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Introduction by the Organizers

The workshop on Non-Archimedean Analytic Geometry and Applications was or-
ganized by Vladimir Berkovich (Rehovot), Walter Gubler (Regensburg), Peter
Schneider (Münster) and Annette Werner (Frankfurt). Non-Archimedean analytic
geometry is a central area of arithmetic geometry. The first analytic spaces over
fields with a non-Archimedean absolute value were introduced by John Tate and
explored by many other mathematicians. They have found numerous applications
to problems in number theory and algebraic geometry. In the 1990s, Vladimir
Berkovich initiated a different approach to non-Archimedean analytic geometry,
providing spaces with good topological properties which behave similarly as com-
plex analytic spaces. Independently, Roland Huber developed a similar theory
of adic spaces. Recently, fields medalist Peter Scholze has introduced perfectoid
spaces as a ground breaking new tool to attack deep problems in p-adic Hodge
theory and representation theory.
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Non-archimedean spaces have played an important in number theory and al-
gebraic geometry for decades. Recent years have seen new connections to other
fields and successful applications to the solution of celebrated problems not only
in arithmetic geometry. Since 2015, when the last workshop on the same topic
took place in Oberwolfach, exciting new developments have served both to enlarge
the foundations of the field and to embark to new horizons. Many of these re-
cent developments have been discussed in the workshop which brought together
researchers form different areas.

The workshop had 53 participants and we had 19 one hour talks. A summary
of the topics can be found below. All talks were followed by lively discussions, in
the form of plenary questions and also in the form of blackboard discussions in
smaller groups. Several participants explained work in progress or new conjectures
or promising techniques to attack open conjectures. The workshop provided a
lively platform to discuss these new ideas with other experts.

During the workshop, we saw how the reduction of not necessarily strict affi-
noid spaces behave in families (Ducros). A canonical compactification of complex
analytic varieties was presented (Poineau) in the hybrid setting which is a mixture
of complex spaces and non-archimedean spaces suitable for degenerations.

A skeleton is a polyhedral substructure of a Berkovich space which is a defor-
mation retract and which is induced by a mildly singular model over the ring of
integers of the non-archimedean field. Mazzon explained a non-archimedean ap-
proach to the famous P “ W conjecture in non-abelian Hodge theory, and she
used properties of the essential skeleton to prove it in special cases. The construc-
tion of the non-archimedean SYZ-fibration from mirror symmetry was explained
and it was shown that it is an affinoid torus fibration away from a codimension
2 locus (Nicaise). Mirror symmetry inspired also the talk of Sustretov where he
described the Gromov–Hausdorff limits of curves with flat metrics.

A ground-breaking new approach to Hironaka’s celebrated theorem was exposed
in Temkin’s lecture on a canonical functorial algorithm for resolution of singular-
ities.

An incidence compactification of strata of abelian differentials was descibed
(Tyomkin) in terms of non-archimedean geometry which was known previously
only in terms of complex geometry.

A degeneration result of p-adic volume forms induced by base extensions to
a Lebesgue measure of the skeleton was presented (Jonsson). In characteristic
p ą 0, Canton gave an interpretation of anticanonical metrics as operator norms
of Cartier operator.

The unexpected behavior of tropical Dolbeault cohomology of non-archimedean
curves was explained (Jell). Loeser introduced a structure of a non-archimedean
field on a non-standard model of the field of complex numbers, and he used this
to show that one-parameter families of complex integrals behave asymptotically
as integrals of Chambert-Loir–Ducros forms on the Berkovich space. A tropical
approach to classical Prym–Brill–Noether theory was given which leads to new up-
per bounds for the dimension of the Brill–Noether locus (Ulirsch). An application
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of non-archimedean methods to diophantine geometry was presented in Shokrieh’s
talk in which he described the stable Faltings height of a principally polarized
abelian variety over a number field in terms of local invariants.

The theory of equivariant D-modules on rigid spaces was used to show that
certain representations of GLp2q of a local field associated to the first Drinfeld
covering are irreducible and admissible (Ardakov). In the talk of Huyghes, she
described a category of coherent D-modules which is analogous to the classical
BGG-category.

A tame étale site of an adic space was introduced by Hübner who showed that
its cohomology groups with p-torsion coefficients behave better than those of the
whole étale site. The Poincaré duality was established for Zariski open subsets of
proper smooth rigid analytic varieties (Liu); the proof relies very much on the use
of perfectoid spaces.

A conjectural analogue of the Chebotarëv’s density theorem for convergent F -
isocrystals was proposed and proven in special cases (Hartl). Formal groups over p-
adic rings were described in terms of torsion points and related to p-adic dynamical
systems and the theory of pφ,Γq-modules (Berger).

The atmosphere during the workshop was very good and the participants con-
tinued to work in small groups after the plenary talks. During the breaks and
in the evenings many informal mathematical discussions took place, in which the
young participants played an active role. The organizers made a specific effort
to invite PhD students and Postdocs. Altogether we had 15 participants from
this group. For most of them it was the first Oberwolfach workshop they ever
attended. The stimulating Oberwolfach atmosphere provided a unique opportu-
nity of meeting the international leaders of the subject and of keeping track with
current developments. The organizers also identified possible female invitees, thus
ensuring that among the participants of the workshop were 11 women mathemati-
cians. An informal concert took place on Thursday evening where 7 participants
played for an audience of about 30 people in the music room.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Yifeng Liu in the “Simons Visiting Professors” program
at the MFO.
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Abstracts

Reduction of affinoid spaces in family

Antoine Ducros

We fix a complete non-Archimedean field k and a divisible subgroup Γ of Rą0; we
only assume that Γ ‰ t1u if |kˆ| “ t1u. A k-affinoid algebra A (in the sense of
Berkovich) is said to be Γ-strict if it can be written as a quotient
ktT1{r1, . . . , Tn{rnu{I where the radii ri’s all belong to Γ. This class of affinoid
algebras gives rise by glueing to the class of Γ-strict analytic spaces (see [5], chap-
ter 3 for more details). The reader should keep the following extreme examples in
mind:

- if Γ “ t1u (which can occur only if k is non-trivially valued), then the class
of Γ-strict k-analytic spaces is nothing but that of strict k-analytic spaces,
that is, the Berkovich version of rigid-analytic spaces over the ground field
k;

- if Γ “ Rą0 then the class of Γ-strict k-analytic spaces is that of all k-
analytic spaces.

