
this can be understood as follows. The combination technique relies on a hierarchy
of grids which each have larger cells than in a regular PIC solver. As a result, for a
given number of macro-particles, each sparse grids computation has more particles
per cell than a standard PIC simulation, resulting in lower overall noise.

We ran numerical tests for standard problems in plasma physics, which con-
firmed the significant noise reduction as compared to a standard PIC scheme.
This often translated to a smaller computation time for a target accuracy, as well
as much smaller memory requirements, since fewer particles had to be tracked.
However, for some of the problems we considered, the noise reduction was not
sufficient for the sparse PIC algorithm to perform better than standard PIC. That
is because the sparse grids combination technique only works effectively for func-
tions with special properties, such as alignment with the axes [7]. When the
plasma developed small scale structures which did not align well with our compu-
tational grid, the grid based error in sparse PIC led to performance which could be
worse than in standard PIC. We are currently exploring adaptive mesh refinement
strategies as well as clever mesh constructions which could address this limitation.

Efficient discretizations for the velocity variablesin grid based solvers
The high dependence of the computational complexity of grid based solvers on
dimension implies that one should seek the most efficient discretization for each
dimension. Accurate solutions of Eq.(1) require an accurate method for the evalu-
ation of velocity integrals, in order to accurately compute the sources for Maxwell’s
equations, and an accurate method for the computation of velocity space deriva-
tives, since (∂f/∂t)coll involves second derivatives in velocity space. In that con-
text, pseudo-spectral collocation methods are appealing.
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For optimal efficiency, the choice of collocation points may be guided by physics
considerations. In magnetically confined plasmas, two elements suggest optimal
choices. First, the presence of a strong magnetic field leads to a strong anisotropy
in the dynamics, and a convenient coordinate system for the velocity variables
is therefore the cylindrical coordinate system (v⊥, ϕ, v‖), where v‖ is the veloc-
ity parallel to the magnetic field. Second, even if the collision term (∂f/∂t)coll
does not dominate the dynamics in Eq.(1), rare collisions are sufficient to drive
a well confined plasma to a Maxwell-Boltzmann distribution at the lowest or-
der [1]. Hermite polynomials provide efficient collocation points for integration
and differentiation of distribution functions close to Maxwell-Boltzmann distribu-
tions for the v‖ variable [8], which can be understood from the fact that these

polynomials are orthogonal with respect to the weight function e−v2

‖ on R. The
perpendicular velocity v⊥ is defined on the interval [0,+∞). Requiring that the

polynomials for v⊥ be orthogonal with respect to the weight function e−v2

⊥ on R
+

leads to the construction of a non-standard family of orthogonal polynomials called
Maxwell polynomials [9–11]. Pseudo-spectral collocation schemes based on these
little known Maxwell polynomials were recently implemented for time-independent
[12] and time-dependent [13] kinetic equations for confined plasmas with collisions,
leading to much improved accuracy as compared to more standard discretization
schemes. The schemes have not yet been applied to the general form of Eq.(1),
but are used in reduced variants of it [14] (for Maxwell polynomials defined on a
finite interval for that particular case). Their merits compared to other methods
remain to be tested in the general Boltzmann setting.
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A regularized entropy-based moment method for kinetic equations

Martin Frank

(joint work with Graham W. Alldredge, Cory D. Hauck)

This abstract is based on the paper [5], and most material has been taken from
that paper.

Kinetic equations model systems consisting of a large number of particles that
interact with each other or with a background medium. These equations evolve
the kinetic density function f : [0,∞)×X × V → [0,∞) according to

(1) ∂tf(t, x, v) + v · ∇xf(t, x, v) = C(f(t, x, ·))(v).

The function f depends on time t ∈ [0,∞), position x ∈ X ⊆ Rd, and a velocity
variable v ∈ V ⊆ Rd. The operator C introduces the effects of particle collisions;
at each x and t, it is an integral operator in v.

The structure of the kinetic equation (1) plays a definitive role in the design
of numerical methods. This structure is induced by properties of the collision
operator C and the advection operator A = ∂t + v · ∇x. Key properties are e.g.
summarized in [5] and include invariant range of f , conservation, collision invari-
ants, hyperbolicity, entropy dissipation, an H-Theorem, and Galilean invariance.

