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Introduction by the Organizers

The workshop Nonlinear evolution equations, organized by Marlis Hochbruck
(Karlsruhe), Herbert Koch (Bonn), Sung-Jin Oh (Seoul) and Alexander Oster-
mann (Innsbruck) was well attended with around 50 participants with broad geo-
graphic representation from all continents. This workshop combined analytic and
numerical aspects of nonlinear evolution equations with a focus on wave propaga-
tion.

The qualitative theory of nonlinear evolution equations is an important tool for
studying the dynamical behavior of systems in science and technology. A thorough
understanding of the complex behavior of such systems requires detailed analytical
and numerical investigations of the underlying partial differential equations. In
connection with this task one is interested in regularity and asymptotic properties
of solutions as well as in efficient numerical approximations which preserve their
qualitative properties on large time scales. Currently, driven by the challenging
mathematical difficulties and supported by the impact of techniques from many
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branches of analysis and numerics, innovative and sophisticated methods are being
developed for this area of mathematics.

This workshop covered recent developments in the theory of nonlinear evolu-
tion equations, both analytical and numerical, between which there has been an
increasing interaction in recent years. There is an enormous potential of a closer
cooperation of the analytic and numerical communities for decisive progress in the
field. The workshop focused on evolution equations describing linear and nonlinear
waves such as

• wave and Schrödinger equations,
• Maxwell’s equations,
• nonlinear dispersive equations,
• coupled problems (e.g. Vlasov–Maxwell equations or MHD).

In recent decades a very successful qualitative theory of the basic nonlinear dis-
persive equations has been developed in settings of low regularity, namely for the
nonlinear wave and Schrödinger equations. This also led to a revival and sharp-
ening of old questions like the soliton resolution conjecture, or, more generally,
a global understanding of solutions to dispersive equations and the relations be-
tween asymptotic equations like the nonlinear Schrödinger equation and their role
as building block in full models like water waves and wave guides.

Our understanding of complex wave propagation problems like nonlinear Max-
well equations is based on asymptotic equations, and on numerical simulations.
The numerical study of evolution equations relies on efficient methods for time in-
tegration which allow for convergence results not depending on spatial discretiza-
tion parameters (such as mesh size or number of basis functions). For the rigorous
derivation of finite time error bounds and the study of geometric properties, one
has to develop a framework for the discretization that captures the essential prop-
erties of the analytic problem. This fact makes a thorough understanding of the
partial differential equation itself indispensable and it entails close thematic and
methodic links between the analysis and numerics of evolution equations: splitting
schemes or exponential integrators are naturally formulated within semigroup the-
ory and functional calculi. Harmonic analysis arises in spectral methods and can
be used to establish error bounds (e.g., by Strichartz estimates). Moreover, error
analysis heavily relies on regularity theory and energy techniques. The numerical
treatment of nonstandard boundary conditions calls for a deeper analysis of the
coupling between the behavior on the boundary and in the domain. This close
relationship also plays a crucial role for geometric integrators which are designed
to capture the qualitative properties of solutions (such as long term behavior or
energy conservation).

The rigorous error analysis of numerical methods for wave-type equations has
made significant progress in recent years. However, many questions are still open
and more efficient numerical methods have to be designed for particular problems.
At the same time we expect that the challenges from numerics stimulate new
developments in the relevant areas of analysis and numerical insights can guide
analytical investigations to new frontiers.
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The workshop brought together scientists from analysis and numerics to push
this research forward. We gave preference to talks by young mathematicians.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1049268, “US Junior Oberwolfach Fellows”.
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Abstracts

Blow up mechanism for quasilinear wave equations

Hajer Bahouri

(joint work with Alaa Marachli, Galina Perelman)

The main goal here is to show that the blow up mechanism initiated by Krieger,
Schlag and Tataru in [1] in a semilinear framework exists as well for the quasilinear
wave equation on R× R

4:

(NW) u :=(1 + u2ρ)utt−(1− u2t )uρρ−2utuρuρt + 3(1 + u2ρ − u2t )
( 1
u
− uρ

ρ

)
= 0 ,

which involves in Bernstein’s problem. Bernstein’s problem which is due to Sergei
Natanovich Bernstein states as follows: if the graph of a C2 function u on R

n

is a minimal surface in R
n+1, does this imply that this graph is a hyperplane?

Such issue amounts to ask if the solution u to the following equation known as the
minimal surface equation

n∑

j=1

∂xj

( uxj√
1 + |∇u|2

)
= 0 ,

is linear. This problem admits only an affirmative answer in the case of dimension
n ≤ 7, and the falsity of its extension to the case of dimension n ≥ 8 is linked to
the Simons cone which is given by

Cn =
{
X = (x1, · · · , x2n) ∈ R

2n , x21 + · · ·+ x2n = x2n+1 + · · ·+ x22n
}
.

We refer for instance to [2, 4] and the references therein for further details on
Bernstein’s problem and related issues, and to [1] for detailed computations about
the involvement of the quasilinear wave equation (NW) in that setting.

Our purpose in this text is to give an outline of the constructive blow up ap-
proach for (NW) by concentrating the soliton, namely the solution to the Cauchy
problem: {

−Qρρ + 3(1 +Q2
ρ)
(

1
Q − Qρ

ρ

)
= 0

Q(0) = 1 , Qρ(0) = 0 .

First of all, let us recall that Bombieri, De Giorgi and Giusti established in [2] that
the above Cauchy problem has a unique solution Q in C∞(R4) which behaves as

Q(ρ) = ρ+
d2
ρ2
(
1 + ◦(1)

)
,

when ρ tends to infinity, with d2 > 0 and which satisfies Q(ρ) > ρ and Q′′(ρ) > 0,
for any ρ ≥ 0. Let us also emphasize that (NW) enjoys a scaling invariant property:
defining the scaling operators, for any λ > 0, any x0 in R

n and any t0 in R,

Λλ,x0,t0u(t, x) := λu
( t− t0

λ
,
x− x0
λ

)
,

if u solves (NW) then Λλ,x0,t0u is also a solution to (NW).
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Our aim here consists in proving the existence of finite time blow up solutions
to the quasilinear wave equation (NW) under the form

u(t, ·) ∼ Λλ(t)Q,

where λ(t) = tν+1, ν being an arbitrary large positive irrational number. More
precisely, we established the following result:

For all irrational numbers ν > 1
2 , there exists a positive time T and a radial

solution u(t, ·) to (NW) on the interval (0, T ] such that

(u, ∂tu) ∈ C((0, T ], XL0
) with L0 := 2M + 1 , M =

[3
2
ν +

5

4

]
,

and such that it blows up at time t = 0 by concentrating the soliton profile. More
precisely, writing

u(t, x) = tν+1
(
Q
( x

tν+1

)
+ ζ
(
t,

x

tν+1

))
,

ut(t, x) = ζ1

(
t,

x

tν+1

)
,

we have

‖∇ζ(t, ·)‖Ḣs(R4) + ‖ζ1(t, ·)‖Ḣs(R4)
t→0−→ 0 , ∀ 2 < s ≤ L0 − 1 .

Roughly speaking, the strategy of proof of the above blow up result proceeds in
a two step process: first building an approximate solution, and then completing
it to an exact solution, by controlling the remaining error via well-established
arguments. The key point consists to built a good approximate solution, and to
this end the analysis is done separately in the inner region corresponding to the
region inside the light cone, the self-similar region which is the region around the
light cone, and finally the remote region. The inner region is the region where the
blow up concentrates, and where the solution is constructed as a perturbation of

the profile tν+1Q
(

x
tν+1

)
. Using (NW), it turns out that in that region, we have to

look for the approximate solution under the following form:

u
(N)
in (t, ρ) = tν+1

N∑

k=0

t2νkVk

( ρ

tν+1

)
,

where V0 = Q, and where the functions Vk are obtained recursively by solving:
{

LVk = Fk(V0, · · · , Vk−1)
Vk(0) = 0 , V ′

k(0) = 0 ,

with L the linearized operator of (NW) around Q. Combining the result of
Bombieri, De Giorgi and Giusti together with classical ordinary differential equa-
tions arguments, one can show that the above equation admits a C∞ solution Vk
which grows at infinity as follows:

Vk(y) =

k∑

ℓ=0

(log y)ℓ
∑

n≥2−2(k−ℓ)
dn,k,ℓ y

−n ,
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and thus we have to restrict the construction under this form to the region ρ
t ≤ tǫ1 ,

with ǫ1 some fixed positive real number

To extend this approximate solution to the self-similar region, we have to take
into account the matching conditions coming out from the inner region. This
reduces us to look to this extension under the form:

u(N)
ss (t, ρ) = ρ+ λ(t)

N∑

k=3

tνk
ℓ(k)∑

ℓ=0

(
log t

)ℓ
wk,ℓ

( ρ

λ(t)

)
,

where wk,ℓ, are determined by induction using again (NW). Here ρ
λ(t) = 1√

2

denotes the light cone of the quasilinear wave equation that is constructed con-
currently with the solution. Actually in that region, the approximate solution we
construct is not C∞: this is due to the fact that the functions wk,ℓ which are
determined successively solves a system which admits a basis of solutions which
are singular. The extension of the approximate solution to the remonte region can
be easily determined.
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Reducibility and growth of Sobolev norms for Schrödinger equation
with time dependent unbounded perturbation

Dario Bambusi

(joint work with Benoit Grébert, Beatrice Langella, Alberto Maspero, Riccardo
Montalto, Didier Robert)

In this extended abstract I will study a time dependent Schrödinger equation

(1) iψ̇ = H0ψ + ǫW (t)ψ

whereH0 is a self-adjoint, unbounded operator with pure point spectrum andW (t)
a time dependent family of unbounded ”perturbations”. The typical examples are

(2) iψ̇ = (−∂xx+V (x))ψ+ ǫW (x,−i∂x, t)ψ , V (x) = |x|2ℓ , ℓ ≥ 1 , x ∈ R ,

and
iψ̇ = −∆ψ + ǫW (x, t)ψ , x ∈ T .

I will present some results, but the main point is that I would like to discuss a
technique which seems to be quite general and consists of the idea of using first
pseudodifferential calculus in order to transform the original system to a smoothing
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perturbation of a suitable “normal form” and then to apply more or less standard
methods in order to get the result.

In order to state precisely the assumptions on W , consider the classical Hamil-
tonian corresponding to H0, namely

h0 := ξ2 + |x|2ℓ .
Definition 1. The space Sm is the space of the symbols g ∈ C∞(R) such that
∀k1, k2 ≥ 0 there exists Ck1,k2 with the property that

(3)
∣∣∣∂k1ξ ∂k2x g(x, ξ)

∣∣∣ ≤ Ck1,k2

[(
1 + h0(x, ξ)

1/2ℓ
)]m−k1ℓ−k2

.

To a symbol g ∈ Sm we associate its Weyl quantization, namely the operator

(4) [Gψ](x) :=
1

2π

∫

R2

ei(x−y)·ξg

(
x+ y

2
; ξ

)
ψ(y)dydξ .

An operator will be said to be of class OPSm if it is the Weyl quantization of
a symbol of class Sm.

Furthermore we define the norms

‖ψ‖2Hs := 〈ψ;Hs
0ψ〉L2 ,

and the Hilbert space Hs as the space of the functions with finite Hs norm.

Theorem 2. Take ǫ = 1. Assume ℓ > 1 and W ∈ C∞(R, OPSβ) with β < 2ℓ.
Consider a solution ψ(t) of (2). For any N ≥ 0 there exists a unitary (in L2)
time dependent operator Φ(t) s.t. the function ϕ defined by Φ(t)ϕ := ψ satisfies
the equation

(5) iϕ̇ = (H0 + zN (H0, t) +RN (t))ϕ ,

with zN a smooth symbol (and z(H0, t) spectrally defined) and RN (t) a smoothing
operator. Precisely, one has

‖RN (t)ψ‖Hs+N ≤ CN,s ‖ψ‖Hs

Furthermore Φ(t) is bounded from Hs to itself.

This theorem is a develpment of some results present in [Bam18, Bam17]; in
this form it is proved in [BM18] and it exploits techniques developed in such papers
and in [BGMR19].

As described in detail in the paper [Bam18], Sect. 4.2, the proof consists of two
steps. First one uses the classical methods of Lie transform in order to construct an
auxiliary Hamiltonian function χ whose Hamiltonian flow pushes to higher order
the time dependence in the Hamiltonian system ξ2+ǫw(x, ξ, t) (with w the symbol
of W ). Then one quantizes χ and uses the unitary transformation it generates in
order to transform the original quantum system. Actually the construction is
iterative.

Using Theorem 2, by the theory of [MR17], one immediately gets that for any
δ > 0 and any s > 0 there exists a constant Cs,δ s.t. the solution of the time
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dependent Schrödinger equation (2) fulfills the estimate

(6) ‖ψ(t)‖Hs ≤ Cs,δ(1 + |t|)δ

One can also obtain reducibility by using the classical Kuksin’s theorem [Kuk93]
(or its develoments e.g. [BBM14]). For this case we have to restrict to perturba-
tions which depend quasiperiodically on time. Thus, considerW ∈ C∞(Td, OPSβ)
and consider equation (1) with W =W (ωt) and parameters ω varying in

Ω := [1, 2]d .

Theorem 3. Assume β < 2ℓ, then ∃ǫ∗ > 0, Cλ and ∀ |ǫ| < ǫ∗ ∃Ω(ǫ) ⊂ Ω and,
∀ω ∈ Ω(ǫ) there exists a unitary (in L2) time quasiperiodic operator Φω(ωt) s.t.
the function ϕ defined by Φω(ωt)ϕ := ψ satisfy the equation

(7) iϕ̇ = H∞ϕ ,

with H∞ = diag(λ∞j ) and

(8)
∣∣λ∞j − λj

∣∣ ≤ Cλǫj
β

ℓ+1 .

Furthermore ∀s, r ≥ 0, ∃ǫs,r > 0 and sr s.t., if |ǫ| < ǫs,r then the map T n ∋ φ 7→
Uω(φ) is of class Cr(T n;B(Hs+sr ;Hs)).

Finally the measure

|Ω− Ω(ǫ)| ǫ→0→ 0 .

I would like to conclude by mentioning that the theory can be considered quite
complete for problems in 1 space dimensions, while in the case of higher space
dimensions only a few examples are known ([BGMR18, BLM19]). At present,
work is in progress in order to try to get some more general extensions to higher
space dimensions and some preliminary spectral results for Sturm-Liouville type
operators on tori have been obtained.
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Small amplitude solutions of the Schrödinger-Newton-Hooke system

Piotr Bizoń

(joint work with Oleg Evnin and Filip Ficek [1])

We consider the Einstein-Klein-Gordon system (for a complex scalar field) in d+1
dimensions with the negative cosmological constant λ = −d/ℓ2
(
✷g −m2c2

)
φ = 0, Rαβ − λgαβ =

8πG

c4

(
∂αφ∂βφ̄+ ∂αφ̄ ∂βφ+

m2c2

d− 1
|φ|2gαβ

)
.

Substituting φ = e−imc
2tu(t, x) and taking the limits c → ∞ and ℓ → ∞ so that

c/ℓ→ ω, we get (setting m = 8πG
d−1 = 1)

i∂tu = −1

2
∆u+

1

2
ω2|x|2u+ V u, ∆V = (d− 2) |u|2,

which we call the Schrödinger-Newton-Hooke (SNH) system. Using the Green

function for the Laplacian F (x) = − 1

(d− 2)Ωd

1

|x|d−2
(here Ωd is the volume of

Sd−1), we can write the SNH system as the Hartree equation with the external
harmonic potential

(1) i∂tu = −1

2
∆u+

1

2
ω2|x|2u− Ω−1

d

(
|x|−(d−2) ∗ |u|2

)
u.

We are interested in the long-time behavior of small amplitude solutions of (1).
Assuming spherical symmetry, we decompose solutions into radial eigenfunctions

u(t, r) = ε
∞∑

n=0

αn(t)en(r)e
−iEnt,

where En =
(
2n+ d

2

)
ω and en(r) = cnL

( d
2
−1)

n (ωr2)e−ωr
2/2. This gives

iα̇n = ε2
∞∑

j=0

∞∑

k=0

∞∑

l=0

Snjklᾱjαkαle
i(En+Ej−Ek−El)t,

where Snjkl =
∞∫
0

rdr
∞∫
0

min{rd−2, sd−2} en(r)ej(s)e(k(s)el)(r)s ds. Let τ = ε2t.

For small ε the terms ∝ ei(En+Ej−Ek−El)τ/ε
2

with En + Ej − Ek − El 6= 0 are
highly oscillatory and therefore negligible. Discarding all such non-resonant terms
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and keeping only the resonant quartets satisfying En + Ej − Ek − El = 0, we get
the resonant system

(2) i
dαn
dτ

=
∑

n+j=k+l

Snjklᾱjαkαl.

Solutions of size ε of equation (1) are well approximated by the solutions of the
resonant system (2) on the timescale t ∼ 1/ε2. Our strategy is to understand the
dynamics of the resonant system and then export this knowledge to the original
equation.

We note that the resonant systems of the form (2) (but with different interaction
coefficients) arise for several other NLS and wave equations with cubic nonlinear-
ities (e.g. cubic Szegő equation [2], Gross-Pitaevskii equation with a harmonic
potential [3, 4], conformal wave equation on 3-sphere [5], Einstein-scalar-AdS [6]).
All these systems are invariant under scaling αn(τ) 7→ εαn(ε

2τ) and the global
and local phase shifts: αn(τ) 7→ eiθαn(τ) and αn(τ) 7→ einθαn(τ). The latter two
symmetries give rise to two conserved quantities (in addition to the Hamiltonian)

N =

∞∑

n=0

|αn|2, E =

∞∑

n=0

En|αn|2.

The key question is: how the energy of initial data gets distributed over the
modes during evolution? Does energy flow from low to high modes? Using mixed
analytic and numerical methods we found that the answer depends critically on
the dimension. For λ→ ∞ we have

Sλn,λj,λk,λl ∼ λβ , where β(d) =

{
−1/2 if d = 3

(d− 6)/2 if d ≥ 5

This suggests rapid transfer of energy to high frequencies for d ≥ 7 which is
supported by numerical simulations.

In the energy critical case d = 4 the resonant system (2) belongs to a class of
“solvable” cubic resonant systems [7]. In this case there is an additional conserved

quantity Z =
∑∞
n=0

√
(n+ 1)(n+ 2) ᾱn+1αn and there exists a 3-dimensional

invariant manifold given by the ansatz

αn =
√
n+ 1

(
b +

a

p
n

)
pn,

where the functions a(τ), b(τ), p(τ) are complex-valued. The dynamics on this
invariant manifold is described by the reduced Hamiltonian system that is com-
pletely integrable (thanks to three conserved quantities N , E, and H).
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Asymptotic Behaviour of the Maxwell-Klein-Gordon System

Timothy Candy

(joint work with Christopher Kauffman, Hans Lindblad)

We describe recent work giving precise asymptotics for solutions to the Maxwell-
Klein-Gordon system in Lorenz gauge [1]. These asymptotics have two parts, one
wave-like along outgoing null cones at null infinity, and one homogeneous inside
the light cone at time-like infinity. The charge plays a crucial role in imposing an
oscillating factor in the asymptotics for both the phase and the gauge potential.

We now describe these results in slightly more detail. The Maxwell-Klein-
Gordon equation for a scalar field φ : R1+3 → C and a potential Aα : R1+3 → R

is given by

DαDαφ = 0

∂βFαβ = Jα
(1)

where the covariant derivative is given by Dα = ∂α + iAα, the curvature is de-
fined as Fαβ = ∂αAβ − ∂βAα, and Jα = ℑ(φDαφ) is the current. We take
x0 = t, and indices are raised and lowered with respect to the Minkowski metric
m = diag (−1, 1, 1, 1). The Einstein summation convention is in effect with Greek
indices summed over α = 0, . . . , 3, and Latin indices summed over the spatial vari-
ables j = 1, 2, 3. Thus ∂α = mαβ∂β and ∂0 = −∂t. There are two key conserved
quantities for the system (1), the energy

E(φ,A) =
∫

R3

|Dφ|2 + |F |2dx

and the charge

q =

∫

R3

J0dx.
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The charge will be particular important, as it causes a number of corrections to
the large time behaviour of solutions to (1) when compared to the evolution of
solutions to the free wave equation.

The system (1) does not uniquely determine φ and A. In particular, for any

function ψ, the gauge transform Ã = A+dψ gives the same field F , and moreover,
letting φ̃ = eiψφ, if (φ,A) solve (1), then (φ̃, Ã) also gives a solution to (1). Here,
we fix the gauge by imposing the Lorenz gauge condition

(2) ∂αAα = 0.

Given this we can rewrite the equations for the gauge potential Aα as the wave
equation

✷Aα = ∂β∂βAα = −Jα.
This does not completely characterize A, in that we can add any one-form of the
form dψ to A, where ψ is a solution to the wave equation, and still recover the
Lorenz gauge. The Lorenz gauge propagates through time, so if the solution Aα
satisfies the Lorenz gauge condition (2) at t = 0, then (2) in fact holds for all
times.

It is known that solutions to the Maxwell-Klein-Gordon system exist globally in
time, this was first observed in similar systems by Eardly-Moncrief [2, 3] with
refinement by Klainerman-Machedon [4]. Later decay estimates were shown in
Lindblad-Sterbentz [5] after preliminary results in Shu [7] and Psarelli [6].

Our goal is to give a precise description of the asymptotic behaviour of the scalar
(complex) field φ, and the gauge Aµ, evolved from data at t = 0. The results will
be expressed in terms of null frame. The first two members of this are the null
generators of forward and backward light cones which we define respectively as:

L = ∂t + ∂r, L = ∂t − ∂r

where r = |x|. To complete the frame, we choose vector fields {SB}B=1,2 which
form an orthonormal basis on each sphere {r = const.}, for each fixed time slice.
The potential Aµ can be expressed in the frame {L,L, S1, S2}, for instance writing
L = Lµ∂µ, we have

AL = LµAµ = A0 + ωjAj , AL = LµAµ = A0 − ωjAj .

For later use, we note that the coefficients of the frame can also be raised and
lowered using the metric m, thus Lµ = mµνL

ν , and Lµ = Lµ(ω) is a function of
ω ∈ S2 only.

Theorem 1 ([1]). Assume that the data for (1) are sufficient smooth, localised,
and small. Then for any q ∈ R, ω ∈ S2 the limits

Φ0(q, ω) = lim
t→∞

(
rei

1
4π

q ln(1+r)φ
)(
t, (t+ q)ω

)
,

1

4π
q = lim

t→∞
(rAL)

(
t, (q + t)ω

)

and

ASB
(q, ω) = lim

t→∞
(rASB

)
(
t, (q + t)ω

)
, A0

L(q, ω) = lim
t→∞

(rAmodL )
(
t, (t+ q)ω

)
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exist, where we define

AmodL (t, rω) = AL
(
t, rω

)
− 1

2r

∫ ∞

r−t
JL(η, ω) ln

(η + t+ r

η + t− r

)
dη

and

JL(q, ω) = −2ℑ
(
Φ0(q, ω)∂qΦ0(q, ω)

)
.

