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Introduction by the Organizers

The workshop on Non-Archimedean Analytic Geometry and Applications was or-
ganized by Vladimir Berkovich (Rehovot), Walter Gubler (Regensburg), Peter
Schneider (Miinster) and Annette Werner (Frankfurt). Non-Archimedean analytic
geometry is a central area of arithmetic geometry. The first analytic spaces over
fields with a non-Archimedean absolute value were introduced by John Tate and
explored by many other mathematicians. They have found numerous applications
to problems in number theory and algebraic geometry. In the 1990s, Vladimir
Berkovich initiated a different approach to non-Archimedean analytic geometry,
providing spaces with good topological properties which behave similarly as com-
plex analytic spaces. Independently, Roland Huber developed a similar theory
of adic spaces. Recently, fields medalist Peter Scholze has introduced perfectoid
spaces as a ground breaking new tool to attack deep problems in p-adic Hodge
theory and representation theory.
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Non-archimedean spaces have played an important in number theory and al-
gebraic geometry for decades. Recent years have seen new connections to other
fields and successful applications to the solution of celebrated problems not only
in arithmetic geometry. Since 2015, when the last workshop on the same topic
took place in Oberwolfach, exciting new developments have served both to enlarge
the foundations of the field and to embark to new horizons. Many of these re-
cent developments have been discussed in the workshop which brought together
researchers form different areas.

The workshop had 53 participants and we had 19 one hour talks. A summary
of the topics can be found below. All talks were followed by lively discussions, in
the form of plenary questions and also in the form of blackboard discussions in
smaller groups. Several participants explained work in progress or new conjectures
or promising techniques to attack open conjectures. The workshop provided a
lively platform to discuss these new ideas with other experts.

During the workshop, we saw how the reduction of not necessarily strict affi-
noid spaces behave in families (Ducros). A canonical compactification of complex
analytic varieties was presented (Poineau) in the hybrid setting which is a mixture
of complex spaces and non-archimedean spaces suitable for degenerations.

A skeleton is a polyhedral substructure of a Berkovich space which is a defor-
mation retract and which is induced by a mildly singular model over the ring of
integers of the non-archimedean field. Mazzon explained a non-archimedean ap-
proach to the famous P = W conjecture in non-abelian Hodge theory, and she
used properties of the essential skeleton to prove it in special cases. The construc-
tion of the non-archimedean SYZ-fibration from mirror symmetry was explained
and it was shown that it is an affinoid torus fibration away from a codimension
2 locus (Nicaise). Mirror symmetry inspired also the talk of Sustretov where he
described the Gromov—Hausdorff limits of curves with flat metrics.

A ground-breaking new approach to Hironaka’s celebrated theorem was exposed
in Temkin’s lecture on a canonical functorial algorithm for resolution of singular-
ities.

An incidence compactification of strata of abelian differentials was descibed
(Tyomkin) in terms of non-archimedean geometry which was known previously
only in terms of complex geometry.

A degeneration result of p-adic volume forms induced by base extensions to
a Lebesgue measure of the skeleton was presented (Jonsson). In characteristic
p > 0, Canton gave an interpretation of anticanonical metrics as operator norms
of Cartier operator.

The unexpected behavior of tropical Dolbeault cohomology of non-archimedean
curves was explained (Jell). Loeser introduced a structure of a non-archimedean
field on a non-standard model of the field of complex numbers, and he used this
to show that one-parameter families of complex integrals behave asymptotically
as integrals of Chambert-Loir-Ducros forms on the Berkovich space. A tropical
approach to classical Prym-Brill-Noether theory was given which leads to new up-
per bounds for the dimension of the Brill-Noether locus (Ulirsch). An application
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of non-archimedean methods to diophantine geometry was presented in Shokrieh’s
talk in which he described the stable Faltings height of a principally polarized
abelian variety over a number field in terms of local invariants.

The theory of equivariant D-modules on rigid spaces was used to show that
certain representations of GL(2) of a local field associated to the first Drinfeld
covering are irreducible and admissible (Ardakov). In the talk of Huyghes, she
described a category of coherent D-modules which is analogous to the classical
BGG-category.

A tame étale site of an adic space was introduced by Hiibner who showed that
its cohomology groups with p-torsion coefficients behave better than those of the
whole étale site. The Poincaré duality was established for Zariski open subsets of
proper smooth rigid analytic varieties (Liu); the proof relies very much on the use
of perfectoid spaces.

A conjectural analogue of the Chebotarév’s density theorem for convergent F-
isocrystals was proposed and proven in special cases (Hartl). Formal groups over p-
adic rings were described in terms of torsion points and related to p-adic dynamical
systems and the theory of (¢, T')-modules (Berger).

The atmosphere during the workshop was very good and the participants con-
tinued to work in small groups after the plenary talks. During the breaks and
in the evenings many informal mathematical discussions took place, in which the
young participants played an active role. The organizers made a specific effort
to invite PhD students and Postdocs. Altogether we had 15 participants from
this group. For most of them it was the first Oberwolfach workshop they ever
attended. The stimulating Oberwolfach atmosphere provided a unique opportu-
nity of meeting the international leaders of the subject and of keeping track with
current developments. The organizers also identified possible female invitees, thus
ensuring that among the participants of the workshop were 11 women mathemati-
cians. An informal concert took place on Thursday evening where 7 participants
played for an audience of about 30 people in the music room.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Yifeng Liu in the “Simons Visiting Professors” program
at the MFO.
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Abstracts

Reduction of affinoid spaces in family
ANTOINE DUCROS

We fix a complete non-Archimedean field k& and a divisible subgroup I' of R~ ¢; we
only assume that T' # {1} if |k*| = {1}. A k-affinoid algebra A (in the sense of
Berkovich) is said to be T'-strict if it can be written as a quotient
E{TW/r1,...,Tn/rn}/I where the radii r;’s all belong to I'. This class of affinoid
algebras gives rise by glueing to the class of I'-strict analytic spaces (see [B], chap-
ter 3 for more details). The reader should keep the following extreme examples in
mind:

- if ' = {1} (which can occur ouly if k is non-trivially valued), then the class
of I'-strict k-analytic spaces is nothing but that of strict k-analytic spaces,
that is, the Berkovich version of rigid-analytic spaces over the ground field
k;

- if I' = R+ then the class of I'-strict k-analytic spaces is that of all k-
analytic spaces.

Let X = .#(A) be a I'-strict k-affinoid space. Following Temkin [8], one asso-
ciates to A its I'-graded reduction

A= @{a €A |a| <r}/{ac A, |a| <1}
rel’
where || - || is the spectral semi-norm on A. This is a graded algebra over the
“graded residue field” k (which is a graded field, in the sense that every non-zero
homogeneous element k is invertible); note that if I' = {1} all these reductions are
the usual ones. If a is an element of A such that |al| € T’ we shall denote by @ its
image in the |a|-th graded component of A.

By adding the words “graded” or “homogeneous” almost everywhere, one can
mimic in the graded setting all classical constructions of commutative algebra
and even algebraic geometry; for instance one can define homogeneous prime and
maximal ideals of a I'-graded ring, and then its spectrum (which is the set of its
homogeneous prime ideals), and so forth. Going back to X = .#(A) we shall
denote by X the spectrum of A. This is an “affine graded scheme of finite type
over E”, and it comes with an anti-continuous reduction map X — X.

The assignment X — X is functorial, but it does not commute in general to
fiber products nor ground field extension. The aim of this talk was to present a
recent work [4] in which we remedy this problem in some specific situations. In
order to describe our main result, it will be convenient to introduce the following
definition. Let Y — X be a morphism between two I'-strict k-affinoid spaces
Y =.#(B) and X = .#(A). A T-nice presentation of B over A (or of Y over X)
is a presentation B ~ A{Ty/r1,...,T,/rn}/(a1,...,an) that fulfills the following
conditions:
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(1) the r;’s all belong to I'; for all j, the spectral norm p; of a; also belongs
to I';
(2) for every point = of X, the following holds:
- for all j, the norm of the image a;(z) of a; in S (x){T1/r1,...,Tn/rn}
is equal to pj ;

- every element b of the ideal (ai(x),...,am(z)) of
H(x){T1/r1,...,Tn/rn}, can be written > b;a;(x) with [|b;]-p; < |0
for all j;

(3) the natural map
p: Spec A[T1/r1,...,To/ra)/(@1, ..., a@m) — Spec A

is flat, its fibers are geometrically reduced, and their irreducible compo-
nents are geometrically irreducible.
Let us make some comments

- By E[Tl /T1, ..., Tn/rn] we denote the graded algebra of polynomials with
coefficients in A4 in indeterminates T1,...,T,, with T; being of degree r;
for all 4; this is the graded reduction of A{T}/r1,...,Tn/rn}.

- The conditions required for being a nice presentation might look quite
technical. The crucial point is the following: they imply that for every
x € X whose image in X is denoted by z, the graded reduction i/: is equal
to

'@ 7, = Spec H@)[Tu/r,..., Tufra] J(@a1(z), . .., am(@)).

Thus the family of reductions (Z) is induced by the fibers of a flat family over X.
Our main theorem ([4], Th. 3.5) then asserts the following.

Theorem. Let Y — X be a morphism between I'-strict k-affinoid spaces. Assume
that Y — X is flat with geometrically reduced fibers. Hence there exists a finite
family of morphisms f;: X; — X satisfying the following:
(1) each X; is affinoid and I'-strict, and X = fi(X;) ;
(2) if |k*| # {1} then each f; is quasi-étale; if |k*| = {1} then each f; is the
composition of a finite, flat and radicial map followed by a quasi-étale one;
(3) for each i the map Y x x X; — X, admits a I-nice presentation.

Remark. We keep the notation and the assumptions of the theorem. Assume
moreover that I' = {1} and the map Y — X is equidimensional. Then the so-called
reduced fiber theorme of Bosch, Liitkebohmert and Raynaud ([3], Th. 2.1) asserts
that Y — X admits after a strictly affinoid quasi-étale base-change a formal model
which is flat with geometrically reduced fibers. Once such a model exists, it is not
difficult, up to performing another strictly affinoid quasi-étale base-change, to
ensure that the irreducible components of its fibers are geometrically irreducible.
Thus we see that when I' = {1} and the map ¥ — X is equidimensional, our
theorem is a consequence of the reduced fiber theorem.

But we do not use this theorem, and in fact we even recover it under extra-
assumptions, for instance if X is reduced and k algebraically closed.
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A few words about our proof. As said above, we do not use the reduced
fiber theorem; in fact, we do not use any formal geometry. Instead we work with
Temkin’s theory of (graded) reduction of germs of analytic spaces.

More precisely, we use as a key tool a theorem by Grauert and Remmert (see
[2], 6.2.4, Thm. 1), which can be seen as an absolute version (that is, over Spf(k°))
of the reduced fiber theorem. This theorem in some sense enables us to prove our
result for every fiber of the map ¥ — X, and we need then Temkins’s method for
spreading out. Note that we also use (while working with graded reductions) a
reduced fiber theorems for schemes of finite type over an arbitrary valuation ring,
but this theorem can de deduced from the result by Grauert and Remmert alluded
to above (see [7], section 6).

Motivation Given a I'-strict affinoid space X, the anti-continuous reduction map
X — X induces a bijection my(X) =~ mo(X). Therefore our result enables us to
reduce the study of the variation of geometric connected components of the fibers
of flat map with reduced fibers in the analytic setting to the analogue problem in
scheme theory, which is adressed in EGA IV. This plays a crucial role in our work
in progress on flattening techniques for Berkovich spaces. (The use of reduction
to describe the behaviour of connected components in families is not new: in the
strictly k-analytic context and with the help of the reduced fiber theorem, this
strategy was followed by Abbes and Saito in [I] and by Poineau in [6]).

A question. This is natural to asl whether they shoud exist a I'-strict version of
the reduced fiber theorem (our main result being a substitute for it). The answer
is likely positive, but this would first require to develop a theory of I'-graded or
I'-filtered formal schemes, if only for stating the theorem.
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The first Drinfeld covering and equivariant D-modules on rigid
analytic spaces
KONSTANTIN ARDAKOV
(joint work with Simon J. Wadsley)

1. BACKGROUND AND MAIN RESULT

Let p be a prime number, let Q, be the field of p-adic numbers and let I’ be a
finite extension of Q,. Fix a uniformiser m € Or < F' and let F be the completion
of the maximal unramified extension of F'. Let

Q:= (P —PY(F)) xp F
denote the Drinfeld upper half plane. In [6], Drinfeld defined a tower
'*>M2*>M1*>M0=QXZ

of rigid analytic varieties such that

e the natural G := GLa(F)-action on My lifts to each M,,,
e cach map M,, - M,,_; is G-equivariant, finite étale and Galois,
e Gal(M, /M) = OF/(1+1I"Op) for each n > 0, where D is the quater-
nion division algebra over F' and II is a generator of the unique maximal
ideal of the maximal order Op of D,
e the actions of Gal(M,/My) and G on M,, commute.
This tower is known to realise both the Jacquet-Langlands and local Langlands
correspondences in (compactly supported) ¢-adic etale cohomology. We give a
more precise version of this statement in Theorem [[T] below, after establishing
the necessary notation.

Fix a prime number ¢ different from p. For any p-adic Lie group H, let Irr(H)
denote the set of isomorphism classes of Q,-linear, irreducible, smooth representa-
tions of D*. The Jacquet-Langlands correspondence [4], [14], [10] is an injection
JL : Irr(D*) < Irr(G), whose image consists of those G-representations
whose matrix coefficients are square-integrable. Let Wr denote the Weil groupﬁ

zZ
of F', and define %,, := M,,/ (7(; 2) for each n > 0.

Theorem 1.1 (Faltings, Harris-Taylor, Fargues, Mieda). For each p € Irr(D*)
there is a two-dimensional Q,-linear representation V, of Wr, and an isomorphism
of Qy-linear D* x G x Wg-representations

lmHY (B0 x5 F,Q) = @ p®JL(p) @V

pelrr(D*)

Question 1.2. What can one say about other cohomology groups of the tower
Mo, such as the p-adic étale cohomology, or the coherent cohomology?

IFor some background on Galois representations, we refer the reader to [13].
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We say nothing about the p-adic étale cohomology, except to point out that
when F' = Q,, the p-adic étale cohomology of the tower is known [3] to realise
Colmez’s p-adic local Langlands correspondence [2]. The coherent cohomology is
expected to produce admissible locally analytic representations of G, in the sense of
Schneider and Teitelbaum [I5]. More precisely, we have the following conjecture;
it can be viewed as a version of the (unpublished) Breuil-Strauch conjecture.