Moment methods encapsulate the velocity-dependence of f in a vector-valued
function

(2) u(t, x) = (u0(t, x), u1(t, x), . . . , un−1(t, x)))

that approximates the velocity averages of f with respect to the vector of basis
functions

(3) m(v) = (m0(v),m1(v), . . . ,mn−1(v)));

that is, ui(t, x) ≃ 〈mif(t, x, ·)〉 for all i ∈ {0, 1, . . . n−1}, where we have introduced
the shorthand notation 〈·〉 =

∫
V
·dv for the velocity integration. The entropy-based

moment method is a nonlinear Galerkin discretization in the velocity variable. Th
principle underlying this method has been first proposed by Jaynes [1] as a method
to select the most likely state of a thermodynamical system having only incomplete
information. It has subsequently been developed in [2] and other papers, and has
become the main concept of rational extended thermodynamics [3].

The entropy closure has the form

(4) ∂t 〈mFu〉+∇x · 〈vmFu)〉 = 〈mC(Fu)〉 ,

where Fu = Fu(t,x)(v) is an ansatz that approximates the distribution function
f and is consistent with the moment vector u. Unlike the trial function in a



3338 Oberwolfach Report 56/2018

traditional (linear) Galerkin method, Fu is not assumed to be a linear combina-
tion of the basis functions in m. Instead, in an entropy-based moment method,
the ansatz is given by the solution of a constrained optimization problem whose
objective function is defined via the kinetic entropy density η. Let

H(g) := 〈η(g)〉 .(5)

Then the defining optimization problem is

(6) min
g∈F (V )

H(g) s.t. 〈mg〉 = u,

where u ∈ Rn and

F (V ) = {g ∈ L1(V ) : Range(g) ⊆ D}.(7)

The appeal of the entropy-based approach to closure is that (4) inherits many
of the structural properties of the kinetic equation (1). These include conserva-
tion, collision invariants, hyperbolicity, entropy dissipation, an H-Theorem, and
Galilean invariance. The invariant range of f can be obtained by a suitable choice
of the entropy.

Although several algorithms to numerically compute the entropy closure have
been designed, each has significant limitations. They require limiters not rigorously
shown to preserve accuracy [4], require spatial reconstructions for every node of
the quadrature in the v variable, rely on an expensive approximate descriptions of
the invariant set (whose concrete description in general remains an open problem),
and all second- or higher-order methods so far have been limited to explicit time
integration.

We present a new entropy-based moment method for the velocity discretization
of kinetic equations. This method is based on a regularization of the optimization
problem defining the original entropy-based moment method, and this gives the
new method the advantage that the moment vectors of the solution do not have
to take on realizable values. We show that this equation still retains many of the
properties of the original equations, including hyperbolicity, an entropy-dissipation
law, and rotational invariance. The cost of the regularization is mismatch between
the moment vector of the solution and that of the ansatz returned by the regu-
larized optimization problem. However, we show how to control this error using
the parameter defining the regularization. This suggests that with proper choice
of the regularization parameter, the new method can be used to generate accurate
solutions of the original entropy-based moment method, and we confirm this with
numerical simulations.
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A Fast Spectral Method for the Inelastic Boltzmann Collision
Operator

Zheng Ma

(joint work with Jingwei Hu)

In this talk, we present a simple fast Fourier spectral method for the inelastic
Boltzmann collision operator, with its application to one of the widely used models
of granular gases [1], the inelastic Boltzmann equation with a heating source.
Compared to the direct Fourier spectral method [2], our fast algorithm reduces
the computational complexity from O

(
N6
)
to O

(
MN4 logN

)
per evaluation of

the collision operator in three dimensions, where N is the number of discretization
points in each velocity dimension and M ≪ N2 is the number of quadrature points
used on the unit sphere. We test the numerical accuracy and efficiency of the
proposed method in both two dimensional and three dimensional examples, where
in the latter case the famous Haff’s cooling law for granular flows is successfully
recovered.