Note that for free solutions to the wave equation, ✷u = 0, on R1+3, the limit
limt→∞(ru)(t, (q + t)ω) exists, and the difference decays like r−2, i.e. one order
better than the decay of u in the exterior t < 1

2 |x|. Hence the previous theorem
shows that at null infinity, ASB

behaves like a free wave, AL converges to the
charge q, and when compared to the evolution of a free wave, the scalar field φ
has phase correction at null infinity. On the other hand the bad component of
gauge AL only behaves like a free wave after subtracting off a term with a log
growth. In particular, AL has a log loss of decay when compared to the free wave
equation.
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Local time-stepping schemes for wave equations

Constantin Carle

(joint work with Marlis Hochbruck)

We consider spatial discretizations of the linear acoustic wave equation

∂ttu = ∆u in (0, T )× Ω

on a bounded domain Ω equipped with Dirichlet boundary conditions and initial
values. Our interest is in locally refined meshes consisting mostly of coarse mesh
elements but also containing a small number of tiny elements.

On such meshes numerical time integration of the resulting semidiscrete equa-
tion

u′′ + Lu = 0, u(0) = u0, u′(0) = v0

with an explicit scheme can be very tedious since the methods are only stable under
a CFL condition: up to a constant, the timestep τ is restricted by the diameter
of the smallest element in the mesh. To circumvent this issue local time-stepping
schemes are popular, see, e.g., [1]. Using an explicit scheme with a large timestep
τ on the coarse part of the mesh and the same scheme with a smaller timestep
τ/p on the fine part of the mesh (p ∈ N) one obtains schemes which hopefully are
stable under a CFL condition depending only on the coarse part of the mesh.

In [1] an energy-conserving local time-stepping scheme based on the leapfrog
method was derived. A stability and convergence analysis of this scheme was
recently given in [3]. However, the proof of stability requires a CFL condition
depending on the fine part of the mesh.

It can be shown that the local time-stepping scheme in [1] is closely related
to leapfrog-Chebyshev schemes which were first proposed in [2, 6]. The following
generalization motivated by [5] was recently constructed and analyzed in [4]

un+1 − 2un + un−1 = −P (τ2L)un,
u0 = u0, u1 = u0 + τP ′(τ2L

)
v0 − 1

2P
(
τ2L

)
u0,

where

(1) P (z) = 2− 2
Tp(ν)

Tp
(
ν − z

αp

)
, αp = 2

T ′

p(ν)

Tp(ν)
, ν ≥ 1,

and Tp is the pth Chebyshev polynomial of first kind. Then the local time-stepping
scheme in [1] can be reformulated as

un+1 − 2un + un−1 = −τ2P̃ (τ2LR)Lun,

where P̃ (z) = P (z)/z with P defined in (1) for ν = 1 and R is a restriction matrix
corresponding to the degrees of freedom belonging to the fine part of the mesh.

Using this relation and the generalized leapfrog-Chebyshev scheme we want to
construct local time-stepping schemes for which one can prove stability under a
CFL condition depending only on the coarse part of the mesh.
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Discrete conservation laws for finite element discretizations of
multisymplectic PDEs

Elena Celledoni

(joint work with James Jackaman)

1. Introduction

A multisymplectic PDE in one time and one space dimension can be written as a
first order system in the form

K zt + L zx = ∇S (z) ,

where K and L are skew-symmetric matrices, z ∈ Rd, and S (z) is smooth. A
multisymplectic method is a space-time approximations of such a PDE, and is
often based on a finite differences discretization. Such methods are designed to
preserve a discrete variant of the conservation law of multisymplecticity, [2], [3].
Unfortunately, discretizations of multisymplectic PDEs (e.g. multisymplectic dis-
cretizations) are sometimes not well defined locally, and/or globally, or fail to have
solutions which exist or are unique [8]. Here we consider space-time finite element
discretizations focusing on the preservation of the discrete local conservation laws
of momentum and energy, deriving a numerical integrator capable of simultane-
ously conserving nonlinear conserved quantities of different orders. These numer-
ical integrators possess stable unique solutions, and are therefore well-posed and
ideal for long time simulations.
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2. Variational space-time formulation

Let u = u(t, x) where t ∈ [0, T ] and x ∈ S1 = [0, 1) periodic and consider the
space-time variational problem

(1) 0 = δ

∫

[0,T ]×S1

L(u, ut, ux) dxdt,

where L(u, ut, ux) is some given Lagrangian density function. Multisymplectic
PDEs arise naturally from such problems through the following methodology. In-
troducing the auxiliary variables

v :=
∂L

∂ut
, w :=

∂L

∂ux
,

and assuming that ut = ut(v), ux = ux(w) are invertible functions, we can define
the Hamiltonian density

S (u, v, w) := vut + wux − L(u, ut(v), ux(w)).

We may then express the variational principle by means of S (u, v, w) in the new
variables as

0 = δ

∫

[0,T ]×S1

(vut + wux − S (u, v, w)) dxdt,

and through taking variations (ψu, ψv, ψw)
T
=: ψ we obtain the integral form of

the multisymplectic PDE

(2) 0 =

∫

[0,T ]×S1

(K zt + L zx −∇S (z)) · ψ dxdt, ∀ψ,

where

z :=



u
v
w


 , ψ :=



ψu
ψv
ψw


 , K =




0 −1 0
1 0 0
0 0 0


 , L =




0 0 −1
0 0 0
1 0 0


 .

This underlying variational nature of multisymplectic PDEs advocates to space-
time finite elements being a desirable discretization methodology.

3. Numerical discretization

We shall discretize the integral form of the multisymplectic PDE (2) using finite
elements, however, the exact nature of the finite element formulation typically
depends on the underlying PDE being considered. While multisymplectic PDEs
can be hyperbolic, this is not necessarily the case, and they may be parabolic in
nature. This indicates that, in practice, the optimal approach may be to discretize
space and time differently. This is reflected in our finite element scheme, which is
conforming and steps forward in time, but is noncomforming and solved globally
in space. We note the related works of [1] in which space-time finite element meth-
ods were developed for parabolic problems, and [9] where multisymplectic finite
element discretizations have been designed for a class of elliptic and hyperbolic
problems.
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3.1. Space-time discretization. We partition our spatial and temporal domain
as follows:

Time domain discretization temporal finite element element length

[0, T ], 0 := t0 < t1 < · · · < tN =: T In := (tn, tn+1) τn := tn+1 − tn.

Space domain discretization spatial finite element element length

S1 := [0, 1) 0 := x0 < x1 < · · · < xM := 1 Jm := (xm, xm+1) hm := xm+1 − xm.

To facilitate our exposition we shall use Kj to denote either of In or Jm and
define the finite element space as follows. Let Pr(Kj) be the space of polynomials
of degree r on Kj ⊂ R. We define the discontinuous finite element space as

Vr(S
1) = {Z | Z|Kj

∈ (Pr(Kj))d, j = 0, . . . , J − 1},
and its continuous counterpart as

V
C
r (S

1) = Vr(S
1) ∩ C0(S1).

In addition we write Z+
m := Z(x+m) = lim

x→x+
m

Z(x), Z−
m := Z(x−m) = lim

x→x−

m

Z(x) and

define the following discontinuous operators:

• JZmK = Z−
m − Z+

m, the jump;
• {Zm} = 1

2 (Z
−
m + Z+

m), the average;
• G the discrete space derivative such that

∫

S1

G(Z) · φdx =
M−1∑

m=0

∫

Jm

Zx · φdx−
M−1∑

m=0

JZmK · {φm}, ∀φ ∈ Vp
(
S1
)
.

With this notation in mind we may define the space-time finite element method.

3.2. Space-time finite element method. The space-time finite element space
is the tensor product of time and space finite elements:

V
C
q+1([0, T ])× Vp(S

1).

The method is given by seeking Z ∈ VCq+1([0, T ])× Vp(S
1) such that

∫

[0,T ]×S1

(KZt + LG(Z)−∇S (Z)) · φdxdt = 0 ∀φ ∈ Vq([0, T ])× Vp(S
1)

Z(0, x) = Πz(0, x),

(3)

where Π is the L2 projection into Vp(S
1). Note that since φ is allowed to be

discontinuous in time we can localise our method restricting it to each finite ele-
ment in time In to obtain a time-stepping method, see [4], and hence a practical
implementation for both parabolic and hyperbolic problems. Localisation in space
is also formally possible, however, the operator G acts globally.

Theorem 1 (Discrete conserved quantities). Consider energy and momentum
densities and fluxes:

ED := 1
2G(Z) · LZ+ S (Z) EF := − 1

2Zt · LZ
MD := − 1

2G(Z) ·KZ MF := 1
2Zt ·KZ+W · 1
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where W ∈ Vq(In) × Pp(Jm) depends only Z and is consistent with S (Z).1 The
numerical solution Z, see (3), conserves a discrete momentum and energy locally
in time, i.e.,

0 =

∫

In×S1

MD
t + G(MF ) dxdt

and

0 =

∫

In×S1

EDt + G(EF ) dxdt,

respectively. Furthermore, these conservation laws can be localised in space.

Theorem 1 guarantees stability of our space-time finite element scheme over
time, and in particular it can be seen that conservation of momentum leads to
stability in a semi-norm. In addition, to the best of the author’s knowledge, the
simultaneous conservation of momentum and energy has not been seen before
for problems of this type, and for some multisymplectic PDEs (such as the KdV
equation) allows us to simultaneously conserve multiple nonlinear invariants of
different orders. Further to the method being stable, it’s solutions also satisfy the
required existence and uniqueness properties. This can be seen for the temporal
discretization following methodology outlined in [7], and the spatial discretization
following [6].
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1W is such that for m = 0, . . . ,M − 1∫
In×Jm

G(W) · χ−∇S(Z)⊙ Π(G(Z)) · χdx dt = 0, ∀χ ∈ Pq(In)× Pp(Jm),

where Π the L2 projection onto Pq(In)× Pp(Jm) and ⊙ is the pointwise product.
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Uniformly accurate methods for highly-oscillatory problems with
time-dependent vanishing frequency

Philippe Chartier

(joint work with M. Lemou, F. Méhats and G. Vilmart)

Highly-oscillatory evolution equations of the form

U̇ ǫ(t) :=
d

dt
U ǫ(t) =

1

ǫ
AU ǫ(t) + f

(
U ǫ(t)

)
, U ǫ(0) = U0, 0 ≤ t ≤ T,

where T is a strictly positive fixed time, independent of ǫ, and where the operator
A is supposed to be diagonalizable and to satisfy exp(2πA) = I, have received
considerable attention in the literature, from the points of view of both asymp-
totic analysis and numerical methods. However, allowing the parameter ǫ to take
values in a whole interval of the form ]0, 1], prevents the use of numerical methods
constructed for specific regimes. As a matter of fact, standard methods from the
litterature typically have error bounds expressed as powers of the step-size h of
the form

error ≤ C
hp

ǫq
, p > 0, q > 0,

where p is the order of the method and q is equal to p or p − 1: while suitable
for the regime ǫ close to 1, they require formidable computational power for small
values of ǫ. At the other end of the spectrum, methods based on averaging and
designed for small values of ǫ typically admit error bounds of the form

error ≤ C(hp + ǫq), p > 0, q > 0,

where p is the order of the method and q is the order of averaging: they thus
encompass an incompressible error for larger values of ǫ.

In this talk, our objective is to construct uniformly accurate methods, i.e. with
an error (and at a cost) independent of the value of ǫ ∈]0, 1],

error ≤ Chp,

for equations whose frequency of oscillation depends on time. More precisely, we
consider systems of differential equations of the form

U̇ ǫ(t) =
γ(t)

ǫ
AU ǫ(t) + f

(
U ǫ(t)

)
∈ Rd, U ǫ(0) = U0, 0 ≤ t ≤ T,(1)

where A ∈ Rd×d and where the function f is assumed to be sufficiently smooth.
The parameter ǫ again lies in the whole interval (0, 1] and the real-valued function
γ is assumed to be continuous on [0,+∞).

Many semi-classical models for quantum dynamics also assume the form of
highly oscillatory PDEs with a varying frequency , e.g. quantum models for surface
hopping, graphene models, or quantum dynamics in periodic lattice. In such
applications, the frequency γ may depend on time and measures the gap between
different energy bands, while the parameter ǫ is nothing but the Planck constant.
The main novel assumption in this work is that the function γ vanishes at some

instant t0.
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Our goal is to investigate problem (1) under these new circumstances, from
both the asymptotic analysis (when ǫ → 0) and the numerical approximation
viewpoints. We emphasize that this situation is not covered by the standard the-
ory of averaging and that recent numerical approaches by the same authors are
ineffective. All techniques therein indeed rely fundamentally on the assumption
that γ(t) ≥ γ0 uniformly in time, for some constant γ0 > 0, and cannot be trans-
posed to the context under consideration here
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Symplectic non-squeezing and Hamiltonian PDE

Dimitrije Cicmilović

(joint work with Herbert Koch)

In [4], Gromov has formulated and proved what is now called symplectic non-
sqeezing theorem in the finite-dimensional set-up. This paper has been seen as a
revolution in symplectic topology and has inspired a lot of new research in this
area. The result states

Theorem 1. (Gromov, 1985) Let Br := {z ∈ Cn : ‖z‖ ≤ r} and ΣR = {z ∈ Cn :
|z1| ≤ R}. Then there exists a symplectomorphism ϕ such that ϕ(Br) ⊂ ΣR if and
only if r ≤ R.

The validity of such statement for infinite dimensional Hilbert spaces remains
an open problem. Motivated by finite dimensional case, we call a PDE a Hamil-
tonian PDE if it can be rewritten as

u̇(t) = J∇H(u(t)),

for an almost complex structure J in a Hilbert symplectic space (H, ω). Hamil-
tonian diffeomorphisms preserve the symplectic structure, which presents us with
one invariant of a Hamiltonian PDE.

First results for the infinite dimensional case are due to Bourgain ([2]) for cubic
NLS on tori, followed by Kuksin ([5]) for compact perturbations of linear flows,
Colliander, Keel, Staffilani, Takaoka, Tao ([3]) for KdV, Killip, Visan and Zhang
([7],[8]) for cubic NLS on the line and plane, and others. However, these results
proved the non-squeezing property of aforementioned flows and were obtained by
going through a finite dimensional approximation of the Hamiltonian PDE while
depending on the structure of the equation, and using Gromov’s original result.
Natural questions arise:
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1) Does a symplectic diffeomorphism in infinite dimensions which is squeezing
exist?

2) Does there exist a direct proof of non-squeezing in Hilbert space?

The only previous result on 2) is a recent paper by Abbondandolo and Majer
([1]), under restrictive geometric condition that the image of the ball is convex.
Our aim is to obtain a direct proof of non-squeezing under other, more natural
conditions. We want to point out that our result is not implied, nor implies [1].

Moreover, another interest in non-squeezing property of a Hamiltonian PDE
is that it provides some qualitative information about its flow. For example, it
forbids stable attractors and uniform evacuation of fixed frequency for an open set
of initial data.

Finally, we would like to address the case of wave maps in 2 dimensions, as it
is still not clear how to formulate symplectic non-squeezing.

We obtain the following result:

Theorem 2. (Cicmilović, Koch) Let ϕ : (H, ω) → (H, ω) be a symplectomorphism
such that ϕ and ϕ−1 are continuous with respect to weak topology on H and such
that the map

Dϕ : (H, τweak) → (B(H), ‖ · ‖op)
is continuous. Then ϕ(Br) ⊂ ΣR if and only if r ≤ R.

The symplectomorphism ϕ induces an almost complex structure on H given by

J = ϕ∗Jst = dϕ ◦ Jst ◦ dϕ−1.

The analogue to the holomorphic discs are maps u : (D, i) → (H, J) such that

J ◦ du = du ◦ i,
and we call them J-holomorphic discs. The proof of the theorem is based on
the existence of J-holomorphic disc such that its boundary lies in ∂ΣR, has area
equal to R2π and goes through the point ϕ(0).

Then the inequality is obtained from the chain of (in)equalities

r2π ≤
∫

S

ω =

∫

ϕ(S)

ω ≤ R2π.

First one follows from the monotonicity result of Lelong for holomorphic discs,
the last one from the properties of the constructed disc and from integration over
a smaller set, and the middle one from the preservation of symplectic structure
under ϕ.

For establishing existence of previously mentioned disc, we follow the approach
of Sukhov and Tumanov in [6]. More precisely, rewriting the J-holomorphic con-
dition in complex variables gives the equation

∂̄u(z) = AJ (u(z))∂u(z).(1)

which we call Beltrami type equation. We call AJ a complex representation of
J and define it as unique C-linear operator such that AJ h̄ = (Jst+J)

−1(Jst−J)h
holds for every h ∈ H. The assumptions on the symplectomorphism allow us to
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generalize finite dimensional approach in [6] and prove existence of the mentioned
disc.

Currently, we are working on applications to mass subcritical and critical case for
NLS.
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Around self-similar solutions to the modified Korteweg-de Vries
equation

Raphaël Côte

(joint work with Simão Correia and Luis Vega)

We are interested in the dynamics near self-similar solutions for the modified
Korteweg-de Vries equation:

∂tu+ ∂3xxxu+ ǫ∂x(u
3) = 0, u : Rt × Rx → R.(mKdV)

The signum ǫ ∈ {±1} indicates whether the equation is focusing or defocusing; in
our framework, it will play no major role.

The (mKdV) equation enjoys a scaling invariance: if u is a solution then

uλ(t, x) := λ1/3u(λt, λ1/3x)

is also a solution to (mKdV). As a consequence, the self-similar solutions, which
preserve their shape under scaling

S(t, x) = t−1/3V (t−1/3x)

are of special interest. Self-similar solutions play an important role for the (mKdV)
flow: they exhibit an explicit blow up behavior, and are also related with the long
time description of solutions. Even for small and smooth initial data, solutions
display a modified scattering where self-similar solutions naturally appear: we
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refer to Hayashi and Naumkin [7, 6], which was revisited by Germain, Pusateri
and Rousset [4] and Harrop-Griffiths [5].

Self-similar solutions and the (mKdV) flow are also relevant as a model for
the behavior of vortex filament in fluid dynamics. More precisely, Goldstein and
Petrich proposed the following geometric flow for the description of the evolution
of the boundary of a vortex patch in the plane under the Euler equations:

∂tz = −∂sssz + ∂sz̄(∂ssz)
2, |∂sz|2 = 1,

where z = z(t, s) is complex valued and parametrize by its arctlength s a plane
curve which evolves in time t. A direct computation shows that its curvature solves
the focusing (mKdV) (with ǫ = 1), and self-similar solutions with initial data

U(t)⇀ cδ0 + α v.p.

(
1

x

)
as t→ 0+, α, c ∈ R,(1)

correspond to logarithmic spirals making a corner. This kind of spirals are observed
in a number of fluid dynamics phenomena (we refer to [9] for more details). We
were also motivated by the works by Banica and Vega (see for example [1]) on
nonlinear Schrödinger type equations.

Our goal in this project is to study the (mKdV) flow around self similar solutions.
Our first result is the description of self-similar solutions in Fourier space.

Theorem 1. Given c, α ∈ R small enough, there exists unique a ∈ R, A,B ∈ C

and a self-similar solution S(t, x) = t−1/3V (t−1/3x), where V satisfies

for p ≥ 2, e−itp
3

V̂ (p) = Aeia ln |p| +B
e3ia ln |p|−i 8

9
p3

p3
+ z(p),(2)

for |p| ≤ 1, e−itp
3

V̂ (p) = c+
3iα

2π
sgn(p) + z(p),(3)

where z ∈ W 1,∞(R), z(0) = 0 and for any k < 4
7 , |z(p)|+ |pz′(p)| = O(|p|−k) as

|p| → +∞.

Hence self-similar solutions exhibit logarithmic oscillations for large frequencies
(which are related to the critical nature of the problem), and if α 6= 0, a jump at
frequency p = 0 (but no oscillations). We are also able to related the constants
involved (a,A,B) with those appearing in the description of V in physical space
(as in [3] for example).

The proof consists in writing the problem as a fixed point. We compute ex-
pansions for the first three Picard iterates, for the function and is derivative; and
we are able to control the remainder term in weighted L∞ based spaces indicated.
The techniques involve essentially stationary phase analysis with a careful control
on the error.

Our second result is concerned with local well posedness in a critical space which
contains the self-similar solutions constructed above. We work with the norm (for
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space time functions):

‖u‖E (I) := sup
t∈I

‖u(t)‖E (t),(4)

‖v‖E (t) := ‖Ĝ(−t)v‖L∞(R) + t−1/6‖∂pĜ(−t)v‖L2((0,+∞)),(5)

where G(t) denote the linear KdV group and I ⊂ (0,+∞) is a time interval. The
above norm is scaling invariant, in the sense that ‖uλ(t)‖E (t) = ‖u(λt)‖E (λt); also
it is finite for the self-similar solutions of Theorem 1. Our result is as follows.

Theorem 2. Let u1 ∈ E (1). Then there exist T > 1 and a solution u ∈
E ([1/T, T ]) to (mKdV) such that u(1) = u1.

Furthermore, one has forward uniqueness. More precisely, let 0 < t0 < t1 and
u and v be two solutions to (mKdV) such that û, v̂ ∈ C ([t0, t1], L

∞) and

‖u‖E ([t0,t1]), ‖v‖E ([t0,t1]) < +∞.

If u(t0) = v(t0), then for all t ∈ [t0, t1], u(t) = v(t).

For small data in E (1), the solution is actually defined for large times, and one
can describe the asymptotic behavior. This is the content of our last main result.

Theorem 3. There exists δ > 0 small enough such that the following holds.
If ‖u1‖E (1) ≤ δ, the corresponding solution satisfies u ∈ E ([1,+∞)). Further-

more, let S be the self-similar solution such that

Ŝ(1, 0+) = û1(0
+) ∈ C.

Then ‖u(t) − S(t)‖L∞ . ‖u1‖E (1)t
−5/6− and there exists a profile U∞ ∈ Cb(R \

{0},C), where |U∞(0+)| = limp→+∞ |Ŝ(1, p)| is well-defined, and
∣∣∣∣ũ(t, p)− U∞(p) exp

(
i

4π
|U∞(p)|2 log t

)∣∣∣∣ .
δ

〈p3t〉 1
12

‖u1‖E(1).

