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Abstract. This was the tenth Oberwolfach conference on the mathematics
of tomography. The field rests on the interplay between the theoretical and
applied; practical questions lead to new mathematics and pure mathematics
motivates new algorithms. This workshop encompassed classical areas such as
X-ray computed tomography (CT) as well as new modalities and applications
such as dynamic imaging, Compton scattering tomography, hybrid imaging,
optical tomography or multi-energy CT and addressed inter alia the use of
methods from machine learning.
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Introduction by the Organizers

Tomography is the broad field in which indirect data are used to image the in-
ternal properties of objects. Such problems are inverse problems because they
require one to find what created the indirect data–to “invert” the data to charac-
terize the object. The field has revolutionized diagnostic medicine and industrial
nondestructive evaluation, allowing doctors to find tumors and map metabolism
noninvasively, scientists to analyze molecular structures and engineers to detect
damages inside of objects nondestructively.

Because of its connection to the real world, the field draws on science and engi-
neering to acquire and model the data. It further draws on deep pure mathematics
and numerical analysis to interpret this data and image the objects. Mathematical
models describe the connection between the data and the desired properties of the
object. For example, in classical X-ray computed tomography (CT), X-ray data
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correlate with a mathematical model using line integrals–the Radon transform–of
the density. In order to extract the desired properties from a given data set, reg-
ularization strategies have to be developed, i.e., the underlying inverse problems
has to be solved. Deep pure mathematics has been fundamental to the field from
the beginning and this strong interplay between the pure and the applied is one
of the strengths of the field.

The first Oberwolfach workshop in 1980, in which pioneers in the field includ-
ing Frank Natterer and Nobel Laureate Allan Cormack laid out the important
problems of the time, was essential for the growth of the field. Decades after the
successful integration of X-ray CT in everyday life, tomography is still a vibrant
research field. Exploiting additional physical effects and engineering advances for
imaging requires new mathematical models and numerical solution schemes. On
the other hand, important problems are still unsolved even for the classical CT
modalities.

This year’s workshop, the tenth Oberwolfach workshop on tomography, brought
together 53 participants from Europe and Asia as well as North and South America
(including 17 women). Their expertise covered a broad range of areas from pure
mathematics, numerical analysis and practical applications in medicine, science
and industry. Besides international experts and young scientists, the group of
participants included 10 graduate students whose talks were especially effective to
introduce these up-coming new researchers to the field. Thus, in every aspect, this
has been a diverse workshop. In particular, the discussions and the talks reflected
the high quality of the young mathematicians in the field.

Several novel imaging modalities and their underlying inverse problems were
presented and discussed at the conference, including terahertz tomography, super-
resolution imaging with internal sources, adaptive optics, magnetic particle imag-
ing, magnetorelaxometry imaging or Compton scattering tomography (CST). In
all of these cases, as scanners collect data in new ways, new reconstruction methods
are required and new mathematics must be developed. CST, for instance, exploits
the spectrum of the detected radiation as a source of information. Irradiating the
body by photons of two or more energies- so called multi-energy imaging - brings
up new issues which were addressed in several talks, for instance the problem of
correlating the different types of tissues that are measured by the different ener-
gies, especially when they are obtained by different scans. A similar issue plays
a role in multi-modality imaging for which a novel reconstruction approach based
on similarity measures has been presented at the conference.

Vector tomography, seismic tomography, electrical impedance tomography and
sonic reflection imaging were further among the discussed modalities. Speakers
presented new models, inversion formulas or stable algorithms to solve the under-
lying inverse problems as well as potential new applications.

Limited data problems are among the earliest CT problems, such as limited an-
gle X-ray CT. However, many general limited data problems constitute unsolved
challenges in the field; standard reconstruction algorithms can create artifacts and
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blur parts of the objects. Speakers used a priori information to create stable re-
construction algorithms or methods from microlocal analysis to explain the arising
issues and guide the improvement of standard algorithms.

Another challenge involves imaging moving objects (e.g. breathing patients,
flying insects, or tracking living cells) since the standard models and reconstruc-
tion techniques neglect the time-dependency during data acquisition. Several talks
addressed related issues such as characterizing the resulting resolution, computa-
tional methods for large-scale problems or developing algorithms to compensate
for the motion.

A big challenge in many modern imaging problems is to derive a mathematical
model which accurately includes all physical factors (attenuation, motion, etc.)
and which is easily invertible in the reconstruction step. Thus, data driven ob-
ject identification and learning methods seem promising strategies in the field of
tomography. These methods are used, for example, in electron microscope tomog-
raphy, and they allow researchers to see molecular structures and where challenges
include extremely noisy data and identifying objects among similarly shaped ones.
Several speakers gave insights into various potential applications of machine learn-
ing techniques in the context of tomography and inverse problems while dealing
with their advantages and weaknesses and presenting open problems.

In conclusion, the workshop reflected the current research areas related to to-
mography and demonstrated the potential and vibrancy of the field. The discus-
sions among the participants stimulated a cross-fertilization among the different
disciplines and we expect that joint research activities increase in these areas over
the next years because of this.
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Abstracts

On reconstruction of functions with discontinuities from discrete
tomographic data

Alexander Katsevich

1. Introduction

In this talk we consider the question:

• Why and how well does tomographic reconstruction from discrete data work?

The question is easier if the function f to be reconstructed is sufficiently smooth.
It is harder if f is not smooth, e.g. has jump discontinuities. The question has
two parts:

(1) What reconstruction looks like near the singularities of f?
(2) What is the effect of “remote” singularities?

The accuracy of inversion from discrete data is usually studied using sampling
theory. Most of the known results apply only in the classical settings: 2D Radon
transform, parallel and fan beam data. See papers by F. Natterer, A. Faridani,
L. Desbat, S. Izen, V. Palamodov, A. Rieder and others [1–3, 6, 8, 10, 14]. On the
other hand, in many practically relevant situations the classical sampling theory
is impossible to apply. For example, no sampling theory is available for cone
beam CT with a complicated source trajectory and for scanning of a dynamic
object. Interesting first results about the resolution of dynamic 2D tomography
were obtained by B. Hahn [5].

Frequently, we are less interested in how the reconstructed image approximates
the original object in some global norm. Instead, we would like to know how
accurately and with what resolution the singularities of the original object are
reconstructed. In this talk we will obtain the behavior of the reconstructed image
in a neighborhood of edge singularity of the object. This neighborhood is shrinking
appropriately as the sampling rate increases. We call it transition behavior or edge
response. Both 2D (static and dynamic) and 3D cases (static) are considered. This
part of the talk follows the paper [7].

A closely related question is why can we accurately reconstruct functions with
discontinuities at all? The question turns out to be nontrivial. In 2D, convergence
of reconstruction algorithms in the case of objects with discontinuities has been
studied in the mid-80’s and 90’s by Gonchar, Palamodov, and Popov [4, 11–13].
We explore this question in 3D. This leads to a surprising connection with the
theory of uniform distribution [9].
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2. Analysis of reconstruction in 3D

The 2D case is described in detail in [7], so here we report about the ongoing
research in the 3D case. The results reported here are provisional. The Radon

transform of f is given by f̂(α, p) =
∫
α·x=p f(x)dx, where dx is the area element

on the plane Π(α, p) := {x ∈ R3 : α ·x = p}. The discrete data are f̂(αi, pj), pj =
ǫj, j ∈ Z, where i ∈ N, i ≤ O(ǫ−2), is the index that enumerates the measured
directions αi ∈ S2. Let ϕ be an interpolating kernel, which satisfies:

A1. ϕ is exact up to the order 2, i.e.
∑

j∈Z

jmϕ(t− j) = tm, 0 ≤ m ≤ 2, t ∈ R,

A2. ϕ is compactly supported,
A3. The derivatives ϕ(m), 1 ≤ m ≤ 3, exist,
A4. ϕ(3) is piecewise continuous with finite one-sided limits,
A5.

∫
ϕ(t)dt = 1.

The discrete inversion formula is given by

fǫ(x) = −
1

8π2

∑

i

ci (∂/∂p)
2f̂ǫ(αi, p)

∣∣∣
p=αi·x

,

f̂ǫ(αi, p) :=
∑

j∈Z

f̂(αi, ǫj)ϕ

(
p− ǫj
ǫ

)
,

where ci are integration weights.
Pick a point x0 ∈ S := singsuppf , and suppose S is a smooth surface with

positive principal curvatures in a neighborhood of x0. Let Θ0 be the unit vector
normal to S at x0 pointing “inward”. Consider the point xh := x0 + ǫhΘ0, where
h varies over a bounded set. Denote ρ0 := limδ→0+(f(x0 + δΘ0)− f(x0 − δΘ0)).

Theorem 1. For a generic x0, one has

fǫ(xh)→ constǫ + ρ0

∫ h

−∞

ϕ(s)ds, ǫ→ 0, and

∫ h

−∞

ϕ(s)ds→
{
0, h→ −∞,
1, h→ +∞.

The hardest part of the proof is to show that “remote” singularities of f do
not contribute to the transition behavior. Suppose S is tangent to Π(Θ0, p0(Θ0))
at some z0, z0 6= x0. The function p0(α) is defined locally by the condition that
Π(α, p0(α)) is tangent to S. Consider one generic situation: S is strictly convex
near z0 and its Gaussian curvature is positive. We prove that the singularity at z0
does not contribute to the transition behavior of the reconstruction at x0. More
precisely, we prove that in the limit ǫ → 0 the discretized reconstruction formula
gives the same result as the exact reconstruction formula.

Generically, the equation α · x0 = p0(α) determines a piecewise smooth curve,
which we denote Γ. Clearly, Θ0 ∈ Γ. To leading order, the contribution of the
remote singularity to the image reconstructed at x0 contains the following key
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term: ∑

dist(αi,Γ)=O(ǫ)

ψ

({αi · x0
ǫ

}
,
αi · x0 − p0(αi)

ǫ

)
,

where ψ is a sufficiently smooth function, which is expressed in terms of the inter-
polation kernel ϕ. The sum is over an O(ǫ)-wide strip around Γ. In order to get
an expected answer, we need to prove that the distribution of grid nodes inside
the strip is asymptotically uniform (as ǫ → 0). This is not easy to do, since the
thickness of the strip is O(ǫ). The result does hold, i.e. the distribution of grid
nodes inside the strip is indeed asymptotically uniform. The proof uses methods
from the theory of uniform distribution (see, e.g. [9]). It appears that uniform dis-
tribution of nodes in some special domains is a key reason why we can accurately
reconstruct functions with discontinuitiues.
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Terahertz tomography as a parameter identification problem

Anne Wald

(joint work with Thomas Schuster)

Terahertz (THz) tomography is a relatively novel imaging technique that is mostly
used for the nondestructive testing of dielectric materials such as plastics or ce-
ramics. The goal is to detect defects such as cracks, inclusions, or the moisture
content. Another objective is to characterize materials by their physical properties,
i.e., their refractive index n > 0 as well as their extinction coefficient κ > 0. These
quantities determine the propagation of electromagnetic radiation through the ob-
ject. The refractive index determines the path along which the rays travel, while
the extinction coefficient is responsible for the attenuation of the radiation [1, 6].
Terahertz radiation has a frequency of 0.1 to 10THz, where 1THz = 1012Hz.

In THz tomography, the object is scanned with a Gaussian beam in the THz
regime. We are interested in reconstructing the complex refractive index ñ = n+iκ
of an object from measurements of the resulting electric field of the THz radiation
on a circle around the object. We assume that the radiation has a fixed wave
number k0 > 0. We let Ω ⊆ R2 with C1-boundary and set

m : L∞(Ω) ∩ L2
comp(Ω)→ C, m(x) := 1− ñ2(x).

Then the z-component ut of total electric field is determined by

∆usc + k20(1−m)usc = k20mui in Ω,(1)

∂usc
∂n
− ik0usc = 0 on ∂Ω,(2)

usc + ui = ut in Ω,(3)

where n is the outward normal vector of ∂Ω. The superposition principle (3) states
that the total field ut is the sum of the incident field ui and the scattered field
usc. We show, see [1], that there is a unique weak solution usc ∈ H1(Ω) of (1), (2)
fulfilling

‖u‖H1(Ω) ≤ C1‖m‖L∞(Ω) ‖ui‖L2(Ω)

for a constant C1 > 0. This result yields the well-definedness of the forward
operator

S : D(S)→ H1(Ω), m 7→ ut = ui + usc,

where

D(S) ⊆
{
m ∈ L∞(Ω) ∩ L2

comp(Ω) : ‖m‖L∞(Ω) ≤M, Im(m) ≤ 0
}

for a fixed M > 0, ui ∈ H1(Ω), and usc is the weak solution of (1), (2).
The operator S is Lipschitz-continuous on D(S), continuously Fréchet differen-

tiable and fulfills the tangential cone condition

‖S(m1)− S(m2)− S′(m1)(m1 −m2)‖L2(Ω) ≤ C3 · ‖S(m1)− S(m2)‖L2(Ω),

for m1,m2 ∈ D(S), where C3 = C3

(
k0,Ω,M

)
, see [1].
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During the measurement process, the tomograph, resp. the emitter and re-
ceivers, is rotated around the object. For different positions of the tomograph,
indicated by j = 1, ..., J , the total field ut is measured by the N receivers Ejν ,

ν = 1, ..., N , on ∂Ω. By consequence, the incident field uji depends on the po-
sition j. The same holds for the scattered and total field and the scattering
map Sj. Together with linear observation operators Qj and the trace operator
γ : H1(Ω)→ L2(∂Ω), u 7→ u|∂Ω, the (nonlinear) forward operator is

F =
(
F 1, ..., F J

)
: D(S)→ C

N×J ,

where

(
F j(m)

)
ν
:=
(
QjγSj(m)

)
ν
=
(
Qjγujt

)
ν
=

∫

∂Ω

χEj
ν
(x)γujt(x) dsx, ν = 1, ..., N.

The inverse problem of 2D THz tomography thus consists in the reconstruction of
m : Ω→ C from measurements yj,δ ∈ CN of the electric field, where

F j(m) = yj , ‖yj,δ − yj‖ ≤ δ, j = 1, ..., J.

If m is real-valued, this corresponds to the inverse medium problem, see, e.g., [4].

We use sequential subspace optimization [2] to determine a regularized solution.
(Regularizing) Sequential subspace optimization – (RE)SESOP – is an iterative
reconstruction technique for linear and nonlinear inverse problems in Hilbert and
Banach spaces that yields a regularized solution if only noisy data is available
[2, 3, 5]. For a nonlinear problem

F (x) = y, F : D(F ) ⊆ X → Y, ‖y − yδ‖ ≤ δ
in a Hilbert space setting with solution set MF (x)=y, the iteration reads

xδn+1 = xδn −
∑

i∈Iδn

tδn,iF
′(xδi )

∗wδn,i,

where the parameters tδn,i are calculated such that

xδn+1 ∈
⋂

i∈Iδn

Hδ
n,i

is the metric projection of the current iterate xδn onto the intersection of (finitely
many) stripes

Hδ
n,i :=

{
x ∈ X :

∣∣〈F ′(xδi )
∗wδn,i, x

δ
i − x

〉
−
〈
wδn,i, F (x

δ
i )− yδ

〉∣∣

≤ ‖wδn,i‖
(
ctc
(
‖Rδi ‖+ δ

)
+ δ
)}
⊇MF (x)=y.

The parameters wδn,i ∈ Y are chosen such that we obtain a descent property

‖z − xδn+1‖2 ≤ ‖z − xδn‖2 − C
(
‖F (xδn)− yδ‖, δ

)
for z ∈MF (x)=y.

The iteration is stopped by the discrepancy principle.
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The choices wδn,i := F (xδi − yδ) and n ∈ Iδn yield a regularization method. For

Iδn := {n}, we obtain a Landweber-type method with a regulation of the step
width.
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Computational Methods for Tomographic Reconstruction

Julianne Chung

Tomographic reconstruction is a classic example of an inverse problem, where
measurements are obtained on the exterior of an object (e.g., the human body or
the Earth’s crust), and one solves an inverse problem for the purpose of estimating
the internal structures. This is illustrated in the following figure, where the goal is
to reconstruct the image on the left from the observed measurements on the right.

There is a great need for efficient methods that can compute solutions to in-
verse problems accurately and in real-time. However, the main computational
challenges that have hindered large-scale reconstruction and data analysis include
ill-posedness of the problem, large parameter dimensions, model inaccuracies, and
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regularization parameter selection. In this talk, I describe some new mathematical
and computational tools for the design, computation, and analysis of solutions to
large-scale inverse problems, such as those that arise in tomography.

1. Mathematical description

Many tomography problems have an underlying mathematical model that can be
represented as btrue = F (xtrue) , where xtrue ∈ R

n represents the desired parame-
ters or image, btrue ∈ Rm represents perfectly measured (error-free) data, and the
functional F (·) : Rn → Rm models the forward data acquisition process. In many
applications, it is impossible to collect error-free data, and a realistic model of the
data collection process is given by

b = F (xtrue) + δ ,

where δ ∈ R
m represents inevitable errors that arise from measurement error,

discretization error, or round-off error. The precise form of F depends on the
application, but the inverse problem can be stated as follows.
Problem statement
Given measured data, b = F (xtrue) + δ, and knowledge of the forward model,
F (·), the goal is to compute an approximation of xtrue.

Solving inverse problems is notoriously difficult due to ill-posedness, whereby
data acquisition noise and computational errors can lead to large changes in the
computed solution. By incorporating prior information, regularization is a stan-
dard approach to modify the problem and overcome the inherent instability of
ill-posed problems. Most inverse problems can be formulated as an optimization
problem of the form,

(1) min
x
J (b− F (x)) + λR(x)

where J is a loss function, R is a regularization operator, and λ > 0 is a regular-
ization parameter that controls the amount of regularization, thereby determining
how faithful the modified problem is to the original problem. Consider the sim-

plified case where J (r) = ‖r‖22 and R(x) = ‖x‖22. Computing solutions for the
least-squares problem can still be challenging if the number of parameters in x is
very large or if λ is not known a priori. Other challenges arise if R(x) incorporates
more general prior models or if the forward model F (x) is nonlinear.

2. Computational Methods for Reconstruction

In my research, I have developed a range of new methods with solid mathematical
theory for solving (1). Here I focus on efficient hybrid projection regularization
methods and highlight relevant applications to tomography.

Many of the existing regularization methods can be implemented efficiently if
regularization parameter(s) are known a priori but fall short of clear strategies for
simultaneous parameter selection. My work on iterative hybrid methods combine
iterative with direct regularization in an efficient and robust way to achieve the
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best properties of both approaches. Consider the linear case where F (x) = Ax
with A ∈ Rm×n and consider the Tikhonov regularized problem,

min
x
‖b−Ax‖22 + λ‖x‖22.

In [1], my collaborators and I investigated a hybrid LSQR framework and demon-
strated the main advantages of hybrid methods, namely requiring only matrix-
vector and matrix-transpose-vector multiplications with A, overcoming semicon-
vergence behavior, and being able to select the regularization parameter automat-
ically. We developed a weighted generalized-cross-validation (WGCV) method for
selecting regularization parameters in a hybrid framework.

Algorithmic extensions were described in [2] where we developed a hybrid al-
gorithm based on the generalized Golub-Kahan bidiagonalization to efficiently ap-
proximate the solution to

min
x
‖b−Ax‖2R−1 + λ‖x‖2Q−1 ,

where R and Q are covariance matrices for the noise and prior respectively. More
specifically, we described a reformulation so that explicit computation of the square
root and inverse of the covariance kernel for the prior covariance matrix is no
longer required. Such scenarios arise, for example, in problems where covariance
kernels are defined on irregular grids, e.g., those from the Matérn class, and the
resulting covariance matrices are only available via matrix-vector multiplication.
We proved that iterates are equivalent to LSQR iterates applied to a directly
regularized Tikhonov problem, after a transformation of variables, and we provided
connections to a generalized singular value decomposition filtered solution.

Then in [3], my collaborators and I considered a Bayesian framework for solving
dynamic inverse problems, where the underlying parameters of interest change in
time, such that the total number of unknowns is on the order of millions. We
showed that incorporating prior information regarding temporal smoothness in
algorithms can lead to better reconstructions, but more importantly, we showed
that low-rank approximations obtained using the generalized Golub-Kahan bidiag-
onalization can be used to estimate pixel and voxel-wise solution variances. Other
tools for uncertainty quantification are currently being developed [4]. These com-
putational methods have been used to improve reconstructions in computed to-
mography, photoacoustic tomography, and passive seismic tomography.