Conjecture 1.3.

(a) For allmn = 0, O(3,)* is an admissible locally analytic representation of
G,
(b) O(X,)* always has finite length.

The evidence for part (a) consists of the following two statements.

Theorem 1.4 (Dospinescu-Le Bras, 2017).
(a) holds if F = Q, and n = 0 is arbitrary.

The proof can be found at [5, Remarque 1.3(b)], and uses the full strength
of the p-adic local Langlands correspondence. On the other hand, [I1, Theorem
7.2.1(iv)] states the following

Theorem 1.5 (Patel-Schmidt-Strauch 2019).
(a) holds if n = 1 and F is arbitrary.

Let f, : ¥, — € denote the structure map of the étale covering >, of .
Then the Og-module V,, := f, +Os, is locally free of finite rank and carries the
Gauss-Manin connection. It is therefore naturally a G-equivariant D-module on €.
Furthermore it carries an action of the Galois group Gal(X,/3¢) which commutes
with both the G-action and the D-action, and for any irreducible representation
p of this finite group, the p-isotypic component V% of V,, is again a G-equivariant
D-module. The group Gal(X,/X) is abelian when n = 1, so each p is a one
dimensional character and an easy Kummer-theory argument shows that V{ is in
fact an invertible Og-module which has finite order in an appropriate Grothendieck
group of G-equivariant line bundles with connection.

Let D(G) be the locally F-analytic distribution algebra of G, and recall from
[15, §6] that Ce denotes the category of coadmissible D(G)-modules. We can now
state our main result.

Theorem A. Let £ be a G-equivariant D-module on ) which is invertible as an
Oq-module. Suppose that there exists a positive integer d such that £®¢ =~ Oq
as a G-equivariant D-module. Suppose that d is least possible and p ¥ d. Then
Z(Q) €Cq, and L(Q) is an irreducible D(G)-module whenever d > 1.

The argument sketched above shows that Theorem [A]limplies Theorem [[.5] and
also gives additional evidence to part (b) of the Conjecture for arbitrary F.
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2. SKETCH OF THE PROOF

Let K be a complete non-Archmedean field extension of F' and let G be a p-adic
Lie group acting continuously on a smooth rigid K-analytic space X. The paper
[1] introduced the abelian category Cx ¢ of co-admissible G-equivariant D-modules
on X, in order to prove a Beilinson-Bernstein style Localisation Theorem for the
coadmissible D(G)-modules.

Theorem 2.1. [I, Theorem C] Let G be a connected affine algebraic group of
finite type over F such that Gg = G ®p K is split semisimple. Let G be an
open subgroup of G(F) and let X = (G /B)*" be the rigid-analytic flag variety.
Then T'(X, —) is an equivalence of categories between Cx g and the category of
co-admissible D(G)-modules with trivial infinitesimal central character.

Note that if G = SLy then X = PL#", Now let j : Q — PL2% be the open
embedding and let % satisfy the hypotheses of Theorem [Al Theorem [A] follows
easily from Theorem 2.1l and

Theorem 2.2. j,.Z € Cpian /.

Choose a coordinate z on P13 and let D := Sp K{(z) < P be a closed

disk. If w := <(1) (1)), then {D,wD} is an admissible affinoid covering of P1:an,

The definition of the category Cpi,an /¢ found at [, Definition 3.6.7] shows that to
prove Theorem [Z2 it is enough to show that j,..Z is {D, wD}-coadmissible. The
symmetry of the situation quickly reduces Theorem[2.2to the following statements.

Theorem 2.3. Let Gy denote the first congruence kernel of GLa(OF).

(a) Z(D n Q) is a coadmissible 6(}1]), G1)-module.
(b) The canonical map D(D nwD,G1) ® ZLMnQ)— L(DnwbnQ)
D(D,G1)
18 an 1somorphism.

We will focus on the proof of Theorem [2Z3](a) only in what follows. Recall from
[12 §5] that for any rigid analytic space X there is an associated topological space
X that comes with an equivalence F — F between the abelian sheaves on X and
the abelian sheaves on X.

Definition 2.4. Let U be an admissible open subspace of the rigid analytic space
X, let F b~€ an abelian sheaf on X and let i : U — X be the embedding of the
closure of U. Define another abelian sheaf iL}' on X by

il F = iwi U F

3

affinoid variety X. For each s € K with |s| > 1, let U(s) denote the slightly larger
affinoid subdomain U(s) = X (L In) of X. Then the sections of ZTU]: on

5907 7 sgo

Example 2.5. Suppose that U = X(g; Z—Z) is a rational subdomain of the
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affinoid subdomains Y of X are given by
(LF)(Y) = lim F(Y A U(s)).
ls|>1
Definition 2.6. Let n > 0 be an integer.
(a) Uy :=D\ U {lz—al <|7|"}, and iy, : Uy — D is the embedding.

aEOF

(b) For each affinoid subdomain'Y of D and each r € K* define
DY) := O(Y){0,/ry and DL(Y):= U D, (Y).
(c) Let w := pﬁ, and set D,, = D;/ﬂ'" (D). s]>|r]

The Banach O(Y)-modules D, (Y) are in fact associative Banach algebra com-
pletions of the algebra D(Y) = O(Y)[0s] of finite order differential operators on
Y, whenever |r| is sufficiently large relative to Y. Morally, they are quantisations
of certain ‘boxes’ inside the cotangent bundle T*Y of Y, and in fact we have

D(Y) = lim D, (Y) = lim D} (Y).

We now introduce the linear differential operators R(z) that play an important
role in our proof of Theorem [Z3)(a).

Notation 2.7.
(a) ai,...,cu, € K are pairwise distinct, and k1, ..., kn, € Z.
(b) u=TI[" (z — ;)" € K(z) and d > 1 is an integer.
(¢) z:=ui and A, := [T, (z — ).
(d) R(z):=A,20,27" = A (0, — 121 e K[z, 0,].

u

Our main technical tool is an explicit presentation of the sections of (j+Z)p
that overconverge along the interior annuli of U,, as a module over a particular
completion of D(D), namely the ring D,, from Definition 2.6{c).

Theorem 2.8. Let ¢ : £®¢ =5 0q be a G-D-linear isomorphism and let n € N.
(a) The natural D(D)-action on My, := Z'Ln (j+2)p(D) extends to D,.
(b) There exists uy € K(x) n O(U,1)* and z, € L (U, 1), such that

Luv ,=0vu -2, and (28 = u,,.
n+§ n+2

(¢) My, =Dy, -z, = Dy,/DpR(2y).

Since Z (D Q) = lim M,,, 5(]1])) = lim Dy,, and each M,, is a finitely presented
D,,-module by Theorem [2.8(c), one might be tempted to conclude that in fact

Z(D n Q) is already coadmissible as a ﬁ(D)—module. However, this is not the
case: the connecting maps D, ®p,,., M,+1 — M, fail to be injective, and one
needs to ‘switch on the group action’ in order to force them to be isomorphisms.

Definition 2.9. Let n > 0 be an integer. Define
(a) Gn = ker(GLg((’)F) — GLQ(OF/ﬂ'nOF)),
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0

(b) B:Gny1— D) by g— Z]O(g cx—2)" % and
(¢) Sn:=Dnxg,., G1:=(DnxG1)/{B(9) —g:9€ Gni1).

It is not hard to show that (S,)y_, forms a weak Fréchet-Stein structure on
D(D, G1) in the sense of [7, Definition 1.2.6]. Theorem 2:3(a) follows from

Theorem 2.10. Let n = 0 be an integer.

(a) The D,, and G1-actions on M, extend to S,,.
(b) M, is a finitely presented Sy-module.

(¢) The connecting map Sy, ®5, 41 Mpy1 — M, is an isomorphism.

Theorem [2.I0(c) is the hardest part of the entire proof of Theorem [Al After
some microlocal analysis, its proof relies on showing that the power series
EN(—%5—(a—1)r
[e¢] n d d
Z 2 (r)((n—’r)(q—l)) m e K[[t]]
(n—r)g—1)+1

n=0 \r=0

does not have bounded coefficients, which in turn requires a precise calculation
of the p-adic valuation of the binomial coeflicients appearing in this series. Here
q denotes the order of the residue field of O and 1 < k < d is an integer. We
perform this calculation using Kummer’s classical result from [9].
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The adic tame site
KATHARINA HUBNER

For a smooth variety over the complex numbers and a prime number /¢, étale and
analytic cohomology with coefficients Z/¢Z coincide. If the characteristic p of the
base field is positive but different from ¢, the étale cohomology groups with co-
efficients Z/¢7Z retain the same good properties as over C. For instance, there
are finiteness theorems, cohomological purity, and a smooth base change theorem.
The cohomology groups are homotopy invariant and the Kiinneth formula holds
(not only for cohomology with compact support). All this breaks down, however,
if base field and coefficient ring have the same characteristic. There is overwhelm-
ing evidence that these problems are due to the existence of wild ramification “at
the boundary of X”. To give an example consider the first cohomology group
H elt(Aﬂ%p,Z/pZ), which classifies finite étale coverings of X. It is infinite dimen-

sional because of the huge amount of étale coverings of Aﬂ%p wildly ramified in
0.

For assertions concerning the fundamental group this problem has been adressed
by introducing the tame fundamental group (see [2]) Under suitable regularity as-
sumptions the tame fundamental group is topologically finitely generated and the
specialization map of the tame fundamental group is at least surjective ([7], VIII
2.11). Moreover, the tame fundamental group satisfies the Kiinneth formula ([3]
and there is a Lefschetz-Theorem ([4]). So the question arises whether one can
modify the étale site to obtain a tame site whose fundamental group coincides
with the tame fundamental group. Tame cohomology groups with torsion coeffi-
cients away from the characteristic p should coincide with the corresponding étale
cohomology groups and should be better behaved than étale cohomology groups
for p-torsion coefficients. One would furthermore expect that the tame cohomol-
ogy groups satisfy finiteness theorems and a version of cohomological purity and
smooth base change. The Kiinneth formula should be true without restrictions
and the tame cohomology groups should be homotopy invariant.

Since tameness is a valuation theoretic concept, it turns out to be natural to
work with adic spaces instead of schemes. We say that an étale morphism of adic
spaces f : X — Y is tame if for every z € X the residue field extension k(x)|k(f(x))
is tamely ramified with respect to the valuation of k(z) corresponding to z. For
every adic space X this defines a site X; (the tame site of X). Associating with
a scheme Y over a base scheme S the discretely ringed adic space Spa(Y, S) (an
easy generalization of Spa(A, AT) for a Huber pair (A, A1) with discrete toplogy),
we obtain a tame site also for schemes.

As expected, the tame fundamental group of Spa(Y, S); is naturally isomorphic
to the curve-tame fundamental group of Y /S ([I], section 7). Moreover, tame
cohomology coincides with étale cohomology in the required cases ([, section 6):
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For every adic space the tame cohomology groups of torsion sheaves with torsion
coprime to the characteristic are isomorphic to the corresponding étale cohomology
groups. If Y — S is a proper morphism of schemes, tame and étale cohomology
groups of Spa(Y, S); are isomorphic. Moreover, there is a first version of cohomo-
logical purity:

Theorem 1 ([I],Cor. 12.5). Let X be a quasi-compact, quasi-separated, quasi-
excellent scheme of characteristic p > 0 and X a reqular scheme which is separated
and essentially of finite type over S. Assume resolution of singularities holds
over S. Then for every pro-open dense subscheme U < X there is a natural
isomorphism

H'(Spa(U, S)s, Z/pZ) = H"(Spa(X, S)s, Z/pZ).

Via the excision sequence for a closed subscheme Z < X we conclude that
the tame cohomology groups with support in Spa(Z, S) and coefficients Z/pZ are
trivial. This is different from the case of coefficients Z/¢Z with ¢ # p, where for
regular pairs (X, Z) of codimension ¢ we have a canonical isomorphism (see [6])

HL(X,Z/07) =~ H"™*¢(Z,7/{Z(—c)).

However, this is the expected outcome in characteristic p > 0. Evidence for this is
provided by cohomological purity for the logarithmic deRham Witt sheaves v,,(s)
(B, Prop. 2.1): Let Z be a smooth closed subscheme of codimension ¢ of a smooth,
quasi-projective scheme X over a perfect field k of characteristic p and s = ¢. Then
HL(X¢t,vn(s)) = 0 for i < ¢ and there is a Gysin isomorphism

HY(Zst,vn(s — ) = Hy (X sty vn(5)).

However, there is no good description of the cohomology groups HY (X ¢, vn(s))
for r > ¢. My hope is that replacing étale with tame cohomology we have purity
in all dimensions. If s = 0, the sheaf v, (s) is isomorphic to Z/p"Z and for s < 0
it is zero. Hence, Theorem [Mis the expected purity result for s = 0.

A direct consequence of cohomological purity is homotopy invariance of the tame
cohomology groups with torsion coefficients ([I], Cor. 12.6). This is a considerable
advantage compared to étale cohomology in positive characteristic and hints to
the motivic nature of tame cohomology.
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Non-archimedean compactifications of complex analytic spaces
JEROME POINEAU
(joint work with Marco Maculan)

Let X be a complex algebraic variety, i.e. a separated scheme of finite type over C,
and let X" be its analytification. We would like to construct a compactification
of X" that is canonical in some sense. This is not possible to achieve in the
category of complex analytic spaces, so our aim will be to find a compact locally
ringed space X with an open embedding X" — X .

1. A VALUATIVE BOUNDARY

We denote by Cg the field C endowed with the trivial absolute value |-]o. We will
work in the category of analytic spaces over Cy in the sense of V. Berkovich (see
[28]). Recall that we have an analytification functor X — X§" from algebraic
varieties over C to analytic spaces over Cy.

In the affine case X = Spec(A), where A is an algebra of finite type over C, X"
may be defined as the set of multiplicative seminorms on A that induce the trivial
absolute value |- |p on C endowed with the weak topology. It is also endowed with
a sheaf of analytic functions. The general case may be obtained from the affine
case by glueing.