Let X “ M pAq be a Γ-strict k-affinoid space. Following Temkin [8], one asso-
ciates to A its Γ-graded reduction

Ã :“
à

rPΓ

ta P A, }a} ď ru{ta P A, }a} ă ru

where } ¨ } is the spectral semi-norm on A. This is a graded algebra over the

“graded residue field” k̃ (which is a graded field, in the sense that every non-zero

homogeneous element k̃ is invertible); note that if Γ “ t1u all these reductions are
the usual ones. If a is an element of A such that }a} P Γ we shall denote by ã its

image in the }a}-th graded component of Ã.
By adding the words “graded” or “homogeneous” almost everywhere, one can

mimic in the graded setting all classical constructions of commutative algebra
and even algebraic geometry; for instance one can define homogeneous prime and
maximal ideals of a Γ-graded ring, and then its spectrum (which is the set of its
homogeneous prime ideals), and so forth. Going back to X “ M pAq we shall

denote by ‹X the spectrum of Ã. This is an “affine graded scheme of finite type

over k̃”, and it comes with an anti-continuous reduction map X Ñ ‹X.

The assignment X ÞÑ ‹X is functorial, but it does not commute in general to
fiber products nor ground field extension. The aim of this talk was to present a
recent work [4] in which we remedy this problem in some specific situations. In
order to describe our main result, it will be convenient to introduce the following
definition. Let Y Ñ X be a morphism between two Γ-strict k-affinoid spaces
Y “ M pBq and X “ M pAq. A Γ-nice presentation of B over A (or of Y over X)
is a presentation B » AtT1{r1, . . . , Tn{rnu{pa1, . . . , amq that fulfills the following
conditions:
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(1) the ri’s all belong to Γ; for all j, the spectral norm ρj of aj also belongs
to Γ;

(2) for every point x of X , the following holds:
- for all j, the norm of the image ajpxq of aj in H pxqtT1{r1, . . . , Tn{rnu

is equal to ρj ;
- every element b of the ideal pa1pxq, . . . , ampxqq of

H pxqtT1{r1, . . . , Tn{rnu, can be written
ř

bjajpxq with }bj}¨ρj ď }b}
for all j;

(3) the natural map

p : Spec ÃrT1{r1, . . . , Tn{rns{p‹a1, . . . ,›amq Ñ Spec Ã

is flat, its fibers are geometrically reduced, and their irreducible compo-
nents are geometrically irreducible.

Let us make some comments

- By ÃrT1{r1, . . . , Tn{rns we denote the graded algebra of polynomials with

coefficients in Ã in indeterminates T1, . . . , Tn, with Ti being of degree ri
for all i; this is the graded reduction of AtT1{r1, . . . , Tn{rnu.

- The conditions required for being a nice presentation might look quite
technical. The crucial point is the following: they imply that for every

x P X whose image in ‹X is denoted by x̃, the graded reduction Ỹx is equal
to

p´1px̃qfiH pxq
“ Spec‡H pxqrT1{r1, . . . , Tn{rns{pfla1pxq, . . . ,‡ampxqq.

Thus the family of reductions pỸxq is induced by the fibers of a flat family over ‹X .
Our main theorem ([4], Th. 3.5) then asserts the following.

Theorem. Let Y Ñ X be a morphism between Γ-strict k-affinoid spaces. Assume
that Y Ñ X is flat with geometrically reduced fibers. Hence there exists a finite
family of morphisms fi : Xi Ñ X satisfying the following:

(1) each Xi is affinoid and Γ-strict, and X “
Ť

fipXiq ;
(2) if |kˆ| ‰ t1u then each fi is quasi-étale; if |kˆ| “ t1u then each fi is the

composition of a finite, flat and radicial map followed by a quasi-étale one;
(3) for each i the map Y ˆX Xi Ñ Xi admits a Γ-nice presentation.

Remark. We keep the notation and the assumptions of the theorem. Assume
moreover that Γ “ t1u and the map Y Ñ X is equidimensional. Then the so-called
reduced fiber theorme of Bosch, Lütkebohmert and Raynaud ([3], Th. 2.1) asserts
that Y Ñ X admits after a strictly affinoid quasi-étale base-change a formal model
which is flat with geometrically reduced fibers. Once such a model exists, it is not
difficult, up to performing another strictly affinoid quasi-étale base-change, to
ensure that the irreducible components of its fibers are geometrically irreducible.
Thus we see that when Γ “ t1u and the map Y Ñ X is equidimensional, our
theorem is a consequence of the reduced fiber theorem.

But we do not use this theorem, and in fact we even recover it under extra-
assumptions, for instance if X is reduced and k algebraically closed.
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A few words about our proof. As said above, we do not use the reduced
fiber theorem; in fact, we do not use any formal geometry. Instead we work with
Temkin’s theory of (graded) reduction of germs of analytic spaces.

More precisely, we use as a key tool a theorem by Grauert and Remmert (see
[2], 6.2.4, Thm. 1), which can be seen as an absolute version (that is, over Spfpk˝q)
of the reduced fiber theorem. This theorem in some sense enables us to prove our
result for every fiber of the map Y Ñ X , and we need then Temkins’s method for
spreading out. Note that we also use (while working with graded reductions) a
reduced fiber theorems for schemes of finite type over an arbitrary valuation ring,
but this theorem can de deduced from the result by Grauert and Remmert alluded
to above (see [7], section 6).

Motivation Given a Γ-strict affinoid space X , the anti-continuous reduction map

X Ñ ‹X induces a bijection π0pXq » π0p‹Xq. Therefore our result enables us to
reduce the study of the variation of geometric connected components of the fibers
of flat map with reduced fibers in the analytic setting to the analogue problem in
scheme theory, which is adressed in EGA IV. This plays a crucial role in our work
in progress on flattening techniques for Berkovich spaces. (The use of reduction
to describe the behaviour of connected components in families is not new: in the
strictly k-analytic context and with the help of the reduced fiber theorem, this
strategy was followed by Abbes and Saito in [1] and by Poineau in [6]).

