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Introduction by the Organizers

Partial differential equations involving interfaces and free boundaries continue to
be a flourishing field with many new applications. Often these partial differential
equations are posed on complex domains and/or involve the geometry of the in-
terface in a complex way. In addition, in many situations stochastic aspects, or
the coupling between discrete structures such particles with manifolds or non-local
effects also play a role.

The workshop had a focus on methods involving PDE theory, numerical anal-
ysis, differential geometry and modelling but also stochastic methods played a
role in several talks. Equations coupling surface, bulk and geometry arise from a
variety of problems and describe a wealth of phenomena. It was the aim of the
proposed workshop to report on recent developments as well as to enhance further
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collaboration, in part by extending the focus to include applications and mathe-
matical modelling in order to take into account the importance of such systems in
traditional fields like materials science and multi-phase flow as well as emerging
applications in the description of biological cells, tumour growth and segregation
and learning theory.

The workshop showed that bringing together researchers with different back-
grounds such as analysis, computation, and real-life applications is very beneficial
not only to individual research areas, but also to advance the general field as a
whole. For example, modern analytical techniques for studying questions of exis-
tence and uniqueness can form the basis for the development of novel numerical
algorithms and help in the corresponding numerical analysis. Indeed, the injection
of aspects of differential geometry, partial differential equations theory, classical
analysis, and asymptotic analysis have proved instrumental over the past two
decades in setting formal underpinnings for proposed numerical methods, estab-
lishing ranges of validity, and re-casting vaguely formulated scientific problems as
precise models and equations. Practical applications are frequently the driving
force for the development of both new mathematical models and new numerical
algorithms. Starting with classical (and hard) problems for interface motions in
fluid mechanics and materials science, there has been an explosion in the num-
ber and nature of applied problems: biological cell mechanics, networks, inverse
problems, multi-scale modelling in biological systems random domains and shape
optimization under uncertainty.

The workshop was attended by more than 50 participants from Europe, Asia
and America with an expertise in analysis of PDEs, modelling, numerical analysis
and scientific computing. The scientific programme consisted of 29 plenary talks.
In addition nine young researchers was given the opportunity to briefly present
their research in ten minutes talks on Wednesday evening.

The workshop had a focus on topics involving problems with interface and com-
plex structures in biological problems, in geometric problems involving interfaces
and thin structures and on phase field models. We now briefly discuss the relevant
contributions.

Interfaces and complex structures in biology: Venkataraman studied multi-scale
models for cell signalling analytically as well as numerically. A hierarchy of
PDE models involving diffuse as well as sharp interface models was presented
by Berlyand. John King emphasized the role of Stokes flow for tissue growth in
contrast to the more often used Darcy models. Interaction of discrete particles
with the geometry of membranes was analyzed by Gräser. Rocca studied diffuse
interface models for tumour growth and addressed the long time behaviour as well
as optimal control problems. Singular limits of coupled bulk-surface models for
raft formation were studied by Abels. Agosti combined theoretical analysis and
computations to describe the patient specific evolution of brain tumours. Bulk-
surface obstacle type problems for polarized cells were analyzed by Röger. A new
model for cell blebbing was numerically studied with the help of the surface finite
element method by Stinner. Stevens analyzed asymptotic limits for diffusion in
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strongly layered domains. These contributions demonstrated that life sciences give
rise to a wealth of problems involving surface, bulk, and geometric PDEs.

Curvature driven interface evolution: Eikonal-curvature flow equations with ex-
ternal forces were studied with a viscosity solution approach by Yoshikazu Giga.
Bartels introduced and analyzed numerical methods for the flow of elastic knots
involving curvature energies which avoid self contact. A new thresholding scheme
for codimension two mean curvature flow was analyzed by Laux. Kovács and Lu-
bich studied convergence results for finite element methods for surface evolution
equations and in particular could show a first convergence result for a discretiza-
tion of mean curvature flow in higher dimensions. Pozzi analyzed the long time
behavior of elastic networks. The fourth order highly singular crystalline surface
diffusion flow has been analyzed by Mi-Ho Giga.

Also in several other talks the geometry and in particular the curvature of inter-
faces played an important role. Reusken analyzed numerical methods for surface
Stokes equations in a stream function formulation. PDEs on curved manifolds
involving tangential tensor fields have been studied by Voigt. Walker analyzed a
numerical method for the plate equation on curved surfaces and in particular also
studied an abstract manifold version of the Kirchoff plate problem. A varifold
perspective to weak notions of curvature of a measure were addressed by Masnou.
Applications of complex interface evolutions in the context of car painting have
been the subject of the talk of Sethian. Surface Navier–Stokes problems have
been derived as a singular limit of a bulk Navier–Stokes problem in a curved thin
domain by Miura.

Phase field methods: Diffuse interface models appeared in several of the talks
involving interfaces in biology. Other contributions involving phase field models are
the following. Otto showed optimal relaxation rates for the one-dimensional Cahn–
Hilliard equation. Bretin numerically investigated phase field approximations of
Steiner and Plateau problems also in higher codimension. Bulk-surface couplings
often involve dynamic boundary conditions and such conditions in an Allen–Cahn
problem have been analyzed by Lam.

Variational calculus and singular limits have been studied in many of the prob-
lems above. In addition, the talk by Thorpe used the notion of Γ-convergence to
study discrete-to-continuum limits in semi-supervised learning on graphs. Varia-
tional calculus also plays an important role in deriving mathematical models. Liu
used an energetic variational approach to derive models involving transport and
charged particles in complex biological systems. Variational calculus involving
quasi-variational inequalities has been applied by Alphonse to show directional
differentiability.

Randomness and uncertainty in surface PDEs and shape optimization have been
the subject of talks in the young researchers session. Other themes of talks in the
young researchers session involved inverse problems, phase field models, nematic
flows, geometric flows and bulk-surface problems in biology.
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Carsten Gräser (joint with Luigi Delle Site, Tobias Kies, Ralf Kornhuber,
Michael Kozlov)
Multi-scale Modeling of Particles in Membranes . . . . . . . . . . . . . . . . . . . . . 156

Elisabetta Rocca (joint with Cecilia Cavaterra and Hao Wu)
Long-time Dynamics and Optimal Control of a Diffuse Interface Model
for Tumor Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
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Abstracts

On the large time behavior of solutions to birth and spread type
equations

Yoshikazu Giga

(joint work with Hiroyoshi Mitake, Takeshi Ohtsuka and Hung V. Tran)

We consider a level-set eikonal-curvature flow equation with an external force.
Such a problem is considered as a model to describe an evolution of height of
crystal surface by two-dimensional nucleation or possibly some class of growths by
screw dislocations. For applications, it is important to estimate the growth rate.
Without an external source term the solution only spreads horizontally and does
not grow vertically so the source term plays a key role for the growth.

Although the large time behavior of parabolic equations is well known, the
equations we study are degenerate parabolic equations where no diffusion effect
exists in the normal to each level-set of a solution. Thus, very little is known even
for the growth rate. Our goal is to describe our recent progress on such type of
problems.

Instead of considering a generalequation, we consider

ut − |∇u| (a div (∇u/|∇u|) + 1) = r(x) in RN × (0,∞)

with zero initial data. Here a is a nonnegative constant and r is a given function.
Without r, this equation is nothing but the level-set equation of the eikonal-
curvature flow of the form V = aκ+ 1, where V denotes the normal velocity and
κ denotes the N − 1 times mean curvature of an evolving surface. In other words,
outside of the support spt r of r each level-set of u spreads by V = aκ + 1 or u
spreads horizontally by this law. The term r plays a role to give a birth if r > 0. In
the theory of crystal growth, the function u = u(x, t) represents a height function
of a crystal at a place x on a flat plane at time t, where N is taken to be equal to
two.

We are interested in the large time behavior of a solution u. Namely, we ask to
find the asymptotic speed R and asymptotic profile w. In other words, find a real
number R and a function w in RN such that

sup
x∈B

|u(x, t) −Rt− w(x)| → 0 as t→ ∞

for any closed ball B in RN . Since the problem has various features, we always
assume that

r ≥ 0 and spt r is compact.

The unique existence of a global-in-time viscosity solution is standard if r is con-
tinuous [7]. However, if r is discontinuous the uniqueness may not be true even if
a = 0 and we need extra notion to choose a reasonable solution [6].
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Theorem ([8]). If r is moreover Lipschitz, the asymptotic speed

R = lim
t→∞

u(x, t)/t ≥ 0

exists. The convergence is locally uniform.

This can be proved by existence of asymptotic speed of φ(t) = supx u(x, t) and
a Lipschitz bound of u(x, t) in x uniformly in t > 0. The former is obtained by
sub-additivity of φ and Fekete’s lemma while the latter is obtained by a Bernstein
type argument for |∇u|2. A similar idea is found in [1] for a different setting.

If a = 0, the problem becomes of first order. In this case, it is known that
R = maxx r. In fact, we have

Proposition ([9], Scaled limit). Set uλ(x, t) = u(λx, λt)/λ for λ > 0. Assume
that a = 0 and r is Lipschitz. Then

lim
λ→∞

uλ(x, t) = R (t− |x|)+ with R = max
x

r,

where b+ = max(b, 0). The convergence is locally uniform.

However, if a > 0, because of the curvature effect R can be smaller than max r.
For example, if spt r is contained in an interior of a ball of radius a(N−1). R must
be zero since a maximal solution with r(x) = 1Bρ

, where Bρ is a ball of radius
ρ < a(N − 1), grows only in finite time [7]. The question is whether there is an
intermediate one.

Theorem ([7], [5]). There is an explicit example that the asymptotic speed R is
positive but less than maxx r at least in the case N = 2.

This can be proved for example by giving r as a mollified characteristic function
of a square not contained in nor containing a unit disk.

We also have a scaled limit for a > 0.

Theorem ([5]). If r is Lipschitz, then

lim
λ→∞

uλ(x, t) = R (t− |x|)+ .

The convergence is locally uniform.

This result in particular recovers the result of [10] on large time behavior of
the eikonal-curvature flow including an anisotropic version; see [5]. In general,
asymptotic speed and asymptotic profile are well-studied for first order Hamilton-
Jacobi equations when the Hamiltonian is convex, coercive under spatially periodic
setting. The theory started by Fathi [4] and Namah and Roquejoffre [12] is now
called a weak KAM (Kalmogonov-Arnold-Moser) theory. See [1], [11] for review.
However, when the equation is of second order less is known especially if the
parabolicity is degenerate like our problem. In our problem, the parabolicity is
degenerate in the direction orthogonal to each level-set of u. If the second order
term is of the form α(x)∆u with α ≥ 0, asymptotic profile and speed are given by
[2] based on a nonlinear adjoint method [3].
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The difficulty to find the asymptotic profile w is based on the fact that the
problem called a cell problem of the form

R − |∇u| (div (∇w/|∇w|) + 1) = r(x)

has many solutions even up to constant. It is not difficult to prove that u(x, t)−Rt
converges to some w solving the cell problem by taking a subsequence tj → ∞.
However, full convergence is in general difficult. We only have a partial result for
the radial case in our joint work with Mitake and Tran in progress.
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Simulation of elastic knots and inextensible elastic curves

Sören Bartels

(joint work with Philipp Reiter)

Thin elastic bodies like rods and wires tend to minimize their bending energy
subject to given boundary conditions and thereby undergo large deformations. The
bending energy is given by the integral of the squared curvature of the deformed
object which equals the square of the second derivative of the deformation if an
inextensibility condition that implies an arclength parametrization is incorporated.
To realistically model relaxation dynamics or preserve topological properties of
a closed curve, an injectivity condition has to be included in the model. We
follow [1, 2] and realize this by adding the tangent-point functional proposed in [3]
to the bending energy so that we consider

I(u) =
1

2

∫ L

0

|u′′(x)|2 dx+ ̺TP(u)

for curves u ∈ H2(0, L;R3) with |u′(x)| = 1 for all x ∈ (0, L). The evolution is
modeled by a corresponding gradient flow which leads to stationary configurations
of low energy. We investigate stability and consistency properties of numerical dis-
cretization methods. In particular, we consider the discrete time-stepping scheme

(dtu
k, v)⋆ + ([uk]′′, v′′) = −̺ δTP(uk−1)[v]

subject to the linearized arclength-conditions

[dtu
k]′ · [uk−1]′ = 0, v′ · [uk−1]′ = 0.

The numerical scheme is shown to be stable and convergent under moderate con-
ditions on the discretization parameters. In particular, we show that if the step
size τ satisfies τ ≤ c then we have the energy decay property

I(uL) + (1 − c′τ)τ
L
∑

k=1

‖dtuk‖2⋆ ≤ I(u0)

and the constraint violation bound

max
k=0,1,...,L

‖|[uk]′|2 − 1‖L1(0,L) ≤ cτI(u0)

for all L = 0, 1, . . . ,K = ⌊T/τ⌋ with a fixed time horizon T > 0. The spatial dis-
cretization is done using piecewise cubic functions and imposing the constraints
at the nodes of the partitioning. Corresponding consistency estimates are derived
under minimal regularity conditions. Numerical simulations reported in [1] pro-
vide the experimental observation that elastic untwisted knots tend to attain flat
configurations. The rigorous dimension reduction from three-dimensional hyper-
elasticity given in [4] shows that torsion effects are described by considering the
functional

E(u, b, d) =
1

2

∫ L

0

|u′′(x)|2 dx+
ct
2

∫ L

0

(b′ · d)2 dx,
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where we omitted the contribution to avoid self-contact. In this setting the func-
tions u′, b, d : (0, L) → R3 define a frame for the curve, i.e., for every x ∈ (0, L) we
have that

[u′(x), b(x), d(x)] ∈ SO(3).

The discretization of the bending-torsion model has to be done carefully since the
coercivity in the variable b arises implicitly. Noting that we have

(b′ · d)2 = |b′|2 − (b · y′′)2

and that ct ≤ 1/2 we are able to define a discretization with uniform coercivity
property. The unit-length constraints are imposed at the nodes of the partitioning
while the orthogonality y′ · b = 0 is enforced via penalization. We eliminate the
variable d noting that d = y′ × b. Making use of certain delay properties of
the discrete product rule we are able to establish the unconditional stability of a
decoupled time-stepping scheme for a suitable gradient flow for E.
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Surface Stokes equations in stream function formulation

Arnold Reusken

(joint work with Philip Brandner)

In recent years there has been a strong increase in research on numerical simula-
tion methods for surface (Navier-)Stokes equations, e.g., [1, 2, 3, 4, 5, 6, 7, 8]. By
far most of these and other papers on numerical methods for surface flow prob-
lems treat the (Navier-)Stokes equations in the primitive velocity and pressure
variables. In the paper [1] the Navier-Stokes equations on a stationary smooth
closed surface in stream function formulation are treated. We are not aware of
any other literature in which surface (Navier-)Stokes equations in stream function
formulation are studied.

In Euclidean space, the stream function formulation of (Navier-)Stokes is well-
known and thoroughly studied, e.g., [9, 10] and the references therein. In numerical
simulations of three-dimensional problems this formulation is not often used due
to substantial disadvantages. For two-dimensional problems this formulation re-
duces to a fourth order biharmonic equation for the scalar stream function. This
formulation has been used in numerical simulations, although it has certain dis-
advantages related to boundary conditions and regularity ([9, 10]).
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In the fields of applications mentioned above, one often deals with smooth sim-
ply connected surfaces without boundary. In such a setting there usually are
no difficulties related to regularity or boundary conditions and the stream func-
tion formulation may be an attractive alternative to the formulation in primitive
variables, as already indicated in [1]. This is the main motivation for the study
presented in the recent paper [12]. Here we outline the main results of that paper.
We give a complete derivation of the surface Helmholtz decomposition, discuss
its relation to the surface Hodge decomposition, and derive a well-posed stream
function formulation of a class of surface Stokes problems. We consider a smooth
connected (not necessarily simply connected) oriented hypersurface Γ ⊂ R3 with-
out boundary. We introduce the natural surface gradient, divergence, curl and
Laplace operators, represented in terms of the standard differential operators of
the ambient Euclidean space R3. These representations, which may differ from
the (intrinsic) ones used in differential geometry, are very convenient for the im-
plementation of numerical methods for surface PDEs. Similar representations for
surface differential operators are also used in e.g., [11, 6, 8, 5]. We introduce suit-
able surface H( divΓ) and H( curlΓ) spaces and derive useful properties of these
spaces. A main result of the paper is the derivation of the following Helmholtz
decomposition in terms of these surface differential operators.

Theorem. For every u ∈ L2
t (Γ) = {u ∈ L2(Γ)3 | n · u = 0 a.e. on Γ } there

exist unique ψ, φ ∈ H1
∗ (Γ) := {φ ∈ H1(Γ) |

∫

Γ φds = 0 } and ξ ∈ H = { u ∈
L2
t (Γ) | divΓu = 0 and curlΓu = 0 } such that

u = ∇Γψ + curlΓφ+ ξ.

The range spaces ∇Γ(H1
∗ (Γ)) and curlΓ(H1

∗ (Γ)) are closed in L2
t (Γ) and the direct

sum

L2
t (Γ) = ∇Γ(H1

∗ (Γ)) ⊕ curlΓ(H1
∗ (Γ)) ⊕H

is L2-orthogonal.

