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Introduction by the Organisers

The mini-workshop Mathematical and Numerical Analysis of Maxwell’s Equa-
tions, organised by Monique Dauge (Rennes), Ulrich Langer (Linz), Peter Monk
(Newark), and Dirk Pauly (Essen) was well attended with 17 participants with
broad geographic representation from Europe and United States. This workshop
was a nice blend of researchers with various backgrounds fromMaxwell’s equations.

Maxwell’s equations of electro-dynamics are of huge importance in mathemati-
cal physics, engineering, and especially in mathematics, leading since their discov-
ery to interesting mathematical problems and even to new fields of mathematical
research, particularly in the analysis and numerics of partial differential equations
and applied functional analysis. The deep understanding of Maxwell’s equations
and the possibility of their numerical solution in complex geometries and different
settings have led to very efficient and robust simulation methods in Computa-
tional Electromagnetics. Moreover, efficient simulation methods pave the way
for optimizing electromagnetic devices and processes. Digital communication and
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e-mobility are two fields where simulation and optimization techniques that are
based on Maxwell’s equations play a deciding role.

The workshop brought together different communities, namely people working
in analysis of Maxwell’s equations with those working in numerical analysis of
Maxwell’s equations and computational electromagnetics and acoustics.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

High order discrete potentials

Ana Alonso Rodŕıguez

(joint work with Jessika Camaño, Eduardo De Los Santos, Francesca Rapetti)

In applied computations the need often arises to define, for example, a discrete
field with assigned curl or to represent a div-free field in a given discrete space.
In the low degree case this need can be fulfilled by involving tree and co-tree
techniques (see, e.g., [2]). Our aim is to extend this techniques to high order
Whitney finite elements. The key point is to identify the degrees of freedom for
which the matrices representing the divergence and the gradient operators are
related with the incidence matrix of a connected oriented graph. This can be done
using Bernstein polynomials in the definition of the classical moments (see, e.g.
[4]) usually used as degrees of freedom. A convenient visualization of these graphs
can be obtained using the so-called small simplices introduced in [5].

Once it have been proved that the matrix associated with the divergence opera-
tor is the incidence matrix of a connected oriented graph, it is possible to identify
an invertible square submatrix of this incidence matrix by choosing a spanning tree
of the graph. This allows to easily compute the moments of a field in the space of
Raviart-Thomas finite elements with assigned divergence. This approach extends
to finite elements of high degree the method introduced in [3] for finite elements
of degree one and can be used to construct a basis of the space of divergence-free
Raviart-Thomas finite elements. The numerical tests show that the performance
of the algorithm does not depend on the topology of the domain or the polynomial
degree.
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Time-harmonic Maxwell equations with sign-changing coefficients

Anne-Sophie Bonnet-Ben Dhia

(joint work with Lucas Chesnel and Patrick Ciarlet)

In [1], we consider the time-harmonic Maxwell equations in a bounded domain
Ω ⊂ R3, when the dielectric permittivity ε and the magnetic permeability µ are
real functions whose sign can change (ε, µ, 1/ε and 1/µ are just supposed to be
bounded functions). We assume for simplicity here that µ = 1 and that Ω is
topologically trivial, and we consider the variational problem:

(1) Find E ∈ X such that ∀E′ ∈ X,

∫

Ω

curlE · curlE′ − ω2εE · E′ =

∫

Ω

J ·E′

where ω ∈ R, J ∈ L2(Ω)3 is such that div J = 0 in Ω, and X can be one of these
two functional spaces:

HN =
{
E ∈ L2(Ω)3, curlE ∈ L2(Ω)3 and E × n = 0 on ∂Ω

}
,

and XN (ε) = {E ∈ HN , div (εE) = 0 in Ω} .
The usual approach (for positive coefficients) consists in proving the following two
results:

(1) Problem (1) with X = XN(ε) is equivalent to Problem (1) with X = HN .
(2) The embedding of XN(ε) in L2(Ω)3 is compact.

We prove that both assertions remain true for a sign-changing ε if

(2) ∀f ∈ H−1(Ω), ∃!ϕ ∈ H1
0 (Ω) such that ∀ϕ′ ∈ H1

0 (Ω),

∫

Ω

ε∇ϕ · ∇ϕ′ =

∫

Ω

fϕ′

This scalar problem has been the subject of many studies in the case where the
sign of ε changes across a Lipschitz boundary Σ (see for instance [2, 4, 3, 5]). Let
us point out that this problem can be ill-posed, and even not Fredholm in some
configurations (for instance, if a part of Σ is flat and if ε takes opposite values on
each side).