Figure 1. Haff’s cooling law by our fast spectral method.
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Phase transitions & fully discrete energy decaying schemes for
nonlinear Fokker-Planck equations

José Antonio Carrillo

Phase transitions driven by noise are important to understand the robustness of
asymptotic properties for particular solutions of kinetic equations. They encounter
applications in many instances of mathematical physics and they have lately re-
ceived lots of attention due to their importance in mathematical descriptions of
large interacting particle systems in life and social sciences. The mean-field limit of
these interacting systems leads to kinetic equations with non standard nonlinear
nonlocal friction terms such as the Cucker-Smale model or the Vicsek-Fokker-
Planck equation in swarming models, see [6, 10] and the references therein for
details. Phase transitions driven by noise were obtained in the Vicsek model in
[8]. The kinetic locallzed Cucker-Smale model for the evolution of the probability
of particles in phase space f(t, x, v) is given by

∂tf + v∇xf = ∇v ·
(
α(|v|2 − 1)vf + (v − uf )f +D∇vf

)
.

where

uf (t, x) =

∫
vf(t, x, v) dv∫
f(t, x, v) dv

.

Here α and D are respectively the self-propulsion force and noise intensities. We
have chosen scales such that the alignment force, modelled by the term (v− uf)f ,
has intensity equal to 1. This model was shown to converge in [4] towards the
Vicsek-Fokker-Planck equation on the sphere when the friction term diverges
α → ∞. Therefore, one could expect phase transitions driven by noise for the
model above. This was already proven in one dimension in [12]. We showed that
this is the case in any dimension fo the model above in [2]. More precisely, we
proved in the homogeneous setting that for small values of the noise D there are
more solutions that the trivial one, while for large values of the noise the trivial
symmetric in velocity solution is the unique steady state. In short the bifurcation
diagram for velocity of the homogeneous in space stationary state versus noise
looks like in the figure above. Phase transitions appear ubiquitously in different
models of synchronization and consensus in physics, life and social sciences, see ,
see [3, 5, 7, 9] and the references therein. Due to the complicated structure of the
possible bifurcations for the solutions, it is desirable to have a numerical scheme
capable to keep the main properties of the solutions. Structure preserving meth-
ods have also been introduced in [5, 11] able to cope with phase transitions in the
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Figure 1. Stationary states and phase transition for α = 1 in 2D.

Kuramoto models. We presente a new fully discrete scheme positivity preserv-
ing and energy decaying for general nonlinear Fokker-Planck equations recently
proposed in [1]. In particular, it is applicable to the model introduced above.
The scheme is based on a implicit discretization of the diffusion and a suitable
treatment of the nonlocality leading to a fully discrete energy decaying property
unconditional with respect to the discretization parameters. We also show uncon-
ditional positivity of the scheme. These two properties are essential to show that
the scheme is well-balanced and that you converge at the discrete level towards
discrete stationary states satisfying a discretization of the continuum steady state
condition and therefore asymptotically consistent. The new scheme allows to deal
with complicated asymptotic phenomena such as metastability and to compute
accurately the phase transitions for linear and nonlinear diffusions. Figure above
is obtained using this new developed scheme in [1].
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High order conservative Semi-Lagrangian schemes for kinetic
equations

Giovanni Russo

(joint work with S. Boscarino, S.B.Yun, S. Cho, J. Qiu, T. Xiong)

The purpose of the talk is to present some techniques for the construction of con-
servative semi-Lagrangian schemes for the BGK model of the Boltzmann equation
and for the Vlasov-Poisson system.

The semi-Lagrangian approach seems natural for the numerical solution of ki-
netic equations, since the treatment of the transport term along the characteristics
allows good accuracy, low numerical diffusion, and avoids the CFL type restriction
on the time step typical of hyperbolic systems.

Let us consider the BGK model first. It its simplest form the BGK model can
be written as

∂f

∂t
+ v · ∇xf =

1

κ
(M [f ]− f)

where f(t, x, v) denotes the unknown distribution function in phase space, and,
for any distribution f , M [f ] denotes the corresponding Maxwellian, which shares
with f the the first three moments (i.e. mass, momentum and energy density).
Here κ denotes the Knudsen number.

An implicit treatment of the collision term allows handling arbitrarily small
Knudsen numbers, with no necessity to resolve small time scales.

Once che equation is discretised on a grid in phase space: (t = n∆t, xi =
i∆x, vj = j∆v), the simplest first order semi-Lagrangian scheme is obtaiened by
integrating the BGK equation along the characteristics, and can be written as

fn+1
ij = f̃ij +

∆t

κ
(M [f ]n+1

ij − fn+1
ij )

Here f̃ij denotes some reconstruction of the distribution function at time tn, at
space location x̃ij = xi − vj∆t.