The derivation of this result is based on elementary differential calculus. In partic-
ular, we do not use the calculus of differential forms. However, we do point out the
relation between the Helmholtz decomposition and a Hodge decomposition known
from the field of differential forms. As a corollary of this Helmholtz decomposition
we obtain that for a simply connected surface, to every tangential divergence free
velocity field there corresponds a unique scalar stream function. Using this result
the variational form of the Stokes equation can be reformulated as a well-posed
variational formulation of a fourth order equation for the stream function. The
latter can be rewritten as two coupled second order equations, which form the
basis for a finite element discretization. We use quadratic trace finite elements
for the discretization of these scalar second order equations. From the finite el-
ement approximation of the stream function the velocity field and pressure can
be reconstructed. We show results of a numerical experiment that illustrate the
convergence properties of this discretization method.
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Thresholding for mean curvature flow in codimension two

Tim Laux

(joint work with Nung Kwan Yip)

The thresholding scheme, first introduced by Merriman, Bence, and Osher in 1992,
is an efficient numerical scheme to evolve a hypersurface by mean curvature flow
(MCF). It is based on linear diffusion, that is, convolution with the heat kernel Gh
at time h, of the characteristic function of the bulk (whose boundary is supposed
to evolve by MCF), and pointwise thresholding. The variant in codimension two
by Ruuth, Merriman, Xin, and Osher [4] does the same operations on the level of
a vector field u : R3 → S1 ⊂ R2 that winds around the filament (or curve) in R3:

(1) vn := Gh ∗ un−1, un :=
vn
|vn|

,

which we think of extended in a piecewise constant manner, i.e., uh(t) := un for
t ∈

[

nh, (n+ 1)h
)

.

Esedoğlu and Otto [1] realized that this scheme respects the gradient-flow struc-
ture of mean curvature flow in that it can be viewed as a minimizing movements
scheme for an energy which approximates the interfacial area. With Felix Otto,
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we realized that thresholding solves a family of localized minimization problems
which allows to derive Brakke’s inequality for the scheme [2]. The basis of the
present work is the following extension of this (localized) minimizing movements
principle to surfaces of codimension two: (1) is equivalent to minimizing

(2) Eh(u, ζ) +
1

h

∫

ζ(u− un−1) ·Gh ∗ (u− un−1) dx+

∫

u− un−1

h
· [Gh∗, ζ]u dx

for any localization ζ ≥ 0 where Eh(u, ζ) := 1
h

∫

ζ (1 − u ·Gh ∗ u)dx.
This is easy to check: Suppose first that ζ = 1 and note that (1) is equiva-

lent to the maximization of the symmetric bilinear form
∫

u · vndx =
∫

u · Gh ∗
un−1dx =: (u, un−1) subject to |u| ≤ 1 a.e., or equivalently, the minimization of
−2(u, un−1) = −(u, u)+(u−un−1, u−un−1)+(un−1, un−1). Adding the constant
1 − (un−1, un−1) and dividing by h, one arrives at (2) with ζ = 1. If ζ is not
constant, the symmetry is lost, which leads to the commutator term in (2).

Note that [Gh∗, ζ]u =
∫

Gh(z) (ζ(· − z) − ζ)u(· − z) dz ≈ 2h (∇ζ · ∇)Gh ∗ u.
For simplicity, in these notes, we will ignore higher order terms which can be
estimated explicitly, cf. [3]. The main result is the following:

Theorem. Suppose there exists a smooth, embedded MCF (Γt)t∈[0,T ] and
suppose the initial conditions u0 for (1) are well-prepared around Γ0. Then uh
converges to the smooth MCF in the sense that there exists a subsequence h ↓ 0
and a unit vector field u such that uh → u in L2, and

(i) as h ↓ 0, the energy Eh concentrates only on Γt and
∫

U
|∇u|2dxdt < ∞ for

every open set U in space time with positive distance to Γt;
(ii) away from Γt, u is a harmonic map heat flow into S1.

While (ii) follows easily, for example by taking outer variations us = u+sϕ
|u+sϕ|

in the minimization problem (2), statement (i) uses a more delicate energy esti-
mate displayed in the proposition below, which exploits the localized minimization
problems (2), the existence of a smooth mean curvature flow, and inner variations
∂sus + (ξ · ∇) us = 0 in the global minimization problem.

Well-preparedness of u0 means Eh(u0, 1) ∼ | log h| and Eh(u0, d
2(·,Γ0)) ≤ C.

Such u0 can be constructed easily: For simplicity, think of a filament which is
almost parallel to the x3-axis. On each slice {x = (x′, x3) : x3 = s} which intersects

Γ0 at the point (ξ′(s), s), ξ′ = (ξ1, ξ2), set u0 = x′−ξ′
|x′−ξ′| . A simple but important

back-of-the-envelope computation shows that u0 is well-prepared.

Proposition. As h→ 0, for any T ′ ≤ T

Eh(uh(T ′), φσ(T ′)) +

∫ T ′

h

∫

φσ(t)
∣

∣

∣
Gh/2∗

uh(t) − uh(t− h)

h

∣

∣

∣

2

dx dt

≤ C(σ)Eh(u0, φσ(0)) + o(1).

(3)

Estimate (3) yields the compactness (as the first l.h.s. term controls spatial
variations of uh, and the second l.h.s. term controls variations of Gh/2 ∗ uh in
time, both localized away from Γt). The two main ingredients for the proof of the
proposition are pointed out below, followed by a short sketch of the proof of (3).
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The first ingredient is to use the squared distance function φ̃(x, t) := 1
2d

2(x,Γt)
to characterize the motion of the singular set. This was first done in the hypersur-
face case by Soner and then later extended to higher codimension by Ambrosio-
Soner. Lin also established such a fact for the complex Ginzburg-Landau func-
tional; the interested reader is refered to [3] for the precise references. The key

observation which we need is that since ∇φ̃ solves the heat equation on Γt, the
Hessian has eigenvalues ≤ 1, i.e.,

(4) ∇2φ̃ ≤ Id in Aσ := {(x, t) : d(x,Γt) < σ},

and that since Γt has codimension two, precisely two of those eigenvalues are = 1,
hence ∆φ̃ = 2 on Γt, and since clearly ∂tφ = 0 on Γt, by Taylor’s theorem

(5) ∂tφ̃− ∆φ̃ ≤ −2 + 1
2C(σ)d2(x,Γt) = −2 + C(σ)φ̃ in Aσ.

This function φ̃ can be extended to a function φ, for example (a mollified version

of) min{φ̃, 12σ2}.
The second ingredient for the proof of the proposition is the following mono-

tonicity formula for Eh:

d

dh
Eh(u, 1) ≤ 0 for any unit vector field u,

which is simple to prove, e.g., by spelling out Eh in Fourier space and taking the
derivative term by term. This monotonicity formula improves the discrete one
known in case of hypersurfaces and it will enter the proof of the proposition below
in form of the sharp inequality

(6)

∫

∣

∣∇Gh/2 ∗ u
∣

∣

2
dx ≤ Eh(u, 1) for any unit vector field u.

The argument for (3) starts with plugging u = un−1 into (2) with ζ = φ(nh):

Eh(un, φn) − Eh(un−1, φn−1) ≤− h

∫

φn
un − un−1

h
·Gh ∗

un − un−1

h
dx

− h

∫

un − un−1

h
· 1

h
[Gh∗, φn]un dx

+ hEh
(

un−1,
φn − φn−1

h

)

,

where φn := φ(t = nh). Expanding the commutator on the r.h.s. yields
∫

un − un−1

h
· 1

h
[Gh∗, φn]un dx ≈ 2

∫

un − un−1

h
· (∇φn · ∇)Gh ∗ un dx,

which is precisely the (inner) first variation of the metric term (i.e., the second
term in (2) with ζ = 1) along the gradient field ξ = ∇φ. The Euler-Lagrange
equation allows us to replace this term by the first variation of Eh(·, ζ = 1). Then
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summing over n and telescoping the l.h.s., this yields

Eh(uh(T ′), φ(T ′)) +

∫ T ′

0

∫

φ
∣

∣

∣
Gh/2 ∗

uh(t) − uh(t− h)

h

∣

∣

∣

2

dx dt

≤Eh(u0, φ(0)) + 2

∫ T ′

0

∫

∇Gh/2 ∗ uh · ∇2φ∇Gh/2 ∗ uh dxdt

+

∫ T ′

0

1

h

∫

(∂tφ− ∆φ)
(

1 − uh ·Gh ∗ uh
)

dxdt+ o(1).

The last r.h.s. term is simply the energy Eh(uh, ∂tφ − ∆φ). Over the far-field
region Acσ, the r.h.s. terms are easily estimated, but the contribution from the
near-field region Aσ needs more attention: First, (4) and (5) bound the r.h.s. by

Eh(u0, φ(0)) + 2

∫ T ′

0

∫

∣

∣∇Gh/2 ∗ uh
∣

∣

2
dxdt+

∫ T ′

0

Eh(uh,−2 + C(σ)φ) dt + o(1).

Second, by the monotonicity (6), the two terms without the localization φ have
the correct sign (≤ 0) so that (3) simply follows from a Gronwall argument.
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Discrete-to-Continuum Limits of p-Laplacian Regularisation in
Semi-Supervised Learning on Graphs

Matthew Thorpe

(joint work with Dejan Slepčev and Jeff Calder)

The talk concerns how a family of regression problems in a semi-supervised setting
behaves in the large data limit. The task is to assign real-valued labels to a set
Xn = {xi}ni=1 ⊂ R

d of n sample points, provided a small training subset of N
labelled points, i.e. we are given labels {yi}Ni=1 on the first N data points. We
pose the problem on a graph G = (Xn,W ) where Xn form the nodes of the graph
and W = (Wij)

n
i,j=1 are edge weights. More precisely, we use random geometric

graphs where one defines a connectivity radius ε and weights by

Wij = ηε(|xi − xj |) =
1

εd
η

( |xi − xj |
ε

)

.
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A prototypical example is η(t) = 1 if |t| ≤ 1 and η(t) = 0 for |t| > 1, so that the
graph has positive weights only when nodes are closer than ε. In order to localise
the geometry we choose ε = εn and let εn → 0 as n→ ∞.

We use an objective functional which rewards the regularity of the estimator
function and imposes agreement with the training data. In particular, we consider
the discrete p-Laplacian regularization defined by

E(p)
n (f) =

1

εpnn2

n
∑

i,j=1

Wij |f(xi) − f(xj)|p.

The variational problem we consider is

minimise E(p)
n (f) subject to f(xi) = yi for all i ∈ Zn

where Zn ⊂ {1, . . . , n}.
If data points xi are independently sampled from a probability measure µ ∈

P(Rd) with density ρ then a formal argument shows that the pointwise limit of

E(p)
n is

E(p)
∞ (f) = σ

∫

Rd

|∇f(x)|pρ2(x) dx

with probability one. For n → ∞ the choice of η in the weights is present only
through the constant σ (at least for isotropic weights) defined by

σ =

∫

Rd

η(x)|x1| dx.

The first question we ask is whether the constrained minimisers of E(p)
n converge

to constrained minimisers of E(p)
∞ as n → ∞ for |Zn| = {1, . . . , N} fixed. Clearly

the constrained limiting problem only makes sense for p > d. It is natural to ask
whether this is sufficient. As it turns out one needs to control the length scale εn.
We uncover a delicate interplay between the regularizing nature of the functionals
considered and the nonlocality inherent to the graph constructions. Our first main

result is that constrained minimisers of E(p)
n converge to constrained minimisers of

E(p)
∞ when

εpnn→ 0

(the well posed regime) and when

εpnn→ ∞
constrained minimisers converge to constants (ill posed regime). The condition
εpnn→ 0 implies an upper bound on εn.

The proof uses methods from the calculus of variations, namely Γ-convergence,
coupled with an optimal transport based metric where one can define the discrete-
to-continuum topology necessary to define a notion of convergence for functions
on the graph. Precise statements and proofs can be found in [1].

Our second result is to consider the regime where |Zn| → ∞. Our training data
model is that i ∈ Zn with probability βn. In this case our main result is that
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constrained minimisers of E(p)
n converge to constrained minimisers of E(p)

∞ when
p = 2,

εpn
βn

→ 0 and
βnε

d
nn

logn
→ +∞

(the well posed regime), and when p > 1 and

εpn
βnnc

→ +∞ for any c > 0

constrained minimisers converge to constants (ill posed regime). The proof of
the well posed case uses connections between minimisers of the 2-Laplacian and
random walks on graphs [2].
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Multiscale modelling, analysis and simulation of cell signalling
processes

Chandrasekhar Venkataraman

(joint work with Mariya Ptashnyk)

We consider homogenisation of a model for cell signalling processes in biological
tissues. Such signalling processes are the primary mechanism by which cells in-
teract and respond to external stimuli. Hence they play an important role in the
majority of cell biological phenomena. The signalling model we consider includes
diffusion and nonlinear reactions on the cell surfaces, and both inter- and intracel-
lular signalling. Our main result is to derive, under the assumption of a periodic
cell distribution, the equations satisfied in the limit as the cell number tends to
infinity with the volume fraction of tissue occupied by the cells constant.

Let Ω ⊂ Rd, with d = 2, 3 be a Lipschitz domain, representing a part of a
biological tissue. To describe the microscopic structure, given by extra- and intra-
cellular spaces separated by cell membranes, we consider a ‘unit cell’ Y = [0, 1]d,
and the subdomains Y i ⊂ Y and Ye = Y \Yi, together with the boundary Γ = ∂Yi.
The domain occupied by the intracellular space is given by Ωεi =

⋃

ξ∈Ξε ε(Yi + ξ),

where Ξε = {ξ ∈ Zn, ε(Yi + ξ) ⊂ Ω}, and the extracellular space is denoted

by Ωεe = Ω \ Ω
ε

i . The surfaces that describe the cell membranes are denoted by
Γε =

⋃

ξ∈Ξε ε(Γ + ξ).

Signalling molecules (ligands) diffuse in the extracellular space and bind with
cell membrane receptors to form receptor-ligand complexes (bound receptors).
The signal from the extracellular domain is transduced into the cell through the
activation by bound receptors of membrane proteins (co-receptors). Activated co-
receptors then interact with signalling molecules in the cell interior. We denote
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the concentrations of the extracellular ligands, intracellular ligands, receptors,
bound receptors, co-receptors, and activated co-receptors by cεe, c

ε
i , r

ε
f , r

ε
b , p

ε
d and

pεa respectively. The model for the evolution of the ligand concentration, cεe in the
extracellular space Ωεe reads

(1)

∂tc
ε
e −∇ · (Dε

e(x)∇cεe) = Fe(c
ε
e) in Ωεe, t > 0,

Dε
e(x)∇cεe · ν = −εGe(cεe, rεf , rεb) on Γε, t > 0,

Dε
e(x)∇cεe · ν = 0 on ∂Ω, t > 0,

with the nonlinear Robin boundary condition

Ge(c
ε
e, r

ε
f , r

ε
b) = aεe(x)cεer

ε
f − bεe(x) rεb ,

describing reversible binding of ligands to free receptors creating receptor-ligand
complexes. For the receptors and proteins on the cell membrane we obtain the
following reaction-diffusion equations

(2)

∂tr
ε
f − ε2Df∆Γr

ε
f = Ff (rεf , r

ε
b) −Ge(c

ε
e, r

ε
f , r

ε
b ) − df r

ε
f on Γε, t > 0,

∂tr
ε
b − ε2Db∆Γr

ε
b = Ge(c

ε
e, r

ε
f , r

ε
b) −Gd(r

ε
b , p

ε
d, p

ε
a) − db r

ε
b on Γε, t > 0,

∂tp
ε
d − ε2Dd∆Γp

ε
d = Fd(p

ε
d) −Gd(r

ε
b , p

ε
d, p

ε
a) − dd p

ε
d on Γε, t > 0,

∂tp
ε
a − ε2Da∆Γp

ε
a = Gd(r

ε
b , p

ε
d, p

ε
a) −Gi(p

ε
a, c

ε
i ) − da p

ε
a on Γε, t > 0,

where ∆Γ denotes the Laplace-Beltrami operator on the surfaces Γε and the
binding/dissociation reactions for rεb , p

ε
d, and pεa are defined by

Gd(u, v, w) = aεi (x)u v − bεi (x)w,

and the function

Gi(w, v) = γεi (x)w − κεi (x)v,

describes the transduction of the signal into the cell inside by activated proteins
on the cell membrane. For the molecules involved in the intracellular part of the
signalling pathway we consider

(3)
∂tc

ε
i − ε2∇ · (Dε

i (x)∇cεi ) = Fi(c
ε
i ) in Ωεi , t > 0,

ε2Dε
i (x)∇cεi · ν = εGi(p

ε
a, c

ε
i ) on Γε, t > 0.

In the above, the functions F(·) and the constants d(·) model production and/or
decay of the respective species. The model is closed by imposing bounded nonneg-
ative initial data for all the species and Neumann or constant Dirichlet boundary
conditions for cεe on ∂Ω.

Under suitable assumptions, see [5] for details, we prove that for every fixed
ε > 0 there exists a unique weak solution of the microscopic problem (1)–(3),
which is nonnegative and satisfies the following estimates, with C independent of
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ε,

(4)

‖cεe‖L∞(0,T ;L2(Ωε
e))

+ ‖∇cεe‖L2((0,T );L2(Ωε
e))

+
√
ε‖cεe‖L2((0,T );L2(Γε)) ≤ C,

‖cεi‖L∞(0,T ;L2(Ωε
i ))

+ ‖ε∇cεi‖L2((0,T );L2(Ωε
i ))

+
√
ε‖cεi‖L2((0,T );L2(Γε)) ≤ C,

√
ε‖rεl ‖L∞(0,T ;L2(Γε)) +

√
ε‖ε∇Γr

ε
l ‖L2((0,T );L2(Γε)) ≤ C, l = f, b,

√
ε‖pεs‖L∞(0,T ;L2(Γε)) +

√
ε‖ε∇Γp

ε
s‖L2((0,T );L2(Γε)) ≤ C, s = a, d,

‖cεl ‖L∞(0,T ;L∞(Ωε
l
)) + ‖rεj‖L∞(0,T ;L∞(Γε)) + ‖pεs‖L∞(0,T ;L∞(Γε)) ≤ C.

