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Abstract. Graph theory is a rapidly developing area of mathematics. Re-
cent years have seen the development of deep theories, and the increasing
importance of methods from other parts of mathematics. The workshop on
Graph Theory brought together together a broad range of researchers to dis-
cuss some of the major new developments. There were three central themes,
each of which has seen striking recent progress: the structure of graphs with
forbidden subgraphs; graph minor theory; and applications of the entropy
compression method. The workshop featured major talks on current work
in these areas, as well as presentations of recent breakthroughs and connec-
tions to other areas. There was a particularly exciting selection of longer
talks, including presentations on the structure of graphs with forbidden in-

duced subgraphs, embedding simply connected 2-complexes in 3-space, and
an announcement of the solution of the well-known Oberwolfach Problem.
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Introduction by the Organizers

Graph theory is a rapidly developing area of mathematics. Recent years have seen
the development of deep theories, and the increasing importance of methods from
other parts of mathematics. The Graph Theory Workshop brought together a di-
verse group of internationally renown experts for a stimulating week of knowledge
sharing and research. The workshop showcased some of the major recent devel-
opments. There were three central themes, each of which has seen striking recent
progress: the structure of graphs with forbidden subgraphs, graph minor theory,
and applications of the entropy compression method. The 57 participants included
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many students and early career researchers, from many different geographic loca-
tions, and included a significant number of women. The organisers, Jim Geelen
(Waterloo), Dan Král (Brno), and Alex Scott (Oxford), also encouraged diversity
within the program: for example, two of the five longer talks were by early career
researchers and one of those was a female graduate student.

The week was fully utilized with morning talks running from 9 a.m. through
to lunch and afternoon talks from around 4 p.m. through to dinner, with the
exception of the traditional Wednesday afternoon hike. Each day of the workshop
started with a longer (50 minute) talk highlighting a recent major breakthrough
in the area.

• Bojan Mohar presented surprising new results, with Zdenek Dvořák and
Petr Hliněný, on obstructions to crossing number k. (The crossing number
of a graph is the minimum number of edge crossing required to draw the
graph in the plane.) For each integer k, Mohar, Dvořák, and Hliněný
describe the structure of all sufficiently large minimal obstructions to
crossing-number at most k.

• Johannes Carmesin, a postdoctoral fellow at Cambridge University, pre-
sented his spectacular new results on embedding simply connected 2-
complexes in 3-space. This result is a 3-dimensional analogue of Kura-
towski’s characterization of planar graphs. Carmesin’s proof is an inge-
nious blend of topology, graph theory, and matroid theory.

• Sophie Spirkl, a doctoral student at Princeton University, presented her
exciting research with Maria Chudnovsky, Alex Scott, and Paul Seymour
on induced subgraphs, which was one of the main themes of the meeting.

• In what was surely the most delightful talk of the week, Carsten Thomassen
presented his new result that every graph of uncountable chromatic num-
ber contains a subgraph of infinite edge-connectivity.

• The last long talk of the week was given by Derrick Osthus who, quite
fittingly, presented his proof (in joint work with Stefan Glock, Felix Joos,
Jaehoon Kim and Daniella Kühn) of the Oberwolfach Problem for all
sufficiently large workshops.

Continuing a well-established tradition at graph theory workshops in Oberwol-
fach, the first day of the meeting was mostly devoted to 5 minute mini-talks by
all of the participants. In these talks the participants either posed open problems
or announced recent theorems; the organizers were particularly pleased with the
high quality of these short presentations. After dinner on Monday there was a
lively open problem session.

During the remainder of the week there were a number of short (25 minute)
talks; highlights among these talks included:

• Benny Sudakov spoke about his exciting new work, with Matija Bucić,
Matthew Kwan and Alexey Pokrovsky, on Rota’s Basis Conjecture. Rota’s
Conjecture asserts that, given n disjoint bases in an n-dimensional vector
space, there exist n disjoint transversals that are bases. Sudakov et al.
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proved the existence of (almost) 1
2n disjoint transversals, greatly improving

on the best previous bound of n
logn due to Sally Dong and Jim Geelen.

• Rose McCarty, a graduate student from the University of Waterloo, pre-
sented her new result, with Jim Geelen and Paul Wollan, characterizing
graphs with huge rank-width in terms of their unavoidable vertex minors.
This result will, hopefully, be a first step in general structure theory for
vertex-minor-closed classes of graphs.

• Maria Chudnovsky spoke about very recent work, with Alex Scott, Paul
Seymour, and Sophie Spirkl, on recognizing odd-hole-free graphs. This
class is important due to connections with the famous Strong Perfect
Graph Theorem and because the class is χ-bounded.

The relaxed schedule format allowed a reasonable amount of time for partici-
pants to engage in research and focused discussion groups. To help start the meet-
ing, the organizers invited three participants to run focused discussion groups;
these included DP-colourings (Kostochka), vertex minors (Wollan), and tangles
(Diestel). There were many other lively discussion groups held throughout the
week, both in the afternoon and in the evening. The week was also a considerable
success with respect to research productivity; some highlights here include:

• Maria Chudnovsky, Alex Scott and Paul Seymour extended their recogni-
tion algorithm for the class of odd-hole-free graphs to the class of graphs
with no long odd hole.

• In his 5 minute talk on the Monday, Jim Geelen proposed working on a
15 year old conjecture on the Erdős-Pósa property for certain collections
of paths. Jim Geelen and Sergey Norin proved this conjecture during the
workshop.

• Rose McCarty completed her joint work James Davies proving that circle
graphs are polynomially χ-bounded. This was a major open problem in
both discrete geometry and graph theory. McCarty presented their proof
in a focused discussion group on Friday afternoon.

The organizers would particularly like to thank the staff at the Institute and
the Director, Prof. Dr. Gerhard Huisken, for the considerable assistance that
the Institute offers in helping in the seamless organization of a thoroughly enjoy-
able, world-class workshop. They would also like to express their appreciation to
Michelle Delcourt for her help in preparing this report.

Acknowledgment: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers,
Chun-Hung Liu and and Laszlo Miklos Lovász, in the workshop by the grant
DMS-1641185, “US Junior Oberwolfach Fellows”. Moreover, the MFO and the
workshop organizers would like to thank the Simons Foundation for supporting
Professors Anita Liebenau, Paul Seymour and Alexander V. Kostochka in the
“Simons Visiting Professors” program at the MFO.
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Abstracts

Orthogonal representations of random graphs

Noga Alon

(joint work with Igor Balla, Lior Gishboliner, Adva Mond, Frank Mousset)

An orthogonal representation of a graph G is an assignment of a unit vector x(v)
in the d-dimensional Euclidean space Rd to every vertex v, so that for every two
nonadjacent vertices u and v, the corresponding vectors x(u), x(v) are orthogo-
nal. Let d(G) denote the minimum dimension d for which such a representation
exists. This quantity and its analogs over other fields arise in the study of the
Shannon capacity of G (see [4], [2]) and in the investigation of additional problems
in Information Theory. What is the typical value of d(G) for the binomial random
graph G = G(n, 0.5)? In the (full version of) this work we show that the answer
is Θ(n/ logn). This settles a question of Knuth raised in 1994 [3].

The results apply to a more general problem. The minrank of a graph G on
the set of vertices [n] over a field F is the minimum possible rank of a matrix
M ∈ F

n×n with nonzero diagonal entries such that Mi,j = 0 whenever i and j are
distinct nonadjacent vertices of G. We obtain tight bounds for the typical minrank
of the binomial random graph G(n, p) over any finite or infinite field, showing that
for every field F = F(n) and every p = p(n) satisfying n−1 ≤ p ≤ 1 − n−0.99, the

minrank of G = G(n, p) over F is Θ(n log(1/p)
log n ) with high probability. The result for

the real field implies the statement about orthogonal representations. The proof
combines a recent argument of Golovnev, Regev, and Weinstein [1], who proved
the above result for finite fields of size at most nO(1), with tools from combina-
torics, probability and linear algebra, including an estimate of Rónyai, Babai, and
Ganapathy [5] for the number of zero-patterns of a sequence of polynomials.

Extensions to additional geometric representations of random graphs are proved
as well. The problem if for G = G(n, 0.5) d(G) = (1 + o(1))χ(G) with high
probability remains open.
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Coloring algorithms in the distributed setting

Marthe Bonamy

(joint work with Pierre Aboulker, Nicolas Bousquet, Louis Esperet)

This talk is concerned with efficiently coloring sparse graphs in the distributed
setting with as few colors as possible. Here, we show how to extend degree-
choosability results to an (efficient) algorithm in the distributed setting. In fact,
our algorithm works more generally for sparse graphs (for such graphs we improve
by at least one the number of colors resulting from an efficient algorithm of Baren-
boim and Elkin, at the expense of a slightly worst complexity). Our bounds on
the number of colors turn out to be quite sharp in general. This is joint work with
Pierre Aboulker, Nicolas Bousquet and Louis Esperet.

1. Coloring sparse graphs

We are concerned with the graph coloring problem in the distributed model of
computation. Graph coloring plays a central role in distributed algorithms, see
the recent survey book of Barenboim and Elkin [3] for more details and further
references. Most of the research so far has focused on obtaining fast algorithms
for coloring graphs of maximum degree ∆ with ∆ + 1 colors, or to allow more
colors in order to obtain more efficient algorithms. Our approach here is quite the
opposite. Instead, we are interested in proving “best possible” results (in terms of
the number of colors), in a reasonable (say polylogarithmic) round complexity. By
“best possible”, we mean results that match the best known existential bounds or
the best known bounds following from efficient sequential algorithms. A typical
example is the case of planar graphs. The famous Four Color Theorem ensures that
these graphs are 4-colorable (and the proof actually yields a quadratic algorithm),
but coloring them using so few colors with an efficient distributed algorithm has
remained elusive. Goldberg, Plotkin, and Shannon [7] (see also [2]) obtained a
deterministic distributed algorithm coloring n-vertex planar graphs with 7 colors
in O(log n) rounds, but it was not known1 whether a polylogarithmic 6-coloring
algorithm exists for planar graphs.

Here we give a simple deterministic distributed 6-coloring algorithm for planar
graphs, of round complexity O(log3 n). In fact, our algorithm works in the more
general list-coloring setting, where each vertex has its own list of k colors (not
necessarily integers from 1 to k). The algorithm also works more generally for
sparse graphs. Here, we consider the maximum average degree of a graph (see
below for precise definitions) as a sparseness measure. It seems to be better suited
for coloring problems than arboricity, which had been previously considered [2, 6].

1In [2], it is mentioned that a parallel algorithm of [7] that 5-colors plane graphs (embedded
planar graphs) can be extended to the distributed setting, but this does not seem to be correct,
since the algorithm relies on edge-contractions and some clusters might correspond to connected
subgraphs of diameter linear in the order of the original graph. The authors of [2] acknowledged
(private communication) that consequently, the problem of coloring planar graphs with 6-colors
in polylogarithmic time was still open.
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To state our result more precisely, we start with some definitions and classic results
on graph coloring.

The average degree of a graphG = (V,E) is defined as the average of the degrees
of the vertices of G (it is equal to 0 if V is empty and to 2|E|/|V | otherwise). The
maximum average degree of a graph G, denoted by mad(G), is the maximum of the
average degrees of the subgraphs of G. The maximum average degree is a standard
measure of the sparseness of a graph. Note that if a graph G has mad(G) < k, for
some integer k, then any subgraph of G contains a vertex of degree at most k− 1,
and in particular a simple greedy algorithm shows that G has (list)-chromatic
number at most k. Therefore, for any graph G, χ(G) ≤ ch(G) ≤ ⌊mad(G)⌋ + 1.
This bound can be slightly improved when G does not contain a simple obstruction
(a large clique), as will be explained below.

Most of the research on distributed coloring of sparse graphs so far [2, 6] has
focused on a different sparseness parameter: The arboricity of a graph G, denoted
by a(G), is the minimum number of edge-disjoint forests into which the edges of
G can be partitioned. By a classic theorem of Nash-Williams [9], we have

a(G) = max
{⌈

|E(H)|
|V (H)|−1

⌉

|H ⊆ G, |V (H)| ≥ 2
}

.

From this result, it is not difficult to show that for any graph G, 2a(G) −
2 ≤ ⌈mad(G)⌉ ≤ 2a(G) (the lower bound is attained for graphs whose maximum
average degree is an even integer).

In [2], Barenboim and Elkin gave, for any ǫ > 0, a deterministic distributed algo-
rithm coloring n-vertex graphs of arboricity a with ⌊(2+ǫ)a⌋+1 colors in O(aǫ logn)
rounds. In particular, their algorithm colors n-vertex graphs of arboricity a with
2a+ 1 colors in O(a2 logn) rounds.

However it is not difficult to prove that graphs with arboricity a are (2a− 1)-
degenerate (meaning that every subgraph contains a vertex of degree at most
2a−1), and thus 2a-colorable, which is sharp. A natural question is whether there
is a fundamental barrier for obtaining an efficient distributed algorithm coloring
graphs of arboricity a with 2a colors. It turns out that there is such a barrier when
a = 1, i.e. when G is a tree: It was proved by Linial [8] that coloring a path (and
thus a tree) with two colors requires a linear number of rounds. Yet, our main
result will easily imply that the case a = 1 is an exception: when a ≥ 2, there is
a fairly simple distributed algorithm running in O(a4 log3 n) rounds, that colors
graphs of arboricity a with 2a colors.