3. Summary and looking forward

Tomographic reconstruction is an ill-posed inverse problem, and computing rea-
sonable solutions requires regularization to overcome inherent instabilities, good
regularization parameters, numerical algorithms, and efficient computational im-
plementations. In my current and ongoing research projects, I am developing
methods to address various computational challenges. For example, for problems
where many vectors are needed for solution representation, we are developing hy-
brid projection methods that exploit recycling techniques from numerical linear
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algebra to compress and update a given solution space. For massive inverse prob-
lems where the data is too large to keep in memory and/or dynamically growing,
we are investigating sampled Tikhonov methods for efficient computation. And for
problems where training images are readily available, we are developing statistical
learning approaches that can be coupled with existing regularization techniques
for improved reconstructions.
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Inversion of the star transform

Gaik Ambartsoumian

(joint work with Mohammad Javad Latifi Jebelli)

Let f(x) ∈ Cc
(
R2
)
be a compactly supported continuous function, and let γ be a

fixed unit vector in the plane.

Definition 1. The divergent beam transform Xγ of f at x ∈ R2 is defined as:

Xγf(x) =
∫ ∞

0

f(x+ tγ) dt.

One can use a linear combination of divergent beam transforms with a set of fixed
directions γi ∈ S1 and non-zero constants ci ∈ R, i = 1, . . . ,m to define the star
transform of f . Namely,

Definition 2. The star transform S of f at x ∈ R2 is defined as:

Sf(x) =
m∑

i=1

ci Xγif(x) =
m∑

i=1

ci

∫ ∞

0

f(x+ tγi) dt.

In particular, if c1 = . . . = cm = 1, the star transform S puts into correspondence
to a given function f(x) its integrals Sf(x) along a two-parameter family of so-
called “stars”. Each star consists of a union of rays emanating from a common
vertex x along fixed directions γi, i = 1, . . . ,m (see Figure 1).

We are interested in the inversion of the star transform S for an arbitrary (fi-
nite) number of rays m and arbitrary non-zero constants ci, i = 1, . . . , n. Such
integral-geometric problems appear naturally in relation to single-scattering opti-
cal tomography and single-scattering X-ray CT (e.g. see [4, 5, 8, 10]). Particular
attention has been drawn to the transforms with m = 2 and various choices of
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Figure 1. A star centered at point x with rays emanating along
fixed vectors γ1, . . . , γ4.

constants c1 and c2. In this special case, the integral transform S is usually called
either a broken ray transform or a V-line transform (e.g. see [1–3, 7, 9]).

While there are multiple interesting formulas and procedures for inversion of the
broken ray transform (e.g. see [1–3,7,9]), the star transform for m ≥ 3 was studied
only in [10]. The method presented in that paper is based on Fourier analysis
techniques and allows stable inversion of the star transform only for configurations
involving odd number of rays.

We present a new exact inversion formula for the star transform S, by estab-
lishing a connection between the star transform of f and the Radon transform of
f . Our inversion method works equally well for configurations with both odd and
even number of rays.

For simplicity, the main result below if formulated for the case when c1 = . . . =
cm = 1. The general case can be treated similarly with minor modifications.

Theorem 1. Let S =
∑m

i=1 Xγi be the star transform and let

q(ψ) =
−1∑m

i=1
1

〈ψ,γi〉

.

Then the following is true for any ψ in the domain of q:

Rf(ψ, s) = q(ψ)
d

ds
R(Sf)(ψ, s),

where R denotes the (ordinary) Radon transform of a function in R2. Hence, if q
is defined almost everywhere, we can apply R−1 to recover f .

Notice, that for certain configurations the function q(ψ) is not defined for almost
every ψ. For example, it happens when m = 4, γ1 = −γ3 = (1, 0), and γ2 = −γ4 =
(0, 1). It is easy to notice that in this case the star transform is not injective.

In the case of m = 2 Theorem 1 yields a simple inversion for the broken ray
transform.
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Corollary 1. An inversion formula for the V-line transform with ray directions
γ1, γ2 is given by

f = R−1

( −〈ψ, γ1〉〈ψ, γ2〉
〈ψ, γ1〉+ 〈ψ, γ2〉

d

ds
R(Sf)(ψ, s)

)
.

The detailed proofs of these statements, numerical implementations, and discussion
of some other related results will be presented in an article that will be submitted
soon for publication.

This work was partially funded by NSF grant DMS 1616564, and Simons Foun-
dation grant 360357.
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Convergence Rates of First and Higher Order Dynamics for Solving
Linear Inverse Problems

Otmar Scherzer

(joint work with Radu Boţ, Guozhi Dong and Peter Elbau)

We consider the problem of solving a linear inverse problem, formulated as solving
an operator equation

(1) Lx = y,

where L : X → Y is a bounded linear operator between (infinite dimensional) real
Hilbert spaces X and Y. If the range of L is not closed, Equation 1 is ill-posed
and regularization has to be employed for a stable solution.

In this talk we consider dynamical regularization methods: That is, we approxi-
mate the minimum norm solution x† of Equation 1 by the solution of a dynamical
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system at an appropriate time. An established example of such a dynamical reg-
ularization method is Showalter’s method [6], which consists in calculating the
solution of the Cauchy problem

(2)
ξ′(t) = −L∗Lξ(t) + L∗y for all t ∈ (0,∞),

ξ(0) = 0.

More recently, second order dynamical systems have been investigated for optimiz-
ing general convex functionals, see [1, 2, 4, 7]. One motivation for these dynamic
equations has been to consider them as time continuous limits of Nesterov’s algo-
rithm [5] to explain its fast convergence.

We consider dynamical systems for solving linear ill-posed operator equations
by focusing on the particular convex functionals

(3) J (x) = 1

2
‖Lx− y‖2.

Specifically, we develop a regularization theory to analyse N -th order dynamical
method of the form

(4)
ξ(N)(t) +

N−1∑

k=1

ak(t)ξ
(k)(t) = −L∗Lξ(t) + L∗y for all t ∈ (0,∞),

ξ(k)(0) = 0 for all k = 0, . . . , N − 1,

where N ∈ N and ak : (0,∞) → R, k = 1, . . . , N − 1, are continuous functions.
When N = 1 this is Showalter’s method. When N = 2, and a1 is constant and
positive the method is called heavy ball dynamical method (HBD). And for N = 2
and a1 = b

t , b > 0, the analogous method as considered in [1,2,4,7], we call it the
vanishing viscosity flow (VVF).

In [3] we proved the following convergence rates result and compared it with
the literature, see Table 1.

Note that the results from convex analysis (VVD (convex) in Table 1) prove
convergence rates of the residuum and not of the solution. The results of (IP) show
an improvement of the convergence rates for general convex problems. Actually
these results support a conjecture of [7]: “However, from a different perspective,
this example suggests that O(t−b) convergence rate can be expected ...”

Moreover, we showed that under classical source conditions even convergence
rates for ‖ξ(t)−x†‖2 can be proven. In this case we require source conditions like:
There exists some w ∈ X such that

(5) x† = (L∗L)
µ
2w.

We summarize some results from [3] on regularized dynamical systems when the
solution x† satisfies some source condition in Table 2.
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Method (t→∞) J (ξ(t))−minJ ‖ξ(t)− x†‖2

VVD (convex)

o(t−2) (b > 3),

O(t−2) (b = 3),

O(t−2b/3) (b < 3)

–

VVD (IP)
o(t−2) (b > 2),

o(t−b) (b ≤ 2)
o(1)

Showalter o(t−1) o(1)

HBD o(t−1) o(1)

Table 1. Convergence Rates without Source Conditions. Con-
vergence for VVD from [1, 2, 4, 7] for minimizing general convex
functionals J , and results from [3] (IP) for the convex function-
als from Equation 3. Analogous results for Showalter and HBD.
Results in bold face are from [3].

Method (t→∞) J (ξ(t)) −minJ ‖ξ(t)− x†‖2

VVD (IP) [Max Rate] O(t−2µ−2) [O(t−b+ǫ)] O(t−2µ) [O(t−b+ǫ)]

Showalter O(t−µ−1) O(t−µ)
HBD O(t−µ−1) O(t−µ)

Table 2. Convergence rates with source conditions. In the case
of VVD, the parameters are restricted to 0 < µ < b

2 −1 (and thus

b > 2) for J (ξ(t))−minJ and 0 < µ < b
2 for ‖ξ(t)− x†‖2, which

leads to the given maximal rates (for arbitrarily small ǫ > 0). For
general convex problems, source conditions, Equation 5, are not
known to provide improved convergence rates.
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[4] R. I. Boţ and E. R. Csetnek. Second order forward-backward dynamical systems for mono-
tone inclusion problems. SIAM Journal on Control and Optimization, 54(3):1423–1443,
2016.

[5] Yu. E. Nesterov. A method for solving the convex programming problem with convergence
rate O(1/k2). Doklady Akademii Nauk SSSR, 269(3):543–547, 1983.

[6] D. Showalter. Representation and computation of the pseudoinverse. Proceedings of the
American Mathematical Society, 18:584–586, 1967.

[7] W. Su, S. Boyd, and E. Candès. A differential equation for modeling nesterov’s accelerated
gradient method: Theory and insights. Journal of Machine Learning Research (JMLR),
17(153):1–43, 2016.

An efficient reconstruction approach for a class of dynamic imaging
operators

Melina-Loren Kienle Garrido

(joint work with Bernadette N. Hahn)

We are dealing with the problem of recovering a searched-for quantity f from
tomographic data, which are corrupted by motion of the object. This plays an
important role in applications, for example in medical imaging or non-destructive
testing. As models for the dynamic imaging problem we consider generalized
Radon transforms

AΓf(ϕ, s) =

∫
eiσ(s−ΨΓ(ϕ,x))aΓ(ϕ, s, x)f(x) dxdσ,

with (ϕ, s) ∈ Θ × Π, since they cover a broad range of applications, such as
computerized tomography or photoacoustic tomography data. Here, both ΨΓ,
characterizing the manifold we are integrating over, and the amplitude aΓ depend
on a smoothly diffeomorphic motion Γ, which models the dynamic behaviour of
the object.

Apart from very special cases, e.g. affine deformations in computerized tomog-
raphy (see [3]), there is no exact inversion formula known. Nevertheless, methods
from microlocal analysis (see e.g. [5–8]) can provide insights on a suitable choice
for reconstruction operators.

We aim at generalizing approaches from [4] for dynamic computerized tomog-
raphy and from [1] for dynamic photoacoustic tomography with a very special
deformation (namely a vertical stretching).
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Therefore, we consider operators of the form

LΓ := BΓPAΓ,

with backprojection operator BΓ, corresponding to the formal dual of AΓ and a
pseudodifferential operator P .

Now, using methods from microlocal analysis it can be shown that the singu-
larities of LΓ correspond to the singularities of f .
Further, we show that a regularized version of the operator (LΓn

)γ approximates
the corresponding static operator (LI)γ as the motion Γn converges to the iden-
tity I. Thus, in cases where we have an exact static inversion fromula (like for
example in photoacoustic tomography, see [2]), the operator P can be chosen such
that our dynamic reconstruction approach provides a good approximation to the
searched-for quantity f , at least for small deformations.
From the presented approach, we derive a filtered backprojection type algorithm,
which is tested on numerical examples from dynamic photoacoustic tomography,
showing a significant reduction of motion artifacts.
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[5] L. Hörmander, Fourier Integral Operators, I Acta Mathematica 127 (1971), 79–183.
[6] V. P. Krishnan and E. T. Quinto, Microlocal Analysis in Tomography (Handbook of Math-

ematical Methods in Imaging) ed O. Scherzer (2015), New York: Springer-Verlag.
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Semi-discrete iteration methods in X-ray tomography

Jonas Vogelgesang

In practice, many applications of X-ray computed tomography suffer from incom-
plete data. For example in non-destructive testing applications when inspecting
large objects or objects with extremely different diameters in longitudinal and
transversal directions, the physical limitations of the scanning device do not allow
a full rotation of the inspected object. Although more specific scanning geometries
like laminographic geometries allow a full rotation of such objects, the measured
data is only available for a restricted number of X-ray source positions.
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In many cases it is reasonable to apply a semi-discrete data model to describe
the measurement process as multiple separate measurements at fixed X-ray source
positions. Thus, a system of linear operator equations is obtained,

Xaf(η) = ga(η),

where Xa describes the model operator of the scanning geometry at the X-ray
source positions a ∈ Rn. In the following, a semi-discrete model for the emerging
system of linear operator equations is proposed together with a framework to
solve linear systems of semi-discrete operator equations iteratively in a Hilbert
space setting.

1. Semi-discrete operator model

Let Ai be a bounded linear operator between real Hilbert spaces X and Yi for
i ∈ I and I ⊂ N being a finite dimensional index set. Further, let

B := {bj}j∈J ⊂ X
be a set of mutually linearly independent elements for J ⊂ N with |J | < ∞.
Considering XB := spanB, all elements f ∈ XB can be represented as a linear
combination

(1) f =
∑

j∈J

fjbj

where the basis coefficients fj ∈ R are uniquely determined. Thus, a bijective

mapping from R|J| to X is induced via the basis representation (1). This justifies
the definition of the semi-discrete model operators

(2) Ai :
(
R
|J|, 〈·, ·〉Wi

)
→ Yi, Aif :=

∑

j∈J

fj Aibj

on the coefficient space with weighted inner products 〈·, ·〉Wi
:= 〈·,Wi ·〉 for some

symmetric positive definite weight matrices Wi.

2. Semi-discrete iteration methods

Due to the uniqueness of (1) and the bijectivity of the induced mapping, solving
Aif = gi, i ∈ I, in XB is equivalent to solving the semi-discrete system

Aif = gi i ∈ I
for given right-hand sides gi ∈ Yi. To compute a solution of the semi-discrete
problem, the iteration scheme

(3)

fm,1 = fm

fm,i+1 = fm,i +Ψi
(
gi −Aif

m,i
)

i ∈ I
fm+1 = fm,|I|+1

is applied for an arbitrary initial basis vector f0 ∈ R|J|. The operators Ψi : Yi →(
R|J|, 〈·, ·〉Wi

)
are assumed to be bounded linear mappings from the data spaces to

the weighted coefficient spaces. Since the coefficient spaces are finite dimensional, a
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possible choice is Ψi := λiA
†
i yielding the relaxed semi-discrete Kaczmarz iteration.

Choosing

Ψi := λiA
∗
i λi > 0

where the adjoint semi-discrete operators A∗
i are given by

A∗
iϕ =W−1

i

(
〈Aibj , ϕ〉Yi

)
j∈J

∀ϕ ∈ Yi

gives rise to the semi-discrete Landweber-Kaczmarz iteration.

3. Application to X-ray tomography

Let Ω ⊂ Rn denote the n-dimensional unit ball. For a rapidly decreasing function
f ∈ S(Rn) with compact support in Ω the flat detector cone beam transform is
defined as

Xaf(η) =

∫ ∞

0

f (a+ t (η − a)) dt

where a ∈ Rn \ Ω̄ denotes a fixed X-ray source position. Considering the restricted
detector

Ẽa := {η ∈ R
n : 〈η − da, na〉 = 0} ∩ Xa(Ω)

with na ∈ Rn denoting the normal vector and da ∈ Rn the displacement vector,
the cone beam transform

Xa : L2(Ω, ωa)→ L2(Ẽa, wa)

is a bounded linear operator on weighted L2-spaces with the weight functions

ωa(x) := ‖ã‖−1

( 〈a− x, ã〉
〈ã, ã〉

)(1−n)

and wa(η) := (XaχΩ(η))
−1

and ã := P|
(Ẽa−da)

⊥ (a− da). Thus, the proposed semi-discrete approach can be

applied to solve the system

Xaif(η) = gai(η)

where {ai}i∈I ⊂ Rn \ Ω̄ is a finite set of fixed X-ray sources and gai ∈ L2(Ẽai , wai)
denotes the measured data for i ∈ I.

Analogously to (2), the semi-discrete model operators are defined as

Xi :
(
R
|J|, 〈·, ·〉Wi

)
→ L2(Ẽai , wai), Xif(η) :=

∑

j∈J

fjXaibj(η),

giving rise to the semi-discrete problem

Xif(η) = gai(η) i ∈ I.
To solve this problem, the semi-discrete Landweber-Kaczmarz iteration is applied.
Thus, with Ψi := λiX

∗
i and the diagonal weight matrices

(Wi)jj :=

〈
Xaibj,

∑

l∈J

Xaibl

〉

L2(Ẽai
,wai

)
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the semi-discrete iteration scheme

fm,1 = fm

fm,i+1 = fm,i + λi

(〈
Xaibj , gai −Xif

m,i
〉
L2(Ẽai

,wai
)〈

Xaibj,
∑

l∈J Xaibl
〉
L2(Ẽai

,wai
)

)

j∈J

i ∈ I

fm+1 = fm,|I|+1

is obtained from (3) for some arbitrary initial value f0 ∈ R|J|. With the parameter
choice

λi ∈
(
1− 1√

κ(Wi)
, 1 +

1√
κ(Wi)

)
∀i ∈ I

the scheme converges for m → ∞. If the semi-discrete system is consistent, it
holds

fm → Pker(A)f
0 + f†.

For applications and numerical results of the semi-discrete Landweber-Kaczmarz
method we refer to [1] and [2]. Also, the incorporation of additional information
into the reconstruction process such as geometrical a priori information in limited
data tomography as well as material and geometrical prior information in the con-
text of region-of-interest tomography from limited data is discussed in the given
references.
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Seismic tomography with the elliptic Radon transform in 3D

Christine Grathwohl

(joint work with Peer Christian Kunstmann, Eric Todd Quinto and Andreas
Rieder)

A well-established method to investigate subsurface material parameters is to gen-
erate pressure waves on the surface and measure their reflections returning there
at different points. If we assume that no shear waves appear and the medium has
constant mass density, the propagation of these waves with speed of sound ν is
described by the acoustic wave equation

1

ν2(x)
∂2t u(t;x,xs)−∆u(t;x,xs) = δ(x− xs)δ(t)(1)

at location x ∈ R
3
+ and for time t ≥ 0 where xs is the source point. The task is to

reconstruct ν from the backscattered field u(t;xr,xs) observed at a receiver point
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xr for (t;xs,xr) ∈ [0, Tmax] × S × R where S and R are the sets of source and
receiver positions, respectively, and Tmax is the recording time.

We consider a scanning geometry with constant distance from source to receiver.
Thus, let xs = xs(s) = (s1, s2 − α, 0) and xr = xr(s) = (s1, s2 + α, 0) for α > 0
fixed and (s1, s2) ∈ S0 with S0 ⊂ R

2 open, bounded and connected. Further, we
make the ansatz

1

ν2(x)
=

1 + n(x)

c2
.

with a smooth and a priori knwon background velocity c which we assume to be
constant. The corresponding solution ũ satisfies (1) with speed of sound c instead
of ν. For simplicity, we choose c = 1. After we made this ansatz, we search for n
instead of ν.

Under the assumption that no multiple scattering occurs we linearize the prob-
lem by the Born approximation. This yields a linear integral equation for n. Here,
we follow the lines of [1] and [7].

Our linearized version then reads

Fn(s, T ) = 32π2

∫ T

0

(T − t)(u − ũ)(t;xr(s),xs(s)) dt

where

Fn(s, T ) = −2
∫

E(s,T )

n(x)

|xs(s)− x||x− xr(s)|
dσ(x)

is a generalized Radon transform with the half-ellipsoid

E(s, T ) = {x ∈ R
3
+ | |xs(s)− x|+ |x− xr(s)| = T }

for s = (s1, s2) ∈ S0 and T ∈ [0, Tmax].
As we are not interested in exact values of n but in its singularities, we consider

the reconstruction operator

Λ := −∂3∆F ∗ψF

where ∂3 is the derivative in third space direction, ∆ the Laplacian and ψ a smooth
cut-off function, necessary to compose F ∗ and F . Hence, we reconstruct Λn via

Λn = −∂3∆F ∗ψg

from our measurements g = Fn.
The generalised Radon transform F satisfies the Bolker assumption (see [2]).

Multiplying F with the cut-off ψ the composition of F ∗ with ψF is well-defined
and so, we achieve that F ∗ψF is a pseudodifferential operator of order −2 (see [5]).
With the two differential operators in front of F ∗ the reconstruction operator Λ is
a pseudodifferential operator of order 1. Due to its positive order Λ emphasizes
the singularities of n.
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Theorem 1. The principal symbol of Λ = −∂3∆F ∗ψF as a pseudodifferential
operator is

σ(x, ξ) =
4π2ξ3|ξ|2

|xs − x|2|x− xr|2
ψ(s, ϕ(s,x))

|ω|2B(s,x)

where B is defined by B(s,x) = | det(∇ϕ(s,x), ∂s1∇ϕ(s,x), ∂s2∇ϕ(s,x))| with
ϕ(s,x) = |xs − x|+ |x− xr| and s and ω are implicitly given by ξ = ω∇ϕ(s,x) .