We use the trace and Gagliardo–Nirenberg inequalities together with an iteration
processes to show the above estimates. Similar ideas were used in [2] to show the
well-posedness of a system describing nonlinear ligand-receptor interactions for a
single cell, whose shape is evolving in time. However due to the multiscale nature
of our problem and the corresponding scaling in the microscopic equations, the
techniques from [2] cannot be applied directly to obtain uniform a priori estimates.

Using the estimates (4) along with, now classical, results from the theory of
two-scale convergence [1, 4, 3] we prove that a sequence of solutions of problem
(1)–(3) converge as ε→ 0 to limits that satisfy the following two-scale macroscopic
equations:

(5)

∂tce −∇ · (Dhom
e (x)∇ce) = Fe(ce) −

1

|Ye|

∫

Γ

Ge(ce, rf , rb)dγy in Ω,

Dhom
e (x)∇ce · ν = 0 on ∂Ω,

∂tci −∇y · (Di(y)∇yci) = Fi(ci) in Ω × Yi,

Di(y)∇yci · ν = Gi(pa, ci) on Ω × Γ,

where

Dhom
e,ij (x) =

1

|Ye|

∫

Ye

[

De,ij(x, y) +
(

De(x, y)∇yw
j(y)

)

i

]

dy,

with wj being solutions of the unit cell problems

divy(De(x, y)(∇yw
j + ej)) = 0 in Ye × Ω,

∫

Ye

wj(x, y)dy = 0,

De(x, y)(∇yw
j + ej) · ν = 0 on Γ × Ω, wj(x, ·) Y − periodic,

for x ∈ Ω, where {ej}j=1,...,d is the standard basis in R
d, together with the dy-

namics of receptors and proteins on the cell membrane Ω × Γ

(6)

∂trf −∇Γ,y · (Df∇Γ,yrf ) = Fr(rf , rb) −Ge(ce, rf , rb) − dfrf ,

∂trb −∇Γ,y · (Db∇Γ,yrb) = Ge(ce, rf , rb) −Gd(rb, pa, pd) − dbrb,

∂tpd −∇Γ,y · (Dd∇Γ,ypd) = Fp(pd) −Gd(rb, pa, pd) − ddpd,

∂tpa −∇Γ,y · (Da∇Γ,ypa) = Gd(rb, pa, pd) −Gi(pa, ci) − dapa.

We approximate the solution to the macroscopic two-scale systems (5) and (6)
using a two-scale finite element method (details in [5]). A feature of the numerical
approach is that the two-scale systems are treated as parameterised systems in
which the macroscopic variables simply play the role of parameters. The upshot
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of this treatment is that independent bulk-surface systems are solved in parallel at
each node of the triangulation of the macroscopic domain the solutions of which
are used in the calculation of the source term in the macroscopic equation for ce.
Benchmark simulations and simulations in a biological regime are reported in [5].
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Hierarchy of PDE Models for Active Gels

Leonid Berlyand

(joint work with Volodimir Rybalko and Jan Fuhrmann)

We consider PDE models of active gels that arise in the studies of motility of
eukaryotic cells. Our goal is to capture mathematically the key biological phe-
nomena such as steady motion with no external stimuli, spontaneous breaking of
symmetry, and rotation.

We first review our past work on phase field models [2] and then present recent
work on the two types of the free boundary models: curvature driven motion [1]
and a generalized Hele-Shaw flow for nonlinear PDEs [3].

In the analysis of the above models our focus is on proving existence of the
traveling wave solutions that are the signature of the cell motility. We also study
breaking of symmetry by proving existence of non-radial steady states. Bifurca-
tion of traveling waves from steady states is established via the Schauder’s fixed
point theorem for the phase field model and the Leray-Schauder degree theory and
Crandal-Rabinowitz theorem for the free boundary problem models.
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Stokes-flow-associated interfacial dynamics and tissue growth

John King

Tissue growth models adopting a Newtonian-fluid constitutive law were described,
covering nutrient-rich and nutrient-poor limits. Asymptotic and numerical results
were presented, with an emphasis on a buckling instability associated with cell-
division-driven compressive stresses and contrasts with conventional fluid dynam-
ics highlighted.

Multi-scale Modeling of Particles in Membranes

Carsten Gräser

(joint work with Luigi Delle Site, Tobias Kies, Ralf Kornhuber, Michael Kozlov)

Particles embedded into biomembranes play a crucial role for membrane func-
tion. Due to the inherent multi-scale structure of the problem, the mathematical
modeling of coupled particle–membrane systems is a challenging task: At a large
scale, the membrane behaves like an elastic shell with bending rigidity. Conversely,
the particle–membrane coupling is happening on a much smaller molecular scale.
While the mechanical properties can be modeled using Canham–Helfrich type
geometric PDEs and a continuum membrane description, the molecular particle–
membrane interactions are naturally represented using atomistic or coarse grained
molecular dynamics approaches.

To efficiently deal with the multi-scale structure we consider hybrid particle–
membrane models [1] combining a continuum membrane description u with dis-
crete particles pi coupled using the conditions gi(u, pi) = 0. The latter may, e.g.,
take the form of an essential boundary condition on the boundary of the particle
of given position and orientation pi ∈ Ω × [0, 2π].

In order to investigate the interplay of the mechanical membrane properties and
the particle–membrane coupling we consider the joint energy functional

E(u, p) = J(u) + V (p).

Here u ∈ H is a graph representation in a suitable closed subspace H ⊂ H2(Ω)
and ω ⊂ (Ω × [0, 2π])]N is the set of admissible particle configurations. In the so
called Monge–Gauge approximation J(u) is a quadratic energy function associated
to an H2(Ω)-elliptic linear differential operator.

Ignoring thermal fluctuations this leads to the coupled minimization problem

(u, p) = arg min
(v,q)∈H×ω

s.t. gi(v,qi)=0

E(v, q).

Associating to each possible particle configuration q ∈ ω the optimal membrane
shape we arrive at the reduced minimization problem

p = arg min
q∈ω

E(q), E(q) = inf
v∈H

s.t. gi(v,qi)=0

E(v, q)
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for the implicitly given membrane-mediated mechanical particle–particle interac-
tion potential E(q). Based on the gradient ∇E(q) which can be computed using
shape calculus we investigate minimizers of E(q) using a gradient flow approach
[3]. To avoid local minimizers this can be combined with simulated annealing tech-
niques. Numerical experiments using this approach showed ring-like clustering of
FCHo2 BAR-domain proteins which is supposed to happen at an early stage of
clathrin-mediated endocytosis [2].

To go beyond the zero-temperature case modeled by minimizing E(q) we con-
sider the canonical ensemble for temperature induced particle fluctuations leading
to the canonical probability density

ρ(q) =
1

Z
e−βE(q), Z =

∫

ω

e−βE(q)dq.

In order to efficiently compute expectation values E[A] of observables A with
respect to ρ we employ a Langevin sampling approach based on the overdamped
Langevin equation

dq = −∇E(q)dt+ αdW

to sample from the density ρ. Prototypic numerical experiments indicate that
this approach can be a useful and efficient tool to compute observables and free
energies for fluctuating particles in the non-zero case. The investigation of how
this can be extended to membrane fluctuations is the topic of ongoing research.
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Long-time Dynamics and Optimal Control of a Diffuse Interface
Model for Tumor Growth

Elisabetta Rocca

(joint work with Cecilia Cavaterra and Hao Wu)

We investigate the long-time dynamics and optimal control problem of a diffuse
interface model that describes the growth of a tumor in presence of a nutrient
and surrounded by host tissues. The state system consists of a Cahn-Hilliard
type equation for the tumor cell fraction and a reaction-diffusion equation for the
nutrient:

φt − ∆µ = P (φ)(σ − µ), in Ω × (0, T ),(1)

µ = −∆φ+ F ′(φ), in Ω × (0, T ),(2)

σt − ∆σ = −P (φ)(σ − µ) + u, in Ω × (0, T ),(3)
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subject to homogeneous Neumann boundary conditions

∂νφ = ∂νµ = ∂νσ = 0, on ∂Ω × (0, T ),(4)

and initial conditions

φ|t=0 = φ0(x), σ|t=0 = σ0(x), in Ω.(5)

Here Ω ⊂ Rd (d = 2, 3) denotes a bounded domain with smooth boundary ∂Ω and
ν stands for the outward unit normal to ∂Ω. System (1)–(3) is an approximation
of the model proposed in [5]. The state variables are reduced to the tumor cell
fraction φ and the nutrient concentration σ. Typically, φ ≃ 1 and φ ≃ −1 repre-
sent the tumor phase and the healthy tissue phase respectively, while σ ≃ 1 and
σ ≃ 0 indicate in a nutrient-rich or nutrient-poor extracellular water phase. The
unknown µ stands for the related chemical potential and the function F is typi-
cally a double-well potential with equal minima at φ = ±1. P denotes a suitable
proliferation function, which is in general a nonnegative and regular function of
φ. The function u serves as an external source in the equation for σ and can be
interpreted as a medication (or a nutrient supply) that serves to eliminate tumor
cells in terms of drugs and is introduced into the system through the nutrient.

In [2], the system (1)–(5) with u = 0 was rigorously analyzed concerning well-
posedness, regularity and long-time behavior (in terms of the global attractor),
while in the recent paper [6] the long-time behavior of solutions (in terms of at-
tractors) has been studied for a different system introduced in [4]. Let us indeed
notice that, to the best of our knowledge, these are the only two contributions
in the literature regarding the long-term dynamics of diffuse interface models for
tumor growth.

Here, we consider the problem of “long-time treatment” under a suitable given
source under a different perspective, that is convergence of single treajectories, and
we prove the convergence of any global solution to a single equilibrium as t→ +∞.
Then we consider the “finite-time treatment” of a tumor, which corresponds to
an optimal control problem. Here we also allow the objective cost functional to
depend on a free time variable, which represents the unknown treatment time to
be optimized. We prove the existence of an optimal control and obtain first order
necessary optimality conditions for both the drug concentration and the treatment
time. One of the main aims of the control problem is to realize in the best possible
way a desired final distribution of the tumor cells, which is expressed by the target
function φΩ. By establishing the Lyapunov stability of certain equilibria of the
state system (without external source), we see that φΩ can be taken as a stable
configuration, so that the tumor will not grow again once the finite-time treatment
is completed.

Let us observe that under the presence of the external source u, we observe
that any smooth solution (φ, σ) to problem (1)–(5) satisfies the following energy
identity:
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d

dt
E(φ, σ) +

∫

Ω

[

|∇µ|2 + |∇σ|2 + P (φ)(µ − σ)2
]

dx =

∫

Ω

uσ dx, ∀ t > 0,(6)

which motives the twofold aim of the present contribution.

1: Long-time treatment of medication. For a suitably given external
source u, we study the long-term dynamics of problem (1)–(5). We prove
that any global weak solution will converge to a single equilibrium as
t→ +∞ and provide an estimate on the convergence rate.

In this direction, our result indicates that after certain medication (or
even without medication, i.e., u = 0), the tumor will eventually grow to
a steady state as time evolves. However, since the potential function F
is nonconvex due to its double-well structure, problem (1)–(5) may admit
infinite many steady states so that for the moment one cannot identify
which exactly the unique asymptotic limit as t→ +∞ will be.

2: Finite-time treatment of medication. We investigate a more general
distributed optimal control problem (cf. [1] and [3]), where we allow the
objective cost functional to depend also on a free time variable, represent-
ing the unknown treatment time to be optimized. More precisely, denoting
by T ∈ (0,+∞) a fixed maximal time in which the patient is allowed to
undergo a medical treatment, we consider
(CP) Minimize the cost functional

J (φ, σ, u, τ) =
βQ
2

∫ τ

0

∫

Ω

|φ− φQ|2 dxdt +
βΩ
2

∫

Ω

|φ(τ) − φΩ|2 dx

+
αQ
2

∫ τ

0

∫

Ω

|σ − σQ|2 dxdt+
βS
2

∫

Ω

(1 + φ(τ)) dx

+
βu
2

∫ T

0

∫

Ω

|u|2 dxdt+ βT τ,

subject to the control constraint

u ∈ Uad := {u ∈ L∞(Q) : umin ≤ u ≤ umax a. e. in Q}, τ ∈ (0, T ),

and to the state system (1)–(5), where Q := Ω × (0, T ).
Here, τ ∈ (0, T ] represents the treatment time, φQ and σQ represent

a desired evolution for the tumor cells and for the nutrient, respectively,
while φΩ stands for desired final distribution of tumor cells. The first
three terms of J are of standard tracking type, as often considered in the
literature of parabolic optimal control, and the fourth term of J measures
the size of the tumor at the end of the treatment. The fifth term pe-
nalizes large concentrations of the cytotoxic drugs, and the sixth term of
J penalizes long treatment times. As it is presented in J , a large value
of |φ − φQ|2 would mean that the patient suffers from the growth of the
tumor, and a large value of |u|2 would mean that the patient suffers from
high toxicity of the drug. We shall prove the existence of an optimal con-
trol and derive the first-order necessary optimality conditions in terms of
a variational inequality involving the adjoint state variables.
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The variable τ can be regarded as the necessary treatment time of one
cycle, i.e., the amount of time the drug is applied to the patient before the
period of rest, or the treatment time before surgery. After the treatment,
the ideal situation will be either the tumor is ready for surgery or the
tumor will be stable for all time without further medication (i.e., u = 0).
This goal can be realized by making different choices of the target function
φΩ in the above optimal control problem (CP). For the former case, one
can simply take φΩ to be a configuration that is suitable for surgery. While
for the later case, which is of more interest to us, we want to choose φΩ as
a “stable” configuration of the system, so that the tumor does not grow
again once the treatment is complete. For this purpose, we prove that any
local minimizer of the total free energy E is Lyapunov stable provided that
u = 0. As a consequence, these local energy minimizers serve as possible
candidates for the target function φΩ. Then after completing a successful
medication, the tumor will remain close to the chosen stable configuration
for all time.
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Convergence results for surface evolution coupled to parabolic
problems on the surface

Balázs Kovács

(joint work with Buyang Li, Christian Lubich and Christian Power)

Starting from papers of Dziuk and Elliott, much insight into the stability and
convergence properties of finite elements on evolving surfaces has been obtained
by studying a linear parabolic equation on a given moving closed surface Γ(t).
The strong formulation of this model problem is to find a solution u(x, t) (for
x ∈ Γ(t) and 0 ≤ t ≤ T ) with given initial data u(x, 0) = u0(x) to the linear
partial differential equation

∂•u(x, t) + u(x, t)∇Γ(t) · v(x, t) − ∆Γ(t)u(x, t) = 0, x ∈ Γ(t), 0 < t ≤ T,
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where ∂• denotes the material time derivative, ∆Γ(t) is the Laplace–Beltrami op-
erator on the surface, and ∇Γ(t) ·v is the tangential divergence of the given velocity
v of the surface. The Acta Numerica article of Dziuk and Elliott is an excellent
review article (up to 2012) on the numerical analysis of this and related problems.

Beyond the above model problem, there is considerable interest in cases where
the velocity of the evolving surface is not given explicitly, but depends on the
solution u of the parabolic equation; see, e.g. physical and biological models where
such situations arise. A further highly interesting problem (for two- or higher-
dimensional surfaces) would be to couple mean curvature flow with diffusion on the
surface. Studying the convergence of finite elements for these coupled problems,
however, remains illusive as long as the convergence of ESFEM for mean curvature
flow of closed surfaces is not understood. This has remained an open problem since
Dziuk’s formulation of such a numerical method for mean curvature flow in his
1990 paper [1]. Contrary to the case of surfaces with prescribed motion, there
exists so far no numerical analysis for solution-driven surfaces in R

3, to the best
of our knowledge.

We consider different velocity laws for coupling the surface motion with the
diffusion on the surface: a regularized velocity law:

v(x, t) − α∆Γ(t)v(x, t) = g
(

u(x, t),∇Γ(t)u(x, t)
)

νΓ(t)(x), x ∈ Γ(t),

with a fixed regularization parameter α > 0.
This elliptic regularization allows us to give a complete stability and (optimal-

order) convergence analysis of the ESFEM semidiscretisation [2], for finite ele-
ments of polynomial degree at least two. The stability and convergence results are
extended to full discretisations with linearly implicit backward difference time-
stepping [3].

Our approach also applies to the ESFEM discretisation of coupling a regularized
mean curvature flow and diffusion on the surface:

v − α∆Γ(t)v =
(

−H + g
(

u,∇Γ(t)u
)

)

νΓ(t),

where H denotes mean curvature on the surface Γ(t).

The main difficulty in proving the convergence of the full discretization of the
surface-evolution equation is the proof of stability in the sense of bounding errors
in terms of defects in the discrete equations, and further establishing, via an inverse
inequality, W 1,∞ norm bounds for the errors. The proofs require some auxiliary
results from [2, 3], which relate different finite element surfaces. The stability
proofs use energy estimates (and are performed on the matrix–vector formulation)
that become available for BDF methods up to order 5 by the multiplier technique of
Nevanlinna & Odeh, which in turn is based on the G-stability theory of Dahlquist.
The stability is independent of geometric arguments.