2. Brooks theorem, Gallai trees, and list-coloring

A classic theorem of Brooks states that any connected graph of maximum degree
∆ which is not an odd cycle or a clique has chromatic number at most ∆. This
improves the simple bound of ∆+ 1 obtained from the greedy coloring algorithm.
While most of the research in coloring in the distributed computing setting has fo-
cused on (∆+1)-coloring, Panconesi and Srinivasan [10] gave a O(∆ log3 n/ log∆)
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deterministic distributed algorithm that given a connected graph G of maximum
degree ∆ ≥ 3 finds a clique K∆+1 or a ∆-coloring.

A Gallai tree is a connected graph in which each 2-connected subgraph is an
odd cycle or a clique. Note that a tree is also a Gallai tree, since each block of
a tree is an edge (i.e. a clique on two vertices). The degree of a vertex v in a
graph G is denoted by dG(v). The proof of our main result is mainly based on
the following classic theorem in graph theory proved independently by Borodin [4]
and Erdős, Rubin, and Taylor [5], extending Brooks theorem (mentioned above)
to the list-coloring setting.

Theorem 1 ([4, 5]). If a connected graph G is not a Gallai tree, then for any
list-assignment L such that for every vertex v ∈ G, |L(v)| ≥ dG(v), G is L-list-
colorable.

It is not difficult to prove that Theorem 1 implies Brooks theorem. We men-
tioned above that for any graph G, χ(G) ≤ ch(G) ≤ ⌊mad(G)⌋ + 1. Let us now
see how this can be slightly improved using Theorem 1 if we exclude a simple
obstruction, in the spirit of Brooks theorem.

Theorem 2 (Folklore). Let G be a graph and let d = ⌈mad(G)⌉. If d ≥ 3 and G
does not contain any (d+ 1)-clique, then χ(G) ≤ ch(G) ≤ d.

Our main result is an efficient algorithmic counterpart of Theorem 2 in the LO-
CAL model of computation [8], which is standard in distributed graph algorithms.
Each node of an n-vertex graph G has a unique identifier (an integer between 1
and n), and can exchange messages with its neighbors during synchronous rounds.
In the LOCAL model, there is no bound on the size of the messages, and nodes
have infinite computational power. Initially, each node only knows its own identi-
fier, as well as n (the number of vertices) and sometimes some other parameters:
in Theorem 3 below, each node knows its own list of d colors (in the list-coloring
setting), or simply the integer d (if we are merely interested in coloring the graph
with colors from 1 to d and there are no lists involved). With this information,
each vertex has to output its own color in a proper coloring of the graph G. The
round complexity of the algorithm is the number of rounds it takes for each vertex
to choose a color. In the LOCAL model of computation, the output of each vertex v
only depends on the labelled ball of radius r of v, where r is the round complexity
of the algorithm. In particular, in this model any problem on G can be solved in a
number of rounds that is linear in the diameter of G, and thus the major problem
is to obtain bounds on the round complexity that are significantly better than the
diameter. The reader is referred to the survey book of Barenboim and Elkin [3]
for more on coloring algorithms in the LOCAL model of computation.

Theorem 3 (Main result). There is a deterministic distributed algorithm that
given an n-vertex graph G, and an integer d ≥ max(3,mad(G)), either finds a

(d+1)-clique in G, or finds a d-list-coloring of G in O(d4 log3 n) rounds. Moreover,

if every vertex has degree at most d, then the algorithm runs in O(d2 log3 n) rounds.



Graph Theory 15

Noting that graphs of arboricity a have maximum average degree at most 2a
and no clique on 2a + 1 vertices, we obtain the following result as an immediate
consequence.

Corollary 1. There is a deterministic distributed algorithm that given an n-vertex
graph G of arboricity a ≥ 2, finds a 2a-list-coloring of G in O(a4 log3 n) rounds.

Before we discuss other consequences of our result, let us first discuss its tight-
ness. First, Corollary 1 improves the result of Barenboim and Elkin [2] mentioned
above by at least one color in general, and Theorem 3 improves it by at least
3 colors in some cases (for instance for graphs whose maximum average degree
is an even integer), and both results are best possible in general in terms of the
number of colors (already from an existential point of view). On the other hand,
the round complexity of our algorithm is slightly worst, but a classic result of
Linial [8] shows that trees cannot be colored in o(logn) rounds with any constant
number of colors, and this implies that even for fixed d or a, the round complexity
in Theorem 3 and Corollary 1 cannot be replaced by o(logn). Second, another
classic result of Linial [8] showing that n-vertex paths cannot be 2-colored by a
distributed algorithm using o(n) rounds, also shows that we cannot omit the as-
sumption that d ≥ 3 in the statement of Theorem 3 and the assumption that a ≥ 2
in the statement of Corollary 1.

We also note that using network decompositions [11], we can replace the

O(d4 log3 n) round complexity in Theorem 3 by d32O(
√
logn), and the O(d2 log3 n)

round complexity by d2O(
√
logn) (the multiplicative factor of d is saved similarly

as in [10]). These alternative bounds are not very satisfying, and in most of the
applications we have in mind d is a constant anyway, so we omit the details. It
remains interesting to obtain a bound on the round complexity that is sublinear
in n regardless of the value of d.
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Embedding simply connected 2-complexes in 3-space

Johannes Carmesin

A classical theorem of Kuratowski characterises embeddability in the plane by two
obstruction. More precisely, a graph can be embedded in the plane if and only if
it does not contain the graphs K5 and K3,3 as a minor2, see Figure 1.

Figure 1. The graphs K5 (on the left) and K3,3 (on the right).

A far reaching extension is the Robertson-Seymour Theorem that says that
for any minor closed class of graphs the list of minimal graphs not in that class
must be finite [6]. At the heart of their proof is their structure theorem that,
roughly speaking, establishes a deep connection between the minor relation and
embeddings of graphs in 2-dimensional surfaces. Lovász asked how this could be
extended in three dimensions. Related questions have been asked by Pardon and
Wagner.

Figure 2. The 2-complex on the right is a space minor of the
2-complex on the left. More precisely, it is obtained by deleting
the faces a and b, deleting the edge g, contracting the edge e, and
contracting the face f .

Answering these questions, we introduce a minor relation for 2-complexes, see
Figure 2. We extend Kuratowski’s theorem and a related theorem of Whitney to
certain simply connected 2-complexes [1, 2, 3, 4, 5].

2A minor of a graph is obtained by deleting or contracting edges.
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Detecting Odd Holes

Maria Chudnovsky

(joint work with Alex Scott, Paul Seymour, Sophie Spirkl)

A hole in a graph is an induced cycle of length at least four; and a hole is odd if
it has an odd number of vertices. In 2003 a polynomial-time algorithm was found
to test whether a graph or its complement contains an odd hole, thus providing a
polynomial-time algorithm to test if a graph is perfect [5]. However, the complexity
of testing for odd holes (without accepting the complement outcome) remained
unknown. This question was made even more tantalizing by a theorem of D.
Bienstock [1, 2] that states that testing for the existence of an odd hole through a
given vertex is NP-complete. But in fact we can test for odd holes in polynomial
time. We prove:

Theorem 1. There is an algorithm with the following specifications:

Input:: A graph G.
Output:: Decides whether G has an odd hole.
Running time:: O(|G|12)

The algorithm of [5] and 1 (as well as many other algorithms that test for the
presence of a subdivision of a fixed induced subgraph) share the same three-step
outline. First they test for a number of “easily detectable configurations”. These
are configurations that can be efficiently detected and whose presence guarantees
that the input graph contains the required induced subgraph. The third step is a
“naive” algorithm that only finds the configuration that we are looking for under
very special circumstances, and would not work in general graphs. The role of
the second step is to prepare the input for the naive algorithm; this step is called
“cleaning”.

In the cleaning step, the algorithm generates polynomially many subsets
X1, . . . , Xk of the vertex set of the input graph G, with the property that if
G does in fact contain an induced subgraph of the required type, then for some
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i ∈ {1, . . . , k} such a subgraph can be found in G\Xi using the “naive” algorithm
from step three. Effectively, this means that if H is the object that we are search-
ing for, then some Xi contains all the vertices of G that have many neighbors in
H , but deleting Xi leaves H intact.

Cleaning was first used by Conforti and Rao [8] to recognize linear balanced
matrices, and subsequently by Conforti, Cornuéjols, Kapoor and Vušković [7] to
test for even holes, as well as in [5]. It then became a standard tool in induced
subgraph detection algorithms ([3], [4], [6]). In all these papers cleaning was done
(roughly) by enumerating all subsets Yi of V (G) up to a certain fixed size, and
then setting Xi to be the set of vertices of V (G) with certain neighbors in Xi.
Trying to modify the sets Yi from [5] seemed to be the natural approach to 1, but
after fourteen years of efforts we still could not make it work. In the proof of 1 a
different kind of a cleaning procedure was developed, that delves much deeper into
the structure of the input graph. The potential of this “structural” cleaning is yet
to be explored, but this method is likely to be of use in other questions related to
induced subgraphs, both existential and algorithmic.
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Tangles outside graph theory

Reinhard Diestel

Tangles of graphs were introduced by Robertson and Seymour [13] in their series
of papers on graph minors. The idea behind tangles is to capture highly cohesive
parts of a graph G indirectly: not by naming their vertices and edges, but by
orienting every low-order separation of G towards them. Such orientations of all
these separations will be ‘consistent’ in that they all point towards this fixed highly
cohesive region of G.

There are two major theorems on tangles in [13]. The first is the tree-of-tangles
theorem. It finds a nested set T of separations of G, of varying order, that suffices
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for distinguishing all the (maximal) tangles of G. Note that any two maximal
tangles will orient some separation of G differently: since tangles are orientations
of separations, this is what it means for two tangles orienting the same set of sepa-
rations to be distinct. The tree-of-tangles theorem says that such a distinguishing
separation can always be found in the (nested, and hence linearly small) set T .
In fact, T contains, for every pair of tangles, such a separation of minimum order
among all the separations of G that distinguish those two tangles; we say that it
distinguishes them efficiently.

The second major tangle theorem in [13] is the tangle-tree duality theorem. This
tells us, for a given integer k, what G looks like if it has no k-tangle (one that
orients precisely all the separations of G of order < k): it then has a nested set T
of separations of order < k that witnesses the nonexistence of a k-tangle in a
fast-checkable way.

Tangles, and the above two theorems, can be generalized to other combinatorial
structures than graphs. This was done for matroids, implicitly by Robertson and
Seymour in [13], and explicity by Geelen, Gerards, Robertson and Whittle [12].
But can be done more generally still. Tangles can be used to indirectly capture
clusters whenever these occur in structures that come with a natural notion of
‘separation’, a notion of cutting the structure in two, by orienting these separations
towards the cluster. More importantly: tangles in such structures can then be
thought of as ‘abstract clusters’ even when thay are not induced as above by
known clusters. These new ‘abstract clusters’, however, can sometimes achieve
what traditional clusters are sought for even when these latter do not exist or are
difficult to find.

My talk gave outlines of this for the following example scenarios:

• Mindsets. A questionnaire S is used to poll a set V of people. Every
(yes/no) question s divides V according to the answers received for s.
A typical tangle will be an orientation τ of S, one way of answering all the
questions, such that, for some set X ⊆ V of the people polled, for each
question s the answer given by τ agrees with the answer given by some
80% of X . We call τ a mindset : a set of views essentially shared by a
sizable subset of the people polled. Importantly, there need not exist a
person whose answers are precisely those of τ : these answers are typical
for the people in X , but every such type as such is fictional.

Note that while the set X above is fixed, its various 80% subsets depend on s.
The existence of such a set X is a claim of substance about τ : such a set will not
exist for an arbitrary way of answering the questions in S. It is also possible that
no mindset for S exists, that there is no such set X for any set of answers. Then
our abstract version of the tangle-tree-duality theorem will provide a fast-checkable
witness to this. If there are many mindsets, different ways of answering S with
different corresponding sets X ⊆ V , our abstract version of the tree-of-tangles
theorem provides a small set T of questions that suffices to distinguish all these
mindsets. The questions in T may be logical combinations of the original questions
from S.
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If the questions in S come with an order signifying their significance (see below),
then mindsets of low order (those choosing answers only for a few most significant
questions) will evolve into more refined mindsets that choose answers also for some
questions of higher order. The subset T of key questions will suffice to distinguish
both basic and refined mindsets, also across different orders, by a question of the
lowest possible order, the most fundamental nature. (For example, if the questions
are about musical tastes, the fans of pop music will be distinguished from those
of the late Beethoven string quartets by a question about pop versus classics, not
just by one about chamber music of the 1820s.)

• DNA analysis. Let V be a set of DNA molecules from a sample of or-
ganisms to be classified or studied. We assume that the molecules come
with aligned main strands, and thus have well-definied ‘positions’ at each
of which they have one of four bases encoded A, C, G or T. Every position
with a potential base then becomes a separation of V : of those molecules
that have this base at this position versus those that do not. An orienta-
tion of S yields an assignment of one of the four bases to each position.