For the explicit expressions of s and ω as functions of x and ξ we refer to Lemma
3.6 in [4]. To find out which singularities are preserved we need to know where Λ
is microllocally elliptic.

Proposition 2. If ξ0 ∈ C(x0) = {ξ ∈ R
3 | ξ3 6= 0, ψ(x0, ξ) > 0} the operator Λ is

microlocally elliptic of order 1 at (x0, ξ0).

The subsequent corollary follows by Proposition 2 and a general result (e.g. [6]).
Here, WFr(u) denotes the Hr-wave front set of a distribution u.

Corollary 3. Let u ∈ E ′(R3
+) and x ∈ R

3
+. If ξ ∈ C(x) then

(x, ξ) ∈WFr(u)⇔ (x, ξ) ∈WFr−1(Λu).

Roughly speaking, a distribution u is not Hr at x in direction ξ if and only if
Λu is not Hr−1 at x in direction ξ.

As the principal symbol σ of Λ is not independent of the offset α and the
depth x3 we aim to modify Λ. For this purpose, we consider the case α = 0, so
xs = xr, which we get approximately for large x3 in comparison to α. In this
case, the principal symbol of Λ behaves like x−2

3 . By inserting the operator which
multiplicates with x23 we get an operator with principal symbol x23σ(x, ξ) which
depends on x3 only via the cut-off ψ.

Moreover, the principal symbol σ = σ(x, ξ) of Λ behaves like α−2 for α → ∞
if ξ2 6= 0 is satisfied. Thus, we insert the factor α2 and add this operator to the
modified one before.

With these modifications we obtain the modified reconstruction operator

Λmod = −∂3∆(x2
3 + α2I)F ∗ψF

where x2
3 denotes the multiplication operator induced by x23. Proposition 2 and

Corollary 3 remain true for Λmod. For small α in comparison to x3 the first operator
of Λmod dominates, for large α the second one. Thus, we achieve reconstructions
nearly independent of the offset α and the depth x3.

Due to the structure of the reconstruction operators Λ and Λmod it is natural
to apply the method of the approximative inverse for numerical reconstructions.
We refer to the two-dimensional case in [3] for details. The images show two
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reconstructions where n = χB2(0,0,4) − χB1(0,0,4) + χB1.5(3,0,5) is a sum of charac-
teristic functions. On the left image we have offset α = 1, on the right α = 10.
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Inverse problems in Adaptive Optics: wavefront reconstruction
methods for the pyramid and the new ıQuad sensor

Victoria Hutterer

(joint work with Ronny Ramlau, Iuliia Shatokhina, Olivier Fauvarque and
Andreas Obereder)

Atmospheric turbulence and diffraction of light induce blurred images of celestial
bodies when they are observed by ground based telescopes. To compensate the
perturbations, the new generation of telescopes involves the technology of Adap-
tive Optics (AO). An AO system consists of wavefront sensors, a control algorithm
and deformable mirrors. Wavefront sensors provide quantitative information about
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incoming distorted wavefronts, deformable mirrors physically correct for the atmo-
spheric aberrations and the control algorithm gives a relation between wavefront
sensor measurements and optimal mirror actuator commands. To derive actuator
commands the knowledge of the shape of the wavefronts is essential. Reconstruc-
tion of the unknown wavefronts from given sensor measurements is an inverse
problem. In the era of Extremely Large Telescopes (ELTs) with primary mirror
diameters up to 40 m the computational load of existing control algorithms is
immense which makes the development of new and fast methods important.

Pyramid wavefront sensors [1, 2] are included as baseline on many instruments
under development for ELTs due to their increased sensitivity compared to other
sensors. Hence, appropriate wavefront reconstruction algorithms are currently in
high demand. Using Fourier optics the model of the pyramid sensor is described
by a non-linear combination of one and two dimensional Hilbert transforms of
the sine and cosine of the incoming wavefront. Based on detailed analytical stud-
ies [3] of the pyramid sensor we developed several linear and non-linear wavefront
reconstruction methods [4–6] which are utilizing approximations of the mathemat-
ical forward model. Although we obtain precise reconstructions applying those
simplifications, the goal is to rely on more exact underlying models in order to
further improve the accuracy. Additionally, we consider real life features such as
so-called telescope spiders. These structures create areas where the information
on the wavefront is isolated and thus segmented on the wavefront sensor detector
introducing additional errors in the reconstructions [7].

Based on optical Fourier filtering (similar to pyramid wavefront sensors) a new
sensor device, the so-called ıQuad sensor [8] was recently invented. We provide
an optical description, underlying mathematical models and first reconstruction
approaches for the new wavefront sensor.
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Regularization of Inverse Problems with Deep Learning and Neural
Networks

Markus Haltmeier

(joint work with Stephan Antholzer and Johannes Schwab)

Many challenges in natural sciences and elsewhere yield to the solution of inverse
problems for which the solution is either under-determined, sensitive with respect
to data perturbation, or both. Classical solution approaches are based on regular-
ization methods which are basically stable approximations to the Moore Penrose
inverse. Recently, deep learning based methods appeared as a new paradigm for
solving inverse problems, often with outstanding performance. We recall classi-
cal concepts and present some recent developments on deep learning methods for
inverse problems. We introduce and analyze two different deep-learning based
regularization approaches: regularizing two-step networks [1] and the NETT [2].

1. Inverse problems

In this paper, we consider the standard setting of inverse problems, where the task
is to estimate the unknown x ∈ X from data

(1) y = Ax+ ξ .

Here A : X → Y is a bounded linear operator between Hilbert spaces, and ξ de-
notes the data distortion that satisfies ‖ξ‖ ≤ δ for some noise level δ ≥ 0. A
characteristic property of inverse problems is the ill-posedness. This means that
the solution of (1) is either not unique or unstable with respect to data pertur-
bations. To solve such kind of inverse problems one has to employ regularization
methods, which serve the following two main purposes: First, they account for the
non-uniqueness by selecting particular solutions of the noise-free equation y = Ax.
Second, they approximate (1) by neighboring but stabler problems. A prominent

method is to minimize the Tikhonov functional Ty,α(x) = 1
2‖Ax− y‖2 + α

2 ‖x‖
2
.

As other classical approaches, Tikhonov regularization is designed to approximate
solutions with minimal Hilbert space norm.

As has been realized some time ago, solutions with small Hilbert space norm
are often not the desired ones in practical applications. Variational regulariza-
tion replaces the Hilbert space norm penalty by a general convex regularizer
r : X → [0,∞] and considers minimizers of the generalized Tikhonov regulariza-

tion Ty,α(x) = 1
2‖Ax− y‖2 + αr(x), where the prior knowledge is encoded in

r(x). While often being a significant improvement over the Hilbert space norm,
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such hand-crafted priors do also not optimally represent realistic signal classes.
Moreover, the implementation requires time consuming iterative minimization.

2. Regularization by deep learning

In the very recent years, deep learning based methods appeared as a new powerful
tool for solving inverse problems. Instead of using a hand crafted prior, they adapt
to a certain class of unknowns, by using a training data set

(2) DN := {(xn,yn) | n = 1, . . . , N} .
Here xn ∈ M are elements taken from a set M of desired outputs, and yn are the
corresponding data. Based on the training data, one selects the reconstruction
operator B : Y → X from a parametrized family of possible candidates. Various
such tools have been proposed in the literature. In this short note, we focus on
regularizing two-step networks and the NETT which, to the best of our knowledge,
are the only deep learning approaches that are known to be regularization methods.
In the following we refer to any element of a parametrized family (Nθ)θ∈Rp of
mappings Nθ : X→ X as neural network (NN). Likewise, we call any element of a
family (Rθ)θ∈Rp of mappings Rθ : Y→ X a reconstruction network.

2.1. Regularizing two-step networks. The probably simplest deep learning
approach uses a reconstruction network of the form R = N ◦ A♯ : Y → X, where
A♯ : Y→ X is an operator that performs an initial reconstruction and N is a stan-
dard NN (sometimes called post-processing). In particular, the so-called residual
networks N = Id+U have been demonstrated to give accurate results. The net-
work is adjusted to a particular application and training data set by minimizing

a loss function such as EN (DN , θ) := 1
N

∑N
k=1 ‖Nθ ◦ A♯yn − xn‖2 over θ ∈ Rp.

The minimization of EN is called the training phase. A benefit of the two-stage
approach is that A♯yn can be computed once before the training phase. There-
fore, network training can be performed very efficiently using existing advanced
software tools to evaluate EN and its gradient with respect to θ.

Especially, when applied to elements x ∈ X very different from the training data,
standard residual networks may lack data consistency. This means that even when
‖A♯x− y‖ is small, there is no control over ‖NθA♯x− y‖. To overcome this issue,
in [1] we consider the modified structure, that we named null space network,

(3) N = Id+Aker(A) ◦ U : X→ X .

Here Aker(A) denotes the projection onto the null space ker(A) of A, and U is
any NN. Considering Aker(A)U instead of U implies that the null space network
preserves data consistency. Moreover, in [1] we derived the following result.

Theorem 1. Let the family (Bα)α>0 together with the parameter choice
α⋆ : (0,∞) × Y → (0,∞) be a classical regularization method (approximating the
Moore-Penrose inverse), and let N be a null-space network as in (3). Then,
(Rα)α>0 defined by

(4) ∀α > 0: Rα = N ◦ Bα : Y→ X ,
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together with the parameter choice α⋆, is a regularization method adapted to M :=
N
(
ker(A)⊥

)
for (1). This means that for every x ∈ M we have limδ→0 sup{‖x−

Rα⋆(δ,y)y‖ : y ∈ Y ∧ ‖y −Ax‖ ≤ δ} = 0.

In [1] we also derived convergence rates for the null space regularizations. The
role of the NN in (4) is to select a particular solution which is the main issue
in undersampled tomographic problems. For inverse problems where the singular
values are rapidly decaying but only a small part of them is strictly equal to zero
it is important that the networks are allowed to also map to values outside of
the kernel for δ > 0. This issue has been addressed in [3], where we analyzed
more general regularizing networks Rα = Nα ◦Bα with (Nα)α>0 being a family of
networks that converge to a null-space network as α→ 0.

2.2. NETT: Tikhonov regularization with a learned regularizer. An al-
ternative way to to obtain a deep learning based regularization method has been
proposed and analyzed in [2], and considers Tikhonov regularization

(5) Ty,α(x) :=
1

2
‖Ax− y‖2 + α

2
‖N (x)‖2 ,

whereN : X→ Ξ is a trained NN defining the regularizer. Here Ξ is a Hilbert space
and α > 0 a regularization parameter. The resulting reconstruction approach has
been named NETT (for network Tikhonov regularization), as it is a generalized
form of Tikhonov regularization using a NN as trained regularizer. In [2], the
following is shown.

Theorem 2. Consider the NETT functional (5) where N : X → X has the form
N = σL ◦WL ◦ σL−1 ◦WL−1 ◦ · · · ◦ σ1 ◦W1 with L ≥ and mappings σℓ, Wℓ being
all coercive and weakly continuous. Then, minimizing Ty,α is well posed, weakly
stable and weakly convergent in the sense of [4, Theorems 3.22, 3.23 and 3.26].

On the theoretical level, the main difference between the NETT (5) and standard
variational regularization is the non-convexity of the NN based regularizer. As
pointed out in [2], the proof Theorem 2 follows as in the convex case [4]. However,
the strong convergence and the derivation of convergence rates requires extra work.
For that purpose, in [2] we introduced and studied the novel concepts of absolute
Bregman distance and total nonlinearity. A possible training strategy proposed in
[2] uses training data (2) and trainsN to map A♯yn to the artifactsA♯yn−xn, and
the artifact-free images xn to the zero image 0 ∈ X. Regularized solutions therefore
favor being similar to the elements of training class M rather than containing
artifact structures.
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Towards Learning of Efficient Algorithms for Image Reconstruction

Andreas Maier

This is a short report on the latest developments on computed tomography and
inverse problems at the Pattern Recognition Lab, Friedrich-Alexander-University
Erlangen-Nuremberg, Germany in 2018. In particular these developments include
application of deep learning methods to image reconstruction and medical imaging
in general.

1. Deep and Precision Learning

In recent years, the methods of deep learning have revolutionized large fields in
pattern recognition from speech processing to computer vision [1]. Lately, these
techniques became also popular in image reconstruction and for the efficient solu-
tion of inverse problems [2–4]. In contrast to several other groups, we propose to
blend black-box deep learning with prior knowledge in order to restrict the solution
space to physically and algorithmically plausible solutions. We coined this known
operator approach precision learning. In [5], we demonstrated that this approach
reduces maximal error bounds of the training problem and has several other guar-
antees that black-box deep learning is not able to give. In our framework, any
operation that allows computation of a sub-gradient towards its input variables
can be employed.

2. Deep Learning Computed Tomography

In [4,6], we demonstrate that the well-known Feldkamp-Davis-Kress (FDK) Algo-
rithm can be mapped mathematically identically onto a three-layer neural network
that consists of a multiplicative, a convolutional, and a fully connected layer. Do-
ing so, one does not even require training, as the multiplication is initialized using
Cosine and Parker weights, the convolutional layer uses the Ramp Filter, and
the fully connected layer implements back-projection. In this constellation, we
demonstrated that we are able to train the weights of the multiplicative layer to
limited angle problems, even though the actual back-projection matrix does not
fit into a computer’s main memory. We use – similar to iterative reconstruction
– efficient implementation of projection and back-projection on GPUs. This way
the limited angle reconstruction is solved efficiently in a single forward-pass at
run-time. Learned weights resemble heuristic configurations that were found by
other researchers [7,8]. Remaining streaks can be efficiently further reduced using
the variational networks approach by Hammernik et al. [9]. This way, we remain
with an interpretable neural network that is analytically equivalent to FDK recon-
struction followed by interative image-domain de-streaking.
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3. Attacks on Deep Learning Reconstruction

Recently, so-called adversarial attacks have demonstrated to mislead neural net-
works towards false classifications [10]. So far, this concept was only applied to
classification or segmentation tasks. In [11], we demonstrated that similar con-
cepts also apply to reconstruction networks. In particular, we found that U-nets
with their non-local receptive field can be misled in such a way that lesions disap-
pear from CT slice images. Hence, general black-box deep learning reconstruction
networks like the ones presented in [3] are to be handled with caution.

4. Deriving Neural Networks

Given the concept of precision learning and the mathematical equivalence of neu-
ral network and reconstruction algorithm, we can also approach other problems
in medical imaging. In [12], we investigate whether it is possible to re-bin a
parallel MRI acquisition to fan-beam geometry using a filtering-based approach.
We demonstrate that we can reformulate the problem using an algebraic approach.
Doing so, we solve for the unknown fan-beam projections and postulate that the in-
verse that is required during this computation is a circulant matrix. As a result, we
derive an algorithm that is known up-to-the circulant operator that is conveniently
initialized as the Ramp filter. Using 50 synthetic phantoms, we demonstrate that
we are able to estimate an appropriate filter kernel that also generalizes to real
data. As such we employ deep learning merely as a tool to efficiently minimize
our optimization problem. Still, we hope that such use of the back-propagation
algorithm will further facilitate the blend of math, physics, and computer science.
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Task-based image reconstruction from tomographic data

Carola-Bibiane Schönlieb

(joint work with Jonas Adler, Martin Benning, Martin Burger, Veronica Corona,

Hendrik Dirks, Lynn Gladden, Sebastian Lunz, Ozan Öktem, Andi Reci, Andy
Sederman and Olivier Verdier)

Image reconstruction from indirect measurements, such as they appear in com-
puted tomography (CT) or magnetic resonance imaging (MRI), is often compli-
cated by incomplete and noisy measurements. Lots of work in the mathematical
imaging community in the last thirty years or so has gone into the development,
analysis and numerical realisation of image reconstruction methods from such data.
In this work we are mainly interested in the subclass of variational regularisation
and associated iterative reconstruction schemes.

While those are classically optimised for some measure of image quality, another
strategy is to optimise the image reconstruction for a particular end-task at hand.
Such a task-adapted reconstruction strategy is particularly appropriate in most
biomedical applications where an image is not reconstructed to look ‘pretty’ but
to be used for a subsequent quantification task, e.g. segmentation, classification,
motion estimation etc.

Some examples in the literature for task-adapted reconstruction (also called fea-
ture reconstruction) from tomographic data are [6–11]. In our work we have investi-
gated several instances of task-adapted reconstruction using variational models as
well as recently introduced deeply learned iterative reconstruction approaches [1,2].
In [4] we propose a variational model for joint motion estimation and reconstruc-
tion and discuss its well-posedness and numerical solution. In [5] we consider
a variational model for joint image reconstruction and segmentation from MRI
data, and its numerical enhancement via Bregman iteration for which we provide
a global convergence proof. In [3] we introduce a generic framework for task-
adapted reconstruction based on deep neural networks, with examples for joint
image reconstruction and segmentation, and joint image reconstruction and classi-
fication from tomographic data. In those works we show that in both cases, having
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in mind the end-task already during the reconstruction step improves performance
on the task. While a variational approach for task-adapted reconstruction gives
the advantage of a strong theoretical foundation, its numerical solution and practi-
cal application are challenging due to its non-convexity and non-smoothness, and
dependence on several free parameters. Task-adapted reconstruction with deep
learning on the other hand, currently stands on shaky theoretical foundations,
however, once trained, renders task-adapted reconstruction feasible also for very
large-scale inverse problems.
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Perspectives of Similarity Measures for Joint Multimodality Image
Reconstruction

Ming Jiang

(joint work with Di He, Alfred K. Louis, Peter Maass and Thomas Page)

Joint multi-modality image reconstruction is to estimate images from measurement
data simultaneously rather than separately and sequentially for each modality. A
conceptual framework for joint multi-modality image reconstruction is as follows
[1]. Without loss of generality, we consider bi-modal joint image reconstruction in
the following. For i = 1, 2, let

(1) Ai(fi) = gi,
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be two forward operators of two imaging modalities, respectively. For each image
reconstruction, we use the conventional regularization approach to formulate the
following reconstruction functional,

(2) Ei(fi) = ‖Ai(fi)− gi‖2 + αiRi(fi)

where Ri(fi) is the regularization for fi and αi > 0 the regularization parameter,
for i = 1, 2. Joint multi-modality image reconstruction is based on the observation
that images of the same object from different modalities possess similar features,
at least partially. Assume that T is an feature operator of images, and that D is
a feature similarity of images. Then we can incorporate the feature similarity into
the reconstruction process by updating the reconstruction functionals as following,

E1(f1) = ‖A1(f1)− g1‖2 + α1R1(f1) + γ1D [T (f1), T (f2)] ,(3)

E2(f2) = ‖A2(f2)− g2‖2 + α2R2(f2) + γ1D [T (f2), T (f1)] .(4)

In implementation, the images f1 and f2 are alternatively and iteratively recon-
structed by minimizing (3) and (4), respectively. This conceptual framework is
equivalent to alternatively minimizing the following joint reconstruction functional
with respect to f1 and f2,

(5) E(f1, f2) = τ1E1(f1) + τ2E2(f2),

with weights τ1 and τ2 on E1 and E2. Please note that the effect of the parameters
τ1 and τ2 is incorporated into the parameters α1, γ1, α2, γ2 when performing the
alternative minimization for E1 and E2 in (3) and (4) after re-parametrization,
and hence can be ignored in implementation. This joint reconstruction functional
can also be interpreted from a Bayesian formulation [1,2]. Recent work has demon-
strated the performance of joint multi-modality reconstruction [3–6].

One new aspect of the joint multi-modality image reconstruction is the require-
ment for cross-modality image similarity measures of features to enable iterative
methods to alternatively reconstruct images as aforementioned. The difficulty is
because images of different modalities are of different ranges and different con-
trasts. There are features in one modality but not in another. Images of the same
object from different modalities possess similar features, but mostly only partially
in some regions. Similarity measures must encourage the reconstruction of fea-
tures when there is sufficient evidence from data and avoid nonexistent features to
be transferred into another [1]. This phenomenon that inappropriately reconstruc-
tion of nonexistent features due to inappropriate similarity measures can be called
‘ill-transfer of features’, and should be addressed in designing similarity measures.