As a consequence, one has the asymptotics in the physical space. In the setting
of the above Theorem 3, if we let

y =

{√
−x/3t, if x < 0,

0, if x > 0.

one has, for all t ≥ 1 and x ∈ R,∣∣∣∣u(t, x)−
1

t1/3
Ai
( x

t1/3

)
U∞ (y) exp

(
i

6
|U∞(y)|2 log t

)∣∣∣∣ .
δ

t1/3〈x/t1/3〉3/10 .

The main challenge we faced in proving Theorem 2 is that we cannot work
with smooth data, due to the jump at frequency 0. Also, the multiplier estimates
suitable for the space E(I) require computations on a non linear solution, and
are not amenable to a fixed point scheme. Therefore, we had to rely on the
resolution of an approximate problem first, followed by a compactness argument.
It turns out that the approximation has to obey several constraints, which could
ultimately be met by following a Friedrichs scheme with a suitably twisted cut-off
in frequency. The approximate problem is solved by fixed point, in a space where
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smooth function are still not dense. The compactness argument is then fairly
standard. Theorem 3 follows a similar path, the expansion as t → +∞ being
merely a byproduct of the analysis.

For the forward uniqueness result of Theorem 2, we consider the variation of
an localized L2 quantity of the difference w of two solutions. Our solutions do
not belong to L2, but we use the improved decay of functions in E (I) to make
sense of it. If the cut-off is furthermore chosen to be non decreasing, we can make
use of a monotonicity property to control the variations of this L2 quantity and
conclude via a Gronwall type argument. This kind of monotonicity property was
first observed and used by Kato, and is a key feature in the study of the dynamics
of solitons by Martel and Merle [8]. To our knowledge, it is however the first time
that is used in the context of self-similar solutions.

We are now concerned with the behavior near blow up time t = 0: in particular,
whether the self-similar blow up is stable, and the understanding of perturbations
of self-similar solutions.
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Global almost radial solutions to supercritical dispersive equations
outside the unit ball

Piero D’Ancona

I consider a defocusing semilinear wave equation

�u+ |u|p−1u = 0, t ≥ 0, |x| > 1

on the exterior of the unit ball of Rn, in dimension n = 3 or larger, with Dirichlet
boundary conditions
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In a first result, we prove that for (large) radial initial data a global bounded
solution exists for arbitrary power p, and if a suitable weighted norm of the data
is bounded, the solution decays at least like t−1 as t → +∞. Higher Sobolev
regularity of the initial data propagates and Sobolev norms do not inflate.

In a second result, we prove a pointwise dispersive estimate for solutions to the
exterior problem for linear wave equation with a decaying potential depending on
both time and space

�u+ V (t, x)u = 0.

The potential is assumed to decay both in time and in space, at a sufficiently fast
rate. This result is based on the methods of [3] and [2].

In the main result, we prove that the radial solution previously constructed is
stable for small perturbations of the initial data in a weighted high Sobolev norm of
order O(n) of Christodoulou type (studied in [1]), and for sufficiently high powers
p > O(n). This produces a fanily of global large solutions to the supercritical wave
equation on the exterior of the ball, with arbitrarily high power nonlinearity.
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Splitting methods for highly oscillatory differential equations

Benjamin Dörich

(joint work with Marlis Hochbruck)

We consider the wave equation

q′′(t) = ∆q(t) +G(q(t)), q(0) = q0, q′(0) = q′0

on a bounded domain Ω ⊂ Rn equipped with homogeneous Dirichlet boundary
conditions in the space L2(Ω) × H−1(Ω) and we investigate its time integration
by trigonometric integrators [2, 3, 4]. If G : L2(Ω) → L2(Ω) is bounded and if the
solution q only satisfies the finite energy condition

‖q(t)‖2H1 + ‖q′(t)‖2L2 ≤ K, t ∈ [0, T ],

then standard analysis based on Taylor expansion (and thus requiring at least
q′′) is not applicable. In fact, in numerical experiments one can observe order
reduction and resonances at certain time steps related to the frequencies in the
system. This is due to a lack of regularity of the solution.
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To circumvent these problems, filters depending on the step size and the stiff
linear part of the equation can be used. For appropriate even functions φ, ψ
satisfying in particular

φ(0) = ψ(0) = 1, φ(kπ) = ψ(kπ) = 0, k = 1, 2, 3, . . . ,

one defines filters as

Φ̂ = φ
(
τ(−∆)1/2

)
, Ψ̂ = ψ

(
τ(−∆)1/2

)
.

Trigonometric integrators can then be written as splitting methods applied to an
averaged equation, where the nonlinearity G is replaced by

G̃(q) = Ψ̂G(Φ̂q).

In [2, 3, 4], it has been shown that these modified schemes are convergent of
second order without a CFL condition. Roughly speaking these filters smooth the
nonlinearity in such a way that resonances cancel out.

Recently, in [1], the relation between trigonometric integrators and splitting
methods was used to prove error bounds by techniques developed for splitting
methods. As our long term goal is the analysis of full discretizations of wave
equations, we first want to generalize the methods and their error analysis to an
abstract Hilbert space framework which fits to splitting methods and allows for
an abstract understanding of the filters. This should allow to consider much more
general nonlinearities G as well as different classes of averaged methods.
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Low-rank approximation of the Boltzmann equation with applications
to fluid flow

Lukas Einkemmer

Fluids play a pivotal role in virtually all fields of science and engineering. The
governing partial differential equations (PDEs) are the Navier–Stokes equations.
These equations are usually discretized on a grid in order to obtain a numerical
solution. Historically finite difference and finite volume methods have been used
extensively, while in recent years discontinuous Galerkin schemes have become
more common. However, especially in the study of turbulence by direct numerical
simulation (DNS), spectral methods are often preferred.
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This approach is very mature and has been extensively used in practice. How-
ever, there are also a number of disadvantages. For example, numerical schemes
need to satisfy the CFL condition for sound waves (which in the weakly com-
pressible setting can be multiple orders of magnitude faster than the flow speed),
the equations are relatively complicated (which puts significant constraints on the
design of numerical methods), and generating an appropriate mesh can be difficult.

Here we want to propose a different approach, that at first sight is unlikely to
succeed. It is well known that instead of the Navier–Stokes equation we can also
solve the Boltzmann equation

∂tf(t, x, v) + v · ∇xf(t, x, v) =
1

ǫ
(f eq(t, x, v) − f(t, x, v)),

where

f eq(t, x, v) ≈ ρ(t, x)

(2π)d/2
exp

(
− 1

2 (v − u(t, x))2
)
.

The moments of f

ρ(t, x) =

∫
f(t, x, v) dv, ρu(t, x) =

∫
vf(t, x, v) dv

then satisfy the Navier–Stokes equations, where ǫ is essentially the viscosity of the
fluid. That is, ǫ is usually a small parameter. Mathematically, this correspon-
dence between the kinetic approach, i.e. solving the Boltzmann equation, and the
fluid approach, i.e. solving the Navier–Stokes equations, can be shown by using a
Chapman–Enskog expansion (see, for example, [1]).

However, kinetic equations, such as the Boltzmann equation, are extremely
challenging from a numerical point of view. This is mainly due to the fact that
the problem is posed in an up to six-dimensional phase space. Three dimensions in
x and three dimensions in v. Thus, even a very coarse space discretization has an
immense overhead compared to methods that directly discretize the Navier–Stokes
equations.

If the parameter ǫ is small, the collision operator (the right hand side of the
Boltzmann equation) is strong. This implies that as we evolve the system in time
f stays close to the equilibrium distribution f eq. Physically this means that the
solution stays close to thermodynamic equilibrium and consequently only a small
part of the phase space is accessible.

This observation gives us the opportunity to construct a numerical scheme which
can be implemented efficiently. To do that we consider the weakly compressible
case. In this setting we can expand the equilibrium distribution in u (the flow
speed u is a small parameter compared to the speed of sound)

f eq(t, x, v)

=
ρ(t, x)

(2π)d/2
exp

(
−v

2

2

)(
1 + v · u(t, x) + (v · u(t, x))2

2
− u(t, x)2

2

)
+O

(
u3
)
.
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This representation is in the form of a low-rank approximation with rank r = 10,
which we exploit in the numerical algorithm. More specifically, we write the solu-
tion of the Boltzmann equation as follows

f(t, x, v) =
∑

ij

Xi(t, x)Sij(t)Vj(t, v),

where Sij is an r × r matrix. This formulation is on the continuous level, but
once discretized in space it can be interpreted as a singular value decomposition
of f . To make this into a viable numerical algorithm we have to derive equations
of motions for the low-rank factors Xi(t, x), Sij(t), and Vj(t, v). This has been
done for the matrix case in [11] and was later extended to kinetic problems in the
context of computational plasma physics [9, 8, 10]. Such methods are interesting
in plasma physics as solving the full six-dimensional Vlasov–Maxwell or Vlasov–
Poisson equations is very expensive and requires significant HPC resources (see, for
example, [16, 2, 3, 5, 6, 7]). The main idea of the dynamic low-rank approach is to
project the equations of motion onto the manifold of low-rank functions with fixed
rank. Unfortunately, this results in an ill-posed problem. However, by employing
the projector splitting integrator introduced in the seminal paper [12] this can be
remedied (let us also remark that that these techniques have been extended to the
tensor case [14, 13, 15, 9]). We then obtain the following equations
Subproblem 1: (only depends on x but not on v)

−∂tKj =
∑

l

c1jl · ∇xKl −
1

ǫ

(
Kj − c3j(K)ρ(K)

)
for Kj =

∑

i

XiSij .

Subproblem 2: ODE

∂tSij =
∑

lk

(d1il · c1jk)Slk +
1

ǫ
(Sij − eij(S)) .

Subproblem 3: (only depends on v but not on x)

−∂tLi = −
∑

l

(d1il · v)Ll − 1
ǫ

(
Li − d3i (L)

)
for Li =

∑

j

SijVj .

We note that a QR decomposition is required to obtain Xi and Sij from Kj (in
subproblem 1) and to obtain Vj and Sij from Li in subproblem 3. For more details
on the coefficients and the algorithm we refer the reader to [4].

This formulation is numerically tractable since only three-dimensional problems
have to be discretized. At first sight it might not be entirely clear why discretizing
the equations of motion for the low-rank factors would be advantageous com-
pared to the Navier–Stokes equations. However, despite their appearance these
equations are much simpler than the Navier–Stokes equations. For example, the
transport term is a linear constant coefficient advection. This greatly facilitates
the use of upwind or spectral methods. In contrast, for the Navier–Stokes equa-
tions the transport is a system of highly nonlinear conservation laws. Moreover,
the nonlinearity is completely local in space and can be computed pointwise. For
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numerical results and a more detailed comparison we refer the reader to [4]. A
further interesting property of this low-rank approach is that it enables us to in-
corporate certain kinetic effects in a fluid simulation. This would be advantageous
for plasmas where classical magnetohydrodynamics is insufficient, but fully kinetic
simulations are too expensive.
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Linearized wave turbulence convergence results

Erwan Faou

We consider nonlinear three-waves dynamics of the form

(1)
d

dt
Uk(t) = iωkUk(t) + εQNk (U,U) + gk(δ, U)

where k = (kx, ky) ∈ DN := D ∩ Z2/N where D is a bounded set of R2, and
where Uk(t) are typically renormalized Fourier coefficients of a sequence of N -
periodic lattice points U(t, j, ℓ), (j, ℓ) ∈ Z2, or of a function U(t, x, y) defined on
a large torus or size N . The nonlinearity QN is quadratic of convolution type
and symplectic in some Hamiltonian variables. The frequency vector ωk is the
trace of a smooth real function on the discrete set DN and is skew symmetric
with respect to k. The term gk(δ, U) models a random forcing in the angles of the
complex coefficients Uk(t), of strength δ. We moreover make the hypothesis that
(1) preserve the L2 norm of the Uk, which guarantees the existence of an invariant
measure corresponding to the equirepartition of energy amongst all the modes.

Such models can be derived from nonlinear lattice equations like Kadomtsev–
Petviashvili (KP) lattices, finite differences or spectral approximations of real
quadratic semilinear real wave equation, or real Hamiltonian partial differential
equation set of a large periodic domain of size N , with regularized nonlinearity
truncated in frequency. To fix the ideas, we assume that the linear frequencies are
given by the formula

(2) ωk = k3x + ηk2yk
−1
x ,

corresponding to the frequency of the continuous KP equation. The parameter
η > 0 is given. Note that in any case, when N → ∞, (1) becomes a dispersive
equation with continuous spectrum in the linear operator.

As explained in the book of Nazarenko (see [7]) such equations are universal
models for two-dimensional real nonlinear waves. In the present paper, we consider
the (1) in the framework of wave turbulence theory, see [8], [9], [6], [5], [3], [7], which
means that we consider random initial data, and are interested in the statistical
description of the solution over long times. The external forces gk(δ, U) models
the classical Random Phase Assumption invoked in wave turbulence theory by a
stochastic forcing in the angles of the complex coefficients Uk(t).

We will consider asymptotic regimes with respect to the following three param-
eters:

• Continuous limit in the frequency set, i.e. N → ∞. The model thus
degenerates to a dispersive equation.

• Small nonlinearity, i.e. ε→ 0, the system is thus weakly non linear.
• Small noise: The random phase forcing is driven by independent Brownian
motions in the angles of the coefficients Uk(t) with variance δ → 0.

Wave turbulence theory predicts that in a some asymptotic regimes with respect
to these three parameters, then the expectations E |Uk(t)|2, k = (kx, ky) ∈ D ∩
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Z2/N are well approximated in some time scale by r(t, k), k ∈ D ⊂ R2 the solution
of a wave kinetic equation of the form

(3) ∂tr(t, k) =

∫
k=j+m

ωk=ωj+ωm

Qk
mj r(t, j) r(t,m) dΣ(j,m),

where Qk
mj are real coefficients. The measure dΣ(j,m) is defined as the micro-

canonical measure on the resonant manifold. This kinetic equation of Boltzmann
type possesses stationary solutions typically of the form |k|−α describing Kol-
mogorov spectra. Amongst these solutions, Rayleigh-Jeans spectra are specific
stationary solutions corresponding to equirepartition of the energy according to
the invariant quantities of (1). In the case of the L2 norm, which is an invariant
of (1), it corresponds to constant stationary solutions r(t, k) = σ2 of (3), for some
σ > 0, which is well defined as the set of frequencies considered is here bounded.

In our setting, for all given set of parameter (N, ε, δ), these particular solutions
correspond to Gaussian invariant measures associated with the L2 norm of the
equation. If Uk = Pk + iQk with Pk and Qk real random variables, a sampling of
these measures can be done by drawing all random variables Pk and Qk according
to the same normal law N (0, σ2/2) for some σ > 0. For such an equirepar-
tited initial data, the law of the solution Uk(t) is stationary, and the momenta
E |Uk(t)|2 = σ2 are constant. We consider random initial data with small pertur-
bations of the variance σ2 of order O(1/Nα), α ≥ 1. Each of the modes Pk(0) and

Qk(0) are drawn with respect to normal laws with variance σ2

2 + 1
2Nα g0(k) where

g0(k) are functions depending smoothly on k. We thus have

(4) E|Uk(0)|2 = σ2 +
g0(k)

Nα
, α ≥ 1.

where η > 0 is a given parameter. Under these assumptions, the main result
proved in [1] can be stated as follows. We can identify the limit of the renormalized
fluctuations,

(5) ∀ t ∈ [0, T ], lim
δ→0

lim
ε→0
N→∞

Nα
(
E |Uk(

t

ε2
)|2 − σ2

)
= f(t, k) weakly,

and prove that f(t, k), k ∈ R2 satisfies the linearized kinetic equation on [0, T ]

(6) ∂tf(t, k) = σ2

∫
k=j+m

ωk=ωj+ωm

Qk
mj

(
f(t,m) + f(t, j)

)
dΣ(j,m),

with f(0,m) = g0(m), coming from the linearization of (3) around the stationary
solution r(t, k) = σ2. Weak convergence here means that we have to consider local
averages in k to obtain strong convergence of coarse-grained quantities at a larger
scale that the fine grid scale 1/N . A precise statement, expressed in Hamiltonian
variables, can be found in [1].

The second result in [1] shows that the role of the noise is crucial to obtain the
kinetic equation with the same random initial data. In generic situations, i.e. for
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almost all η > 0 (see (2)) we have for fixed t ∈ [0, T ],

(7) lim
N→∞

lim
ε→0

lim
δ→0

Nα
(
E |Uk(

t

ε2
)|2 − σ2

)
= g0(k)

contradicting (5) in this specific asymptotic regime. We can interpret this result
as the fact that in the absence of random forcing (δ = 0) and in the regime where
ε→ 0 first and then N → ∞, the system (1) admits generically a weak version of
Birkhoff normal form reduction preserving the actions over long times. It can be
explained by the fact that the discrete frequencies (2) which are given as traces of
a continuous function on the discrete grid are generically non resonant for almost
all η, with a control of the small denominators depending on N . We thus see that
in this regime, the random forcing is crucial to obtain a kinetic representation of
the dynamics.

As mentioned above, the noise is crucial in the emergence of the kinetic equa-
tion. Since the random phase forcing is acting only on the phase of the Fourier
coefficients, the system has a degenerate noise, and can be considered as a Langevin
system with small noise in large dimension. We can interpret the kinetic equation
as an effect of the hypoellipticity of the system which is due to the presence of the
nonlinearity.
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In Search of a Nonlinear Convergence Proof for Waveform Relaxation

Martin J. Gander

I have shown for in my presentation a detailed nonlinear convergence proof for the
parareal algorithm which has already appeared in [3], so I show here a nonlinear
convergence proof for a related Waveform Relaxation (WR) method, for which
various convergence results are announced in the literature, but without proof. WR
methods were invented in the research laboratory of IBM in Yorktown Heights in
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1982 for VLSI design by Lelarasmee, Ruehli and Sangiovanni-Vincentelli [6]. WR
is a time parallel solution method for systems of ordinary differential equations of
the form

(1) ∂tu(t) = f(t,u(t)), t ∈ (0, T ], u(0) = u0 ∈ R
d,

see [4] for an overview of four different classes of time parallel time integration
methods. To formulate a waveform relaxation algorithm for (1), one needs a

partition function f̃(t,v,w) such that

(2) f̃ (t,v,v) = f(t,v) ∀v ∈ R
d, t ∈ (0, T ].

For an initial guess u0(t) of the solution u(t) of (1), the waveform relaxation algo-
rithm associated with the partition function (2) computes then for k = 0, 1, 2, . . .

(3) ∂tu
k+1(t) = f̃(t,uk+1(t),uk(t)), t ∈ (0, T ], uk+1(0) = u0.

It is well known in the waveform relaxation community that the convergence of
(3) is similar to the convergence of the Picard iteration [9],

(4) ∂tu
k+1(t) = f(t,uk(t)), t ∈ (0, T ], uk+1(0) = u0.

which was proved by Lindelöf [7] to be superlinear,

(5) ||u− uk||T ≤ (LT )k

k!
||u− u0||T ,

where L is the Lipschitz constant of f and ||u||T := max0≤t≤T ||u(t)|| denotes the
maximum norm in [0, T ]. It is however not easy to find a proof of this result in
the literature: in [5, page 178] a convergence estimate of the form (5) is quoted
under mild assumptions on the splitting function, with references to [1, 2, 8] and
the original paper by Lindelöf [7]. The reference [2, equation (3.6)] contains the
same result with the comment ’it is easy to prove’. A different result with an extra
exponential term is shown in [1, Theorem 2.1], with the comment that ’by some
standard analysis, we can easily get the convergence result’. An estimate of the
form (5) is again given in [8, page 333, equation (2.13)] but for the case of linear
problems only using iterated kernel estimates, and this is also indicated as the
key reference for the result in the book [10, Theorem 2.5.4, see also the page just
before], but again without proof. We show now how the result announced in [1,
Theorem 2.1] with the extra exponential term can be proved. To do so, we need
two lemmas: the first one is the well known Gronwall Lemma in the integral form:

Lemma 1 (Gronwall Lemma (1919)). Let u(t), α(t) and β(t) be continuous func-
tions on [0, T ]. If β(t) ≥ 0 and

u(t) ≤ α(t) +

∫ t

0

β(s)u(s)ds ∀t ∈ [0, T ],

then

u(t) ≤ α(t) +

∫ t

0

α(s)β(s)e
∫

t

s
β(τ)dτds ∀t ∈ [0, T ].



344 Oberwolfach Report 5/2019

The next lemma is a technical lemma which will be necessary to prove the con-
vergence estimate and illustrates how sharp one has to estimate terms in order to
obtain the result announced in [1, Theorem 2.1] without proof.

Lemma 2. Let I0(t) :=
∫ t
0
eL1sds = 1

L1
(eL1t − 1) and

(6) Ik(t) =
1

L1
eL1t (L2t)

k

k!
− L2

L1
Ik−1(t)

for k = 1, 2, . . ., where L1 and L2 are two positive constants. Then

(7) L2Ik(t) + L1L2

∫ t

0

Ik(s)e
L1(t−s)ds =

(L2t)
k+1

(k + 1)!
eL1t.

Proof. The proof is by induction: for k = 0, we insert I0(t) into (7) on the left
and compute

(8) L2I0(t)+L1L2

∫ t

0

I0(s)e
L1(t−s)ds =

L2

L1
(eL1t−1)+L2

∫ t

0

(eL1s−1)eL1(t−s)ds.

Now we integrate the remaining integral on the right,
∫ t

0

(eL1s − 1)eL1(t−s)ds = eL1t

∫ t

0

(1 − e−L1s)ds = eL1t

(
t+

1

L1
(e−L1t − 1)

)
.

The equation (8) then gives L2

L1
eL1t − L2

L1
+L2e

L1t
(
t+ 1

L1
(e−L1t − 1)

)
= L2te

L1t,

which is the right hand side in (7) for k = 0. We thus assume that (7) holds for
k − 1 and show that it still holds for k: using (6), we obtain from (7)

L2Ik(t) + L1L2

∫ t

0

Ik(s)e
L1(t−s)ds

=L2

(
1

L1
eL1t

(L2t)
k

k!
− L2

L1
Ik−1(t)

)

+ L2

∫ t

0

(
eL1s

(L2s)
k

k!
− L2Ik−1(s)

)
eL1(t−s)ds

=
L2

L1
eL1t (L2t)

k

k!
+ L2e

L1t

∫ t

0

(L2s)
k

k!
ds

− L2

L1

(
L2Ik−1(t) + L1L2

∫ t

0

Ik−1(s)e
L1(t−s)ds

)
.