Not every such assignment will be a tangle. But typical assignments
are: assignments τ such that there exists a sizable subset X ⊆ V such
that, for each position, most of the molecules in X have at that position
the base prescribed by τ .

An alternative for S is to take all the bipartitions of V , but to assign
them an order depending on how well they divide V considering the fea-
tures of its elements in terms of which bases are found at which positions.
A bipartition, which, for many positions, splits the sets of molecules with
the same base at that position roughly in half will be considered a bad
split and assigned high order.

The choice of sensible order functions is a non-trivial task that will crucially
influence what tangles exist and how they are related with each other. This task
can be left to the biologists, who would have to tell us which base positions are
more important than others. But in the second setup suggested above it can be
approached also from a mathematical point of view. This is a topic we shall discuss
at a RIP workshop in Oberwolfach this November.

As with mindsets, neither of the variants for S discussed need have a tangle.
Indeed, for a contaminated DNA sample it should not. But if it does not, then we
can prove this by our tangle-tree duality theorem.

On the other hand if there are many tangles, then our tree-of-tangles theorem
displays a tree structure in which they are organized, and shows how high-order
tangles evolve from low-order ones. If V contains DNA from many species, their
phylogenetic tree can be obtained in this way. If V is more homogeneous, consist-
ing, say, of DNA from related bacteria or viruses, its tangles will identify DNA
segments that are typical for this sample. There may be several types, one for each
tangle, and one may hope to develop drugs targeting each of these types rather
than a plethora of bacteria or viruses each with their individual DNA.
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• Image segmentation. Here, V is the set of pixels of an image. Every pixel
has a number of parameters, such as darkness, colour and so on. Separa-
tions will be bipartitions of V obtained by cutting the picture along some
line. They will have an order depending on how well they do that: lines
cutting through many pairs of similar adjacent pixels will be considered
bad and given high order.

The tangles in a picture will correspond roughly to regions of similar pixels.
Unlike in classical image sementation or clustering, however, we do not have to
assign a tangle to each pixel. The image of a letter L with two serifs, for example,
may have only two tangles of some fixed k, one for each serif, but most of the
pixels in the shape of this L will be far from either serif.

The tree-of-tangles in image segmentation comes in the form of a set of non-
crossing lines (nested bipartitions of V ) which roughly delineate the main regions
of the picture. Thus, a picture is captured not by storing masses of information
about all its pixels, but rather more succinctly as a set of a few lines dividing it
up, much as a caricaturist would draw a rough version of it. See [9] for details.

The formal framework for abstract tangles, not just of the example types just
discussed, is described in [2]. The general tree-of-tangles theorem is proved in [5],
the general tangle-tree duality theorem in [8]. Mathematical applications of these
can be found in [3, 7]. Further theoretical developments can be found in [1, 4, 6,
10, 11].
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Dual Circumference and Collinear Sets

Vida Dujmović

(joint work with Pat Morin)

For a planar graph G, we say that a set S ⊆ V (G) is a collinear set if G has a
non-crossing straight-line drawing in which the vertices of S are all collinear. A
plane graph is a planar graph G along with a particular non-crossing drawing of
G. The dual G⋆ of a plane graph G is the graph whose vertex set V (G⋆) is the
set of faces in G and in which fg ∈ E(G⋆) if and only if the faces f and g of G
have at least one edge in common. The circumference, c(G), of a graph G is the
length of its longest cycle. We prove the following theorem:

Theorem 1. Let T be a triangulation of maximum degree ∆ whose dual T ⋆ has
circumference ℓ. Then T has a collinear set of size Ω(ℓ/∆4).

It is known that any planar graph of maximum degree ∆ can be triangulated
so that the resulting triangulation has maximum degree ⌈3∆/2⌉ + 11 [8]. This
fact, together with Theorem 1 and the current best lower bounds on the length of
longest cycles in 3-regular 3-connected graphs [9], implies the following corollary:

Corollary 1. Every n-vertex triangulation of maximum degree ∆ contains a
collinear set of size Ω(n0.8/∆4).

It is known that every planar graph G has a collinear set of size Ω(
√
n) [1, 5].

Corollary 1 therefore improves on this bound for bounded-degree planar graphs
and, indeed for the family of n-vertex planar graphs of maximum degree ∆ ∈
O(nδ), with δ < 0.075.

Very recently, Dujmović et al. [6] showed that, if S is a collinear set in a trian-
gulation T then, for any point set X ⊂ R

2 with |X | = |S|, T has a non-crossing
straight-line drawing in which the vertices of S are drawn on the points in X .
Because of this, collinear sets have numerous applications in graph drawing and
related areas. For example, it is known that every n-vertex planar geometric graph
can be untangled while keeping Ω(n0.25) vertices fixed [1] and that there are n-
vertex planar geometric graphs that cannot be untangled while keeping O(n0.4948)
vertices fixed [2]. Although asymptotically tight bounds are known for paths [3],
trees [7], outerplanar graphs [7], planar graphs of treewidth two [10], and planar
graphs of treewidth three [4], progress on the general case has been stuck for 10
years due to the fact that the exponent 0.25 comes from two applications of Dil-
werth’s Theorem. Thus, some substantially new idea appears to be needed. By
relating collinear/free sets to dual circumference, the results presents an effective
new idea. Indeed, Corollary 1 implies that every bounded-degree n-vertex planar
geometric graph can be untangled while keeping Ω(n0.4) vertices fixed. Note that,
even for bounded-degree planar graphs, Ω(n0.25) was the best previously-known
lower bound.

Our work opens two avenues for further progress:

(1) Lower bounds on the circumference of 3-regular 3-connected graphs is an
active area of research. Indeed, the Ω(n0.8) lower bound of Liu, Yu, and
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Zhang [9] is less than a year old. Any further progress on these lower
bounds will translate immediately to an improved bound in Corollary 1
and all its applications.

(2) It is possible that the dependence on ∆ can be removed from Theorem 1
and Corollary 1, thus making these results applicable to all planar graphs,
regardless of maximum degree.
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[2] J. Cano, C. D. Tóth, and J. Urrutia, Upper bound constructions for untangling planar
geometric graphs, SIAM J. Discrete Math., 28(4):1935–1943, 2014.

[3] J. Cibulka, Untangling polygons and graphs, Discrete & Computational Geometry,
43(2):402–411, 2010.
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Coloring count cones of planar graphs

Zdeněk Dvořák

(joint work with Bernard Lidický)

For a plane near-triangulation G with the outer face bounded by a cycle C, let
n⋆
G denote the function that to each 4-coloring ψ of C assigns the number of

ways ψ extends to a 4-coloring of G. The block-count reducibility argument [1,
2] (which has been developed in connection with attempted proofs of the Four
Color Theorem) is equivalent to the statement that n⋆

G belongs to a certain cone
(depending only on the length of C).

For |C| = 5, the cone has 12 rays, corresponding to the following graphs (in the
dual setting of numbers of 3-edge-colorings of cubic graphs with 5 half-edges; for
such a graph H , we denote by nH the function giving the numbers of extensions
of precolorings of these half-edges).
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G1 G2 G3 G4 G5

G6 G7 G8 G9 G10

G11 G12

The Four Color Theorem is equivalent to the fact that there exists no plane near-
triangulationG with the outer face bounded by a 5-cycle such that n⋆

G is a multiple
of nG12 . We conjecture that actually more is true: the last ray can be omitted
from the list entirely.

Conjecture 1. For every plane near-triangulation G with the outer face bounded
by a 5-cycle, n⋆

G is a non-negative linear combination of nG1 , . . . , nG11 .

As a supporting evidence for this conjecture, we have performed computational
experiments, in particular showing that it holds for all near-triangulations with at
most 26 faces.
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On Ramsey numbers

Jacob Fox

The talk would be about recent progress on problems motivated by the classical
problem of improving the bounds on Ramsey numbers. Randomness, quasiran-
domness, books, and games play an important role in the talk.
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Degree condition forcing oriented cycles of a given length

Andrzej Grzesik

(joint work with Roman Glebov, Jan Volec)

The longstanding Caccetta-Häggkvist Conjecture [1] says that every n-vertex ori-
ented graph G with minimum out-degree δ+(G) ≥ n

ℓ contains an oriented cycle of
length at most ℓ. Despite quite intensive work on this problem (see for example
a summary of results and open problems related to the conjecture [2]), even the
case of ℓ = 3 still remains open. The weaker conjecture with assumption on the
minimal semidegree (minimum of out-degrees and in-degrees over all vertices) is
also open.

Motivated by this conjecture, Kelly, Kühn and Osthus [3] made a conjecture on
minimal semidegree forcing appearance of a directed cycle of a given length and
proved it for cycles of length not divisible by 3. The asymptotic version of the
conjecture was proven by Kühn, Osthus and Piguet [4] when the cycle length is
large enough.

In the talk we present constructions showing that in general the conjectured
threshold is not correct. Then we prove the optimal threshold for each length of
the cycle greater than 3.

Theorem 1. For any ℓ ≥ 4 every big enough n-vertex oriented graph G with
semidegree δ±(G) ≥ n

k + k−1
2k contains a directed cycle of length ℓ, where k is the

smallest integer greater than 2 that does not divide ℓ.

Moreover, if ℓ 6≡ 3 (mod 12), then this is the best possible threshold. If ℓ ≡ 3
(mod 12), then δ±(G) ≥ n

4 + 1
4 is already forcing an ℓ-cycle and this is the best

possible threshold.
The proof for the case k = 4 is different than the proof for larger values of k.

In particular, for k ≥ 5 one can prove the following stability version, which is not
true for k = 4.

Theorem 2. For ℓ ≥ 4 let k being the smallest integer greater than 2 that does
not divide ℓ. If k ≥ 5, then any oriented graph H with δ±(H) ≥ n

k

(

1− 1
30k

)

that
does not contain a closed walk of length ℓ, is a subgraph of a blow-up of Ck.

In order to prove this, we firstly obtain that such a graph has bounded directed
diameter by providing bounds on the sizes of neighborhoods. Then we show using
Frobenius coin problem that it cannot contain short cycles with one edge reversed.
This is enough to define the wanted blobs and prove the theorem.

To prove the main theorem for k ≥ 5, we use the regularity lemma for oriented
graphs and the above theorem, to obtain a structure of the graph G with some
small fraction of additional edges and vertices. Then, by application of some
results on additive combinatorics, we prove that the assumed semidegree threshold
gives enough many additional edges and vertices to construct the wanted cycle of
length ℓ.

The case of k = 4 requires a different approach. In particular, notice that for
ℓ = 6 one blob of a blow-up of C4 can contain arbitrary one-way oriented bipartite
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graph. Also, for any odd ℓ, one can reverse edges of any C4 contained in a blow-up
of C4 keeping the semidegree assumption and avoiding cycles of odd lengths.

The proof of the main theorem for k = 4, in particular for small cycle lengths,
needs directed diameter bound, that cannot be obtained in the same way as for
k ≥ 5. To achieve this, we use the method of flag algebras created by Razborov.
The proof, especially the cases of ℓ = 6 and ℓ = 9, need also more detailed analysis,
because the small length of the wanted cycle can cause complications in combining
some partial structures to obtain the cycle of length ℓ.

It would be interesting to prove similar statement, but with only minimal out-
degree assumption. The crucial step in the proof, where our methods use also the
minimal in-degree assumption, is to obtain the bound on the directed diameter.
Thus, it would be very interesting to prove some bound on the directed diameter
of such graphs.
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Large independent sets in triangle-free subcubic graphs

Gwenaël Joret

(joint work with Wouter Cames van Batenburg and Jan Goedgebeur)

Heckman and Thomas [4] showed that every n-vertex planar triangle-free graph
with maximum degree 3 has an independent set of size at least 3n/8, confirming
a conjecture of Albertson, Bollobas and Tucker [1]. In this talk I will present a
strengthening of this result: There exists a set S of six nonplanar graphs (each
of order at most 22), such that every n-vertex triangle-free graph with maximum
degree 3 and having no member of S as a subgraph has an independent set of size
at least 3n/8. This proves a conjecture of Fraughnaugh and Locke [3]. A corollary
of this result is that every 2-connected n-vertex triangle-free graph with maximum
degree 3 has an independent set of size at least 3n/8, except for the six graphs in
S.

Whether these results can be extended to fractional coloring remains an in-
triguing open problem. Recall that n/α ≤ χf for every n-vertex graph G with
independence number α and fractional chromatic number χf . Dvořák, Sereni, and
Volec [2] proved that χf ≤ 14/5 when G is triangle free with maximum degree 3,
generalizing the old result of Staton [5] that n/α ≤ 14/5. Heckman and Thomas [4]
conjectured that χf ≤ 8/3 if G is moreover planar, which would generalize their
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theorem. For all we know, this might even be true in the setting we considered,
that is, when G has none of the six graphs in S as subgraph.
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Critical subgraphs of Schrijver graphs

Tomáš Kaiser

(joint work with Matěj Stehĺık)

Recall that the vertices of the Kneser graph KG(n, k) (where n ≥ 2k and k ≥ 1)
are all k-subsets of {1, . . . , n}, with two subsets joined by an edge if they are
disjoint. In 1979, Lovász [4] proved the conjecture of Kneser [3] from 1955 that
the chromatic number of KG(n, k) is n− 2k+2. Shortly afterwards, Schrijver [5]
constructed spanning subgraphs of the Kneser graphs with the same chromatic
number and the property that they are vertex-critical — that is, the removal
of any vertex decreases the chromatic number. The Schrijver graph SG(n, k) is
the induced subgraph of KG(n, k) on the set of all k-sets containing no pair of
consecutive elements {i, i+ 1} nor the pair {1, n}.