The developed techniques and the mentioned auxiliary results relating different
surfaces enable a convergence proof for mean curvature flow [4].
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Convergence of an evolving finite element method for mean
curvature flow

Christian Lubich

(joint work with Balász Kovács and Buyang Li)

A proof of convergence was outlined for semi- and full discretizations of mean
curvature flow of closed two-dimensional surfaces, based on our paper [4].

Approximating the mean curvature flow by numerical methods was first addressed
by Dziuk [1] in 1990. He proposed a finite element method based on a weak
formulation of the mean curvature flow as a (formally) heat-like partial differential
equation, in which the moving nodes of the finite element mesh determine the
approximate evolving surface. However, proving convergence of Dziuk’s method
or related evolving finite element methods for closed two-dimensional surfaces (or
higher-dimensional hypersurfaces) has remained an open problem.

We here consider a different evolving finite element method for mean curva-
ture flow of closed two-dimensional surfaces and prove optimal-order convergence
over time intervals on which the evolving surface remains sufficiently regular. We
study stability and convergence for both the finite element semi-discretization and
the full discretization obtained with a linearly implicit backward difference time
discretization. Our approach shares with Dziuk’s method the property that the
moving nodes of a finite element mesh determine the approximate evolving surface.
However, the method presented here discretizes equations that are different from
the equation discretized by Dziuk. In his approach, a weak formulation of the
quasi-heat equation describing mean curvature flow is discretized, whereas in the
present work evolution equations for the normal vector and the mean curvature
are discretized, which then yield the velocity of the surface evolving under mean
curvature flow. Evolution equations for geometric quantities on a surface evolving
under mean curvature flow have been an important tool in the analysis of mean
curvature flow ever since Huisken’s 1984 paper [2], but apparently they have so
far not been used in the numerical approximation of mean curvature flow.

The numerical method based on the discretization of evolution equations of
geometric quantities, as presented here, is computationally more expensive than
Dziuk’s method (roughly by about a factor 2), but on the other hand it provides
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full-order approximations to basic geometric quantities — the normal vector and
mean curvature — in addition to the position and velocity of the surface.

Our numerical approach is related to our previous paper [3], where we study
the convergence of finite elements on an evolving surface driven by diffusion on
the surface. The convergence analysis of our method for mean curvature flow uses
techniques developed in that previous paper. As in [3], the stability analysis works
with the matrix–vector formulation of the method and does not use geometric ar-
guments. The geometry only enters into the analysis of the consistency error. The
error analysis combines the stability estimates and consistency estimates to yield
optimal-order H1-norm error bounds for the computed surface position, velocity,
normal vector and mean curvature.
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Modeling of Rotary Spray Bell Painting

James A. Sethian

(joint work with Robert I. Saye)

In manufacturing settings, paints are frequently applied by an electrostatic rotary
bell atomizer: paint flows to a cup rotating at 10,000-70,000 rpm and is driven by
centrifugal forces to form thin sheets and tendrils at the cup edge, where it then
atomizes into droplets.

Rotary Bell: Schematic of paint flow and air currents

The goal of computational modeling of this process is to both understand the
dynamics, and to optimize flow characteristics. This includes
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• Optimizing the atomization process for higher paint flow rates, in particu-
lar trying to obtain more uniform and consistent atomization in the 30,000
to 60,000 rpm range.

• Studying the atomization process as a function of paint fluid properties
(such as density, viscosity, and surface tension) and physical properties,
such as inflow rates, bell rotation speeds and shaping air currents.

• Analyzing film dynamics, particularly in the immediate atomization zone
right past the cup edge, including the dynamics of filament formation and
droplet size, distribution and trajectories.

However, the fluid mechanics of this problem make it particularly challenging:

• The cup is rotating fast (50,000 rpm).

• Interfaces are contorted and complex.

• Thin sheets of paint roll off, and then break into droplets.

• The flow is not axisymmetric: Three-dimensional effects are what cause
droplets to break off, into tiny tendrils and droplets.

• Paint is non-Newtownian.

From a computational point of view, these challenges dictate several requirements.
First, we need appropriate equations of motion in a moving, rotating coordinate
system referencing curved surfaces. Second, hybrid interface solvers which coupled
interface jump conditions with highly contorted interfaces are required. Third,
highly accurate fluid solvers are needed to deal with the sharp density jumps
between the paint fluid dynamics and fast moving shaping air currents. Fourth,
adaptive mesh refinement is needed, because of the vast scales between the smallest
droplets and the extent of the computational domain. And fifth, the sheer scale of
the time step and space discretization require use of advanced high performance
computing capabilities, replete with attention to massively parallel processing on
multi-core architectures.

To meet these needs, we have been working on building a numerical methodology
that can accurately compute the underlying dynamics. Our methodology com-
bines (1) level set methods to track the paint/air fluid interface, in a way that is
able to deal with significant distortions, tearing, breakup and merger [1, 2]; (2) im-
plicit mesh discontinuous Galerkin methods for high order accurate computation
of the underlying flow and interface dynamics, employing temporary body-fitted
DG meshes in order to impose complex interface jump conditions [3]; (3) an adap-
tive mesh refinement scheme to resolve fluid droplets, in which subdivision criteria
are based on width/thickness of paint film, as well as curvature; and (4) advanced
efficient parallel implementation on high performance multi-core architectures.

Results so far have been promising, and we plan to report on them in the near
future.
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A Coupled Bulk-Surface Model for Lipid Raft Formation in Cell
Membranes

Helmut Abels

(joint work with Johannes Kampmann)

We consider a model, which describes the formation of so-called lipid rafts on
cell membranes. The model was derived by Garcke et al. in [2] and leads to the
following bulk–surface system:

∂tu = D∆u in B × (0, T ],(1)

−D∇u · ν = q on Γ × (0, T ],(2)

∂tϕ = ∆Γµ on Γ × (0, T ],(3)

µ = −ε∆Γϕ+ ε−1W ′(ϕ) − δ−1(2v − 1 − ϕ) on Γ × (0, T ],(4)

∂tv = ∆Γθ + q =
4

δ
∆Γv −

2

δ
∆Γϕ+ q on Γ × (0, T ],(5)

θ =
2

δ
(2v − 1 − ϕ) on Γ × (0, T ](6)

with initial conditions for u, ϕ and v. Here B ⊆ R3 is a bounded smooth domain
with boundary Γ := ∂B and outer unit normal ν, and T, ε,D, δ > 0 are arbitrary.
q is an exchange term for the cytosolic and membrane-bound cholesterol and will
be specified later. Here (3) and (5) are mass balance equations for the surface
quantities. (1) and (2) model the evolution of the cytosolic cholesterol by a simple
diffusion equation with diffusion coefficient D > 0. Equation (5) also includes a
cross-diffusion, which stems from the cholesterol-lipid affinity in the surface energy
F . Finally, equations (3) and (4) constitute Cahn-Hilliard dynamics for the lipid
concentration and allow for a contribution from the cholesterol evolution via the
last term. We note that the parameter δ controls how much the preferred binding
between saturated lipids and cholesterol influences the system.

We note that sufficiently smooth solutions of the system satisfy

d

dt

(

F(v(·, t), ϕ(·, t)) +
1

2

∫

B

u(·, t)2
)

≤
∫

Γ

q(θ − u) dH2 for all t ∈ (0, T ].(7)
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It is possible to prove that the energy stays bounded on finite time intervals un-
der suitable growth assumptions on q. This is a key ingredient for our following
existence proof.

Theorem (Existence of Weak Solutions).
Let T ∈ (0,∞). Let ϕ0 ∈ H1(Γ), v0 ∈ H1(Γ) and u0 ∈ L2(B). Moreover, assume
that the exchange term q : R2 → R is continuous and fulfills

(8) |q(u, v)| ≤ C(1 + |u| + |v|) ∀ u, v ∈ R

for some C > 0. Then there exist functions (u, ϕ, v, µ, θ) ∈ WB × W1
Γ × W1

Γ ×
W2

Γ ×W2
Γ which are a weak solution to problem (1)–(6), where

WB := L2
(

0, T ;H1(B)
)

∩H1
(

0, T ;
(

H1(B)
)′)

,

W1
Γ := L2(0, T ;H1(Γ)) ∩H1(0, T ;H−1(Γ)), and W2

Γ := L2(0, T ;H1(Γ)).

We refer to [1] or [3] for the proofs and details of this and the following results.
Since the diffusion in the bulk is often much higher than the lateral diffusion

on the cell membrane, it is reasonable to consider D → ∞ in (1)–(6). Formally,
one derives

∂tu = − 1

|B|

∫

Γ

q(u, v) for t ∈ (0, T ],(9)

∂tϕ = ∆Γµ on Γ × (0, T ],(10)

µ = −ε∆Γϕ+ ε−1W ′(ϕ) − δ−1(2v − 1 − ϕ) on Γ × (0, T ],(11)

∂tv = ∆Γθ + q(u, v) on Γ × (0, T ],(12)

θ =
2

δ
(2v − 1 − ϕ) on Γ × (0, T ].(13)

Here u is spatially constant and its evolution in time is governed by the ordinary
differential equation (9). More precisely, we can show:

Proposition. Let {Dn}n∈N ⊂ (0,∞) be such that limn→∞Dn = ∞ and let
(uDn , ϕDn , µDn , θDn , vDn) be weak solutions from the above Theorem with D = Dn

and initial data independent of n. Then there exists a subsequence (again denoted
by {Dn}n∈N) such that

uDn ⇀ u in L2(0, T ;H1(B)) ∩H1
(

0, T ;
(

H1(B)
)′)

with u(t) ∈ R∀t∈ (0, T ),

(ϕDn ,vDn) ⇀ (ϕ, v) in L2(0, T ;H1(Γ)) ∩H1(0, T ;H−1(Γ)),

(µDn ,θDn) ⇀ (µ, θ) in L2(0, T ;H1(Γ)),

and such that the limit functions are weak solution to the reduced problem (9)–(13).

The inequality (7) allows to identify two different classes of constitutive laws
for the exchange term q. Every constitutive law which implies that

∫

Γ
q(θ − u)

is non-positive also implies that the energy of the coupled system is decreasing.
This is called the equilibrium case. But this might not be true in general. One
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possible approach is to see the cholesterol attachment to the membrane as a ”reac-
tion” between free sites on the membrane, namely regions of low membrane-bound
cholesterol concentration v and the cytosolic cholesterol, whereas the detachment
from the membrane can be considered to be proportional to v. This leads to

(14) q(u, v) := c1u(1 − v) − c2v

with positive constants c1, c2 ∈ R, cf. [2]. In [2], the authors present numerical
simulations which allow to compare the qualitative behavior for the reduced model
in the equilibrium and non-equilibrium case. In the equilibrium case, the simula-
tions display the saturated lipids clustered in one connected domain, in contrast to
the complex patterns observed in the formation of lipid rafts. On the other hand,
the non-equilibrium case (14) exhibits the emergence of patterns similar to the
formation of lipid rafts, see [2, Figures 3 and 11]. Furthermore, it turns out that
the reduced system in the non-equilibrium case displays a surprising relationship
to the so-called Ohta-Kawasaki system arising in the modeling of diblock copoly-
mers. Based on further numerical experiments it was conjectured in [2, Section
3.4] that as δ → 0, solutions to the reduced model in the case (14) should approach
solutions to the Ohta-Kawasaki equations.

By the following Theorem, this is actually true for the mean value free parts
of the solutions and a slight modification of the Otha-Kawasaki equation. In the
following, PΓ denotes the projection onto the mean value free part, i.e. PΓf :=
f − 1

|Γ|
∫

Γ
f := fΓ.

Theorem (Convergence to a Modified Ohta-Kawasaki Equation).
Let q be as in (14)and let {δn}n∈N ⊂ (0,∞) be a sequence with limn→∞ δn = 0.
Let (uδn , ϕδn , µδn , θδn , vδn) be weak solutions of (9)–(13) with δ = δn. We assume
that the initial data is independent of δn and in addition that the initial data
for u belongs to [0,M |B|−1]. Then there exists a subsequence (again denoted by

{δn}n∈N) such that {uδn}n∈N and (ϕδnΓ , µδnΓ , θδnΓ ) fulfil

uδn ⇀ u in H1(0, T ),

ϕδnΓ ⇀ ϕΓ in L2(0, T ;H1(Γ)) ∩H1(0, T ;H−1(Γ)),

(µδnΓ , θδnΓ ) ⇀ (µΓ, θΓ) in L2(0, T ;H1(Γ))

and (u, ϕΓ, µΓ, θΓ) is a weak solution to the modified Ohta-Kawasaki equation

∂tϕΓ = ∆ΓµΓ,
5

4
µΓ = −ε∆ΓϕΓ +

1

ε
PΓW

′(ϕΓ) − 1

2
σ,

∆Γσ =
c1u(t) + c2

2
ϕΓ,

∫

Γ

σ = 0,

where σ := θΓ − 1
2µΓ, together with

d

dt

∫

B

u(t) = − c1
|B|

(
∫

B

u(t)

)2

+

(

c1
M − |Γ|

|B| − c2

)
∫

B

u(t) + c2M on (0, T ].
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Weak and approximate curvatures of a measure: a varifold perspective

Simon Masnou

(joint work with Blanche Buet and Gian Paolo Leonardi)

We introduce in [5] a new approach for the computation of second-order extrinsic
properties (curvatures) for a very general class of geometric objects, including both
smooth or piecewise smooth d-submanifolds and discrete datasets in the Euclidean
n-space. The generality and potentialities of our method can be mostly appreci-
ated on unstructured datasets, like point clouds, for which the determination of
curvatures is a very important, but extremely delicate task. Indeed, the need of
efficient and robust techniques for the analysis of geometric features of general
datasets is today of primary importance, due to the variety of both data sources
and applications of data analysis, in particular in high dimensions.

The proposed framework relies on a suitable extension of the theory of varifolds.
Varifolds represent very natural generalizations of classical d-surfaces, as they en-
code, loosely speaking, a joint distribution of mass and tangents. More technically,
varifolds are Radon measures defined on the Grassmann bundle Rn ×Gd,n whose
elements are pairs specifying a position in space and an unoriented d-plane. Vari-
folds have been proposed more than 50 years ago by Almgren [3] as a mathematical
model for soap films, bubble clusters, crystals, and grain boundaries. After Allard’s
fundamental work [1], they have been successfully used in the context of Geomet-
ric Measure Theory, Geometric Analysis, and Calculus of Variations. Within the
classical theory of varifolds, a generalized notion of curvature is encoded in the
first variation operator, see [1, 2, 9]. The so–called Allard varifolds, i.e., varifolds
whose first variation is a Radon measure, constitute a very important class of
measures. More than a decade after Allard’s work, a theory of curvature varifolds
was proposed by Hutchinson [7, 6]. This theory provides a notion of generalized
second fundamental form (extended by Mantegazza in [8] to the case of varifolds
with boundary), together with existence and regularity results for solutions to
variational problems involving curvature–dependent functionals.

As we already pointed out in our previous work [4], the theory of varifolds has
seen no substantial applications in the fields of applied mathematics. A possible
explanation is that some key tools, like the first variation operator, are not directly
applicable to general varifolds, and in particular to varifolds arising from discrete
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datasets. For example, the first variation of a point cloud varifold is not a measure,
but only a distribution resulting from a directional/tangential derivative of a finite
sum of weighted Dirac’s deltas. Therefore, the standard first variation of a point
cloud varifold does not directly provide any consistent notion of (mean) curvature
for that kind of dataset. In [4] we have shown how to define consistent notions
of approximate mean curvature for any varifold, including those of discrete type.
In [5] we extend the theory and define approximate second fundamental forms for
the whole class of varifold measures.

More precisely, we first introduce a suitable family of variation operators and
obtain from them a notion of weak second fundamental form which appears to be
weaker than (but fully consistent with) the tensor defined by Hutchinson. Using a
regularization technique, we show how to define approximate second fundamental
forms for general varifolds. These approximate curvature tensors depend on a pa-
rameter which controls the approximation scale. We prove in [5] various compact-
ness, consistency, and convergence results, typically we compare the approximate
second fundamental forms of a sequence of varifolds with the second fundamental
form of its weak-∗ limit.

We also show in [5] several numerical tests on point clouds that illustrate the
robustness of the method. In particular, some examples of 2-dimensional point
clouds in R3 are considered. For them, we compute the approximate principal
curvatures also in presence of noise and singularities to illustrate the stability of
our approach.

We believe that our notion of approximate second fundamental form constitutes
a general, robust, and easily-computable tool for extracting curvature information
from very general geometric objects. Several promising research directions are
thus opened. Only to name a few: the development of a theory of discrete geo-
metric evolutions (e.g., the discrete mean curvature flow) for point clouds, with
application to shape smoothing and segmentation; the use of curvature estima-
tors for data analysis and classification in any dimension and codimension; the
determination of intrinsic properties of unstructured datasets (like the density of
a point cloud) via curvature–related properties.
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Optimal L1-relaxation rates for the Cahn-Hilliard equation on the line

Felix Otto

(joint work with Sebastian Scholtes and Maria Westdickenberg)

We study the relaxation of the Cahn-Hilliard equation on the line

ut − (W ′(u) − uxx)xx = 0(1)

with limx→±∞ u = ±1, where for simplicity we take W = 1
4 (u2 − 1)2 to be the

standard double-well potential. The only stationary solutions are the translates
{vc := v(· − c)}c∈R of the kink v = tanh x√

2
. It is well known that equation (1)

preserves mass:

d

dt

∫

(u− v) = 0 so that w. l. o. g.