To prove assertion 1, the idea is simply to notice that for every test field E′ ∈
HN , there exists ϕ ∈ H1

0 (Ω) such that E′ +∇ϕ ∈ XN (ε).
The proof of assertion 2 relies on a T -coercivity result. More precisely, we show

that, if (2) is true, there exists an operator T ∈ L(XT ) such that

∀H,H ′ ∈ XT ,

∫

Ω

1

ε
curlH · curl (TH ′) =

∫

Ω

curlH · curlH ′

where XT denotes the usual space for the magnetic fields:

XT =
{
H ∈ L2(Ω)3, curlH ∈ L2(Ω)3, divH = 0 in Ω and H · n = 0 on ∂Ω

}
.

The compactness of the embedding is finally established by a proof à la Weber [6].
Finally, suppose that the scalar problem is Fredholm with a non trivial finite

dimensional kernel, so that (2) is not satisfied. In that case, the first assertion is
no longer true. Indeed, let ϕ belong to the kernel of the scalar problem. Then
E = ∇ϕ is a solution of (1) with J = 0 for X = XN (ε) and not for X = HN .
However the approach can be extended to this case by setting problem (1) in an
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appropriate functional space X = X̃N (ε) such that X̃N (ε) = XN(ε)⊕YN (ε) where
dim(YN (ε)) < +∞.
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On the regularity of electromagnetic fields on Lipschitz domains

Martin Costabel

The usual variational spaces XN and XT for time-harmonic electric or magnetic
fields with PEC boundary conditions on a bounded Lipschitz domain Ω ⊂ R3 are
defined as

XN = H(div,Ω) ∩H0(curl,Ω) and XT = H0(div,Ω) ∩H(curl,Ω) .

These spaces have long been known to be contained in the Sobolev space H1/2(Ω)
[3, 6]. If the domain is, in addition, piecewise smooth, then there exists always
an ε > 0 such that these spaces are contained in H1/2+ε(Ω), and this additional
smoothness is known to be useful in the analysis of some numerical algorithms
[2, 1].

At a conference in 2017, Alberto Valli brought up the question whether such an
additional regularity is also present for every Lipschitz domain. The answer turns
out to be negative.

Using ideas from Nikolai Filonov’s construction of a C3/2 domain for which
the usual Birman-Solomyak decomposition of XT is not possible [5], a bounded
domain Ω can be constructed that is of class C1 and for which such an ε > 0
does not exist. This domain has the property that for functions in W 1+ 1

p
+ε,p(Ω)

with any ε > 0 and p ≥ 1, the vanishing of the trace on ∂Ω implies the vanishing
of the normal derivative. As a consequence, there exist smooth right hand sides
for which the solutions of the Poisson equation with homogeneous Dirichlet or

Neumann conditions (known to belong to W 1+ 1

p
,p(Ω) for p > 1) do not belong to

W 1+ 1

p
+ε,p(Ω) with any ε > 0 and p ≥ 1. Taking gradients of these solutions and
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p = 2 gives the non-regularity result for XN and XT . This construction is the
subject of the article [4].
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Resonances of Optical Micro-Resonators

Monique Dauge

(joint work with Stéphane Balac and Zöıs Moitier)

Optical micro-resonators are dielectric cavities of small size (at µm scale) cou-
pled to waveguides or fibers for light input and output [5]. The frequencies of
interaction have to be close to resonance frequencies of the cavity alone (i.e. with-
out neighboring fibers). Of particular interest are the whispering gallery modes:
These special resonant modes concentrate along the boundary of the cavity and
are mainly generated by curvature effects at high frequency.

As a simplified model for the three-dimensional Maxwell system (effective index
method [11]), we consider two-dimensional [2D] Helmholtz equations governing
transverse electric [TE] or magnetic [TM] modes. Even in this 2D framework,
very few results provide asymptotic expansion of WGM at high frequency, see [6]
for disk micro-resonators using expansions of Bessel functions [8].

In [3] we present a unified procedure to construct WGM in 2D cavities Ω with
smooth boundaries and varying optical index n. Note that n is defined as 1 outside
the cavity (in R2 \ Ω) and is assumed to be smooth and away from 1 in Ω. The
problem under consideration is: Find non-zero u and complex number k such
that—here the integer p ∈ {+1,−1} distinguishes TM modes (p = 1) and TE
modes (p = −1):
(1) − div

(
np−1∇u

)
= k2np+1 u in R

2

complemented by suitable radiation condition (expansion at infinity in terms of
Hankel functions of the first kind). Equation (1) includes the jump conditions [u] =
0 and [np−1 ∂νu] = 0 on ∂Ω. Couples (k, u) are the resonant modes. In contrast
with impenetrable obstacles [10], transparent obstacles or dielectric cavities may
have non-real resonances super-algebraically close to the real axis [9, 7, 4].