A question. This is natural to asl whether they shoud exist a Γ-strict version of
the reduced fiber theorem (our main result being a substitute for it). The answer
is likely positive, but this would first require to develop a theory of Γ-graded or
Γ-filtered formal schemes, if only for stating the theorem.
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The first Drinfeld covering and equivariant D-modules on rigid

analytic spaces

Konstantin Ardakov

(joint work with Simon J. Wadsley)

1. Background and main result

Let p be a prime number, let Qp be the field of p-adic numbers and let F be a

finite extension of Qp. Fix a uniformiser π P OF Ă F and let F̆ be the completion
of the maximal unramified extension of F . Let

Ω :“ pP1,an ´ P1pF qq ˆF F̆

denote the Drinfeld upper half plane. In [6], Drinfeld defined a tower

¨ ¨ ¨ Ñ M2 Ñ M1 Ñ M0 “ Ω ˆ Z

of rigid analytic varieties such that

‚ the natural G :“ GL2pF q-action on M0 lifts to each Mn,
‚ each map Mn Ñ Mn´1 is G-equivariant, finite étale and Galois,
‚ GalpMn{M0q “ Oˆ

D{p1 ` ΠnODq for each n ě 0, where D is the quater-
nion division algebra over F and Π is a generator of the unique maximal
ideal of the maximal order OD of D,

‚ the actions of GalpMn{M0q and G on Mn commute.

This tower is known to realise both the Jacquet-Langlands and local Langlands
correspondences in (compactly supported) ℓ-adic etale cohomology. We give a
more precise version of this statement in Theorem 1.1 below, after establishing
the necessary notation.

Fix a prime number ℓ different from p. For any p-adic Lie group H , let IrrpHq
denote the set of isomorphism classes of Qℓ-linear, irreducible, smooth representa-
tions of Dˆ. The Jacquet-Langlands correspondence [4], [14], [10] is an injection
JL : IrrpDˆq ãÑ IrrpGq, whose image consists of those G-representations
whose matrix coefficients are square-integrable. Let WF denote the Weil group 1

of F , and define Σn :“ Mn{
ˆ

π 0
0 π

˙Z

for each n ě 0.

Theorem 1.1 (Faltings, Harris-Taylor, Fargues, Mieda). For each ρ P IrrpDˆq
there is a two-dimensional Qℓ-linear representation Vρ ofWF , and an isomorphism

of Qℓ-linear D
ˆ ˆG ˆWF -representations

lim
ÝÑ
n

H1
ét,cpΣn ˆ

F̆
F ,Qℓq –

à

ρPIrrpDˆq

ρb JLpρq b Vρ.

Question 1.2. What can one say about other cohomology groups of the tower
M8, such as the p-adic étale cohomology, or the coherent cohomology?

1For some background on Galois representations, we refer the reader to [13].
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We say nothing about the p-adic étale cohomology, except to point out that
when F “ Qp, the p-adic étale cohomology of the tower is known [3] to realise
Colmez’s p-adic local Langlands correspondence [2]. The coherent cohomology is
expected to produce admissible locally analytic representations of G, in the sense of
Schneider and Teitelbaum [15]. More precisely, we have the following conjecture;
it can be viewed as a version of the (unpublished) Breuil-Strauch conjecture.

Conjecture 1.3.

(a) For all n ě 0, OpΣnq˚ is an admissible locally analytic representation of
G,

(b) OpΣnq˚ always has finite length.

The evidence for part (a) consists of the following two statements.

Theorem 1.4 (Dospinescu-Le Bras, 2017).
(a) holds if F “ Qp and n ě 0 is arbitrary.

The proof can be found at [5, Remarque 1.3(b)], and uses the full strength
of the p-adic local Langlands correspondence. On the other hand, [11, Theorem
7.2.1(iv)] states the following

Theorem 1.5 (Patel-Schmidt-Strauch 2019).
(a) holds if n “ 1 and F is arbitrary.

Let fn : Σn Ñ Ω denote the structure map of the étale covering Σn of Ω.
Then the OΩ-module Vn :“ fn,˚OΣn

is locally free of finite rank and carries the
Gauss-Manin connection. It is therefore naturally a G-equivariant D-module on Ω.
Furthermore it carries an action of the Galois group GalpΣn{Σ0q which commutes
with both the G-action and the D-action, and for any irreducible representation
ρ of this finite group, the ρ-isotypic component Vρn of Vn is again a G-equivariant
D-module. The group GalpΣn{Σ0q is abelian when n “ 1, so each ρ is a one
dimensional character and an easy Kummer-theory argument shows that V

ρ
1 is in

fact an invertible OΩ-module which has finite order in an appropriate Grothendieck
group of G-equivariant line bundles with connection.

Let DpGq be the locally F -analytic distribution algebra of G, and recall from
[15, §6] that CG denotes the category of coadmissible DpGq-modules. We can now
state our main result.

Theorem A. Let L be a G-equivariant D-module on Ω which is invertible as an
OΩ-module. Suppose that there exists a positive integer d such that L bd – OΩ

as a G-equivariant D-module. Suppose that d is least possible and p ∤ d. Then
L pΩq P CG, and L pΩq is an irreducible DpGq-module whenever d ą 1.

The argument sketched above shows that Theorem A implies Theorem 1.5, and
also gives additional evidence to part (b) of the Conjecture for arbitrary F .
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2. Sketch of the proof

Let K be a complete non-Archmedean field extension of F and let G be a p-adic
Lie group acting continuously on a smooth rigid K-analytic space X . The paper
[1] introduced the abelian category CX{G of co-admissible G-equivariant D-modules
on X , in order to prove a Beilinson-Bernstein style Localisation Theorem for the
coadmissible DpGq-modules.

Theorem 2.1. [1, Theorem C] Let G be a connected affine algebraic group of
finite type over F such that GK :“ G bF K is split semisimple. Let G be an
open subgroup of GpF q and let X “ pGK{Bqan be the rigid-analytic flag variety.
Then ΓpX,´q is an equivalence of categories between CX{G and the category of
co-admissible DpGq-modules with trivial infinitesimal central character.

Note that if G “ SL2 then X “ P1,an. Now let j : Ω Ñ P1,an be the open
embedding and let L satisfy the hypotheses of Theorem A. Theorem A follows
easily from Theorem 2.1 and

Theorem 2.2. j˚L P CP1,an{G.

Choose a coordinate x on P1,an and let D :“ SpKxxy Ă P1,an be a closed

disk. If w :“
ˆ

0 1
1 0

˙

, then tD, wDu is an admissible affinoid covering of P1,an.

The definition of the category CP1,an{G found at [1, Definition 3.6.7] shows that to
prove Theorem 2.2, it is enough to show that j˚L is tD, wDu-coadmissible. The
symmetry of the situation quickly reduces Theorem 2.2 to the following statements.

Theorem 2.3. Let G1 denote the first congruence kernel of GL2pOF q.
(a) L pD X Ωq is a coadmissible ÙDpD, G1q-module.