In his prominent paper [7], Tversky proposed his ‘feature contrast model’ for
the similarity of binary features. Features are binary in the sense that a given
feature of an object either is or is not in its set of features A. An example of
such binary feature is the edge set of an image. In a convincing and entertaining
manner, Tversky argued why the requirements of symmetry and triangle inequal-
ity for similarity measures are unreasonable to explain a number of psychological
experiments. Tversky proposed a set of axioms about similarity measures of bi-
nary features, which includes the axioms of matching, independence, solvability,
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invariance, and proved mathematically that feature similarity measures must of
the following form [7],

(6) S(a, b) = p(A ∩B)− γ1p(A \B)− γ2p(B \A),
where A and B denote the sets of binary features associated with the objects a
and b, respectively, γ1 and γ2 are nonnegative constants. p is an additive function
such that p(A ∩ B) = p(A) + p(B) whenever A ∩ B = ∅. Please note there the
convention in [7] is that the more similar a to b, the bigger the similarity S(a, b)
is. Similarity measures thus obtained increase with addition of common features
and/or deletion of distinctive features (i.e., features that belong to one object but
not to the other) [7], which coincides with the demand of similarity measures for
avoiding ill-transfer of features in joint multi-modality image reconstruction .

For 2D images, a natural choice for p with respect to image edge sets is the
1-dimensional Hausdorff measure H, or the length of image edges. Therefore, we
obtain,

(7) S(f1, f2) = H(K1 ∩K2)− γ1H(K1 \K2)− γ2H(K2 \K1),

whereK1 and K2 are the image edge sets of images f1 and f2, respectively. Higher-
dimensional Hausdorff measures can also be used in (7) for higher-dimensional
images [8]. By using Mumford-Shah regularization function for each modality in
(3) and (4), respectively,

(8) Ri(fi) =

∫

Ω\Ki

|∇fi|2 + βiH(Ki),

where Ω is the image domain, and usingD = −S as the feature similarity of images,
by decomposing K1 = K1∩K2∪K1\K2, and K2 = K2∩K1∪K2\K1, we arrive at
the following reconstruction functionals E1 and E2, after re-parametrization with
the same symbols,

E1(u1,K1)

= ‖A1(f1)− g1‖2 + α1

∫

Ω\K1

|∇f1|2 + β1 [H(K1 ∩K2) + γ1H(K1 \K2)] ,

E2(u2,K2)

= ‖A2(f2)− g2‖2 + α2

∫

Ω\K2

|∇f2|2 + β2 [H(K2 ∩K1) + γ2H(K2 \K1)] ,

(9)

where αi, βi and γi (i = 1, 2) are positive regularization parameters. It should
be remarked that the above extended Mumford-Shah regularization has been pro-
posed in [9]. This abstract provides another interpretation from the psychological
perspective. Please note that images and edges are simultaneously reconstructed
with the above extended Mumford-Shah regularization functionals. This new im-
age similarity is evaluated with numerical phantoms for the joint reconstruction of
XCT and DOT and demonstrate an image quality improvement by 15% in terms
of SSIM compared to single model reconstruction [6].



248 Oberwolfach Report 4/2019

It is expected the feature similarity used in this abstract can be applied for
other applications where image similarity is required, such as slice-by-slice recon-
struction of 3D volume images, dynamic imaging, multi-change and multi-spectral
tomography, and video super-resolution generation.
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Hamilton–Green solver for Photoacoustic Tomography

Marta M. Betcke

(joint work with Francesc Rul·lan)

1. Motivation

The increasing interest in imaging dynamic processes in living tissue resulted in a
decade of intense research on numerical methods tailored to reconstruction from
incomplete or subsampled data. While in ray based tomography e.g. X-ray CT,
solution of the forward and adjoint problems scale proportionally with the number
of detectors, it is not the case for the photoacoustic tomography (PAT) which for
heterogenous sound speeds is usually be tackled by full wave solvers.

Large number of reconstruction methods relies on the ability of computing
partial forward and adjoint operators e.g. Kaczmarz or recently gaining popularity
stochastic methods e.g. stochastic gradient descent and extensions. To realise the
benefits of such methods in PAT, we propose a ray based solver which effectively
approximates the Green’s function of the respective wave equation (underlying
the forward or adjoint problem) along the trajectories of the Hamiltonian system
(rays) derived from high frequency approximation.
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2. High frequency approximation to the wave equation

We consider the linear scalar wave equation

(1) �2u :=

(
∂2

∂t2
− c2(x)∆

)
u = 0, (t, x) ∈ (0,∞)× R

d,

with d = 2, 3 and appropriate initial / boundary conditions to be specified later,
where c ∈ C∞(Rd) is the speed of the wave in heterogenous medium. In the high
frequency limit ω →∞, we look for the solution to (1) of the form, see e.g. [3]

(2) u(t, x) = eiωφ(t,x)
∞∑

k=0

Ak(t, x)(iω)
−k,

where φ(t, x) is the phase, Ak the coefficients of the amplitude and ω the frequency
of the oscillating wave. In this representation we expect the phase φ and the
amplitude coefficients Ak to vary at a much lower rate than the wave field u.

The geometrical optics equations are obtained by substituting the WKB expan-
sion (2) into the wave equation (1) and equating terms of the same order to ensure
that (1) holds down to O(ω). In the limit ω → ∞ the terms of order O(ω−n)
for n ≥ 0 can be neglected. The geometrical optics equations can be solved by
e.g. phase-space methods, Hamilton-Jacobi methods or ray tracing methods. The
proposed solver is based on ray tracing, which has been extensively studied from
both the theoretical and numerical perspective, in particular in the context of
seismic imaging [1] and ocean acoustics [4].

In the proposed solver, the role of the ray equations is primarily as means of
a discretization of a domain Ω ⊂ Rd rather than to obtain an explicit solution
to the wave equation of the form (2). Therefore, we assume a fully implicit time
dependence of the amplitude and phase, i.e. solely through the time dependence
of the trajectory x(t)

u(t, x(t)) = A(x(t)) exp(iωφ(x(t)))

and solve the frequency domain version of the eikonal and transport equations.

2.1. Phase. The frequency domain version of the eikonal equation reads

(3) ‖∇φ‖ = 1/c =: η.

Following the construction in [3], we introduce the Hamiltonian H(x, p) = c(x)‖p‖
defined in the phase space Rd × Rd. Let (x(t), p(t)) be a bicharacteristic pair
associated with this Hamiltonian. The Hamiltonian H is constant along these
bicharacteristics and is set to the initial value H(x0, p0) = 1, which corresponds
to ‖p‖ = η. Therefore we have

dx

dt
= ∇pH(x, p) =

p

η2
, x(0) = x0,(4a)

dp

dt
= −∇xH(x, p) =

∇η
η
, p(0) = p0, ‖p0‖ = η(x0),(4b)
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with the initial conditions (x(0), p(0)) = (x0, p0). The solution (x(t), p(t) =
∇φ(x(t))) admits following interpretation: x(t) is the trajectory and p(t) is the
direction of propagation of the wave. Furthermore, for φ(t, x) = φ(x(t)) the time
domain eikonal equation implies a linear relation between the time and phase

(5) φ(x(t)) = φ(x0) + t.

2.2. Amplitude. The amplitude is prescribed by the frequency domain version
of the transport equation

(6) 2∇φ · ∇A+∆φA = 0.

For the bicharacteristic pair (x(t;x0), p(t; p0)) the solution of (6) at a point x(t;x0)
can be explicitly written as

(7) A(x(t;x0)) = A(x0)
η(x0)

η(x(t;x0))

√
q(0;x0)

q(t;x0)
,

where q is the determinant of the Jacobian of x with respect to the initial data,

(8) q(t;x0) = detJ := det∇x0x(t;x0).

2.3. Reversing rays. The natural choice is to shoot the rays from the sensors
into the domain. In [2] we showed that such trajectories are reversible and hence
can be used by both the forward and adjoint solver and the reversed ray, phase
and amplitude can be expressed in terms of the original quantities.

3. Hamilton-Green solver for the forward and adjoint problems

Here we restrict the presentation to the forward solver, while the adjoint solver
follows similar construction for the time varying source problem which underlies
the adjoint PAT operator. The details can be found in [2].

The forward PAT problem is an initial value problem

�2u = 0, (t, x) ∈ (0,∞)× R
d,(9a)

ut(0, x) = 0, x ∈ R
d,(9b)

u(0, x) = u0(x), x ∈ R
d,(9c)

with u0 compactly supported on a domain Ω ∈ Rd. In the Hamilton-Green forward
solver the time dependent pressure is obtained at each of the sensors separately
using the cone of rays originating from this particular sensor. Using Green’s for-
mula for the solution to (9) we write the pressure u(t, x0) at a given time t at a
sensor location point x0 as

(10) u(t, x0) =

∫

Rd

1

c2(x′)

∂

∂t
G(t, x0 | 0, x′)u0(x′)dx′,

where G(t, x | t′, x′) is an in general heterogeneous free-space Green’s function.
Assuming that the rays shot from x0 6∈ Ω do not develop a caustic in the domain
Ω i.e. no two different rays from x0 intersect in Ω, and that they cover Ω sufficiently
densely, these rays form a coordinate system for Ω. In this coordinate system, using
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Green’s function identities and constructing high frequency approximation (7) to
the heterogenous Green’s function G based on the homogeneous Green’s function
G0 with sound speed c(x0), we obtain

u(t, x0) ≈ η(x0)
∫ T

0

∂

∂t
G0(t+ ℓ, x0 | 0, x0)

×
∫

Sd−1

η(x(ℓ, θ;x0))
√
q(0, θ;x0)q(ℓ, θ;x0)u0(x(ℓ, θ;x0)) dθ dℓ,(11)

which we term the Hamilton-Green solution to (10).
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Superresolution and Inverse Problems with Internal Sources

John C. Schotland

(joint work with Anna Gilbert, Jeremy Hoskins and Howard Levinson)

We have developed a simple model for localization microscopy [1, 2]. We consider
a bounded domain Ω ⊂ R3 that contains an inhomogeneous scattering medium
along with a fixed number of internal quasi-monochromatic point sources with
unknown locations, amplitudes, and phases. In each experiment the field from a
single point source is measured at detectors positioned outside the medium. The
measurements are performed one by one for each source. The inverse problem is to
reconstruct the optical properties of the medium as well as the amplitude, phase
and position of the sources.

The optical field u obeys the Helmholtz equation

(1) ∆u+ k2 (1 + η(x)) u = −aeiφδ(x− x0) ,
where k is the wavenumber, η is the dielectric susceptibility of the scattering
medium, and x0, a and φ denote the position, amplitude and phase of the source.
For simplicity, we have not accounted for the effects of polarization and have
employed a scalar model of the electromagnetic field. This model is of independent
interest in acoustic imaging with micro-bubbles [3].

The field satisfies the integral equation

(2) u(x) = u0(x) + k2
∫

Ω

G(x, y)η(y)u(y)dy ,
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where the Green’s function G is given by

(3) G(x, y) =
eik|x−y|

4π|x− y| .

The background field u0 obeys (1) with η = 0 and is given
by u0(x) = aeiφG(x, x0). In the far-zone of the scatterer, the field u behaves
as an outgoing spherical wave of the form

(4) u(x) ∼ eik|x|

4π|x|
(
aeiφe−ikx̂·x0 + A(x)

)
,

where the scattering amplitude A is defined by

(5) A(x) = k2
∫

Ω

e−ikx̂·yη(y)u(y)dy .

The classical formulation of the inverse scattering problem is to reconstruct
the susceptibility from measurements of the scattering amplitude. Here the de-
pendence of the scattering amplitude on the source is assumed to be known. In
contrast, for the problem considered in this proposal, the amplitude, phase and
position of the source are unknown and must be determined as part of the inverse
problem. It is then natural to consider scattering data of the form

(6) Φ(x, x0) = aeiφe−ikx̂·x0 +A(x, x0) ,

which corresponds to the amplitude of the spherical wave in (4) and the dependence
of A on the source position x0 has been made explicit.

Let us suppose that the amplitude a, phase φ and position x0 of the source are
known. We will relax this assumption shortly. The scattering amplitude A can
then be determined from Φ. Then making use of the reciprocity of sources and
detectors and (4), we can solve (1) for η, thereby obtaining the inversion formula

(7) η(x0) = −
1

k2Φ(x, x0)

(
∇2
x0
A(x, x0) + k2A(x, x0)

)
.

We observe that for fixed x, the above result allows for a local reconstruction of
η(x0) for x0 ∈ Ω. Moreover, there is in principle no limit to the resolution of the
reconstruction, beyond that imposed by the accuracy of the forward model. It
follows immediately that the inverse problem is well-posed.

Next, suppose that the susceptibility η is known. We then wish to determine
the amplitudes, phases and positions of the sources. We assume that the field is
measured at M detectors with positions x1, . . . , xM , and that there are N sources
with amplitudes a1, . . . , aN , phases φ1, . . . , φN and positions y1, . . . , yN . We then
consider data Φ of the form Φ(xm; an, φn, yn). We note that in any experiment,
only one source is activate so that the entire data set can be collected for all m and
n. To find the source parameters, we solve the nonlinear least squares problem

(8) (an, φn, yn) = argmin
(a,φ,y)

M∑

m=1

∣∣Φ(xm; an, φn, yn)− aeiφe−ikx̂m·y −A(xm, yn)
∣∣2 ,

where n = 1, . . . , N .
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The inverse problem consists of recovering the susceptibility along with the am-
plitude, phase and positions of the sources from the scattering data. Its solution
consists of two iterative steps, whereby an inverse source problem and an inverse
scattering problem are alternately solved. In the first step, the sources are recov-
ered from the current estimate of the susceptibility. In the second step, the sus-
ceptibility is reconstructed from the current estimate of the sources. The process
is then repeated until convergence. The algorithm, which generates a sequence of

approximations to the susceptibility η(ℓ) and the sources {(a(ℓ)n , φ
(ℓ)
n , y

(ℓ)
n )} is given

below.

Reconstruction Algorithm

Put A(0)(xm, yn) = 0 for all m and n. Set ℓ = 1.

Step 1.

• For all n,

(a(ℓ)n , φ(ℓ)n , y(ℓ)n ) =

argmin
(a,φ,y)

M∑

m=1

∣∣∣aeiφe−ikx̂m·y − Φ(xm; an, φn, yn) + A(ℓ−1)(xm, yn)
∣∣∣
2

.

• For all m and n,

Ã(ℓ)(xm, yn) = Φ(xm; an, φn, yn)− a(ℓ)n eiφ
(ℓ)
n e−ikx̂m·y(ℓ)n .

Step 2.

• Solve for η(ℓ) from Ã(ℓ) using the inversion formula (7).
• For all m and n,

A(ℓ)(xm, yn) = k2
∫

Ω

e−ikx̂m·yη(ℓ)(y)u(y, y(ℓ)n )dy .

ℓ← ℓ+ 1

A variant of the algorithm has been implemented and tested with numerically
simulated data [2].
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Selective-reconstruction Methods and A Microscopic-system Design
for Spectral Computed Tomography

Qian Wang

(joint work with Hengyong Yu)

Spectral computed tomography (Spectral CT) is proposed by extending the con-
ventional single spectral CT (SSCT) along the energy dimension. The state-of-
the-art photon-counting-detector (PCD) based spectral CT scanners can identify
photon energy and divide a whole X-ray spectrum into several channels. Although
it has a superior energy-resolution, it meanwhile suffers seriously increased noise,
which not only degrades the quality of reconstructed images but also decreases the
material-decomposition accuracy. Moreover, some hardware-based barriers, such
as the size dimension of PCD cells, further limit the spatial- resolution improve-
ment of the spectral CT.

In this talk, Iwe focus on the selective-reconstruction methods for spectral
computed tomography, which cover both dual spctral CT (DSCT) and multi-
ple spectral CT (MSCT), both one- and two-step methods. Moreover, for a
new developed spectral micro-CT system with both optical-magnification and
energy-identification mechanisms, we investigate the corresponding high-resolution
spectral-imaging methods.

One-step method for DSCT [6]. First, by comparing SSCT and DSCT, we
find that although the SSCT has the weaker capability for material distinguishing,
the achieved SNR is dramatically higher than that of DSCT. Moreover, there is
an interesting relationship, i.e., the decomposed results of DSCT can be viewed as
modifications of reconstructed images of SSCT by removing some components and
adjusting gray values. Furthermore, this structure-based feature can be mathemat-
ically described as a locally linear relationship. By incorporating this constraint
into an optimization model, the reconstructed image of SSCT could work as a
reference to effectively improve the smoothness of DSCT decomposed results. Mo-
tivated by the aforementioned facts, we develop an iterative method to improve
the image quality of material decomposition, and the image-guided filtering tech-
nique [2, 3] will also be utilized.

When using the locally linear relationship, the SSCT images are employed as
guidance to introduce both structural knowledge and smoothness constraint. This
means their image quality plays a crucial role, i.e., any merit and fault will affect
the final results of DSCT. Thus, we develop an additional preprocessing step to
further improve the image quality of SSCT. The purpose of this preprocessing step
lies in two aspects: well keeping all the structures and suppressing the noise. In
the field of digital image processing, many methods can be used to achieve this
goal, such as regularization based methods, transform domain filtering methods,
statistical methods, local filtering methods, and so forth. However, in our problem,
there are some specific characteristics: strong edges (between different materials)
and weak edges (between similar materials) exist simultaneously. Particularly,
the weak edges may have the same amplitude with noise. Thus, many methods
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fail to keep these fine structures. By analyzing the features of weak edges, we
find they can be well described by a locally statistical property, i.e., windowed
inherent variation. The relative total variation (RTV) for extracting structure
from texture [7] is extended for weak edge detection in this chapter. Thus, by
using the preprocessed SSCT image as a good reference, the SNR of decomposed
results is further increased.

Two-step method for MSCT. Different from directly employing the correla-
tion among channel images of MSCT, we use a locally linear transform to establish
a gradient sparsity in spectral dimension. Combining the piece-wise constant prior
knowledge in the spatial domain, a three-dimensional (3D) gradient sparsity is
formed. This property is further measured by an L0-norm and incorporated into
an optimization model as a regularization term. We also develop the corresponding
iterative algorithm.

As a naturally further continuation, we innovatively employ a refined locally lin-
ear transform to convert the spectrum-related structural similarity to a gradient
sparsity. Then we combine this newly established spetral sparsity with the original
spatial sparsity to form a global three-dimensional (3D) sparse feature. We extend
the two-dimensional (2D) L1- and L0-norm measurements to the corresponding
3D version, respectively. Meanwhile, we modify the spatial total-variation with
spectral trace-norm measurement (TVLR) [1] to work on the transformed image
volume. Based on the three new feature-measurements, we propose the corre-
sponding optimization models and develop the corresponding iterative algorithms.
Moreover, we perform experiments on both simulated and real data to verify the
effectiveness and superiority of the proposed methods comparing with the unmod-
ified versions (2D L1- and L0-norm minimization and TVLR method).

One-step method for MSCT. X-ray micro-computed tomography (micro-CT)
has been widely employed in many practical applications, such as biomedicine, ma-
terials, electronic packaging, and the currently fashionable study of small-animal
imaging. Several micro-CT systems are now commercially available and most of
these share the geometrical or optical magnification mechanism to reach the spatial
resolution of micron or submicron. However, due to the low power of the labora-
tory micro-CT X-ray source comparing with the one in industrial or medical usage,
the gray resolution is usually not satisfactory. The reconstructed micro-CT images
suffer low contrast and poor material discrimination. To overcome the weakness of
grayscale contrast, we employ the state-of-the-art PCD in the micro-CT system.

PCDs are promising candidates for use in the next generation of x-ray CT scan-
ners, foreseen benefits over conventional energy integrating detectors such as the
better trade-off between noise and dose, improved spectral resolution and material
distinguishing capabilities. By splitting and collecting photons into several energy
bins, new applications are enabled, such as material-selective reconstruction, K-
edge imaging, and so on.

For this application, we propose a multi-domain constraint based nonlinear opti-
mization model, which leads to a one-step iterative selective-reconstruction process.
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There are mainly three novelties as follows: A. the data fidelity term is based on
the Kullback-Leibler distance measurement (I-divergence, KL distance), and lies
in the photon counting domain. This design fully adopts the statistical feature of
collected photons, and the further derivation achieves a natural transition to chan-
nel projection domain. B. the regularization term is based on the Mumford-Shah
(MS) functional [4, 5], and lies in the material image domain. This smoothness
term takes both gradient sparsity and edge information into account, thus effec-
tively guarantees clear edges and suppresses noise in selective-material images. C.
two multi-domain constraints are introduced, which builds bridges among channel
projection domain, material projection domain, and material image domain. In
this way, the data information in the photon counting domain can be transferred
to the material image domain. And the prior knowledge of the material images
can also be converted and then works on smoothing the photon or projection data.