Mathematical and Numerical Analysis of Maxwell’s Equations 3357

We have found that the variations of n give rise to a new effective curvature
index κ̆ = κ + n′/n (where κ is the usual curvature of ∂Ω) whose sign governs
the asymptotic type: κ̆ > 0 causes modes to concentrate along the boundary
with Airy-type profiles, κ̆ = 0 still causes concentration along the boundary but
with Harmonic Oscillator profiles, whereas κ̆ < 0 may produce internal WGM
types. By multiscale expansions based on a WKB approximation, we construct
asymptotic quasi-resonances that have the WGM structure and satisfy suitable
estimates. Our formulas are reminiscent of others obtained for eigenmodes with
Dirichlet boundary conditions [2, 1]. Relying on general theory [12] we deduce
that our quasi-resonances are asymptotically close to true resonances.
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The HX Preconditioner in Higher Dimensions

Jay Gopalakrishnan

(joint work with Martin Neumüller, Panayot Vassilevski)

In calculations using the n-dimensional finite element subcomplex of the de Rham
complex, we often need a general purpose preconditioner for the stiffness matrix
of the inner products. We report on the results obtained in [1] that generalize the
construction and analysis of auxiliary space preconditioners, or HX precondition-
ers.
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The first part of the talk focuses on developing simple computational proxies for
k-forms and exterior derivatives in four dimensions (4D). For example, motivated
by the fact the curl operator in two and three dimensions takes the form curlw =
εij∂iwj and [curlw]i = εijk∂jwk, respectively, where we have used the Levi-Civita
tensor ε and the summation convention, we define curl in 4D by [Curlw]ij =
εijkl∂kwl. This produces a 4 × 4 skew symmetric matrix, given a 4-vector w.
Similar definitions yield simple 4D proxies, implementable using scalar, vector, and
matrix algebraic structures that are usually already present in current software.

The second half of the talk focuses on the generalized HX preconditioners.
The construction of these preconditioners is motivated using a generalization of a
decomposition of Sobolev space functions into a regular component and a potential.
A discrete version of such a decomposition can now be quickly established using the
modern tools of finite element exterior calculus. Extensive numerical experiments
in 4D illustrate the performance of the preconditioners, practical scalability, and
parameter robustness, all in accordance with the theory.
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Generalized Plane Waves & Maxwell’s equations

Lise-Marie Imbert-Gérard

(joint work with J.-F. Fritsch)

Modeling for wave propagation in magnetically confined plasma motivates the
development of numerical methods for smooth variable coefficient time-harmonic
Maxwell’s equations. The simplest of these models, the cold plasma model, reads

curl curlE−
(w
c

)2

ǫE = 0

where the tensor ǫ is both homogeneous and anisotropic. Generalized Plane Waves
(GPWs) are then introduced in the 2D variable refractive index Helmholtz frame-
work [1, 2]. These functions are constructed to satisfy approximately the PDE,
and a set of linearly independent can easily be constructed for discretization pur-
poses. They are designed as exponential of polynomials, using Taylor expansions.
The first extension of the GPW construction to the 3D vector-valued Maxwell’s
equation is introduced, specifying a particular ansatz for the amplitude and phase
functions, and emphasizing the challenges related to the construction algorithm.
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Finite Element Methods for Maxwell’s Equations

Peter Monk

In the last few decades, conforming finite element methods for approximating
the time harmonic Maxwell system governing electromagnetic wave propagation
have undergone profound changes. Whereas in the 1980s there was confusion
about how to choose the sesquilinear form and the appropriate finite elements to
obtain a convergent solver, it is now clear not only how to discretize the Maxwell
system using edge elements, but also how to analyze the resulting method [11, 13].
Important spin-offs from this analysis include the Finite Element Exterior Calculus
[2] and the realization that the discrete de Rham diagram is a useful tool to
guarantee conservation of charge, as well as for understanding the error analysis.

Of course edge elements are not the only possibility. But alternative approaches
using continuous elements require special care to control the divergence of the solu-
tion and modification at discontinuities in material properties [6]. Problems facing
the use of continuous elements were first recognized by Costabel and Dauge [8] who
also proposed a fix for the problem (see also [6]). Recently a different approach
has been proposed by Bonito and Guermond [5].

The simplest model problem for Maxwell’s equations that captures several of
the difficulties associated with their solution is as follows. Suppose Ω ⊂ R

3 is a
bounded polyhedral domain such that it’s boundary has two connected compo-
nents Γ and Σ where Σ is the boundary of the unbounded connected complement
of Ω. Let ν denote the unit outward normal to Ω and assume Ω is simply con-
nected. Then, given a suitable tangential vector field g ∈ L2(Σ) we seak E such
that

∇× (∇×E)− κ2εE = 0 in Ω

(∇×E)× ν − iκET = g on Σ,

E× ν = 0 on Γ.

Here ET = (ν × E) × ν is the tangential trace of E and κ > 0 is the constant
wave-number of the radiation. The function ε denotes the electric permittivity of
the material inside Ω and is assumed here to be a real valued piecewise smooth
coefficient which is uniformly positive and bounded.