(b) The canonical map ÙDpD XwD, G1q Ûb
ÛDpD,G1q

L pD X Ωq ÝÑ L pD XwD X Ωq

is an isomorphism.

We will focus on the proof of Theorem 2.3(a) only in what follows. Recall from
[12, §5] that for any rigid analytic space X there is an associated topological space

X̃ that comes with an equivalence F ÞÑ F̃ between the abelian sheaves on X and
the abelian sheaves on X̃ .

Definition 2.4. Let U be an admissible open subspace of the rigid analytic space

X, let F be an abelian sheaf on X and let i : Ũ ãÑ X̃ be the embedding of the

closure of Ũ . Define another abelian sheaf i:UF on X by

fi
i
:
UF “ i˚i

´1F̃ .

Example 2.5. Suppose that U “ Xpg1
g0
, ¨ ¨ ¨ , gn

g0
q is a rational subdomain of the

affinoid variety X. For each s P K with |s| ą 1, let Upsq denote the slightly larger

affinoid subdomain Upsq “ Xp g1
sg0
, ¨ ¨ ¨ , gn

sg0
q of X. Then the sections of i:UF on
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affinoid subdomains Y of X are given by

pi:UFqpY q “ lim
ÝÑ

|s|ą1

FpY X Upsqq.

Definition 2.6. Let n ě 0 be an integer.

(a) Un :“ Dz Ť

aPOF

t|z ´ a| ă |π|nu, and iUn
: Un ãÑ D is the embedding.

(b) For each affinoid subdomain Y of D and each r P Kˆ define

DrpY q :“ OpY qxBx{ry and D:
rpY q :“

ď

|s|ą|r|

DspY q.
(c) Let ̟ :“ p

1

p´1 , and set Dn :“ D
:
̟{πnpDq.

The Banach OpY q-modules DrpY q are in fact associative Banach algebra com-
pletions of the algebra DpY q “ OpY qrBxs of finite order differential operators on
Y , whenever |r| is sufficiently large relative to Y . Morally, they are quantisations
of certain ‘boxes’ inside the cotangent bundle T ˚Y of Y , and in fact we have

ÙDpY q “ limÐÝDrpY q “ limÐÝD:
rpY q.

We now introduce the linear differential operators Rpzq that play an important
role in our proof of Theorem 2.3(a).

Notation 2.7.

(a) α1, . . . , αm P K are pairwise distinct, and k1, . . . , km P Z.
(b) u “ śm

i“1px´ αiqki P Kpxq and d ě 1 is an integer.

(c) z :“ u
1

d and ∆z :“ śm
i“1px´ αiq.

(d) Rpzq :“ ∆zzBxz´1 “ ∆zpBx ´ 1
d

Bxpuq
u

q P Krx, Bxs.
Our main technical tool is an explicit presentation of the sections of pj˚L q|D

that overconverge along the interior annuli of Un as a module over a particular
completion of DpDq, namely the ring Dn from Definition 2.6(c).

Theorem 2.8. Let ψ : L bd –ÝÑ OΩ be a G-D-linear isomorphism and let n P N.

(a) The natural DpDq-action on Mn :“ i
:
Un

pj˚L q|DpDq extends to Dn.

(b) There exists un P Kpxq X OpUn` 1

2

qˆ and zn P L pUn` 1

2

q, such that

L|U
n` 1

2

“ OU
n` 1

2

¨ zn and ψpzbd
n q “ un.

(c) Mn “ Dn ¨ zn – Dn{DnRpznq.

Since L pDX Ωq “ limÐÝMn, ÙDpDq “ limÐÝDn, and each Mn is a finitely presented
Dn-module by Theorem 2.8(c), one might be tempted to conclude that in fact

L pD X Ωq is already coadmissible as a ÙDpDq-module. However, this is not the
case: the connecting maps Dn bDn`1

Mn`1 Ñ Mn fail to be injective, and one
needs to ‘switch on the group action’ in order to force them to be isomorphisms.

Definition 2.9. Let n ě 0 be an integer. Define

(a) Gn :“ kerpGL2pOF q Ñ GL2pOF {πnOF qq,
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(b) β : Gn`1 Ñ Dˆ
n by g ÞÑ

8
ř

n“0

pg ¨ x´ xqn Bn
x

n!
, and

(c) Sn :“ Dn ¸Gn`1
G1 :“ pDn ¸G1q{xβpgq ´ g : g P Gn`1y.

It is not hard to show that pSnq8
n“0 forms a weak Fréchet-Stein structure on

ÙDpD, G1q in the sense of [7, Definition 1.2.6]. Theorem 2.3(a) follows from

Theorem 2.10. Let n ě 0 be an integer.

(a) The Dn and G1-actions on Mn extend to Sn.
(b) Mn is a finitely presented Sn-module.
(c) The connecting map Sn bSn`1

Mn`1 Ñ Mn is an isomorphism.

Theorem 2.10(c) is the hardest part of the entire proof of Theorem A. After
some microlocal analysis, its proof relies on showing that the power series

8
ÿ

n“0

¨

˝

n
ÿ

r“0

` k
d
r

˘`´ k
d

´pq´1qr

pn´rqpq´1q

˘

pn ´ rqpq ´ 1q ` 1

˛

‚tn P Krrtss

does not have bounded coefficients, which in turn requires a precise calculation
of the p-adic valuation of the binomial coefficients appearing in this series. Here
q denotes the order of the residue field of OF and 1 ď k ă d is an integer. We
perform this calculation using Kummer’s classical result from [9].
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The adic tame site

Katharina Hübner

For a smooth variety over the complex numbers and a prime number ℓ, étale and
analytic cohomology with coefficients Z{ℓZ coincide. If the characteristic p of the
base field is positive but different from ℓ, the étale cohomology groups with co-
efficients Z{ℓZ retain the same good properties as over C. For instance, there
are finiteness theorems, cohomological purity, and a smooth base change theorem.
The cohomology groups are homotopy invariant and the Künneth formula holds
(not only for cohomology with compact support). All this breaks down, however,
if base field and coefficient ring have the same characteristic. There is overwhelm-
ing evidence that these problems are due to the existence of wild ramification “at
the boundary of X”. To give an example consider the first cohomology group
H1

ét
pA1

F̄p
,Z{pZq, which classifies finite étale coverings of X . It is infinite dimen-

sional because of the huge amount of étale coverings of A1
F̄p

wildly ramified in
8.