∫

(u− v) = 0.(2)

Furthermore, (1) dissipates energy: Ė = −D, where

E :=

∫

(

(W (u) +
u2x
2

) − (W (v) +
v2x
2

)
)

, D :=

∫

(W ′(u) − uxx)2x.(3)

Our goal is to quantify the rate at which u→ v as t ↑ ∞.

For a given configuration u, let

c := argminc

∫

(u − vc)
2 and fc := u− vc(4)

and note that by mass conservation, cf. (2), there holds

2c =

∫

fc.(5)

We start with heuristics: Linearizing (1) around vc and appealing to the Euler-
Lagrange equation for (4), we obtain

(fct − ċvcx) − (W ′′(vc)fc − fcxx)xx = 0,

∫

fcvcx = 0,(6)

which in on large spatial scales is approximated by

(fct − 2ċδ(· − c)) − (W ′′(1)fc)xx = 0, fc(x = c) = 0,(7)

also known as the Stefan problem. From this we learn that the free boundary
x = c acts as a sink for the diffusing excess mass fc. The anti-derivative

Fc(x) :=

{

∫ c

−∞ fc x < c

−
∫+∞
c fc x > c

}
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satisfies the diffusion equation with homogeneous Neumann data on the (moving)

half space, so that we expect supx |Fc|
<≈ 1√

4πW ′′(1)t

∫

|F0c|, where the index 0

indicates initial data. By volume conservation, cf. (5), in the form 2c = [Fc],

this yields the algebraic relaxation |2c| <≈ 1√
4πW ′′(1)t

∫

|F0c|, a scaling we exactly

capture:

Theorem. Suppose that for any δ > 0

E0 ≤ 2

∫

(W (v) +
v2x
2

) − δ.(8)

Then

tc2 + t
3
2E

<∼δ
(

∫

|F0c| + 1
)2

and c2 + t
1
2E

<∼δ
(

∫

|f0c| + 1
)2
.

Assumption (8), which ensures that there is not enough energy to form three
(and thus even two) transition layers, is necessary to rule out the slow-coarsening
scenario. As opposed to the above, prior results have been perturbative. Setting

f := u−v, Bricmont et. al. showed that supx
|f0|

(1+|x|)3+ ≪ 1 implies tc2
<∼ 1; Howard

could weaken the assumption to supx
|f0|

(1+|x|)2 ≪ 1 (note that supx
|f0|

(1+|x|)2 has the

same scaling as
∫

|F0c|). Carlen et. al. established that
∫

x2f2
0 ≤ 1 and

∫

f2
0 ≪ 1

implies the (suboptimal) t
9
13E

<∼ 1. (Two of the present authors established the

optimal tE
<∼ 1 under the scaling-wise similar assumption

∫

F 2
0 ≤ 1 and (8).)

To give an idea of the proof, we focus on t
1
2E

<∼ (
∫

|f0c|+1)2. At the core, there is
a Nash-type argument based on V :=

∫

|fc|. The argument is simple on the level
of the Stefan problem (7), where it is easy to see

V̇ ≤ 0 and thus V ≤ V0,(9)

while the dissipation of energy, cf. (3), assumes the simple form

Ė = −D where E =

∫

W ′′(1)

2
f2
c , D =

∫

(W ′′(1)fcx)2.

In combination with the elementary interpolation estimate

E
<∼ D

1
3 V

4
3 , which amounts to ‖fc‖L2

<∼ ‖fcx‖
1
3

L2‖fc‖
2
3

L1,(10)

this yields the desired t
1
2E

<∼ V 2
0 by an elementary ODE argument.

There are two challenges in passing from the Stefan problem (7) to the Cahn-
Hilliard equation (1). The first challenge is to find a substitute for the elementary
interpolation estimate (10). It relies on the quantitative linearization

(8) =⇒ E ∼
∫

(f2
c + f2

cx), D ∼
∫

(f2
cx + f2

cxxx),

which allows one to easily establish (10) in the form E
<∼ D

1
3 (V + 1)

4
3 .



172 Oberwolfach Report 3/2019

The second challenge is to find a substitute for (9). We establish V
<∼ V0 + 1 by

a duality argument: Given a time T , one first shows on the basis of the simple
energy estimate for t ∈ [0, T ], that

c(t) − c(T )
<∼ (T − t)

1
4 + 1 so that c(t) ≤ c̄(t) := c(T ) + C((T − t)

1
4 + 1).(11)

One then solves the linear homogeneous equation

−ζt − (W ′′(1)ζ − ζxx)xx = 0 for x > c̄,

ζ = ζxx = 0 for x = c̄

backwards in time with terminal data ζ = signfc at t = T . Because of (11), the
moving domain {x > c̄(t)} stays solidly to the right of the free boundary. Note
that −ζt−(W ′′(1)ζ−ζxx)xx = 0 is dual to fct−(W ′′(1)fc−fcxx)xx = 0, which is a
good approximation to (6) away from the free boundary. Equation (6) in turn was
the linearization of (1). This allows one to relate

∫

|fc(t = T )| =
∫

(fcζ)(t = T )
to

∫

f0cζ(t = 0). In order to deal with the approximation and linearization errors,
we use the semi-group estimate

|ζ| + max{T − t, (T − t)
1
2 }|ζxx| + max{(T − t)2, T − t}|ζxxxx|

<≈ sup
x

|ζ(t = T )|,

and the challenge in deriving this comes from the moving domain. However, the
latter is a subcritical perturbation. This can be seen by the change of variables
y = x− c̄(t) and appealing to Schauder theory for the (parabolic) operator

∂t − ∂2y + ∂4y with Dirichlet b. c. on {y > 0}.

This maximal regularity theory in Hölder spaces has to be based on the Carnot-
Carathéodory metric

|t− t′| 14 + min{|y − y′| 12 , |y − y′|},

where the presence of the (formally lower order) expression |y− y′| 12 is crucial for
capturing the correct large-scale behavior dominated by (second-order) diffusion.
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Tangential tensor fields - modeling, numerics and applications

Axel Voigt

(joint work with Michael Nestler, Ingo Nitschke and Sebastian Reuther)

Over the last decade a huge interest has been developed for surface PDEs in
both numerical analysis and applications. To deal with PDEs defined on curved
manifolds requires to combine various mathematical disciplines, e.g., differential
geometry, variational methods, numerics and even topology. Although some nu-
merical approaches exist, which rely on a geometric framework, the important
breakthrough in the development of numerical methods for this type of PDEs is
the avoidance of charts and atlases. Either the methods are based on a triangu-
lated surface and require information on the manifold solely through knowledge
of the vertices, or an implicit surface representation is used and the problem is
extended to the embedding space. Most of this work until today is concerned
with scalar-valued surface PDEs, see [1] for a review. In this case the coupling
between the geometry of the surface and the PDE is weak and thus allows to
solve these problems with small modifications of established numerical approaches
in flat space. For vector- and tensor-valued surface PDEs this coupling becomes
much stronger. We provide an approach, which is based on a reformulation of the
problem in Cartesian coordinates and allows for a componentwise solution using
tools for scalar-valued surface PDEs. The approach does not require any assump-
tions on the extension of the surface quantities in the embedding space. Starting
with the manifold and the covariant derivative ∇, we extend the manifold and
the quantities on it to an embedding thin film with the corresponding embedding
space/thin film derivative ∇ . By using thin film coordinates we can separate tan-
gential and normal contributions, which enables to identify the tangential parts
with ∇ and to express ∇ in terms of partial derivatives along the Euclidean basis.
This reformulation maintains physical invariance and allows to rewrite any mani-
fold bound, vector- or tensor-valued PDE into a set of scalar-valued PDEs along
an Euclidean basis. In this form the problem can be solved for each component by
established finite element methods. We numerically demonstrate optimal order of
convergence for different examples and provide all necessary tools to solve general
vector- and tensor-valued surface PDEs within a numerical framework for scalar-
valued surface PDEs. In particular we obtain for 0-tensors (scalars) and 1-tensors
(vectors)

d = 0, s : M 7→ T0(M) [∇s]i = ∂is [∇s] = Π[∇ s]

d = 1,p : M 7→ T1(M) [∇p]ij = ∂jpi − Γkijpk [∇p] = Π[∇p] + (p ·ν)B,

where M ⊂ R
3 denotes the manifold, Td(M) the tangent d-tensors bundle on

M, Π the projection to Td(M), ∂i partial derivatives, Γkij the Christoffel symbols,
ν the manifold normal and B the shape operator. While the description of the
covariant derivative for scalar quantities, i. e. [∇s] = Π[∇ s] = ∇ s− ν(ν · ∇ s), is
well established, see e.g. Def. 2.3 in [1], the description in Cartesian coordinates
for tensors depends on the degree d and requires additional coupling terms with
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geometric quantities, which increase with the degree d. The Cartesian descriptions
can now be used to derive a generic componentwise finite element formulation for
vector- and tensor-valued surface PDEs. For 1-tensors (vectors) similar approaches
have been considered for specific applications. However, besides [2], all use
[∇p] = Π[∇p], which only holds if ν · p = 0. In [3, 4] this is enforced by a
penalty approach and in [5] by using a Lagrange multiplier. To demonstrate the
approach we consider a vector-Helmholtz problem on a manifold without boundary
embedded in R3. The variational formulation reads: Find p ∈ H

1,1
tan(M), s.t.

a(p,ψ) = l(ψ) ∀ψ ∈ H
1,1
tan(M)(1)

with a(p,ψ) = 〈∇p,∇ψ〉2 + 〈p,ψ〉1 and l(ψ) = 〈f ,ψ〉1, with H
1,1
tan(M) the

Sobolev space of tangent tensor fields of degree 1 on M with covariant gradi-
ent and an appropriate norm 〈p,ψ〉d = 〈Π[p],Π[ψ]〉(R3)d for d-tensor fields. Using
the derived identities, this can be rewritten in the extended space and the problem
can be expressed in Cartesian coordinates. This extended formulation reads: Find
p ∈ [H1(M)]3, s.t.

a(p,ψ) = l(ψ) ∀ψ ∈ [H1(M)]3(2)

with a(p,ψ) = 〈∇p + (p ·ν)B,∇ψ + (ψ ·ν)B〉2 + 〈p,ψ〉1 and l(ψ) = 〈f ,ψ〉1
and [H1(M)]3 the embedded product Sobolev space of 1-tensor fields on M. The

space [H1(M)]3 ⊃ H
1,1
tan(M) ∼= Π

[

[H1(M)]3
]

is orthogonal decomposable into

[H1(M)]3 = H
1,1
tan(M)⊕H1,1

nor(M) w.r.t. the projection operator Π. Since H1,1
nor(M)

is located in the kernel of the symmetric bilinear form a, the solution of (2) is not
unique. To overcome this issue and preserve also the well-posedness of problem
(1) in the bigger space [H1(M)]3 ⊃ H

1,1
tan(M), the problem has to be modified:

Find p ∈ [H1(M)]3, s.t.

ã(p,ψ) = l(ψ) ∀ψ ∈ [H1(M)]3(3)

with ã(p,ψ) = a(p,ψ) + 〈P(p),ψ〉R3 where P is an appropriate penalization
function, e.g. P(p) = ωt (ν ⊗ν) ·p, with ωt > 0. The weak formulation reads

∫

M

(

Π ·[∇p]
)

:
(

[∇ψ] ·Π
)

+
(

B : [∇p]
)

(

ν ·ψ
)

+
(

ν ·p
)

(

B : [∇ψ]
)

dM

+

∫

M

(

H2 − 2K
)

(

ν ·p
)(

ν ·ψ
)

+ p ·Π ·ψ + ωt

(

p ·ν
)(

ψ ·ν
)

dM

=

∫

M
f ·Π ·ψ dM ∀ψ ∈ [H1(M)]3

where we have used several geometric identities. The problem is solved on an ellip-
soid with major axis A = 1, B = 0.5 and C = 1.5 and f = − div (∇p∗) +p∗, with
p∗ = Rot(xyz). We consider a surface triangulation Mh and construct a surface
finite element discretization for each component with piecewise linear Lagrange
elements. We consider both the analytically available geometric quantities and
numerically computed once from the surface triangulation. The resulting linear
system is assembled and solved in the finite element toolbox AMDiS [6] using a
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BiCGstab(l) solver. As error measure we use a componentwise averaged L2-norm.
Convergence properties regarding the number of degrees of freedom (DOFs) and
the strength of the penalty parameter ωt are shown in figure 1. The results indicate

Figure 1. L2 error (left) as function of ωt, with 10k (triangles),
50k (diamonds) and 250k (squares) DOFs. (middle) with numer-
ically approximated surface quantities (solid) w.r.t. the number
of DOFs for fixed ωt = 1000. Dashed line indicates linear rate
of convergence. (right) for numerical approximation of surface
quantities w.r.t. the number of DOFs for fixed ωt = 1000.

almost no dependency on ωt, which reflects the behavior of the analytical solution,
up to values where the penalty term begins to dominate the numerical solution
behavior. We further see linear convergence in the geometric properties and also
a linear convergence behavior in the considered error, which does not depend on
the used approximation of the geometric terms. As the geometry is approximated
by a surface triangulation better than linear convergence properties could not be
expected, as it is shown to be optimal for a surface finite element approach with
piecewise linear Lagrange elements for a scalar-valued surface Laplace problem
[1, 7]. Further details on the approach and its extension to general tensor-valued
surface PDEs can be found in [8].
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Thermal Effects in General Diffusion: An Energetic Variational
Approach

Chun Liu

(joint work with Francesco De Anna, Pei Liu and Hao Wu)

Almost all biological activities involve transport and distribution of ions and
charged particles in complicated biological environments. The complicated cou-
pling and competition between different ionic solutions in various biological en-
vironments give the intricate specificity and selectivity in these systems. These
systems are often associated with complicated, but special biological and chemical
conditions, such as the high concentration of specific species in solutions, which
make most of the “ideal” assumptions in classical and conventional approaches
irrelevant or unsuitable in the studies of biological problems.

In the talk, I will explore the underlying mechanism governing various diffu-
sion processes [4]. We will employ a general framework of energetic variational
approaches, consisting of, in particular, Onsager’s Maximum Dissipation Princi-
ples [1, 2, 3], and their specific applications in biology and physiology [5]. I will
discuss several extended general diffusion systems motivated by the study of ion
channels and ionic solutions in biological cells. In particular, I will focus on our
recent results in studying the interactions between different species, the boundary
effects [8] and in some cases, the thermal effects [6, 7].
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A diffuse interface model for the patient specific evolution of
Glioblastoma Multiforme.

Abramo Agosti

(joint work with Pasquale Ciarletta and Maurizio Grasselli)

This presentation concerns the study of diffuse-interface models based on mixture
theory to describe tumor growth dynamics. In particular, using thermodynamic
principles, a Cahn-Hilliard type equation with degenerate mobility is derived, cou-
pled with nutrient diffusion, chemotaxis, proliferation and apoptosis dynamics. A
single-well potential of Lennard-Jones type is used in this model to describe the
cell-cell and cell-matrix mechanical interactions. This model was recently used
to describe the patient-specific evolution of a highly malignant brain tumour, the
glioblastoma multiforme (GBM).

We have derived some analytical results regarding the existence of different
classes of weak solutions of the model for the cases of spatial dimension d = 1 and
d = 2, 3 separately. In particular, energy estimates ensure the separation property
from the pure phase corresponding to the singularity of the potential almost ev-
erywhere in spacetime, whereas entropy estimates ensure the positivity property
of the solution almost everywhere in spacetime. The solution can be equal to zero
on sets with positive measure. The existence of compactly supported solutions
makes the problem ill-posed, since on the free boundary of their support no suf-
ficient boundary conditions for well-posedness are specified, and the presence of
both solutions with a moving support with finite speed of velocity and of solutions
with fixed support characterizes the non-uniqueness for solutions of the model.

We have studied the well-posedness and the convergence of different finite el-
ement approximations of the problem which preserve the analytical properties of
the continuous solutions. The discrete schemes are formulated in order to ensure
the mass conservation (in the absence of nutrients), gradient stability, the sepa-
ration and positivity properties of the discrete solution, and the selection of the
physical solutions with compact support and moving boundary from the ones with
fixed support.

Numerical simulations have been investigated on real brain geometries, in which
the preferential directions of the chemotactic movement along white matter fiber
tracts are defined by proper anisotropic diffusion and chemotactic tensors. These
tensors are obtained by elaborating patient-specific Diffusion Tensor Imaging
(DTI) data.

In this talk I will compare the observed in-vitro evolution of a culture of glioblas-
toma cells to the growth and coarsening dynamics described by the model. More-
over, feding the model by clinical neuroimaging data that provide the anatomical
and microstructural characteristics of a patient brain, I will show its predictive
ability by comparing the results of numerical simulations with the clinical data
from one patient collected at given times of key clinical interest, from the first
diagnosis of glioblastoma to its surgical removal and the subsequent radiation
therapies.
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A bulk-surface obstacle type problem as a model for polarized cells

Matthias Röger

(joint work with Barabara Niethammer and Juan Velázquez)

The polarization of a biological cell, for example characterized by a heterogenous
distribution of certain proteins, is key to many functions. We study here a simple
polarization module with two types of a certain protein on the cell surface, which
are either in an active or in an inactive state. We denote the first surface con-
centration as u and the second as v. Furthermore, the inactive proteins can move
to the interior of the cell and vice versa, we denote the corresponding concentra-
tion by w. We are interested in the response to a given signal, in the form of a
concentration c of a certain chemical messenger on the surface.