Starting with an algebraic variety X over C, there is another natural way to
associate an analytic space over Cy. Endowing C with the discrete topology, one
may consider X as a formal scheme and consider its generic fiber in the sense of
Raynaud. Following [6], we will denote it by X=. It is a compact subset of Xg".
In the affine case X = Spec(A), we have

X7 = fwe X5 [f@) < 1,fe A},
We may now define the non-archimedean boundary of X by
Xop = X" — X,

It may be identified with the set of seminorms that have no center on X.

It is interesting to remark that, if X is embedded as an open subset in a proper
algebraic variety Y over C with complement Z, then X, may be identified with
the generic fiber (in the sense of Raynaud-Berthelot) of the formal completion Yy
of Y along Z deprived of (the analytication of) its special fiber Z. In particular,
the latter construction does not depend on the choice of Y.

This set was first defined by Berkovich in a letter to V. Drinfeld and sub-
sequentely used by O. Ben—Bassat and M. Temkin in [I] to prove some descent
results (reconstructing coherent sheaves on Y from coherent sheaves on Yy and X ).
It was also independently defined by A. Thuillier in [6], where he proved that if Y’
is regular and Z has normal crossings, then the dual complex of Z is homotopy
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equivalent to Xo,. As a consequence, the homotopy type of the dual complex of
the boundary depends only on X and not on the chosen compactification.

2. HYBRID SPACES

In order to put together the spaces X" and X, we need a “hybrid” space that
contains both usual complex analytic spaces and analytic spaces over Cy.

Denote by Chyb, the field C endowed with the norm ||+ ||lnyb := max(]-|o, |- |e0),
where |- |4 is the usual absolute value on C. It is a Banach ring. As a consequence,
the theory developed in [2] provides us with a definition of analytic space over Cpy,
and an analyfication functor X — X,

In the affine case X = Spec(A), the definition is close to the usual one: X™P
may be defined as the set of multiplicative seminorms on A that are bounded by
the norm |- |nyn on C endowed with the weak topology. It is also endowed with a
sheaf of analytic functions.

The basic example is the analytification of Spec(C), which may be explicitly
described as

Spec(C)™? = {|-[5,,0 < e < 1},
where |- |, :=|-]o.

Let X be a complex algebraic variety. By functoriality, the structure morphism
7: X — Spec(C) gives rise to a morphism 7P : X"P — Spec(C)™P whose fibers
we can describe: we have (7?)71(|-]|¢) = X&" and, for each ¢ € (0,1], we have
(r2)=1(]-|g,) ~ X,

To sum up, we obtain a locally ringed space with complex analytic fibers that
seem to “degenerate” on a non-archimedean fiber. Such spaces have been used
by V. Berkovich in [4] to give a topological interpretation (in an analytic space
over Cy) of the weight zero part of the limit mixed Hodge structure of a degenerat-
ing family of compact complex manifolds. They can also be found in the work [7]
of S. Boucksom and M. Jonsson about the asymptotic behavior of volume forms
in the same setting.

3. THE COMPACTIFICATION

Let X be a complex algebraic variety. We set
Xt = X X3,
Since X= is a closed subset of Xan, which is itself closed in X™P X is an open

subset of X™P_ In particular, it inherits a structure of locally ringed space. Denote
by mF the restriction of 7" to X*. We have

(7)™ o) = X
and, for each ¢ € (0, 1],
()7 %) = @) TH[5) ~ XM
The resulting space is not compact in general and contains several copies of X"

To solve this issue, we will identify the points in the space X that correspond to
equivalent seminorms, i.e. seminorms that can be obtained one form the other by
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raising to some power A € R~¢. Denote by X the quotient space. We turn it into
a locally ringed space by endowing it with the push-forward of the structure sheaf
on XT.

The archimedean part of the space X now consists in exactly one copy of X™.
The non-archimedean part, which is the quotient of X, by the equivalence of
seminorms, is a so-called normalized space, as introduced by L. Fantini in [5].

Theorem 1. The space X is Hausdorff and compact and the map
XM= o)) — X
is an open embedding.

The map X — X has additional properties. For instance, it is functorial with
respect to proper morphisms.

Finally, to a coherent sheaf ' on X, one may functorially associate a coherent
sheaf F' on X . We have a GAGA theorem in this setting.

Theorem 2. The functor
F e Coh(X) —> F € Coh(X)

is an equivalence of categories.
For each coherent sheaf F on X and each q = 0, we have a natural isomorphism

HI(X,F) = HY(X ,F).

Note that the space X has an open subset isomorphic to X". As a consequence,

the space X may be used to relate the categories of coherent sheaves over X
and X",

The research for this note was supported by the ERC project TOSSIBERG (grant
agreement 637027).
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Non-standard analysis and non-archimedean geometry
FraNgoOIS LOESER
(joint work with Antoine Ducros, Ehud Hrushovski)

The aim of this work is to relate asymptotics of one-parameter families of complex
integrals with the non-archimedean integrals introduced recently by Chambert-
Loir and Ducros in [I]. This is performed by constructing a morphism of dou-
ble complexes from a non-standard archimedean Dolbeault complex to a non-
archimedean Chambert-Loir and Ducros complex which is compatible with inte-
gration.

1. Construction of the field C. We shall work over an algebraically closed field
C' containing C which is endowed with a norm || : C' — Rso with R a real closed
field such that C' ~ R(i), and also carries a non-archimedean norm | |, : C' — Rx,.

The construction of the field C' goes as follows. We fix a non principal ultrafilter
U on C* containing all (punctured) neighbourhoods of the origin. We consider
the ultrapowers *C = [[,.cx C/U and *R = [ [, -« R/U. We say an element (a;)
in *C, resp. *R, is t-bounded if for some positive integer N, |a;| < [t|" along U.
Similarly, it is said to t-negligible if for every positive integer N, |a¢| < [t|" along
U. The set of t-bounded elements in *C, resp. *R, is a local ring which we denote
by A, resp. A, with maximal ideal the subset of t-negligible elements which we
denote by 9, resp. M,. We now set C := A/ and R := A,/9M,. The field R is
a real closed field and C' ~ R(7) is algebraically closed. The norm || :* C —* Rxg
induces an R-valued norm || : C — Rsg. Furthermore, one can endow C with a

real-valued non-archimedean norm ||, : C'— R3¢ as follows. For any z € C'*, one
log ||
log [¢]

checks that the norm of is bounded by some positive real number in R. One

can thus consider its standard part o = std(llzglz‘) € R. Fixing 7 € (0,1) R,
g [t

one sets |z[, := 7%, so that |z], = [t|".

2. The two complexes. If X is a smooth algebraic variety over R, it is possible
to define a complex of sheaves of C* differential forms on X (R) and a well-behaved
integration theory. In particular if w is a top degree C* differential form with
support contained in a definably compact semi-algebraic subset of X (R), SX (W

makes sense as an element of R and furthermore | . (R w| is bounded by an element
of R;().

Assume now X is a smooth algebraic variety over C' and set A := —log [t|. We
construct a Zariski-sheaf A9 of forms on X whose sections are locally of the form

1 lo f lo fm
w:EIEJmJ( B 2 g ) n darg £,

A

with (f1,..., fm) regular invertible functions, for every pair (I,J) with I and J
two subsets of {1,...,m} of respective cardinality p and ¢, a smooth function ¢; ;
on R™ all whose derivatives are polynomially bounded, and dlog|f|; standing for
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dlog| fi,| A...Adlog|f;,| if i1 <i2 < ... < iy are the elements of I, and similarly for
darg f;. There exist natural derivations d : AP9 — APT14 and dF : AP9 — AP-a+1,

Similarly we set X, := —log|t|,. We denote by BP:? the Zariski-sheaf on X
whose sections are locally (on the analytification of X) (p, ¢)-smooth forms in the
sense of Chambert-Loir and Ducros [1] of the form

w = 01,7 (10g] fily, - ,10g| finl,) d'log| frl, A d"log|fs],
1,0

with (f1,..., fm) regular invertible functions, for every pair (I, J) with I and J

two subsets of {1,...,m} of respective cardinality p and ¢, a smooth function ¢; ;
on R™ all whose derivatives are polynomially bounded, and d'log|f;|, standing
for d'log|fi, |, A ... A d'logl|fs,|, if i1 < iz < ... <, are the elements of I, and

similarly for d”log|fs|,.
3. The main result. We are now in position to state our main result:

Theorem. Let X be a smooth algebraic variety over C. There ezists a unique
morphism of sheaves of bi-graded differential R-algebras A** — B**  sending
a non-standard archimedean form w to the non-archimedean form w,, such that
for every Zariski-open subset U of X, every finite family (f1,..., fm) of regular
invertible functions on U, every smooth function ¢ on R™ all whose derivatives
are polynomially bounded and every pair (I,J) of subsets of {1,...,m} one has

1 (log|fi| log| fm|
()\T(;S( A\ PR A dlog|f1|Adargf_] ,
1 lo log| fin
— _I|¢< g|f1||77”'7 g|f |b>d/10g|ff||7 /\d//10g|fJ|b-
A Ap Ay

Furthermore, the mapping w — w, is compatible with integration: if one assumes
that w is defined on some Zariski open U and that its support is contained in
a definably compact definable subset of U(C), then w, is compactly supported,
SU(C)|W| is bounded by some positive real number in R and

aa ([ o) e[ o

with U™ the non-archimedean analytification of U.

Note that the last statement can be interpreted as expressing asymptotics of
one-parameter families of complex integrals as non-archimedean integrals in the
sense of Chambert-Loir and Ducros.
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Skeletons of Prym varieties and Brill-Noether theory
MARTIN ULIRSCH
(joint work with Yoav Len)

1. SKELETONS OF PRYM VARIETIES

Let X be smooth projective curve over a non-Archimedean field K and let 7: X -
X be an unramified double cover. The kernel of the norm homomorphism

Nm,: Pic(X) — Pic(X)
O4(D) — Ox(m, D)

has two components; the component containing the identity is known as the Prym
variety Pr(X, ) associated to the unramified double cover w: X — X and it
carries a natural principal polarization.

Jensen and Len [JL18] gave us a tropical analogue of this construction: Let T’
be a tropical curve and an unramified double cover : I — I. The kernel of the
tropical norm homomorphism

Nm,: Pic(T') — Pic(I)
[D] —> [mD]

has one or two components; the component containing the identity is the tropi-
cal Prym variety Pr(T,w) associated to 7: I — I'. We show that Pr(I',7) also
naturally carries a principal polarization.

Let I'x be the non-Archimedean skeleton of X% and write px: X*" — I'x for
the retraction map. There is a natural modular tropicalization map

px i Pr(X,m)* — Pr(['x, 7'"P)

from the Berkovich space Pr(X, 7)%" to Pr(I'x, 7"°P) induced by pushing forward
divisors along px. On the other hand, given an abelian variety A over K, by
[Ber90Q], there is a natural strong deformation retraction ps: A" — X(A) from
A" onto a closed subset X(A) of A" that has the structure of a tropical abelian
variety, the non-Archimedean skeleton of A%™. A fixed principal polarization on A
hereby naturally induces principal polarization on %(A). Expanding on the work
of Baker-Rabinoff [BR15], we confirm [JL18| Conjecture 6.3].

Theorem 1. There is a canonical isomorphism
px.q: Pr(Dx,m"P) = (Pr(X7 7T))

of principally polarized tropical abelian varieties that makes the natural diagram
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PX, %

Pr(X, )

pPrm

S(Pr(X,m)) e Pr(Tx,7'roP)
commute.

Let R4 be the moduli space of unramified double covers, as e.g. introduced
(and compactified) in [BeaT7], and A, the moduli space of principally polarized
abelian varieties. There is a natural Prym-Torelli morphism pr: R, — Ay that

associates to an unramified double cover m: X — X its associated Prym variety
Pr(X, 7). Theorem 1 may be reinterpreted as saying that the diagram

tropr
an 9 trop
_—
Rg RQ

t
A;n ropAg AZTOP

cominutes.

2. TROPICAL PRYM-BRILL-NOETHER THEORY

Let 7: X — X. Let 7 > 1. In [Wel85], Welters has defined the Prym-Brill-Noether
locus V"(X, ) to be the closed subset

{L € Picoy—o(X)|Nmy (L) = wx,h°(L) = 7+ 1 and h°(L) = + 1 (mod 2)}

in Pngg,Q(}\(/ ). Theorem 1 above, in combination with the Bieri-Groves theo-
rem for maximally degenerate abelian varieties from [Gub07], allows us to apply
tropical techniques, as in [CDPR12,Bak08,[Pfl17], to find upper bounds on the
dimension of V"(X, 7).

Theorem 2. Let r > —1 and write

kB kg < 2r -2

(r.k) =1 2 =
n=n(r k)= :
(T'QH) ifk>=2r—1.

Suppose k = 2 is either even or greater than 2r — 2. There is a non-empty open
subset in the k-gonal locus of Ry such that for every unramified double cover

7 X — X in this open subset we have:
dimV"(X,7) <g—1-n(rk) .
In particular, the Prym—Brill-Noether locus V" (X, ) is empty if g — 1 < n(r, k).
This, in particular, provides us with a tropical proof of the Prym-Brill-Noether-
Theorem, which classically follows from Welters’ Prym-Gieseker-Petri Theorem

[Wel85 Theorem 1.11] and Bertram’s existence theorem for Prym special divisors
[Ber87].
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Corollary 1. There is a non-empty open subset of Ry such that for every unram-
ified double cover m: X — X in this set we have:

dmV"(X,7)=g—1— (r—l—l) .

2
In particular, the Prym—Brill-Noether locus V" (X, ) is empty if and only if g —
1-("th <o.

In general, we expect the inequality above to be an equality and we are currently
investigating whether new techniques from logarithmic Gromov-Witten theory, as
introduced in [JR17], can help us find a lower bound.
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The non-archimedean SYZ fibration
JOHANNES NICAISE
(joint work with Chenyang Xu, Tony Yue Yu)

1. INTRODUCTION

The main motivation for this talk is a tentative geometric explanation for the
phenomenon of mirror symmetry between Calabi-Yau manifolds: the Strominger-
Yau-Zaslow (SYZ) conjecture [5]. It has been finetuned over the years and is
currently usually formulated in the following way. Let A be an open disk around
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the origin of the complex plane, and set A* = A\{0}. Let X — A* be a maxi-
mally degenerating projective family of Calabi-Yau manifolds of dimension n (the
definition of a maximally degenerating family will be recalled below). Then the
SYZ conjecture states that a general fiber X; of the family admits a fibration
p: Xy — S over a topological n-sphere S ~ S™ such that, away from a codimen-
sion > 2 discriminant locus D < S, the map p is a smooth fibration in Lagrangian
real tori of dimension n. Moreover, S can be realized as the Gromov-Hausdorff
limit of the fibers X; with their natural Ricci-flat metrics. The mirror partner of
X can then be constructed by dualizing the torus fibration over S\D and com-
pactifying the result after some subtle deformations (quantum corrections) of the
complex structure.