For assertions concerning the fundamental group this problem has been adressed
by introducing the tame fundamental group (see [2]) Under suitable regularity as-
sumptions the tame fundamental group is topologically finitely generated and the
specialization map of the tame fundamental group is at least surjective ([7], VIII
2.11). Moreover, the tame fundamental group satisfies the Künneth formula ([3]
and there is a Lefschetz-Theorem ([4]). So the question arises whether one can
modify the étale site to obtain a tame site whose fundamental group coincides
with the tame fundamental group. Tame cohomology groups with torsion coeffi-
cients away from the characteristic p should coincide with the corresponding étale
cohomology groups and should be better behaved than étale cohomology groups
for p-torsion coefficients. One would furthermore expect that the tame cohomol-
ogy groups satisfy finiteness theorems and a version of cohomological purity and
smooth base change. The Künneth formula should be true without restrictions
and the tame cohomology groups should be homotopy invariant.

Since tameness is a valuation theoretic concept, it turns out to be natural to
work with adic spaces instead of schemes. We say that an étale morphism of adic
spaces f : X Ñ Y is tame if for every x P X the residue field extension kpxq|kpfpxqq
is tamely ramified with respect to the valuation of kpxq corresponding to x. For
every adic space X this defines a site Xt (the tame site of X). Associating with
a scheme Y over a base scheme S the discretely ringed adic space SpapY, Sq (an
easy generalization of SpapA,A`q for a Huber pair pA,A`q with discrete toplogy),
we obtain a tame site also for schemes.

As expected, the tame fundamental group of SpapY, Sqt is naturally isomorphic
to the curve-tame fundamental group of Y {S ([1], section 7). Moreover, tame
cohomology coincides with étale cohomology in the required cases ([1], section 6):
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For every adic space the tame cohomology groups of torsion sheaves with torsion
coprime to the characteristic are isomorphic to the corresponding étale cohomology
groups. If Y Ñ S is a proper morphism of schemes, tame and étale cohomology
groups of SpapY, Sqt are isomorphic. Moreover, there is a first version of cohomo-
logical purity:

Theorem 1 ([1],Cor. 12.5). Let X be a quasi-compact, quasi-separated, quasi-
excellent scheme of characteristic p ą 0 and X a regular scheme which is separated
and essentially of finite type over S. Assume resolution of singularities holds
over S. Then for every pro-open dense subscheme U Ď X there is a natural
isomorphism

HipSpapU, Sqt,Z{pZq – HipSpapX,Sqt,Z{pZq.
Via the excision sequence for a closed subscheme Z Ď X we conclude that

the tame cohomology groups with support in SpapZ, Sq and coefficients Z{pZ are
trivial. This is different from the case of coefficients Z{ℓZ with ℓ ‰ p, where for
regular pairs pX,Zq of codimension c we have a canonical isomorphism (see [6])

Hi
ZpX,Z{ℓZq – Hi´2cpZ,Z{ℓZp´cqq.

However, this is the expected outcome in characteristic p ą 0. Evidence for this is
provided by cohomological purity for the logarithmic deRham Witt sheaves νnpsq
([5], Prop. 2.1): Let Z be a smooth closed subscheme of codimension c of a smooth,
quasi-projective scheme X over a perfect field k of characteristic p and s ě c. Then
Hi
ZpXét, νnpsqq “ 0 for i ă c and there is a Gysin isomorphism

H0pZét, νnps ´ cqq – Hc
ZpXét, νnpsqq.

However, there is no good description of the cohomology groups Hr
ZpXét, νnpsqq

for r ą c. My hope is that replacing étale with tame cohomology we have purity
in all dimensions. If s “ 0, the sheaf νnpsq is isomorphic to Z{pnZ and for s ă 0
it is zero. Hence, Theorem 1 is the expected purity result for s “ 0.

A direct consequence of cohomological purity is homotopy invariance of the tame
cohomology groups with torsion coefficients ([1], Cor. 12.6). This is a considerable
advantage compared to étale cohomology in positive characteristic and hints to
the motivic nature of tame cohomology.
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Non-archimedean compactifications of complex analytic spaces

Jérôme Poineau

(joint work with Marco Maculan)

Let X be a complex algebraic variety, i.e. a separated scheme of finite type over C,
and let Xh be its analytification. We would like to construct a compactification
of Xh that is canonical in some sense. This is not possible to achieve in the
category of complex analytic spaces, so our aim will be to find a compact locally
ringed space Xy with an open embedding Xh

ãÑ Xy.

1. A valuative boundary

We denote by C0 the field C endowed with the trivial absolute value | ¨ |0. We will
work in the category of analytic spaces over C0 in the sense of V. Berkovich (see
[2, 3]). Recall that we have an analytification functor X ÞÑ Xan

0 from algebraic
varieties over C to analytic spaces over C0.

In the affine case X “ SpecpAq, where A is an algebra of finite type over C, Xan
0

may be defined as the set of multiplicative seminorms on A that induce the trivial
absolute value | ¨ |0 on C endowed with the weak topology. It is also endowed with
a sheaf of analytic functions. The general case may be obtained from the affine
case by glueing.

Starting with an algebraic variety X over C, there is another natural way to
associate an analytic space over C0. Endowing C with the discrete topology, one
may consider X as a formal scheme and consider its generic fiber in the sense of
Raynaud. Following [6], we will denote it by Xi. It is a compact subset of Xan

0 .
In the affine case X “ SpecpAq, we have

Xi “ tx P Xan
0 : |fpxq| ď 1, f P Au.

We may now define the non-archimedean boundary of X by

X8 :“ Xan
0 ´Xi.

It may be identified with the set of seminorms that have no center on X .
It is interesting to remark that, if X is embedded as an open subset in a proper

algebraic variety Y over C with complement Z, then X8 may be identified with
the generic fiber (in the sense of Raynaud–Berthelot) of the formal completion ŶZ
of Y along Z deprived of (the analytication of) its special fiber Z. In particular,
the latter construction does not depend on the choice of Y .

This set was first defined by Berkovich in a letter to V. Drinfeld and sub-
sequentely used by O. Ben–Bassat and M. Temkin in [1] to prove some descent

results (reconstructing coherent sheaves on Y from coherent sheaves on ŶZ and X).
It was also independently defined by A. Thuillier in [6], where he proved that if Y
is regular and Z has normal crossings, then the dual complex of Z is homotopy
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equivalent to X8. As a consequence, the homotopy type of the dual complex of
the boundary depends only on X and not on the chosen compactification.