This setup leads to a system of bulk diffusion and surface reaction–diffusion
equations. The coupling is via a Robin-type boundary condition for w and a
source term in the v equation. To give a more precise formulation let a open,
bounded set Ω ⊂ R

3 with smooth boundary Γ := ∂Ω describe the cell interior and
cell surface. We then consider the following system.

∂tu = ∆u + cv − a4u

1 + u
on Γ × (0, T )(1)

∂tv = ∆v − cv +
a4u

1 + u
− a5v + a6w on Γ × (0, T )(2)

∂tw = D∆w in Ω × (0, T )(3)

−D∂w
∂n

= −a5v + a6w on Γ × (0, T ).(4)

For the parameters we assume a3, a4, a5, a6 > 0, D ≥ 1 and for the messenger
concentration that c : Γ → R+ is continuous and strictly positive. With some
abuse of notation ∆u and ∆v denote the Laplace-Beltrami operator on the surface
Γ, while ∆w is the usual Laplacian.
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Solutions satisfy the mass conservation property
∫

Ω

w(x, t) dx +

∫

Γ

(u(y, t) + v(y, t)) dH2(y) = M for all t ≥ 0.

Our goal is to study for given c = c(x) stationary states of (1)-(4) in certain
parameter regimes and to examine when polarization patterns appear.

Our main results then concern the following rescaled stationary system

0 = ∆uε + cvε −
a4uε
ε+ uε

on ∂Ω × (0, T )(5)

0 = ε∆vε − cvε +
a4uε
ε+ uε

− a5vε + a6wε on ∂Ω × (0, T )(6)

0 = D∆wε in Ω × (0, T )(7)

−D∂wε
∂n

= −a5vε + a6wε on ∂Ω × (0, T ),(8)

with the property
∫

Γ

(uε + εvε) +

∫

B

εwε = m.

From a mathematical point of view, the most remarkable feature is the convergence
to a generalized obstacle problem. Responsible for this feature is the presence
of the Michaelis-Menten reaction term, see [1] for a corresponding result for a
standard reaction–diffusion system.

Theorem. Consider a sequence (wε, uε, vε) of solutions to (5)-(8) with total mass
m. Then there exists a subsequence ε→ 0 and nonnegative functions (w, u, v) such
that

uε ⇀ u in H2(Γ) , vε ⇀ v in L2(Γ) , wε ⇀ w in H1(Ω) .

Moreover there exists ξ ∈ L∞(Γ) with 0 ≤ ξ ≤ 1 such that

0 = ∆u+ cv − a4ξ on Γ,(9)

0 = −cv + a4ξ − a5v + a6w on Γ,(10)

0 = D∆w in Ω,(11)

−D∂w
∂n

= −a5v + a6w on Γ(12)

and such that uξ = u and
∫

Γ
u = m hold. Moreover, w, u and v are all nonnegative,

u ∈W 2,p(Γ) for any 1 ≤ p <∞, w ∈ C∞(Ω) ∩C0(Ω), and v ∈ L∞(Γ).

We can give a rather precise analysis of the polarization property of the model
in two cases: first the infinite cytosolic diffusion limit D → ∞ and second the case
of spherical shell shape, i.e. Ω = B(0, 1). Let us restrict ourselves in the following
to the second case. We then can reformulate the problem (9)-(12) as a generalized
obstacle problem that involves the Dirichlet to Neumann operator N .
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Proposition. Let ℓ = a6
D and define

g(x) =
c(x)

c(x) + a5
∈ (0, 1) , x ∈ Γ .

Then (u, v, w, ξ) satisfies (9)-(12) if and only if (u, ξ, α), α ∈ R, is a solution of

0 = ∆u− a4(1 − g)ξ + αg − gℓ
(

N(u) + u− ū
)

, u ≥ 0 ,(13)

uξ = u almost everywhere on Γ , 0 ≤ ξ ≤ 1,(14)

and if

w =
1

a6

(

α− ℓ
(

N(u) + u− ū
)

)

, v =
1

a5
(1 − g)(a6w + a4ξ).

Observe that we obtain by integration over Γ that

α =
1

∫

Γ
g

∫

Γ

(

a4(1 − g)ξ + ℓg
(

N(u) + u− ū
)

)

.

We finally turn to a characterization of polarization in terms of the limit prob-
lem. We therefore characterize a concentration u as a polarized state if both the
set {u = 0} and the set {u > 0} have positive measure. The final outcome of our
analysis is a threshold for the occurrence of polarized states in terms of a certain
critical mass. To identify this value we first prove that there exists a unique value
α∗ for which

0 = ∆u− a4(1 − g) + α∗g − gℓ
(

N(u) + u− ū
)

can be solved. Moreover, there exists a unique solution u∗ with

min
Γ
u∗ = 0.

We then define the critical mass as

m∗ :=

∫

Γ

u∗.

The following theorem now characterizes the onset of polarized states.

Theorem. For m > 0 consider the solution (u, ξ, α) of (13), (14). If m > m∗ we
have that u > 0 in Γ and α = α∗. Moreover u = u∗ + (m−m∗)|Γ|. If m < m∗ we
have |{u = 0}| > 0 and α < α∗.

For details and additional results for a slightly extended system we refer to our
forthcoming work [2].
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On a surface finite element method for cell blebbing

Björn Stinner

(joint work with Adam Nixon and Andreas Dedner)

In some environments, cells resort to the formation of blebs at the front end in
order to migrate. These are spherical protrusions of the cell’s membrane, which
detaches from the cortex. Subsequently, the cortex is disintegrated and reformed
at the membrane, followed by a retraction stage that can be exploited by the cell
to alter its position.

In this study, the focus is on the detachment. It is motivated by the results
in [2], which is based on the computational approach in [8]. There, a chain of
springs models the membrane in 2D. Its movement is governed by a force bal-
ance accounting for the effects of pressure within the cell, the membrane’s elastic
properties (tension and bending resistance), the linker molecules (also modelled as
elastic springs), and a drag force due to the viscous environment. Computational
results then are compared with image data to validate the model and quantify
parameters.

Given these findings, the objectives of this investigation have been

• to extend the membrane model to surfaces in 3D and the derivation of
an abstract continuum model in variational form that allows for some
flexibility in the definitions of the forces,

• to develop a robust and efficient numerical method, for which we chose
triangulated surfaces and surface finite elements,

• and to provide software that enables a convenient access to the numerical
method in the sense that steering in data, changing parameters, but also
amending definitions of forces is convenient.

The membrane is modelled as an evolving surface. It is parametrised over the
initial surface by a field u : Γ0 × [0, T ) → R3, in which the forces are expressed.
Specific choices lead to the surface partial differential equation

ω∂tu = − kb∆
2
Γ0u+ kψ∇Γ0 ·

(

∇Γ0u− x0
∇Γ0u

|∇Γ0u|
)

− k(|u− uc|)
(

(u− uc) − l0
u− uc
|u− uc|

)

+
p0

V 0
ν

where ω, kb, kψ, x0, l0, p
0, V 0 are positive material parameters, uc is a field on Γ0

modelling the position of the cortex, and ν is the external unit normal. The
function k(|u−uc|) models the breakage of linker molecules when stretched beyond
a given length. A restriction of this model to two spatial dimensions followed by
a discretisation with standard finite difference stencils yields the model in [8].

An abstract variational problem is derived using operator splitting for the
fourth order term. Introducing w = −∆Γ0u the problem reads: Find u,w ∈
L2(0, T ;H1(Γ0)) with ∂tu ∈ L2(0, T ;L2(Γ0)) such that for all φ,η ∈ H1(Γ0) and
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almost all t ∈ (0, T )

m(∂tu,φ) + s(id;w,φ) + s(ψ′;u,φ) +m(k(u),φ) = 0,

s(u,η) −m(w,η) = 0,

where

s(A;x,y) :=

∫ 0

Γ

A(∇Γ0x) : ∇Γ0ydσ, m(b(x),y) :=

∫ 0

Γ

b(x) · ydσ.

Here, ψ : Γ0 ×R3×3 → [0,∞) is assumed bounded and measurable in the first and
continuously differentiable in the second argument with Lipschitz partial deriva-
tive,

|ψ′(x,A) − ψ′(x,B)| ≤ Cψ|A−B| ∀A,B ∈ R
3×3, x ∈ Γ0.

The field k : Γ0 × R3 → R3 is assumed bounded and measurable in the first and
Lipschitz in the second argument,

|k(x,a) − k(x, b)| ≤ Ck|a− b| ∀a, b ∈ R
3, x ∈ Γ0.

For the discretisation we assume an approximation of Γ0 by a h-family of tri-
angulated surfaces

Γ0
h =

⋃

T∈Th

T

interpolating Γ0, on which we consider the finite element spaces

Sh :=
{

φh ∈ C0(Γ0
h)

∣

∣

∣
φh|T linear ∀T ∈ Th

}

.

In practice, data such as the cortex position uc usually are only approximately
known. We assume that, quantitatively, this uncertainty is similar to the uncer-
tainty of the initial membrane position. In the abstract context we thus assume
that the k is approximated by a function kh, which is Lipschitz with the same con-
stant Ck. Moreover, we assume that the approximation is consistent, i.e., there is
a constant C > 0 such that for all h and all a ∈ R

(1) ‖k(·,a) − kh(·,a)‖L∞(Γ0) ≤ C(1 + |a|)h.
Similarly, an approximation of ψ by some ψh can be handled.

A semi-discrete problem is obtained in a straightforward way by replacing the
surface and test and trial functions in the abstract problem with finite element
versions. We can show the following result:

Theorem. The semi-discrete problems are well-posed.
Their solutions (uh,wh) converge to some functions (u,w) as h→ 0
that uniquely solve the abstract variational problem and satisfy

‖u‖2L∞(H1(Γ0)) + ‖w‖2L2(H1(Γ0)) ≤ C.

If u, ∂tu,w ∈ L2
H2 then

‖u− uh‖2L∞

L2
+ ‖w −wh‖2L2

L2

+ ‖∇Γ0(u − uh)‖2L2

L2

≤ Ch2.
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Some comments on the proof:

• For the general procedure, we can follow the lines of [7], which treats
the Cahn-Hilliard equation including the operator splitting. In particular,
suitable a priori estimates are obtained this way.

• The approximation of the surface has been analysed in [6] and subsequent
work. Here, an additional variational crime consists of the data approx-
imation (e.g., k by kh). But its treatment is relatively straightforward
thanks to the consistency assumption (1).

• The nonlinearity in the gradient required some more significant investi-
gation. Strong convergence of the gradient turns out to be sufficient. It
can be obtained exploiting the linearity of the problem in the fourth order
term and a suitable Ritz-projection [6].

A couple of numerical tests confirm the convergence result. Some remarks on
the software:

• The Unified Form Language (UFL) [1] provides a convenient way to for-
mulate variational problems. It is implemented in python, and also pa-
rameters can be set and data such as the initial mesh can be steered in
with relative ease.

• The variational problem formulation is translated into some C++ code,
which then binds to the DUNE software [4] as a backend. In particular, the
functionality of the software backend is made available in python.

• For further details we refer to [5] with regards to the python interface to
DUNE, and to [3] for the UFL bindings.
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[4] A. Dedner, R. Klöfkorn, M. Nolte, and M. Ohlberger, A generic interface for parallel and
adaptive scientific computing: Abstraction principles and the DUNE-FEM module, Com-
puting 90 (2011), 165–196. See also www.dune-project.org.

[5] A. Dedner, and M. Nolte, The Dune Python Module, arXiv preprint 1807.05252 (2018).
[6] G. Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, in Partial differ-

ential equations and calculus of variations, Springer, Berlin, Heidelberg (1988), 142–155.
[7] C. M. Elliott, and T. Ranner, Evolving surface finite element method for the Cahn-Hilliard

equation, Numerische Mathematik 129 (2015), 483–534.
[8] R. A. Tyson, E. Zatulovskiy, R. R. Kay, and T. Bretschneider, How blebs and pseudopods

cooperate during chemotaxis, Proceedings of the National Academy of Sciences 111 (2014),
11703–11708.



184 Oberwolfach Report 3/2019

The Plate Equation on Curved Domains and Surfaces

Shawn W. Walker

(joint work with Douglas N. Arnold)

The classic HHJ method has been analyzed from various viewpoints in several
papers [5, 7, 6, 2, 1, 8, 4, 12], with some recent results [10, 11] on decompositions
of the HHJ method.

To the best of our knowledge, no analysis has been done for HHJ on curved,
parametric elements which is needed to ensure optimal order of the HHJ method on
curved domains. Indeed, curved elements allow for more accurate approximation of
boundary conditions. This paper provides a convergence analysis for curved HHJ
elements for solving a non-conforming formulation of the Kirchhoff plate equation;
optimal convergence is obtained when appropriate order curved elements are used
near the piecewise Ck+1 boundary for k ≥ 1. Moreover, we demonstrate that the
lowest order HHJ scheme on a polygonal approximation of the disk converges with
optimal order despite the well-known Babuska paradox [3].

Our analysis follows the framework of [2] and [4], where we use mesh-dependent
norms in a non-conforming formulation of the Kirchhoff plate problem. A highlight
of the analysis in [7, 2, 4] is the use of convenient Fortin-like interpolation operators.
The main issues to address in the curved element setting are: (i) extending the
Fortin-like operators to the curved element setting (in an appropriate sense); (ii)
analyzing the geometric error in the domain approximation; (iii) proving a new
kind of Poincaré inequality in the mesh dependent norms for thin domains to avoid
sub-optimal convergence results; and (iv) approximation of the variety of boundary
conditions that occur in plate problems. The results we present here should be of
relevance to simulating plate problems on curved domains (in general).

We also illustrate how one can use the HHJ method to solve an abstract manifold
version of the Kirchoff plate problem. For instance, the standard Kirchhoff plate
model is as follows. Denote the scalar displacement by w, let S2 be the set of
symmetric 2× 2 tensors, and define the symmetric bending moment [σαβ ]2α,β=1 ≡
σ ∈ S2 as

(1) σαβ(w) := Cαβµρ∂µ∂ρw = D
[

(1 − ν)δαµδβρ∂µ∂ρw + νδαβ(∂γ∂γw)
]

,

where D = E/(1 − ν2) > 0 is the bending modulus (E is the Young’s modulus),
and ν ∈ (−1, 1) is Poisson’s ratio. Note that Cαβµρ (and its inverse) can be written
as

Cαβµρ = 2µ̄δαµδβρ + λ̄δαβδµρ, Kγωαβ =
1

2µ̄
δγαδωβ − ν

E
δγωδαβ ,(2)

where δβρ, δγα are the standard “Kronecker delta.”
Moreover, we assume that Θ := ∂U partitions into four mutually disjoint com-

ponents Θc (clamped), Θs (simply supported), Θf (free), and Θa (alternate) which
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indicate the boundary conditions to impose on Θ, namely:

w = 0, on Θc ∪ Θs, n · ∇w = 0, on Θc ∪ Θa, n†σn = 0, on Θs ∪ Θf ,

nα(∂βσ
αβ) + t · ∇

(

n†σt
)

= 0, on Θf ∪ Θa,

(3)

where n is the (covariant) outer unit normal vector on Θ, t is the (contravariant)
positively oriented unit tangent vector on Θ. The strong form of the Kirchoff plate
equation is then

(4) ∂α∂βσ
αβ = f, on U,

with load f and boundary conditions given by (3).
The manifold version of the plate problem introduces a Riemannian metric

gab ≡ g on U ⊂ R2. Moreover, we replace partial derivatives by covariant deriva-
tives, and σ is viewed as a contravariant tensor:

(5) σαβ := Cαβµρ∇µ∇ρw = D
[

(1 − ν)∇α∇βw + νgαβ(∇γ∇γw)
]

,

where we use the inverse metric gab ≡ g−1. The elasticity tensor (and its inverse)
takes the form

Cαβµρ = 2µ̄gαµgβρ + λ̄gαβgµρ, Kγωαβ =
1

2µ̄
gγαgωβ − ν

E
gγωgαβ,(6)

where the metric clearly appears.
Furthermore, this leads to solving the plate problem on a parametrized sur-

face. The surface version is obtained by taking the metric as being induced by a
parametrization Φ. In addition, the variables are expressed in an extrinsic way.
For example, the symmetric (covariant) Hessian becomes the surface Hessian given
by:

(7) hessΓ w = (∂αΦ)gαβ(∇β∇γw)gγµ(∂µΦ)†,

where Γ ⊂ R3 is a smooth embedded surface, and Φ is the parametrization of Γ.
Hence, HHJ (originally meant for solving the Kirchoff plate problem on a domain
in R2) gives a method for solving 4th order problems on surfaces (the surface
biharmonic equation is a specific example).
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[2] I. Babuška, J. Osborn, and J. Pitkäranta. Analysis of mixed methods using mesh dependent
norms. Mathematics of Computation, 35(152):1039–1062, 1980.
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On the flow of elastic networks

Paola Pozzi

(joint work with Anna Dall’Acqua and Chun-Chi Lin)

Networks arise naturally in the study of multiphase systems and the dynamics of
their interfaces. The study of planar networks moving according to curve short-
ening flow (a second order flow) has been thoroughly investigated in recent years
(see for instance the survey paper [1]). Much less is known when the evolution is
elastic (a fourth order flow).

We provide a long-time existence result for the elastic flow of a three-network, a
triod, in Rn, see [2]. A triod Γ = {f1, f2, f3} is given by the union of three regular
smooth curves parametrized by maps fi : [0, 1] → Rn, i = 1, 2, 3, such that they
share the same origin in the point f1(0) = f2(0) = f3(0) (a so called concurrency
point, that will be allowed to move in time) and end in some given fixed distinct
points Pi, i = 1, 2, 3, that is fj(1) = Pj for j = 1, 2, 3. A typical example is given
by the well-known Mercedez-Benz symbol. Since the curves fi are immersed and
self-intersection might occur, more interesting configurations are of course allowed.