In this formulation, the conjecture is still wide open. However, it has been quite
influential for the development of the theory of mirror symmetry in algebraic ge-
ometry. It has inspired (at least) two powerful approaches: the Gross—Siebert
programme (based on tropical and logarithmic geometry), and the Kontsevich—
Soibelman programme (based on non-archimedean geometry). The starting point
of the Kontsevich—Soibelman programme is the profound insight that the conjec-
tural SYZ fibration p resembles a retraction map of a non-archimedean analytic
space onto its skeleton, and that it should be possible to pass through the non-
archimedean world to construct a mirror family for the degeneration X [112]. Kont-
sevich and Soibelman proposed a candidate for the base of the non-archimedean
SYZ fibration: the essential skeleton.

2. THE ESSENTIAL SKELETON

We slightly generalize the set-up: let k be an algebraically closed field of charac-
teristic zero, and set R = k[[t]] and K = k((t)). We replace the disk A by its
algebraic analog SpecR, and the punctured disk A* by SpecK. We endow K with
its t-adic absolute value | - | = exp(—ord;(+)).

Let X be a geometrically connected smooth projective K-scheme of dimension
n with trivial canonical bundle. We say that X is maximally degenerate if it has
a semistable model X over R (that is, a regular projective R-model whose special
fiber is a reduced divisor with strict normal crossings) and the monodromy action
on H" (X xx K% Q) has a Jordan block of rank n + 1. The former condition
can always be achieved by means of a finite extension of K, by the Semistable
Reduction Theorem. The latter condition formalizes the intuitive idea that X is as
far away from having good reduction as possible: the geometry of the irreducible
components of the special fiber X is as simple as possible, and the geometric
complexity of X has been transferred into the combinatorial structure of the dual
intersection complex of Xi. Good examples to keep in mind are abelian K-varieties
with purely multiplicative reduction and type III degenerations of K 3-surfaces.

Kontsevich and Soibelman identified in [2] a canonical subspace Sk(X) of the
K-analytic space X?". It is homeomorphic to a finite simplicial complex, and it is
called the essential skeleton of X. If X is an abelian variety then Sk(X) is a real n-
dimensional torus; if X is a K3-surface then Sk(X) is a 2-sphere. Kontsevich and
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Soibelman proposed that Sk(X) should be the base of a non-archimedean analog
of the SYZ fibration. What was missing from their construction was a candidate
for the fibration itself.

3. THE NON-ARCHIMEDEAN SYZ FIBRATION

Chenyang Xu and the author have given in [3] a different interpretation of the
essential skeleton Sk(X): it can be realized as the skeleton of any Q-factorial
minimal dlt-model X of X. These models appeared as natural generalizations
of semistable models in the Minimal Model Programme. They are produced by
running an MMP algorithm on a semistable model for X. The dit-models are
sufficiently close to semistable models to generalize Berkovich’s construction of
the skeleton Sk(X) ¢ X®" and the retraction map

px: X — Sk(X).

The skeleton Sk(&X') is homeomorphic to the dual intersection complex of the spe-
cial fiber &j. Chenyang Xu and the author have proven that Sk(Xx’) = Sk(X); in
particular, it is independent of the choice of X'. In this way, the retraction pxy
(which does depend on the choice of X') becomes a natural candidate for the non-
archimedean SYZ fibration. This opens the prospect of using non-archimedean
geometry as a bridge between mirror symmetry and birational geometry, translat-
ing mirror symmetry conjectures into statements about the geometry of minimal
models and using MMP techniques to prove them.

Our main result is an instance of this dictionary. Kontsevich and Soibel-
man have made a detailed list of conjectures about the properties that the non-
archimedean SYZ fibration should satisfy. In particular, they predicted that it
should be an affinoid torus fibration away from some codimension > 2 discrim-
inant locus D in Sk(X), in accordance with the original statement of the SYZ
conjecture. When applied to the retraction map px, this means that, locally over
Sk(X)\D, one should be able to identify px with the tropicalization map

trop: G x — R™.

We have proven this conjecture in collaboration with Chenyang Xu and Tony Yue
Yu [4]. Our main technical result is that any Q-factorial minimal dit-model X
of X such that X has reduced special fiber is semistable locally around the one-
dimensional strata of Xj. We then proved that, after blowing up finitely many zero-
dimensional strata in X%, the formal completion of A along each one-dimensional
stratum is isomorphic to the formal completion of a toric R-scheme along a one-
dimensional stratum of its special fiber. This finally implies the conjecture of
Kontsevich and Soibelman, taking for D the union of codimension > 2 faces in
Sk(X) = Sk(X).
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P-adic Riemann-Hilbert correspondence, de Rham comparison and
periods on Shimura varieties

RuocHUAN Liu
(joint work with Kai-Wen Lan, Xinwen Zhu)

In previous works [2[I], a p-adic Riemann—Hilbert functor was constructed as
an analogue of Deligne’s Riemann-Hilbert correspondence over C (see [1] for the
general introduction and backgrounds). In the present work, we further investigate
the properties of the p-adic Riemann—Hilbert functor. We establish the de Rham
comparison isomorphisms for the cohomology with compact support under the p-
adic Riemann—Hilbert correspondences, and show that they are compatible with
duality. Precisely, we first obtain the following theorem:

Theorem 1. Let U be a d-dimensional smooth algebraic variety over a finite
extension k of Qp,, and let . be a de Rham p-adic étale local system on U. Then
there is a canonical comparison isomorphism

(1) Héit,c (UE’ IL‘) ®q, Bar = HciiR,c(Uv DZAF%(]L)) ®r Bar

compatible with the canonical filtrations and the actions of Gal(k/k) on both sides.
Here Dzlé is the (above-mentioned) p-adic Riemann—Hilbert functor constructed in
[, and HE . (resp. Hig ) denotes the usual étale (resp. de Rham) cohomology
with compact support.

In addition, the above comparison isomorphism () is compatible with the one
in [Il Theorem 1.1] (for varying L) in the following sense:

(1) The following diagram

H, (Up, L) ®g, Bar —— Hig (U, DI (L)) @k Bar

| |

H, (Uz, L) ®q, Bar —— Hig (U, DIE(L)) ®k Bar
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is commutative, where the horizontal isomorphisms are the comparison
isomorphisms, and where the vertical morphisms are the canonical ones.
(2) The following diagram

H, (Ug, L) ®g, Ban —————— Hig (U, D3E(L)) ®k Bar

. Vv ~ _ . v
(Héztdﬂ(Uz,Lv (d)) ®q, BdR) — (Hifi ‘U, DSIP%(LV (d)) ®x BdR)
1s commutative, where the horizontal isomorphisms are given by the com-
parison isomorphisms (and where the duals are with respect to the base
field Bar), and where the vertical isomorphisms are given by the usual
Poincaré duality of étale and de Rham cohomology.

As a byproduct, we obtain Poincaré duality for (rational) étale cohomology
of smooth rigid analytic varieties that are complements of closed rigid analytic
subvarieties in proper rigid analytic varieties. Recall that Scholze noted in [3]
that it is interesting to prove Poincaré duality in the setup of proper smooth
rigid analytic varieties there (in which case the cohomology with compact support
coincides with the usual cohomology), and it is natural to ask whether the Poincaré
duality is compatible with the de Rham comparison isomorphisms there. More
precisely, we have the following theorem:

Theorem 2. Let U be a d-dimensional smooth rigid analytic variety over k, which
is of the form U = X — Z, where X is proper and Z < X is a closed rigid analytic
subvariety. Then there is a canonical trace morphism

tet HéQtd,c(UE’ Qp(d)) — Qp,

satisfying certain natural compatibility conditions. In addition, for each Z,-local
system 1. on Usy (which is not necessarily de Rham), with L, := L ®z, Qp, we
have a canonical perfect pairing

Hét,c(UEv LQP) ®q, HéQtd_i(Uﬁv ]Lfép (d)) — Qp,

which we call the Poincaré duality pairing, defined by pre-composing tey with the
cup product pairing Hét,c(UEv ILQP) ®q, Hstd_z(UE, Lg, (d)) — HéQgC(UE, Qp(d)).

We remark that our definition of compactly supported cohomology for rigid
analytic varieties is different from the usual one (e.g. Huber’s definition), and is
based on the Kummer etale topology for log adic spaces developed in [I] . In
fact, we will do a little more in this article. We can also study the cohomology
with partial compact support and also some generalized interior cohomology, which
is the image of a morphism between cohomology with different partial compact
support conditions; and construct de Rham comparison isomorphisms for such
cohomology that are also compatible with Poincaré duality.
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Functorial semistable reduction and resolution of morphisms
MicHAEL TEMKIN
(joint work with Dan Abramovich, Jarostaw Wlodarczyk)

1. MAIN RESULTS

In a joint project with Abramovich and Wlodarczyk, we construct a functorial
resolution of morphisms in characteristic zero, see [2]. Already in the case of
varieties, this leads to a new algorithm which is faster than the classical one and
possesses better functorial properties, see [1].

1.1. Historical background.

1.1.1. Classical desingularization. Until our work there was known an essentially
unique functorial (or canonical) resolution of singularities, to which we refer as the
classical algorithm. Tt is based on (originally non-canonical) method of Hironaka
developed further by Giraud, Bierstone-Millman, Villamayor, Wlodarczyk, Kollar,
and other experts. They suggested different descriptions, of essentially the same
algorithm with certain variations in combinatorial parts. In brief, the main result
was

Theorem 1.1.2. For any integral variety Z over a field k of characteristic zero
there exists a modification f: Zies — Z such that Z,es is smooth. Moreover, the
construction is smooth-functorial: if Z' — Z is smooth, then Z| ., = Zyes Xz Z'.

The proof went by locally embedding Z into a manifold with a boundary (X, E)
(i.e. X is smooth and F is an snc divisor) and principalizing the ideal Iy < Ox,
i.e. finding a sequence of blow ups g: (X', E') — -+ — (X, E) such g~!(Iz) is
invertible with support on E’. Hironaka showed that principalization easily implies
resolution, and also implies that on can resolve a closed subset T' & Z to an snc
divisor T" = f~1(T).

1.1.3. Semistable reduction. Kempf, Knudsen, Mumford and Saint-Donat proved
the following theorem, which was the first instance of resolution of morphisms.

Theorem 1.1.4. Let Z be an integral scheme of finite type over a trait S =

Spec(R) of residual characteristic zero such that the generic fiber Z, is smooth.
(1) There exists proper Zves — Z with Zyes — S log smooth and (Zyes)n = Zy.
(ii) After a finite extension of R can even make Zyos — S semistable.
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Claim (i) follows by applying Hironaka’s theorem to Z and the divisor Z\Z,,
and claim (ii) is then deduced by a complicated combinatorics. In general, one
can not make Z — S smooth, so this is the best one might hope for. On the other
side this solution is rather non-canonical, e.g. it changes when one extends R.

1.2. Resolution of morphisms. It turns out that the theorem of KKMS can
be extended to more general morphisms and made functorial, but this requires to
work within the larger category of logarithmic DM stacks with finite diagonalizable
stabilizers. For simplicity, we will stick to the case of stacks of finite type over a
field k of characteristic zero.

Theorem 1.2.1 ([2]). To dominant morphisms f: X — S of integral log varieties
(or log DM stacks) over k one can associate either a non-representable modification
Xies = X or a "fail output” Xyies = & such that Xies — S is log smooth and

(i) Non-failure up to refining the base: for any f there exists a modification
S" — S such that (X xg S )res is non-empty.

(i) Log smooth functoriality: if X,es is non-empty and X' — X is log smooth,
then X! .. = Xyes xx X'.

(#ii) Base change functoriality: if Xyes # &, then (X x5 )res = Xyes X5 S’ for
any base change S — S.

Furthermore, generalizing the polyhedral subdivision theorem of KKMS to
maps of polyhedra Adiprasito, Liu and Temkin deduced the following refinement

Theorem 1.2.2 ([3]). After replacing S by an alteration, one can even achieve
that X,es — S is semistable.

2. THE METHOD

2.1. Logarithmic geometry. Logarithmic structures are important both for
classical resolution, where they are encoded by the boundary, and semistable re-
duction. The starting idea of our project was that in order to construct log smooth
resolution of morphisms one should work log-smooth functorially. Already doing
this for varieties in [I] required to modify the algorithm tremendously, and in fact
the same new algorithm was extended in [2] to morphisms. We suggest:

Principle 2.1.1. If some aspects of the problem require to extend the notion of
smoothness, it is preferable to run the whole algorithm in the extended setting.

Implementing it in our case suggested to work with log varieties, log smooth-
ness, etc. In particular, resolution is reduced to principalization of ideals on log
smooth (or toroidal) varieties (X, E), without the assumption that X is smooth.
In addition, we replaced all basic resolution tools, such as derivation of ideals, order
of ideals, hypersurface of maximal contact, etc., by their logarithmic analogs.

2.2. Stacks. Surprisingly for us, the log smooth functoriality forced the new prin-
cipalization algorithm to perform certain weighted blow ups that produced not log
smooth varieties. However, working with stacks it is possible to realize these blow
ups as coarse spaces of smooth non-representable modifications, which we call
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Kummer blow ups. This suggested to extend our category further, in accordance
with the above principle. Thus, our log smooth-functorial algorithm principalizes
ideals on log smooth DM stacks even when the it starts with an ideal on a smooth
variety. It is possible after that to return to log smooth or even smooth varieties by
an additional modification, but the latter step can be only made smooth-functorial.
Perhaps usage of stacks is unavoidable for getting a log smooth-functorial algo-
rithm and resolution of morphisms. In the end, our algorithm operates with more
complicated objects and modifications, but it is simpler and faster than its classical
predecessor.