High-resolution spectral-imaging methods. There is a novel design of a spec-
tral micro-CT system with both optical-magnification and energy-identification
mechanisms. For future research, we would like to develop some hardware-driven
high-resolution spectral-imaging methods. We will also further optimize the software-
development to improve the practical performance.
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A Convex Formulation for Binary Tomography

Ajinkya Kadu

(joint work with Tristan van Leeuwen)

Binary tomography (BT) deals with the recovery of binary images from their
tomographic projections. This problem is of particular interest in various forms of
tomography, for example, imaging the structure of atomic crystals from electron
microscopy. The BT problem is considered to be an NP-hard due to the discrete
nature of the solution space. In this report, we present the convex formulation for
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the BT problem, which solves the problem in polynomial time. From small-scale
experiments, we conjecture that if the BT problem admits a unique solution, then
our approach finds it. If it has multiple solutions, then the approach gives an
intersection of these solutions.

The outline of the report is as follows: We first describe the BT problem and
mention important challenges. Next, we propose the convex formulation from the
Lagrangian duality principles. We then demonstrate our approach with small-scale
experiments. Finally, we pose some open question regarding this work.

1. Binary Tomography

In the binary tomography problem, we are interested in finding an optimal vector
of discrete nature whose tomographic projections are given by the observed data.
In the simplest form, the BT problem is posed as

(1) find x ∈ Un subject to Ax = b,

where U = {u0, u1} is a discrete set, A ∈ Rm×n represents the tomographic matrix
that models the discretized random transform, and b ∈ Rm is the tomographic
data. In general, the tomographic data contains noise, and hence, we can never
satisfy the constraints in (1) exactly. To handle this issue, we pose the BT problem
in a constrained least-squares form:

(2) x⋆ , argmin
x∈Un

‖Ax− b‖2,

where ‖ · ‖ denotes the Euclidean norm and x⋆ is an optimal solution. There are
many challenges well-known to the BT problem. We mention a few of them below:

• constraints are non-convex (U is a discrete set)
• Large null-space of A (m≪ N)
• solving (2) exactly (i.e., getting x⋆) is not trivial
• Noise in y affects x⋆

• considered as NP-hard (for m ≤ 3, N > 4)

The existing algorithms for the BT problem can solve a few of these challenges.
The current state-of-the-art algorithms are classified into four main areas: (i)
Algebraic methods (iterative algorithms similar to Kaczmarz method), (ii) Sto-
chastic sampling methods (based on sampling the pdf on the space of discrete im-
ages) (iii) Relaxation methods, these can be further sub-divided into two classes:
(a) Convex relaxations (e.g., TV regularization), (b) Non-convex relaxations (e.g.,
level-set method, non-convex regularizers), and (iv) Heuristic algorithms (practical
methods like DART).

2. Convex formulation

In this section, we first derive the convex formulation for an invertible A. Conse-
quently, we can find a convex formulation for all other cases, for example, limited
tomography (where m≪ n), or tomographic data with Poisson noise.
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Let us first reformulate (2) using an auxiliary variable φ ∈ R
n:

(3) x⋆ , argmin
x

{
min
φ

1
2‖Ax− b‖2 subject to x = sign(φ)

}
,

where sign(·) is a signum function. We can write a Lagrangian for this problem as
follows:

Lρ , 1
2‖Ax− b‖2 + νT (x− sign(φ)) ,

where ν ∈ Rn is a Lagrange multiplier, also known as dual variable. This Lan-
grangian admits a following dual problem:

(4) min
ν

1
2‖ν −ATy‖2

(ATA)−1 + ‖ν‖1

We first recognize that the dual problem (4) is a convex problem. This dual
problem is categorized as least absolute shrinkage and selection operator (LASSO).
LASSO has been widely studied in the literature, and many convex optimization
methods exist to solve it. Once we get an optimal dual solution ν⋆, the primal
solution is retrieved using x⋆ = sign (φ⋆) = sign (ν⋆). The dual problem for limited
tomography case (where m≪ n) is given in the following theorem.

Theorem 1. For a limited tomography problem with rank(A) = m (m≪ n), the
dual problem takes the following form:

min
µ∈Rm

1
2‖µ− y‖2 + ‖ATµ‖1.

The primal solution is retrieved using x⋆ = sign
(
ATµ⋆

)
.

3. Small-scale experiments

For demonstration, we perform small-scale experiments on 2 × 2, 3 × 3 and 4 × 4
pixels images. For tomographic projections, we work with row-sum, column-sum,
diagonal and off-diagonal sums. In all the scenarios, our dual formulation retrieves
the solution when there exists a unique solution to the primal problem. In the
case of multiple solutions, the dual approach finds the commonalities between the
solutions. All the results are tabulated in Table 3. Hence, We conjecture the
following from this theorem.

Conjecture 1. For a binary tomography problem with noiseless tomographic pro-
jections

• If the problem has a unique solution, then the dual approach retrieves it.
• If the problem has multiple solutions, then the dual approach retrieves the
intersection of all solutions.

There is a subclass of the described binary tomography problem that is not NP-hard.
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n total unique multiple

m
=

2 2 16 14/14 2/2

3 512 230/230 282/282

4 65536 6902/6902 58541/58634∗

m
=

3 2 16 16/16 0/0

3 512 496/496 16/16

4 65536 54272/54272 10813/11264∗

m
=

4 2 16 16/16 0/0

3 512 512/512 0/0

4 65536 65024/65024 512/512

4. Conclusions

In this report, we present a convex program to retrieve binary solution from its
tomographic projections. The convex program is based on the dual problem of the
constrained least-squares form of the BT problem. From the small-scale experi-
ments, we conjecture that (i) If a unique solution then the dual approach retrieves
it, (ii) If multiple solutions then the dual approach retrieves the intersection of all
solutions.

Open Questions:

• Does the strong duality hold?
• Proving the conjecture 1.
• Extension to discrete tomography (more than 2 grey levels).
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An exact inversion formula for cone beam vector tomography using
the Laplace equation

Thomas Schuster

(joint work with Alexander Katsevich and Dimitri Rothermel)

Let B3 := {x ∈ R3 : |x| < 1} be the open unit ball in R3. We consider the problem

of reconsctructing a vector field f(x) =
(
f1(x), f2(x), f3(x)

)⊤
, x ∈ B3, from its cone

beam Doppler transform

(1) [Df ](y(s),Θ) =

∞∫

0

f
(
y(s) + tΘ

)
·Θdt,
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where the source points y are located on a trajectory Γ ⊂ (R3\B3) outside the
object and the unit vectors Θ ∈ S2 := ∂B3 are contained in a cone C ⊂ R3 such
that B3 ⊂ (y + C) for every y ∈ Γ. Such a source trajectory, e.g., might be given
by a circle at the plane {x3 = 0} with radius r > 1 and centered about the origin,
Γ = rS2∩{x3 = 0}. We assume that Γ has a parametrization y : I ⊂ R→ tr(Γ) ⊂
R3, I ∋ s 7→ y(s) ∈ tr(Γ), where I is an interval. Data g = Df can, e.g., be
acquired by ultrasound time-of-flight or Doppler shift measurements, where f is
the velocity of a moving fluid (see [4, 7]) or by electron tomography, where f is a
vector potential of the magnetic field (see [5]).

In two articles from 2013 [2] and 2017 [1] the authors developed an inversion
formula for D which is exact for smooth, solenoidal vector fields and that relies on
an important formula of Kazantsev and Schuster (c.f. [2]) which has to be seen as
an analogon of Greangeat’s famous formula for the classical cone beam transform
of scalar functions. We recapitulate these results briefly and then describe an ex-
tension that can be used in general convex domains by solving a Dirichlet problem
for the Laplace equation.

One key ingredient is the application of the 3D Radon transform and its splitting
into a normal and tangential part on the sphere S2. So, let for a vector field f on
R3 the Radon transform be given as

[Rf ](p, η) =

∫

η⊥
f(pη + x) dx , p ∈ R , η ∈ S2.

Note that, in contrast to Df , the Radon transform Rf is again a vector field and
not a scalar function. The Radon transform is invertible and the inversion formula
is given as

(2) f = − 1

8π2
R∗ ∂

2

∂p2
Rf

for sufficiently smooth f . The mapping R∗ is the L2-dual operator to R which is
represented by

[R∗g](x) =

∫

S2

g(x · η, η) dη, x ∈ B
3,

and called backprojection. For fixed η ∈ S2 we can split R into a part which is
normal and a part which is tangential to the sphere. In this way we obtain the
transforms

[R(nor)f ](p, η) =
(
η · [Rf ](p, η)

)
η

[R(tan)f ](p, η) = [Rf ](p, η)− [R(nor)f ](p, η)

representing the normal, respectively tangential, part of Rf . With these notations
we are able to formulate the main result of Kazantsev and Schuster from [3].
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Theorem 1. Let f ∈ C∞(B3,R3). Then

−
∫

S2

[D(even)f ](x,Θ)δ′′(η ·Θ)dΘ =(3)

(
divη[R

(tan)f ](p, η)
)∣∣

p=η·x

+ x · ∂
2

∂p2
[R(tan)f ](p, η)∣∣

p=η·x

Here, divη is the surface divergence on S2 and by

[D(even)f ](y,Θ) :=
[Df ](y,Θ) + [Df ](y,−Θ)

2
we denote the even part of Df .

To get injectivity for solenoidal vector fields, i.e. vector fields f satisfying ∇·f =
0, the trajectory Γ has to fulfill a Tuy condition of order 3, which is a generalization
of the classical Tuy condition for scalar cone beam tomography.

Definition 1 (Tuy condition of order 3). A trajectory Γ ⊂ (R3\B3) satisfies a
Tuy condition of order 3, if any plane that passes B3 intersects the trajectory Γ in
at least 3 points that are not located on a line. That means to any p ∈ [−1, 1] and
η ∈ S2 there exist at least 3 parameters si = si(p, η) ∈ I, i = 1, 2, 3 with

y1 · η = y2 · η = y3 · η , yi = yi
(
si(p, η)

)
, i = 1, 2, 3

and y1 − y2 and y2 − y3 are not collinear.

A trajectory Γ that satisfies Tuy’s condition of order 3 is, e.g., given by three
circles of sufficiently large radius r > 1 centered about the origin and that are
pairwise perpendicular to each other. Applying Tuy’s condition and formula (3)
yields, after according subtractions,

(4a) (y1 − y2) ·
∂2

∂p2
[R(tan)f ](s, η) = −

∫

S2

(
g(y1,Θ)− g(y2,Θ)

)
δ′′(η ·Θ)dΘ,

(4b) (y2 − y3) ·
∂2

∂p2
[R(tan)f ](s, η) = −

∫

S2

(
g(y2,Θ)− g(y3,Θ)

)
δ′′(η ·Θ)dΘ,

where g = D(even)f and s = yi · η. Since Γ satisfies Tuy’s condition, the system of
linear equations (4) is uniquely solvable and we get

∂2

∂p2
[R(tan)f ](p, η).

After an application of Radon’s inversion formula (2) we finally obtain R(tan)f .
The strategy for computing the solenoidal part fs of f from the data Rf is sketched
in Figure 1.

Here,

H(div,B3) =
{
f ∈ L2(B3)3 : 〈f ,∇v〉L2(B3) = 0 for all v ∈ C∞0 (B3)

}

denotes the function space consisting of solenoidal vector fields f . The two parts
f1, f2 of the inversion formula are essentially computed by applying Radon’s inver-
sion formula to R(tan)f , R(nor)f , respectively. We remark that the calculation of
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Df⇒R(tan)f = R(tan)PH(div,B3)f⇒R(nor)PH(div,B3)f
+⇒ RPH(div,B3)f

⇓ ⇓ ⇓
f1 f2

+⇒ fs = PH(div,B3)f

Figure 1. Sketch of the inversion procedure

R(nor)f from R(tan)f is only possible, if the vector field f is solenoidal. We refer
to [3] for details.

We generally assume that f ∈ C∞(B3,R3). Solving the system of 2 linear equa-
tions (4) gives

∂2p [R
(tan)f ](p, α)|p=α·x

=
∑

sj∈Sm

φ(sj ,Sm)G(sj , α),

where Sm denotes a triple of points from Tuy’s condition,

G(s, α) = −
∫

S2

[D(even)f ](y(s),Θ)δ′′(Θ · α) dΘ

is calculated from the data and φ(sj ,Sm) is computed by applying Cramer’s rule
for solving (4). The first part f1 can be computed by convolution-backprojection
as follows:

f1(x) = − 1

8π2

∫

S2

∫

I

|α · ẏ(s)|
|x− y(s)|δ(α · β(s, x))Φ(s, α)G(s, α) ds dα

=
1

8π2

∫

I

1

|x− y(s)|

∫ 2π

0

[Φθθ(s, α(θ)) + Φ(s, α(θ))](5)

×
∫ 2π

0

g(y(s), cos γ α⊥(θ) + sin γ β)

cos2 γ
dγ dθds,

where α(θ) = (cos θ, sin θ, 0)⊤, β = (0, 0, 1)⊤ and

Φ(s, α) = |α · ẏ(s)|
∑

m:s∈Sm

φ(s,Sm)nm(x, α).

The weights nm are defined to sum up to 1 and pay tribute to the fact that
there might be more than only one triple Sm satisfying Tuy’s condition which is
connected to the same plane.

The second part f2 can be calculated as

f2(x) = −
1

8π2

∫

S2

(Ψ(η) · e1)e3 + (Ψ(η) · e2)e2
|η − x|+ η · (η − x) dη,

Ψ(η) : =

∫ 1

−1

φ(p)∂2pR
(tan)f(p, η) dp,

where

e1 =
x− (η · x)η
|η × x| , e2 =

η × x
|η × x| , e3 =

η − x
|η − x| ×

η × x
|η × x|
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and φ(p) is given by

φ(p) := (1− p2)
∑

n≥0

φ̌n

‖C(3/2)
n ‖2

C(3/2)
n (p)

with appropriate coefficients φ̌n and Gegenbauer polynomials C
(3/2)
n .

Whereas f1 can efficiently be computed by a convolution-backprojection algo-
rithm, f2 is represented by a costly 3D integral. An alternative and stable compu-
tation of f2 can be performed by solving an appropriate boundary value problem
for the Laplace equation. To see this we collect some properties of f1, f2 that
can be deduced from the specific form of the inversion procedure in Figure 1. For
details we refer to [1].

Lemma 1. We have that

a)

∇× f(x) = ∇× f1(x) , x ∈ B
3.

b)

f2(x) = fs(x) − f1(x) = ∇h(x) , x ∈ B
3

for a harmonic function h.

c) If f ∈ H0(div,B
3), where

H0(div,B
3) = H(div,B3) ∩

{
f ∈ H1(B3) : f · ν = 0 on ∂B

3
}

(with ν(x) being the outer unit normal field to ∂B3), then

[R(nor)f ](s, η) ≡ 0

and hence f2 = 0.

Lemma 1 inspires the following algorithm.

Algorithm for computing f2.

a) Compute f1 by convolution-backprojection as in (5).

b) Compute [Df1](y(s),Θ) by numeric integration.

c) Subtract g −Df1 = D∇h and observe that

(6) [D∇h](y(s),Θ) = h
(
xout(y(s),Θ)

)
− h
(
xin(y(s),Θ)

)

for certain points xin, xout ∈ ∂B3.

d) Get the Dirichlet data h|∂B3
(η) = I△,3ϑ∗ (η) by solving the least squares

problem

ϑ∗ = arg min
ϑ∈Rn×m

∑

k,l

∣∣I△,3ϑ (xk,lout)− I△,3ϑ (xk,lin )− [D∇h](y(sk),Θl)
∣∣2
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Here I△,3ϑ∗ (η) denotes a cubic spline interpolation function on the unit
sphere S2 = ∂B3 which is associated with the partition △ consisting of n
polar angles and m azimuth angles.

e) Solve the Dirichlet problem

∆h(x) = 0, x ∈ B
3

h(η) = I△,3ϑ∗ (η), η ∈ ∂B
3.

f) Compute f2 = ∇h.

Remark 1. The algorithm above can easily be extended to general convex domains
D ⊂ R

3. Since the convolution-backprojection formula (5) for f1 does not depend
on the specific domain, either, we obtain an inversion procedure for D on convex
domains D which is exact for smooth, solenoidal vector fields. Note, that by (6)
the true harmonic function h can only be determined up to a constant, but that
does not affect the algorithm’s outcome, since we are only interested in the gradient
∇h.

Figure 2. Reconstruction of f2 in the plane {x3 = 0} and Dirich-

let data h|∂B3
= I△,3ϑ∗ computed by cubic spline interpolation and

solving a least squares problem.

A first numerical test was performed where the algorithm described above has
been applied to the solenoidal vector field

f(x) = (x2, x1, 0)
⊤, x ∈ B3.
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Direct calculations show that

∂2p [Rf ](p, η) =



−6η2pπ
−6η1pπ

0




and, applying the inversion formula (2),

f2 =
2

5




x2
x1
0


 ,

whence h(x) = 2
5x1x2 + const follows. Figure 2 depicts the reconstructed f2 in the

plane {x3 = 0} as well as the computed Dirichlet data I△,3ϑ∗ (η) for η ∈ ∂B
3.

Questions, that are currently open, are extensions of the inversion procedure to
non-smooth vector fields such as f ∈ D′(B3) and to simple Riemannian manifolds.
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Image reconstruction in Compton scattering tomography (CST)

Gaël Rigaud

(joint work with Bernadette N. Hahn)

Compton scattering imaging (CSI) is an arising imaging concept measuring and
exploiting the scattering radiation as an object of interest is illuminated by an
ionising source. Known as the Compton effect, the phenomena describes the col-
lision/scattering of a photon with an electron leading to a loss of energy of the
photon and a change of trajectory. The photon is measured by a camera in terms
of energy delivering a precious information on the electron density. The mea-
surement consists then in detecting the scattered photons for different detector
positions and different level of energies.
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The key information in order to exploit the first-order scattered radiation is
given by the Compton formula which describes the loss of energy after a scattering
event as

(1) Eω =
E0

1 + E0

511keV (1 + cosω)

where ω stands for the scattering angle, Eω for the energy of the scattered photon
and E0 for the energy of the monochromatic source S. Furthermore, the number
of photons scattered only once at M and detected at D with energy Eω, noted
Nc, satisfies:

(2)
d2Nc
dxdΩc

=
I0r

2
e

4
P (ω)

A0(s,x)Aω(x,d)

‖s− x‖2‖x− d‖2ne(x),

where ne denotes the electron density, Ωc the solid angle, P (ω) the Klein-Nishina
probability and Aω represents the attenuation of the photon beam (following from
the Beer-Lambert law) along the photon travel at energy Eω. Due to the Compton
formula eq. (1), a detected energy Eω in the measured spectrum at D will corre-

spond to scattering events which occured on a point M such that ŜMD = ω. This
relation leads to specific manifolds, see Figure 1: in 2D, one gets two circular-arcs
noted T 2, while in 3D one gets a spindle torus (inside or outside part according to
the scattering angle) noted T 3. Now assuming D to be a point detector (sufficiently
small) and only first-order scattering, the integration over the whole domain in eq.
(2) leads to a generalized Radon transform along the manifold T n of the electron
density ne, i.e.

Nc(s,d, ω) ≈
∫

x∈Tn

A0(s,x)Aω(x,d)

‖s− x‖2‖x− d‖2ne(x)dx.

We can thus write the measured spectrum in 2D/3D CST data as weighted Radon
transforms along circular-arcs/tori T n(ω, v), i.e.

g(ω, v) =

∫

xM∈Tn(ω,v)

w(xM , ω, v)ne(xM )dxM + ǫ =: T nw ne(ω, v) + ǫ with v ∈ V

with v the movement of the source/detector pair (typically S fixed and D moving
along a sphere) and ǫ some measurement noise.

Our work in [1, 2] addresses the problem of inverting the measured spectrum
(modeled by generalized Radon transforms) in order to reconstruct (or at least
extract features of) the electron density.

In 2D, the (unweighted) circular-arc Radon transform is strongly related to the
standard Radon transform R using two given C∞-diffeomorphic mappings M1

andM2 so that

RM2 =M1T 2
1 .

Hence we deduce inverse formula as well as some properties (SVD, Sobolev esti-
mates, ...). The problem becomes harder when taking into account the weight func-
tion (physical phenomena). In this case, we consider a contour extraction strategy
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Figure 1. Geometry involved in 2D (left) and 3D (right) CST.

in 2D as well as in 3D. Our work motivates the use of filtered backprojection-
type reconstruction techniques to address the problem of inverting the generalized
Radon transform T 2

w for n = 2, 3.
In particular, in 3D, we extend the results derived by Beylkin in [3] to a different

class of isosurfaces. We define a manifold M characterized by a function φ via

x ∈M(p, θ) ⇐⇒ φ(x, θ) = p, (p, θ) ∈ Π×Θ

with dim(Π) = 1 and dim(Θ) = 2 where its characteristic function φ satisifies the
following conditions:

(1) φ(x, θ) is a real-valued C∞ function on Ω×Θ.