Now the last term in parentheses is by induction hypothesis equal to (L2t)
k

k! eL1t

and thus cancels with the first term, and integrating the remaining middle term,
we find

L2e
L1t

∫ t

0

(L2s)
k

k!
ds = L2e

L1t
(L2t)

k+1

(k + 1)!
ds,

which concludes the proof. �

We are now ready to prove the superlinear convergence result of the waveform
relaxation algorithm (3).
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Theorem 3. If the partition function f̃(t,v,w) in (2) is Lipschitz continuous in
both arguments uniformly for all t ∈ [0, T ],

(9)
||f̃ (t,v1,w)− f̃ (t,v2,w)|| ≤ L1||v1 − v2||,
||f̃ (t,v,w1)− f̃ (t,v,w2)|| ≤ L2||w1 −w2||,

then the waveform relaxation algorithm (3) satisfies the error estimate

(10) ||u− uk||T ≤ eL1T
(L2T )

k

k!
||u− u0||T .

Proof. We start by subtracting the integral form of the waveform relaxation iter-
ation (3) from the integral form of the problem (1),

u(t)− uk(t) =

∫ t

0

f(s,u(s)) − f̃(s,uk(s),uk−1(s))ds.

Now adding and subtracting the term f̃ (s,uk(s),u(s)) under the integral, and

using that the partition function satisfies f(s,u(s)) = f̃(s,u(s),u(s)), we get

u(t)− uk(t) =

∫ t

0

f̃(s,u(s),u(s)) − f̃(s,uk(s),u(s))ds

+

∫ t

0

f̃(s,uk(s),u(s)) − f̃(s,uk(s),uk−1(s))ds.

We take the norm on both sides and use the Lipschitz conditions (9) to obtain

||u(t)− uk(t)|| ≤ L1

∫ t

0

||u(s)− uk(s)||ds+ L2

∫ t

0

||u(s)− uk−1(s)||ds.

Setting β(t) := L1 and α(t) := L2

∫ t
0
||u(s)− uk−1(s)||ds, we can apply the Gron-

wall Lemma 1 and get

||u(t)− uk(t)|| ≤ L2

∫ t

0

||u(s)− uk−1(s)||ds(11)

+ L1L2

∫ t

0

∫ s

0

||u(τ) − uk−1(τ)||dτeL1(t−s)ds.(12)

We now want to show by induction on k that the bound (10) holds. For k = 0,
the bound (10) clearly holds, so assuming that (10) holds for k − 1, we now show
that it also holds for k: inserting the induction hypothesis into (11), we obtain

(13)
||u(t)− uk(t)|| ≤ L2

∫ t

0

eL1s
(L2s)

k−1

(k − 1)!
||u− u0||sds

+ L1L2

∫ t

0

∫ s

0

eL1τ
(L2τ)

k−1

(k − 1)!
||u− u0||τdτeL1(t−s)ds.

Now if we estimate the first integral term on the right by
∫ t

0

eL1s
(L2s)

k−1

(k − 1)!
||u− u0||sds ≤

∫ t

0

eL1s
(L2s)

k−1

(k − 1)!
ds||u− u0||t,
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we can integrate the remaining integral by parts,

∫ t

0

eL1s
(L2s)

k−1

(k − 1)!
ds =

1

L1
eL1t

(L2t)
k−1

(k − 1)!
− 1

L1

∫ t

0

eL1s
(L2s)

k−2

(k − 2)!
ds,

and setting Ik−1(t) :=
∫ t
0
eL1s (L2s)

k−1

(k−1)! ds we obtain the recurrence relation from

the technical Lemma 2,

Ik−1(t) =
1

L1
eL1t

(L2t)
k−1

(k − 1)!
− L2

L1
Ik−2(t).

Noticing that Ik−1(s) also appears in (13) in the second term on the right under
the integral in s, we obtain the bound

||u(t)− uk(t)|| ≤
(
L2Ik−1(t) + L1L2

∫ t

0

Ik−1(s)e
L1(t−s)ds

)
||u− u0||t.

Now the value in the parentheses is precisely estimated in Lemma 2 to be
(L2t)

k

k! eL1t, which concludes the proof. �
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Rational normal forms : The KillBill theory

Benôıt Grébert

With Joackim Bernier (Univ Rennes) and Erwan Faou (Univ Rennes) we are
interested in the long time behavior of small amplitude solutions of non-linear
Hamiltonian partial differential equations on bounded domains. In this context,
the competition between non-linear effects and energy conservation (typically the
H1 Sobolev norm) makes the problem intricate. One of the main issues is the
control of higher order Sobolev norms of solutions for which typically a priori
upper bounds are polynomials (see [Bou96a]).
Bambusi & Grébert have shown in [BG06] that, in a fairly general semi linear PDE
framework, if an appropriate non-resonance condition is imposed on the linear part
then the solution u of the corresponding PDE satisfy a strong stability property:

(⋆) if ‖u(0)‖
Hs ≤ ε then ‖u(t)‖

Hs ≤ 2ε for all t ≤ ε−M ,

where ‖ · ‖
Hs

denotes the Sobolev norm of order s, M can be chosen arbitrarily

large and ε is supposed to be small enough, ε < ε0(M, s). The method of proof
is based on the construction of Birkhoff normal forms. To verify the appropri-
ate non-resonance condition external parameters were used –such as a mass in
the case of nonlinear wave equation– and the stability result were obtained for
almost every value of these parameters. Then this technic was applied to prove
almost global existence results for a lot of semi linear Hamiltonian PDEs (see
[Gre07, BDGS07, GIP09]). However, the case of a non-linear perturbation of a
fully resonant linear PDE was not achievable by this technique. Actually for the
cubic nonlinear Schrödinger equation on the two dimensional torus it is proved in
[CKSTT10] that the high Sobolev norms may growth arbitrarily for some special
initial data. Even in one dimension of space, it is proved in [GT12] that the quintic
nonlinear Schrödinger equation on the circle does not satisfy (⋆).

Now consider the nonlinear Schrödinger equation:

(NLS) iut = −∆u+ ϕ(|u|2)u, x ∈ T, t ∈ R,

where ϕ = R → R is an analytic function on a neighborhood of the origin satisfying
ϕ(0) = m is the mass possibly 0 and ϕ′(0) 6= 0. Equation (NLS) is a Hamiltonian
system associated with the Hamiltonian function

HNLS(u, ū) =
1

2π

∫

T

(
|∇u|2 + g(|u|2)

)
dx,

where g(t) =
∫ t
0
ϕ, and the complex symplectic structure idu ∧ dū.

This is an example of fully resonant Hamiltonian PDE, as the linear frequencies
are j2 ∈ N for j ∈ Z. Nevertheless in [KP96] Kuksin & Pöschel proved for such
equation the persistence of finite dimensional KAM tori, a result that requires
a strong non resonant property on the unperturbed Hamiltonian. Actually they
considered the cubic term as part of the unperturbed Hamiltonian to modulate
the resonant linear frequencies and to avoid the problem of resonances. Roughly
speaking the nonlinear term generates stability. Then Bourgain in [Bou00] used
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the same idea to prove that for many random small initial data the solution of
(NLS) satisfies (⋆). Although the method of proof is based on normal forms, the
effective construction of the normal form depends on the initial datum in a very
intricated way and actually the author does not obtain a Birkhoff normal form
result for (NLS) but rather a way to break down the solution that allows him to
obtain the property (⋆).
In this work we want to construct a new type of normal form, not based on polyno-
mial functions but on rational functions, transforming the Hamiltonian of (NLS)
into an integrable one up to a small remainder, over large open sets surrounding
the origin. Then stability of higher order Sobolev norms during very long time
is just one of the dynamical consequences. We stress out that since our rational
normal form is built on open sets, the dynamical consequences remain stable with
respect to the initial datum. In particular the property (⋆), although not verified
on all a neighborhood of the origin, is locally uniform with respect to u(0) in Hs .
To describe our result let us introduce some notations. With a given function
u(x) ∈ L2, we associate the Fourier coefficients (ua)a∈Z ∈ ℓ2 defined by

ua =
1

2π

∫

T

u(x)e−iaxdx.

In the remainder of the paper we identify the function with its sequence of Fourier
coefficients u = (ua)a∈Z and we consider the spaces

ℓ1s = { u = (ua)a∈Z ∈ ℓ2 | ‖u‖
s
:=
∑

a∈Z

〈a〉s|ua| < +∞},

where 〈a〉 =
√
1 + a2.

Our results are divided into two parts :
• Abstract rational normal forms We construct a canonical transformation
τ defined on an open set Vε ⊂ ℓ1s included in the ball of radius ε centered at 0
that puts the Hamiltonian of (NLS) in normal form up to order 2r: H ◦ τ =
Z(I) + R where Z depends only on the actions I = (Ia)a∈Z with Ia = |ua|2, and
R = O(ε2r+1).
Of course the open set Vε is defined in a rather complex way through non-resonant
relationships between actions |ua|2 and ε. In particular it does not contain u ≡ 0
which is too resonant. However, these sets are invariant by angular rotation in the
sense that

∀ (θa)a∈Z ∈ R
Z, u = (ua)a∈Z ∈ Vε =⇒ (eiθaua)a∈Z ∈ Vε.

It is then necessary to show that the flow travels within these open sets. This is
achieved in a second step.
• Generic almost preservation of the actions over very long time For a
given ε > 0, we set

(1) u(0, x) = u0ε(x) = cε
∑

a∈Z

√
Iae

iax,
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where I = (Ia)a∈Z are random variables with support included in the interval
(0, 〈a〉−2s+4), so that u0ε belong to the space ℓ1s and c = (2π)−1 tanhπ is a normal-
izing constant to ensure ‖u0ε‖ℓ1s < ε/2 almost surely. We prove that under some
assumptions on the law of Ia, then for essentially almost all couple (ε, I) and ε
small enough, the initial values u0ε of the form (1) are in the domain of definition
of the normal forms, and thus have a dynamics that is essentially an integrable one
over very long time. This implies the almost preservation of the actions |ua(t)|2
over times of order ε−M with M arbitrary which in turn implies that the solution
remains inside the open set Vε . In particular we deduce the almost preservation
of the Sobolev norm of the solution over times of order ε−M , i.e. property (⋆).

As previously mentioned, the possibility of obtaining normal forms without the
help of external parameters was already known in the KAM theory (see [KP96]
and also [EGK16]). However these normal forms were constructed around finite
dimensional tori. The originality of our analysis is that we work with truly infinite
dimensional objects.

Finally let us mention two recent results that open new directions in the world
of Birkhoff normal forms. In [BD] Berti-Delors have considered recently Birkhoff
normal forms for a quasi linear PDE, namely the capillarity-gravity water waves
equation, and thus faced unbounded nonlinearity. In this paper capillarity plays
the role of the external parameter. Also in [BMP] Biasco-Masseti-Procesi, con-
sidering a suitable Diophantine condition, prove exponential stability in Sobolev
norm for parameter dependent NLS on the circle.
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15 (2007), 1–46.



350 Oberwolfach Report 5/2019
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Wave Maps and Bilinear Restriction

Sebastian Herr

(joint work with Timothy Candy)

In the first section, the initial value problem for the Wave Maps equation is dis-
cussed. The focus here is on the solution of the division problem, i.e. Tataru’s
[5] small data global well-posedness and scattering result for small initial data at
the critical regularity. In the second part, the classical Fourier restriction problem
is reviewed, closing with Tao’s [3] endpoint estimate for the cone. In the third
section, an alternative approach [1] to the division problem is described, which
is based on recent extensions of bilinear (dual) Fourier restriction estimates to
certain atomic function spaces [2].

1. Wave Maps

Wave Maps are critical points φ : R1+n →M of the Lagrangian

L(φ) =
∫

R1+n

〈∂α, ∂αφ〉g,

for a Riemannian manifold (M, g). Here, R1+n is endowed with the Minkowski
metric. In case the target manifold is the 2−sphere, i.e. M = S2 ⊂ R3, one
obtains the nonlinear wave equation

(1) ✷u = u(|∇u|2 − |∂tu|2)
for u : R1+n → R3 and one may drop the target constraint. Now, consider the ini-
tial value problem associated with (1). The scaling critical homogeneous Sobolev

space for this equation is Ḣ
n
2 (Rn). The global well-posedness and scattering prob-

lem has been first solved in [5] for small initial data in the (slightly smaller) scale

invariant Besov space Ḃ
n
2

2,1(R
n). This is referred to as the solution to the division

problem, because the parametrix ✷
−1 for the wave equation is essentially the divi-

sion by the symbol |ξ|2 − τ2, which fails to be locally integrable. Then, this result

[5] has been extended to small data in Ḣ
n
2 (Rn) in [4] by a difficult renormalization

procedure. Later, the theory has been extended to other targets and initial data
with energy below the threshold given by harmonic maps (in case there exist any).

Due to the null-structure

∂tu · ∂tv −∇u · ∇v = 1
2 (✷(u · v)− (✷u) · v − u · (✷v)),
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the key difficulty in the solution of the division problem in [5] is the construction
of an algebra S of space-time distributions such that the estimate

‖✷−1(u✷v)‖S . ‖u‖S‖v‖S
holds true and S contains solutions to the homogeneous wave equation with initial
data in the critical Besov space. For u, v localized to the unit frequency scale, an
important ingredient is to prove an estimate of the form

‖uv‖L2(R1+n) . ‖u‖S‖v‖Sw ,

where the Sw-norm can be controlled by a duality argument, and is slightly weaker
than the S-norm. The spaces S and Sw constructed in [5] are difficult to explain in
detail, but to some extend one can think of a typical element of S as a superposition
of travelling waves, i.e.

u(t, x) =

∫

Sn−1

ϕω(x+ tω)dσ(ω).

Now, if the directions ω1 and ω2 of two travelling waves u and v are transversal,
one can prove an L2-estimate for the product of the two rather easily. However,
elements of Sw are not close to being superpositions of traveling waves and a more
sophisticated construction is required [5].

2. Fourier Restriction

The Fourier restriction operator R maps a Schwartz function f : R1+n → C to the

restriction f̂ |C of its Fourier transform f̂ to some submanifold C of R1+n. The
Fourier restriction problem is to prove estimates of the form

(2) ‖Rf‖Lp(C) . ‖f‖Lq(R1+n)

for the optimal range for p, q, depending on the submanifold C. The dual operator
E takes a function g defined on C and maps it to the inverse Fourier transform of
this distribution. Note that if C is the cone, then u = Eg solves the wave equation.
Further, (2) is equivalent to

‖Eg‖Lq′(R1+n) . ‖g‖Lp′(C).

In the case p = 2 this is called the Strichartz estimate and the optimal range is
q′ ≥ 2n+1

n−1 . The proof relies on the curvature properties of the cone. While there
has been a lot of progress in the past five decades, it is still an open problem to
prove (2) in the optimal range. Some of the attempts rely on a bilinear approach,
which allows to use transversality of wave packets similarly to what has been
described above. In the case of the cone, the estimate

(3) ‖Eg1Eg2‖Lr(R1+n) . ‖g1‖L2‖g2‖L2

holds in the extended range r ≥ n+3
n+1 , provided that g1, g2 have disjoint supports

at the unit frequency scale [3].
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3. Wave Maps via Bilinear Restriction

In recent joint work with Timothy Candy [1] we found an alternative approach to
the division problem. Suppose that U2 is defined as the atomic space with atoms

a(t) =
∑

I

1I(t)e
it|∇|fI ,

∑

I

‖fI‖2L2(Rn) = 1,

and V 2 is the space of functions v such that e−it|∇|v has bounded quadratic vari-
ation. Then, one can perturb (3) to

‖uv‖L2(R1+n) . ‖u‖U2‖v‖V 2 ,

provided that u, v have separated spatial Fourier supports at the unit scale. Also,
there is a version for different frequency scales and more general phase functions
[2]. This can be used to construct an algebra S based on U2 and the weak space Sw

based on V 2 which provides a new and modular solution to the division problem.
For more references and all details we refer to [1]
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Absence of positive eigenvalues of magnetic Schrödinger operators

Dirk Hundertmark

(joint work with Silvana Avramska-Lukarska, Hynek Kovarik)

For Potentials decaying to zero at infinity, a Schrödinger operator H = −∆+V on
the Hilbert space L2(Rd) should not have positive eigenvalues, since these would
be embedded in the essential spectrum, thus they can couple to the continuum to
“dissolve.” The famous Wigner von Neumann example [8], corrected in [9], shows
that this picture is not always correct: There exist slowly decaying and oscillating
potentials V such that −∆+ V has eigenvalue 1, say.

There is by now a long history of results concerning condition on V which
guarantee that −∆+ V does not have positive eigenvalues, [1, 2, 3, 4, 5, 10].

We consider magnetic Schrödinger operatorsH = (P−A)2+V , where P = −i∇
is the momentum operator, A the magnetic vector potential, and V the usual
electric potential. The magnetic field is related to A by B = ∇ × A in three
dimensions, more generally by B = dA. See [6] for a nice discussion of gauge
transformations of magnetic Schrödinger operators. Under natural conditions on
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A and V it is shown in [11] that this yields a self-adjoint operator in L2(Rd). In
fact, for the magnetic vector potential one only needs A ∈ L2

loc(R
d,Rd).

For this type of magnetic Schrödinger operators, even with V = 0, Miller and
Simon [7] constructed examples in two space dimensions, which have dense point
spectrum on [0,∞). In these examples the magnetic field is rotationally symmetric
and decays slower that |x|−1 at infinity, more precisely, limr→∞ r|B(r)| = 0. They
also have some results when limr→∞ r|B(r)| = c > 0.

The known results on absence of positive eigenvalues either do not include mag-
netic fields, or they impose conditions directly on the magnetic vector potential,
see for example [5]. This, however, is not a gauge invariant condition and thus
somewhat unphysical. Moreover, in two dimensions, the most general conditions
from [5] imply that the total magnetic flux is zero. Thus they do not apply in
situations where one has a positive magnetic flux in two dimensions.

A typical result, which can be proven with our approach is the following:
Assume that |x||B(x)| is a bounded function vanishing at infinity and V = V1+V2
with |x|V1(x) and x · ∇V2(x) bounded functions vanishing at infinity. Then the
Schrödinger operator

(P −A)2 + V on L2(Rd) ,

where A is any vector potential in L2
loc(R

d,Rd)), with B = dA, has no positive
eigenvalues.

Our conditions only involve the magnetic field and in light of the Miller–Simon
examples, the result is sharp. Our results also extend to the Pauli operator on
L2(R3,C2) and to more general magnetic fields B and electric potentials V .
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Well-posedness and dispersive decay of small data solutions for the
Benjamin-Ono equation

Mihaela Ifrim

(joint work with Daniel Tataru)

This work is concerned with the Benjamin-Ono equation

(1) (∂t +H∂2x)φ =
1

2
∂x(φ

2), φ(0) = φ0,

where φ is a real valued function φ : R × R → R. and H denotes the Hilbert
transform on the real line, with the symbol convention H(ξ) = −i sgn ξ. Thus,
dispersive waves travel to the right and solitons to the left.

Our goal is two-fold. First, we revisit the L2 theory for the Benjamin-Ono
equation and provide a simpler, self-contained approach. Second, we consider its
long time dispersive dynamics, and prove that for small localized data the solutions
have (nearly) dispersive dynamics almost globally in time.

The Benjamin-Ono equation is a model for the propagation of one dimensional
internal waves (see [1]). Among others, it describes the physical phenomena of
wave propagation at the interface of layers of fluids with different densities (see
Benjamin [1] and Ono [17]).

Equation (1) is known to be completely integrable. In particular it has an
associated Lax pair, an inverse scattering transform, and an infinite hierarchy of
conservation laws. The Benjamin-Ono equation is a also dispersive equation, i.e.
the group velocity of waves depends on the frequency. Precisely, the dispersion
relation for the linear part is given by

ω(ξ) = −ξ|ξ|,
and the group velocity for waves of frequency ξ is v = 2|ξ|.

There have been many developments in the Hs well-posedness theory for the
Benjamin-Ono equations, see: [2, 11, 14, 12, 21, 16, 18, 10, 19], leading up to the
L2 well-posedness results in [11] and [15]. By contrast, the critical Sobolev space

for this problem is Ḣ− 1
2 ; at this point, the range − 1

2 < s < 0 remains open. An
important role here is played by the quasilinear character of the problem; precisely,
the nonlinearity is nonperturbative and only continuous dependence on the initial
data may hold, even at high regularity, see [16], [14].

Two important milestones along the way have been the H3 well posedness result
of Saut [19], using energy estimates, and the H1 result of Tao [21], which is where
the idea of renormalization is first used in the study of the Benjamin-Ono equation.

Our first goal here is to revisit the L2 theory for the Benjamin-Ono equation,
and (re)prove the following theorem:

Theorem 1. The Benjamin-Ono equation is globally well-posed in L2.

This result was already proved in [11] and [15], but with a complicated func-
tional setting using various modifications of Xs,b spaces.

Given the quasilinear nature of the Benjamin-Ono equation, here it is important
to specify the meaning of well-posedness:
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(i) Existence of regular solutions: For each initial data φ0 ∈ H3 there exists
a unique global solution φ ∈ C(R;H3).

(ii) Existence and uniqueness of rough solutions: For each initial data
φ0 ∈ L2 there exists a solution φ ∈ C(R;L2), which is the unique limit of
regular solutions.

(iii) Continuous dependence : The data to solution map φ0 → φ is continuous
from L2 into C(L2), locally in time.

(iv) Higher regularity: The data to solution map φ0 → φ is continuous from
Hs into C(Hs), locally in time, for each s > 0.

(v) Weak Lipschitz dependence: The flow map for L2 solutions is locally Lip-

schitz in the H− 1
2 topology.

The weak Lipschitz dependence part appears to be a new result, even though
some estimates for differences of solutions are part of the prior proofs in [11] and
[15].

Our new proof of this result is based on the idea of normal forms, introduced by
Shatah [20] in the dispersive realm. In doing this, the chief difficulty we face is that
the standard normal form method does not readily apply for quasilinear equations.
One very robust adaptation of the normal form method to quasilinear equations,
called “ the quasilinear modified energy method” was introduced earlier by the
authors and collaborators in [4], and then further developed in the water wave
context first in [6] and later in [8, 3, 7]. There the idea is to modify the energies,
rather than apply a normal form transform to the equations; this method is then
successfully used in the study of long time behavior of solutions.

Here we take a slightly different tack, though the above idea is still used at
a key point in the proof. Reinterpreting Tao’s renormalization from a normal
forms perspective, we construct a two step normal form correction, which allows
us to frame the well-posedness proof simply as a bootstrap argument for linear
and bilinear Strichartz estimates for the solutions.

We now arrive at the second objective of this work. The question we consider
concerns the long time behavior of the Benjamin-Ono solutions with small localized
data. Precisely, we are asking what is the optimal time-scale up to which the
solutions have linear dispersive decay. Our main result asserts that this holds
almost globally in time:

Theorem 2. Assume that the initial data φ0 for (1) satisfies

(2) ‖φ0‖L2 + ‖xφ0‖L2 ≤ ǫ≪ 1.