2. Hybrid spaces

In order to put together the spaces Xh and X8, we need a “hybrid” space that
contains both usual complex analytic spaces and analytic spaces over C0.

Denote by Chyb the field C endowed with the norm } ¨}hyb :“ maxp| ¨ |0, | ¨ |8q,
where | ¨ |8 is the usual absolute value on C. It is a Banach ring. As a consequence,
the theory developed in [2] provides us with a definition of analytic space over Chyb

and an analyfication functor X ÞÑ Xhyb.
In the affine case X “ SpecpAq, the definition is close to the usual one: Xhyb

may be defined as the set of multiplicative seminorms on A that are bounded by
the norm } ¨}hyb on C endowed with the weak topology. It is also endowed with a
sheaf of analytic functions.

The basic example is the analytification of SpecpCq, which may be explicitly
described as

SpecpCqhyb “ t|¨ |ε8, 0 ď ε ď 1u,
where | ¨ |08 :“ |¨ |0.

Let X be a complex algebraic variety. By functoriality, the structure morphism
π : X Ñ SpecpCq gives rise to a morphism πhyb : Xhyb Ñ SpecpCqhyb whose fibers
we can describe: we have pπhybq´1p| ¨ |0q “ Xan

0 and, for each ε P p0, 1s, we have
pπhybq´1p| ¨ |ε8q » Xh.

To sum up, we obtain a locally ringed space with complex analytic fibers that
seem to “degenerate” on a non-archimedean fiber. Such spaces have been used
by V. Berkovich in [4] to give a topological interpretation (in an analytic space
over C0) of the weight zero part of the limit mixed Hodge structure of a degenerat-
ing family of compact complex manifolds. They can also be found in the work [7]
of S. Boucksom and M. Jonsson about the asymptotic behavior of volume forms
in the same setting.

3. The compactification

Let X be a complex algebraic variety. We set

X` :“ Xhyb ´Xi.

Since Xi is a closed subset of Xan
0 , which is itself closed in Xhyb, X` is an open

subset of Xhyb. In particular, it inherits a structure of locally ringed space. Denote
by π` the restriction of πhyb to X`. We have

pπ`q´1p| ¨ |0q “ X8

and, for each ε P p0, 1s,
pπ`q´1p| ¨ |ε8q “ pπhybq´1p| ¨ |ε8q » Xh.

The resulting space is not compact in general and contains several copies of Xh.
To solve this issue, we will identify the points in the space X` that correspond to
equivalent seminorms, i.e. seminorms that can be obtained one form the other by
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raising to some power λ P Rą0. Denote by Xy the quotient space. We turn it into
a locally ringed space by endowing it with the push-forward of the structure sheaf
on X`.

The archimedean part of the space Xy now consists in exactly one copy of Xh.
The non-archimedean part, which is the quotient of X8 by the equivalence of
seminorms, is a so-called normalized space, as introduced by L. Fantini in [5].

Theorem 1. The space Xy is Hausdorff and compact and the map

Xh “ pπ`q´1pr| ¨ |8sq ÝÑ Xy

is an open embedding.

The map X ÞÑ Xy has additional properties. For instance, it is functorial with
respect to proper morphisms.

Finally, to a coherent sheaf F on X , one may functorially associate a coherent
sheaf Fy on Xy. We have a GAGA theorem in this setting.

Theorem 2. The functor

F P CohpXq ÞÝÑ Fy P CohpXyq
is an equivalence of categories.

For each coherent sheaf F on X and each q ě 0, we have a natural isomorphism

HqpX,F q „ÝÑ HqpXy, Fyq.
Note that the space Xy has an open subset isomorphic to Xh. As a consequence,

the space Xy may be used to relate the categories of coherent sheaves over X
and Xh.

The research for this note was supported by the ERC project TOSSIBERG (grant
agreement 637027).
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Non-standard analysis and non-archimedean geometry

François Loeser

(joint work with Antoine Ducros, Ehud Hrushovski)

The aim of this work is to relate asymptotics of one-parameter families of complex
integrals with the non-archimedean integrals introduced recently by Chambert-
Loir and Ducros in [1]. This is performed by constructing a morphism of dou-
ble complexes from a non-standard archimedean Dolbeault complex to a non-
archimedean Chambert-Loir and Ducros complex which is compatible with inte-
gration.

1. Construction of the field C. We shall work over an algebraically closed field
C containing C which is endowed with a norm | | : C Ñ Rě0 with R a real closed
field such that C » Rpiq, and also carries a non-archimedean norm | |5 : C Ñ Rě0.

The construction of the field C goes as follows. We fix a non principal ultrafilter
U on Cˆ containing all (punctured) neighbourhoods of the origin. We consider
the ultrapowers ˚C “ ś

tPCˆ C{U and ˚R “ ś

tPCˆ R{U . We say an element patq
in ˚C, resp. ˚R, is t-bounded if for some positive integer N , |at| ď |t|´N along U .
Similarly, it is said to t-negligible if for every positive integer N , |at| ď |t|N along
U . The set of t-bounded elements in ˚C, resp. ˚R, is a local ring which we denote
by A, resp. Ar, with maximal ideal the subset of t-negligible elements which we
denote by M, resp. Mr. We now set C :“ A{M and R :“ Ar{Mr. The field R is
a real closed field and C » Rpiq is algebraically closed. The norm | | :˚ C Ñ˚ Rě0

induces an R-valued norm | | : C Ñ Rě0. Furthermore, one can endow C with a
real-valued non-archimedean norm | |5 : C Ñ Rě0 as follows. For any z P Cˆ, one

checks that the norm of log |z|
log |t| is bounded by some positive real number in R. One

can thus consider its standard part α “ std
´

log |z|
log |t|

¯

P R. Fixing τ P p0, 1q Ă R,

one sets |z|5 :“ τα, so that |z|5 “ |t|α5 .