2.3. Future works. Our algorithm only performs weighted ideals of a special
form, and we expect that there exists a much more efficient algorithm which also
works with DM stacks and performs arbitrary weighted blow ups. This is the main
topic of our current research.
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Degenerations of p-adic volume forms
MATTIAS JONSSON
(joint work with Johannes Nicaise)

Let K be a field and X a smooth proper variety over K of dimension n > 1. It
is of general interest to understand the structure of the set X (K) of K-rational
points. For example:

(i) when K is a finite field, X (K) is a finite set, whose cardinality is governed
by the Lang—Weil estimates;

(ii) when K = C, X(K) is a complex manifold of dimension n;

(iii) more generally, when K is a local field, X (K) is a compact K-analytic
manifold, locally isomorphic to the open unit ball in K™ (and thus home-
omorphic to a Cantor set);

(iv) when K is a general non-Archimedean field, X (K') often fails to be (locally)
compact, but embeds as a subset of the Berkovich analytification X?" of
X, and this analytification is compact.

Now suppose we are given the additional data of a global regular n-form 6 €
H°(X,wyx). We allow 6 to have zeros, but we assume that 6 is not identically zero
on any connected component of X. To the pair (X,6) we can associate analytic
data in cases (ii)-(iv) above. Namely, when X = C, 6 induces a volume form |6]?

on the complex manifold X(C) defined by 6|2 = i"°0 A 0. Similarly, if K is a
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non-Archimedean local field K, then 6 induces a smooth volume form |6| (which
we view as positive measure) on X (K): if 8 = fdz; A dz, in local coordinates
(21, ..., 2n), then |0| = |f|p1aar, Where fpa., is Haar measure on K™, normalized
so that the closed unit ball has mass 1.

Finally consider the case when K is a discretely valued non-Archimedean field.
The work of Kontsevich—Soibelman [3], Mustata—Nicaise [4], and Temkin [5] allows
us to associate to # a function on (a dense subset of) X" called the weight
function wtg. The (closure of the) locus where the weight function is minimal
is the Kontsevich-Soibelman skeleton Sk(X,6) < X" of (X,0). If X admits an
snc model X' over the valuation ring R of K, then Sk(X,6) is a subcomplex of
the skeleton Sk(X'), which in turn can be identified with the dual complex of the
special fiber of X. In this case, Sk(X, 6) can further be endowed with a Lebesgue
measure Agi(x,g) induced by the integral (piecewise) linear structure on Sk(X).

Now suppose K is a local non-Archimedean field. We can then ask if there is
any relation between the measure 0| on X (K) < X?* and the Lebesgue measure
Ask(x,0) on the Kontsevich-Soibelman skeleton Sk(X,6). We prove that this is
indeed the case. To explain the result, note that for any finite extension K'/K,
we have a finite positive measure | ®x K’| on X (K’). Now X (K’) embeds in the
K'-analytic space X%, and there is a natural continuous map mg+: X3 — X7,
so the pushforward (mx+)«|0 ®x K’| is a finite positive (Radon) measure on the
compact topological space X?".

Main Theorem. Assume that X admits a semistable model over the valuation
ring R. Then we have

w[K":K]

lim il

1 W(WK/)*W ®Kx K'| = ASK(X,0)

in the weak sense of Radon measures on X®'. Here K’ runs over the directed
set of finite extensions of K contained in a fixed algebraic closure of K (the set of
extensions is partially ordered by inclusion), ¢ is the cardinality of the residue field
of K, e(K'/K) is the ramification index, w is the minimum of the weight function
wtg, and d is the dimension of the Kontsevich—Soibelman skeleton.

We also obtain convergence results when restricting either to tame, or to unram-
ified extensions K’/K. In these cases we need less assumptions on X: for the
tame case, the existence of an snc model for X is enough, whereas the unramified
case is unconditional. The limit measures are now Lebesgue measures on suitable
subcomplexes of Sk(X, 0), and d has to be replaced by the dimension of these.

The main ingredients in the proof of the main theorem are: the usage of log
smooth (or log regular) models, the specialization map associated to a model of
X, the Lang—Weil estimates, and the convergence of suitably normalized “lattice”
measures to Lebesgue measure on a simplex.

The main theorem can be viewed as a p-adic version of the main result in [BJ17],
which dealt with the case when X — ID* is proper smooth family of complex
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manifolds, meromorphic at 0 € D. In this case, given § € H%(X,wx /p); we have
lim ﬁw 2=\
0 (lOg |t|_1)d Xt Sk(X,0)>
where the convergence now takes place in a hybrid space obtained by adding the
Berkovich space XE‘(I( 1) 8S a central fiber to X, and topologizing in a suitable way.
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Intermediate extensions and crystalline distribution algebras
CHRISTINE HUYGHE
(joint work with Tobias Schmidt, Matthias Strauch)

1. INTRODUCTION

Let o denote a complete discrete valuation ring with uniformizer w and fraction
field K. Let G be a connected reductive group over o which is o-split. In [I1]
we have introduced and studied the crystalline algebra of arithmetic distributions
DT(G)q associated to the p-adic completion G of G. It is a certain weak completion
of the classical universal enveloping algebra U(g) associated to the Lie algebra g
of G (tensored with Q). The interest in this algebra comes at least from two
sources: on the one hand, DY(G)q acts as global arithmetic differential operators
[3] on any formal o-scheme endowed with a G-action. On the other hand, D(G)q
is canonically isomorphic to Emerton’s analytic distribution algebra D%*(G°) of
the rigid-analytic group G° (equal to the generic fibre of the completion of G at
the unit section of its special fibre) which plays a crucial role in the representation
theory of p-adic Lie groups [9].

Due to its relation to representation theory, it is of considerable interest to have
information about the D'(G)q-modules of finite length. In the classical setting of
U (g)-modules, a geometric classification of many irreducible U (g)-modules can be
achieved through a combination of the Beilinson-Bernstein localization theorem
over the flag variety [2[6], Kashiwara’s theorem and the formalism of intermediate
extensions [10]. A natural question is therefore whether a similar strategy works
for DT (G)q-modules.



546 Oberwolfach Report 8/2019

In [12] we have completed the first step and established an analogue of the lo-
calization theorem for arithmetic differential operators. The aim of this note is
to deal with the second step: we explain how the intermediate extension functor
for arithmetic Z-modules, developed recently by Abe-Caro [I], together with our
localization theorem can be used to geometrically construct interesting irreducible
D'(G)q-modules.

2. COMPLEMENTS ON ARITHMETIC DIFFERENTIAL OPERATORS

Let P be a smooth formal o-scheme, following [3], we introduce the ring of arith-
metic differential operators .@72 over P. If Y < P is an affine formal scheme
endowed with coordinates x1,...,zy, |- | be a Banach norm on the Tate algebra
Op(U) ®Q, an element P € @T (U) can be written

P = Zal, Za,ﬁ /ul

where there exist C' > 0,7 < 1 (depending on P), such that |a,| < Cnl¥.
We call @; 5 a sheaf of twisted arithmetic differential operators on P, a sheaf
of rings on P, together with an injective ring homomorphism

t:O0pg— .@72,/\

such that the pair (¢, @;7)\) is locally isomorphic to the usual pair Op g < @; [2].
For example if £(\) is an invertible sheaf of Op-modules, the following sheaf is a
sheaf of twisted arithmetic differential operators on P

D\ = L) ®0p 7 ®0p L(N).

We first state the Berthelot-Kashiwara theorem for twisted differential opera-

tors. Let P be a smooth formal o-scheme and let
1:Q—>7P

be a smooth closed formal subscheme. We let @;7 » be a sheaf of twisted arithmetic
differential operators on P (and similarly for Q). Let us recall the direct image
functor i, following [5]. So let @L%Q,A be the (i_lg;f)’A,@TQ’A)—bimodule equal
to the inverse image i*.@; y followed by the side-changing operation. For a given

coherent @Tgﬁ y-module .# we let
il =i (D o ®g  M).

We also let
it = Hom,_, g1 (Do i),

This is a left-exact functor from 9;, y-modules to QTQ y-modules and in [I3], we
state the following twisted analogous of Berthelot-Kashiwara theorem.



Non-Archimedean Geometry and Applications 547

Proposition 2.1. The functor iy induces an equivalence of categories between
the category of coherent @TQ \-modules and the category of coherent @7]; \-modules

supported on Q. The functor i is a quasi-inverse functor.

We now come to the intermediate extension as constructed be Abe-Caro [I], 1.4.1]
b (@;) the triangulated category of com-

in the non twisted case. Denote by D¢, |

plexes of overholonomic @;—modules as defined by Caro [8]. Let Y be a locally
closed smooth subvariety of P, the special fibre of P. If X is the Zariski closure of
Y in Pg, then Y = (Y, X, P) is what Caro calls a frame, as well as P = (Pg, P, P)
and we have a natural morphism of frames u : Y — P. In loc. cit. Abe-Caro
form the abelian category Ovhol(Y/K) of overholonomic arithmetic Z-modules
on Y. It is a full subcategory of the derived category of bounded complexes of
overholonomic modules nghol(@;), whose cohomology sheaves have support in
X. A typical example is the following : let Z — P, be a divisor, X = Py,
Y = X\Z, and € = Op(TZ) € Ovhol(Y/K) defined in this way : take U < P,
affine open, t € Op(U), t its reduction in Op,(Us) such that U () Z = V (¢), then
an element h of Op(TZ)(U) can be written h =Y (% with a, € Op o) and
there exist C' > 0, n < 1 (depending on h), such that |a,| < Cn™, where | - |
is any Banach norm on Op g(U). With our notations, this is a result of Berth-
elot [4], that Op(1Z) € Ovhol(Y/K) for Y = (P\Z, Ps, P). The sheaf Op(12) is
the sheaf of overconvergent functions along the divisor Z. In this situation, ob-
jects of Ovhol(Y/K) consist of single overholonomic modules .@;, endowed with a
structure of Op(TZ)-module (compatible with the @L—module structure).

Let us come back now to the general case, for £ € Ovhol(Y/K), Abe-Caro define
the functors [I}, 1.2.9,1.4] u{ and uY, and the intermediate extension of £

w4 (&) = Im(ﬁgyg tuE — ul€) € Ovhol(P/K).
Considering the previous example when Z is a divisor of Ps, we see that, if P,\Z
is connected, w11 (Op(12)) = Op .

More generally, if Z is any closed subscheme of X, Caro defined in [7] the con-
stant overconvergent F-isocrystal on the k-scheme Y, that belongs to Ovhol(Y/K),
and that we denote here Ox o(1Z). Let U = P\Z, when the closed immersion :
Y < U, can be lifted to an immersion of smooth formal schemes v : Y < U, then
one has v1(Ox,g("Z))y = Oy. Using this we prove that the sheaf Ox,g(TZ) is an
irreducible @;—module when Y is connected. Thus, using [II, 1.4.7] we have the
following

Proposition 2.2. If Y is connected, the intermediate evtension uiy Ox o(12) is
an irreducible overholonomic @L—module.

All this extends in a straightforward manner to twisted coeflicients. Let @7]; A

be a sheaf of twisted arithmetic differential operators on P. A .@72, y-module M is
called overholonomic if, for every open U < P trivializing the twist, the restriction
M|y to U is an overholonomic @J,—module in the usual sense. Imitating the con-
struction of Abe-Caro, we obtain the abelian category Ovholy(Y/K) consisting of
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bounded complexes of overholonomic .@;; y-modules with support on X. More-
over, the category Ovholy(Y/K) is noetherian and artinian. Analogously, there is
a twisted intermediate extension functor

w4 : Ovholy (Y/K) — Ovholy(P/K)

for any immersion of couples u : Y — P as above. It is locally isomorphic to the
usual (untwisted) intermediate extension functor and hence, shares the analogous
properties.

3. COMPATIBILITIES

Let us consider now the following situation: let P, be a smooth and proper scheme
over 0, Y, an open subscheme of P, and X, be the Zariski closure of Y, into P,.
Call Py, Yg and Xg the generic fibers of the previous schemes, and P,, ¥ and
X their special fibers. We also denote Z = X\Y, and we consider P the formal
scheme obtained by p-adic completion of the scheme P,, so that we have a frame
Y = (Y, X, P) and a natural morphism of frames v : Y — P.

Denote by j the open immersion : Py < P, and by « the closed immersion
Ps — P,. Over the scheme Py we have the usual algebraic sheaf of differential
operators Zp,. Let ug be the open immersion Yg < Pg, £ be an holonomic
Dy,-module, ug & the intermediate extension, we can then consider

alg

al -1 - -1
@PQQ = jxDp,, and w0 E 1= a7 jyuqy €,

that are sheaves over the topological space underlying the special fiber |Ps|. Then
the sheaf .@1‘%9 is a subsheaf of the sheaf @;, and using previous notations, we have
the following isomorphism [I3]

@;rp ®@;1Qg U?JlrgOY@ >~ u!+(OX,Q(TZ))‘

4. CRYSTALLINE DISTRIBUTION ALGEBRA AND THE OT-CATEGORY

Let G be a connected split reductive algebraic group over Speco. The crystalline
distribution algebra D'(G) is introduced in [T1]. It contains U(g), the envelopping
algebra tensored with Q, of g = Lie(G) and is naturally a locally convex algebra
of compact type. In particular, it is Hausdorff, complete and barrelled. For 6
a central character of U(g) we will always denote by DT(G)y the corresponding
central reduction of D'(G).

We now fix a central character 6 and let A € t* be a character associated to 6 via
the Harish-Chandra morphism. Let ® be the root system attached to (G,T) and
let p be half the sum over the positive roots of ® relative to B. One can associate
to A a twisted sheaf of differential operators @;7 y (which coincides with .@; when
0 is trivial) and we have the following

Theorem 4.1. (a) Suppose A + p is dominant and regular. The global section
functor induces an equivalence of categories between coherent @;7 y-modules and

coherent HO(P, QL,A)—modules.
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(b) The G-action on P induces an algebra isomorphism
D(G)o = HO(P, 7} ).

Proof. For X\ algebraic, this summarizes the main results of [12] and [14]. The
general case is proved in [I5]. Note that if € is trivial, then (a) and (b) hold for
78 O

Definition 4.2. A D'(G)p-module is called overholonomic if its associated @;7)\—
module is overholonomic.

Remark 4.3. The overholonomic D(G)g-modules form an abelian category which
is noetherian and artinian. In particular, any object is of finite length. Conversely,
if the semisimple rank of G is one (e.g. G = GLs) then any finite length D(G),-
module is overholonomic.