Schrijver graphs in general do not have the stronger property of being critical
(or edge-critical), namely that the removal of any edge yields a graph of smaller
chromatic number. This is only true in the extreme cases k = 1 or n ≤ 2k+1. To
our knowledge, there are no known constructions of critical subgraphs of Schrijver
graphs with the same chromatic number.

In our talk, we provide such a construction in the case k = 2: for each n ≥ 5,
we define a spanning subgraph XG(n, 2) of SG(n, 2) as follows. Let Cn be a cycle
with vertices 1, . . . , n in order. A chord of Cn is an edge of the complement of Cn.
The vertices of XG(n, 2) are the chords of Cn. Two chords are joined by an edge
if they cross (their vertices are interlaced on Cn), or if the vertex 1 is separated
by the endvertices of one of the chords from the other chord.

By constructing a homomorphism from the Mycielski graph over XG(n− 1, 2)
to XG(n, 2), for each n ≥ 6, we show that the chromatic number of XG(n, 2) is
n− 2 (that is, the same as that of SG(n, 2)). In addition, we prove that XG(n, 2)
is critical and that asymptotically, XG(n, 2) contains 2/3 of the edges of SG(n, 2).

The graphs XG(n, 2) were discovered in the course of our work on quadrangula-
tions of projective spaces [1, 2], and indeedXG(n, 2) quadrangulates the projective
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space of dimension n− 4. In the talk, we will also discuss the attempts (currently
work in progress) to extend the construction to arbitrary k.
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Euler tours in hypergraphs

Daniela Kühn

(joint work with Stefan Glock, Felix Joos, Deryk Osthus)

Finding an Euler tour in a graph is a problem as old as graph theory itself: Euler’s
negative resolution of the Seven Bridges of Königsberg problem in 1736 is widely
considered the first theorem in graph theory. Euler observed that if a (multi-)graph
contains a closed walk which traverses every edge exactly once, then all the vertex
degrees are even. He also stated that every connected graph with only even vertex
degrees contains such a walk, which was later proved by Hierholzer and Wiener.

There are several ways of generalising the concept of paths/cycles, and similarly
Euler trails/tours, to hypergraphs. Not least due to its connection to universal
cycles, we focus on the so-called ‘tight’ regime. Given a k-graph G (i.e. a k-uniform
hypergraph G), a cyclic sequence of vertices x1x2 . . . xℓx1 is an Euler tour of G if
{xi, xi+1, . . . , xi+k−1} ∈ E(G) for all i ∈ [ℓ], and every edge of G appears exactly
once in this way.

The problem of deciding whether a given 3-graph has an Euler tour has been
shown to be NP-complete [8]. Thus, when k > 2, there is probably no simple
characterisation of k-graphs having an Euler tour.

It is easy to see that if an Euler tour of the complete k-graph K
(k)
n on n vertices

exists, then k divides
(

n−1
k−1

)

, i.e. k divides the degree of every vertex of K
(k)
n .

In 1989, Chung, Diaconis and Graham conjectured that the converse should also
be true, at least if n is sufficiently large, and offered $100 for the resolution of
this problem. (In their paper, they actually phrased this conjecture in terms of

universal cycles for
(

[n]
k

)

.)

Conjecture 1 (Chung, Diaconis, Graham [1, 2]). For every k ∈ N, there exists

n0 ∈ N such that for all n ≥ n0, K
(k)
n has an Euler tour whenever k divides

(

n−1
k−1

)

.
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It is easy to see that Conjecture 1 is true for k = 2. Numerous partial results
have been obtained. In particular, Jackson [7] proved the conjecture for k = 3, and
Hurlbert [6] confirmed the cases k ∈ {3, 4, 6} if n and k are coprime. Approximate
versions of Conjecture 1 have been obtained in [3, 4]. We prove Conjecture 1
in a strong form by showing the existence of tight Euler tours in quasi-random
k-graphs G (provided that G satisfies the necessary divisibility condition that k
divides all vertex degrees of G).

Our proof goes as follows. In the first step, we find a ‘spanning’ walk W in
G, where spanning means that every ordered (k − 1)-set of vertices appears at
least once consecutively in the vertex sequence of W . For this, we show that a
self-avoiding random walk yields such a walk W (after an appropriate number of
steps) with high probability. This step will use only a small fraction of the edges
of G. We then extend W to a closed walk W ′. Subsequently, we remove E(W ′)
from G and decompose the remaining k-graph into tight cycles using results on
the existence of F -designs from [5]. Each such cycle can be incorporated into W ′,
which finally yields a tight Euler tour.
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Erdős-Pósa property of H-induced subdivisions

O-joung Kwon

(joint work with Jean-Florent Raymond)

Kim and Kwon [1] proved that holes (induced cycles of length at least 4) have the
Erdos-Posa property; that is, given a graph G and an integer k, either G contains
k + 1 vertex-disjoint holes or it contains a vertex set of size O(k2 log k) hitting all
holes. On the other hand, we show that this property does not hold for holes of
length at least 5.

We say that subdivisions of a graph H have the induced Erdős-Pósa property
if there is a function f satisfying that for every graph G and every integer k,
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either G contains k + 1 vertex-disjoint induced subdivisions of H , or a vertex set
of size at most f(k) hitting all such induced subdivisions. Motivated from the
previous work, we naturally ask for which graph H , whether H-subdivisions have
the induced Erdős-Pósa property. In this work, we identify necessary conditions
on H for the class of H-subdivisions to have the induced Erdős-Pósa property.

We completely settle the case when H is a forest; we show that H-subdivisions
have the induced Erdős-Pósa property if and only if H contains no component
containing two vertices of degree at least 3. So, it is sufficient to look at graphs
H containing a cycle. We show that H-subdivisions have no induced Erdős-Pósa
property if one of the following holds: (1) H contains an induced cycle of length
at least 5, (2) H contains a cycle and two adjacent vertices having no neighbors
in the cycle, (3) H contains a cycle and three vertices having no neighbors in the
cycle, (4) H is non-planar, (5) H = K2,n for n ≥ 3.

Among remaining graphs, we prove that if H is either the diamond, the 1-pan
(C3 with one leaf), or the 2-pan (the graph obtained from the disjoint union of
C3 and K2 by adding an edge), then the class of H-subdivisions has the induced
Erdős-Pósa property. All other cases remains open. An interesting open problem
is to determine when H = K4 or H is a fan with path of length 3.

Generally, determining whether some induced substructures have the Erdős-
Pósa property or not. We posed one specific problem; do even cycles have the
induced Erdős-Pósa property?
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The Graham-Pollak Theorem for Hypergraphs

Imre Leader

(joint work with Luka Milicevic, Ta Sheng Tan)

Let fr(n) be the minimum number of complete r-partite r-graphs needed to par-
tition the edge-set of the complete r-uniform hypergraph on n vertices. Gra-
ham and Pollak showed that f2(n) = n − 1. An easy construction shows that
fr(n) ≤ (1− o(1))

(

n
⌊r/2⌋

)

, and it has been unknown if this upper bound is asymp-

totically sharp.
We show that this is not the case: in fact f4(n) ≤ 14

15 (1 − o(1))
(

n
2

)

. Based on
this, if we write the limiting value of the constant as cr (in the sense that we have
c4 ≤ 14

15 ), it follows that cr ≤ 14
15 for all even r ≥ 4.

It turns out that, to obtain cr → 0, one would need to know that cr < 1 for
some odd value of r. We give a separate argument to show that c295 < 1, and
hence we have that cr → 0.
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On minimal Ramsey graphs in multiple colours

Anita Liebenau

(joint work with Dennis Clemens, Damian Reding)

For an integer q ≥ 2, a graph G is called q-Ramsey for a graph H if every q-
colouring of the edges of G contains a monochromatic copy of H . If G is q-
Ramsey for H , yet no proper subgraph of G has this property then G is called q-
Ramsey-minimal for H . Generalising a statement by Burr, Faudree and Schelp [2]
from 1977 we prove in [4] that, for q ≥ 3, if G is a graph that is not q-Ramsey for
some graph H then G is contained as an induced subgraph in an infinite number
of q-Ramsey-minimal graphs for H , as long as H is 3-connected or isomorphic to
the triangle. For such H , the following are some consequences.

• For 2 ≤ r < q, every r-Ramsey-minimal graph for H is contained as an
induced subgraph in an infinite number of q-Ramsey-minimal graphs for
H .

• For every q ≥ 3, there are q-Ramsey-minimal graphs for H of arbitrarily
large maximum degree, genus, and chromatic number.

• The collection {Mq(H) : H is 3-connected or K3} forms an antichain,
where Mq(H) denotes the set of all graphs that are q-Ramsey-minimal
for H .

We also address the question which pairs of graphs satisfy Mq(H1) = Mq(H2),
in which case H1 and H2 are called q-equivalent. This notion was introduced by
Szabó, Zumstein and Zürcher [7] in 2010. We show that two graphs H1 and H2 are
q-equivalent for even q if they are 2-equivalent, and that in general q-equivalence
for some q ≥ 3 does not necessarily imply 2-equivalence. Finally we indicate that
for connected graphs this implication may hold: Results by Nešetřil and Rödl [6]
and by Fox et al. [5] imply that the complete graph is not 2-equivalent to any
other connected graph. We prove that this is the case for an arbitrary number of
colours.

There are numerous open problems remaining. Here are a few. Axenovich, Rollin
and Ueckerdt [1] show that if two graphs H and H ′ are 2-equivalent and H⊆H ′

thenH andH ′ are q-equivalent for every q ≥ 3. It would be desirable to remove the
conditionH⊆H ′. We prove that 2-equivalence (without the subgraph requirement)
implies q-equivalence for even q. More generally, if two graphsH andH ′ are q- and
r-equivalent (for some q, r ≥ 2) then they are (aq + br)-equivalent for all integers
a, b ≥ 1. The following is open:

Problem. Prove that if two graphs are 2-equivalent then they are also 3-equiva-
lent. Or does there exist a pair of graphs that are 100-equivalent, but not 101-
equivalent?

There are pairs of graphs H and H ′ that are 3-equivalent but not 2-equivalent.
All those examples have at least one of H or H ′ being disconnected and we wonder
whether this is a coincidence.
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Problem. Let H and H ′ be both connected graphs that are 3-equivalent. Is it
true that they are 2-equivalent as well?

This question may have an affirmative answer for the trivial reason that there
are no two non-isomorphic graphs H and H ′ that are q-equivalent for any q ≥ 2.
This question was first posed in 2014 by Fox et al. [5] for two colours, and we
extend it here to any number of colours.

Problem. For given q ≥ 2, are there two non-isomorphic connected graphs H
and H ′ that are q-equivalent?

It is known that the complete graphKk is Ramsey equivalent toKk+H whereH
is a collection of vertex-disjoint cliques, see, e.g., [7, 3]. What other graphs H
have that property? We concentrate on the 2-colour case to highlight how little
is known. We know that Kk and Kk +Kk are not Ramsey equivalent (since the
clique on R2(k) vertices is a distinguisher) and thatKk andKk+Kk−1 are Ramsey
equivalent [3].

Problem.

• What is the largest value of t = t(k) such that there is a connected graph
H on t vertices so that Kk and Kk +H are Ramsey equivalent?

• What is the largest value of t = t(k) such that Kk and Kk+St are Ramsey
equivalent, where by St we denote the star with t vertices (in alignment
with the previous question)?

• What is the largest value of t = t(k) such that Kk and Kk+Pt are Ramsey
equivalent, where by Pt we denote the path with t vertices?

The second question is due to Fox et al. [5]. Note that the equivalence ofKk and
Kk +Kk−1 implies that the answer to these questions is at least k− 1. Moreover,
it is easy to obtain an upper bound of roughly R(k), i.e. exponential in k. To the
best of our knowledge nothing better is known.
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Clustered coloring on old graph coloring conjectures

Chun-Hung Liu

Hadwiger conjectured in 1943 that every Kt+1-minor free graph is properly t-
colorable. This conjecture is known to be equivalent with the Four Color Theorem
when t ≤ 5, but it is open for every t ≥ 6. Even though Hadwiger’s conjecture
is considered to be very difficult, two strengthenings were proposed. Hajós in
1940’s conjectured that every Kt+1-topological minor free graph is properly t-
colorable; Gerards and Seymour conjectured that every oddKt+1-minor free graph
is properly t-colorable. Hajós’ conjecture is known to be false in general but the
Gerards-Seymour conjecture remains open. One direction to approach or rectify
those conjectures is to consider clustered coloring which is a relaxation of the
notion of proper coloring.

We say that a class of graphs is clustered k-colorable if there exists a constant
N such that for every graph in this class, one can color its vertices such that every
monochromatic component contains at most N vertices. Joint with Wood, we
prove the following results.

Theorem 1. Let p, q be positive integers. Let F be a class of graphs where every
graph in F does not contain Kp,q as a subgraph.

(1) If there exists a planar graph H such that every graph in F is H-minor
free, then F is clustered (p+ 1)-choosable.