Then the solution φ satisfies the dispersive decay bounds

(3) |φ(t, x)| + |Hφ(t, x)| . ǫ|t|− 1
2 〈x−t−

1
2 〉− 1

2

up to time
|t| . Tǫ := e

c
ǫ , c≪ 1.

The novelty in our result is that the solution exhibits dispersive decay. We
also remark that better decay holds in the region x < 0. This is because of the
dispersion relation, which sends all the propagating waves to the right.
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Remark 3. One does not expect this result to hold globally in time because even
for small localized data this problem might still admit solitons. Then the question
becomes to understand what is the earliest time the solitons could emerge. Heuristic
computations, based on inverse scattering, suggest that this time is exactly the time
in our theorem. Because of this our result above is likely optimal.
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Time integration of dispersion-managed nonlinear Schrödinger
equations

Tobias Jahnke

(joint work with Marcel Mikl)

Data transfer through an optical fiber with strong dispersion management is mod-
elled by the semilinear Schrödinger equation

∂tu =
i

ε
γ
(
t
ε

)
∂2xu+ i|u|2u, x ∈ T, t > 0(1)

with small parameter 0 < ε ≪ 1 on the one-dimensional torus T = R/2πZ. The
coefficient function γ(t) := χ(t) + εα is the sum of a small constant term εα and
a piecewise constant function

χ(t) =

{
−δ if (t mod 2) ∈ [0, 1),

δ if (t mod 2) ∈ [1, 2)

with parameters α, δ > 0; cf. [3, 4]. Non-trivial solutions of (1) oscillate rapidly
in time because of the factor i/ε on the right-hand side. Hence, applying splitting
methods, Runge-Kutta methods or other traditional time-integrators is inefficient
because such methods only yield an acceptable accuracy if the oscillations are
resolved by many time steps, which causes very long runtimes. The discontin-
uous, rapidly changing coefficient γ(t/ε) and the nonlinear term pose additional
challenges for the time-integration of (1).

In [1] we have proposed and analyzed a tailor-made method – the adiabatic
midpoint rule – for the dispersion-managed nonlinear Schrödinger equation (1).
This method, however, does not preserve the L2 norm of the numerical solution,
although it can easily be shown that

‖u(t, ·)‖L2(T) = ‖u(0, ·)‖L2(T) for all t ≥ 0

for every solution of (1). In this talk, we present an exponential version of the
adiabatic midpoint rule which has the same favourable properties as its non-
exponential counterpart and, in addition, provides norm conservation in L2.

Both versions of the adiabatic midpoint rule are based on the unitary transfor-
mation

u(t, x) 7→
(
yk(t)

)
k∈Z

, yk(t) := exp
(
ik2φ

(
t
ε

))
ûk(t),

where (ûk)k∈Z are the Fourier coefficients of u(t, ·) and

φ(t) =

t∫

0

γ(s) ds =

t∫

0

χ(s) ds+ εαt.

Substituting this transform into (1) yields an infinite system of ordinary differential
equations

ẏm(t) = i
∑

j−k+ℓ=m
yj(t)ȳk(t)yℓ(t) exp

(
−iω[jkℓm]φ

(
t
ε

))
, m ∈ Z(2)
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with ω[jkℓm] := j2 − k2 + ℓ2 −m2. Eq. (2) is equivalent to

y′(t) = A
(
t, y(t)

)
y(t)(3)

with operator A defined by

(
A(t, µ)z

)
m

= i
∑

j−k+ℓ=m
µj µ̄kzl exp

(
−iω[jkℓm]φ

(
t
ε

))
, m ∈ Z

for µ = (µm)m∈Z , z = (zm)m∈Z and t ≥ 0.
There are several advantages of (2) or (3) over (1). Instead of the discontinuous

function γ, the transformed equations involve the continuous function φ. If the
sequence y = (ym)m∈Z decays sufficiently fast, then the right-hand side of (2) or
(3) is bounded uniformly in ε, which is not true for the original problem (1) due
to the factor i/ε. Moreover, it can be shown that the solution of (2) converges to
a well-defined limit (cf. [1, 2, 3, 4]) which is not the case for (1).

Let tn = nτ and assume that approximations y(n−1) ≈ y(tn−1) and y
(n) ≈ y(tn)

are available from previous steps. (The first approximation y(1) can be computed
by performing a starting step with a one-step version of the method.) In order to
compute the new approximation y(n+1) ≈ y(tn+1), the evolution equation (3) is
replaced on the time interval [tn−1, tn+1] by

ỹ′(t) = A
(
t, y(n)

)
ỹ(t), ỹ(tn−1) = y(n−1).

This is a linear equation, but with a time-dependent operator. Its solution can be
approximated by

y(tn+1) ≈ ỹ(tn+1) ≈ exp
(
τ

∫ 1

−1

A
(
tn + στ, y(n)

)
dσ
)
y(n−1).

In order to integrate with respect to the first variable of A, oscillatory integrals of
the form

∫ b

a

exp
(
−iω[jkℓm]φ

(
t
ε

))
dt

have to be computed. This can be done analytically, which is one of the reasons
for the efficiency of adiabatic integrators.

The convergence of the adiabatic exponential midpoint rule was analyzed in
detail in [2]. We proved first-order convergence in time without any ε-induced step-
size restriction. Moreover, we showed that under suitable regularity assumptions
the accuracy improves for special step-sizes τ : the error in ℓ2 reduces to O(ε2+τ2)
if τ = εk with k ∈ N, and to O(ετ) if τ = ε/k, respectively. The constants in the
corresponding error bounds do not depend on ε. These results are corroborated
by numerical experiments and make the adiabatic exponential midpoint rule very
attractive for solving dispersion-managed nonlinear Schrödinger equations.
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Convergence of an evolving finite element method for mean
curvature flow

Balázs Kovács

(joint work with Buyang Li and Christian Lubich)

A proof of convergence was outlined for semi- and full discretizations of mean
curvature flow of closed two-dimensional surfaces, based on our paper [4].

Approximating the mean curvature flow by numerical methods was first addressed
by Dziuk [1] in 1990. He proposed a finite element method based on a weak
formulation of the mean curvature flow as a (formally) heat-like partial differential
equation, in which the moving nodes of the finite element mesh determine the
approximate evolving surface. However, proving convergence of Dziuk’s method
or related evolving finite element methods for closed two-dimensional surfaces (or
higher-dimensional hypersurfaces) has remained an open problem.

We here consider a different evolving finite element method for mean curva-
ture flow of closed two-dimensional surfaces and prove optimal-order convergence
over time intervals on which the evolving surface remains sufficiently regular. We
study stability and convergence for both the finite element semi-discretization and
the full discretization obtained with a linearly implicit backward difference time
discretization. Our approach shares with Dziuk’s method the property that the
moving nodes of a finite element mesh determine the approximate evolving surface.
However, the method presented here discretizes equations that are different from
the equation discretized by Dziuk. In his approach, a weak formulation of the
quasi-heat equation describing mean curvature flow is discretized, whereas in the
present work evolution equations for the normal vector and the mean curvature
are discretized, which then yield the velocity of the surface evolving under mean
curvature flow. Evolution equations for geometric quantities on a surface evolving
under mean curvature flow have been an important tool in the analysis of mean
curvature flow ever since Huisken’s 1984 paper [2], but apparently they have so
far not been used in the numerical approximation of mean curvature flow.

The numerical method based on the discretization of evolution equations of
geometric quantities, as presented here, is computationally more expensive than
Dziuk’s method (roughly by about a factor 2), but on the other hand it provides
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full-order approximations to basic geometric quantities — the normal vector and
mean curvature — in addition to the position and velocity of the surface.

Our numerical approach is related to our previous paper [3], where we study
the convergence of finite elements on an evolving surface driven by diffusion on
the surface. The convergence analysis of our method for mean curvature flow uses
techniques developed in that previous paper. This numerical method admits a
convergence analysis in the case of finite elements of polynomial degree at least
two and backward difference formulae up to order five. The error analysis combines
stability estimates and consistency estimates to yield optimal-orderH1-norm error
bounds for the computed surface position, velocity, normal vector and mean cur-
vature. As in [3], the stability analysis works with the matrix–vector formulation
of the method and does not use geometric arguments. The geometry only enters
into the analysis of the consistency error. The error analysis combines the stability
estimates and consistency estimates to yield optimal-order H1-norm error bounds
for the computed surface position, velocity, normal vector and mean curvature.

Figure 1. Comparison of Dziuk’s algorithm, with the proposed
numerical method and with its version with normalized approxi-
mate normal vector νh on a flow developing a pinch singularity.
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Splitting methods for Schrödinger equations with time dependent
potentials; many problems, many approaches.

Karolina Kropielnicka

(joint work with Philipp Bader, Marisa Condon, Arieh Iserles, Pranav Singh)

In this talk I will present various numerical approaches for the linear Schrödinger
equations with time dependent potentials. As it often happens, the methods should
be closely correlated with properties of the problem. In the first approach we
suggest an application of asymptotic Zassenhauss decomposition in tandem with
Munthe-Kaas–Owren basis for semiclassical scaling, see [1]. In case of high oscil-
lations of the potential we resort to simplified commutators in Magnus expansion
and integrate the potential function in the very last stage of the algorithm, like it
was presented in [2]. Magnus-Lanczos methods with simplified commutators are
proposed in case of Schrödinge equations with highly oscillating in time potential,
see [3] for the setting of atomic scaling. Irrespectively of chosen regime, compact
splittings are suggested for equations under the influence of laser matter, like it
was introduces in [4]. Yet another approach will be explored, where the solution is
presented as an asymptotic series in inverse powers of the oscillation frequency of
the potential, [5]. I will present numerical results of those methods and compare
them against other well known approaches.
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Full-discretization of semilinear wave equations with dynamic
boundary conditions

Jan Leibold

(joint work with Marlis Hochbruck)

We consider semilinear acoustic wave equations with dynamic boundary condi-
tions. In contrast to standard boundary conditions, as of Dirichlet or Neumann
type, dynamic boundary conditions do not neglect the momentum of the wave
on the boundary. The mathematical modeling of such effects leads to an evolu-
tion equation in the interior domain Ω coupled to an evolution equation on the
smooth boundary ∂Ω. An example is the following equation with kinetic boundary
conditions [4]

(1)
utt + (1 + x · ∇)ut −∆u = |u|u in (0, T )× Ω,

utt + ∂nu+ u−∆∂Ωu = |u|2u on (0, T )× ∂Ω,

complemented with initial conditions. Here, ∆∂Ω denotes the Laplace-Beltrami
operator.

In a compact form, (1) can be rewritten as

u′′ +Bu′ +Au = f(t, u), t ∈ [0, T ],(2)

where A and B are monotone (unbounded) linear operators and f is a Lipschitz-
continuous function.

We are interested in full discretizations of such equations comprising finite
element discretizations in space and implicit-explicit (IMEX) time integration
schemes [3]. Besides an efficient implementation of such schemes we aim at their
rigorous error analysis.

IMEX schemes treat the (stiff) linear part of the differential equation implicitly
and the nonlinear part explicitly. Thus they require only the solution of one linear
system of equations in each time step. We designed an IMEX scheme for problems
of the form (2). Numerical experiments have already shown that this scheme is
more efficient than standard time integration methods like the Crank-Nicolson or
the leapfrog scheme.

Boundary conditions with tangential derivatives, as, e.g., the Laplace–Beltrami
operator, are intrinsically posed on domains with (piecewise) smooth, possibly
curved boundaries. Therefore, numerical methods often have to make approximate
the domain first which renders the approximation non-conforming. This makes the
error analysis much more involved. These difficulties are addressed in [1, 2], where
a unified error analysis is presented that allows to derive space discretization error
bounds.

For the semi discretization in time we prove stability and a second-order er-
ror bound. Our current work is devoted to a full discretization error bound by
combining the time and space discretization error analysis.
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Recent Progress on the Half-Wave Maps Equation

Enno Lenzmann

(joint work with Patrick Gérard, Armin Schikorra)

In this talk, I discuss recent progress on the energy-critical half-wavemaps equation

∂tu = u× |∇|u
where u : [0, T )× R → S2 (real line case) or u : [0, T )× T → S2 (space periodic
case). Here × denotes the vector product in R3 and |∇| is defined by multiplication
with the symbol |ξ| in Fourier space.

After reviewing the classification result of traveling solitary waves obtained in
[2], I report on newly found time-periodic solutions and other special solutions
given by rational functions in the spatial variable x. The main technique behind
finding these special solutions rests on a Lax pair structure recently found in [1].
More specifically, we have the Lax equation

L̇ = [L,B],

where L = [H,U] with U =
∑3

k=1 uiσi (with the standard Pauli matrices
σ1, σ2, σ3) and H denoting the Hilbert transform. For the specific form of the
operator B, we refer to [1]. One essential analytical feature of the Lax operator
L is that it is finite rank if and only if the function u is rational in the spatial
variable x. In fact, we can show the following quantitive result in the real line
case:

rank of L = number of poles of u in C \ R,
provided that L is finite rank. By the Lax equation, the rank of L stays constant
in time (as long as the solutions exists). In this way, we obtain an infinite family
of sets of invariant spaces under the Hamiltonian flow.

The question of stability of these rational solutions raises an interesting open
problem for future research.
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Conserved energies for the one dimensional Gross-Pitaevskii equation

Xian Liao

(joint work with Herbert Koch)

We consider the Cauchy problem for the one dimensional Gross-Pitaevskii equation

(1) i∂tq + ∂xxq = 2(|q|2 − 1)q,

where t, x denote the one dimensional time and space variables respectively and
q : R × R 7→ C is the unknown wave function. The above GP equation can be
viewed as the defocusing cubic nonlinear Schrödinger equation, but with nonzero
boundary condition at infinity:

|q(x)| → 1, as |x| → ∞.

This nonstandard boundary condition changes dramatically the dynamics and in
particular the following black (with c = 0) and dark (with c 6= 0) soliton solutions
solve (1):

q(t, x) =
√
1− c2 tanh

(√
1− c2(x− 2ct)

)
+ ic, −1 < c < 1.

We would like first to search for the suitable solution spaces which consist of
finite-energy solutions. We recall the conserved mass, momentum and energy for
the GP equation (1):

M(q) =

∫

R

(
|q|2 − 1

)
dx,

P(q) = Im

∫

R

q∂xq̄ dx,

E(q) = 1

2

∫

R

(
(|q|2 − 1)2 + |∂xq|2

)
dx,

and we observe that the energy E(q) is related to the L2-norms of the quantities

|q|2 − 1, ∂xq.

This leads us to introduce the following solution space

Xs = {q ∈ Hs
loc(R) | |q|2 − 1 ∈ Hs−1(R), ∂xq ∈ Hs−1(R)}/S1, s ≥ 0,

where S1 denotes the unit circle. For any q ∈ Xs, we define its energy norm as

Es(q) =
(
‖|q|2 − 1‖2Hs−1 + ‖∂xq‖2Hs−1

) 1
2 ,

which describes well the Hs-regularity of q ∈ Xs and in particular (E1(q))2 =
2E(q). Observing that |q| → 1 as |x| → ∞, we introduce the following distance
function ds(u, v) for u, v ∈ Xs:

ds(u, v) =
(∫

R

inf
|θ|=1

∥∥sech(x− y)
(
θu(x) − v(x)

)∥∥2
Hs

x

dy +
∥∥|u|2 − |v|2

∥∥2
Hs−1

) 1
2

,

where sech(x) = 2
ex+e−x and we emphasize that θ ∈ S1 within the above integral

may depend on y. We have the following results:
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Theorem 1. The space (Xs, ds), s ≥ 0 is a complete metric space and the set
{1 + ϕ |ϕ ∈ C∞

0 (R)} is dense in it. The Gross-Pitaevskii equation (1) is locally-
in-time well-posed in Xs, s ≥ 0.

Let s > 1
2 and q0 ∈ Xs. Then the Gross-Pitaevskii equation is globally-in-

time well-posed in Xs and the energy is conserved by the Gross-Pitaevskii flow:
Es(q(t)) ≤ C(Es(q0)), ∀t ∈ R where C depends nonlinearly on Es(q0).

The local well-posedness result follows from the Strichartz’s estimate: We regu-
larize the initial data q0 7→ q0,ε and consider the unknown function q− q0,ε, which
satisfies the Schrödinger-type equation with the initial data q0 − q0,ε ∈ Hs.

The conservation of the energy Es(q), s > 1
2 may come from the classical

fact that there is a Lax pair for the GP equation and hence a priori the associated
transmission coefficient T−1(λ), λ ∈ C is invariant by time evolution. In particular
in the classical framework q ∈ 1 + S(R), S being the Schwartz function space,
we have the following expansion for lnT−1(λ), with countably many conserved
coefficients (Hl)l:

(2) lnT−1(λ) = i

∞∑

l=0

Hl(2z)
−l−1, |λ| → ∞, Imλ > 0,

where λ, z ∈ C are related by λ2 = z2 + 1, Imz > 0, and the first three conserved
coefficients read as the mass, momentum and energy respectively:

H0 = M, H1 = P , H2 = 2E .
As the mass and the momentum are not well-defined for q ∈ Xs, we have to
consider the renormalised transmission coefficient T̃−1(λ) which reads, if q ∈ 1+S,
as T−1e−iM(2z)−1−iP(2zζ)−1

, ζ = λ + z, such that T̃−1 defined for q ∈ Xs is also
invariant by the GP flow by density argument. Nevertheless the well-definedness
of T̃−1 for q ∈ Xs and its dependence on (|q|2 − 1, ∂xq) require more delicate
analysis. In particular, when evaluated on the imaginary axis (λ, z) = (iσ, iτ/2),

σ2 = τ2/4− 1, the leading term in
(
−τ2 ln T̃−1(iσ)

)
reads as the following form:

T̃2(iτ) =

∫

x<y

e−τ(x−y)
(
(|q|2 − 1)(y)(|q|2 − 1)(x) + (∂xq)(y)(∂xq̄)(x) dxdy.

In order to consider also the large energy case, we take the weighted energy norm

Esτ0(q) =
(∫

R
(τ20 + ξ2)

(
| ̂|q|2 − 1|2(ξ) + |∂̂xq|2(ξ)

)
dξ
) 1

2 with the parameter τ0 ≥ 2.

Hence when s ∈ (12 , 1) the difference between the conserved energy defined by T̃−1:

Esτ0(q) = − 2

π
sin(π(s − 1))

∫ ∞

τ0

(τ2 − τ20 )(−τ2 ln T̃−1(iσ)) dτ

and the energy norm (Esτ0(q))
2 = − 2

π sin(π(s−1))
∫∞
τ0

(τ2−τ20 )T̃2(iτ) dτ can be con-

trolled by Ccτ0(E
s
τ0(q))

2 if cτ0 := 1
τ0

(
‖|q|2−1‖l2τ0DU2+‖∂xq‖l2τ0DU2

)
≤ Cτ

− 1
2
−s

0 Esτ0
is small enough. Thus we can choose large enough parameter τ0 (depending on
Es(q0)) to obtain |Esτ0(q) − (Esτ0(q))

2| ≤ 1
2 (E

s
τ0(q))

2, such that Esτ0(q) ≤ 2Esτ0(q0)
holds globally in time by virtue of the conservation of Esτ0(q). When s ≥ 1 then
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we have to do further expansions and in particular we have the following trace
formular for the conserved energy Enτ0(q) when s = n ∈ N:

Enτ0(q) =
n−1∑

l=0

τ0
2(n−1−l)

(
n− 1
l

)
H2l+2,

H2l+2 =
1

π

∫

R

ξ2l+2 1

2

∑

±
ln |T̃−1|(±

√
ξ2/4 + 1)dξ − 1

2l+ 3

∑

m

Im(2zm)2l+3,

where Hl is the coefficient in (2) and zm = i
√
1− λ2m ∈ i(0, 1] with {λm}m ⊂

(−1, 1) being the possible countably many zeros of T̃−1(λ).
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Efficient algorithms for Schrödinger equations with concentrated
potentials

Maria Lopez-Fernandez

(joint work with Lehel Banjai)

We consider the efficient numerical approximation of the Schrödinger equation
with potential concentrated in a discrete set of points. We find applications in the
literature with linear non autonomous models of the form [8, 9]

(1) i ∂tψ = −∂xxψ +

M∑

j=1

Vj(t)δxj
ψ; ψ(x, 0) = ψ0(x), x ∈ R, t ≥ 0,

for some known arbitrary time-dependent amplitudes Vj(t), and also non linear
models of the form [1, 5]

(2) i ∂tψ = −∂xxψ +
M∑

j=1

γj |ψ|2σδxj
ψ; ψ(x, 0) = ψ0(x) x ∈ R, t ≥ 0,

with γj < 0, σ ≥ 0. Extensions to higher spatial dimension are recent object of
study [4, 6]. In the present report we focus on the one-dimensional case.

The solution ψ(x, t) to equations (1) and (2) can be uniquely determined by
the values of ψ at the points where the potential is concentrated, this is, the scalar
functions

(3) qj(t) := ψ(xj , t), t ≥ 0.

In the case of (2), the functions qj satisfy the following system of Volterra equations

(4) qj(t) +
M∑

j=1

γj

∫ t

0

k(t− s, xj − xk)|qj(s)|2σqj(s) ds = (U(t)ψ0) (xj),
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for j = 1, . . . ,M , with k the Green function for the (free) Schrödinger equation in
the whole space [7]

(5) k(t, x) =
eiπ/4

2
√
πt

ei |x|
2/4t, x ∈ R, t > 0,

and U(t)ψ0 the solution to the free Schrödinger equation with initial data ψ0. The
solution ψ(x, t) at any x ∈ R can then be expressed as

(6) ψ(x, t) + γ

M∑

k=1

∫ t

0

k(t− s, x− xk)|qk(s)|2σqk(s) ds = (U(t)ψ0)(x).

A linear Volterra system, analogous to (4), is satisfied by the qj corresponding to
(1) [8, 9].

A careful numerical study of the so-called charge equations (4) can be found in
[5]. The method proposed in [5] is reliable but turns out to be rather expensive
both from the computational and the storage point of view. Here we proposed a
generalization of the ideas in [2] in order to reduce both the number of operations
and the memory requirements, while keeping the target accuracy in the final ap-
proximation. Our proposal is a special algorithm for the implementation of the
Runge–Kutta based Convolution Quadrature (CQ) method. The Runge–Kutta
CQ is first presented in [10] and then analyzed in [3] for convolution kernels like
those in our application to (4). The CQ is designed to approximate abstract-time
convolutions of the form

(7) f(t) :=

∫ t

0

k̃(t− s) g(s),

at equispaced points tn = nh, for some fixed h > 0, n = 1, . . . , N . In the case of

(4) we actually have several different kernels k̃(t) = k(t, xj − xk), j, k = 1, . . . ,M ,
depending on all possible distances between the points xj and xk. The CQ based
on a Runge–Kutta method with abscissae c1, . . . , cs, approximates (7) by a discrete
convolution of the form

(8) f(tn) ≈ fn =
∞∑

j=0

ωj(g(tn − tj + clh))
s
l=1 .