Let us define now the analytic highest weight representations. Let O be the
classical BGG category. For any M € O let

M":= DY (G) ®u(gy M

and let OT be the full subcategory inside all D(G)-modules generated by the M.
Applying a result of Schmidt [I6], we observe that we have the following

Proposition 4.4. The functor M v~ M induces an equivalence of categories
0= 0

For simplicity we now let 6 be the trivial central character, and let Oy < O
be the principal block, i.e. the block with trivial center character. Let W be the
Weyl group of (G,T). For any w € W we let A\, = —w(p) — p. Let M, € Op
be the Verma module of highest weight A\, and let L,, be its irreducible quotient.
The modules L,, exhaust all irreducible modules in Oy. Consider the localization

Let Y,, = B;wB;/Bs < Ps be the w-th Bruhat cell in P, and let X, = Y., be
the corresponding Schubert variety. Let Z,, = X,,\Y,, and consider the constant
overconvergent isocrystal Ox, o(1Z,) on the frame Y,, = (Yi, Xu,P). Let u :
Y. — P be the inclusion. Then, applying the compatibility results of [3] Schmidt’s

result, as well as the analogous result in the classical algebraic setting, we prove
in [I3] the

Theorem 4.5. One has an isomorphism of @;-modules
£l, = u (Opo(T2.)).

As a corollary, we see that the category O consists of overholonomic DT(G)-
modules.
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Crystalline Chebotarév Density Theorems
URS HARTL
(joint work with Ambrus P4l)

We formulate a conjectural analogue of Chebotarév’s density theorem for conver-
gent F-isocrystals over a smooth geometrically irreducible curve defined over a
finite field using the Tannakian formalism. We prove this analogue for several
large classes, including direct sums of isoclinic convergent F-isocrystals and semi-
simple convergent F-isocrystals which have an overconvergent extension and such
that their pull-back to a sufficient small non-empty open sub-curve has connected
monodromy.
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1. A CONJECTURE

Let U be a smooth, geometrically irreducible curve over a finite field F, having
q elements and characteristic p, and denote by |U| the set of closed points of U.
Let F': U — U be the (absolute) ¢-Frobenius which is the identity on |U| and the
g-power map on the structure sheaf. Let K/Q, be a totally ramified finite field
extension. We take F' = idx as a lift of the g-Frobenius I' = idp,. For every
x € |U| let Fy, deg(z) and ¢, denote the residue field of z, its degree over F, and
its cardinality, respectively. For e € N let K, be the unramified field extension of
K of degree e. Then Gal(K./K) = (Frob,).

Let F-Isock (U) denote the K-linear rigid abelian tensor category of K -linear
convergent F-isocrystals on U; see [Cre92, Chapter 1] for details. It is a Tannakian
category with fiber functors w, for every x € |U| with e := deg(z) given by

wy: F-Tsock (U) —> (K-vector spaces), JF +— z*F.

This fiber functor is non-neutral if e > 1. Actually, *F is an F-isocrystal over
F., that is an object of

F-Isock (Fg) = { (W, Fw): W a K.-vector space,
Fy: W — W a Frob,-semilinear automorphisms} .
So Fy;,: W—=>W is a Kc-linear automorphism of W.
Now fix a base point u € U(F,). (We assume deg(u) = 1 only for simplicity of

the exposition.) For F € F-Isock (U) let {F) < F-Isock(U) be the Tannakian
subcategory generated by F. Its monodromy group is defined as

Gr(F/U,u) := Aut®(wy|{F)).

It is a linear algebraic group over K, not necessarily connected.
For every € U(Fq4e) there is a non-canonical isomorphism of fiber functors

wy Ok, K = w, ®x K, where K is an algebraic closure of K. This induces a
non-canonical isomorphism

(1) Aut®(w, |(FY) xk, K =~ CGr(F/U,u) xk K .

We define Frob, (F) c Gr(F/U,u)(K) as the conjugacy class of the image under
the isomorphism (@) of F¢ € Aut®(w,|{F)). This conjugacy class is independent
of the choice of the isomorphism (), and hence it is K-rational.

Conjecture A. For every subset S < |U| of Dirichlet density one the set

UFrobz(]:) c Gr(F/U,u)
zeS

18 Zariski-dense.



552 Oberwolfach Report 8/2019

2. APPLICATIONS

Corollary. Let F,G € F-Isock (U) be convergent F-isocrystals on U of the same
rank with Tr(Frob,(F)) = Tr(Frob,(G)) for all points x in a subset S < |U| of
Dirichlet density one. If Conjecture [Al holds for the direct sum F*5°5 @ G5 of the
semi-simplifications then F°*° =~ G°°.

Proof. Since F*° lies in ((F)) there is an epimorphism of linear algebraic groups
Gr(F/U,u) - Gr(F*°/U,u) under which Frob,(F) maps onto Frob,(F**). The
two spaces wy,(F°°) and w,(G*®) are semi-simple representations of the group
Gr((}“ss @ G*) /U, u) By our hypothesis their trace functions coincide on the
subset Frob, (F** @ G**). By Conjecture [A] the two trace functions coincide on all
of Gr((]—' S@G*e) /U, u) This implies that the two representations are isomorphic;
see [Ser98, Lemma in §1.2.3 on p. I-11]. And therefore the convergent F-isocrystals
F*% and G®° are isomorphic. O

Example. If A and B are abelian varieties over U with Dieudonné isocrystals
F = D(A) and G = D(B), this gives an isogeny criterion for A and B.

3. CASES WE CAN PROVE

Definition. Let F € F-Isock (U). We define
e the slopes of F at x € |U| as

ﬁ(m) - ord,, (eigenvalues of Frob,(F) on wy(F)).

e F to be isoclinic if for all z € |U|, F has a single slope at = (which is then
the same for every ).
e F to be unit-root if it is isoclinic of slope zero.

Proposition. Conjecture [Al holds for unit-root convergent F-isocrystals F on U.

Proof. Choose a geometric base point @ above u and let 7¢*(U, @) be the étale
fundamental group of U. By a result of R. Crew [Cre87, Theorem 2.1 and Re-
mark 2.2.4] the full subcategory of F-Isock (U) consisting of unit-root F-isocrystals
is tensor equivalent to the category Repj 7t (U, @) of continuous representations
of m§*(U, @) on finite dimensional K-vector spaces. Moreover, under this equiv-
alence the fiber functor w,: F-Isock(U) — (K-vector spaces) and the forgetful
fiber functor wiorget: Repy 754 (U, @) — (K-vector spaces) become isomorphic over
K.

Let pr: 784U, u) — GL,(K) be the representation corresponding to a unit-
root F-isocrystal F. Then Gr(F/U,u) is a closed subgroup of GL, x such that
Gr(F/U,u) x ¢ K equals the Zariski-closure of the image of pr. Moreover, for all
points z € |U| the Gr(F/U, u)(K)-conjugacy classes of p(z4 Frob, ') and Frob, (F)
coincide, where Frob, * € Gal(F,/F,) is the geometric Frobenius at & which maps
a €T, to a'/% for ¢, = #F,.

If S  |U] is a subset of Dirichlet density one, then by the classical Chebotarév
density theorem [Ser63, Theorem 7] the union of the Frobenius conjugacy classes
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Frob, ! for the points = € S are dense in 7§ (U, %) with respect to the pro-finite
topology. Since this topology is finer than the restriction of the Zariski topology
from Gr(F/U,u), the set | J g Frob,(F) is Zariski-dense in Gr(F/U,u). O

z€S

Example. Let C be the pullback to U of the constant F-isocrystal on IF, of rank
one given by (K, F = 7°) with s € Z, where m € K is a uniformizing parameter.
If s # 0 then Gr(F/U,u) = Gy . Indeed, Gr(F/U,u) is a closed subgroup
of Autg (u*C) = G,k which contains Frob,(C) = {7*9°8(®)}. Since this set is
infinite, the only such group is Gy, k. The set | J, .y Frobg (F) < 7% < Gy i is
Zariski-dense. However, this set is discrete in G, (K) for the p-adic topology. For
that reason we can only expect density for the Zariski-topology.

Theorem 1. Conjecture [Al holds for the direct sum F = @, F; of isoclinic con-
vergent F-isocrystals F; on U.

Idea of the proof. We twist away the slope of F; by a constant rank one F-isocrys-
tal C; (after enlarging K). Then G; := F; ®C; is unit-root. We set G := @, G; and
C:=@,C;. Since F € (G @C)) it is enough to prove Conjecture [Al for G®C. In
the diagram

Gr(G ®C) = Gr(G) x Gr(C)
J Gr(LG) n LCy) J

C := pg (n$*(U, w)) FZ

the subgroup C' is compact, and hence a p-adic Lie group by [Ser92, Part I, § V.9,
Corollary to Theorem 1 on page 155]. We now count the cardinality of

{ceC:3xe S with (c,Fgeg(m)) € Frob,(G®C) } .

A lower bound is provided by the Chebotarév density for G. If | J, ¢ Frob,(G®C)
was contained in a hyperplane we would obtain a contradicting upper bound by a
result of Oesterlé [Oes82]. O

For the next result we let F € F-Isock (U) be semi-simple. By the slope filtra-
tion theorem of Grothendieck and Katz [Kat79, Corollary 2.3.2] there is a non-
empty open subcurve f: V < U such that f*F has a slope filtration with isoclinic
subquotients. It is always true that

Gr(f*F/V,u) —— Gr(F/U,u)

is a closed immersion. Note, that in contrast to f-adic and p-adic Galois represen-
tations this closed immersion can be strict for F-isocrystals.

Conjecture B. Gr(f*F/V,u) — Gr(F/U,u) is a parabolic subgroup.
Theorem 2. Conjecture Bl for F implies Conjecture [Al for F.

Theorem 3. If Gr(f*F/V,u) is connected and F extends to an overconvergent
F-isocrystal on U, then Conjecture [Al holds for F.
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Idea of the proofs for both theorems. We use Theorem [ for (f*F)* which is a
direct sum of isoclinic convergent F-isocrystals on V. In the diagram

Gr{f*FIV,u) o Gr(F/U)  Frobs(fF) —— Frobs(7)
Gr((f*]—‘)ss/V, “) Frobx((f*]:)ss)

the vertical morphism « identifies Gr((f*F)**/V,u) with the maximal reductive
quotient of Gr(f*F/V,u). We then (develop and) use the theory of maximal
quasi-tori as in the following

Definition. Let G be a linear algebraic group over an algebraically closed field
L of characteristic zero, which is not necessarily connected. A closed subgroup
T c G is a mazimal quasi-torus if the morphism «: G - G/R,G =: G onto the
maximal reductive quotient G of G induces an isomorphism a: T—=> a(T) c G
and there is a maximal torus and a Borel subgroup 7° c B < G° such that a(T)
equals the intersection NE(E) N Na(fo) of the normalizers. (Then o(T)° = T°).

Now Conjecture [Bl (and likewise the hypotheses of Theorem B]) implies that 3
maps any maximal quasi-torus of Gr(f*F/V,u) onto a maximal quasi-torus T' of
Gr(F/U,u). Then we (prove and) use that in the reductive group Gr(F/U,u) the
Zariski-density of the union [ J, g Frob,(F) is equivalent to the Zariski-density in
T of |J,eg T N Frob, (F). O

z€eS
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The essential skeletons of pairs and the geometric P=W conjecture.
ENRrICA MAZZON
(joint work with Mirko Mauri and Matthew Stevenson)

The geometric P=W conjecture is a conjectural description of the asymptotic be-
havior of a celebrated correspondence in non-abelian Hodge theory. In particular,
it is expected that the dual boundary complex of the compactification of character
varieties has the homotopy type of a sphere. In the joint work [4] with Mirko Mauri
and Matthew Stevenson, we compute the first non-trivial examples of these dual
boundary complexes in the compact case. In this talk I will explain how the result
is a combination of techniques from birational and non-archimedean geometry.

1. THE GEOMETRIC P=W CONJECTURE

Let C be a complex projective smooth curve. The main object of study in non-
abelian Hodge theory are the representations of the topological fundamental group
of C' in a reductive linear group G. The associated moduli space

Mp = Hom(m (C),G) |G

is the GIT quotient by the conjugation action of G: it is usually called the Betti
moduli space, or also the G-character variety associated to C.

A fundamental correspondence in non-abelian Hodgen theory relates Mp to
another moduli space: the Hitchin’s moduli space Mp, of semistable principal
Higgs G-bundles on X with vanishing Chern classes, also known as the Dolbeault
moduli space. A distinctive feature of the moduli space Mp, is that it comes
equipped with the so-called Hitchin map

H : Mpy — CV,

with 2N = dim¢ (MDol)-

The geometric P=W conjecture predicts the behaviour of the fundamental
correspondence between Mp and Mp, at infinity, in the following sense. Con-
sider compactifications Mg of M B, Tesp Mpo of Mpo1, with boundaries 0Mp =
MB\M B, resp 0Mp,) = MDOI\MDM, and punctured neighbourhoods at infinity
N} == Np\0Mp, resp NJ5_, = Npo\0Mpo1. The Hitchin map induces a map from
N}, to a neighbourhood at infinity of C¥, so up to homotopy we obtain a map

h: NE L eM\{o} = 2V
Assuming that the dual boundary complex D(0Mp) is well-defined, by means of
a partition of unity one can construct a map from N} to D(0Mp)
a: Nj — D(0OMp).

Note that if M p is an snc divisor, the homotopy type of D(0Mp) is independent
of the choice of the snc compactification.

Stated by Katzarkov, Noll, Pandit and Simpson in [2], the geometric P = W
conjecture proposes a correspondence between the dual boundary complex of Mp
and the sphere at infinity of the Hitchin base for Mpg.
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Conjecture 1 (Geometric P = W conjecture). There exists a homotopy equiva-
lence

D(0Mp) ~ S*N -1

such that the following diagram is homotopy commutative

% ~ 3 *
NDol NB

hl l
SN-1 L D(5Mp).

A first evidence for the conjecture is due to Simpson: when Mp is the SLo-
character variety of local systems on a punctured sphere (such that conjugacy
classes of the monodromies around the punctures are fixed), he proves in [6, The-
orem 1.1] that the dual boundary complex D(0Mp) has the homotopy type of a
sphere; see also [3, Theorem 1.4].

Our main result is the following:

Theorem 2. Let C' be a Riemann surface of genus 1. The dual boundary complex
D(0Mp) of a dlt log Calabi-Yau compactification of Mg has the homeomorphism
type of S~ 1 if G = GL,,, and of S>3 if G = SL,,.