(2) If there exists a graph H such that every graph in F is H-minor free, then
F is clustered (p+ 2)-colorable.

(3) If there exists a graph H such that every graph in F is odd H-minor free,
then F is clustered (2p+ 1)-colorable.

(4) If there exists a graph H of maximum degree d, where p + 3d ≥ 7, such
that every graph in F is H-topological minor free, then F is clustered
(p+ 3d− 4)-colorable.

These results not only generalize results about graphs of bounded maximum
degree proved by Alon, Ding, Oporowski and Vertigan [1] and by Liu and Oum [3]
but also can be applied to the clustered coloring version of Hajós’ conjecture and
Gerards-Seymour conjecture. In particular, we prove that the clustered coloring
version of Hajós’ conjecture is true for graphs of bounded treewidth and has a linear
upper bound for the required number of colors, and we improve the currently best
known upper bound of the required number of colors for the clustered coloring
version of Gerards-Seymour conjecture provided by Kang and Oum [2].

We conjecture that the clustered coloring version of Hajós’ conjecture and
Gerards-Seymour conjecture are true.

Conjecture 1. For every positive integer t, the class of Kt+1-topological minor
free graphs and the class of odd Kt+1-minor free graphs are clustered t colorable.
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A Fast New Algorithm for Weak Graph Regularity

László Miklós Lovász

(joint work with Jacob Fox, Yufei Zhao)

Regularity lemmas are very useful tools in graph theory and theoretical computer
science. A version, known as the Frieze-Kannan or “weak” regularity lemma [4],
says the following. Given a partition P of the vertices of a graph G, let GP be
the graph obtained by taking, between any pair of parts, weighted edges, with
each edge having weight equal to the density between the two parts. We say that
a partition is Frieze-Kannan-ǫ-regular, or weakly ǫ-regular, if for any two sets of
vertices S and T , then number of edges between S and T in G, and the number
of edges between S and T in GP , differs by at most ǫn2, where n is the number of
vertices of G. The lemma then says that for any ǫ > 0, any graph G has a weakly

ǫ-regular partition P of the vertices into at most 22/ǫ
2

parts.
In fact, Frieze and Kannan prove something slightly stronger. They show that

the graph can be approximated by a weighted sum of at most 1/ǫ2 complete
bipartite graphs between a pair of subsets of vertices, so that for any sets of
vertices S and T , the number of edges between S and T in the approximation and
in the original graph differs by at most ǫn2. This is, essentially, a stronger version
of the result, because given such an approximation, it can be shown that if P is
the joint refinement of all the sets that arise as one side of a bipartite graph in the
sum, then P is a weakly 2ǫ-regular partition.

Prior to our work, there were two deterministic algorithms for weak regularity,
due to Dellamonica, Kalyanasundaram, Martin, Rödl, and Shapira [1, 2], running

in time ǫ−O(1)nω+o(1) or 22
ǫ
−O(1)

n2, where ω < 2.373 is the matrix multiplication
constant. These algorithms give weakly regular partitions, but it is not obvious
how to use them to give an approximation as the sum of weighted bipartite graphs.
In this talk, I’ll discuss a recent deterministic algorithm that finds, in ǫ−O(1)n2

time, an ǫ-regular Frieze–Kannan partition of a graph on n vertices [3]. Further-
more, the algorithm outputs an approximation of a given graph as a weighted
sum of ǫ−O(1) many complete bipartite graphs, thus giving an algorithm for the
stronger form of the Frieze-Kannan regularity lemma.
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algorithm for the Frieze-Kannan regularity lemma, SIAM J. Discrete Math. 26 (2012),
15–29.

[2] D. Dellamonica, Jr., S. Kalyanasundaram, D. M. Martin, V. Rödl, and A. Shapira, An
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A grid theorem for vertex minors

Rose McCarty

(joint work with Jim Geelen, O-joung Kwon, Paul Wollan)

Locally complementing at a vertex v of a graph G replaces the induced subgraph
on the set of neighbours of v by its complement. A graph H is a vertex minor
of G if H can be obtained from G by a sequence of vertex deletions and local
complementations. Thus, as an example, every induced subgraph of G is also a
vertex minor ofG. Vertex minors were introduced by Bouchet [2] to study isotropic
systems. We will discuss two main examples of graph classes that are closed under
taking vertex minors: circle graphs and graphs of bounded rank-width.

A graph G is a circle graph if there is a set of chords C of a circle so that
V (G) = C and distinct vertices u, v ∈ V (G) are adjacent if and only if the chords
u and v intersect. The class of circle graphs is closed under taking vertex minors,
and Bouchet [1] gave a characterization of circle graphs by three forbidden vertex
minors.

Now, let A denote the adjacency matrix of a graph G. The rank of a set X ⊆
V (G), denoted ρ(X), is the rank over the binary field of the submatrix of A with
rows X and columns V (G) \X . As a function with domain 2V (G), ρ is symmetric
and submodular. Furthermore, ρ is invariant under local complementation. So
ρ gives rise to a nice width parameter that does not increase when taking vertex
minors. We define this parameter next.

Firstly, a rank-decomposition of G is a tree T so that the set of leaves of T
is equal to V (G), and so that all vertices of T have degree either one or three.
The width of an edge e of T is the rank of the set of all leaves of one of the
components of T −e. Finally, the rank-width of a graph G is the minimum over all
rank-decompositions T of G, of the maximum over all edges e of T of the width
of e. Rank-width was introduced by Oum and Seymour [6], and Oum [5] proved a
number of results on rank-width and vertex minors which we use in our work. We
also use a theorem of Kwon and Oum [4] as a base case. We prove the following.
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Theorem 1. For every circle graph H, there is an integer rH so that if G is any
graph with rank-width at least rH , then G has a graph isomorphic to H as a vertex
minor.

This is analogous to the Grid Theorem of Robertson and Seymour [7], which
states that for every planar graphH , there is an integer tH so that if G is any graph
with tree-width at least tH , then G has a minor isomorphic to H . It is important
to point out that the class of all circle graphs has unbounded rank-width. Like
the Grid Theorem, we reduce Theorem 1 to the case where H is a certain type
of circle graph which we call comparability grids. For a positive integer n, the
n × n comparability grid is the graph with vertex set {(i, j) : i, j ∈ {1, 2, . . . , n}}
where there is an edge between distinct vertices (i, j) and (i′, j′) if either i ≤ i′

and j ≤ j′, or i ≥ i′ and j ≥ j′. While there is a similarity between the Grid
Theorem and Theorem 1, as far as we know neither implies the other.

Let F be any proper class of graphs that is closed under isomorphism and taking
vertex minors. We conclude with some conjectures. The first is due to Geelen; see
[3, Conjecture 1].

Conjecture 1. (Chi-boundedness Conjecture) There is a function f so that for
every graph G ∈ F with maximum clique of size ω, the chromatic number of G is
no more than f(ω).

Conjecture 2. (Max-Clique Testing Conjecture) There is a polynomial-time al-
gorithm that, given a graph G ∈ F , computes the size of a maximum clique of
G.

Conjecture 3. (Well-Quasi-Ordering Conjecture) There are, up to isomorphism,
finitely many excluded vertex minors for F .
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Weak coloring numbers of planar graphs

Piotr Micek

(joint work with Gwenaël Joret)

Given a graph G, an integer r ≥ 0, and a linear order L of the vertices of G, we
say that v r-reaches x, if there exists a path P from v to x in G of length at most
r (we count the edges) and with x being the least vertex of P in L. Let

WL
r (v) = {x ∈ V (G) | x is r-reachable from v},

wcolr(G) = min
L

max
v

|WL
r (v)|.

The value wcolr(G) is the r-th weak coloring number of G. It was introduced by
Kierstead and Yang in 2003 in [3] where they write “While our main motivation
is the study of game chromatic number, there have been other applications of these
ideas and we expect there will be more”.

We have discussed two recent applications of weak coloring numbers. One is a
bound on the chromatic number of exact-distance graphs. Given a graph G, by
G[#d] we denote a graph on the same set of vertices as G and two vertices are
adjacent in G[#d] if they are at distance d in G. Van den Heuvel, Kierstead and
Quiroz [4] proved that for every positive odd integer d and every graph G we have

χ(G[#d]) ≤ wcol2d−1(G).

The second application is a bound for poset dimension. Given a poset P of height
h and with a cover graph G, let c = wcol3h(G). Then

dim(P ) ≤ 4c.

This was proved by Joret, Micek, Ossona de Mendez and Wiechert [2]. Both
results improve on previous bounds by a large margin and both have very simple
proofs.

Since there are more and more interesting bounds in terms of the weak coloring
numbers it is important to have good bounds for weak coloring numbers them-
selves. A significant progress was made recently by van den Heuvel, Ossona de
Mendez, Quiroz, Rabinovich, and Siebertz [1]. They proved (among other results)
that the r-th weak coloring number of planar graphs is O(r3), while the best known
lower bound is Ω(r2). In fact the cubic bound works also for graphs with bounded
genus and a more general bound for graphs excluding Kt as a minor is O(rt−1).

We show the following new bounds.

Theorem 1. There are planar graphs G with wcolr(G) = Ω(r2 log r).

Theorem 2. Planar graphs G of treewidth at most 3 have wcolr(G) = O(r2 log r).
Moreover, this bound is best possible.

Theorem 3. Outerplanar graphs G have wcolr(G) = O(r log r). Moreover, this
bound is best possible.

We leave the following questions for further research.
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Conjecture 1. Planar graphs G have wcolr(G) = O(r2 log r).

Question 1. What is the bound on wcolr for K3,t-minor free graphs?
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Structure and rough characterization of crossing-critical graphs

Bojan Mohar

(joint work with Zdeněk Dvořák, Petr Hliněný)

We study c-crossing-critical graphs, which are the minimal graphs that require at
least c edge-crossings when drawn in the plane. For any fixed c > 1 there ex-
ist infinitely many c-crossing-critical graphs. It has been previously shown that
c-crossing-critical graphs have bounded path-width and contain only a bounded
number of internally disjoint paths between any two vertices. We expand on these
results, providing a more detailed description of the structure of crossing-critical
graphs. On the way towards this description, we prove a new structural charac-
terisation of plane graphs of bounded path-width. Then we show that every c-
crossing-critical graph can be obtained from a c-crossing-critical graph of bounded
size by replicating bounded-size parts that already appear in narrow “bands” or
“fans” in the graph. This also gives an algorithm to generate all the c-crossing-
critical graphs of at most given order n in polynomial time per each generated
graph.

1. Introduction

The crossing number cr(G) of a graph G is the minimum number of crossings of
edges in a drawing of G in the plane. If c is a positive integer, a graph G is
c-crossing-critical if cr(G) ≥ c, but every proper subgraph G′ of G has cr(G′) < c.

Minimizing the number of edge-crossings in a graph drawing in the plane is
considered one of the most important attributes of a “nice drawing” of a graph,
and this question has found numerous other applications (see, for example, [6],
[9], or the monograph [8]). Consequently, a great deal of research work has been
invested into understanding what forces the graph crossing number to be high.
There exist strong quantitative lower bounds, such as the famous Crossing Lemma
[1, 6]. However, the quantitative bounds show their strength typically in dense
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graphs, and hence they do not shed much light on the structural properties of
graphs with bounded crossing number.

There are only two 1-crossing-critical graphs without degree-2 vertices, the Ku-
ratowski graphs K5 and K3,3, but it has been known already since Širáň’s [10]
construction that the structure of c -crossing-critical graphs is quite rich and non-
trivial for any c ≥ 2. Already the first nontrivial case of c = 2 shows a dramatic
increase in complexity of the problem. Yet, Bokal, Oporowski, Richter, and Salazar
recently succeeded in obtaining a full description [2] of all the 2-crossing-critical
graphs up to finitely many “small” exceptions.

To our current knowledge, there is no hope of extending the explicit description
from [2] to any value c > 2. We, instead, give for any fixed positive integer c an
asymptotic structural description of all sufficiently large c -crossing-critical graphs.
Our contribution can be summarized as follows:

(1) There exist three kinds of local arrangements—a crossed band of uniform
width, a twisted band, or a twisted fan—such that any optimal drawing of
a sufficiently large c -crossing-critical graph contains at least one of them.

(2) There are well-defined local operations (replacements) performed on such
bands or fans that can reduce any sufficiently large c -crossing-critical
graph to one of finitely many basic c -crossing-critical graphs.

(3) A converse—awell-defined bounded-size expansion operation—can be used
to iteratively construct each c -crossing-critical graph from a c -crossing-
critical graph of bounded size. This yields a way to enumerate all the
c -crossing-critical graphs of at most given order n in polynomial time per
each generated graph. More precisely, the total runtime is O(n) times the
output size.

Structural properties of crossing-critical graphs have been studied for more than
two decades, and we now briefly review two of the basic results. First, we remark
that a c -crossing-critical graph may have no drawing with only c crossings (ex-
amples exist already for c = 2). Richter and Thomassen [7] proved the following
upper bound:

Theorem 1 ([7]). Every c-crossing-critical graph has a drawing with at most
⌈5c/2 + 16⌉ crossings.

Hliněný [4] proved that c -crossing-critical graphs have bounded path-width,
and he and Salazar [5] showed that c -crossing-critical graphs can contain only a
bounded number of internally disjoint paths between any two vertices.