The appropriate function space for the solution is built from the standard space

H(curl; Ω) =
{
u ∈ (L2(Ω))3 | ∇ × u ∈ (L2(Ω))3

}

as follows

X =
{
u ∈ H(curl; Ω) | ν × u|Σ ∈ (L2(Σ))3, ν × u = 0 on Γ

}

with norms

‖u‖H(curl;Ω) =
√
‖u‖2(L2(Ω))3 + ‖∇× u‖2(L2(Ω))3

‖u‖X =
√
‖u‖2H(curl;Ω) + ‖ν × u‖2(L2(Σ))3 .



3360 Oberwolfach Report 57/2018

The associated inner products are

(u,v) =

∫

Ω

u · v dV, 〈u,v〉Σ =

∫

Σ

u · v dA.

Following the usual Galerkin philosophy we obtain the variational problem of
finding u ∈ X such that

(∇×E,∇× φ)− κ2(εE,φ)− iκ〈ET ,φT 〉Σ = 〈g,φT 〉Σ
for all φ ∈ X . Using unique continuation it is possible to prove uniqueness of any
solution to this problem. Then using the Helmholtz decomposition, the Webber
compactness result, and the Fredholm Alternative existence of a solution can be
obtained [3, 13]. The key here is that it is essential to use a Helmholtz decompo-
sition in the analysis. This suggests that a successful finite element space should
also possess a suitable discrete Helmholtz decomposition.

Let Th denote a conforming and regular tetrahedral grid covering Ω. A suit-
able finite element discretization is a provided by the Nédélec elements [14]. In
particular the lowest order space is

Xh = {uh ∈ H(curl; Ω) | uh|K = aK + bK × x

aK ,bK ∈ C
3, ∀K ∈ Th

}
.

The degrees of freedom (unknowns) for this element are
∫
e
uh ·τ h ds for each edge

e of each tetrahedron where τ e is an appropriately oriented tangent vector.
An important property of Nédélec’s elements is that they contain many gradi-

ents. In the lowest order case, if

Sh = {ph ∈ S | ph|K ∈ P1, ∀K ∈ Th, p = 0 on Γ, p is constant on Σ} ,
then ∇Sh ⊂ Xh. Furthermore the curl satisfies a Friedrich’s type inequality on
the orthogonal complement of ∇Sh in Xh weighted by ǫ [13].

Using the properties of edge finite element spaces: in particular a discrete ana-
logue of compactness [12] and an extension theorem, Gatica and Meddahi [10, 13].
prove that if h is small enough then there exists a unique finite element solution
Eh ∈ Xh and

‖E−Eh‖H(curl;Ω) → 0 as h→ 0.

For sufficiently smooth solutions, lowest order Nédélec elements give O(h) conver-
gence. In fact it is very beneficial to use higher order elements when κ is large [9].

For other approachs to error estimates using mixed method or the regular de-
composition see [4, 11].

More recently several open source implementations of common finite element
families for the Maxwell system have appeared making edge elements much more
accessible. An example is the NGSolve package [15] that contains edge elements of
arbitrary order, and a sophisticated interface based on Python that allows the user
easy access to the underlying components of the software. This allows the easy
use of edge elements in applications, for example to photonic crystals [1], in which
ǫ varies markedly from place to place. This in turn raises interesting questions of
approximation theory and the regularity of the solutions [7, 6].
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[15] Schöberl, J., NGSolve available online at https://ngsolve.org (2019).

The time-harmonic Maxwell equations with impedance boundary
conditions in domains with a polyhedral or an analytic boundary

Serge Nicaise

(joint work with Jérôme Tomezyk)

We are interested in properties of solutions of the Maxwell system with impedance
boundary condition

(1)

{
curlE− iωH = 0 and curlH+ iωE = J in Ω,
H× n− λEt = 0 on Γ := ∂Ω,

where E is the electric part and H is the magnetic part of the electromagnetic
field, ω > 0 corresponds to the wave number or frequency. The right hand side J
is the current density which – in the absence of free electric charges – is divergence
free, namely

div J = 0 in Ω.
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The impedance λ is supposed to be a smooth function satisfying

(2) λ : Γ→ R, such that λ(x) 6= 0, ∀x ∈ ∂Ω,

see for instance [4, 3]. The case λimp ≡ 1 is also called the Silver-Müller boundary
condition [1].

Note that the boundary condition in (1) is an absorbing boundary condition
that is used to reduce the full space into a bounded domain.