2. THE DUAL BOUNDARY COMPLEX D(0M¢)

The first part of my talk will be focused on the definition of the dual boundary
complex D(0Mp). We identify a suitable class of compactifications of Mp such
that the character varieties considered in Theorem [Pladmit such a compactification,
and the dual complex associated to the boundary is well-defined.

For G = GL,, or SL,,, the affine variety Mp is singular with canonical and fac-
torial singularities. Hence, Mp does not allow an snc compactification. However,
it admits dlt compactifications, and among all possible dlt compactifications of
Mp we restrict to special ones, namely the dlt log Calabi—Yau compactifications.

In general, the advantage in considering a dlt log Calabi-Yau compactification
of Mp is that its dual boundary complex identifies a distinguished homeomorphism
class in the homotopy equivalence class of the dual complex of any dlt compact-
ification. Moreover, this homotopy class actually coincides with that of the dual
complex of any snc compactification of a resolution of Mp.

3. NON-ARCHIMEDEAN APPROACH

In the second part of my talk, I will introduce a characterization of the dual
complex D(0Mp) in terms of non-archimedean geometry.

Building on the work of [BL[7,[1], we construct weight functions, Kontsevich—
Soibelman skeletons, and essential skeletons associated to pairs (X, D) over a
trivially-valued field of characteristic zero. In particular, we prove that the dual
complex of a log canonical log Calabi—Yau pair (X, D) is homeomorphic to the
link of the essential skeleton of (X, D).
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We apply this result for the character variety associated to a Riemann surface
of genus 1 when G = GL,, or SL,: the dual complex D(0Mp) is homeomorphic
to the essential skeleton of (Mp, 0Mp), and the explicit computation relies on the
properties of the essential skeleton under the operations of taking products and
finite quotients.

4. DEGENERATION APPROACH

I will conclude by mentioning an alternative proof of Theorem 2l This approach
adopts the notion of the essential skeleton in the discretely-valued field setting. It
is technically more demanding, since it requires the construction of a degeneration
of compact hyper-Kéhler manifolds, but it suggests a relation of the geometric
P=W conjecture with the conjecture below:

Conjecture 3. Let 2" be a mazimally unipotent good minimal dit degeneration
of compact hyper-Kdhler manifolds over C((t)). Then, the dual complex of the
special fibre of 2" is homeomorphic to P™(C).
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Tropical Dolbeault cohomology of non-archimedean curves and
harmonic tropicalizations

PHILIPP JELL

Let K be an algebraically closed complete non-archimedean field and X a variety
over K of dimension n. We denote by X?" the Berkovich analytification of X and
by AP? the sheaf of smooth real-valued differential forms on X?", as introduced
by Chambert—Loir and Ducros [1].

We state the following properties, all due to Chambert—Loir and Ducros.

e The AP? are fine sheaves of real vector spaces.
e The sheaf A%0 is a subsheaf of the sheaf of continuous functions.
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e There exist differential operators
d: AP9 s APTLY gnd d". APT > AP9HL

e There is integration of top dimensional forms with compact support that
satisfies Stokes’ theorem. It was shown by Gubler that Stokes’ theorem
for A™™ is equivalent to the balancing condition in tropical geometry [2].

Definition 1. We define the tropical Dolbeault cohomology of X*" to be
ker (d”: AP9(X) — APatl(Xam))
im (d”: APa—1(Xan) — Ap.q(Xan))’
Question 2. What can we say about HP-1(X?")?

Hp,q(Xan) = Hq(Ap,o(Xan)’d//) _

The first result in this direction was the following Poincaré lemma type result.
Theorem 3. [4], Theorem 4.5] The sequence of sheaves
0— AP0 L oqrm
is exact at AP for oll p = 0,q > 0.

Note that this does not give a cover of X" by acyclic domains. However, as a
consequence we can show that there are sheaves which compute tropical Dolbeault
cohomology. We write F? := ker(d”: AP0 — AP:1).

Corollary 4. We have

HP (X)) = HY(X™, F?) and H*9(X*") = HE (X*", R).
Note that it follows from a result by Hrushovsky and Loeser that Hging (X2 R)

is finite dimensional [3].
As far as constructing non-trivial and interesting classes, Liu provided a lot of
them with his construction of cycle class maps.

Theorem 5. [7, Theorem 1] Let X be a smooth variety. Then for all k there is a
homomorphism

cl: CHM(X) — HFF(Xxm)
that is compatible with products on both sides.

From now on, let X be a proper variety. There is a natural pairing

(1) HPA(X™) s HPPr0(X) - Ry ([a], [B]) = e NP

Question 6. When is ([l) a perfect pairing?

For curves, if () is a perfect pairing, we can compute all H?9(X?2") using iden-
tification with singular cohomology. Of course singular cohomology of Berkovich
curves is well understood.

The next theorem provides a complete answer to Question [6] for curves. It turns
out that the reduction behavior of the curve is crucial.
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Definition 7. Let X be a smooth projective curve. Let X be a strictly semistable
model of X and let C1,...,Cy be the irreducible components of the special fiber of
X. Then

k
Sx == PPic”(C;) ®R.
=1

Theorem 8. [0, Theorem A] Let X be a smooth projective curve. Then (M) is a
perfect pairing for all p,q if and only if Sx = 0.

There are two particular cases in which Sx = 0: When X is a Mumford curve,
i.e all the C; are isomorphic to the projective line and when the residue field of
K is algebraic over a finite field. The fact that () is a perfect pairing for all p, ¢
for Mumford curves was already known by joint work of Wanner and the author,
using very different techniques [6].

We give a short idea of the proof of Theorem|[§] since it will provide some insight
where Sx comes into play.

Proof. The proof is based on two exact sequences of sheaves on X". We denote
K :=ker(d'd": A%° — AY1). Then the following two sequences of sheaves on X%
are exact:

(2) 0->R—>K—F' —0and
(3) 0—>K—H—>Sx —0,

where H is Thuillier’s sheaf of harmonic functions [9] and Sx is a sum of skyscraper
sheaves that satisfies Sx (X*") = Sx. Sequence (2) is a non-archimedean analogue
of the tropical exponential sequence as introduced by Mikhalkin and Zharkov [g].
Exactness of sequence (B)) was proved by Thuillier [9, Lemme 2.3.22], who used an
explicit description of K.

Writing down the two long exact sequences in cohomology, we find

0 — HAO(X™) — HO(X™) — H!(X™,K) — HYL(X™) — 0 and
OHSXHHl(Xan,IC)HHl(Xan,H)HO.

Now using that H'1(X®) is at least one-dimensional (which follows from Stokes’
theorem) and H'(X®" H) is one-dimensional (which can be shown using tools
provided in Thuillier’s thesis), after a short diagram chase we see that the theorem
is true dimension-wise, and it is not difficult to prove the theorem from there. [

If the residue field of K is C and X is a curve of good reduction and positive
genus, Sx is an infinite dimensional real vector space. The same diagram chase
as above then shows that H!(X®") is infinite dimensional.

Problem. “Not all harmonic functions are smooth”

By this slogan we mean the problem that the sheaf K and the sheaf H do in
general not agree and problems show up precisely when this happens.

Further evidence that this indeed poses a problem is a result by Wanner. She
proves a version of a regularization theorem for plurisubharmonic functions on
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non-archimedean curves, again under the assumption that Sx = 0 (meaning that
all harmonic functions are smooth) [10, Corollary 5.4].

Vague Solution. Tweak the theory defined by Chambert—Loir and Ducros in a
way that makes all harmonic functions smooth.

The implementation of this solution is the subject of ongoing joint work with
Joe Rabinoff, where we allow for a more flexible smooth functions via a notion of
“harmonic tropicalization”, which we also introduce and study in our work. As a
short term goal this will provide a theory of forms in arbitrary dimension. This
theory keeps the good properties of the theory by Chambert—Loir and Ducros and
fixes the problems we already encountered for curves, such as the failure of duality
and finite dimensionality. As a long term goal we plan to show finite dimensionality
and duality also in higher dimension.
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Reduction and lifting of Berkovich curves with differentials
ILyA TYOMKIN
(joint work with Michael Temkin)

In a recent paper [3], Bainbridge, Chen, Gendron, Grushevsky, and Moller studied
what they called Incidence compactification of strata of abelian differentials. For a
given pattern of zeroes (and poles) p € N", they considered pairs (C, p;w) consist-
ing of a smooth projective curve C' with r marked points p, and a (meromorphic)
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differential form w up-to a multiplicative scalar, such that div(w) = >, u;p;. The in-
cidence compactification then is the closure of this locus in the projectivised Hodge
bundle on M, .. The main result of [3] provides an explicit description of complex
points of the incidence compactification in terms of level graphs (functions) and
twisted differentials satisfying the usual compatibilities and a new striking condi-
tion introduced in [3] - the global residue condition for twisted differentials with
respect to a level function.

The results of [3] have many important applications. In particular, Moller,
Ulirsch, and Werner used [3] to provide a description of the liftable loci in the
canonical systems on tropical curves [5]. More explicitly, given a tropical curve I'
and a divisor D in the canonical system on I', Moéller, Ulirsch, and Werner provide
a purely combinatorial necessary and sufficient condition for the pair (T', D) to
be the tropicalization of a smooth curve X over a non-Archimedean field of zero
equicharacterstic and an effective canonical divisor K on X.

In our work we studied meromorphic differential forms on nice k-analytic curves,
i.e., quasi-smooth connected compact separated strictly k-analytic curves. One of
our motivations was to find a Berkovich analytic proof of the main result of [3].
Starting with a nice curve X equipped with a non-zero meromrphic differential
w we describe a natural tropicalization datum associated to the pair. If (X,w) is
the analytification of an algebraic pair then the datum we associate to it almost
coincides with the datum of [3] and [5], but in addition we associate a canonically
defined residue function on the set of oriented edges of the skeleton I" of (X, div(w))
with values in k. The residue function fR satisfies the very common in Berkovich ge-
ometry harmonicity condition: for any vertex x of I' we have >} g4, () R(€) = 0.
If (X,w) is the analytification of an algebraic pair then the harmonicity condition
of R together with its compatibility with the residues of the associated twisted
differential implies the global residue condition of [3].

Our main result is the lifting theorem asserting that given a tropical datum
satisfying natural compatibility conditions and such that the residue function is
harmonic, there exists a nice k-analytic curve X with a meromorphic differential w,
whose tropicalization coincides with the given datum. The proof of the theorem is
based on the key lemma asserting that for any differential form w4 on an analytic
annulus A = M{t,7t~!} that has neither zeroes nor poles, there exists a good
analytic coordinate s on A such that w4 = ads™ + 9%%. The main conclusion from
the key lemma is that a differential form on an annulus without zeroes and poles
is determined by its norm and its residue uniquely up-to an orientation preserving
automorphism. We shall emphasize that a similar lemma about the existence of
good coordinates in the case of differential forms on small punctured complex discs
was one of the ingredients also in the complex-analytic proof of the main theorem
in [3]. Good coordinates allow us to patch local liftings along annuli similarly to
the patchings of coverings of curves in the work of Amini, Baker, Brugallé, and
Rabinoff [IL2] in characteristic zero, and in the work of Brezner and Temkin [4]
in positive characteristic. Also in the problem of patching of coverings of curves
there were similar key lemmas providing explicit description of isomorphism classes
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of coverings of annuli, see e.g., [4, Thm. 4.3.8, Cor. 4.3.9]. To the best of our
understanding, the patching technique we use in the Berkovich-analytic setting is
close analogue of the plumbing technique used in [3].

We shall also mention, that our tropical reduction datum contains one more
ingredient. Namely, for any oriented edge e of I' with head x and tail y, consider
an open annulus whose skeleton is the edge e. Then the set of good coordinates
on the annulus induces a canonical identification of the torsors of good formal
coordinates for the reduction (Cy,w,) and (Cy,w,) at the points corresponding to
e. This extra “stacky” piece of reduction is not needed in the proof of the lifting
theorem, but as it is absolutely canonical, we expect it to be useful for other
applications. The situation here is analogues to the tropical and stacky tropical
reductions introduced in [6]. In [6], one could prove the lifting result for regular
non-stacky tropical reductions, but for a correspondence theorem one had to work
with the stacky reductions.
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Formal groups and p-adic dynamical systems
LAURENT BERGER

I started my talk by explaining some results about formal groups that can be
proved using ideas coming from Lubin’s theory of p-adic dynamical systems. Let
K be a finite extension of Q,,, with integers Ok, and let F(X,Y) € Ok [[X,Y] be
a formal group law over Ok. Let Tors(F') denote the set of torsion points of F
in mg,. To what extent is I determined by its torsion points? The first result is
that if two formal groups F' and G have infinitely many torsion points in common,
then F' = G. The proof of this theorem rests on a rigidity result: if F' is a formal
group and if h(X) € X - Og[[X] is such that h(z) € Tors(F) for infinitely many
z € Tors(F'), then h is an endomorphism of F. When F = G,,, such a rigidity
result had already been proved by Hida. The proofs of these theorems rest on (1)
power series arguments inspired by Lubin’s theory of p-adic dynamical systems
and (2) the fact that if F' is a formal group of finite height, then the image of the
attached Galois representation contains an open subgroup of Z; - Id. This fact
follows from a theorem of Serre and Sen.
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After discussing the proofs of these theorems, I gave a brief survey of some
of Lubin’s results on p-adic dynamical systems. I introduced the notion of a
Lubin pair, namely a pair (f,u) of elements of X - Ox[[X] that commute under
composition, with f and u stable, and with f noninvertible and u invertible. I
discussed Lubin’s observation that given a Lubin pair, there must be a formal group
somehow in the background. For example, if K = Q,, and if (f, u) is a Lubin pair
in which f and all of its iterates have simple roots, and f % 0 mod p, then f and
u are endomorphisms of a formal group over Z,. In general, I conjectured that
given a Lubin pair (f,u) with f £ 0 mod mg, there is a formal group S such that
f and u are semiconjugate to endomorphisms of S.