Theorem 2 ([4]). Every c-crossing-critical graph has path-width at most

⌈26(72 log2 c+248)c3+1⌉.

2. Structure of large crossing-critical graphs

The proof of our structural characterisation of crossing-critical graphs can be
roughly divided into two main parts. The first one establishes the existence of
specific plane bands (resp. fans) and their tiles in crossing-critical graphs. In the
second part we closely analyse these bands and tiles.
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Figure 1. An example of paths P1, . . . , P6 (bold lines) forming
an (F1, F2)-band of length 6, cf. Definition 1. The five tiles of this
band, as in Definition 2, are shaded in grey and the dashed arcs
represent αi and α

′
i from that definition.

Definition 1. Let G be a 2-connected plane graph. Let F1 and F2 be distinct faces
of G and let v1, v2, . . . , vm, and u1, u2, . . . , um be some of the vertices incident with
F1 and F2, respectively, listed in the cyclic order along the faces. If P1, . . . , Pm

are pairwise vertex-disjoint paths in G such that Pi joins vi with um+1−i, for
1 ≤ i ≤ m, then we say that (P1, . . . , Pm) forms an (F1, F2)-band of length m.
Note that Pi may consist of only one vertex vi = um+1−i.

Let F1 and v1, v2, . . . , vm be as above. If u is a vertex of G and P1, . . . , Pm are
paths in G such that Pi joins vi with u, for 1 ≤ i ≤ m, and the paths are pairwise
vertex-disjoint except for their common end u, then we say that (P1, . . . , Pm) forms
an (F1, u)-fan of length m. The (F1, u)-fan is proper if u is not incident with F1.

Definition 2. Let (P1, . . . , Pm) be either an (F1, F2)-band or an (F1, u)-fan of
length m ≥ 3. For 1 ≤ i ≤ m − 1, let αi be an arc between vi and vi+1 drawn
inside F1, and let α′

i be an arc drawn between ui and ui+1 in F2 in the case of the
band; α′

i are null when we are considering a fan. Furthermore, choose the arcs to
be internally disjoint. Let θi be the closed curve consisting of Pi, αi, Pi+1, and
α′
m−i. Let λi be the connected part of the plane minus θi that contains none of the

paths Pj (1 ≤ j ≤ m) in its interior. The subgraphs of G drawn in the closures
of λ1, . . . , λm−1 are called tiles of the band or fan (and the tile of λi includes
Pi ∪ Pi+1 by this definition). The union of these tiles is the support of the band
or fan.

Our key results are summarized below in Theorems 3 and 4. Unfortunately, the
space limitation does not allow us to state all necessary definitions. We refer to
the full version of the paper [3] and to the monograph [8] for the terms that we do
not define here.

Theorem 3. Let c be a positive integer, and let g : N → N be an arbitrary
non-decreasing function. There exist integers w0 and n0 such that the following
holds. Let G be a 2-connected c-crossing-critical graph, and let G′ be the plane
graph associated with a drawing of G with the minimum number of crossings. Let
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Y denote the set of crossing vertices of G′. If |V (G)| ≥ n0, then for some w′ ≤ w0,
G′ contains an (F1, F2)-band or a proper (F1, u)-fan (where F1 and F2 are distinct
faces and u is a vertex) of length at least g(w′) and with support disjoint from Y ,
such that each of its tiles has size at most w′.

Theorem 4. For every integer c ≥ 1, there exists a positive integer n0 such that
the following holds. If G is a 2-connected c-crossing-critical graph, then there
exists a sequence G0, G1, . . . , Gm of 2-connected c-crossing-critical graphs such
that |V (G0)| ≤ n0, Gm = G, and for i = 1, . . . ,m, Gi is an n0-bounded expansion
of Gi−1.

Moreover, the generating sequences claimed by Theorem 4 can be turned into an
efficient enumeration procedure to generate all c -crossing-critical graphs of order
at most n, for each fixed c.
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Claw-free matroids

Peter Nelson

(joint work with Kazuhiro Nomoto)

A matroid is a pair M = (E,G), where G is a finite binary projective geometry
PG(n− 1, 2), and E is any subset of the points of G. A matroid N is an induced
submatroid) of M if N = (E ∩F, F ) for some subgeometry F of G; write M |F for
this matroid. If M has no induced restriction isomorphic to N , then M is N -free.
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If G has dimension 3 and E is a basis of G, then (E,G) is a claw. A matroid with
no such induced restriction is claw-free. Claws (and larger matroids whose ground
set is a basis) play a role in the induced submatroid order similar to that played
by trees in the order on induced subgraphs; one can thus formulate extremal and
structural statements from induced subgraphs in the setting of matroids.

Our main result is an exact structure theorem for claw-free matroids, analogous
to the structure theorem for claw-free graphs proved by Chudnovsky and Seymour.
The theorem states that claw-free matroids can all be constructed from matroids
in one of three ‘basic classes’ of claw-free matroids via a single ‘join’ operation
that preserves the property of being claw-free.

We also present a conjecture along the lines of the Gyarfas-Sumner conjecture
for graphs, concerning the boundedness of a parameter analogous to chromatic
number in certain classes that are closed under taking induced submatroids. While
this conjecture fails, we present an alternative conjecture that relates matroids to
algebraic varieties in F

n
2 .

Resolution of the Oberwolfach problem

Deryk Osthus

(joint work with Stefan Glock, Felix Joos, Jaehoon Kim, Daniela Kühn)

A central theme in Combinatorics and related areas is the decomposition of large
discrete objects into simpler or smaller objects. In graph theory, this can be traced
back to the 18th century, when Euler asked for which orders orthogonal Latin
squares exist (which was finally answered by Bose, Shrikhande, and Parker [1]).
This question can be reformulated as the existence question for resolvable trian-
gle decompositions in the balanced complete tripartite graph. (Here a resolvable
triangle decomposition is a decomposition into edge-disjoint triangle factors.) In
the 19th century, Walecki proved the existence of decompositions of the complete
graph Kn (with n odd) into edge-disjoint Hamilton cycles and Kirkman formu-
lated the school girl problem. The latter triggered the question for which n the
complete graph on n vertices admits a resolvable triangle decomposition, which
was finally resolved in the 1970s by Ray-Chaudhuri and Wilson [8] and indepen-
dently by Jiaxi. This topic has developed into a vast area with connections e.g. to
statistical design and scheduling, Latin squares and arrays, graph labellings as well
as combinatorial probability.

A far reaching generalisation of Walecki’s theorem and Kirkman’s school girl
problem is the following problem posed by Ringel in Oberwolfach in 1967.

Problem 1 (Oberwolfach problem). Let n ∈ N and let F be a 2-regular graph on
n vertices. For which (odd) n and F does Kn decompose into edge-disjoint copies
of F?

Addressing conference participants in Oberwolfach, Ringel fittingly formulated
his problem as a scheduling assignment for diners: assume n people are to be
seated around round tables for n−1

2 meals, where the total number of seats is
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equal to n, but the tables may have different sizes. Is it possible to find a seating
chart such that every person sits next to any other person exactly once?

We answer this affirmatively for all sufficiently large n. Note that the Ober-
wolfach problem does not have a positive solution for every odd n and F (indeed,
there are four known exceptions).

A further generalisation is the Hamilton-Waterloo problem; here, two cycle
factors are given and it is prescribed how often each of them is to be used in the
decomposition. We also resolve this problem in the affirmative (for large n) via
the following even more general result. We allow an arbitrary collection of types of
cycle factors, as long as one type appears linearly many times. This immediately
implies that the Hamilton-Waterloo problem has a solution for large n for any
bounded number of given cycle factors. (In [5], we actually state and prove an
even more general result.)

Theorem 1 ([5]). For every α > 0, there exists an n0 ∈ N such that for all odd
n ≥ n0 the following holds. Let F1, . . . , Fk be 2-regular graphs on n vertices and
let m1, . . . ,mk ∈ N be such that

∑

i∈[k]mi = (n − 1)/2 and m1 ≥ αn. Then

Kn admits a decomposition into graphs H1, . . . , H(n−1)/2 such that for exactly mi

integers j, the graph Hj is isomorphic to Fi.

The Oberwolfach problem and its variants have attracted the attention of many
researchers, resulting in more than 100 research papers covering a large number of
partial results. Most notably, Bryant and Scharaschkin [2] proved it for infinitely
many n. Most classical results in the area are based on algebraic approaches, often
by exploiting symmetries. More recently, major progress for decomposition prob-
lems has been achieved via absorbing techniques in combination with approximate
decomposition results (often also in conjunction with probabilistic ideas). In [5],
at a very high level, we also pursue such an approach. As approximate decomposi-
tion results, we exploit a hypergraph matching argument due to Alon and Yuster
(which in turn is based on the Rödl nibble via the Pippenger-Spencer theorem)
and a bandwidth theorem for approximate decompositions due to Condon, Kim,
Kühn, and Osthus [3]. Our absorption procedure utilizes as a key element a very
special case of a recent result of Keevash on resolvable designs [6].

Earlier, Kim, Kühn, Osthus, and Tyomkyn [7] considered approximate decom-
positions into graphs of bounded degree in host graphs G satisfying weaker quasir-
andom properties (namely, ε-superregularity). Their resulting blow-up lemma for
approximate decompositions was a key ingredient for [3] (and thus for Theorem 1).
It already implies that an approximate solution to the Oberwolfach problem can
always be found (the latter was obtained independently by Ferber, Lee, and Mous-
set [4]).

While considerably more general than the Oberwolfach problem, Theorem 1
may be just the tip of the iceberg, and it seems possible that the following is true.

Conjecture 1. For all ∆ ∈ N, there exists an n0 ∈ N so that the following holds
for all n ≥ n0. Let F1, . . . , Ft be n-vertex graphs such that Fi is ri-regular for
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some ri ≤ ∆ and
∑

i∈[t] ri = n− 1. Then there is a decomposition of Kn into

F1, . . . , Ft.
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Counting matroids of a fixed rank

Rudi Pendavingh

(joint work with Remco van der Hofstad, Jorn van der Pol)

Let m(n, r) denote the number of matroids of rank r on a fixed ground set E of
cardinality n. We present the following result.

Theorem 1. For each r > 3:

lnm(n, r) =

(

n

r

)

ln(n) + 1− r + o(1)

n
as n→ ∞

A matroid M is paving if each dependent set of M has cardinality at least
r(M). Let p(n, r) be the number of paving matroids. I a previous paper [3], we
demonstrated that

ln p(n, r) ≤ lnm(n, r) ≤
(

1 +
r + o(1)

n− r + 1

)

ln p(n, r) as n→ ∞.

for each fixed rank r. It follows that the count paving matroids will dominate the
upper bound on the number of matroids, at least on this logarithmic scale. To
obtain the sharp upper bound of Theorem 1, we now show:

Theorem 2. For each r > 3:

ln p(n, r) ≤
(

n

r

)

ln(n) + 1− r + o(1)

n
as n→ ∞
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To show this, we show that any paving matroid is uniquely determined by a
sparse paving matroid together with a modest amount of further information. We
show a tradeoff between the amount of ’further information’ and the amount of
information needed to describe the sparse paving matroid. This tradeoff is such
that a small increase in the extra information implies a sharp decrease in the
complexity of the sparse paving matroid, at least for paving matroids of rank 4
or greater. As a result, the number of paving matroids is bounded closely to the
number of sparse paving matroids. Our proof of Theorem 1 adapts an entropy
counting method of Linial and Luria [2], and further relies on a sharp lower bound
on the number of sparse paving matroids due to Bennett and Bohman [1].

The information tradeoff observed in matroids of rank > 3 does not extend to
matroids of rank 3, and so the above argument then fails. Using a completely
different set of techniques, we obtained:

Theorem 3.
(

n

3

)

ln(n)− 2 + o(1)

n
≤ ln p(n, 3) ≤

(

n

3

)

ln(n) + 0.35 + o(1)

n
as n→ ∞

We are not entirely convinced that the constant c = 0.35 in this upper bound is
best possible, but we do think that in rank 3 the gap between p(n, r) and s(n, r) is
more pronounced than in higher rank. Specifically, let p′(n, 3) denote the number
of paving matroids of rank three without hyperplanes of cardinality > 4.

Conjecture 1. There is a constant c > −2 such that

ln p(n, 3) ≈ ln p′(n, 3) =
1

n− r + 1

(

n

r

)

(ln(n− r + 1) + c) as n→ ∞.

In other words, we expect that in rank 3 the type of matroid which dominates
the logarithmic bound is a paving matroid with hyperplanes of cardinality 2, 3 and
4.

Our results are described in a recent preprint on arxiv [5], and they were a part
of the PhD thesis of Jorn van der Pol [4].
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Local Versions of Coloring Theorems

Luke Postle

(joint work with Marthe Bonamy, Michelle Delcourt, Thomas Kelly, Peter
Nelson, Thomas Perrett)

In the 1970s, Vizing and independently Erdos, Rubin and Taylor introduced list
coloring. Erdos, Rubin and Taylor and independently Borodin then proved the
list coloring version of Brooks’ theorem. More than that, they proved a ’local list
version of Brooks’ theorem’, namely they showed that if |L(v)| ≥ d(v) ≥ ω(v) :=
ω(G[N [v]]) for every vertex v in a graph G, then G has an a L-coloring. Surpris-
ingly, few other local list versions were known for other coloring theorem. Local
list versions are nice however since they generalize and simultaneously interpolate
list coloring theorems.