The (row vector of) convolution weights ωj depend on the Laplace transform K̃

of the kernel k̃ and the particular Runge–Kutta method of choice, which must be

implicit and satisfy certain hypotheses [3]. In this way k̃ is never evaluated by the

numerical method but only K̃. For the application to (4) it is

(9) K̃(z) = K(z, x) =
1

2
√
z/ i

exp
(
−|x|

√
z/ i
)
, x ∈ R.

We propose an implementation of the CQ method in (8) which requires:

• O(| log(ε)|N logN) multiplications.
• O(| log(ε)| log(N)) evaluations of K(z, x), for every x ∈ R.
• O(| log(ε)| log(N)) storage.
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In the above, ε denotes the target accuracy in the computation of the weights ωj ,
j = 0, . . . , N . Our algorithm is based on the following representation of the ωj

associated to (9):

Theorem 1. Let us consider an L-stable Runge–Kutta method with abscissae
c = (ci)

s
i=1, weights b = (bj)

s
j=1 and coefficient matrix A = (aij)

s
i,j=1. Let us

assume that the Runge–Kutta method satisfies the assumptions in [3]. Then, for
fixed x ∈ R, the CQ weights associated to the given Runge–Kutta method and (9)
satisfy

(10) ωn(x) =
h

2π i

(∫

Γ+∪Γ−

K(z, x)en(hz) dz +

∫ ξ

0

G(λ, x)en(−hλ) dλ,
)
,

where, for r the stability function of the Runge–Kutta method, en(z) := r(z)nq(z)
with q(z) = bT (I − zA)−1, Γ± = {−ξ ± i y : y > 0} and

G(λ, x) =
i eiπ/4√

λ
cosh(xeiπ/4

√
λ).

We show that for a given target accuracy ε > 0, a convenient choice of ξ > 0
can be found in such a way that the integrals along Γ± in (10) can be neglected for
the computation of the ωj . For the integral along the real interval [0, ξ] we derive
a quadrature rule which provides a uniform approximation of accuracy ε, for every
n = n0, . . . , N , with n0 depending on |x| and h. Setting gj = (g(tj + cℓh))

s
ℓ=1,

such an approximation of the CQ weights leads to the following splitting of the
summation in (8):

n∑

j=0

ωjgn−j =
n0∑

j=0

ωjgn−j +
n∑

j=n0+1

ωjgn−j = Ln +Hn.

The history term Hn is then approximated by

Hn ≈
NQ∑

ℓ=1

wℓ

n∑

j=n0+1

(r(−hxℓ))jq(−hxℓ)gn−j = h

NQ∑

k=1

wk(r(−hxk))n0+1Qn,k,

with

Qn,k =

n−n0−1∑

j=0

(r(−hxk))jq(−hxk)gn−n0−1−j ,

which satisfy the recursion:

(11) Qn,k = r(−hxk)Qn−1,k + q(−hxk)gn−n0−1, Qn0,k = 0.

We prove that NQ can be taken proportional to | log(ε)| log(N). This together
with the recursive procedure (11) leads to the claimed complexity and storage
requirements. A semi-implicit scheme based on this algorithm is applied to solve
(4), with results in good agreement with those reported in [5].
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Stability and convergence of time discretizations of quasi-linear
evolution equations of Kato type

Christian Lubich

(joint work with Balázs Kovács)

In a very insightful paper published in 1975, Kato [11] presents a concise framework
for quasi-linear evolution equations in a Banach space, proves local well-posedness
of the initial value problem within this framework and shows that the framework
and results apply to a variety of quasi-linear partial differential equations. He
lists symmetric hyperbolic systems of the first order, wave equations, Korteweg–
de Vries equation, Navier–Stokes and Euler equations, equations for compressible
fluids, magnetohydrodynamic equations, coupled Maxwell and Dirac equations —
and adds “etc.”. Particularly noteworthy appears the application to symmetric
hyperbolic systems in the sense of Friedrichs (in arbitrary space dimension), which
is a large and fundamental class of problems.

While Kato’s paper has been influential in the analysis of nonlinear hyperbolic
and dispersive partial differential equations, it has apparently gone unnoticed in
the numerical literature for such equations. Kato’s framework has been modified
and generalized to further classes of partial differential equations, by himself and
coauthors in [9, 10] shortly after [11], and by other researchers until recently, e.g.,
in [5, 13]. To our knowledge, the only numerical paper related to Kato’s framework
before our paper [12] is the work of Hochbruck & Pažur [7] who study the implicit
Euler time discretization in a modified Kato framework that was developed by
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Müller [13] for dealing with a class of quasi-linear Maxwell equations; see also [8]
for subsequent work in this direction.

Here we show that Kato’s original framework from [11], when restricted to
Hilbert spaces (which are typically used in the applications), combines remarkably
well with the technique of “energy estimates” for time discretizations, that is, with
the use of positive definite and semi-definite bilinear forms for proving stability
and error bounds. We show this for the implicit Runge–Kutta methods such as
the Gauss and Radau IIA methods of arbitrary orders, which have the properties
of algebraic stability and coercivity, notions that are due to Burrage & Butcher [1]
and Crouzeix [2] (for algebraic stability) and to Crouzeix and Raviart [3] (for
coercivity); see also [4, 6]. Although these notions were developed and recognized
as important properties in the context of stiff ordinary differential equations in
the same decade in which Kato’s paper appeared, it seems that no link between
these analytical and numerical theories was made. With a delay of some decades,
this is now done in the present talk based on our paper [12] — in view of both,
the perfectly fitting connection of the analytical framework and the numerical
methods, and the undiminished significance of the considered evolution equations
in applications.

The distinguishing feature in Kato’s theory is a commutator condition, which
enables the transfer between stronger and weaker norms and is here combined
with energy estimates for the analysis of numerical methods. The talk presented
stability estimates and optimal-order convergence results for time discretizations
of classes of quasi-linear hyperbolic and dispersive partial differential equations
on Rd or on a d-dimensional torus.
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Space discretization of quasilinear wave-type equations

Bernhard Maier

(joint work with Marlis Hochbruck)

We consider the numerical approximation of solutions to quasilinear wave-type
equations of the form

Λ
(
y(t)

)
y′(t) = Ay(t) +Q

(
y(t)

)
y(t),(1)

subject to initial values and Dirichlet boundary conditions on a bounded domain
Ω with smooth boundary. Here, A is a linear skew-adjoint operator and the non-
linearities Λ and Q model for example nonlinear material laws such as the Kerr
nonlinearity.

As shown in [4] by Kato and for a refined framework in [7], the evolution
equation (1) is locally well-posed on a time intervall (0, T ).

Recently, time integration for the evolution equation of (1) was investigated. In
[5] the authors show rigorous error bounds for algebraically stable Runge-Kutta
methods in Kato’s original framework [4]. The time integration within the refined
framework [7] was considered in [2] and [3].

Here, we present an error analysis for space discretizations of (1) with finite
elements. For discretized versions Λh, Ah and Qh of the operators Λ, A and Q we
consider the semi-discrete equation

Λh
(
yh(t)

)
y′h(t) = Ahyh(t) +Qh

(
yh(t)

)
yh(t),(2)

again subject to initial values. We want to emphasize that we consider also non-
conforming discretizations, because, in general, domain approximations due to the
smoothness of the boundary of Ω (which is required for the well-posedness of (1))
are necessary. Hence, we use a lift operator Lh to compute differences between
functions from the discrete and continuous function spaces.

Based on the Picard-Lindelöf theorem we first prove local well-posedness with a
mesh-dependent minimal time of existence Th. Next, we prove the following error
bound between the exact solution y of (1) and the discrete approximation yh of
(2) in the energy norm.

‖y(t)− Lhyh(t)‖ ≤Cy(1 + t)eCytE,
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with a constant Cy depending on the solution y of (1) and its time derivative, but
which is independent of the mesh width h. The error term E consists of inter-
polation errors, the error of the discretized initial values and differences between
discrete and continuous operators.

The proof of this result is based on [1] and [6], where the authors present a
unified error analysis for linear and semilinear wave-type equations, respectively.
To conclude, we use an inverse inequality in order to extend the minimal time of
existence Th to T .

Our aim is to provide a rigorous error analysis for the full discretization by
generalizing the techniques from [3]. Hence, we consider as a next step the full
discretization of (1), combining the techniques from space and time discretization
analysis.
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Randomized final data problem for nonlinear Schrödinger equations

Kenji Nakanishi

(joint work with Takuto Yamamoto)

This is a report on our recent work [7]. We study asymptotic behavior of solutions
for large time of the nonlinear Schrödinger equation

iu̇−∆u = |u|pu, u(t, x) : R1+d → C.

More precisely, we are interested in the scattering problem in L2(Rd), that is
whether the solution u exists globally in time (t ∈ R) and

‖u(t)− v(t)‖L2(Rd) → 0 (t→ ∞)

for some free solution v(t) = e−it∆φ with φ ∈ L2(Rd).
The existence of such a global solution u for every φ ∈ L2(Rd) was proven in

[4] for d ≥ 3 and 2/d < p < 4/d, but the uniqueness is an open problem in the
L2 setting, unless one assumes that the final data φ is more localized (such as
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|x|sφ ∈ L2(Rd) with s ≥ 2/p− d/2, cf. [2, 5]). The range of power is optimal since
for p ≤ 2/d the asymptotic profile needs to be modified nonlinearly (cf. [8]), and
for p ≥ 4/d there are plenty of solutions blowing up at large time, even though
starting from t = ∞ with the asymptotically free profiles (cf. [6]).

The uniqueness is difficult, since it is a super critical problem in view of the
scaling invariance:

u(t, x) 7→ ua(t, x) := a2/pu(a2t, ax)

of the equation, where ‖ua(0)‖L2(Rd) = a2/p−d/2‖u(0)‖L2(Rd) → 0 as a → +0
for p < 4/d, while the time scale of ua becomes larger. Since scattering of u is
equivalent to that of ua, it implies that the scattering problem is no easier by
restricting to small L2 norm of φ and u, nor by restricting to large time t >
0. Therefore perturbative argument, dominating the nonlinearity by the linear
part, can not possibly work. As we have little technique to compare solutions
of nonlinear dispersive equations except the perturbative arguments, it leaves the
uniqueness question widely open.

Nevertheless, by introducing randomness into the final data φ, Murphy [3]
proved that if the power p is bigger than the Strauss power p0(d)

p > p0(d) :=

√
d2 + 12d+ 4− d+ 2

2d
,

one can find a unique global solution u (in some function space) asymptotic to
e−it∆φω almost surely, for every φ ∈ L2(Rd), where φω is a randomized final data
defined by

φω(x) =
∑

k∈Zd

gk(ω)χ(x− k)φ(x),

with χ ∈ C∞
0 (Rd) smoothly decomposing Rd into cubes

1 =
∑

k∈Zd

χ(x− k),

while {gk}k∈Zd is a set of i. i. d. random variables with zero mean and appropri-
ate distribution, e.g., the Gaussian. The key estimate is an improvement by the
randomization of the Strichartz estimate:

‖e−it∆φω‖Lα
ωL

q
tL

r
x(R

1+d) ≤ C
√
α‖φ‖L2(Rd),

which holds for all (q, r, α) ∈ [2,∞) satisfying 1/q > d/2− d/r and α ≥ max(q, r).
The range of exponents (integrability) is much wider than the deterministic case

‖e−it∆φ‖Lq
tL

r
x(R

1+d) ≤ C‖φ‖L2(Rd),

which requires 2/q = d/2 − d/r. Roughly speaking, the randomized version is as
good as if φ ∈ L1 ∩ L2, except the L∞ cases.

However, the condition p > p0(d) excludes the physically important case p = 1
on R3, namely the quadratic nonlinear Schrödinger equations in three dimensions,



374 Oberwolfach Report 5/2019

since p0(3) = 1. For example, there is a model system [1] for the laser-plasma
interactions: 




iu̇1 −∆u1 = ū2u3,

iu̇2 −∆u2 = ū1u3,

iu̇3 −∆u3 = u1u2.

So we slightly extend the lower bound of p to include such cases, precisely to

p > p1(d) :=

√
d2 + 24d+ 16− d+ 4

4d
(< p0(d)),

though we need to replace the function space for u to ensure its uniqueness. The
numerical values of the two powers are

p1(1) = 2.35... p1(2) = 1.28... p1(3) = 0.90... p1(4) = 0.70...
p0(1) = 2.56... p0(2) = 1.41... p0(3) = 1 p1(4) = 0.78...

The meaning of those critical exponents can be understood in view of the scaling
invariance and the dispersive decay estimate:

‖e−it∆φ‖Lr∗ (Rd) ≤ C|t|−d/2+d/r‖φ‖Lr(Rd),

where 1 ≤ r ≤ 2 and r∗ := r
r−1 denotes the Hölder conjugate. Let Lq(Rd) be the

invariant initial space for the invariant scaling ua, namely

‖ua(0)‖Lq(Rd) = ‖u(0)‖Lq(Rd) ⇐⇒ q =
dp

2
.

Then the four critical exponents are respectively characterized by the invariant
exponent q as follows. Let v(t) = e−it∆φ and t > 0.

(1) Fujita exponent p = 2/d ⇐⇒ q = 1. The lower bound to apply the decay
estimate. The situation is the same for the semilinear heat equation.

(2) Mass-critical exponent p = 4/d ⇐⇒ q = 2. The upper bound to apply
the decay estimate. It is not a restriction for the heat equation.

(3) Strauss exponent p = p0(d) ⇐⇒ q = (p+ 2)∗.

φ ∈ L(p+2)∗

x =⇒ v(t) ∈ Lp+2
x =⇒ |v(t)|pv(t) ∈ L(p+2)∗

x ,

so that we can use the iteration argument with the decay estimate.
(4) Our exponent p = p1(d) ⇐⇒ q = (2p+ 2)∗. Then

φ ∈ L(2p+2)∗

x =⇒ v(t) ∈ L2p+2
x =⇒ |v(t)|pv(t) ∈ L2

x,

which is the lower bound to apply the decay estimate to the nonlinearity.

Let me conclude this report with an open question: What happens if we consider
the same data at t = 0 instead of t = ∞, namely the randomized Cauchy problem:

iu̇−∆u = |u|pu, u(0) = φω, 2/d < p < 4/d.

Since φω ∈ L2(Rd) almost surely, we have a unique global solution
u ∈ C(R;L2(Rd)), cf. [9]. The free profiles cannot possibly complete the as-
ymptotic description, since the equation has solitons, with arbitrarily small size of
L2(Rd) (as well as higher Sobolev norms). Then it seems natural to expect
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Randomized soliton resolution conjecture. Let 2/d < p < 4/d and φ ∈ L2(Rd).
Then for almost every ω, there exists a sequence of solitons in the form uj(t, x) =
eitaj+ixkjφj(x − cjt) and φ ∈ L2(Rd) such that the solution u of the randomized
Cauchy problem satisfies

‖u(t)−
∑

j

uj(t)− e−it∆φ‖L2(Rd) → 0 (t→ ∞).
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Fully discrete approximation of general nonlinear Sobolev equations

Serge Nicaise

(joint work with Fatiha Bekkouche, Wided Chikouche)

We consider Sobolev’s type equation (see [6])
{
A1(t, u)ut +A2(t, u)u = f(t, u) in V ′, 0 < t ≤ T,
u(0) = u0 in V,

where V is a Hilbert space with norm ‖ · ‖, V ′ its dual with respect to a pivot
space H , A1(t, u) : V → V ′ and A2(t, u) : V → V ′ are linear continuous operators
from V into V ′ that may depend on t and u, but A1(t, u) is not continuous from V
into H , see [3] for the case when A1 is independent of t and u. Typical examples
are the heat conduction involving two temperatures for isotropic materials [4] or
the effects of pulsed electric fields on heterogeneous media [1].

Under the assumptions that a1(t;u; ·, ·) and a2(t;u; ·, ·) are uniformly continuous
with respect to t and u, and that a1(t;u; ·, ·) is uniformly coercive with respect
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to t and u, the previous problem is equivalent to the (vector-valued) ordinary
differential equation

(1)

{
ut = F (t, u) in V, 0 < t ≤ T,
u(0) = u0 in V,

where F (t, u) = g(t, u) − A(t, u), with g(t, u) = A1(t, u)
−1f(t, u) and A(t, u) =

A1(t, u)
−1A2(t, u). As already noticed in [3], since A(t, u) is bounded from V into

V , this problem is nonstiff and therefore explicit (in time) schemes can be used
to approximate such a problem. This last property added to some Lipschitz-type
assumptions on ai and f allows to apply Theorem 6 of [5] to get a local existence
and uniqueness result, see [2].

We further perform a general analysis for a fully discrete scheme of problem (1)
by combining some error estimates of explicit semi-discrete schemes in time of or-
dinary differential equations (adapted to Hilbert valued equations) with new error
estimates of the corresponding fully discrete schemes based on some ”regularity”
assumptions and interpolation error estimates. Alltogether, if Un,h is the fully
discrete approximation of the solution u at time tn obtained by explicit Euler’s
scheme or explicit two-step Runge-Kutta’s scheme (Heun’s scheme), we prove the
error estimate

(2) ‖u(tn)− Un,h‖ ≤ C((∆t)p + hq(s)),

for all n = 1, . . . , N , where p = 1 (resp. p = 2) for Euler’s scheme (resp. Runge-
Kutta’s scheme) and q(s) is related to our abstract assumptions (but in practice
it depends on the regularity of the initial datum and the chosen finite element
space), and C is a positive constant independent of h and ∆t. Different numerical
examples from [2] are confirming the optimality of this error estimate.

References

[1] H. Ammari, D. Chen, and J. Zou, Well-posedness of an electric interface model and its
finite element approximation, Math. Models Methods Appl. Sci., 26 (2016), 601–625.

[2] F. Bekkouche, W. Chikouche, and S. Nicaise, Fully discrete approximation of general non-
linear Sobolev equations, Afrika Matematika, 2019, to appear.

[3] P. Chatzipantelidis, Explicit multistep methods for nonstiff partial differential equations,
Appl. Numer. Math., 27 (1998), 13–31.

[4] P. J. Chen and M. E. Gurtin, On a theory of heat conduction involving two temperatures,
Zeitschrift für Angewandte Mathematik und Physik, 19 (1968), 614–627.

[5] T. Kato, Quasi-linear equations of evolution, with applications to partial differential equa-
tions, Lecture Notes in Math., Vol. 448. Springer, Berlin, 1975, 25–70.

[6] S. L. Sobolev, On a new problem of mathematical physics. Izv. Akad. Nauk SSSR. Ser. Mat.,
18 (1954), 3–50.



Nonlinear Evolution Equations: Analysis and Numerics 377

Asymptotically stable selfsimilar blow-up of the supercritical gKdV

Lisa Onkes

(joint work with Herbert Koch)

The (gKdV) reads for p ≥ 2

(gKdV)

{
∂tu+ ∂xxxu+ ∂x

(
|u|p−1u

)
= 0

u(0, x) = u0
.

This equation is invariant under translation in time and space; and under the
scaling

uλ(x, t) = λ
2

p−1u(λ3t, λx).

Therefore the homogeneous Sobolev spaces Ḣsc with the critical exponent sc =
1
2 − 2

p−1 are scaling invariant:

‖u‖Ḣsc = ‖uλ‖Ḣsc .

If sc = 0 we call the problem critical, for sc < 0 subcritical and for sc > 0 super-
critical.

In the slightly supercritical case Koch [2] proved the existence of a selfsimilar
solution to the (gKdV) and Lan [4] showed the presence of an open set of initial
data in H1 leading to selfsimilar blow-up solutions. We are able to prove the
asymptotic stability of the selfsimilar blow-up solution found by Koch.

Theorem 1. Let 0 < sc < s < 1/2 and assume a spectral condition. Then there

exists a selfsimilar blow-up solution in Ḣs to the (gKdV) and a neighborhood of
this solution, such that every solution in this set converges exponentially fast (in
selfsimilar coordinates) to the selfsimilar solution.

The Spectral Assumption.

The (gKdV) has time-periodic solutions of the form

u(t, x) = Q(x− t),

where Q ∈ H1(R) solves

∂xxQ−Q+Q|Q|p−1 = 0.

There exists a unique real nonnegative radially symmetric exponentially decreasing
C2 solution Q to this equation – the ground state – and every other solution is a
translate of this solution (see [1], [3]).

The to Q corresponding solution u(t, x) = Q(x− t) of the (gKdV) is called the
soliton solution and represents the solution where the dispersive behavior of the
Laplacian is compensated by the focusing nonlinearity.
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Let 0 < sc < s < 1
2 and u be a selfsimilar solution to the (gKdV) of the form

u(t, x) = λ
2

p−1V (λx).

Therefore the selfsimilar profile V has to satisfy

2

p− 1
V + yVy − Vyyy − (|V |p−1V )y = 0,

if
λt
λ

= −λ3;

i.e. λ(t) = (3t)−1/3.
We change the coordinates so that the bifurcation from the soliton equation

becomes visible : Let b > 0,
λt
λ

= −bλ3.
Then the selfsimilar profile V fulfills

b

(
2

p− 1
V + yVy

)

︸ ︷︷ ︸
ΛV

−
(
Vyy + |V |p−1V

)
y
= 0.

We will require ∫
V Qxdx = 0,

such that this equation has a unique solution. We linearize the (gKdV) in selfsim-

ilar coordinates around V ∈ Ḣs(R) and define the linearized operator L[b, p] given
by

LA := b

(
2

p− 1
A+ yAy

)
−Ayyy −

(
p|V |p−1A

)
y

which satisfies

• L(Vy) = −bVy by the scaling invariance and
• L(ΛV ) = −3bΛV by the translation invariance.

We can now formulate our Assumption

Assumption 2. There exists a δ > 0 such that

‖eθLφ‖Ḣs ≤ Ce−δθ‖φ‖Ḣs

for all θ ≥ 0 and φ ∈ (Ker(L∗ + 3b)⊕Ker(L∗ + b))⊥.

This Assumption states, that the only discrete eigenvalues of eθL are the once
induced by the invariances of the equation. We are able to rigorously prove this
close to the critical case. Further away from the critical case we need to take this
as a condition which might be verified numerically.

Under our Assumption we are able to construct a contraction

ϕ : Bδ(V ) → V + (Ker(L∗ + 3b)⊕Ker(L∗ + b))
⊥
,

and therefore prove Theorem 1.