The implicit scheme can be explicitly solved, thanks to the conservation prop-
erties of the collision operator.
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Indeed, the moments of the Maxwellian can be explicitly computed by multy-
plying the above equation by 1, vj , and v2j , and summing over j: the right hand

side vanishes and the moments of fn+1 (and therefore the Maxwellian Mn+1) can
be explicitly computed.

High order accuracy in space is obtained by adopting high order accurate re-
construction of the distribution function at the foot of the characteristics. Such
reconstructions may be obtained, for example, by high order essentially non os-
cillatory (ENO) or Weighted ENO reconstructions. In addition to providing high
order accuracy, such reconstructions prevent the formation of spurious oscillations.

High order in time may be obtained by using Runge-Kutta of BDF schemes [1].
Convergence proofs of the schemes have also been obtained both for the standard
BGK model [2], and for the elliptical BGK model [3].

Numerical experiments show that such SL schemes have good conservation
properties when the solutions are smooth and enough grid-points in velocity are
adopted.

With few grid points in velocity space conservation is not guaranteed. The
reason for the lack of conservation is identified in the use of continuous Maxwellian
in a discrete scheme: the moments of a continuous Maxwellian are obtained from
the function f by integration over velocity, while in the method they are computed
by approximating the integral by a sum. This lack of conservation can be cured
by adopting the discrete Maxwellian introduced by Mieussens [4] in place of the
continuous Maxwellian.

It is shown that high order SL schemes based discrete Maxwellian and high
order piecewise polynomial reconstructions (with linear weights) are indeed con-
servative, however they do not prevent formation of spurious oscillations in case of
discontinuous solutions. On the other hand, non-linear high order reconstruction
such as WENO destroy translation invariance and cause loss of strict conservation.
This results in an error in the shock propagation speed for very small Knudsen
number, error than does not vanish with grid refinement.

In order to overcome such a problem, a conservative reconstruction is proposed.
The reconstruction is based on the computation of a non-conservative prediction,
obtained by some previously developed SL scheme, followed by a conservative

correction.
The predicted values are used to compute the flux at cell center, which are then

reconstructed at cell edges. Such reconstructed values are adopted to compute
the flux at cell edges. Once the fluxes are known, a conservative solution is then
computed from them. This approach has already been adopted in the context
hyperbolic systems for the construction of conservative schemes in which most of
the computation is performed by non-conservative schemes [5]. The conservation
property of the scheme is trivially proven, and numerically verified on smooth
solutions and moving shocks within machine precision. Conservation is important
for the construction of a scheme which is Asymptotic Preserving with respect to
the underlying Euler equations as the Knudsen number vanishes.
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At variance with standard non conservative SL scheme, the conservative correc-
tion is only conditionally stable. The stability of the method is explored in [6]. We
have to keep in mind that even if classical SL scheme are unconditionally stable for
the treatment of the transport term, a practical stability condition arises for small
Knudsen number, since the time step is limited by the CFL condition induced by
the underlying Euler limit.

In order to overcome such stability restriction, a second technique is proposed,
which is based on a conservative reconstruction, which can be easily constructed
once a piecewise essentially non oscillatory polynomial is computed in each cell.
Making use of discrete Maxwellians, the technique allows the construction of a very
effective conservative SL scheme with no stability restriction (except, of course,
the gas dynamic CFL restrictions imposed by the Euler limit).

The conservative reconstruction technique is applied to the Vlasov-Poisson sys-
tem

∂f

∂t
+ v · ∇f +

e

m
E · ∇f = 0,

where f = f(t, x, v) is the particle distribution function in phase space, andE is the
electric field, self-consistently related to the charge density ρ =

∫
f(t, x, v) dv − 1

by the Poisson equation

E = −∇Φ, −∇2Φ = ρ.

The non-conservative predictor is based on the semilagrangian technique developed
in [7]: the equation is discretised on a grid in phase space, and the characteristis are
integrated backward in time from each grid node (xi, vj). The corrector is obtained
in a conservative finite-difference framework, by reconstructing the fluxes at each
cell edge using 1D reconstructions performed dimension-by-dimension.

Because of the presence of the self-consistent electric field, the conservative
method is not designed to be rigorously conservative in any of the conserved quan-
tities (such as, for example, mass or energy). However, the conservative scheme
obtained in this way presents better conservation properties than previous SL
scheme [6].
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