Here we discuss local list versions of other prominent graph coloring theorems
that we have recently proved. In particular, Bonamy, Kelly, Nelson and I proved
a list local version of Johannson’s theorem that χ(G) ≤ O(∆/ ln∆), subject to
the somewhat necessary condition that the range of degrees is at most exponential
(i.e. δ(G) ≥ polylog∆(G). Kelly and I proved a list local version of the epsilon
version of Reed’s conjecture. Namely, Delcourt and I had proved that χ(G) ≤
(1 − ε)(∆(G) + 1) + ǫω(G) for large enough ∆(G) with ε = 1/13, improving on
earlier works by Reed (ε = 10−8), King and Reed (ε = 1

320e6 ) and Bonamy, Perrett

and I (ε = 1
26 ). Kelly and I managed to prove the list local version of this subject

again to an at most exponential range of degrees with ε roughly 1
100 and subject

to the condition ω(v) < d(v)− polylogd(v) for every v.
There remain many open questions about local list versions such as: what

happens when ω is close to d? Is an at most exponential range of degrees necessary?
Can these versions be ‘simultaneously localized’?

Concatenating bipartite graphs

Paul Seymour

(joint work with Maria Chudnovsky, Alex Scott, Sophie Spirkl)

Let x, y ∈ (0, 1]; and let A,B,C be disjoint nonempty subsets of a graph G, where
every vertex in A has at least x|B| neighbours in B, and every vertex in B has at
least y|C| neighbours in C. We denote by φ(x, y) the maximum z such that, in all
such graphs G, there is a vertex v ∈ C that is joined to at least z|A| vertices in A
by two-edge paths. The function φ is interesting, and we have been investigating
some of its properties, in [1]. For instance:

• φ(x, y) = φ(y, x) for all x, y; and
• for each integer k > 1, there is a discontinuity in φ(x, x) when x = 1/k:
φ(x, x) ≤ 1/k when x ≤ 1/k, and φ(x, x) ≥ 2k−1

2k(k−1) when x > 1/k.

There are several open questions: for instance, if x > 1/3 does it follows that
φ(x, x) ≥ 1/2? We are able to prove that φ(x, x) ≥ 3/7. In general, is it true
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that for all integers k ≥ 1, if x, y ∈ (0, 1] with x + ky > 1 and kx + y ≥ 1, then
φ(x, y) ≥ 1/k?

We examined in detail which pairs (x, y) satisfy φ(x, y) ≥ z, for z = 1/2, 2/3
and 1/3. and plotted the answer in the (x, y)-plane. This results in two curves,
for each value of z: below the first the answer is no, above the second the answer
is yes, and in between we are not sure. The curves are very irregular, different
sections corresponding to different theorems and counterexamples; but they are
gratifyingly close in some areas, particularly the curves for z = 2/3.

What if we require in addition that every vertex in B has at least x|A| neigh-
bours in A, and every vertex in C has at least y|B| neighbours in B? Call the
corresponding function ψ(x, y). Then we can prove that for all integers k ≥ 1, if
x, y ∈ (0, 1] with x+ ky > 1 and kx+ y ≥ 1, then ψ(x, y) ≥ 1/k, and a number of
other results. Is it true that ψ(x, y) = ψ(y, x) for all x, y?
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Sparse graphs with forbidden induced subgraphs

Sophie Spirkl

(joint work with Maria Chudnovsky, Jacob Fox, Anita Liebenau, Marcin
Pilipczuk, Alex Scott, Paul Seymour)

The celebrated Erdős-Hajnal conjecture [9, 10] asserts that for every graph H ,
there is a δ > 0 such that every n-vertex graph G that does not contain H as an
induced subgraph has a clique or a stable set of size at least nδ. This has been
proved for a few graphs H (e.g. [6], see also [3]), but remains open in general. The

conjecture is known to be true when nδ is replaced by 2δ
√
logn [10].

On general properties of H-free graphs, Rödl [13] proved the following:

Theorem 1. For all graphs H and ε > 0, there is a δ > 0 such that for every
H-free graph G, there is an induced subgraph J of G such that |V (J)| ≥ δ|V (G)|
and either J or Jc is ε-sparse, i.e. every vertex has degree at most ε|V (J)|.

This motivates the study of sparse H-free graphs. We consider the following
question: For which graphs H does there exist ε > 0 such that every n-vertex
ε-sparse H-free graph G with n > 1 contains two sets A, B of vertices such that

(a) |A|, |B| ≥ εn;
(b) |A| ≥ εn and |B| ≥ nε; resp.
(c) |A|, |B| ≥ nε.

and either all edges between A and B are present in G (A is complete to B), or
no edges between A and B are present in G (A is anticomplete to B)?

Question (c) was solved in the affirmative by Erdös, Hajnal, and Pach [11].
Question (b) was conjectured to be true for all H by Conlon, Fox, and Sudakov
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[8], and was proved for triangle-free graphs H whose vertex set can be partitioned
into a stable set and a matching [4]. If Question (b) is true for all graphs, a similar

method could likely be used to show a bound of 2δ
√
logn log logn in the Erdős-Hajnal

conjecture, which was done for H = C5 in [5].
Question (a) has received considerable attention and is known as the strong

Erdős-Hajnal property; in particular, if it holds for graphs H and J , then the
conclusion of the Erdős-Hajnal conjecture holds for graphs G that are H-free and
Jc-free. While Question (a) is known to be false when H is not a forest [2], it has
been proved successively for paths [1], hooks (paths with an additional leaf at the
third vertex) [2], subdivided caterpillars [12], and finally for all forests [7].
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Degree conditions for embedding trees

Maya Stein

(joint work with Guido Besomi, Mat́ıas Pavez-Signé)

This talk was based on joint work [1, 2] with Guido Besomi and Mat́ıas Pavez-
Signé. The question we are interested in is the following: which degree bounds
ensure that a graphG has to contain each tree on k edges as a subgraph? There are
several conjectures in this respect, famous examples are the Erdős-Sós conjecture
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and the Loebl-Komlós-Sós conjecture, which use conditions on the average and on
the median degree of G, respectively.

Recently, new conjectures conditioning on a combination of the minimum and
the maximum degree of the host graph have sbeen suggested, the first of these
being the 2/3 conjecture due to Havet, Reed, Stein and Wood [3], another one
is the 2k-conjecture, which was proposed in [1]. We show approximate versions
for large dense host graphs and bounded degree trees of both conjectures, and
of the Erdős-Sós conjecture [1]. We then propose a unification of the two new
conjectures, and prove a version for bounded trees and large dense host graphs [2].
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[2] G. Besomi, M. Pavez-Signé, and M. Stein. Maximum and minimum degree conditions for
embedding trees. arXiv 1808.09934 .

[3] F. Havet, B. Reed, M. Stein, and D. R. Wood. A Variant of the Erdős-Sós Conjecture.
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Rota’s Basis Conjecture

Benny Sudakov

(joint work with Matija Bucić, Matthew Kwan, Alexey Pokrovskiy)

Given bases B1, . . . , Bn in an n-dimensional vector space V , a transversal basis is
a basis of V containing a single distinguished vector from each of B1, . . . , Bn. Two
transversal bases are said to be disjoint if their distinguished vectors from Bi are
distinct, for each i. In 1989, Rota conjectured (see [10, Conjecture 4]) that for any
vector space V over a characteristic-zero field, and any choice of B1, . . . , Bn, one
can always find n pairwise disjoint transversal bases.

Despite the apparent simplicity of this conjecture, it remains wide open, and
has surprising connections to apparently unrelated subjects. Specifically, it was
discovered by Huang and Rota [10] that there are implications between Rota’s
basis conjecture, the Alon–Tarsi conjecture [2] concerning enumeration of even
and odd Latin squares, and a certain conjecture concerning the supersymmetric
bracket algebra.

Rota also observed that an analogous conjecture could be made in the much
more general setting ofmatroids, which are objects that abstract the combinatorial
properties of linear independence in vector spaces. Specifically, a finite matroid
M = (E, I) consists of a finite ground set E (whose elements may be thought of
as vectors in a vector space), and a collection I of subsets of E, called independent
sets. The defining properties of a matroid are that:

• the empty set is independent (that is, ∅ ∈ I);
• subsets of independent sets are independent (that is, if A′ ⊆ A ⊆ E and
A ∈ I, then A′ ∈ I ′);
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• if A and B are independent sets, and |A| > |B|, then an independent
set can be constructed by adding an element of A to B (that is, there
is a ∈ A\B such that B ∪ {a} ∈ I). This final property is called the
augmentation property.

Observe that any finite set of elements in a vector space (over any field) naturally
gives rise to a matroid, though not all matroids arise this way. A basis in a matroid
M is a maximal independent set. By the augmentation property, all bases have
the same size, and this common size is called the rank of M . The definition of
a transversal basis generalises in the obvious way to matroids, and the natural
matroid generalisation of Rota’s basis conjecture is that for any rank-n matroid
and any bases B1, . . . , Bn, there are n disjoint transversal bases.

Although Rota’s basis conjecture remains open, various special cases have been
proved. Several of these have come from the connection between Rota’s basis
conjecture and the Alon–Tarsi conjecture. Specifically, due to work by Drisko
[6] and Glynn [9] on the Alon–Tarsi conjecture, Rota’s original conjecture for
vector spaces over a characteristic-zero field is now known to be true whenever
the dimension n is of the form p ± 1, for p a prime. Wild [12] proved Rota’s
basis conjecture for so-called “strongly base-orderable” matroids, and used this to
prove the conjecture for certain classes of matroids arising from graphs. Geelen
and Humphries proved the conjecture for “paving” matroids [7], and Cheung [4]
computationally proved that the conjecture holds for matroids of rank at most 4.

Various authors have also proposed variations and weakenings of Rota’s ba-
sis conjecture. For example, Aharoni and Berger [1] showed that in any matroid
one can cover the set of all the elements in B1, . . . , Bn by at most 2n “partial”
transversals, and Bollen and Draisma [3] considered an “online” version of Rota’s
basis conjecture, where the bases Bi are revealed one-by-one. In 2017, Rota’s basis
conjecture received renewed interest when it was chosen as the twelfth “Polymath”
project, in which amateur and professional mathematicians from around the world
collaborated on the problem. Some of the fruits of the project were a small im-
provement to Aharoni and Berger’s theorem, and improved understanding of the
online version of Rota’s basis conjecture [11].

One particularly natural direction to attack Rota’s problem is to try to find
lower bounds on the number of disjoint transversal bases. Rota’s basis conjecture
asks for n disjoint transversal bases, but it is not completely obvious that even
two disjoint transversal bases must exist! Wild [12] proved some lower bounds for
certain matroids arising from graphs, but the first nontrivial bound for general
matroids was by Geelen and Webb [8], who prove that there must be Ω (

√
n)

disjoint transversal bases. Recently, this was improved by Dong and Geelen [5],
who used a beautiful probabilistic argument to prove the existence of Ω (n/ logn)
disjoint transversal bases. In this paper we improve this substantially and obtain
the first linear bound.

Theorem 1. For any ε > 0, the following holds for sufficiently large n. Given
bases B1, . . . , Bn of a rank-n matroid, there are at least (1/2− ε)n disjoint
transversal bases.



Graph Theory 51

Of course, since matroids generalise vector spaces, this also implies the same result
for bases in an n-dimensional vector space.

We also mention the following strengthening of Rota’s basis conjecture due to
Kahn (see [10]). This is simultaneously a strengthening of the Dinitz conjecture
on list-colouring of Kn,n, solved by Galvin.

Conjecture 1. Given a rank-n matroid and bases Bi,j for each 1 ≤ i, j ≤ n,
there exist representatives bi,j ∈ Bi,j such that each of the sets {b1,j, . . . , bn,j} and
{bi,1, . . . , bi,n} are bases.

The methods developed in this paper also are also suitable for studying 1. In
particular, the argument used to prove 1 can readily be modified to show the
following natural partial result towards Kahn’s conjecture.

Theorem 2. For any ε > 0 the following holds for sufficiently large n. Given a
rank-n matroid and bases Bi,j for each 1 ≤ i ≤ n and 1 ≤ j ≤ f = (1 − ε)n/2,
there exist representatives bi,j ∈ Bi,j and L ⊆ {1, . . . , f} such that each {bi,j :
i ∈ L} is independent, and such that {bi,1, . . . , bi,n} is a basis for any i ∈ L and
|L| ≥ (1/2− ε)n.

Note also that if, for each fixed j, the bases B1,j, . . . , Bn,j are all equal, then
Kahn’s conjecture reduces to Rota’s basis conjecture. This observation also shows
that 2 implies 1.
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Every graph of uncountable chromatic number has a subgraph of

infinite edge-connectivity.