The energy associated to the network Γ (and that will be decreased along the
flow) is given by

E(Γ) =
3

∑

i=1

(
∫

I

|~κi|2dsi + λi

∫

I

dsi

)

where I = (0, 1), dsi = |∂xfi|dx denotes the arc-length element and ~κi the curva-
ture vector of each curve fi. The parameters λi ≥ 0 are given fixed constants and
induce a penalization of the growth of the length of the given curve when strictly
positive.

An L2-gradient flow of the above energy induces the following geometric prob-
lem (P): Find fi : [0, T ) × I → Rn, i = 1, 2, 3, such that

∂tfi − 〈∂tfi, ∂sfi〉∂sfi = −∇2
s~κi −

1

2
|~κi|2~κi + λi~κi on (0, T ) × I for i = 1, 2, 3,
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with boundary conditions


































fi(t, 1) = Pi, for all t ∈ (0, T ), i = 1, 2, 3,

~κi(t, 1) = 0 = ~κi(t, 0) for all t ∈ (0, T ), i = 1, 2, 3,

f1(t, 0) = f2(t, 0) = f3(t, 0) for all t ∈ (0, T ),

and
3

∑

i=1

(∇s~κi(t, 0) − λi∂sfi(t, 0)) = 0 for all t ∈ (0, T ),

and initial value

Γ(t = 0) = {f1(0, ·), f2(0, ·), f3(0, ·)} = Γ0, in I.

Note that the boundary conditions are natural in the sense of calculus of vari-
ations. Also, for each curve fi and a given vector field φ : I → Rn we denote by
∇sφ := ∂sφ−〈∂sφ, ∂sfi〉∂sfi the normal component of the derivative with respect
to arc-length (and for simplicity of notation we write s instead of si).

We remark that the triple junction is allowed to move in time and that, unlike
the network flow by mean curvature, there is no prescription of angles at the
junction.

It turns out that for the evolution of the network, we need to have some control
over the following conditions:

A) the length of each curve fi, i = 1, 2, 3, is bounded away from zero,
B) at the triple junction, at least two unit tangents ∂sfi and ∂sfj form a
positive angle.

Our result, whose proof is given in [2], can be summarized as follows: provided
the initial network Γ0 of smooth regular curves fulfills the necessary boundary and
compatibility conditions, and provided the network Γ(t) satisfies A) and B) on
any compact time interval [0, T ], then our problem (P) admits an eternal smooth
solution.

The overall proof strategy is similar to many other results on long-time existence
for the elastic flow of a single open curve with fixed boundary points (see for
instance [3] and reference in there). Starting from a short-time existence result
and assuming that the maximal existence time T is finite, uniform estimates for
the curvatures and their derivatives are derived so that the flow can be extended
up to the maximal time. A contradiction is achieved by restarting the flow at time
T .

The main difficulties arising when dealing with networks lie in the treatment of
the boundary conditions and the choice of tangential components. Note that for
the formulation of the geometric problem, tangential components do not play a
role, but when the problem is tackled analytically they do. Also, unlike the evolu-
tion of a single curve, some choice of non-zero tangential component is necessary
in order to allow the triple junction to freely move in space. A thorough discussion
of these issues and how they are overcome is given in [2].

Finally, note that the problem presented here has been treated recently with
other techniques in [4].
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Singular limit problem for the Navier–Stokes equations in a curved
thin domain

Tatsu-Hiko Miura

A thin domain is a domain with very small width in one or several directions.
Fluid flows in thin domains frequently appear in problems of natural sciences like
the ocean and atmosphere dynamics. In the study of the Navier–Stokes equations
in a three-dimensional thin domain we naturally expect to get the global-in-time
existence of a strong solution for large data depending on the smallness of the
width of the domain since a thin domain with very small width can be seen as
almost two-dimensional. We are also interested in the behavior of a solution to
the bulk Navier–Stokes equations in a thin domain as the thickness of the domain
tends to zero. When a thin domain degenerates into a lower dimensional set, it is
important to find limit equations on the limit set and compare the bulk and limit
equations to understand the effects of the thin direction and the limit set on the
original problem in the thin domain.

Raugel and Sell [2] first studied such problems for the Navier–Stokes equations
in a flat product thin domain Ωε = Q× (0, ε) with a rectangle Q and a sufficiently
small ε > 0. Since then many researchers have studied the Navier–Stokes equations
with various boundary conditions in a flat thin domain of the form

Ωε = {x = (x′, x3) ∈ R
3 | x′ ∈ ω, x3 ∈ (εg0(x′), εg1(x′))}

with a two-dimensional domain ω and functions g0 and g1 on ω (see e.g. [3, 4, 13]).
Also, Temam and Ziane [14] considered the case of a thin spherical shell

Ωε = {x ∈ R
3 | a < |x| < a+ εa}, a > 0

to give a mathematical justification of derivation of the primitive equations for
the ocean and atmosphere (see [5, 6]). However, there is no result on the Navier–
Stokes equations in a curved thin domain around a general closed surface since the
shapes of the thin domain and its limit surface make analysis of vector fields on
the curved thin domain very difficult (we refer to [11] for the study of a reaction-
diffusion equation in a curved thin domain around a lower dimensional manifold).

In the recent work [9] we studied the Navier–Stokes equations in a curved thin
domain to investigate the effects of the shapes of the thin domain and its limit
surface and to provide mathematical tools for analysis of vector fields on the curved
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thin domain. Let Γ be a closed (i.e. compact and without boundary), connected,
oriented, and smooth surface in R3 with unit outward normal vector field n and
g0 and g1 smooth functions on Γ satisfying g := g1 − g0 ≥ c on Γ with a constant
c > 0. For a sufficiently small ε > 0 we define a curved thin domain in R3 by

Ωε := {y + rn(y) | y ∈ Γ, r ∈ (εg0(y), εg1(y))}
and consider the Navier–Stokes equations with Navier’s slip boundary conditions































∂tu
ε + (uε · ∇)uε − ν∆uε + ∇pε = f ε in Ωε × (0,∞),

div uε = 0 in Ωε × (0,∞),

uε · nε = 0 on Γε × (0,∞),

2νPεD(uε)nε + γεu
ε = 0 on Γε × (0,∞),

uε|t=0 = uε0 in Ωε.

(1)

Here Γε is the boundary of Ωε that is the union of the inner and outer boundaries
Γ0
ε and Γ1

ε given by Γiε := {y + εgi(y)n(y) | y ∈ Γ}, i = 0, 1 and nε is the
unit outward normal vector field of Γε. Also, ν > 0 is the viscosity coefficient
independent of ε, γε ≥ 0 is the friction coefficient given by γε := γiε on Γiε, i = 0, 1
with γ0ε and γ1ε nonnegative constants depending on ε, and

Pε := I3 − nε ⊗ nε, D(uε) :=
∇uε + (∇uε)T

2
are the orthogonal projection onto the tangent plane of Γε and the strain rate
tensor, where I3 is the 3×3 identity matrix and nε⊗nε is the tensor product of nε
with itself. Under suitable assumptions we established in [9] the global existence of
a strong solution to (1) for large data ‖uε0‖H1(Ωε), ‖f ε‖L∞(0,∞;L2(Ωε)) = O(ε−1/2)
as in the previous works [2, 3, 4, 13] on flat thin domains. Moreover, we proved
that the tangential component of the average in the thin direction

Mτu
ε(y) :=

1

εg(y)

∫ εg1(y)

εg0(y)

P (y)uε(y + rn(y)) dr, y ∈ Γ (P := I3 − n⊗ n)

of a strong solution uε to (1) converges weakly in appropriate function spaces on
Γ as ε→ 0 and characterized the weak limit as a unique weak solution to

(2) g
(

∂tv + ∇vv
)

− 2ν

{

PdivΓ[gDΓ(v)] − 1

g
(∇Γg ⊗∇Γg)v

}

+ (γ0 + γ1)v + g∇Γq = gf on Γ × (0,∞)

and

divΓ(gv) = 0 on Γ × (0,∞), v|t=0 = v0 on Γ.(3)

Here ∇Γ and divΓ are the tangential gradient and surface divergence on Γ, ∇vv
is the covariant derivative of v along itself, γ0 and γ1 are nonnegative constants
corresponding to the limits of ε−1γ0ε and ε−1γ1ε as ε→ 0, and

DΓ(v) := P

(∇Γv + (∇Γv)T

2

)

P



190 Oberwolfach Report 3/2019

is the surface strain rate tensor. We also derived estimates for the difference
between solutions to (1) and (2)–(3) and established strong convergence results.

When g ≡ 1 and γ0 = γ1 = 0 our limit equations (2)–(3) are of the form

∂tv + ∇vv − 2νPdivΓ[DΓ(v)] + ∇Γq = f, divΓv = 0 on Γ × (0,∞).(4)

It is shown in [8, Lemma 2.5] that 2PdivΓ[DΓ(v)] = ∆Bv+Kv on Γ for a tangential
and surface divergence-free vector field v on Γ, where ∆B and K are the Bochner
Laplacian on Γ and the Gaussian curvature of Γ. Also, since Γ is two-dimensional,
K agrees with the Ricci curvature Ric of Γ, i.e. Kv = Ric(v) for a tangential
vector field v on Γ. Hence the equations (4) read

∂tv + ∇vv − ν{∆Bv + Ric(v)} + ∇Γq = f, divΓv = 0 on Γ × (0,∞).(5)

Note that these equations are described only in terms of the intrinsic quantities of
the Riemannian manifold Γ. The equations (5) were called the “correct” Navier–
Stokes equations on a Riemannian manifold in [1, 12] and studied by Mitrea–
Taylor [7], Nagasawa [10], and Taylor [12]. Therefore, our limit equations (2)–(3)
can be seen as the damped and weighted Navier–Stokes equations on a manifold.
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Diffusion in strongly layered domains

Angela Stevens

(joint work with Benedikt Jost)

We analyze the diffusion equation in two dimensional domains which are perforated
by an ondulating structure consisting of horizontal bars and vertical connections
distributed in an arbitrary periodic fashion on the lateral boundary of the hori-
zontal bars. The main aim is to find critical structures of this type, which give
rise to different homogenization limits. Our homogenization limit results in mul-
ticomponent systems, where the coupling of the different components is via the
boundary instead of the bulk. Additionally, a reduction of diffusivity from two to
one dimension is obtained. Allowing further for two-dimensional weakly connected
domains, where the above obstacles include additional small pathways and con-
centration traps, the limiting equations are coupled in the bulk by memory terms
and at the boundary via concentration gaps.
Our motivation to study diffusion in such geometries originates from the peculiar
shapes of cell organelles like mitochondria and the endoplasmic reticulum, which
exhibit strongly layered structures.

Domains, disconnected by horizontal bars, have already been considered by
Cioranescu and Saint Jean Paulin, by Corbo Esposito, Donato, Gaudiello and
Picard, by Mel’nyk, by Andreucci, Bisegna and DiBenedetto, as well as by Blan-
chard, Gaudiello and Mossino. Homogenization of domains with small pathways
and traps have been studied by Khruslov, by Briane, as well as by Amaziane and
Pankratov. Results for small pathways in surfaces or strips have been analyzed by
Marcenko and Khruslov, as well as by Del Vecchio. Strongly oscillating structures
have also been dealt with by Mel’nyk et al. in the context of thick periodic junc-
tions, and in the context of oscillating boundaries by Arrieta et al., by Hale and
Raugel, by Mel’nyk and Popov, as well as by Chechkin, Friedman and Piatnitski.

To the best of our knowledge, the basic domains considered in [1] are the first
examples for a multi-component limiting model combined with reduction of two
dimensional diffusion to one dimension. Even though the different components
are all existing on the same domain, their coupling is only at the boundary. The
geometry of the domain requires continuity conditions for the test functions. In
order to obtain a reasonable weak formulation, a two-scale compactness result is
proved, which yields continuity of the systems’ components. Uniqueness holds due
to classical theory. Further, the weakly connected domains considered in [1] seem
to be the first examples which combine reduction to one dimensional diffusion with
concentration gaps at the boundary and coupling via memory terms. The geometry
of our obstacles possess two different and distinct traps. Hence, in comparison to
Amaziane and Pankratov, we get two coupling memory terms in each equation
instead of one.

The main difficulty in [1] was to find a reasonable geometry that can produce
all the desired effects and to obtain the different related compactness results. Usu-
ally weak convergence in H1 is needed for traps and for concentration gaps, when
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considering suitable extensions of the solution. However, for a domain with dis-
connected parts, weak convergence in H1 can only be achieved by restricting the
set of initial conditions. In [1] this problem was overcome by providing a two-scale
result for an H1 extension, which turns out to be strong enough for the given
setting. Therefore more general initial conditions can be considered, than those
needed for weak convergence in H1. Examples for initial data are given which
are admissible for our proof, but not possible to assume for the usual approach.
For the concentration gaps we adapt the technique from Briane in order to be
able to only use two-scale convergence, whereas the proof by Del Vecchio and the
one by Marcenko and Khruslov strictly need weak H1 convergence. Moreover,
the method for homogenization of oscillating boundaries by Corbo Esposito et al.
does not apply for our geometies. We adapt techniques for homogenization of com-
pletely disconnected domains. Uniqueness can be shown by classical approaches,
see Ladyzenskaja et al.
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Phase field approximation of the Steiner and Plateau problems: a
numerical investigation

Elie Bretin

We analyze in this talk the ability of different phase field models to approximate
solutions to the Steiner and Plateau problems. Recall that the Steiner problem
consists in finding, for a given collection of points a0, · · · , aN ∈ R2, a compact
connected set K ⊂ R2 containing all the ai’s and having minimal length. In a
joint work with M. Bonnivard and A. Lemenant, we first focus on the phase field
model they have recently introduced together with F. Santambrogio in [1]. This
model is defined as

Fε(u) = Pε(u) +
1

λε

N
∑

i=1

D(u2 + δε; a0, ai),

where Pε(u) =

∫

R2

ε|∇u|2 +
1

ε
(1 − u)2dx is a Cahn-Hilliard type functional and

D(w; a, b) := inf
Γ:a❀b

∫

Γ

w dH1 ∈ [0,+∞].

The second term of the functional aims to force the connectedness of the limit set.
A major issue with the discretization of this phase field model comes from

the lack of regularity of a critical point u, which appears to be only C0,α for all
α ∈ (0, 1). As a result, u is not smooth enough to be discretized in space with a
sufficient precision, which globally reduces the rate of convergence of the numerical
scheme.
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We therefore propose to improve the regularity by considering a higher-order
derivative in the Cahn-Hilliard functional

Pε(u) =

∫

Ω

ε3|∆u|2 +
1

ε
(1 − u)2dx,

and we justify in [2] the Γ-convergence of this slightly modified version of the
functional. We also introduce a numerical scheme which approximates fairly the
associated gradient flow. A major novelty of our work is the extension of these
results to space dimension 3 (see the numerical example in Figure 1).

Figure 1. Numerical approximation of solutions to the Steiner
problem in space dimension 3.

The second part of my contribution is a comparison of the previous results with
those obtained using a numerical approximation of the approach introduced by
Chambolle, Ferrari, and Merlet in [3]. Their model is defined as

Fε(σ, u) =

∫

Ω

ε|∇u|2 +
1

ε
(1 − u)2dx+

1

ε

∫

Ω

u|σ|2dx

where aε2 ≤ u ≤ 1 (a > 0) and the vector field σ satisfies the constraint

div(σ) = (δx0
− 1

N

∑

i

δai) ∗ ρε.

The two models seem to be similar in the sense that

N
∑

i=1

D(u2 + δε;x0, xi) = min
σ

{

∫

Ω

(u2 + δε)|σ| : div(σ) = δx0
− 1

N

∑

i

δxi

}

,

however we show an advantage of Chambolle-Ferrari-Merlet’s model: it can be eas-
ily extended to tackle the Plateau problem by simply considering a curl constraint
instead of a divergence constraint.

In the last part of our contribution we introduce a perturbed Allen-Cahn equation
which forces the preservation of the evolving set’s topology, and we illustrate how
it can be used to approximate solutions to both Steiner and Plateau problems.
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Figure 2. Numerical approximation of solutions to the Plateau
problem based on the approach of [3].
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Crystalline surface diffusion flow for graph-like curves

Mi-Ho Giga

(joint work with Yoshikazu Giga)

We are interested in motion of curves governed by singular interfacial energy (den-
sity), especially the surface diffusion flow by “crystalline energy” which is intro-
duced by Cater, Roosen, Cahn, Taylor [2], with a numerical simulation.

We focus on an initial value problem of 4th order gradient flow type partial
differential equation for curves described by the graph of a piecewise linear function
called a “strictly admissible crystal”.

Our major concern is to show that strictly admissibility is preserved for a short
time in a rigorous way, based on subdifferential theory. For this purpose, we derive
a system of ordinary differential equations (ODEs) for lengths of facets and solve
it to show that strictly admissibility is preserved.

Assume that the interfacial energy W is a piecewise linear convex function with
coercivity: lim|p|→∞W (p)/|p| = +∞. On H−1

av (T) consider a functional

Φ(v) =

{ ∫

T
W (vx(x)) dx, v ∈W 1,1(T) ∩H−1

av (T),
∞, otherwise.