(2)
{

∇xφ(x,θ)
‖∇xφ(x,θ)‖

, θ ∈ Θ
}
= S2.

(3) The function h(x, θ) in Ω×Θ defined as

h(x, θ) = |det (∇xφ(x, θ), ∂θ1∇xφ(x, θ), ∂θ2∇xφ(x, θ))|

is nowhere 0.
(4) The zero sets of {φ(x, ·) − φ(y, ·)}, after the change of variable induced

by condition (2), is a smooth closed curve on the unit sphere around the
vector (x− y) normalized.

Defining the generalized 3D Radon transform along φ,

Rcf(p, θ) =
∫

Ω

c(x, p, θ) f(x) δ(p− φ(x, θ))dx, (p, θ) ∈ Π×Θ,

and defining the following backprojection operator

R∗
bg(y) =

∫

Θ

b(y, θ) g(φ(y, θ), θ) h(y, θ)dθ for y ∈ Ω,
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then the reconstruction formula is given by

(3) Kf :=
−1
8π2
R∗
b∂

2
pg = f + Ef, Rcf = g

with b(y, θ) = (c(y, φ(y, θ), θ))−1 and E a continuous integral operator from L2(Ω)
to L2(Ω) with a smooth (C∞-) kernel.

Assuming that the sought-for function is described by its contours (jumps),
the proposed reconstruction formula eq. (3) preserves the contours (position and
magnitude) of f . In this case, eq. (3) delivers an ”inversion formula” for piecewise
constant functions.

Simulation results for various configurations on synthetic 2D/3D CST data
prove the interest of the approach to solve partially in an efficient way the inverse
problem associated to Compton scattering.
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Real time reconstruction for 4D magnetic particle imaging

Christina Brandt

(joint work with Andreas Hauptmann)

Magnetic particle imaging (MPI) is a new imaging modality which can capture fast
dynamic processes in 3D volumes, based on the non-linear response of the mag-
netic particles to an applied magnetic field [1,2]. Possible medical applications are
vascular imaging, device tracking, stem cell imaging and magnetic hyperthermia,
see [3] for an overview. However, even in the case of time-lapse data, the standard
reconstruction approach consists in static regularization methods such as classi-
cal Tikhonov regularization applied to each single time frame [3]. We propose
a spatio-temporal regularization which can be efficiently solved using a low rank
approximation of the forward operator. We illustrate our approach with real data
of a potential application, i.e. real data of a catheter tracking experiment [4, 5].
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Bayesian inversion and uncertainty quantification for X-ray transforms

Richard Nickl

(joint work with Francois Monard and Gabriel P. Paternain)

We consider the statistical inverse problem of recovering a function f : M → R,
where M is a smooth compact Riemannian manifold with boundary, from mea-
surements of general X-ray transforms Ia(f) of f , corrupted by additive Gaussian
noise. For M equal to the unit disk with ‘flat’ geometry and a = 0 this reduces
to the standard Radon transform, but our general setting allows for anisotropic
media M and can further model local ‘attenuation’ effects – both highly relevant
in practical imaging problems such as SPECT tomography. We study a nonpara-
metric Bayesian inference method based on standard Gaussian process priors for
f . The posterior reconstruction of f corresponds to a Tikhonov regulariser with
a reproducing kernel Hilbert space norm penalty that does not require the calcu-
lation of the singular value decomposition of the forward operator Ia. We prove
Bernstein-von Mises theorems for a large family of one-dimensional linear func-
tionals of f , and they entail that posterior-based inferences such as credible sets
are valid and optimal from a frequentist point of view. In particular we derive the
asymptotic distribution of smooth linear functionals of the Tikhonov regulariser,
which attains the semi-parametric information lower bound. The proofs rely on
an invertibility result for the ‘Fisher information’ operator I∗aIa between suitable
function spaces, a result of independent interest that relies on techniques from
microlocal analysis. We illustrate the performance of the proposed method via
simulations in various settings.

The precise results can be found in the paper [1]. For background on infinite-
dimensional statistical models see [2].
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Regularization by architecture: A deep prior approach for inverse
problems

Peter Maass

(joint work with Daniel Otero Baguer, Sören Dittmer and Tobias Kluth)

1. The deep prior approach

Deep image priors (DIP) have been recently introduced as a machine learning
approach for some tasks in image processing [1,5]. Usually, such machine learning
approaches utilize large sets of training data, hence, it was somewhat surprising
that deep image priors are based on a single data point yδ. The task of DIP is to
train a network ϕW : X → X with parameters W by minimizing the simple loss
function

(1) ‖AϕW (z)− yδ‖2,
for a fixed z. We are interested in the analysis of DIP approaches and in particular
in proving some convergence properties for iteratively minimizing (1). We will
do so in the context of inverse problems, which are modeled by a non-linear or
linear operator A : X → Y between Hilbert spaces X and Y . Contrary to the
applications in image processing mentioned above, we assume, that the range of A
is not closed, which implies, that the inversion or any generalized type of inversion
is ill-posed [2–4]. Typical examples are compact linear operators or parameter-to-
state mappings for partial differential equations.

2. Analytic deep prior

In this section we consider linear operators A and aim at rephrasing DIP, i.e. the
minimization of (1) with respect to W , as an approach for learning optimized
Tikhonov functionals. This change of view, i.e. regarding deep inverse priors as
an optimization of functionals rather then networks, opens the door for analytic
investigations.

Definition 2. Consider a fully connected neural network ϕW : X → X with L
layers, whose activation function is a proximal mapping ProxαλR with respect to
a convex functional R : X → IR, i.e.

(2) ϕW (z) = xL,

where

(3) xk+1 = Prox
αλR

(Wxk + b)

and x0 = z. Further assume thatW ∈ L(X,X) can be decomposed asW = I−B∗B
with a bounded operator B : X → Y and that the bias satisfies b = λB∗yδ. We
define the associated Tikhonov functional JB(x) = 1

2‖Bx − yδ‖2 + αR(x) and
assume that a unique minimizer x(B) = argmin JB(x) exists. We call this setting
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an analytic deep prior if W , resp. B, is trained from a single data point yδ by
gradient descent applied to

(4) min
B
‖Ax(B) − yδ‖2.

We examine the training process for computing W, resp. B, in the setting
of such analytic deep prior models. If we assume that the output ϕW (z) of the
network converges to x(B), this can be either regarded as training a neural network
or as determining an optimized Tikhonov functional.

For some specific examples, such as if we assume the unrealistic case that x+ =
uk, where uk is a singular function of A (A having a singular value decomposition
{(ui, σi, vi)}i), we can analytically compute the update steps for B

(5) Bℓ+1 = Bℓ − cℓvku∗k
We further assume, that the measurement noise in yδ is in the direction of this
singular function, i.e. yδ = (σk + δ)vk.

A similar example is illustrated in the following section but considering arbitrary
noise instead. We can see that the final result for the matrix B contains some
patterns that match the update from Equation 5.

3. Numerical experiments

3.1. Academic example. We now apply the analytic deep image prior to solve
a linear inverse problem posed via the integral operator and the proximal operator
induced by R(x) = 1

2‖x‖2. We choose x† ∈ Rn to be one of its singular vectors u

and set the noisy data yδ = Anx
† + τ with τ ∼ N (0, σ21n) and σ equals 10% of

the largest coefficient of y†.
We aim to recover x† from yδ considering the setting established in Def. 2. For

most of the choices of α, except if it is too small which causes computations to be
highly unstable, the training of B converges to a matrix Bopt, such that x(Bopt)
has a smaller true error than the standard Tikhonov reconstruction xT , see Figure
3.1. This is due to the fact that the Tikhonov approach tends to over smooth the
reconstructions. The analytic deep prior approach seems in principle to behave
differently and shows some promising results.

3.2. Magnetic particle imaging. In this subsection we apply the DIP network
(U-Net) described by [1] for solving the reconstruction problem in magnetic particle
imaging (MPI) [6–8] for a measured linear operator and two different scanned
phantoms. Table 1 shows a comparison with reconstructions via Kaczmarz with
ℓ2 regularization and via proximal gradient descent for ℓ1 regularization. Each of
the two phantoms used consisted of two parallel lines of different length. On one
phantom 2mm apart and on the other 4mm apart.

We would like to point out that of these methods only the DIP is capable of
correctly separating the two lines in the case of the 2mm phantom.
For further information and more plots see our arXiv preprint [9].
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Figure 1. Reconstructions for fixed α. The broken line in the
second plot indicates the true error of the standard Tikhonov solu-
tion xT . In the third plot one can check that B indeed converges
to some matrix Bopt, which is shown in the last plot. The net-
works were trained with the standard gradient descent method
and a learning rate of 0.0011 over 6000 training iterations.

Table 1. Reconstructions for “4mm” and “2mm” phantom. Pic-
tures taken at University Medical Center Hamburg-Eppendorf by
T. Kluth.

Phantom Kaczmarz with ℓ2 ℓ1 DIP

The authors would like to thank P. Szwargulski and T. Knopp from the Uni-
versity Medical Center Hamburg-Eppendorf for their support in conducting the
experiments.
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Electrical impedance tomography and virtual X-rays

Samuli Siltanen

Electrical impedance tomography (EIT) is a non-invasive imaging method. EIT is
based on feeding electric currents into a physical body through electrodes placed
on the surface of the body and measuring the resulting voltage potentials at the
electrodes. The aim is to recover the electric conductivity distribution inside the
body; this in turn is useful information in medical imaging and nondestructive
testing.

The mathematical model of EIT is the inverse conductivity problem introduced
by Alberto Calderón in [1]. More precisely, consider the elliptic equation

(1) ∇ · σ∇u = 0 in Ω,

where u(x) represents the electric potential and 0 < c ≤ σ(x) ≤ C represents
the conductivity. In theoretical work it is more convenient to consider voltage-
to-current measurements instead of current-to-voltage Applying a known voltage
on the boundary of the region Ω ⊂ R2 corresponds to the Dirichlet boundary
condition

(2) u = f on ∂Ω,

and knowledge of the resulting current density distribution gives rise to the Neu-
mann boundary condition

(3) σ
∂u

∂ν
= g on ∂Ω.

Thus, the physical interpretation of the Dirichlet-to-Neumann map Λσ is knowl-
edge of the resulting current distributions on the boundary of Ω corresponding to
all possible voltage distributions on the boundary.

In [2] we showed that using complex geometrical optics (CGO) solutions and
a novel Fourier transform technique one can extract from Λσ information about
the wavefront set of σ. The information can approximately be interpreted as on
one-dimensional X-ray projection image of the singularities of σ.

Measurement noise prevents the computation of high-resolution tomographic
profiles of σ in practice. The Fourier transform involved in the construction needs
to be so heavily windowed that the resulting profiles are blurred beyond simple
interpretation. However, we believe that machine learning can be applied for
further processing and application of EIT tom, for example, diagnosing stroke.
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In our future research we will study the proposed CGO solution technique as a
nonlinear feature extraction step before machine learning. The following benefits
are expected:

• Smaller network is enough for good reconstruction
• Less training data is needed for learning
• Better interpretability (less black-box)
• Robustness against random or hostile noise
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Dynamic reconstruction in tomographic microscopy

Rajmund Mokso

(joint work with Viktor Nikitin, Marcus Carlsson and Fredrik Andersson )

X-ray tomographic microscopy may be performed with conventional X-ray sources
or using synchrotron radiation. In the first case the cone-beam geometry is con-
sidered for the reconstruction algorithms, while in the latter we are working in
parallel beam geometry. Another specificity of synchrotron X-ray imaging is the
high speed. Individual angular projections are acquired on a ms time-frame and
the entire tomographic dataset in a fraction of a second. This enables time resolved
studies of dynamic processes at the microsecond spatial and sub-second temporal
resolution. The data production rate is large and consequently the tomographic
reconstruction must be fast to keep up. Despite this fast acquisition In dynamic
tomography the sample is often evolving quicker, giving rise to motion artefact.
We developed a new method for handling changes in the structure of the sample
during the acquisition process. The method is based on decomposition into basis
functions in the time domain.

Three classes of methods were developed earlier. The first class of methods
is based on estimating a priori information about the actual motion [1–3] . The
second class of methods for suppressing motion artifacts takes into account reg-
ularization in a non-local fashion. The methods analyze the similarity between
corresponding patches at different time steps, even if the patches have moved to
another location [4]. The third class of methods for four-dimensional tomographic
reconstruction is built upon the concept of compressed sensing, which employs
sparsity promoting algorithms [5, 6] . In this work, we use the concept of com-
pressed sensing in the way that data in the temporal direction is represented by a
linear combination of appropriate basis functions, and the L1 norm minimization
is performed for the gradient in both spatial and temporal variables. The choice
of basis functions depends on the motion structure inside the object and can be
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determined according to measured data. For solving the obtained non-smooth
regularization problem, we adopt the primal-dual Chambolle-Pock algorithm [7].
Our motivation were mainly time resolved tomographic datasets acquired with
fast synchrotron based X-ray tomographic microscopy. In these datasets part of
the sample is unstable during the acquisition due to the dynamic nature of the
imaged processes, such as rheology of liquid foams.

1. Time domain decomposition

Let f(x, y, z, t) be a function which represents a three-dimensional object dynam-
ically changing in time t. The object is rotated continuously and projection data
is measured for angles θ and for the radial direction s. The projection operator
is then described by integration over the lines through the object state at time t,
which is connected to the rotation angle θ. We assume a linear connection between
the angle θ and the time t, i.e. θ = αt, where the parameter α in practice is related
to the speed of rotation and the detector exposure time. The projection operator
Rα : R3 × [0, T ]→ R2 × S 1 where S 1 denotes the unit circle, is defined by

(1)

Rαf(s, z, θ) =∫∫∫
f(x, y, z, t)δ(x cos θ+y sin θ−s)δ(θ − αt)dx dy dt.

The corresponding adjoint operator R∗
α : R2×S 1 → R3× [0, T ] is defined as follows

(2)

R∗
αg(x, y,z, t) =∫∫

g(θ, s, z)δ(x cos θ+y sin θ−s)δ(θ − αt)ds dθ.

The inverse problem of recovering the function f from the measurements g =
Rαf has plenty of possible solutions. The non-uniqueness is caused by the fact
that at each particular time frame t there exist only one projection related to the
angle θ = αt, which is surely not enough to recover a unique object structure.
In this case, regularization can be used to introduce assumptions on the solution.
The traditional approach to finding a solution fo is by minimising the data fidelity
term as

(3) fo = argmin
f

{
1

2
‖Rαf − g‖22

}
.

This term is commonly used in static tomography where the object does not change
during 180 degrees rotation. Since the cost function is quadratic, one can use
gradient-based methods such as the standard least-squares iteration scheme, or
the conjugate gradient least-squares scheme with a faster rate of convergence. It
is also common to use tomography specific methods. Indeed, recovering the object
structure from a limited number of the measured projection angles can be done by
algebraic reconstruction methods which does not operate with data along the time
axis and, consequently, could produce a big number of possible solutions for (3).
To reduce the number of possible solutions we introduce an additional assumption
on the object movement. Let us assume that the motion at each concrete space
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sample (x, y, z) can be approximated by a linear combination of a small number

of basis functions {ϕj(t)}M−1
j=0 , i.e.,

(4) f(x, y, z, t) ≈
M−1∑

j=0

fj(x, y, z)ϕj(t),

where f = {fj(x, y, z)}M−1
j=0 are decomposition coefficients. In this case an ap-

proximation to f with respect to the t-variable, for each fixed x, y, z, lies in a
(low-dimensional) subspace W = span{ϕ0(t), . . . , ϕM−1(t)}. The choice of basis
functions ϕj for better approximation depends on the motion structure. As a
straightforward example, one can choose the Fourier basis with a low number of
coefficients to represent slow motions, and a high number of coefficients to rep-
resent rapid motions. Other possible functions for representation include Haar
wavelets, Heaviside step functions. We first applied the method to liquid foam
rheology [8], the next step is optimise the method (the basis functions) to recon-
struct tomographic images of periodically changing samples such as the dynamics
of lungs.

References

[1] Van Nieuwenhove, Vincent and De Beenhouwer, Jan and Vlassenbroeck, Jelle and Moesen,
Maarten and Brennan, Mark and Sijbers, Jan, Registration based SIRT: A reconstruction
algorithm for 4D CT, Online e-journal of nondestructive testing (2017)

[2] Kabus, Sven and Klinder, Tobias and Murphy, Keelin and van Ginneken, Bram and Lorenz,
Cristian and Pluim, Josien P, Evaluation of 4D-CT lung registration, International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention (2009), 747–754.

[3] Hahn, Bernadette, Efficient algorithms for linear dynamic inverse problems with known
motion, Inverse Problems 30 (2014), 035008

[4] Kazantsev, Daniil and Thompson, William M. and Lionheart, William R. and Van Eynd-
hoven, Geert and Kaestner, Anders P. and Dobson, Katherine J. and Withers, Philip J. and
Lee, Peter D, Inverse problems and imaging, 9 (2015), 447–467

[5] Ritschl, Ludwig and Sawall, Stefan and Knaup, Michael and Hess, Andreas and Kachel-
rieß, Marc, Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-
temporal sparsity prior, Physics in Medicine & Biology 57 (2012), 1517

[6] Wu, Haibo and Maier, Andreas and Fahrig, Rebecca and Hornegger, Joachim, Spatial-

temporal total variation regularization (STTVR) for 4D-CT reconstruction, Medical Imag-
ing 2012: Physics of Medical Imaging 8313, (2012), 83133J

[7] Chambolle, Antonin and Pock, Thoma, A first-order primal-dual algorithm for convex prob-
lems with applications to imaging, Journal of mathematical imaging and vision 40 (2011),
120–145

[8] Nikitin, Viktor and Carlsson, Marcus and Andersson, Fredrik and Mokso, Rajmund, Four-
dimensional tomographic reconstruction by time domain decomposition, IEEE Transaction
on Computational Imaging 1 (2019)



Tomographic Inverse Problems: Theory and Applications 277

Image reconstruction by deep learning and splitting

Xiaoqun Zhang

(joint work with Jiulong Liu and Tao Kuang)

Image reconstruction from downsampled and corrupted measurements, such as fast
MRI [1] and CT reconstruction with incomplete data, is mathematically ill-posed
inverse problem. Although sparse regularization approaches are largely applied in
these kind of problems, it remains challenging to obtain images with high quality.
Motivated by recent achievements of deep learning networks for imaging inverse
problems, we aim to propose a method utilize neural network for challenging image
reconstruction problems. We propose to train a network to learn from intermediate
images of classical reconstruction procedure, i.e. the intermediate images that
satisfy the data consistence will be fed into some chosen denoising networks or
generative networks for removing artifact in each iterative stage. The proposed
approach involves only techniques of conventional image reconstruction and usual
image representation/denoising deep network learning. Extensive experiments on
MRI reconstruction applied with both stack auto-encoder networks and generative
adversarial nets demonstrate the efficiency and accuracy of the proposed method
compared with other image reconstruction algorithms.

Specifically, we denote the input dataset for a network x = {xk}mk=1 with the
corresponding ground truth x̃ = {x̃k}mk=1 where m is the number of samples. In
image reconstruction inverse problems, we denote the corresponding measurements
y = {yk}mk=1 for yk = Axk where A is a known forward operator. Our idea is to
solve the following problem with a deep learning regularization

min
x,θ

LH(x, θ) + J(x),

max
θd

min
θg ,x

LG(x, θg, θd) + J(x)

where

J(x) = η(

m∑

i=1

‖Axi − yi‖22 + µ‖Dxi‖1)

and LH and LG are the cost function for a denoising network with parameters set
θ; and GAN with parameters sets θg, θd respectively.

The above model is solved based on ADMM method for variable splitting:




zk+1 = argmin
z
J(z) + ρ

2‖xk − z + bk‖22



θk+1 = argmin
θ
LH(x

k, θ), (AutoEncoder);

(θk+1
g , θk+1

d ) = argmax
θd

min
θg

LG(x
k, θg, θd), (GAN)

xk+1 = argmin
x
LH(x, θ

k+1) + ρ
2‖x− zk+1 + bk‖22

bk+1 = bk + (xk+1 − zk+1)

We perform the experiments on MRI reconstruction from downsampled mea-
surements. The MRI data are generated by partial Fourier transform of different
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sampling patterns and Gaussian noise corruption. In our experiments, the MRI im-
age dataset is from ADNI (Alzheimer’s Disease Neuroimaging Initiative) of which
300 slices of size 192 × 160 are used for training and 21 slices are used for infer-
ring. In order to demonstrate the flexibility of our approach, we implement three
kinds of networks for MRI reconstruction, i.e. SCAE [2], SNLAE [3] and GAN [4].
Figure 1 presents the results with a 1D random sampling pattern of rate 25%.
We observe that in the noise-free case, the reconstructed images by our proposed
methods including SCAE, SNLAE and GAN, and by ADMM-net [5] have better
spatial resolution and achieve higher PSNR and SSIM. In the case of noise level
10% and with measurements of very low sampling rate, our method with the three
networks achieve better performance compared to ADMM-net.