Carsten Thomassen

Erdős and Hajnal [1] conjectured in 1966 that every graph of uncountable chro-
matic number contains a subgraph of infinite connectivity. This problem is also
discussed in [3] and [7]. Komjáth [2] proved that every graph of uncountable chro-
matic number contains a subgraph of uncountable chromatic number and of any
finite connectivity. He has also proved that every graph of uncountable chromatic
number contains a subgraph with infinite vertex degrees and of any finite connec-
tivity, see [3]. He proved in [4] that it is consistent that there is an uncountable
chromatic graph with no infinitely connected uncountable chromatic subgraph.
More recently, a ZFC example has been given by Soukup [6].

In this talk we prove that the edge-connectivity version of the conjecture is true.
The same holds if ”chromatic number” is replaced by ”coloring number” in both
the assumption and conclusion of the result. It is consistent that it also holds for
”list-chromatic number” since Komjáth [5] proved that it is consistent that the
list-chromatic number equals the coloring number (when these are infinite). We
also prove that, if each orientation of a graph G has a vertex of infinite outdegree,
then G contains an uncountable subgraph of infinite edge-connectivity. All these
results generalize to arbitrary infinite regular cardinals.

The proofs are all based on the general result that if the graph H can be obtained
from the graph G by a generalized sequence of finite-cut-deletions, then G can be
obtained from H by a generalized sequence of finite-cut-additions. The precise
meaning is explained below.

If D is a cut in G, then G−D is obtained from G by a cut-deletion. We also say
that G is obtained from G−D by a cut-addition.

As usual, a sequence of elements in a set S can be described as a collection an of
elements in S where n is a natural number. If the indices n are chosen from a set
of ordinals (smaller than some fixed large ordinal), then we speak of a generalized
sequence.

If G is a graph, then a subgraph H of G is obtained from G by a generalized
sequence of cut-deletions if there exists a generalized sequence of subgraphs Gα of
G such that the following hold:

(i) G = G1,
(ii) H = Gα0 for some ordinal α0, and
(iii) If α is a limit ordinal, α ≤ α0, then Gα is the intersection of all Gβ with

β < α, and
(iv) If α is an ordinal, α < α0, then Gα+1 is obtained from Gα by a cut-deletion.

If G is a graph, and H is a subgraph of G, then G is obtained from H by
a generalized sequence of cut-additions if there exists a generalized sequence of
subgraphs Hα of G such that the following hold:



Graph Theory 53

(v) H = H1,
(vi) G = Hα0 for some ordinal α0, and
(vii) If α is a limit ordinal, α ≤ α0, then Hα is the union of all Hβ with β < α,

and
(viii) If α is an ordinal, α < α0, then Hα+1 is obtained from Hα by a cut-

addition.

Note that, if H is obtained from the graph G by a generalized sequence of finite-
cut-deletions, and G is obtained from H by a generalized sequence of finite-cut-
additions, then some of the added cuts may have to be distinct from all the deleted
cuts. It would be interesting to investigate to which extent the same (or almost
same) deleted cuts can be used in the generalized sequence of finite-cut-additions.
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Coloring rings

Kristina Vušković

(joint work with Frédéric Maffray, Irena Penev)

A hole is a chordless cycle of length at least 4. A ring R (of length k) is a graph
whose vertex set can be partitioned into k ≥ 4 nonempty sets X1, . . . , Xk such

that for all i ∈ {1, . . . , k} the set Xi can be ordered as Xi = {u1i , . . . , u|Xi|
i } so

that Xi ⊆ N [u
|Xi|
i ] ⊆ . . . ⊆ N [u1i ] = Xi−1 ∪ Xi ∪ Xi+1. In particular, each Xi

is a clique and every hole of R is of length k. A hyperhole is a ring with further
property that Xi is complete to Xi+1 for every i.

Hyperholes are a subclass of proper circular arc graphs, for which it is known
that coloring, stable set and clique problems can be solved in polynomial time.
Rings are a subclass of circular arc graphs, but they are not necessarily proper
circular arc (as they may contain claws). It is known that for circular arc graphs
clique and stable set problems can be solved in polynomial time, but that coloring
is NP-hard. For proper circular arc graphs coloring is also known to be solvable
in polynomial time.



54 Oberwolfach Report 1/2019

We observe that rings have unbounded clique-width, but seemingly simple struc-
ture. For example, it is easy to see that for some vertex v of a ring R, R[N [v]] and
R \N [v] are both chordal. These properties are well suited for clique and stable
set problems, but do not immediately help with coloring. In this talk we present
the following result from [3].

Theorem 1. [3] If R is a ring, then χ(R) = max{χ(H) : H is a hyperhole in R}.
Furthermore, rings can be colored in polynomial time.

Rings whose length is even are perfect and quite easy to color. Coloring of rings
whose length is odd turned out to be much more complicated. Odd rings are even-
hole-free, and their study is also motivated by this class, for which complexity of
coloring and stable set problems are still open.

Rings also appear as a basic class in the decomposition theorem for the following
class of graphs. A Truemper configuration is any theta, pyramid, prism or wheel.
A wheel (H,x) is induced by a hole H and a vertex x that has at least three
neighbors in H . If x has exactly three neighbors in H , that are furthermore
consecutive on H , then (H,x) is a twin wheel. If x is adjacent to all vertices of
H , then (H,x) is a universal wheel. Let GUT be the class of graphs that out of
all Truemper configurations may contain only twin and universal wheels. The
following decomposition theorem is proved in [1]. A hole or a ring is long if it is
of length at least 5.

Theorem 2. [1] If G ∈ GUT then either G has a clique cutset or G belongs to one
of the following classes.

(1) G has exactly one nontrivial anticomponent and this anticomponent is a
long ring.

(2) α(G) ≤ 2 and every anticomponent of G is either a 5-hyperhole or it is
(long hole, K2,3, C6)-free.

(3) α(G) ≥ 3 and G is (long hole, K2,3, C6)-free.

It is known that the clique problem is NP-hard on GUT , in fact on (long hole,
K2,3, C6)-free graphs. Recently it was shown that for (long hole, C6)-free graphs
the stable set problem can be solved in polynomial time [2], which by Theorem
2 implies that the stable set problem can be solved in polynomial time for GUT .
The coloring problem on this class remains open.

Theorem 1 implies that Hadwiger’s Conjecture holds for rings and hence for
graphs that satisfy (1). From known results it can be derived that Hadwiger’s
Conjecture holds for graphs that satisfy (2). So proving Hadwiger’s Conjecture
for GUT reduces to proving it for graphs that satisfy (3).
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Triples in matroid circuits

Geoff Whittle

(joint work with Jim Geelen, Bert Gerards)

Paul Seymour described the structure that arises when three elements of a binary
matroid are not contained in a circuit. In this talk I consider the analogous
problem for representable matroids. In general, three elements of a vertically 5-
connected matroid are not contained in a circuit if and only if they are joints of
a frame matroid. For binary matroids, or indeed matroids representable over a
field of characteristic two, we can replace 5 by 4 in the above statement. For
other representable matroids specific obstacles arise that prevent the result from
generalising to matroids representable over fields of odd characteristic.

Some natural open questions arise. It is likely that our results extend to non-
representable matroids. This seems achievable but would require more difficult
proof techniques. Also, the obstacles that arise that prevent the result holding for
vertically 4-connected matroids are structure, but their structure is not fully un-
derstood. It would also be helpful to have a better understanding of the structure
of the obstacles for vertically 4-connected matroids.

Around Ryser-Stein-Brualdi conjecture

Liana Yepremyan

A Latin square of order n is an n × n array filled with n different symbols, each
occurring exactly once in each row and each column. A partial transversal of
order k in a Latin square is a collection of k cells which do not share the same
row, column or symbol. A transversal in a Latin square of order n is a partial
tranvsersal of order n.

In 1967 Ryser conjectured [16] that the number of transversals in a Latin square
of order n has the same parity as n. So a weaker form of this conjecture says that
any Latin square of odd order has a transversal. Note that for even n this is
not true; for such n the addition table of a cyclic group of order n is a Latin
square with no transversal. In fact, in 1985 Maillet [10] gave many examples of
group tables having no transversals, one particular case being Zn (recently, this is
extended further by Cavenagh and Wanless [3]).

Ryser’s original conjecture is also false for odd n, because there are known Latin
squares of odd order such that they have even number of transversals. However,
the weaker conjecture still remains open. To this end, Brualdi [2] conjectured that
every Latin square of order n has a partial transversal of size n−1 and moreover, if
n is odd, it has a transversal. Stein [17] conjectured that even stronger statement
holds, and the same outcome should hold even in an n × n array filled with the
numbers 1, 2, . . . , n such that every number occurs exactly n times in total. Very
recently this was disproved by Pokrovskiy and Sudakov [14]; they constructed such
arrays with no partial transversal of order n− 1

42 lnn. The following conjecture is
often referred in the literature as Ryser-Stein-Brualdi conjecture.
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Conjecture 1. Every Latin square of order n has a partial transversal of size
n− 1 and moreover, if n is odd, it has a transversal.

This problem received a lot of attention and led to the development of impor-
tant tools in extremal combinatorics, such as the first application of the Lopsided
Lovász Local Lemma by Erdős and Spencer [4]. The current best lower bound on

the size of the partial transversal is n−O(log2 n) proved by Hatami and Shor [7].
In this report we discuss two variations of the Ryser-Stein-Brualdi conjecture.

First let us see what is the corresponding graph theory problem. To every Latin
square one can assign an edge-colouring of the complete bipartite graph Kn,n by
colouring the edge ij by the symbol in the cell (i, j). This is a proper colouring,
i.e., one in which any edges which share a vertex have distinct colours. Identifying
the cell (i, j) with the edge ij, a partial transversal corresponds to a rainbow
matching of the same size. So the Ryser-Stein-Brualdi conjecture says that any
proper edge-colouring of Kn,n contains a rainbow matching of size n− 1. Aharoni
and Berger conjectured the following.

Conjecture 2. Let G be a bipartite multigraph that is properly edge-coloured with
n colours and has at least n + 1 edges of each colour. Then G has a rainbow
matching using every colour.

To see that this conjecture is a generalization of Ryser-Stein-Brualdi conjecture,
consider any proper edge-colouring of Kn,n with n colours and let G be that Kn,n

plus a new edge of multiplicity n using all n colours. It is easy to see that G
has a rainbow matching using every colour if and only if Kn,n has a rainbow
matching of size n−1. Pokrovskiy [13] showed that Conjecture 2 is asymptotically
true, in that the conclusion holds if there are at least n + o(n) edges of each
colour. In a joint work with Peter Keevash [9], we considered the same question
without the bipartiteness assumption and obtained a result somewhat analogous
to Pokrovskiy’s. We showed that any multigraph with edge multiplicities o(n) that
is properly edge-coloured by n colours with at least n+ o(n) edges of each colour
contains a rainbow matching of size n− c, for some large absolute constant c > 0.
Our algorithm is deterministic; it uses some switching method ideas for extending
a matching (we call it reachibility). A similar result to ours was also obtained
independently by Gao, Ramadurai, Wanless and Wormald [5]. Their result is
closer than ours to the spirit of Conjecture 2, as they obtain a perfect rainbow
matching (whereas we allow a constant number of unused colors). However, they
also require a stronger bound on edge multiplicities. Their method is randomized,
in particular they use the differential equation method. I think it is worth to pursue
both deterministic (as in [9, 13]) and probabilistic (as in [5]) ideas in making further
progress on Conjecture 2.

A second variation of Ryser-Stein-Brualdi conjecture follows. It is generally be-
lieved that if extra symbols are allowed then finding a transversal in Latin squares
might become easier. To this end, Akbari and Alipour conjectured that every
generalized Latin square with at least n2/2 symbols has a transversal, where a
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generalized Latin square of order n is an n×n array filled with an arbitrary num-
ber of symbols such that no symbol appears twice in the same row or column.
Very recently we confirmed this conjecture [8] in a stronger form, showing that for
sufficiently large n, already n2−ε symbols suffice, for ε = 1/200. Our method em-
ploys regularity-type arguments, the probabilistic method and a greedy algorithm
based on some switching method (this is in the spirit of the previously mentioned
reachability algorithm). We did not try to optimize ε, but due to the auxiliary
regularity-type arguments, our result cannot give something of form n1+o(1). How-
ever, there is no known barrier to believe that this number would not suffice. Note
that when n is odd, if we believe Ryser-Stein-Brualdi conjecture, then we believe
that o(1) term can be even taken to be zero! As a first step can we answer the
following question?

Question 2. Does every generalized Latin square with at least n1.5 symbols have
a transversal?

Note that independently Akbari-Alipour conjecture was also confirmed by
Montgomery, Pokrovskiy and Sudakov [11], but their ε is implicit. In fact, they
developed a very general and powerful toolkit for embedding spanning rainbow
structures in graphs. As an auxillary result, they showed that every properly
edge-coloured, quasi-random-like balanced bipartite graph on 2n vertices where
every colour appears at most (1 − o(1))n times has (1 − o(1))n pairwise disjoint
rainbow perfect matchings. This is done via a careful application of a variant
of the famous Rödl nibble, where as an iterative step they find an approximate
rainbow matching which behaves like a uniformly randomly chosen one.

One approach for Question 2 could be to combine their method together with
ours. The same goes for attacking Ryser’s conjecture. Can we improve the term
O(log2 n) in Hatami and Shor’s result to some absolute constant?
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ETH Zürich, HG G 65.1
Rämistrasse 101
8092 Zürich
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Prof. Dr. Stéphan Thomassé
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