We consider an H−1
av gradient flow equation:

du

dt
(t) ∈ −∂H−1Φ (u(t)) a.e. t > 0,

u|t=0 = u0 ∈ H−1
av (T).
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Here H1
av(T) denotes the average free subspace of H1(T) of the form

H1
av(T) =

{

f ∈ H1(T)

∣

∣

∣

∣

∫

T

fdx = 0

}

with T = R/ωZ. Let H−1
av (T) be the dual space of H1

av(T). Its inner product
is denoted by (( , ))−1. Here ∂H−1Φ denotes the subdifferential of Φ in H−1

av (T),
i.e.,

∂H−1Φ(v) =
{

f ∈ H−1
av (T) | Φ(v + h) − Φ(v) ≥ ((h, f))−1 for all h ∈ H−1

av (T)
}

.

Since Φ is lower semicontinous and convex, an abstract theory (initiated by
Kōmura) yields a unique solution u ∈ C

(

[0,∞), H−1
av (T)

)

of the H−1
av (T) gradient

flow equation which is absolutely continuous in any compact interval in (0,∞)
with values in H−1

av (T). This solution is called a variational solution of
ut = −∆ (W ′(ux)x).

Definition. We consider a piecewise linear function v on T. The interval where
v is an affine function is called a faceted region. We say that v is admissible if
the slope of v in each faceted region is in a jump of W ′ and the slope of v in an
adjacent faceted region is in an adjacent jump of W ′. We say that v = v(x) is a
strictly admissible crystal with η if there exists η ∈ C2(R) such that

(1) η(x) ∈ ∂W (vx(x)) a.e. x ∈ R;
(2) η is piecewise polynomial of degree 3 on each faceted region;
(3) ηx 6= 0 at the ends of each faceted region;
(4) η(x) ∈ int {∂W (vx(x))} on the interior of each faceted region.

Main Theorem (M.-H. G. & Y. Giga). Assume coercivity: lim|p|→∞W (p)/|p| =
+∞. If u = u(x, t) is initially strictly admissible, then a variational solution u is
strictly admissible at least for a short time. The lengths of facets of the solution u
are determined by a system of ODEs as long as u stays strictly admissible.

For the proof, we need a characterization of a subdifferential. The following
type of result is known when W (p) = |p|+ a|p|r, r > 1 with a > 0 by Y. Kashima
[6], [7] and when W (p) = |p| by [5].

Theorem. For v ∈ D(Φ) with ∂H−1
av

Φ(v) 6= ∅, we have

∂H−1
av

Φ(v) = {ηxxx | η ∈ CH(v)} ,
where

CH(v) :=
{

η ∈ C1(T) | ηx ∈ H1
av(T), η(x) ∈ ∂W (vx(x)) a.e. T

}

.

Remark. An element of CH(v) is called a Cahn-Hoffman (vector) field.

We next recall that the variational solution u is actually right differentiable for
all t > 0 and d+u/dt = −∂0H−1Φ (u(t)) where ∂0H−1Φ is the minimal section defined
by

∂0H−1Φ(v) = arg min
{

‖f‖H−1
av (T )

∣

∣ f ∈ ∂H−1Φ(v)
}

.

We then calculate the minimal section.
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Proposition. For ζ ∈ CH(v),

ζxxx = ∂0
H−1

av
Φ(v)

if and only if ζ = arg min
{

‖ηxx‖2L2
av(T )

∣

∣ η ∈ CH(v)
}

.

Remark. This is an obstacle problem. The field ζ is called the minimal Cahn-
Hoffman field. We are able to show that such ζ is unique.

The proof is similar to that of [5].

Key Lemma. Assume that v is admissible. Let ζ be a minimal Cahn-Hoffman
field for v. Then ζ ∈ C2(T) and ζ is a piecewise polynomial of degree 3.

This is proved by calculating the Euler-Lagrange inequality for ζ.
Sketch of the proof of the Main Theorem. If initially v is strictly admis-

sible, there is a unique minimal Cahn-Hoffman field η which lies in the interior of
∂W (v) except at the end points of a faceted region. Moreover, it is a cubic poly-
nominal in each faceted region. At the end points the derivative of η is not zero.
The profile of v is essentially determined by the set of lengths of faceted regions
ℓ = (ℓ1, . . . , ℓm). By the transport equation dℓ/dt is determined by the second
derivative b of η(x, t) at end points of each faceted region and ℓ. Unfortunately, b
is determined by ℓ implicitly. More precisely,

M(ℓ)b = f(ℓ),

where M(ℓ) is an m×m symmetric matrix and f is Rm-valued function. Fortu-
nately, M is positive definite so the ODEs for ℓ can be written of a normal form.
Fortunately, the strict admissibility is an open property so at least in a short time
strictly admissibility is preserved. This is a short sketch of the proof of the Main
Theorem.

Remark. The second order problem is easy to handle because the minimal Cahn-
Hoffman vector field is affine so it is easy to derive ODEs for ℓ for an admissible
crystal as proposed by [1], [9]. The relation to the abstract theory was explained in
[3]. The fourth order problem is quite different since it does not enjoy comparison
principle. Several differences are explained in a review paper [4].
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Directional differentiability for elliptic quasi-variational inequalities

Amal Alphonse

(joint work with Michael Hintermüller and Carlos N. Rautenberg)

We study the differentiability of the solution map associated to the quasi-variatio-
nal inequality (QVI)

(1)
y ∈K(y) : 〈Ay − f, v − y〉 ≥ 0 ∀v ∈ K(y)

K(y) := {v ∈ V : v ≤ Φ(y)},
in particular, the multi-valued mapping taking the source term f into the set of
solutions y. Showing that this map is differentiable (in a suitable sense) is not only
an interesting analytical problem in its own right but is also of use for optimal
control, numerics and applications. Based on our work [1], we give a first result
for the directional differentiability for QVIs in the infinite-dimensional setting
(the corresponding theory for variational inequalities (VIs) has been thoroughly
investigated, eg. [2, 3]).

1. Functional framework and background

Let X be a locally compact topological space, countable at infinity, with ξ a Radon
measure on X . Suppose V ⊂ L2(X ; ξ) =: H is a Hilbert space with the embedding
continuous and dense and such that |u| ∈ V whenever u ∈ V , and let A : V → V ′

be a bounded, linear, coercive and T-monotone operator. Assume also that

V ∩ Cc(X) ⊂ Cc(X) and V ∩Cc(X) ⊂ V are dense embeddings.

Define V ′
+ := {g ∈ V ′ : 〈g, v〉 ≥ 0 ∀v ∈ V+} which arises from the cone V+ which

is the set of almost everywhere (a.e.) non-negative elements of V . Precisely, we
study the directional differentiability of the map Q : V ′

+ ⇒ V taking f 7→ y in (1).
Before proceeding, let us recall the sensitivity result for VIs. Given an obstacle

φ ∈ V+, define the set
K := {w ∈ V : w ≤ φ},

and given a source term f ∈ V ′, define by S : V ′ → V the mapping such that
S(f) solves the inequality in (1) with K(y) replaced by K (and hence the QVI
simplifies into a VI). The tangent cone and the critical cone associated to K are
given respectively by

TK(y) := {ϕ ∈ V : ϕ ≤ 0 q.e. on {y = φ}} and KK(y) := TK(y) ∩ [f −Ay]⊥,
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where the notation ‘q.e.’ means quasieverywhere. Given f ∈ V ′ and d ∈ V ′,
Theorem 3.3 of [3] yields that the map S is directionally differentiability in the
sense that there exists a function S′(f)(d) ∈ V such that

S(f + td) = S(f) + tS′(f)(d) + o(t) ∀t > 0

where t−1o(t) → 0 as t→ 0+ in V and δ := S′(f)(d) is positively homogeneous in
d and it satisfies the VI

δ ∈ KK(y) : 〈Aδ − d, v − δ〉 ≥ 0 ∀v ∈ KK(y), where y = S(f).

2. Directional differentiability for QVIs

To formulate the QVI case, consider (1) with Φ: V → V an increasing map with
Φ(0) ≥ 0. The idea in [1] is the following: approximate a QVI solution q(t) ∈
Q(f + td) by a sequence qn(t) of solutions of VIs, obtain suitable differential
formulae for those qn(t) and then pass to the limit in those formulae to obtain an
expansion formula relating elements of Q(f + td) to elements of Q(f). There are
some delicacies in this procedure:

(1) derivation of the expansion formulae for the above-mentioned VI
iterates qn(t); they must relate q(t) to a y ∈ Q(f), and recursion plays a
highly nonlinear role in the relationship between the iterates

(2) obtaining uniform bounds on the directional derivatives of the
iterates; even though the derivatives satisfy a VI, one has to handle a
recurrence inequality (unless some regularity is available [1, §4.3] which
allows some simplification)

(3) identifying the limit of the higher-order terms as a higher-order
term; this procedure involves two limits: one as t → 0+ and one as n →
∞, and commutation of limits in general requires an additional uniform
convergence.

The main difficulty is indeed the final point here. The iteration scheme alluded to
above requires some further restrictions on the data f and the direction d, namely
f, d ∈ V ′

+. Since we study the differentiability of implicit obstacle problems defined
through the obstacle mapping Φ, it is clear that at least some differentiability is
required of Φ and we introduce these further assumptions below. First, let us fix
some notation. Define ȳ ∈ V as the weak solution of the unconstrained problem
Aȳ = f. In a similar fashion, define q̄(t) ∈ V as the solution of the unconstrained
problem with right hand side f + td: Aq̄(t) = f + td. The following set can be
thought as a translated critical cone:1

KK(y)(y, α) := Φ′(y)(α) + KK(y)(y).

The main result of [1] is the following.

Theorem (Theorem 1.6 of [1]). Let f, d ∈ V ′
+. Given y ∈ Q(f) ∩ [0, ȳ], assume

the following:

1Explicitly, this set is {ϕ ∈ V : ϕ ≤ Φ′(y)(w) q.e. on {y = Φ(y)} and 〈Ay−f, ϕ−Φ′(y)(w)〉 =
0}.
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(1) the map Φ: V → V is Hadamard directionally differentiable
(2) either

(a) Φ: V → V is completely continuous, or
(b) V = H1(Ω), X = Ω where Ω is a bounded Lipschitz domain,

Φ: L∞
+ (Ω) → L∞

+ (Ω) is concave with Φ(0) ≥ c > 0, and f, d ∈ L∞
+ (Ω)

(3) the map Φ′(v) : V → V is completely continuous (for fixed v ∈ V )
(4) for any b ∈ V , h : (0, T ) → V and λ ∈ [0, 1],

‖Φ′(y + tb+ λh(t))h(t)‖V
t

→ 0 as t→ 0+ if
h(t)

t
→ 0 as t→ 0+

(5) given T0 ∈ (0, T ) small, if z : (0, T0) → V satisfies z(t) → y as t → 0+,
then

‖Φ′(z(t))b‖V ≤ CΦ‖b‖V where CΦ <
1

1 + c−1C

for all t ∈ (0, T0), where C and c are (respectively) the constants of bound-
edness and coercivity of A.

Then there exists q(t) ∈ Q(f + td) ∩ [y, q̄(t)] and α = α(d) ∈ V+ such that

q(t) = y + tα+ o(t) ∀t > 0

holds where t−1o(t) → 0 as t→ 0+ in V and α satisfies the QVI

α ∈ KK(y)(y, α) : 〈Aα − d, v − α〉 ≥ 0 ∀v ∈ KK(y)(y, α).

The directional derivative α = α(d) is positively homogeneous in d.

It should be emphasized that the assumptions 4 and 5 depend on the specific
function y, i.e., these are local conditions. The result in the general multi-valued
setting given in Theorem 2 is a differentiability result for a specific selection mech-
anism that associates to a function y ∈ Q(f) a function q(t) ∈ Q(f + td). A useful
variant of the theorem would be to obtain the result for the mapping that selects
the minimal or maximal solution to the QVI, i.e., if M(f) ∈ Q(f) is the maximal
solution of the QVI with source term f , is M directionally differentiable?

Theorem (Theorem 1.7 of [1]). In the context of Theorem 2, if the set KK(y)(y, w)
simplifies to

SK(y)(y, w) := {ϕ ∈ V : ϕ = Φ′(y)(w) q.e. on {y = Φ(y)}},
then the derivative α satisfies

α ∈ SK(y)(y, α) : 〈Aα − d, α− v〉 = 0 ∀v ∈ SK(y)(y, α).

In this case, if h 7→ Φ′(v)(h) is linear, α = α(d) satisfies α(c1d1+c2d2) = c1α(d1)+
c2α(d2) for constants c1, c2 > 0 and directions d1, d2 ∈ V ′

+.

An application of the above to a model of thermoforming can be found in [1].
Ongoing work involves deriving strong stationarity conditions for optimal control
problems with QVI constraints and sensitivity for the parabolic QVI case.
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Affine linear transmission conditions in equations and dynamic
boundary conditions of Allen-Cahn type and their approximation by

Robin boundary conditions

Kei Fong Lam

(joint work with Pierluigi Colli, Takeshi Fukao and Hao Wu)

We consider a system of equations and dynamic boundary conditions with Allen–
Cahn characteristics for a pair of functions u (denoting the bulk variable) and φ
(denoting the surface variable) as follows:

(1)

ut − ∆u+ f(u) = 0 in Ω,

φt − ∆Γφ+ fΓ(φ) + h′(φ)∂nu = 0 on Γ := ∂Ω,

u|Γ = h(φ) on Γ,

furnished with initial conditions u(0) = u0 in Ω and φ(0) = φ0 on Γ. In the above
Ω ⊂ R3 denotes a bounded domain with smooth boundary Γ, ∂n is the normal
derivative on Γ, ∆Γ is the Laplace–Beltrami operator, while f and fΓ are the
derivatives of double well potentials F and FΓ, respectively, and h : R → R is a
smooth function.

The above system (1) generalises the equations studied by Calatroni and Colli
[1], who considered the case h(s) = s, along with nonlinearities f and fΓ that are
sums of maximal monotone mappings and Lipschitz perturbations. In general, it
is not immediately clear whether (1) is well-posed, and from the corresponding
weak formulation (where we denote by g the inverse of h, i.e., φ = g(u))

0 =

∫

Ω

(ut + f(u))ζ + ∇u · ∇ζ dx

+

∫

Γ

g′(u)
(

(g(u))t + fΓ(g(u))
)

ζ + ∇Γg(u) · ∇Γ

(

g′(u)ζ
)

dS

holding for all test functions ζ ∈ H1(Ω) such that ζ|Γ ∈ H1(Γ), we observe that
for an approximation scheme such as Faedo–Galerkin the main difficulty in de-
ducing the existence of weak solutions lies in passing to the limit in the possibly
highly nonlinear term ∇Γ(g′(u)ζ). However, we believe that recent progress in the
theory of maximal Lp regularity may prove useful in establishing well-posedness
for regular nonlinearities.
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Another approach, motivated from numerical analysis, is to approximate the
complicated Dirichlet boundary condition u|Γ = h(φ) with a Robin boundary
condition. This motivates us to consider the approximation system

(2)

uKt − ∆uK + f(uK) = 0 in Ω,

φKt − ∆Γφ
K + fΓ(φK) + h′(φK)∂nu

K = 0 on Γ,

K∂nu
K = h(φK) − uK on Γ.

In the formal limit K → 0, if uK → u and φK → φ, then the Robin boundary
condition yields u|Γ = h(φ). Furthermore (2) can be interpreted as the L2-gradient
flow of the energy functional

E(u, φ) =

∫

Ω

1

2
|∇u|2 + F (u) dx+

∫

Γ

1

2
|∇Γφ|2 + FΓ(φ) +

1

2K
|u− h(φ)|2 dS,

so that a standard Faedo–Galerkin approximation can be deployed to infer the
strong well-posedness of (2). This is done in [4] along with a Moreau–Yosida
approximation for non-smooth maximal monotone nonlinearities. Moreover, for
analytical F, FΓ and h, an extended  Lojasiewicz–Simon inequality for E can be
derived. This is used in [7] to show that the unique global strong solution of (2)
converges to a single steady state as time tends to infinity at an algebraic rate.
New difficulties arise since we have a pair of variables (u, φ) in the definition of
the energy E, as oppose to earlier works where φ is the trace value of u. Hence,
the framework introduced in [2] cannot be applied directly, and we have to adapt
the arguments in [9] to derive the  Lojasiewicz–Simon inequality.

For the crucial question concerning the rigorous limit K → 0, the identity from
the gradient flow characteristic of (2) provides sufficient uniform estimates to pass
to the limit in the special case h(s) = αs+β for α 6= 0 and β ∈ R. In other words,
for affine linear h, the unique strong solution of (2) converges weakly to a solution
of (1), and as a consequence leads to a weak well-posedness result for (1) when h is
affine linear. By adopting a similar abstract formulation used in [3], we establish
strong well-posedness to (1) with non-smooth maximal monotone nonlinearities in
[4], and allows us to further derive error estimates between the strong solutions of
(1) and (2) for affine linear h, which read as follows

‖uK − u‖L∞(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)) + ‖φK − φ‖L∞(0,T ;L2(Γ))∩L2(0,T ;H1(Γ))

+K−1/2‖αφK + β − uK‖L2(0,T ;L2(Γ)) ≤ CK1/2‖∂nu‖L2(0,T ;L2(Γ)).

We see that the affine linear relation u|Γ = αφ+β is achieved at a linear rate in K.
In a forthcoming work [6] we plan to apply a similar Robin penalty approach to
study a modification of the coupled bulk-surface Cahn–Hilliard system proposed
by [8] and further analysed by [5].
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Auf der Morgenstelle 10
72076 Tübingen
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