We present two variational formulations of this problem [2, §4.4.d] and analyse
more carefully the second one that consists in keeping the full electromagnetic field
(E,H) as unknown, using the variational space

(3) V =
{
(E,H) ∈

(
H(curl,Ω) ∩H(div,Ω)

)2
: H× n = λEt on ∂Ω

}
,

considering the impedance condition as an essential boundary condition.
Hence the proposed variational formulation is: Find (E,H) ∈ V such that

(4) a(E,H;E′,H′) =

∫

Ω

(
iωJ · E′ + J · curlH′

)
dx, ∀(E′,H′) ∈ V,

with the choice

a(E,H;E′,H′) = aω,s(E,E′) + aω,s(H,H′)− iω

∫

∂Ω

(λEt ·E′
t
+

1

λ
Ht ·H′

t
) dσ,

with a positive real parameter s ∈ [1, 2] appropriately fixed and

aω,s(u,v) =

∫

Ω

(curlu · curl v̄ + s divu div v̄ − ω2u · v̄) dx.

The interest of this formulation stays on the fact that if Ω has a C2 boundary
or if it is a convex polyhedron, then V is embedded in H1(Ω) ×H1(Ω) and a is
(weakly) coercive onV, see [2, §4.4.d] for the smooth case and [5] for the polyhedral
case. Consequently problem (4) induces a Fredholm operator of index zero from
V into its dual and uniqueness implies existence and uniqueness.

The coerciveness of a implying that the corresponding system is an elliptic
system in the Agmon-Douglis-Nirenberg sense, standard shift regularity results
hold. Furthermore if the right-hand side J belongs to H(div = 0;Ω) and −ω2/s
is not an eigenvalue of the Laplace operator ∆Dir, then any solution (E,H) ∈ V
of the variational problem (4) satisfies (1).

Another advantage of this formulation concerns its numerical approximation.
Indeed as V is a subspace of H1(Ω)2, we can consider an hp C0 finite element
approximation, see [5] for polyhedral domains. But if the boundary is analytic,
we cannot impose the impedance boundary condition in the finite element space.
Hence we need to adopt a nonconforming approximation [6].
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Time-harmonic Scattering in exterior domains with mixed boundary
conditions

Frank Osterbrink

(joint work with Dirk Pauly)

Let Ω ⊂ R
3 be an exterior weak Lipschitz domain with weak Lipschitz interface

∂Ω = Γ1 ∪ Γ2 in the sense of [1, Definition 2.3, Definition 2.5]. We study the
boundary value problem

− rotH + iωµE = −F in Ω, E × ν = 0 on Γ1,
(1)

rotE + iωµH = G in Ω, H × ν = 0 on Γ2,

where ω ∈ C \ {0} and ε, µ are symmetric, uniformly positive definite L
∞-matrix

fields, which are asymptotically a multiple of the identity, i.e., ε = ε0 · 11 + ε̂,
µ = µ0 · 11 + µ̂ with ε0, µ0 ∈ R+ and

ε̂, µ̂ = O(r−κ) for r −→∞, κ > 1.

As shown in [5], working in the framework of polynomially weighted Sobolev
spaces, the same methods as in [2] ( see also [3] ) are sufficient for solving sys-
tem (1). In fact, the linear operator

M : R
Γ1
(Ω)× R

Γ2
(Ω) ⊂ L

2
ε(Ω)× L

2
µ(Ω) −→ L

2
ε(Ω)× L

2
µ(Ω)

(E,H) 7−→ (−iε−1 rotH, iµ−1 rotE)

is selfadjoint, hence (M− ω )−1 is continuous for ω ∈ C \R. For ω ∈ R \ {0}, we
are solving in the continuous spectrum ofM and therefore (M−ω )−1 exists only

on a dense subset of L2ε(Ω) × L
2
µ(Ω). However, using Eidus’ limiting absorption
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principle [4] we are still able to obtain weaker so called radiating solutions E,H
by restricting ourselves to data F,G in

L
2
s (Ω) :=

{
u ∈ L

2
loc(Ω) | (1 + r2)s/2u ∈ L

2(Ω)
}

for some s > 1/2. These solutions are then elements of

Rt(Ω) :=
{
u ∈ L

2
t (Ω) | rotu ∈ L

2
t (Ω)

}
∀ t < −1/2

and satisfy the radiation condition

(
ε0E −

√
ε0µ0 ξ ×H,µ0H +

√
ε0µ0 ξ × E

)
∈ L

2
s(Ω)× L

2
s(Ω) , ξ := x/r,

for some s > −1/2. In other words the resolvent (M−ω )−1 ofM may indeed be
extended continuously to the real axis. The essential ingredients needed for the
underlying limit process are the polynomial decay of eigensolutions, an a-priori-
estimate for solutions corresponding to non-real frequencies, a Helmholtz-type
decomposition and Weck’s local selection theorem, i.e.,

R
Γ1
(Ω) ∩D

Γ2
(Ω) →֒ L

2
loc(Ω) is compact.