2. The two complexes. If X is a smooth algebraic variety over R, it is possible
to define a complex of sheaves of C8 differential forms on XpRq and a well-behaved
integration theory. In particular if ω is a top degree C8 differential form with
support contained in a definably compact semi-algebraic subset of XpRq,

ş

XpRq
ω

makes sense as an element ofR and furthermore |
ş

XpRq
ω| is bounded by an element

of Rě0.
Assume now X is a smooth algebraic variety over C and set λ :“ ´ log |t|. We

construct a Zariski-sheaf Ap,q of forms on X whose sections are locally of the form

ω “ 1

λp

ÿ

I,J

φI,J

ˆ

log|f1|
λ

, . . . ,
log|fm|
λ

˙

d log|fI | ^ darg fJ

with pf1, . . . , fmq regular invertible functions, for every pair pI, Jq with I and J

two subsets of t1, . . . ,mu of respective cardinality p and q, a smooth function φI,J
on Rm all whose derivatives are polynomially bounded, and dlog|f |I standing for
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dlog|fi1 |^. . .^dlog|fip | if i1 ă i2 ă . . . ă ip are the elements of I, and similarly for

darg fJ . There exist natural derivations d : Ap,q Ñ Ap`1,q and d7 : Ap,q Ñ Ap,q`1.
Similarly we set λ5 :“ ´ log |t|5. We denote by B

p,q the Zariski-sheaf on X

whose sections are locally (on the analytification of X) pp, qq-smooth forms in the
sense of Chambert-Loir and Ducros [1] of the form

ω “
ÿ

I,J

φI,J plog|f1|5, . . . , log|fm|5q d1 log|fI |5 ^ d2 log|fJ |5

with pf1, . . . , fmq regular invertible functions, for every pair pI, Jq with I and J

two subsets of t1, . . . ,mu of respective cardinality p and q, a smooth function φI,J
on Rm all whose derivatives are polynomially bounded, and d1 log|fI |5 standing
for d1 log|fi1 |5 ^ . . . ^ d1 log|fip |5 if i1 ă i2 ă . . . ă ip are the elements of I, and
similarly for d2 log|fJ |5.

3. The main result. We are now in position to state our main result:

Theorem. Let X be a smooth algebraic variety over C. There exists a unique
morphism of sheaves of bi-graded differential R-algebras A

˚,˚ Ñ B
˚,˚, sending

a non-standard archimedean form ω to the non-archimedean form ω5, such that
for every Zariski-open subset U of X, every finite family pf1, . . . , fmq of regular
invertible functions on U , every smooth function φ on Rm all whose derivatives
are polynomially bounded and every pair pI, Jq of subsets of t1, . . . ,mu one has

ˆ

1

λ|I|
φ

ˆ

log|f1|
λ

, . . . ,
log|fm|
λ

˙

dlog|fI | ^ darg fJ

˙

5

“ 1

λ
|I|
5

φ

ˆ

log|f1|5
λ5

, . . . ,
log|fm|5
λ5

˙

d1 log|fI |5 ^ d2 log|fJ |5.

Furthermore, the mapping ω ÞÑ ω5 is compatible with integration: if one assumes
that ω is defined on some Zariski open U and that its support is contained in
a definably compact definable subset of UpCq, then ω5 is compactly supported,
ş

UpCq
|ω| is bounded by some positive real number in R and

std

˜

ż

UpCq

ω

¸

“ p2πqn
ż

Uan

ω5,

with Uan the non-archimedean analytification of U .

Note that the last statement can be interpreted as expressing asymptotics of
one-parameter families of complex integrals as non-archimedean integrals in the
sense of Chambert-Loir and Ducros.

References
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Skeletons of Prym varieties and Brill-Noether theory

Martin Ulirsch

(joint work with Yoav Len)

1. Skeletons of Prym varieties

Let X be smooth projective curve over a non-Archimedean field K and let π : ‹X Ñ
X be an unramified double cover. The kernel of the norm homomorphism

Nmπ : Picp‹Xq ÝÑ PicpXq
O
X̃

p‹Dq ÞÝÑ OXpπ˚
‹Dq

has two components; the component containing the identity is known as the Prym

variety PrpX, πq associated to the unramified double cover π : ‹X Ñ X and it
carries a natural principal polarization.

Jensen and Len [JL18] gave us a tropical analogue of this construction: Let Γ

be a tropical curve and an unramified double cover π : Γ̃ Ñ Γ. The kernel of the
tropical norm homomorphism

Nmπ : PicpΓ̃q ÝÑ PicpΓq
r‹Ds ÞÝÑ

“

π˚
‹D
‰

has one or two components; the component containing the identity is the tropi-

cal Prym variety PrpΓ, πq associated to π : Γ̃ Ñ Γ. We show that PrpΓ, πq also
naturally carries a principal polarization.

Let ΓX be the non-Archimedean skeleton of Xan and write ρX : Xan Ñ ΓX for
the retraction map. There is a natural modular tropicalization map

ρX,˚ : PrpX, πqan ÝÑ PrpΓX , πtropq

from the Berkovich space PrpX, πqan to PrpΓX , πtropq induced by pushing forward
divisors along ρX . On the other hand, given an abelian variety A over K, by
[Ber90], there is a natural strong deformation retraction ρA : Aan Ñ ΣpAq from
Aan onto a closed subset ΣpAq of Aan that has the structure of a tropical abelian
variety, the non-Archimedean skeleton of Aan. A fixed principal polarization on A
hereby naturally induces principal polarization on ΣpAq. Expanding on the work
of Baker-Rabinoff [BR15], we confirm [JL18, Conjecture 6.3].

Theorem 1. There is a canonical isomorphism

µX,π : PrpΓX , πtropq »ÝÑ Σ
`

PrpX, πq
˘

of principally polarized tropical abelian varieties that makes the natural diagram



Non-Archimedean Geometry and Applications 535

PrpX, πqan

Σ
`

PrpX, πq
˘

PrpΓX , πtropq
ρPrpX,πq

ρX,˚

µX,π

„

commute.

Let Rg be the moduli space of unramified double covers, as e.g. introduced
(and compactified) in [Bea77], and Ag the moduli space of principally polarized
abelian varieties. There is a natural Prym-Torelli morphism pr : Rg Ñ Ag that

associates to an unramified double cover π : ‹X Ñ X its associated Prym variety
PrpX, πq. Theorem 1 may be reinterpreted as saying that the diagram

Ran
g Rtropg

Aan
g Atropg

tropRg

pran prtrop

tropAg

commutes.

2. Tropical Prym-Brill-Noether theory

Let π : ‹X Ñ X . Let r ě 1. In [Wel85], Welters has defined the Prym-Brill-Noether
locus V rpX, πq to be the closed subset
 

L P Pic2g´2p‹Xq
ˇ

ˇNmπpLq “ ωX , h
0pLq ě r ` 1 and h0pLq ” r ` 1 pmod 2q

(

in Pic2g´2p‹Xq. Theorem 1 above, in combination with the Bieri-Groves theo-
rem for maximally degenerate abelian varieties from [Gub07], allows us to apply
tropical techniques, as in [CDPR12, Bak08, Pfl17], to find upper bounds on the
dimension of V rpX, πq.
Theorem 2. Let r ě ´1 and write

n “ npr, kq “
#

rk
2

´ k2

8
` k

4
if k ď 2r ´ 2

`

r`1
2

˘

if k ě 2r ´ 1.