I finished by explaining my motivation for considering p-adic dynamical systems.
They occur in the study of (o, I')-modules. If K,/K is a sufficiently ramified (more
precisely: strictly APF) Galois extension, and if I' = Gal(K/K), then the field of
norms of K /K is a local field of characteristic p, endowed with a Frobenius map
 and an action of I'. In order to have a theory of (¢,T')-modules for this T, we
need to lift these actions to a ring of characteristic zero, such as Og[[X]. Such a
lift gives rise to a p-adic dynamical system, and using Lubin’s results we can prove
that if such a lift exists, then Ky /K is abelian. A recent result of Léo Poyeton
then says that K /K is generated by the torsion points of a relative Lubin-Tate
group S, and that the power series that give the lifts of ¢ and of the elements of
I" are semiconjugate to endomorphisms of S.
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Heights and moments of abelian varieties
FARBOD SHOKRIEH
(joint work with Robin de Jong)

Let (A, \) be a principally polarized abelian variety over Q of dimension g > 1. One
has naturally associated to (A, \) the Néron-Tate height h'; (©) of any symmetric
effective divisor © defining A on A, where L = O4(©). Another invariant attached
to A is the stable Faltings height hp(A) as introduced by Faltings [Fal83]. It is
natural to ask how h’ (©) and hp(A) are related. We prove a formula relating
b’ (©) and hp(A), completing earlier results due to Bost, Hindry, Autissier, and
Wagener.

Assume A and L are defined over a number field k. In the papers [Aut06] and
[Hin93|] by Autissier resp. Hindry one finds an identity relating h’, (©) and hp(A)
under the assumption that A has everywhere good reduction over k. Such an
identity is also implicit in the paper [Bos96b] by Bost. Assume that an admissible
adelic metric ([ - [+)yers(r) has been chosen on L. Let s be any nonzero global
section of L on A. For each v € M (k) (archimedean place) one defines

1
140 = = [ ol dus + 5 log [ sl
Asn Asn

where p,, denotes the probability Haar measure on the complex torus A2* = A4,(C).
The real-valued local invariant I(A,, A,) is independent of the choice of s and L.

Autissier in [Aut06] proposed the following relation between h’ (©) and hp(A):
assume that A has semistable reduction over k. One should have an identity of
the type

1
[% - Q]

2
[k Q]

hr(A) + kog = 2907, (0) + Z ay log(Nv) +

’UEM(}C)O

D I(Ag A\,

vEM (K)o

where «,, for each v € M (k) (non-archimedean place), is a non-negative rational
number that can be calculated from the reduction of A at v, with «,, = 0 if A has
good reduction at v. Here ko = log(m+/2). For non-archimedean places v, the size
of the residue field at v is denoted by Nwv.

As already mentioned, if A has everywhere good reduction, the equality was
known, with a,, = 0 for all v € M (k)o, by the works of Bost, Hindry, and Autissier.
Autissier also proved such an identity in the case where (A, A) is a principally
polarized abelian variety of dimension one or two (or is a product of such). de
Jong in [dJ18] exhibited natural «, for all Jacobians; the necessary local invariants
o, are expressed in terms of the combinatorics of the dual graph of the underlying
semistable curve at v.

We give a complete answer, relating h’ (©) and hp(A), for general principally
polarized abelian varieties. We show that the mysterious number «, must be
expressed in terms of theta functions in tropical and non-archimedean geometry.

Let v be a non-archimedean place and assume A has semistable reduction at
v. Berkovich [Ber90] showed that the analytification A" contains a canonical real
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torus X, called the canonical skeleton, onto which A2" deformation retracts. This
skeleton is a tropical abelian variety: we have a finitely generated, free abelian
group A (of rank at most g) equipped with a positive-definite, symmetric bilinear
pairing [+, ],: A x A — R such that the real torus (skeleton) is ¥, = Ag/A.

We define our modified tropical theta function |&,||: Ag — R by

1 .
I7(@) = 2 min [~ Az A,
This is A-periodic and descends to a well-defined function on the real torus X,,,
which we again denote by |, |. This function is closely related to non-archimedean
and tropical theta functions, see [FRSS18].
For each v € M(k)o, the tropical moment of (A,,\,) (or of ¥,) is the real
number

140 =2 [ [l
where i, denotes the probability Haar measure on X,. Clearly, I(A4,,\,) = 0.
Also I(Ay, Ay) = 0if and only if A has good reduction at v (so 3, is just a point).
In our setup, the associated bilinear map can be written in terms of the discrete
valuation at v and, therefore, the tropical moment I(A,, ;) is a rational number.

Theorem 1 ([dJS18a]). Let (A, \) be a principally polarized abelian variety of
dimension g = 1 with semistable reduction over a number field k. Let © be an
effective symmetric ample divisor on A that defines the principal polarization X,
and put L = O4(0©). For a finite place v of k let I(A,, \,) be the tropical moment
of the skeleton of the Berkovich analytic space A" of A atv. Then the following
equality holds in R:

h(A) +r0g = 2015 (0) + ———( 3 (A, A log(Ne) +2 3 1(A,,\) |

[k Q] ve M (K)o ve M (K)o

In other words, the mysterious number «, of Autissier is the same as the asso-
ciated tropical moment.

When g = 1 our equality in Theorem [ boils down to the well-known Faltings-
Silverman formula for Faltings heights of elliptic curves (see [Fal84] Theorem 7]
and [Sil86, Proposition 1.1]). We also obtain the lower bounds

2
hp(A) > — = I(Ay \) > —
r(4) Hog+[k:Q]v€]\4Z(:k)x ( ) > —kog

for hp(A). These lower bounds were obtained in the 90s by Bost [Bos96a]. We also

mention that Wagener, in his 2016 PhD thesis [Wagl6, Thoreme A], has obtained
the refined lower bound

hp(A) + kog = DT I(Au, M) log(Nv) +2 ) I(Ay, M) |.

veM (k)o veEM (k)

o
[% - Q]
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Motivated by Theorem [I we also study (in [dJS18c|dJS18D]) the local in-
variants attached to Jacobians in more detail and relate Arakelov heights to the
combinatorics and potential theory of metric graphs. Let C' be a smooth projective
geometrically connected curve over a number field k. Let v € M (k) and assume
C has semistable reduction at v. Let I';, be a skeleton of the Berkovich curve C3".
The tau invariant, denoted by 7(I',), is the ‘capacity’ associated to (1/2 times)
the effective resistance function (see, e.g., [BROT, Corollary 14.2]). We prove the
following remarkable relation. Let £(T',) denote the total length of T,,. Let J be
the Jacobian of C' endowed with its canonical principal polarization A.

Theorem 2 ([dJSI8d). I(Jy, Ay) = (L) — 37(Ty).

This yields an efficient formula for computing the local terms in Theorem [}
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Gromov-Hausdorff limits of flat Riemannian surfaces and
non-Archimedean geometry

DMITRY SUSTRETOV

Let X — C* be a holomorphic family of smooth compact complex curves of
genus > 1, and let Q be a relative holomorphic 1-form on X. Assume that the
action of the monodromy on H'(X;) for t close to 0 has a Jordan block of size
2. Consider the pseudo-Kahler metric on the fibres X; with the Kahler form
/2 A Q, and further rescale it so that the diameter of X, is constantly 1. I
describe the Gromov-Hausdorff limit of X} as ¢ tends to 0 in terms of the Berkovich
analytification X of the variety X over C((¢))* associated to X. In particular,
the shape of the limit depends on the weight function wtn on X?" associated to the
form . This weight function was introduced by Kontsevich and Soibelman and
further studied by Mustata, Nicaise, Xu, and Temkin [KS04|[MNT5/[NX16lTem16].

There are two cases depending on the dimension of the limit: collapsed and
non-collapsed. The limit is non-collapsed if and only if the weight function is
never constant on an edge of the dual intersection complex of the special fibre of
any semi-stable model of X. In the collapsed case the limit is a metric graph,
the quotient of a dual intersection complex as above by an equivalence relation
defined in terms of wtgo. In the non-collapsed case it is a union of flat surfaces
corresponding to the components of the special fibre on which the function wtg
reaches its minimum, glued along finitely many points in a way determined by the
dual intersection complex.
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Anticanonical metrics as operator norms of Cartier operators
Eric CANTON

A number of complications arise when attempting to work with singular varieties
and Kahler differentials in positive characteristic due the existence of the Frobenius
morphism. In this talk, I propose an approach to seminorms on canonical bundles
that makes direct use of the Frobenius via Grothendieck duality.
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1. CARTIER OPERATORS AND ANTI-PLURICANONICAL FORMS

Suppose X is a normal variety over a field k of characteristic p > 0, assumed to be
perfect. The aboslute Frobenius morphism F': X — X is finite, since X is of finite
type over a perfect field. Consequently, we can apply Grothendieck duality to F',
which has a very simple form in this case. The category of coherent sheaves of O x-
modules and F,Ox-modules are equivalent B, and so the coherent F,Ox-module
Homx (FyxOx, G) corresponds uniquely, up to isomorphism, to some coherent sheaf
F'G. Said differently, Fy F'G = Homx (FxOx,G) uniquely specifies F'G. The two
important examples we will need are:
(1) F'Ox = Homx(FyOx,Ox). Note that the Ox-module structure is in
the “first coordinate” (i.e. as an F,Ox-module).
(2) Flux = wx, since FyF'wy = Homx(FyOx,wx) is well-known to be
(isomorphic to) Fywx.
Putting these together, an easy consequence is the following.
Proposition 1. F*w?((l*p) ~ F'Ox as FyOx-modules.
Consequently, we can interpret 6 € I'(X, w?((l*p )) as an Ox-linear map g :
FyOx — Ox. Alternatively, to any nonzero ¢ € I'(X, F'Ox) one can associate

an (essentially unique) 6y € I'(X, w?((l*p )), and thus also a effective divisor
diVX (9 )
(*) Dy = —
p—1

with the property that (p — 1)(Kx + A) ~ 0; sometimes such an (X, A) would be
described as a Q-log Calabi Yau pair with index p — 1. Summarizing, we have a
bijection on normal varieties X over perfect fields:
nonzero 1 € I'(X, F'Ox) - Cartier divisors A > 0
up to global units u € I'(X, F,O%) such that (p — 1)(Kx + A) ~ 0

2. OPERATOR NORMS OF CARTIER OPERATORS
Suppose k is equipped with a norm, fix 1) € I'(X, F'Ox) and 2 € X*". Suppose
ker(z) = Q € X, and set R = Ox g. The unique way to equip FyxR with an R-

module norm compatible with x is as |Fy fl, 1= |f|glc/p. Since 9g : FxR — R is a
map of R-seminormed modules, it has an operator norm in the sense of functional
analysis.

Definition 1. The operator norm of ¢ at x € X?" is
[llop.c == nf{C >0 : [(Fyf)la < CIFII/P for all f € R},

In the remainder of the talk, we compare |-||op,» With other seminorms on canon-
ical bundles seen in this workshop, namely Temkin’s canonical (Kéhler) seminorms
[10] and the log discrepancy. Summarizing:

2which is a bit confusing in this case, since as sheaves of abelian groups Ox is the same as
FyOx; the only difference is how we view FyxOx as coherent sheaf of Ox-modules
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Suppose X is smooth. Let z € X?", and equip wx with a seminorm | - |,
as follows. Let # € I'(X,wx); working locally near ker(z) € X, we can con-
sider F,0®1-p) ¢ Fywx xer(a)- To this, we can associate ¢y € F!OXQ, and thus
46 op,- Define

p
1017 == [[¥olop -
Then |0} = [|0]|lw. for all x € X?* where 0], is Temkin’s seminorm.
Suppose k is trivially valued. For ) € I'(X, F'Ox), we have the divisor
Ay from @). Now if E ¢ Y is a prime divisor on a normal variety admitting a
proper birational morphism 7 : Y — X, we have the divisorial point ordgp € X?2".
One defines a Q-Weil divisor Ay y on Y via

Ky +Apy =7 (Kx + Ay).
The log discrepancy of (X,Ay) along E is
AE; X,Ap) =1—ordg(Ay y).
The key result here is

A(E,X, Aw) _ IOg “7/)“0p70rdE
p—1
for all E c Y. This result is due to Cascini, Mustatd, and Schwede in (something
close to) this form; however, knowledge of results of this type goes back at least
to [7L9] and very explicitly appear in [5].

Continuing with £ trivially valued, suppose also that log resolutions exist
in characteristic p; then one has available the description of XP* ~ X= (the space
of valuations centered on X) used in [8] to extend log discrepancies to arbitrary
valuations. One of the main theorems in the speaker’s thesis [4] is that

. _ log 19" lop,=
(%) Alz; X, Ay) = 21;;; o1
for all z € XP" n X=. Here, )" = 1) o Fyyp" ! (so % = 1 o Fytp). Thus, log
discrepancy becomes the “spectral radius seminorm” of ¢ € T'(X, F'Ox).

Taking the right hand side of (&) as the definition of A(x; X, Ay) (without
assuming log resolutions exist) gives a function A(—; X, A,) : X= — [~o0, 0] with
properties mirroring those known to experts on log discrepancy in characteristic
zero. For example:

o A(—; X,Ay) is lower-semicontinuous [41[81[3L/].

e When X is smooth, there exist valuations minimizing the log canonical
threshold let(—; X, a.) of any graded sequence of ideals a, on X . (assuming
there exists x € X= with let(z; X, a,) < o0). See [4S].

The main point here is that these results rely on resolutions of singularities, and
can be quite delicate and involved, over fields of characteristic zero. In positive
characteristics, the proofs are significantly simpler, often amounting to elementary
(if messy) real analysis.

(Brought to the speaker’s attention by Temkin after this talk.) Brezner and
Temkin use a construction nearly identical to the Cartier operator seminorms
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presented here in their study [2] of minimally wild covers of Berkovich curves.
They use that the canonical (trace) morphism v¢; : f*Qx — Qy is a non-zero
morphism between seminormed sheaves (where f : X — Y is a finite morphism of
Berkovich curves) and so naturally this morphism has an operator seminorm. In
their setting, they realize this as the different 6;. When f = F' : X — X is the

Frobenius, F*Qx = Q)®(p, and so Y can be viewed as a section Ox — Q(?((lfp).

Questions:

(1) What can we say about the minimal locus of |[9)[op,e as a function on X?"?
This should be like a skeleton of ¢ (in the sense of Kontsevich-Soibelman);
in analogy with other settings, we expect combinatorial structures on this
locus, and for there to be links with tropicalizations.

(2) When X is only normal, or when k is not perfect, how does Temkin’s
Kéhler seminorm compare with the operator seminorms?
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