While the first two are obtained by transferring well known results for the scalar
Helmholtz equation to the time-harmonic Maxwell equations using a suitable de-
composition of the fields E and H the last one is an assumption on the quality of
the boundary, which holds true in weak Lipschitz domains.
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On Some Compact Embeddings in Various Hilbert Complexes

Dirk Pauly

(joint work with Sebastian Bauer, Michael Schomburg, and Walter Zulehner)

We study Hilbert complexes

. . .
...−→ D(A0)

A0−−→ D(A1)
A1−−→ H2

...−→ . . . ,

. . .
...←− H0

A∗
0←−− D(A∗

0)
A∗

1←−− D(A∗
1)

...←− . . .
(1)

for two densely defined and closed linear operators

A0 : D(A0) ⊂ H0 −→ H1, A1 : D(A1) ⊂ H1 −→ H2

with Hilbert space adjoints A∗
0 and A∗

1. The corresponding mathematical analy-
sis, such as closed ranges, bounded inverses, Friedrichs/Poincaré type estimates,
Helmholtz type decompositions, solution theories, finite cohomology groups, ben-
efits strongly from a certain compact embedding, i.e.,

D(A1) ∩D(A∗
0) →֒ H1.(2)

In the Hilbert complexes arising in mathematical physics a proper Sobolev
setting with repective boundary conditions on bounded weak or strong Lipschitz
domains is most important. In these cases a compact embedding (2) can be shown
with the very elegant technique of regular potentials.

Classical examples are the de Rham complex

{0} ι{0}−−→ H̊
1 ∇̊−→ R̊

r̊ot−−→ D̊
d̊iv−−→ L

2 πR−→ R,

{0} π{0}←−−− L
2 −div←−−− D

rot←−− R
−∇←−− H

1 ιR←− R,
(3)

which may also be generalised using alternating differential forms (even with mixed
boundary conditions), the elasticity complex

{0} ι{0}−−→ H̊
1

˚sym∇−−−−→ R̊R
⊤

S

˚RotRot
⊤
S−−−−−−→ D̊S

D̊ivS−−−→ L
2 πRM−−→ RM,

{0} π{0}←−−− L
2 −DivS←−−−− DS

RotRot⊤
S←−−−−−− RR

⊤
S

−sym∇←−−−−− H
1 ιRM←−− RM,

(4)

and the biharmonic (or divDiv) complex

{0} ι{0}−−→ H̊
2 ∇̊∇−−→ R̊S

R̊otS−−−→ D̊T

D̊ivT−−−→ L
2 πRT−−→ RT,

{0} π{0}←−−− L
2 divDivS←−−−−− DDS

symRotT←−−−−−− RT,sym
−dev∇←−−−−− H

1 ιRT←−− RT.
(5)

Typical compact embeddings (2) read as follows:

in (3) : H̊
1 →֒ L

2, R̊ ∩D →֒ L
2, D̊ ∩ R →֒ L

2, H
1 →֒ L

2

in (4) : H̊
1 →֒ L

2, R̊R
⊤

S
∩ DS →֒ L

2
S
, D̊S ∩ RR

⊤
S
→֒ L

2
S
, H

1 →֒ L
2

in (5) : H̊
2 →֒ L

2, R̊S ∩ DDS →֒ L
2
S, D̊T ∩ RT,sym →֒ L

2
T, H

1 →֒ L
2
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Nonconforming Trefftz virtual elements for the Helmholtz problem

Ilaria Perugia

(joint work with Lorenzo Mascotto, Alexander Pichler)

The virtual element method (VEM) is a recent generalization of the finite element
method to polytopal grids [1, 2]. The main feature of VEM is that test and trial
spaces consist of functions that are not known in closed form, but that are solu-
tions to local differential problems mimicking the target one. Despite this fact,
the method is made fully computable by defining two tools, namely suitable map-
pings from local approximation spaces into spaces of known functions (typically
polynomials), and suitable bilinear/sesquilinear stabilization forms.

I have presented a novel VEM for the two dimensional Helmholtz problem en-
dowed with impedance boundary conditions, which was introduced in [3]. The
local approximation spaces consist of Trefftz functions, namely, functions belong-
ing to the kernel of the Helmholtz operator. The global trial and test spaces are not
fully discontinuous, as in most Trefftz methods [4], but rather interelement con-
tinuity is imposed in a nonconforming fashion (à la Crouzeix-Raviart). Although
their functions are only implicitly defined, as typical of the VEM framework, they
contain discontinuous subspaces made of functions known in closed form and with
good approximation properties (plane waves, in the considered case).

An essential ingredient in the implementation of the method is an edgewise
orthogonalization-and-filtering process described in [5]. This process allows to
dramatically reduce the number of basis functions without deteriorating the accu-
racy. It also have a positive effect on the conditioning of the overall method.