Nonlinear Evolution Equations: Analysis and Numerics 379

References

[1] B. Gidas, W.M. Ni, L. Nirenberg Symmetry and related properties via the maximum prin-
ciple, Communications in Mathematical Physics 68.3 (1979), 209–243.

[2] H. Koch, Self-similar solutions to super-critical gKdV, Nonlinearity 28.3 (2015), 545–575.
[3] M. Kwong Uniqueness of positive solutions of δu− u+ up = 0 in Rn, Archive for Rational

Mechanics and Analysis 105.3 (1989), 243-266.
[4] Y. Lan, Stable Self-Similar Blow-Up Dynamics for Slightly L2-Supercritical Generalized

KDV Equations, Communications in Mathematical Physics 345.1 (2016), 223–269.

A dynamical low-rank integrator for the Vlasov–Maxwell equations

Chiara Piazzola

(joint work with Lukas Einkemmer and Alexander Ostermann)

The Vlasov–Maxwell system models collisionless magnetized plasmas. The sim-
ulation of this type of plasma is crucial in many applications, for example, for
magnetically confined nuclear fusion. A kinetic description of the charged parti-
cles in a plasma under the influence of an electromagnetic field is required. The
particle distribution f(t, x, v) is a function of position x and velocity v, and it is
given by the Vlasov equation

∂tf(t, x, v) + v · ∇xf(t, x, v) + F (f) · ∇vf(t, x, v) = 0.

We consider here just one particle species, the electrons, in an uniform ion back-
ground. They are subject to the Lorentz force F = −(E+ v×B), where E and B
denote the electric and magnetic field, respectively. Then the Vlasov equation has
to be coupled with the Maxwell equations for the evolution of the electromagnetic
field.

Kinetic models are very challenging from a computational point of view, due
to the high dimensionality. The system is posed in an up to three-dimensional
physical space Ωx and a three-dimensional velocity space Ωv. A full discretization
in dimension d with n points in each direction would lead to storage requirements
O(n2d) with d = 1, 2, 3.

Recently a dynamical low-rank approach has been proposed for the Vlasov–
Poisson system [1]. The key idea is to constrain the dynamics of the system to
the low-rank manifold, as proposed in the seminal papers [4, 5]. The distribution
function f is approximated as a combination of functions in x and in v

f(t, x, v) ≈
r∑

i,j=1

Xi(t, x)Sij(t)Vj(t, v).

The number r gives the rank of the approximation. The computational complexity
of the problem is drastically reduced when r ≪ n. This approximation is justified
also for the Vlasov–Maxwell equations. By employing a Fourier analysis, one can
show that in the linear regime the distribution function is of low-rank. The full
analysis is reported in [3].
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A rank-r approximation of f is obtained by means of an orthogonal projection
onto the tangent space of the low-rank manifold. This approach, called projector-
splitting integrator in [5], consists of projecting the right-hand side of the Vlasov
equation onto the tangent space. The resulting differential equation is then solved
by splitting methods. Three subflows have to be considered. For the first subflow
the following partial differential equation is obtained

∂tKj(t, x) = −
∑

l

c1jl ·∇xKl(t, x)+
∑

l

c2jl ·E(t, x)Kl(t, x)+
∑

l

c3jl ·B(t, x)Kl(t, x),

where the unknown is Kj(t, x) =
∑

iXi(t, x)Sij(t). The factor Sij is then updated
by solving

d

dt
Sij(t) =

∑

k,l

(
c1jl · d2ik − c2jl · d1ik − c3jl · d3kl

)
Skl(t).

The third partial differential equation for Li(t, x) =
∑

j Sij(t)Vj(t, v) is then given
by

∂tLi(t, v) = −
∑

k

d2ik · vLk(t, v) +
∑

k

d1ik · ∇vLk(t, v) +
∑

k

d3ik · (∇vLk(t, v)× v).

We refer to [3] for the details on the coefficients c1,2,3jl and d1,2,3ik . The differential
equations can be solved by any suitable numerical method and employing any
suitable phase space discretization. Note that a QR decomposition is required
after the first and the third step to compute X and V from the resulting matrices
K and L. The advantage of this approach is that the physical and the velocity
space decouple. The equation for Kj is posed in position space, whereas the
equation for Li depends only on velocity. Thus, two differential equations in an
up to three-dimensional space have to be solved.

Moreover, the employed low-rank approximation combines very well with Max-
well’s equations, which are posed in the position space only. The time evolution
of the electromagnetic field is given by

∂tE(t, x) = ∇×B(t, x)− j(t, x)

∂tB(t, x) = −∇× E(t, x).

The source terms, the charge density and current density, are given by

ρ(t, x) =

∫

Ωv

f(t, x, v) dv and j(t, x) =

∫

Ωv

vf(t, x, v) dv,

respectively. At the continuous level, the electromagnetic field is self-consistent
with the charge function obtained from Maxwell’s equations. The two divergence
constraints, the so-called Gauss laws, are automatically satisfied

∇ ·E(t, x) =
1

|Ωx|

∫

Ωx

ρ(t, x) dx − ρ(t, x)

∇ ·B(t, x) = 0.

The divergence constraint for the electric field is a direct consequence of the con-
servation of charge. At the discrete level, however, the divergence of the electric
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field is not consistent with the charge density obtained from the Vlasov equation.
A solution violating Gauss’ law is wrong from the physical point of view. To
overcome this problem we propose a correction procedure to explicitly enforce the
divergence constraint at each time step. This approach was used, e.g., in [6]. Some
related ideas have been used in [2] for the conservation of mass and momentum for
the Vlasov–Poisson equation. Let us denote the incorrect value of the electric field
after one time step by Ēn+1. This value does not satisfy Gauss’ law. We adjust it
by including a correction potential φ, such that the final value of the electric field
is

En+1 = Ēn+1 − τ∇φ.

The correction potential is computed from the following Poisson equation

−∆φ =

1
|Ωx|

∫
Ωx
ρn+1 dx− ρn+1 −∇ · Ēn+1

τ
.

Note that the correction is constructed by taking into account the specific nu-
merical integrator employed to get Ēn+1. This strategy enforces the divergence
constraint up to machine precision.

The proposed low-rank integrator succeeds in capturing the main features of the
Vlasov–Maxwell system. In the linear regime the physical behaviour is already very
well reproduced even with a very small rank. Highly nonlinear problems require
a higher rank. This is, for example, the case of the Weibel instability after the
saturation of the magnetic field. For more details on the numerical results we refer
the reader to [3].
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A pseudo-spectral approach for the linearized Korteweg–de Vries
equation

Mirko Residori

(joint work with Lukas Einkemmer and Alexander Ostermann)

We propose a new method for solving the linearized Korteweg–de Vries (KdV)
equation

(1) ut + g(x)ux + uxxx = 0, (t, x) ∈ [0, T ]× [a, b]

with initial data u(0, x) = u0(x), subject to transparent boundary conditions. We
follow a splitting strategy in order to solve separately the advective and the dis-
persive part of the equation. For this purpose, we employ a Lie–Trotter splitting.

Let 0 = t0 < t1 < · · · < tM = T be an equidistant time discretization with time
step τ (tm = mτ) and let Φτ and Ψτ be the partial flows of

(2)

{
vt + g(x)vx = 0,

v(0, x) = v0(x),
(3)

{
wt + wxxx = 0,

w(0, x) = w0(x),

respectively. The numerical approximation to (1) at time t = tm+1 is given by

(4) um+1(x) = Ψτ ◦ Φτ (um)(x),

where um is the numerical solution to (1) at time t = tm.
We solve (2) by the explicit Euler scheme, since the CFL condition determined

by the advection g(x)vx is generally not prohibitive. For solving (3) we choose the
implicit Euler method. The numerical scheme (4) thus takes the form

(5) um+1 + τ∂3xu
m+1 = um − τg(x)umx , u0(x) = u(0, x).

The transparent boundary conditions are then designed for the numerical scheme
(5) in the same spirit as in [2]. We emphasise that such conditions are non-local
in time. To summarize, we obtain the following numerical scheme

(6)





um+1 + τ∂3xu
m+1 = um − τg(x)umx , (t, x) ∈ [0, T ]× (a, b),

u(0, x) = u0(x),

um+1(a) = f1(tm+1, u
m+1),

um+1(b) = f2(tm+1, u
m+1),

um+1
x (b) = f3(tm+1, u

m+1).

The functions f1, f2 and f3 depend on the time history of the numerical solution
at the boundaries. Further, we highlight their dependence on um+1.

We now take advantage of the employed Lie–Trotter splitting by carrying out
the spatial discretization by a pseudo-spectral approach, as it has been done for
the pure dispersive equation in [3]. This approach gives us a very accurate spatial
numerical solution using a modest number of grid points. To proceed, let PN be
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Figure 1. Top left: initial data u0(x). Top right: numerical
solution at time T = 0.5. Bottom left: numerical solution at time
T = 1. Bottom right: semilog plot of the spatial error.

the polynomial space of degree N and let us define

VN = {u ∈ PN |u(a) = f1(tm+1, u
m+1),

u(b) = f2(tm+1, u
m+1),

ux(b) = f3(tm+1, u
m+1)}

and let V ∗
N be the dual space of VN . The variational formulation of (6) reads: find

u ∈ VN such that for every v ∈ V ∗
N

(7) (um+1, v) + τ(∂3xu
m+1, v) = (um − τg(x)umx , v).

By choosing the basis functions of VN , V
∗
N properly (similarly to [1]) we obtain

banded matrices that discretize in space equation (7). Therefore, we can solve the
linear system with O(N) operations.

In Fig. 1 we present a numerical simulation that shows the effect of the trans-
parent boundary conditions as well as the fast convergence of the implemented
dual-Petrov–Galerking method. In particular, we consider

[a, b] = [−6, 6], u0(x) = e−x
2

, g(x) = g4x
4 + g3x

3 + g2x
2 + g1x+ g0
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and a final time T = 1. The polynomial g(x) is assumed to be constant for
x ∈ R \ [−6, 6] and chosen everywhere differentiable. Therefore, we set g0 =
2 + 4g1 − 18g2, g1 = 1/5, g2 = 1/10, g3 = −g1/108, g4 = −g2/72.

We employ an equidistant time discretization with m = 213 time steps and
a space discretization with N = 28 grid points. We plot the numerical solution
at times T = 0, 0.5 and 1. We notice no visible reflections at the boundaries
as the solution “leaves” the domain smoothly thanks to the transparent bound-
ary conditions. In a semi-logarithmic plot we show the super-polynomial spatial
convergence of the employed pseudo-spectral scheme.
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Error analysis of Runge-Kutta schemes for quasilinear hyperbolic
problems

Roland Schnaubelt

(joint work with Marlis Hochbruck, Tomislav Pažur)

Quasilinear hyperbolic evolution equations describe a wide range of phenomena in
physics, including in particular the Maxwell system with nonlinear instantaneous
constitutive laws. There is a well established analytical theory for such problems.
On the other hand, despite their importance, for quasilinear hyperbolic problems
there are only very few rigorous convergence results concerning time integration
methods. For instance, in [1] it is shown that the approximations of the semi-
implicit Euler method for (1) are well-posed and converge with order 1/2.

Kato’s approach from [4] provides a unified framework for a large class of quasi-
linear hyperbolic evolution equations. In this work a local well-posedness theory
is established in spaces like H3 in the case of first order systems. However, the
setting of [4] cannot directly be applied to problems like quasilinear Maxwell equa-
tions, as noted on p. 53 of [4]. One has to invoke state dependent (energy-type)
norms in addition. This approach was elaborated by Kato in [5] for a large class of
evolution equations. We work within a refinement of Kato’s theory due to Müller
[8] whose framework is closer to the applications we have in mind than that of [5].

In this framework two of the present authors recently showed well-posedness
and first order convergence of the semi-implicit and implicit Euler approximations
to quasilinear hyperbolic evolution equations, see [2]. Very recently, in [6] implicit
Runge–Kutta schemes have been analyzed in Kato’s original framework of [4].
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In the present paper we study implicit Runge–Kutta methods for the quasilinear
hyperbolic evolution equation

(1) Λ(u(t))u′(t) = Au(t) +Q(u(t))u(t), u(0) = u0.

Let Z →֒ Y →֒ X be densely embedded Hilbert spaces and R > 0 a fixed radius.
We assume that A is a linear skew-adjoint operator in X which induces a map
A ∈ B(Z, Y ), that Λ(v) ∈ B(X) is a symmetric positive definite operator, and
that Q(v) ∈ B(X) is uniformly bounded for v in the ball BY (R). Moreover, the
maps Λ : BY (R) → B(X), Λ−1 : BY (R) → B(Y ), and Q : BY (R) → B(Z, Y ) are
Lipschitz. Let v ∈ BY (R) ∩BZ(r) for some r ≥ 1. Set A(v) = Λ(v)−1(A+Q(v)).
The core condition for (1) is the existence of an isomorphism S : Z → X and
operators B(v) ∈ B(X) bounded by β(r) such that SA(v)S−1 = A(v) + B(v).
(We omit further minor conditions which can be found in our paper [3].)

These assumptions are valid for quasilinear Maxwell and other wave-type equa-
tions on the full space or with Dirichlet boundary conditions, see [2] or [8] for a
precise statement. Here X , Y and Z are suitable subspaces of L2, H2 and H3,
respectively. The Maxwell system with the usual boundary conditions of a per-
fect conductor can be treated in our framework only for special nonlinearities, cf.
Proposition 4.8 in [8].

Under these hypotheses, the problem (1) is locally wellposed in Z due to the
main results in [8] or [5]. In particular, for u0 ∈ BY (R/c0) ∩ BZ(r) there is a
time T0 = T0(r) = c′0/(r + β(r)) > 0 and a unique solution u ∈ C([0, T0], Z) ∩
C1([0, T0], Y ) of (1), cf. Theorem 2.3 in [3]. These constants and those below only
depend on the given operators (and the Runge–Kutta scheme), see [3] for details.

The general m-stage Runge–Kutta method with m distinct nodes 0 ≤ ci ≤ 1
and weights a = (aij)

m
i,j=1 and b = (bi)

m
i=1 is given by

Uni = un + τ

s∑

j=1

aijA(Uni)Unj ,

un+1 = un + τ

s∑

i=1

biA(Uni)Uni(2)

for n ∈ {0, . . . , N − 1}, i ∈ {1, . . . ,m}, a step size τ > 0, and Nτ ≥ T . Here, T is
given below, un ≈ u(tn) approximates the solution u to (1) at time tn = nτ , and
Uni ≈ u(tn + ciτ) are the internal stages.

We assume that a is invertible, that the scheme has order of at least m+1, and
that it is algebraically stable and coercive; i.e,

• (biaij + bjaji − bibj) is positive semidefinite, bi ≥ 0 for all i,
• there is a number α > 0 and a positive diagonal matrix D ∈ Rm×m with
ξ⊤Da−1ξ ≥ αξ⊤Dξ for ξ ∈ Rm.

Typical examples are Gauß or Radau IA and IIA collocations methods. To obtain
full classical convergence order, one would need rather strong additional regularity
assumptions, cf. Section 4.5 of [6], which we want to avoid here.
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In Proposition 4.3 of our paper [3] we showed that there are solutions of (2) for
u0 ∈ BY (R/c1)∩BZ(r) and n ≤ T1/τ , where c1 ≥ c0, T1 = T1(r) = c′1/(r+ β(r)),
τ ∈ (0, τ0(r)], and τ0(r) ∈ (0, 1] is maximal time step size. Moreover, the solutions
un are bounded by

‖un‖Z ≤ ceκ(r+β(r))nτ ‖u0‖Z .
In our main Theorem 5.3 of [3] we show an error estimate of the scheme.

Theorem. Let the above assumptions be fulfilled. Let u0 ∈ BY (R/c1) ∩
BZ(r), T = min{T0(r), T1(r)}, τ ∈ (0, τ0(r)], and n ∈ N with n ≤ T/τ . Let
u ∈ C([0, T ], Z) ∩ C([0, T ], Y ) be the solution of (1) and assume that u(m+1) ∈
L2([0, T ], D(A)) and u(m+2) ∈ L2([0, T ], X). Then the error of the Runge–Kutta
scheme (2) is bounded by

‖en‖X ≤ Cr1/2eCrT τm+1
( ∫ T

0

(
‖u(m+1)(t)‖2D(A) + ‖u(m+2)(t)‖2X

)
dt
)1/2

.

Theorem 6.3 of [3] also gives a variant of the result for convergence in Y . To treat
(1) within Kato’s approach, we first invert Λ(u(t)). Our analysis (and also that of
[5, 8]) then crucially depends on the dissipativity of Λ(u(t))−1A with respect to
the scalar product on X with the (state-depending) weight Λ(u(t)). This fact is
essential for the construction of one step of the scheme. Even more importantly,
the dissipativity provides the main energy-type bounds for the numerical solution.
On the other hand, these norms lead to substantial new challenges throughout
the proofs since one is forced to switch between them within the estimates. En-
ergy techniques for implicit Runge–Kutta methods which are algebraically stable
and coercive have been successfully applied to analyze stiff ordinary differential
equations. Our analysis is motivated by [7], where the algebraic stability was an
essential tool to prove rigorous error bounds for quasi-linear parabolic problems.

As noted above, the setting of [4, 5, 8] does not work well for boundary value
problems, in contrast to full space problems. This shortcoming is unfortunate since
the more operator-theoretic approach in these works fits very well to the tools from
numerical analysis used in [2, 3, 6]. In future work we want to combine the present
approach with results and (more PDE type) methods of the very recent paper [9],
and we will also study the space discretization error which is not considered here.
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Non-trivial self-similar blowup for the focusing energy-supercritical
wave equation

Birgit Schörkhuber

(joint work with Irfan Glogić)

We consider the semilinear wave equation

(∂2t −∆)u = |u|p−1u,(1)

for u : (t, x) ∈ I × Rd → R, I ⊂ R, 0 ∈ I, d ≥ 3, p > 1. The nonlinearity corre-
sponds to the so-called focusing case. As a natural toy model for more involved
problems, this equation has received a lot of attention in the recent past. Eq. (1)

is invariant the scaling transformation uλ(t, x) = λ
2

p−1u(λt, λx). For p = d+2
d−2 ,

rescaling leaves invariant the norm in the energy space Ḣ1×L2(Rd), which defines
the energy critical case. We are interested in supercritical nonlinearities p > d+2

d−2 .

It is well-known that solutions to Eq. (1) can blow up in finite time for all p > 1
and d ≥ 1. In view of the scale invariance it is natural to look for self-similar
blowup solutions

u(t, x) = (T − t)−
2

p−1 f( x
T−t ), T > 0.

A well-known example is given by the spatially constant ODE blowup profile

f0 = (2(p+1)
(p−1)2 )

1
p−1 . Apart from this trivial solution, countably many smooth, non-

trivial radial profiles {fn}n∈N0
are known to exist at least for d = 3 and each

odd p ≥ 7, see [2]. Within these families, f0 is the only profile that is known
in closed form. Concerning the role of self-similar solutions in the generic time
evolution, numerical experiments performed in [1] in the radial setting suggest the
following picture: For small initial data, solutions disperse as t → ∞. For large
generic data, solutions blowup in finite time T < ∞ in a self-similar manner and
approach f0 locally around the blowup point as t → T−. For data fine-tuned to
the threshold between these two basins of attraction, the evolution is described
by the non-trivial self-similar profile f1 that is approached for some intermediate
period before one of the two above scenarios occurs.
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Naturally, the aim is to describe these observations rigorously. In d = 3, the
stability of the ODE blowup for Eq. (1) in the supercritical case as been estab-
lished in [6], [7]. Generalizations to higher space dimensions are given in [8], [3].
Concerning the threshold conjecture, little is known so far. One difficulty here
is that the conjectured critical solution f1 is not known in closed form. In this
respect, the situation seems to improve in higher space dimensions: For d ≥ 5 and
p = 3 we found an explicit non-trivial blowup solution, see [9], given by

u∗T (t, x) = (T − t)−1f∗
(

|x|
T−t

)
, f∗(ρ) =

2
√
2(d− 1)(d− 4)

d− 4 + 3ρ2
.

To our knowledge, this solution was not known before. By exploiting further sym-
metries of Eq. (1), namely the invariance under spatial translations and Lorentz
boosts, where the latter are parametrized in terms of the rapidity a ∈ Rd, we
obtain the (2d + 1)-parameter family of explicit solutions u∗T,x0,a

. In [9], we re-
strict ourselves to d = 7 and prove that this family is codimension one stable in
a backward lightcone under small perturbations in a suitably high Sobolev space.
The proof is based on the methods of [7], which rely on the reformulation of the
problem in similarity coordinates and the use of semigroup theory and operator
analysis. Apart from obvious modifications due to the codimension one nature of
our result, the main difficulty is the analysis of the spectral problem arising in the
linearization. This is due to the fact that f∗ is spatially non-trivial. By refining
the techniques of [4], [5] we were able to prove that the corresponding linearized
operator has exactly one genuine unstable eigenvalue λ∗ > 0 apart from symmetry
eigenvalues that can be controlled in the nonlinear time evolution by modulating
the blowup parameters (T, x0, a). For this, it was crucial that λ∗ = 3 in seven
dimensions and that the corresponding eigenfunction is known explicitly. This is
not the case in other dimensions and the investigation of the spectral problem for
d ≥ 5 will be the subject of further research.

In view of our result, we conjecture that f∗ is a critical self-similar profile for
the focusing cubic wave equation in d ≥ 5, describing the behavior of solutions
at and, at least for some intermediate time, close to the threshold between stable
blowup and global existence.
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Low regularity integrators for the Schrödinger equation

Katharina Schratz

(joint work with Marvin Knöller, Alexander Ostermann, Frédéric Rousset)

1. A first-order low regularity scheme

In the recent work [6] a new low regularity Fourier integrator for the periodic cubic
Schrödinger equation

i∂tu = −∆u+ µ|u|2u, (t, x) ∈ R× T
d(1)

(with µ ∈ R) was introduced. The main benefit of the new scheme [6] lies in the
fact that its first-order convergence only requires the boundedness of one addi-
tional derivative of the solution (compared to classical numerical schemes which
require the boundedness of two additional derivatives of the solution). More pre-
cisely, estimating the global error in Hr only requires solutions in Hr+1 (r > d/2)
compared to the required regularity of Hr+2 solutions u(t) imposed by classical
schemes.

The construction of the new scheme ([6])

(2) un+1 = eiτ∆
[
un − iµτ

(
un
)2(

ϕ1(2iτ∆)un
)]

with ϕ1(z) =
ez − 1

z

is based on Duhamel’s formula looking at the twisted variable v(t) = e−it∆u(t)
and treating the dominant nonlinear frequency interactions (triggered by u) in
an exact way in the scheme while neglecting the lower order terms. This idea of
twisting the variable is widely used in the analysis of partial differential equations
in low regularity spaces.