Figure 1. MRI reconstruction results. Sampling pattern and
rate: 1D random with 25%; The first row: noise free; The second
row: 10% noise.

The proposed model is also tested on a low dose CT reconstruction problem. It
is demonstrated in Figure 2 that the outer loop iteration reconstruction from 60
noisy (1%) projections of one slice of 192 ∗ 192 trend to be of better quality and
higher PSNR along the iterative regularization.

As a conclusion, we developed a variational image reconstruction method which
integrated image representation network and classical iterative image reconstruc-
tion. The proposed model exhibits flexibility of choosing classical reconstruction
method and powerful deep representation network. The application on MRI image
reconstruction showed the effectiveness of the proposed method and it is also clear
that the proposed model can be easily extended to other applications.

The main results of this report was published in [6].
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Figure 2.
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Electron Tomography

Holger Kohr

Cryogenic Electron Tomography (cryo-ET) is currently the only imaging technology
that yields sub-nanometer resolution 3D images of unstructured biological samples
(cells or subcellular structures) in their natural environments. Projection images
are acquired by illuminating a ∼100 nm thick sample with a parallel electron beam,
using optics to magnify the scattered wavefield, and record incident electrons on a
flat detector. Due to the relatively low electron flux, the imaging properties of the
microscope can be described in terms of the quantum mechanical interference of
a single electron with the sample and with itself. In addition, electron sources in
modern microscopes have very good monochromaticity: at an acceleration voltage
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of 300 kV, the energy spread of electrons is usually less than 0.5 eV. These two
properties allow to employ the stationary Schrödinger equation [1]

(1)

(
− ~2

2me
∆+ e V (x)

)
ψe(x) = Ee ψe(x), x = (x, y, z)

to describe the interaction of an electron with energy Ee interacting with the
electrostatic potential V describing the specimen.

The trajectory of electrons in a microscope only deviates very little from the
vertical axis. This enables a simplification to (1) known as small angle or paraxial
approximation [1]: The wavefield ψe of the electron can be written as

ψe(x) = ψ(x) eikz , k =

√
2meEe

~
,

with a function ψ that varies slowly in Z direction in the sense that |∂2ψ/∂z2| ≪
|k ∂ψ/∂z|. This approximation simplifies (1) to

(2)
∂

∂z
ψ =

(
i

2k
∆′ + iσV

)
ψ, ∆′ =

∂2

∂x2
+

∂2

∂y2
, σ =

mee

k~2
.

To find a closed form expression for the wavefield at the exit plane of the
specimen (called exit wave), it is a common assumption that the propagation
term i/(2k)∆′ψ can be neglected compared to the interaction term iσV ψ. Under
this so-called projection assumption, (2) can be integrated, yielding

(3) ψ(x′, z) = exp

(
iσ

∫ z

−∞

V (x′, t) dt

)
.

In other words, under the projection assumption, the total phase shift to the
electron wave caused by the specimen is proportional to the projected potential

(4) PV (x′) =

∫

R

V (x′, t) dt

described by the ray transform operator P .
Finally, for biological samples it is common to assume that this phase shift is

small compared to 2π, such that the exit wave can be approximated as

(5) ψ(x′, z) = 1 + iσ

∫ z

−∞

V (x′, t) dt.

also known as weak phase object approximation. For an analysis of the ranges of
validity of the various approximations, see [1].

After interacting with the specimen, the electron wave propagates through the
magnifying optics and hits the detector, whose pixels record electron events to
form an image of the specimen. The quantum mechanical probability density of
an electron hitting the detector at a location x′ is given by the intensity |ψ(x′, zd)|2
of the wave at the detector plane z = zd. Using all mentioned approximations,
together with free-space propagation of the electron wave and the phase shift
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Figure 1. Plot of a typical CTF. Image from Wikipedia article
“Contrast Transfer Function”. License: CC-BY-SA 4.0.

introduced by the lenses, one can identify the term that depends linearly on the
projected potential as a convolution

(6) p(x′) = |ψ(x′, zd)|2 − 1 ≈
[
PSF ∗ PV

]
(x′),

with a 2D point spread function whose Fourier transform CTF(ξ′) = P̂SF(ξ′) is
known as contrast transfer function. The CTF is a radial function of the form

(7) CTF(ξ′) = sin

(
−∆f

2k
|ξ′|2 − χ(ξ′)

)
,

where ∆f is the defocus, i.e., the amount of underfocus of the objective lens, and
χ is a phase function describing higher-order aberrations [3]. A typical CTF is
depicted in Figure 1.

Projection images are finally formed by having many electrons interact with
the sample and impinge on the detector, thereby generating many realizations of
a random variable distributed according to the probability density p in (6). In
cryo-ET, the number of electrons per pixel and projection is typically in the range
20 ∼ 40, resulting in Poisson noise and very low SNR. Finally, tomographic views
are gained by rotating the sample around a fixed axis,

(8) p(α,x′) =
[
PSF ∗ PVα(·)

]
(x′),

where Vα is the electrostatic potential of the specimen rotated by an angle α
around the positive Y axis.

A limitation of the CTF model (7) is that it assumes the specimen to be at
defocus ∆f everywhere and thus infinitesimally thin. For thick (more than ∼200
nm) or tilted specimens, this has been recognized as a significant limitation, and
various adaptions to the CTF model have been suggested to accommodate for
this effect. One of the most recent propositions is that of a 3D CTF [3]: by
switching the order of projection and 2D convolution in (6), one can introduce
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a z dependency in the CTF through a linear offset to the nominal defocus ∆f ,
resulting in

(9) CTF3D(ξ
′, z) = sin

(
−∆f + z

2k
|ξ′|2 − χ(ξ′)

)
.

With this 3D CTF model, one can derive an analogon to the Fourier slice theorem
by taking the Fourier transform of (6). For the 2D CTF model, the Fourier slice
theorem states that the Fourier transform of a projection image is equal to a 2D
slice of the rotated 3D Fourier transform of the potential V at ξz = 0, multiplied
with the CTF. In contrast, the 3D CTF model yields [3]

(10) p̂(ξ′) =
i

2
V̂

(
ξ′,−|ξ

′|2
2k

)
e−

i∆f
2k |ξ′|2−χ(ξ′) − i

2
V̂

(
ξ′,
|ξ′|2
2k

)
e

i∆f
2k |ξ′|2+χ(ξ′).

This relation is closely connected to the corresponding theorem for the Born ap-
proximation [4], where the Fourier transform is evaluated on half spheres instead
of parabolas. Developing reconstruction methods based on the forward model (10)
has the potential to overcome resolution loss due to varying defocus for thick or
tilted specimens.
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Lamé Parameter Estimation from Static Displacement Field
Measurements

Ekaterina Sherina

(joint work with Wolfgang Drexler, Simon Hubmer, Lisa Krainz, Andreas
Neubauer, Otmar Scherzer and Julian Schmid)

1. Introduction

Frequently, one is interested in quantifying elastic material parameters of tissues
inside an object, which is especially important in Medicine. For instance, palpa-
tion is used by medical doctors to detect tissues of abnormal stiffnesses. However,
palpation is not quantitative, and moreover, malignant and healthy tissues can
feel quite similar. To detect such differences, one uses quantitative elastography.
Elastography can be performed on top of any volumetric imaging technique by
recording successive images and evaluating the displacement data between the
images. Afterwards, it is possible to quantitatively reconstruct the elastic mate-
rial parameters from the obtained internal displacement data. For an extended
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overview on parameter identification and different reconstruction methods in quan-
titative elastography, see, for example, [1,2] and the references in [3]. In this work,
we consider the inverse problem of quantitative elastography with internal mea-
surements consisting in estimating the spatially varying Lamé parameters from a
single static displacement field measurement induced by external forces.

2. Mathematical Model

We consider the model of linearized elasticity, which was chosen in accordance
with the physical experiments performed at the Medical University of Vienna (Lisa
Krainz, Julian Schmid, Wolfgang Drexler) and which is a valid model for small
displacements applied to a sample. Given body forces f , applied displacement
gD, surface traction gT and Lamé parameters λ and µ, the forward problem of
linearized elasticity with displacement-traction boundary conditions consists in
finding the internal displacement u satisfying

− div (σ(u)) = f , in Ω ,

u |ΓD
= gD ,

σ(u)~n |ΓT
= gT ,

(1)

where ~n is an outward unit normal vector of ∂Ω and the stress tensor σ defining
the stress-strain relation in Ω is defined by σ(u) := λ div (u) I + 2µ E (u), where
E (u) := 1

2

(
∇u+∇uT

)
is called the strain tensor and I is the identity matrix.

There exists a unique weak solution of (1). For details, see [3].

3. The Inverse Problem

Let the assumptions from [3] hold and let uδ ∈ L2(Ω)
N

be a measurement of the
true displacement field u satisfying

∥∥u− uδ
∥∥
L2(Ω)

≤ δ, where δ ≥ 0 is the noise

level. Given the model of linearized elasticity (1) in the weak form, the problem
is to find the Lamé parameters λ, µ. We introduce the parameter-to-solution map

F : D(F ) :=
{
(λ, µ) ∈ L∞(Ω)

2 |λ ≥ 0 , µ ≥ µ > 0
}
→ L2(Ω)

N
,

(λ, µ) 7→ u(λ, µ) .
(2)

where u(λ, µ) is the solution of the variational problem, and consider the classical
inverse problems theory for solving the nonlinear operator equation F (λ, µ) = u.
We investigate the Landweber iteration both analytically and numerically. First,
we study the forward model operator F , and derive the Frèchet derivative and
its adjoint, which are needed to implement the Landweber iteration. Then, we
verify the (strong) nonlinearity condition from [4] in an infinite dimensional setting,
which is the basic assumption guaranteeing convergence of Landweber iteration
and other iterative regularization methods for solving inverse problems. For the
extended analysis and definitions we refer to [3].
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4. Experimental Data

In the scope of this work, we are interested in estimating the elastic parameters of
prepared silicone or agarose gel samples using quantitative elastography, based on
dual imaging with Optical Coherence (OCT) and Photoacoustic (PAT) Tomogra-
phy to investigate the potential of this combined modality.

Workflow. We take the two-step approach in solving the problem from experi-
mental data, which consists in calculating the displacement field from successively
taken images of the sample using a OCT/PAT imaging system and estimating
the Lamé parameters from the derived displacement data. First, a number of
samples are prepared from silicone or agarose gel. The samples are different in
structure: uniform or layered, with or without inclusion, such that those parts
differ in the values of the elastic moduli. Furthermore, all samples are made ro-
tationally symmetric (cylindrical with spherical or cylindrical inclusions). In our
experiments, the background substance contains highly light reflective Titanium
dioxide particles, and the inclusion is colored by light absorbing Indian ink. The
complementary nature of OCT and PAT allows to capture distinct material fea-
tures. Second, each sample is imaged using a OCT/PAT system before and after
compression by a micrometer screw gauge. Then, each 3D dataset is averaged over
a number of slices, relying on the axisymmetry of the sample, and a 2D image is
obtained. The displacement is calculated from two 2D images using a suitable
optical flow algorithm based on the movement of the particles with OCT and of
the boundaries with PAT inside the sample.

Displacement Field. We made a proof of principle to verify that the model
equations indeed describe the experiments. For a uniform sample with known
elastic parameters, a sparse displacement field was manually estimated from the
brightest large particles on two images from the experiment, and compared to a
displacement found by solving the forward problem (1) with the same parameters.
A zoomed-in comparison of the two displacement fields is depicted in Figure 1.
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Figure 1. Images of the sample before (left) and after (center)
compression. Overlay of displacement fields (right).

5. Results

Finally, we present numerical reconstructions of elastic parameters from simulated
and experimental data. Examples of reconstructing Lamé parameters from a single
noisy displacement field simulated from the forward problem can be found in [3].
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One example of reconstructed Lamé parameters from experimental data, obtained
from a sample with one spherical inclusion, is depicted in Figure 2.

Figure 2. Experimental displacement field (m) and recon-
structed Lamé parameters λ, µ (kPa).
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Learned image reconstruction for high-resolution tomographic imaging

Andreas Hauptmann

(joint work with Jonas Adler, Simon Arridge, Paul Beard, Marta Betcke, Ben
Cox, Nam Huynh, Felix Lucka, Vivek Muthurangu and Jennifer Steeden)

Mathematically, the task of reconstructing a tomographic image frommeasurement
data is formulated as an inverse problem: given the unknown (image) of interest
ftrue ∈ X , the measured data g ∈ Y , and a forward operator A : X → Y , then the
forward problem is modelled by the simple equation

g = A(ftrue) + δg,

where δg ∈ Y denotes some noise in the observation. The inverse problem aims to
recover ftrue from the measurement of g. This is typically an ill-posed task which is
conventionally approached through the design of a reconstruction operator based
on knowledge of the forward and adjoint mappings and an explicit regularisa-

tion. However, in a learning based approach, the idea is to find a mapping F†
θ

parametrized by θ that is simple to design and faster to apply.
In this work we combine conventional and learning based frameworks, and dif-

ferentiate between two fundamentally different approaches:
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i.) Model enforced: Direct reconstruction followed by learning based post-
processing. In this approach image reconstruction is carried out using a
simple/fast inversion step, and post-processing is used to remove artefacts
and noise. In this case we are given a reconstruction operator A† : Y → X ,

then our inverse mapping is given by F†
θ = Gθ ◦ A† where Gθ : X → X is

typically a sophisticated convolutional neural network (CNN).
ii.) Model based learning and reconstruction: In this approach the forward and

adjoint operators of the imaging problem are used directly in the inverse
algorithm. Here we learn an iterative update fk+1 = Gθ(∇d(g,A(fk)), fk),
where d(g,A(fk)) denotes the data-fit and Gθ : X ×X → X is typically a
simple CNN.

In the following we present some examples for both approaches, with a specific
focus on application to experimental and clinical data.

1. Spatio-temporal reconstructions in magnetic resonance imaging

In MRI one obtains the measurement g as the Fourier transform of f . Ideally, a
stable reconstruction can be obtained by inverse Fourier transformation of fully
sampled k-space data, but in cardiac imaging a full k-space sampling can only
be obtained during cardiac gated breath-hold and especially sick and very young
patients find breath-holding difficult. Thus, real-time sequences with highly un-
dersampled data are required to achieve sufficient acceleration factors (13× in our
application).

As shown in [1] a convolutional neural network is well suited for inverse prob-
lems, such as MRI, where the normal operatorA∗A is of convolutional type. In our
study [2], we extend this approach to a 3D (2D plus time) setting and investigate
both reconstruction quality, and clinical relevance of the reconstruction.

The specific CNN was trained using synthetic training data created from previ-
ously obtained spatio-temporal reconstructions acquired under breath-hold. The
trained CNN is then used to reconstruct prospectively acquired real-time, tiny
Golden Angle (tGA) radially sampled free breathing data from 10 new patients.
Clinical relevance was determined by calculating ventricular volumes from the re-
constructed data. Results show that clinical measures of reconstructions from real-
time data are not statistically significantly different from gold-standard, cardiac
gated, breath-hold techniques and in particular outperform established compressed
sensing approaches.

In this setting, the model-enforced approach (i) of reconstruction and post-
processing works particularly well due to the additional temporal dimension. The
sampling pattern has been chosen, such that aliasing artefacts are incoherent in
time and hence appear as noise-like structures over temporal slices. Consequently,
the network only needs to learn how to combine the information from each tem-
poral slice and denoise by interpolation in time. In contrast to pure denoising
in spatial dimension, where structures need to be recovered from prior informa-
tion obtained from the training data and hence could lead to a stronger bias in
reconstruction.
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Inverse FT
Real-time

De-aliased by CNN
Breath-hold
Reference recon.

Figure 1. Reconstructions of prospectively acquired real-time
measurements in comparison to breath-hold reference of the same
patient (right)

2. Learned iterative reconstruction for limited-view

photoacoustic tomography

As discussed in the previous example direct reconstruction and post-processing can
perform sufficiently well, but is ultimately limited by the information contained
in the initial reconstruction. This limitation will have a considerable influence
in limited-view geometries, without temporal information. Motivated by [3] we
investigated in [4] a possibility to learn an iterative reconstruction algorithm for
3D high resolution limited-view photoacoustic tomography, following the model-
based approach (ii) of learning an iterative reconstruction algorithm.

In this application we consider only the linear part that is typically modeled by
the following initial value problem for the wave equation

(∂tt − c2∆)p(x, t) = 0, p(x, t = 0) = f(x), ∂tp(x, t = 0) = 0

The measurement is then modeled as a linear operatorM acting on the pressure
field p(x, t) restricted to the boundary of the computational domain Ω and a finite
time window: g =M p|∂Ω×(0,T ). This defines a linear mapping Af = g from initial
pressure in the domain to time-series on the boundary.

The simulation of the forward operator and its adjoint is computationally de-
manding and hence, in contrast to [3], learning of the iterative reconstruction
algorithm needs to follow a greedy approach, i.e. each iterate is learned separately
and to the best possible state given the result of the previous iterate:

min
θk
‖Gθk(∇d(g,Afk), fk)− ftrue‖, given fk = Gθk−1

(∇d(g,Afk−1), fk−1).

Additionally, for further improvements in speed we propose in [5] to use a faster,
but approximate forward model instead. In particular, when the measurement
points lie on a plane (z = 0) outside the support of f , the pressure there can be
related to f by

g(x, y, t) =
1

c2
Fkx,ky

{{
Cω
{
B(kx, ky, ω)f̃(kx, ky, ω)

}}}
,(1)
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where f̃(kx, ky, ω) is obtained from f̂(k) via the dispersion relation (ω/c)2 = k2x +

k2y + k2z) and f̂(k) = Fx{f(x)} is the 3D Fourier transform of f(x). Cω is a cosine
transform from ω to t. The weighting factor, B(kx, ky, ω) contains an integrable
singularity which means evaluation on a rectangular grid, so that the FFT can be
used to calculate the Fourier transforms efficiently, leads to aliasing in g(x, y, t).
To control the degree of aliasing, we set a certain amount of components of B to
zero. We then can use Eq. 1, as a fast mapping from the measured data g to an
estimate of f and vice versa.

The networks in the iterative reconstruction are trained on a set of segmented
lung vessels from human CT scans and with some modifications applied to in-vivo
measurements of a human hand. Results show that the iterative approach does
outperform post-processing at the cost of longer computations times, but signifi-
cantly faster than classical iterative schemes. Combined with the fast approximate
model, we can achieve a speed-up of factor 32 compared to classical total variation
reconstructions.
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Decomposition of Dynamic MR Data for Cell Tracking Purposes

Meike Kinzel

(joint work with Martin Burger)

For many clinical applications the tracking of fast dynamics in 4D MR data is of
major interest. Since their behavioral observation can help diagnosing even early
stages of neural diseases, this also includes the tracking of immune cells in the
brain over time. An idea to achieve this goal slicewise is to assume that the single
time series are superpositions of background and motion. Considering a matrix
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D ∈ R
nm×t which consists of t vectorized n×m-images of a time series, this means

to impose the relation

L+ S =: A(L, S) = D,(1)

for matrices L, S ∈ Rnm×t. Additionally assuming D to be corrupted by additive
Gaussian noise ε ∼ N(0, σ2), then leads to the model

A(L, S) + ε = D.(2)

From a cell tracking point of view one is now interested in finding the matrices L, S
which most likely generated a given time series matrix D, respectively in solving the
inverse problem. Following the well-established maximum a posteriori approach
this can be realized by minimizing a functional J which consists of the Gaussian
noise adapted data fidelity term and some prior on the minimizing arguments,
namely L and S. Taking into account the anticipation of a decomposition into
background and motion one can follow the choice of priors introduced by Otazo et
al. [1]. Penalizing L by its nuclear norm, this matrix is asked to have a preferably
low rank and therefore implicitly forced to have only a few linear independent
columns. Since these columns correspond to the images of the time series this
involves the prior background information. Simultaneously penalizing S by its
1-norm then allows to apply the prior information on the movement of small cells
which are expected to have a sparse vectorized representation in Rnm×t. Thus, the
solution of the inverse problem to (2) can be found by minimizing

J(L, S) =
1

2
||L+ S −D||22 + λL||L||∗ + λS ||S||1.(3)

Considering only the sparse part S then enables the identification of moving cells.
To directly decompose even raw MR data, Otazo et al. furthermore proposed

to proceed analog for a vectorized k-space matrix D and the modified forward
operator

A(L, S) := E(L+ S),

where E denotes the acquisition operator. This introduces the additional benefit
of being able to reconstruct even highly undersampled data.