After carrying out an h-version error analysis of the method, I have presented
numerical tests reported in [5], which i) demonstrate the h-version theoretical
convergence rates; ii) show that, in case of smooth solutions, the p-version achieves
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exponential convergence; iii) show that, in case of singular solutions, the hp-version
on graded meshes achieves exponential convergence; iv) show that the new method
is competitive with other plane wave-based methods in terms of number of degrees
of freedom needed in order to achieve a given accuracy, and is able to reach a higher
accuracy, before onset of instabilities.
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Memoryless Evolutionary Problems as Dynamic Abstract Friedrichs
Systems

Rainer Picard

Following the setting presented in [2] many models of mathematical physics share
a common form

∂tV +AU = F,

where ∂t denotes time-differentiation and A is a maximal accretive linear operator.
Indeed, in standard cases A is simply skew-selfadjoint in an underlying real Hilbert
space H . The unknowns U, V are here linked by a so-called material law

V =MU.

In a number of studies, see e.g. [1, 4, 5], it has been illustrated, that this simple
framework is indeed suitable for a large number of complex applications including
even time-delay problems and fractional time derivatives. A typical and simple
case, which we shall focus on here is

(1) M = M0 + ∂−1
t M1,

whereM0,M1 are continuous linear operators inH , in particular, M0 is selfadjoint.
The operator ∂−1

t appearing here is forward causal time-integration, which can be
properly realized in a weighted Hilbert space

Hρ,0 (R, H) :=

{
f ∈ L2,loc (R, X) |

∫

R

〈f (t) |f (t)〉H exp (−2ρt) dt <∞
}

with the natural weighted inner product

(f, g) 7→ 〈f |g〉ρ,0,0 :=

∫

R

〈f (t) |g (t)〉H exp (−2ρt) dt.
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In this setting the time-derivative ∂0 is a normal, strictly positive operator, [2], [3,
Chapter 6], indeed we have

(2) ∂t ≥ ρ

in the sense that we have for the numerical range of ∂t that

〈U |∂tU〉ρ,0,0 ≥ ρ 〈U |U〉ρ,0,0

for all U in the domain dom(∂t) of ∂t. This strict positivity carries over to a basic
well-posedness constraint for material laws of the form (1) such that

(3) ρM0 +M1 ≥ c0 > 0

holds for some real number c0 and all sufficiently large positive ρ ∈ R. Since in
this case ∂tM (∂t) = ∂tM0 +M1 is indeed a local operator in time, we speak of a
memoryless material law.

ForA skew-selfadjoint these systems can be transformed into operator equations
of the form

1 +A,

where now A is skew-selfadjoint. Since the classical Friedrichs systems can also
be brought into this formal form, we speak of abstract Friedrichs systems. With
the skew-selfadjointness of A playing a central role, we present a number of tools,
useful for modeling concrete problems, to construct such operators. These tools
as well as the utility of the general setting are illustrated with various applications
from mathematical physics.
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Solving Elasticity in H(curl)

Joachim Schöberl

(joint work with Astrid Pechstein, Michael Neunteufel, Philip Lederer)

Vector valued finite elements with tangential or normal continuity are well estab-
lished in the electromagnetics community. We show how to solve the elasticity
equation with tangentially continuous H(curl) finite elements, and why this make
sense. The TDNNS mixed method proposed by A. Pechstein and J. Schöberl uses
the H(curl) function space for the displacement, and H(div div) for the stresses.
The canonical finite elements for the stress space are normal-normal continuous
symmetric matrix valued elements. It is shown that these elements are robust for
anisotropic meshes, and hand over to plate and shell models. A recent proposal
by Gopalakrishnan, Lederer and Schöberl switches the continuity: The vector
vector variable u is normal-continuous, while the matrix variable sigma is now
normal-tangential continuous, and non-symmetric. This method provides an ex-
actly divergence vector field u, and is thus useful for incompressible flows. We
show how all these spaces fit into a complex similar to the de Rham complex.
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On the helicity of a bounded domain and the Biot–Savart operator

Alberto Valli

Let Ω ⊂ R3 be a bounded domain, with Lipschitz boundary ∂Ω and unit outward
normal vector n on ∂Ω. Consider the Hilbert space

V = {v ∈ (L2(Ω))3 | divv = 0 in Ω,v · n = 0 on ∂Ω} .
The helicity of a vector field v ∈ V, a concept introduced by Woltjer (1958) and
named by Moffatt (1969), is given by

(1) H(v) =
1

4π

∫

Ω

∫

Ω

v(x) × v(y) · x− y

|x− y|3 dx dy .

It is a “measure of the extent to which the field lines wrap and coil around one
another” (Cantarella et al. (2001)).

The Biot–Savart operator BS is defined in V as

(2) BS(v)(x) =
1

4π

∫

Ω

v(y) × x− y

|x− y|3 dy .

Hence we can rewrite H(v) =
∫
Ω v · BS(v).
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It is well-known that BS(v) satisfies in Ω the relations curlBS(v) = v and

divBS(v) = 0. Let us define B̂S(v) the (L2(Ω))3-orthogonal projection of BS(v)
over V; since it differs from BS(v) by a gradient of a scalar function, it satisfies

(3)





curl B̂S(v) = v in Ω

div B̂S(v) = 0 in Ω

B̂S(v) · n = 0 on ∂Ω ,

and one also easily sees that H(v) =
∫
Ω
v · B̂S(v).