The analysis in [6] is restricted to periodic Schrödinger equations (that is
x ∈ Td). The benefit of periodicity lies in the fact that the nonlinear frequency
interactions and the corresponding resonance structure can be analysed explicitly
with Fourier expansion techniques. More precisely, iterating Duhamel’s formula
of (1) yields (cf. [4])
(3)

u(tn + τ)=eiτ∆u(tn)− iµeiτ∆
∫ τ

0

e−iξ∆
(
|u(tn + ξ)|2 u(tn + ξ)

)
dξ

=eiτ∆u(tn)− iµeiτ∆
∫ τ

0

e−iξ∆
(∣∣eiξ∆u(tn)

∣∣2 eiξ∆u(tn)
)
dξ +R(τ, tn, u),
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where the remainder satisfies for r > d/2 the bound

(4) ‖R(τ, tn, u)‖r ≤ cτ2 sup
tn≤t≤tn+1

‖u(t)‖5r.

With the aid of the Fourier expansion we observe with w = u(tn) that

∫ τ

0

e−iξ∆
(∣∣eiξ∆w

∣∣2 eiξ∆w
)
dξ =

∫ τ

0

∑

k=−k1+k2+k3
eiξR(k)dξ ŵk1ŵk2ŵk3e

ikx,

where the underlying resonance structure is given by all k1, k2, k3 ∈ Zd and k =
−k1 + k2 + k3 such that

R(k) = k2 + k21 − k22 − k23 = 2k21 − 2k1(k2 + k3) + 2k2k3.(5)

Note that k21 corresponds to two derivatives acting on w, i.e., a term of type w2∆w,
while the lower order products k1k2, k1k3 and k2k3 correspond to terms of type
w∇w · ∇w and w∇w · ∇w, respectively. Therefore, we select k21 as the dominant
term of the resonance structure (5) and treat it exactly in our scheme. On the
other hand, we approximate the lower order terms kℓkj with ℓ 6= j and neglect
them in our scheme. This procedure leads to the scheme (2)(see [6] for details).

2. A second-order low regularity scheme

In the recent preprint [4] a second-order Fourier integrator for the Schrödinger
equation (1) was introduced. The new schemes allows us to lower classical regu-
larity assumptions of higher-order methods and nevertheless obtain a convergence
order ν > 1. The idea is again based on iterating Duhamel’s formula in the twisted
variable v(t) = e−it∆u(t) (for the second-order scheme up to higher-order terms)
and controlling the dominant terms in the nonlinear frequency interactions. The
construction, however, is much more involved due to the complicated structure of
resonances. In particular, a straightforward higher-order extension of the ideas for
the first-order scheme developed in [6] would only lead to an unstable scheme.

Based on a rigorous higher-order resonance analysis we constructed in [4] a
second-order Fourier integrator which in dimension d = 1 takes the form

(6) un+1 = eiτ∂
2
x

(
eiµτ |u

n|2un − iµ
(
Jτ1,x (u

n) + Jτ2,x (u
n)
))
.

For the precise structure of the correction terms see [4]. The new scheme (6) allows
second-order approximations of (1) in Hr with r ≥ 0 for solutions in Hr+2 in the
one dimensional setting d = 1, see [4, Theorem 3.2] for the precise convergence
estimate. This in particular includes the important class of classical solutions
in L2 (set r = 0) and extends the first-order bound in a natural and expected
way. However, due to the complicated structure of resonances we face an order
reduction down to 3/2 in the higher-dimensional setting d > 1.
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3. Error estimates in low regularity spaces

While the ideas in [6, 4] allowed us to improve the local error produced by the
low regularity scheme, the error analysis was restricted to classical tools in the
analysis of nonlinear partial differential equations. Due to Sobolev embedding our
error estimates could only be established in higher-order (smooth) Sobolev spaces
Hr with r > d/2. The latter requires solutions (at least) in Hδ+d/2 to allow
convergence rates of order τδ.

In [5]we considered (inspired by [1, 2, 3]) a filtered version of (2)

(7) un+1 = eiτ∆
(
un − iτΠK

(
(ΠKu

n)
2
ϕ1(−2iτ∆)ΠKu

n
))

with u0 = ΠKu(0) and the projection operator defined by the Fourier multiplier

ΠK = χ2

(−i∇
K

)
,

where χ is a smooth radial nonnegative function supported in B(0, 2). With the
aid of general discrete Strichartz estimates

∥∥einτ∆ΠKf
∥∥
lpτLq ≤ C(Kτ

1
2 )

2
p ‖f‖L2

we could prove the following L2 error estimates for H1 solutions (cf. Theorem 2.1
in [5]): For every T > 0 and u0 ∈ H1, let us denote by u ∈ C([0, T ], H1) the exact
solution of (1) with initial datum u0 and by un the sequence defined by scheme (7).
Then, there exist τ0 > 0 and CT > 0 such that for every step size τ ∈ (0, τ0], we
have the following global error estimates:

• if d = 1, with the choice K = 1/τ
5
6 ,

‖un − u(tn)‖L2 ≤ CT τ
5
6 , 0 ≤ n ≤ N,

• if d = 2, with the choice K = 1/τ
3
4 ,

‖un − u(tn)‖L2 ≤ CT τ
3
4 , 0 ≤ n ≤ N,

• if d = 3, with the choice K = 1/τ
2
3 ,

‖un − u(tn)‖L2 ≤ CT τ
2
3 |log τ | 23 , 0 ≤ n ≤ N,

where N is such that Nτ ≤ T .
This in particular allowed us to break the natural order barrier of τ1/2 imposed

by classical schemes for H1 solutions.
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The gyrokinetic approximation of the Vlasov-Maxwell equations

Eric Sonnendrücker

Magnetic fusion research is being actively pursued in order to provide a clean
energy available on demand. The principle is to confine a plasma, which is a gas of
charged particles at a very large temperature, around 100000oC, so that the fusion
reaction can generate energy with a positive balance. At such a large temperature
the plasma needs to be completely isolated from the wall of the reactor. This can
be achieved in toroidal devices, thanks to a very large magnetic field.

An appropriate model for the nonlinear evolution of the plasma is the Vlasov-
Maxwell system, based on the Vlasov equation which describes the evolution of
the particle density in phase space for each species

∂fs
∂t

+ v · ∇xfs +
qs
ms

(E + v ×B) · ∇vfs = 0.

nonlinearly coupled to Maxwell’s equations

∂E

∂t
− curlB = −J, ∂B

∂t
+ curlE = 0,(1)

divE = ρ, divB = 0.(2)

The sources for the Maxwell equations are obtained from the Vlasov equations
as follows: The charge density is ρ =

∑
s qs

∫
fsdv, and the current density is

J =
∑
s qs

∫
fsv dv. The so-called particle distribution functions fs depend on the

6 phase-space variables (x, v) and on time.
In a large slowly varying magnetic field µ = 1

2mv
2
⊥/|B| is an adiabatic invariant

of the particles equations of motion

dX

dt
= V,

dV

dt
=

qs
ms

(E + V ×B)

which are the characteristics of the Vlasov equation, which is a transport equation
in phase space (it is an exact invariant for a constant magnetic field). This prop-
erty can be used to transform the equations order by order in the small parameter
(corresponding to the slow variation of B), using a change of coordinates obtained
by a near identity Lie transform, to find a new equation of motion where the new µ
variable is exactly conserved and the fast motion restricted to its conjugate angle
θ, that can be averaged out. One finds reduced equations of motion, which are dy-
namical only in 4 variables instead of 6, µ being an invariant and θ being averaged
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out. The Vlasov type equation constructed with this new set of characteristics is
called the gyrokinetic equation.

In this talk we recalled the development of gyrokinetic theory, starting with
the reduction of the single particles equation of motion. This started with the
asymptotic theory of Hamiltonian systems by Kruskal [1]. Another seminal paper
was written by Littlejohn [2], where the reduction was directly performed on the
particle Lagrangian, which allowed to preserve the variational structure of the
original model. A full mathematical proof, with a different kind of averaging
technique, was recently proposed by Possanner [3].

In order to obtain a variational form of the self-consistent gyrokinetic model,
coupled with the field equations, the Vlasov-Maxwell action principle can be used

S =
∑

s

∫
fs(z0, t0)Ls(X(z0, t0; t), Ẋ(z0, t0; t), t)dz0 dt

+
ǫ0
2

∫
|∇φ+

∂A

∂t
|2dx dt− 1

2µ0

∫
|∇ ×A|2dx dt.

the single particle Lagrangian being given by

Ls = (x,v, ẋ, t) = (msv + qsA) · ẋ− (
1

2
ms|v|2 + qsφ).

As proposed by Sugama [4], the single particle Lagrangian can then be replaced
by the reduced single particle Lagrangian derived before.

This has become the base of modern gyrokinetic theory, see [5] for a review for
physicists, which is widely used for self-consistent plasma simulations in magnetic
fusion devices like Tokamaks or Stellarators.
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Local wellposedness of quasilinear Maxwell equations on domains

Martin Spitz

(joint work with Roland Schnaubelt)

The Maxwell equations are the mathematical formulation of electromagnetism. In
the presence of matter they are given in their macroscopic version by

(1)
∂tD = curlH − J , divD = ρ,

∂tB = − curlE, divB = 0,
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where E(t, x),D(t, x) ∈ R3 denote the electric and H(t, x),B(t, x) ∈ R3 the mag-
netic fields, ρ(t, x) ∈ R the charge density, and J(t, x) ∈ R3 the current density.
These equations have to be complemented by constitutive equations between the
electric and magnetic fields. There are several models for these so called material
laws. Here we look at the instantaneous ones. We take (E,H) as state variable
and assume that D and B are given by

(2) (D,B) = θ(x,E,H),

where θ : G × R6 → R6 is sufficiently regular and we consider system (1) on a
domain G ⊆ R3. A typical example is the Kerr nonlinearity arising in nonlinear
optics, where D = E + ϑ(x)|E|2E and B = H . Our main assumption on θ is
that its derivative χ = ∂(E,H)θ is symmetric and uniformly positive definite.

If G 6= R3, this system has to be equipped with suitable boundary conditions.
Typical ones are those of a perfect conductor

(3) E × ν = 0, B · ν = 0 on ∂G

or absorbing ones

(4) H × ν + (ζ(x,E × ν)E × ν)× ν = 0 on ∂G,

where ν denotes the outer unit normal vector of ∂G. In the case of absorbing
boundary conditions, the symmetric and positive definite function ζ : ∂G× R3 →
R3×3 models a conductivity at the boundary.

In this talk we present recent local wellposedness results for the quasilinear first
order initial boundary value problem arising from the Maxwell system (1) equipped
with the instantaneous material law (2), the perfectly conducting boundary condi-
tions (3) or the absorbing boundary conditions (4), and suitable initial conditions.
Moreover, we address the same question for the Maxwell interface problem.

We start with the case of a perfect conductor. In a first step we show that
the macroscopic Maxwell equations with instantaneous material laws, perfectly
conducting boundary conditions, and appropriate initial conditions can be refor-
mulated as the first order quasilinear hyperbolic initial boundary value problem

χ(u)∂tu+
∑3
j=1 Aj∂ju = f, x ∈ G, t ≥ t0;

Bu = 0, x ∈ ∂G, t ≥ t0;

u(t0) = u0, x ∈ G,

(5)

with additional conditions for the initial values. Here u = (E,H) is the new state
variable, A1, A2 and A3 are constant symmetric 6× 6-matrices, and B(x) ∈ R3×6

for every x ∈ ∂G. We refer to [4, 5] for an overview of results related to (5).
We present a complete local wellposedness theory for (5) showing the existence

of a unique maximal solution, characterizing finite maximal existence times, and
establishing the continuous dependence of the solutions on the data. The proof
relies on precise energy-type a priori estimates and a detailed regularity theory
for the corresponding linear problem which arises by freezing a function ũ in the
nonlinearity χ. Here we start from the L2-theory in [1], which provides a unique
weak solution of the linear problem in C([t0, T ], L

2(G)) for a fixed time T > t0 and
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a corresponding a priori estimate. As the linear L2-theory requires coefficients in
W 1,∞((t0, T )×G), we are naturally led to develop the nonlinear theory in Hm(G)
with m ≥ 3. We thus have to show a priori estimates for and existence of solutions
of the linear problem in these spaces. However, we note that the existence of
solutions in Hm implies compatibility conditions between the coefficients and the
data on the boundary both in the linear and the nonlinear situation.

The main difficulty in the derivation of the a priori estimates and the regularity
of the solutions arises from the fact that the Maxwell problem has a characteristic

boundary, i.e.,
∑3
j=1 Ajνj is singular. In general, there can be a loss of derivatives

for characteristic initial boundary value problems and it is crucial to exploit the
special structure of the Maxwell equations to avoid this loss of regularity. The
precise results of the linear theory can be found in [5].

Building on this linear theory, we then derive the following local wellposedness
theorem.

Theorem 1 ([4]). Fix m ∈ N with m ≥ 3. Let G ⊆ R3 be a domain with compact
Cm+2-boundary. Let χ ∈ Cm(G× R6,R6×6) be symmetric and uniformly positive
definite. Choose f ∈ Hm((t0, T ) × G) for all T > t0 and u0 ∈ Hm(G) such that
(χ, f, u0) satisfy nonlinear compatibility conditions. Then

(1) there exists a unique maximal solution u ∈ ⋂mj=0 C
j([t0, T+), H

m−j(G)) of
the nonlinear problem (5) and thus of the Maxwell system,

(2) if T+ <∞, then lim suptրT+
‖u(t)‖W 1,∞(G) = ∞,

(3) we have continuous dependence on the data, i.e., (f, u0) 7→ u( · ; f, u0) is
continuous in Hm(G).

In fact, this theorem applies to more general situations. We can also treat
zeroth order nonlinearities (arising from a nonlinear conductivity), inhomogeneous
boundary conditions, and material laws wich are only locally positive definite.

In view of applications, Theorem 1 has certain limitations. On the one hand
the regularity assumption for χ in the spatial variable x excludes the treatment of
composite materials where the material law has a discontinuity across the interface.
On the other hand, the modeling leading to the boundary conditions of a perfect
conductor (3) assumes to know the fields outside of G.

Both restraints can be overcome by studying interface problems. The Maxwell
equations themselves imply the interface conditions

(6) [D · ν] = ρΣ, [B · ν] = 0, [E × ν] = 0, [H × ν] = −JΣ

on an interface Σ between two components of the domain. Here ν is a unit normal
on Σ, the brackets denote the jumps across the interface, and ρΣ and JΣ are
charge and current densities on the interface, respectively. If we denote the two
components of G by G+ and G− and consider the Maxwell system on G+ and G−
separately, complemented by the interface conditions (6), we obtain the following
result.

Theorem 2 ([3]). Fix m ∈ N with m ≥ 3. Let G ⊆ R3 be a domain with com-
pact Cm+2-interface. Let χ± ∈ Cm(G± × R6,R6×6) be symmetric and uniformly
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positive definite. We then obtain a local wellposedness theory for the Maxwell in-
terface problem corresponding to Theorem 1 but with Hm replaced by the space of
piecewise Hm-functions.

Finally, we consider another common type of boundary conditions for the
Maxwell equations, the absorbing boundary conditions (4). They arise if one as-
sumes a nonlinear Ohm’s law for the current density JΣ in (6) and that the fields
vanish outside of G. In the analysis of the Maxwell system with an instantaneous
material law and the absorbing boundary conditions, new error terms appear at
the boundary. If ζ does not depend on E × ν, these are manageable. Otherwise,
there are certain highest order terms requiring an additional smallness condition
at the boundary. Nevertheless, we obtain a satisfying small data theory.

Theorem 3 ([2]). Fix m ∈ N with m ≥ 3. Let G ⊆ R3 be a domain with compact
Cm+2-boundary. We then obtain a local wellposedness theory for the quasilinear
Maxwell system with absorbing boundary conditions corresponding to Theorem 1

(1) for ζ independent of E × ν,
(2) for nonlinear ζ if ∂Eζ or |E| are small at the boundary.
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Dispersive decay of small data solutions for the KdV equation

Daniel Tataru

(joint work with Mihaela Ifrim, Herbert Koch)

This work is concerned with the Korteweg-de Vries equation (KdV)

(1)

{
ut + uxxx − 6uux = 0

u(0) = u0,

on the real line. Assuming that the initial data is small and localized, we seek to
understand the long time dispersive properties of the solution.

The fundamental solution for the corresponding linear KdV flow is

K(t, x) = t−
1
3Ai(x/t

1
3 ).

where Ai denotes the classical Airy function. To describe the decay of solutions
with localized data it is natural to split the space-time into three regions:
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(1) The hyperbolic region

H := {x . −t 1
3 },

where one sees an oscillatory, Airy type behavior for the solution, with
dispersive decay.

(2) The self-similar region

S := {|x| . t
1
3 },

where the solution essentially looks like a bump function with t−
1
3 decay.

(3) The elliptic region,

E := {x & t
1
3 },

which is eventually left by each oscillatory component of the solution, and
consequently we have better decay.

Defining the expression 〈x〉 in a time dependent fashion as

〈x〉 := (x2 + |t| 23 ) 1
2 ,

the following scale invariant result describes the dispersive decay of linear KdV
waves:

Proposition 1. Assume that the initial data u0 for linear KdV satisfies

(2) ‖u0‖
Ḃ

−
1
2

2,∞

+ ‖x2u0‖
Ḣ

1
2
≤ ǫ.

Then the corresponding solution satisfies the bound

(3) t
1
4 〈x〉 1

4 |u(t, x)|+ t
3
4 〈x〉− 1

4 |ux(t, x)| . ǫ.

Furthermore, in the elliptic region E we have the better bound

(4) 〈x〉|u(t, x)| + t
1
2 〈x〉 1

2 |ux(t, x)| . ǫ ln(t−
1
3 〈x〉).

The question one might ask is whether the solutions to the nonlinear KdV equa-
tion satisfy a similar bound globally in time. But the answer to this is clearly no,
due to two nonlinear phenomena which may occur even for small data, simultane-
ously or separately:

• Solitons. These are solutions with a fixed profile which move with
constant velocity. Unlike dispersive waves which move two the left, the
KdV solitons move to the right and may be arbitrarily small.

• Dispersive shocks. If one neglects the third order derivative in the
KdV equation then what is left is the Burgers equation, which develops
shocks in finite time. The third order derivative adds dispersion to the mix,
sending the high frequencies to the left as a dispersive tail. This guarantees
that shocks as a jump discontinuity cannot form. Nevertheless, a smooth
version of a shock still appears due to the strong Burgers type effects near
the self-similar region.
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Given these considerations, the better question to ask is

Question: If ǫ≪ 1 is the initial data size, then we ask what is the time scale up
to which the solution will satisfy linear dispersive decay bounds?

In this work we show that for initial data of size ǫ, the correct time scale is the
quartic one, Tǫ = ǫ−3. Precisely our main result is as follows:

Theorem 2. Assume that the initial data u0 for KdV satisfies

(5) ‖u0‖
Ḃ

−
1
2

2,∞

+ ‖xu0‖
Ḣ

1
2
≤ ǫ≪ 1.

Then for the quartic lifespan

(6) |t| ≪ ǫ−3,

we have the dispersive bounds

(7) |u(t, x)| . ǫt−
1
4 〈x〉− 1

4 |ux(t, x)| . ǫt−
3
4 〈x〉 1

4 .

Furthermore, in the elliptic region E we have the better bound

(8) 〈x〉|u(t, x)| + t
1
2 〈x〉 1

2 |ux(t, x)| . ǫ ln(t−1/3〈x〉).
The implicit constants are independent of ε and u.

This is a scale invariant result, and the choice of the function spaces is optimal
and consistent with scaling. This is also an optimal result, as inverse scattering
computations show that solitons may emerge from the self-similar region exactly
at quartic time.
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Long time behaviour for Stochastic wave equation

Leonardo Tolomeo

In this talk, we consider this defocusing wave equation with damping and cubic
nonlinearity with space-time white noise forcing, posed on T2.

(SNLW) utt + ut −∆u+ u3 = ξ.

The space-time white noise is defined to be the only (in law) random variable
which is independent and equidistributed in every point of space and time, i.e.

E[ξ(t, x)ξ(s, y)] = δ(t− s)δ(x − y).

This is a quite common physical hypothesis, hence our interest in studying the
behaviour of (SNLW). However, it forces ξ to be very rough, and indeed ξ is

just defined as a space-time distribution belonging to the space C
− 1

2
−ǫ

t C−1−ǫ
x .

Therefore, a perturbative analysis suggests that u ∈ H−ǫ \ L2, so it is not clear
how to make sense of the term u3. Indeed, in a series of works, Albeverio, Haba,
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Oberguggenberger, and Russo [1, 4, 5, 6] showed that the nonlinearity u3 cannot
make sense.

To overcome this issue, in [2], Gubinelli, Koch, and Oh introduced a suitable
renormalisation, formally expressed as

utt + ut −∆u+ u3 − 3∞ · u = ξ.

In their work, they showed local well posedness for this equation, starting from

smooth enough enough initial data (in H
1
4
+ǫ).

In a joint work with Gubinelli, Koch, Oh [3], we show global existence for
these solutions, through a very tight argument that involves application of the
I-method to the stochastic setting and precise large deviation estimates regarding
the stochastic terms that appear in the perturbative analysis. While this argument
is very tight, it does not exploit fully the damping term in the equation, and it
provides a bound on the growth of solutions which is double exponential in time.

On the other hand, as proven in [3], (SNLW) admits an invariant measure,
formally given by

ρ := exp
(
− 1

2

∫
u2t −

1

2

∫
|∇u|2 − 1

4

∫
(u4 − 6∞ · u2)

)
dudut,

and one finds that, for almost every initial data (according to this invariant mea-
sure), the solution has logarithmic growth in time. However, this result does not
provide any information about smooth initial data, since almost every initial data
according to this measure is not in L2(T2).

In a work in preparation, we show that this is also the case for every initial
data. Moreover, for smooth initial data, we show that when the time is going to
∞, the law of u(t) is converging to ρ.
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Faculté de Sciences et Technologie
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Université de Geneve
Case Postale 64
2-4, rue du Lievre
1211 Genève
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POLAND

Jan Leibold

Institut für Angewandte und
Numerische Mathematik
Karlsruher Institut für Technologie
(KIT)
Englerstrasse 2
76131 Karlsruhe
GERMANY

Prof. Dr. Enno Lenzmann

Departement Mathematik und
Informatik
Universität Basel
Spiegelgasse 1
4051 Basel
SWITZERLAND

Dr. Xian Liao

Institut für Analysis
Karlsruher Institut für Technologie
(KIT)
Englerstrasse 2
76131 Karlsruhe
GERMANY

Dr. Maria Lopez-Fernandez

Mathematics Department
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