We present the application of the introduced theory on real data and naturally
extend this approach to further decompositions for artifact reduction. Moreover,
we discuss the possibility of imposing certain properties on the background respec-
tively the low rank part L by modifying the singular value decomposition via its
underlying scalar product.
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The Inverse Problem of Magnetorelaxometry Imaging

Janic Föcke

(joint work with Daniel Baumgarten and Martin Burger)

Recently there are several novel techniques in the field of human biology and
medicine, that make use of magnetic nanoparticles. These particles have quite
unique properties: They are made of two components: a magnetic core and a
nonmagnetic shell. The nonmagnetic shell prevent reactions of magnetic core with
the surrounding tissue, e.g. rejections or allergic reactions. The magnetic core
provides a magnetization for the particles, hence it can be manipulated with the
use of external magnetic fields. This behavior is exploited by novel treatment
methods as Magnetic Hyperthermia or drug targeting (compare [2] for references).
However the presence of the magnetic particles with its properties also let these
particles act as a contrast agent. Here Magnetorelaxometry Imaging allows for 2D
and 3D reconstruction of the particle distribution.

1. The Mechanics of MRXI

Due to its core magnetization, the particles can be aligned by an external magnetic
field. This circumstance is used by MRXI in two distinct phases: During the
excitation phase an external magnetic field is active. The magnetic particles in
the region of interest begin rotating due to its core magnetization. It takes a short
period of time until all particles reach a stable, aligned state. Then the relaxation
phase is started by switching og the external magnetic fields. Since no external
field holds the particles in their aligned state, they start to reorientate in random
directions. However, due to magnetization of the core, the particles induce a weak
magnetic field. The alignment of the particles amplifies this magnetic field, so it
measurable from an external point. After a short period of time all particles are in
a random state and no magnetic response is measurable. Both phases define one
run of MRXI. To gain spatial information, multiple coils with different position
and/or magnetization profiles are activated subsequently.

2. Mathematical Model of MRXI

The forward operator model is based on the work of [1, 3] as is translated into
a mathematical framework, c.f. [2]. Let w ∈ Ω a point in the region of interest
Ω ⊂ R3. An activation coil α = (ϕα, Iα) is a set of a conductor coil path ϕα and a
corresponding current Iα. The sensors σ = (σx, σn) consist of a sensor position σx
and a normal σn. Then we define a linear operatorKα that describes the magnetic
response in σ for an excitation field Bcoil

α and a underlying particle distribution
c ∈ L(Ω,R≥0):

Kα : c→


σ → σn ·

∫

Ω

(
3(σx − w)⊗ (σx − w)

|σx − w|5
− I

|σx − w|3
)
Bcoil
α (w) c(w) dw


 .
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The classical model for the excitation coil Bcoil
α is defined by the Biot-Savart-Law:

Bcoil
α : w →

Lα∫

0

ϕ′
α(s)×

(
w − ϕα(s)
|w − ϕα(s)|3

)
ds

where Lα is the length of the parameterized conductor coil ϕα.

3. Idealized Model of MRXI

By approximating the coil loop ϕα(s) by its midpoint yα we introduce an idealized
coil, hence

Bcoil
α : w →

Lα∫

0

ϕ′
α(s)×

(
w − yα
|w − yα|3

)
ds = ηα ×

(
w − yα
|w − yα|3

)

with ηα =
∫ Lα

0
ϕ′
α(s) ds. It is shown in [2], that this model has an equivalent PDE

formulation

K : c→
[
σ → −16π2σn · ∇σx

U(σx; y, η)
]

where U(·; y, η) is the unique solution of

−∆U = ∇ · (cA)

with A(x) = η × ∇γ(x − y) decaying at infinity and γ the fundamental solution
of the Laplace equation. For a full-field activation of any y ∈ O ⊂ R3 \ Ω with
two linear independent orientations η1 and η2 it is shown, that this guarantees
a unique solution of the given inverse problem. Finally this property and shown
examples promote a random activation scheme.
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Towards a mathematical theory of seismic tomography on Mars

Joonas Ilmavirta

(joint work with Maarten V. de Hoop and Vitaly Katsnelson)

The InSight lander brought a seismometer [7] on Mars in late 2018. One of the
goals of the mission is to find the interior structure of the planet using a single
seismometer to the extent possible. This talk will outline three different methods
to reconstruct a radial model of the (upper) mantle for a single ideal seismometer.
This is only a small step towards a more complete mathematical understanding of
seismic planetary exploration, and a number of new inverse problems arise.

There is a practical need of solving some very hard inverse problems on Mars,
and there is a mathematical theory of seismic inverse problems. My goal is to
interpolate between these two to take steps towards a mathematical theory of
seismic planetary exploration.

The slides of the talk are available on my homepage:
http://users.jyu.fi/~jojapeil

1. Things we know

In order to prove anything with a single measurement point, we need to make
strong structural assumptions. A reasonable leading order assumption is that
the planet is spherically symmetric and can therefore be described be wave speeds
(different for different polarizations) that depend only on the distance to the center.

Variations in wave speed can be seen as non-Euclidean geometry, where waves —
or singularities of solutions to the wave equation— travel along geodesics according
to Fermat’s principle and distance is measured in travel time. Geometrization
in this spirit gives us access to tools in differential geometry. A geometrically
convenient assumption on the radial model is that it satisfies the so-called Herglotz
condition. The wave speeds in the Preliminary Reference Earth Model [4] satisfy
this condition apart from the core–mantle boundary and the vanishing shear wave
speed in the liquid outer core. We expect at least the upper mantle of Mars to
satisfy the condition.

The problem is to find the wave speed profile from some ideal measurements
at a single point. One can use correlations in ambient noise, the spectrum of free
oscillations, and meteorite impacts [2]. This gives three ways to find the desired
quantity from independent data sets, which gives credibility to conclusions drawn
about the Martian mantle from InSight data, whether or not the methods of proof
are practically applicable to the real data.

The spectral method is based on a recent result on spectral rigidity in spherical
symmetry [3], and upon linearization all three boil down to inverting a certain
Abel transform [1]. Abel transforms arise naturally when consider geodesic X-ray
and broken ray transforms in spherical symmetry. In a broken ray transform one
integrates over rays that reflect on the boundary and potentially other interfaces,
and in some situations the rays need to be periodic.
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2. Things we do not know

Very little can be proven beyond spherical symmetry at this point. A natural
approach is to study small lateral inhomogeneities in terms of perturbation theory.

All of the methods mentioned above have to do with travel times of seismic
waves, and linearization of travel time leads to ray transforms. However, the
geometry is not smooth, and reflections and refractions occur at various interfaces.
Therefore it is important to bring the study of geometrical inverse problems to
settings with conormal singularities in the geometry itself. Broken ray transforms
in a ball with rays reflecting off a core have been analyzed [5, 6], but they assume
data everywhere on the surface. The theory of periodic broken ray transforms can
currently only deal with very specific geometries, and fundamental geometrical
analysis is needed before one can begin to tackle the inverse problems.

Planetary exploration calls for analysis of X-ray transforms with “half-partial
data”, where the integrals of a function are known over all geodesics with one
endpoint in a small open subset of the boundary but the other endpoint is free to
vary across the entire boundary. Then one would like to determine the function
everywhere, not only close to the small accessible set which corresponds to a
measurement array deployed by a lander.

These problems are hard, but only a small sample of the various inverse prob-
lems arising in the context of seismology with a single seismometer. A longer
problem list can be found in the slides of the talk, and working towards a more
complete theory will certainly reveal much more that we ought to solve.
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Regularized image reconstruction for hyperspectral X-ray and neutron
tomography

Jakob S. Jørgensen

(joint work with Daniil Kazantsev, Martin S. Andersen, William R. B. Lionheart,
Peter Lee and Philip J. Withers)

We gave an introduction to hyperspectral X-ray and neutron tomography enabled
by novel photon-counting detectors with high energy resolution. Such data pro-
vides information about characteristic absorption peaks, which may allow one to
identify individual materials that conventional detectors cannot distinguish. How-
ever, due to few counts the tomography data in each energy channel can be ex-
tremely noisy, which prevents simple channelwise reconstruction by conventional
methods such as filtered back-projection (FBP).

We presented a novel reconstruction method for hyperspectral tomography,
which jointly reconstructs all energy channels using parallel level sets to encourage
joint smoothing directions. The proposed method is a generalisation of the parallel
level sets method [3] which has been used in bi-modal reconstruction [1,4,5] using
one known channel as a reference to guide reconstruction of a second unknown
channel. Our principal novel idea is to jointly reconstruct multiple unknown chan-
nels by selecting reference channels from which to propagate structure in an adap-
tive and stochastic way while preferring channels with a high data signal-to-noise
ratio. The variational reconstruction problem was solved using the Fast Itera-
tive Shrinkage Thresholding Algorithm (FISTA) [2] implemented in MATLAB.
Numerical results were shown to demonstrate the performance of the method in
comparison with existing spectral CT reconstruction methods, including channel-
wise total variation and total nuclear variation. Some of the results presented are
published in [6].

References

[1] C. Bathke, T. Kluth, C. Brandt and P. Maaß, Improved image reconstruction in magnetic
particle imaging using structural a priori information, International Journal on Magnetic
Particle Imaging 3 (2017), 1–10.

[2] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM Journal on Imaging Science 2 (2009), 183–202.

[3] M. J. Ehrhardt and S. R. Arridge, Vector-valued image processing by parallel level sets,
IEEE Transactions on Image Processing 23 (2014), 9–18.

[4] M. J. Ehrhardt, K. Thielemans, L. Pizarro, D. Atkinson, S. Ourselin, B. F. Hutton and
S. R. Arridge, Joint reconstruction of PET-MRI by exploiting structural similarity, Inverse
Problems 31 (2014), 015001.

[5] M. J. Ehrhardt and M. M. Betcke, Multicontrast MRI reconstruction with structure-guided
total variation, SIAM Journal on Imaging Science 9 (2016), 1084–1106.

[6] D. Kazantsev, J. S. Jørgensen, M. S. Andersen, W. R. B. Lionheart, P. Lee and P. J. Withers,
Joint image reconstruction method with correlative multi-channel prior for x-ray spectral
computed tomography, Inverse Problems 34 (2018), 064001.



Tomographic Inverse Problems: Theory and Applications 295

Singular artifacts in incomplete data x-ray tomography

Jürgen Frikel

(joint work with Leise Borg, Jakob Sauer Jørgensen and Eric Todd Quinto)

1. Introduction

Computed x-ray tomography (CT) is by now on of the standard imaging techniques
in many areas, including materials science and medical imaging. Its principle is
based on the collection of x-ray measurements along lines that are distributed all
around the object and a subsequent reconstruction of an image representing the
interior of the object. Such reconstructions can be obtained quite accurately and
efficiently by the standard filtered backprojection algorithm (FBP) (cf. [7]) if the
data set is complete, i.e., if the measurements are available along all possible lines
in the plane.

However, if the data is incomplete, then some features of the original object
cannot be reconstructed reliably (are invisible) and artifacts can be generated by
the reconstruction algorithm (cf. [7, 10]). This happens in all incomplete data
situations, such as limited angle tomography, interior or exterior tomography as
well as in new scanning setups as described in [2]. In order to facilitate a proper
interpretation of reconstructed images and to understand how the reconstruction
procedure can be possibly improved, it is essential to derive precise characteriza-
tions of reconstructions for all incomplete data situtations.

In our work we analyze FBP type reconstructions from arbitrary incomplete
data and provide characterizations of visible singularities and artifacts using the
powerful framework of microlocal anaylsis. The presented results were obtained
in our recent work [1] and they generalize characterizations in [3, 5, 8, 10] that
primarily analyze the limited angle situation.

2. Mathematical setup

As a mathematical model for the measurement process in x-ray CT we consider
the Radon transform R : L2(Ω)→ L2(S1×R) that integrates functions f ∈ L2(Ω)
(where Ω ⊂ R2 is the closed unit disk) along lines L(θ, p) that we parametrize by
(θ, p) ∈ S1 × R. That is, Rf(θ, p) is a line integral representing a measurement
along a single x-ray line. In incomplete data CT problems, the measurements
Rf(θ, p) are not available for all (θ, p) ∈ S1 × R but only for (θ, p) ∈ A 6= S1 × R,
where A is a proper subset of S1 × R. Hence, we model the incomplete data by

gA(θ, p) = 1A ·Rf(θ, p),
where 1A denotes the characteristic function of A.

Since in many practical situations the reconstructions are still obtained through
the use of the classical FBP algorithm (cf. [9]), we analyze reconstructions of the
form

BgA = R∗PgA,
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whereR∗ is the backprojection operator (L2-adjoint ofR) and P = 1/4π
√
−∂2/∂p2

can be interpreted as a filter operator. It is well known that f = BgA = R∗PgA
if the data is complete. However, if the data is incomplete, this equality does not
hold.

In order to understand what we reconstruct from incomplete data, we use the
notion of the wavefront set provided by the framework of microlocal analysis. Here,
the wavefront set WF(f) of a function (or distribution) f is defined as the set of
all singularities of f given by tuples (x, ξ) ∈ R2 × (R2 \ 0), where x denotes the
location and ξ the direction of a singularity (cf. [4]). In this work, we present
characterizations of the wavefront set WF(BgA).

In the formulation of our results we will call a singularity (x, ξ) ∈WF(f) visible
if (x, ξ) ∈ WF(f) ∩ WF(BgA) and invisible if (x, ξ) ∈ WF(f) \WF(BgA). If
(x, ξ) ∈WF(BgA) \WF(f), the singularity (x, ξ) will be called a singular artifact.

3. Main results

The first theorem states a well known paradigm in the mathematical tomography
and characterizes visible and invisible singularities of f . In particular, it shows that
visible singularities correspond to the interior of A, int(A), whereas the invisible
singularities correspond to the exterior of A, ext(A).

Theorem 1 (see, e.g., [1,6,10]). If (θ, p) ∈ int(A), then all singularities of f nor-
mal to the line L(θ, p) are visible (and BgA contains no singular artifacts normal
to the line L(θ, p)). On the other hand, if (θ, p) ∈ ext(A), then all singularities of
f normal to the line L(θ, p) are invisible.

The following results characterize (singular) artifacts and show that they arise
from boundary points (θ, p) ∈ bd(A). More importantly, they show that singular
artifacts can be object-dependent and object-independent, and that they can occur
only on lines or curves.

Theorem 2 ( [1, Theorem 3.7]). Let (θ0, p0) ∈ bd(A). Then:

(1) If f has a singularity normal to L(θ0, p0), then artifacts can be gener-
ated along the line L(θ0, p0) (streak artifact), i.e., WF(BgA) \WF(f) con-
tains singularities (x, ξ) with locations x that are distributed along the line
L(θ0, p0) and the corresponding directions ξ are given by the normals to
this line. Such artifacts are generated by a singularity of f and, in this
sense, they are object-dependent.

(2) If bd(A) is not smooth at (θ0, p0), then BgA can have a streak artifact
along L(θ0, p0) independent of f . If Rf(θ0, p0) 6= 0 and bd(A) has a
corner at (θ0, p0), then BgA does have a streak artifact all along L(θ0, p0).

The previous theorem characterizes the streak artifacts in reconstructions from
arbitrary incomplete CT data, and it generalizes the characterizations in [3, 5].

Theorem 3 ( [1, Theorem 3.5]). Let (θ0, p0) ∈ bd(A) and assume bd(A) is given
by the smooth curve p = p(θ) (with finite slope) near (θ0, p0). If f is smooth nor-
mal to L(φ0, p0) and Rf(φ0, p0) 6= 0, then an object-independent artifact curve
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θ 7→ xb(θ) will appear in BgA, where

xb(θ) = p(θ)θ + p′(θ)θ⊥ .

For precise formulations, more details and numerical examples we refer to [1].

References

[1] L. Borg, J. S. Jørgensen, J. Frikel and E. T. Quinto, Analyzing reconstruction artifacts from
arbitrary incomplete x-ray CT Data, SIAM J. Imaging Sciences 11.2 (2018), 2786–2814.

[2] L. Borg, J. S. Jørgensen, J. Frikel and J. Sporring, Reduction of variable-truncation artifacts
from beam occlusion during in situ x-ray tomography, Measurement Science and Technology
28.12 (2017), 124004.

[3] J. Frikel and E. T. Quinto, Characterization and reduction of artifacts in limited angle
tomography, Inverse Problems 29 (2013), 125007.
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Sonic reflection imaging without low frequencies

Frank Natterer

Our model problem for sonic imaging in the strip Ω : {x ∈ Rn : 0 ≤ xn ≤ D} is
the wave equation

∂2u

∂2t
(x, t) = c2(x)(∆u(x, t) + δ(x − s)q(t))

gs(x
′, t) = u(x′, D, t)

c(x) = c0/(1 + f(x)).

Here, n = 2, 3, δ is the n-dimensional Dirac-function, q is the source wavelet,
D > 0, 0 ≤ t ≤ T, x′ ∈ Rn− 1, s = (s′, D) is the source position, c(x) is the speed
of sound in Ω and c0 is the ambient sound speed. What we want to determine
from the data function gs is the speed of sound c, i. e. the function f .

The emphasis of this talk is on the source wavelet q. It has been shown in [3]

that the Fourier transform f̂ can be determined from reflection data in 2D only
outside two circles around (±k, 0) touching the origin, k the smallest wavenumber
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the presence of which is sufficiently strong in the spectrum of q. The resulting
difficulties in medical and seismic applications are described in [2], [4], [9]. In [6], [5]
it has been shown that the missing low frequency problem can be mitigated by
using reflectors. We follow [6] here.

We place a reflector - a simple metal plate - at the lower boundary xn = 0 of Ω
and solve the inverse problem in the Born approximation, following [8]. All we need
is the plane wave decomposition of the free space Green’s function, see e.g. [7], and
the method of images to compute the Green’s function for the reflector boundary
condition. By numerical examples with the Kaczmarz algorithm we corroborate
that such a reflector really compensates for the lack of low frequencies in the source
wavelet. A possible applications to ultrasound mammography is suggested in [9].

Finally we consider the special case of layered media. We show by Fourier
analysis that the lack of low frequencies can also be compensated for by making the
aperture larger. Again numerical results with the Kaczmarz method demonstrate
the validity of this approach. This technique is widely used in Falling Weight
Deflectometry [1].
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[7] Natterer, F. and Wübbeling, F.: Mathematical Methods in Image Reconstruction, p 49.

SIAM, Philadelphia (2001)
[8] Nolan, C. J., Cheney, M., Dowling, T., and Gaburro, R.: Enhanced angular resolution from

multiply scattered waves, Inverse Problems 22, 1817-1834 (2006).
[9] Richter, K: Clinical amplitude/velocity reconstructive imaging (CARI) - a new sonographic

method for detecting breast lesions, British J. Radiol. 68 375384 (1995).

Reporters: Victoria Hutterer, Meike Kinzel



Tomographic Inverse Problems: Theory and Applications 299

Participants

Prof. Dr. Gaik Ambartsoumian

Department of Mathematics
University of Texas at Arlington
P. O. Box 19408
Arlington, TX 76019-0408
UNITED STATES

Prof. Dr. Simon R. Arridge

Department of Computer Science
University College London
Gower Street
London WC1E 6BT
UNITED KINGDOM

Dr. Sebastian Banert

Department of Mathematics
KTH
100 44 Stockholm
SWEDEN

Dr. Marta M. Betcke

Department of Computer Science
University College London
Gower Street
London WC1E 6BT
UNITED KINGDOM

Prof. Dr. Jan Boman

Matematiska Institutionen
Stockholms Universitet
106 91 Stockholm
SWEDEN

Prof. Dr. Christina Brandt

Department Mathematik
Universität Hamburg
Bundesstrasse 55
20146 Hamburg
GERMANY

Prof. Dr. Martin Burger

Department Mathematik
Universität Erlangen-Nürnberg
Cauerstrasse 11
91058 Erlangen
GERMANY

Prof. Dr. Julianne Chung

Department of Mathematics
Virginia Tech
Blacksburg, VA 24061-0123
UNITED STATES

Dr. Matias Courdurier

Facultad de Matématicas
Pontificia Universidad Católica de Chile
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