In Valli (2019) it is shown that the couple (B̂S(v),0) is the solution (u,q) ∈
Z ×H of the following constrained least-square problem:

(4)

∫
Ω curlu · curlw +

∫
Ω q ·w =

∫
Ω v · curlw ∀ w ∈ Z

∫
Ω u · p = 0 ∀ p ∈H ,

where
X = {w ∈ H(curl; Ω) | curlw · n = 0 on ∂Ω} ,
Z = {w ∈ X |

∮
γj

w · tj = 0 for j = 1, . . . , g} ,
H = gradH1(Ω) ,

and the closed curves γj ⊂ ∂Ω are a basis of the first homology group of Ω.

It is known that B̂S is a self-adjoint and compact operator in V (see, e.g.,
Cantarella et al. (2001)), thus its spectrum is discrete. Defining the helicity of a
domain Ω by

(5) HΩ = sup
v∈V\0

|H(v)|
‖v‖2L2(Ω)

,

we easily obtain the spectral representation

HΩ = |λΩ
max| ,

where λΩ
max is the eigenvalue of B̂S in Ω of maximum absolute value.

A finite element scheme for calculating the eigenvalues of B̂S has been proposed
in Alonso Rodŕıguez et al. (2018), and permits to compute the helicity of Ω.
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On Nonlocal H-convergence

Marcus Waurick

In classical homogenisation problems for elliptic-type equations, one studies coef-
ficients

M(α, β,Ω) := {a ∈ L∞(Ω;Rd×d;ℜa(x) ≥ α,ℜa(x)−1 ≥ 1/β (a.e. x ∈ Ω)}
for some fixed 0 < α < β and Ω ⊆ Rd open and bounded. The inequalities
are understood in the sense of positive definiteness. Then a sequence (an)n in
M(α, β.Ω) is said to locally H-converge to a ∈ M(α, β,Ω), if for all f ∈ H−1(Ω)
and corresponding solutions (un)n in H1

0 (Ω) of the Dirichlet problem

〈angradun, gradφ〉 = f(φ) (φ ∈ H1
0 (Ω))

we have that un ⇀ u ∈ H1
0 (Ω) and angradun ⇀ agradu ∈ L2(Ω)d, where u is the

unique solution of

〈agradu, gradφ〉 = f(φ) (φ ∈ H1
0 (Ω)).

In this talk, we address the situation, where the condition on (an)n to be L∞-
matrices is relaxed to the extend that (an)n is now only assumed to live in

M(α, β,Ω) := {a ∈ B(L2(Ω)d);ℜa ≥ α,ℜa−1 ≥ 1/β}.
It is relatively easy to see that the above definition has to be amended to be fitted
also for this potentially nonlocal situation. In fact, for the definition of nonlocal
H-convergence, one needs to introduce a second variational problem with the curl-
operator (without boundary condition) replacing the above grad.

Having introduced the new notion of nonlocal H-convergence, we show that
this convergence induces a compact, metrisable Hausdorff topology on (subsets
of) M(α, β,Ω). Moreover, we show that nonlocal H-convergence coincides with
local H-convergence if restricted to M(α, β,Ω). It turns out that different choices
for the boundary conditions for grad and curl lead to different topologies. Thus,
nonlocal H-convergence ‘sees’ the boundary, a property not shared by local H-
convergence. Furthermore, we provide a div-curl-type characterisation for non-
local H-convergence, which facilitates the computation of nonlocal H-limits in
practice. The results have applications to Maxwell’s equations with nonlocal, that
is, convolution-type material law relevant in nonlocal response theory for electro-
magnetics; see also [1, Chapter 10] and for the application part see [2] and the
survey paper [4].

The talk is based on results in [3].
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Geometric decompositions in finite element exterior calculus

Ragnar Winther

(joint work with Richard S. Falk)

The theory for approximation of Hilbert complexes, presented in [2], explains the
importance of bounded cochain projections for the construction of stable numerical
methods for the Hodge Laplace problems. The purpose of this talk is to give a
review of various constructions of such operators, and to discuss their properties.

The classical cochain projections are the canonical projections constructed from
the degrees of freedom. However, these operators are not bounded in the desired
Sobolev norms. Motivated by this observation we reviewed the construction of the
so-called ”smoothed projections,” as it was presented in [1]. This gives L2 bounded
projections, but in contrast to the canonical projections, they are nonlocal. We
then followed up by presented the construction of local cochain projections given
in [3]. In the final part of the talk we briefly reviewed some results for the bubble
transform, see [4], which potentially can lead to cochain projections with bounds
independent of the polynomial degree.
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