Suppose k ě 2 is either even or greater than 2r ´ 2. There is a non-empty open
subset in the k-gonal locus of Rg such that for every unramified double cover

π : ‹X Ñ X in this open subset we have:

dimV rpX, πq ď g ´ 1 ´ npr, kq .
In particular, the Prym–Brill–Noether locus V rpX, πq is empty if g ´ 1 ă npr, kq.

This, in particular, provides us with a tropical proof of the Prym-Brill-Noether-
Theorem, which classically follows from Welters’ Prym-Gieseker-Petri Theorem
[Wel85, Theorem 1.11] and Bertram’s existence theorem for Prym special divisors
[Ber87].
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Corollary 1. There is a non-empty open subset of Rg such that for every unram-

ified double cover π : ‹X Ñ X in this set we have:

dim V rpX, πq “ g ´ 1 ´
ˆ

r ` 1

2

˙

.

In particular, the Prym–Brill–Noether locus V rpX, πq is empty if and only if g ´
1 ´

`

r`1
2

˘

ă 0.

In general, we expect the inequality above to be an equality and we are currently
investigating whether new techniques from logarithmic Gromov-Witten theory, as
introduced in [JR17], can help us find a lower bound.
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The non-archimedean SYZ fibration

Johannes Nicaise

(joint work with Chenyang Xu, Tony Yue Yu)

1. Introduction

The main motivation for this talk is a tentative geometric explanation for the
phenomenon of mirror symmetry between Calabi-Yau manifolds: the Strominger-
Yau-Zaslow (SYZ) conjecture [5]. It has been finetuned over the years and is
currently usually formulated in the following way. Let ∆ be an open disk around
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the origin of the complex plane, and set ∆˚ “ ∆zt0u. Let X Ñ ∆˚ be a maxi-
mally degenerating projective family of Calabi-Yau manifolds of dimension n (the
definition of a maximally degenerating family will be recalled below). Then the
SYZ conjecture states that a general fiber Xt of the family admits a fibration
ρ : Xt Ñ S over a topological n-sphere S « Sn such that, away from a codimen-
sion ě 2 discriminant locus D Ă S, the map ρ is a smooth fibration in Lagrangian
real tori of dimension n. Moreover, S can be realized as the Gromov-Hausdorff
limit of the fibers Xt with their natural Ricci-flat metrics. The mirror partner of
Xt can then be constructed by dualizing the torus fibration over SzD and com-
pactifying the result after some subtle deformations (quantum corrections) of the
complex structure.

In this formulation, the conjecture is still wide open. However, it has been quite
influential for the development of the theory of mirror symmetry in algebraic ge-
ometry. It has inspired (at least) two powerful approaches: the Gross–Siebert
programme (based on tropical and logarithmic geometry), and the Kontsevich–
Soibelman programme (based on non-archimedean geometry). The starting point
of the Kontsevich–Soibelman programme is the profound insight that the conjec-
tural SYZ fibration ρ resembles a retraction map of a non-archimedean analytic
space onto its skeleton, and that it should be possible to pass through the non-
archimedean world to construct a mirror family for the degenerationX [1,2]. Kont-
sevich and Soibelman proposed a candidate for the base of the non-archimedean
SYZ fibration: the essential skeleton.

2. The essential skeleton

We slightly generalize the set-up: let k be an algebraically closed field of charac-
teristic zero, and set R “ krrtss and K “ kpptqq. We replace the disk ∆ by its
algebraic analog SpecR, and the punctured disk ∆˚ by SpecK. We endow K with
its t-adic absolute value | ¨ | “ expp´ordtp¨qq.

Let X be a geometrically connected smooth projective K-scheme of dimension
n with trivial canonical bundle. We say that X is maximally degenerate if it has
a semistable model X over R (that is, a regular projective R-model whose special
fiber is a reduced divisor with strict normal crossings) and the monodromy action
on Hn`1pX ˆK Ka,Qℓq has a Jordan block of rank n ` 1. The former condition
can always be achieved by means of a finite extension of K, by the Semistable
Reduction Theorem. The latter condition formalizes the intuitive idea that X is as
far away from having good reduction as possible: the geometry of the irreducible
components of the special fiber Xk is as simple as possible, and the geometric
complexity of X has been transferred into the combinatorial structure of the dual
intersection complex of Xk. Good examples to keep in mind are abelianK-varieties
with purely multiplicative reduction and type III degenerations of K3-surfaces.

Kontsevich and Soibelman identified in [2] a canonical subspace SkpXq of the
K-analytic space Xan. It is homeomorphic to a finite simplicial complex, and it is
called the essential skeleton of X . If X is an abelian variety then SkpXq is a real n-
dimensional torus; if X is a K3-surface then SkpXq is a 2-sphere. Kontsevich and
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Soibelman proposed that SkpXq should be the base of a non-archimedean analog
of the SYZ fibration. What was missing from their construction was a candidate
for the fibration itself.

3. The non-archimedean SYZ fibration

Chenyang Xu and the author have given in [3] a different interpretation of the
essential skeleton SkpXq: it can be realized as the skeleton of any Q-factorial
minimal dlt-model X of X . These models appeared as natural generalizations
of semistable models in the Minimal Model Programme. They are produced by
running an MMP algorithm on a semistable model for X . The dlt-models are
sufficiently close to semistable models to generalize Berkovich’s construction of
the skeleton SkpX q Ă Xan and the retraction map

ρX : Xan Ñ SkpX q.

The skeleton SkpX q is homeomorphic to the dual intersection complex of the spe-
cial fiber Xk. Chenyang Xu and the author have proven that SkpX q “ SkpXq; in
particular, it is independent of the choice of X . In this way, the retraction ρX
(which does depend on the choice of X ) becomes a natural candidate for the non-
archimedean SYZ fibration. This opens the prospect of using non-archimedean
geometry as a bridge between mirror symmetry and birational geometry, translat-
ing mirror symmetry conjectures into statements about the geometry of minimal
models and using MMP techniques to prove them.

Our main result is an instance of this dictionary. Kontsevich and Soibel-
man have made a detailed list of conjectures about the properties that the non-
archimedean SYZ fibration should satisfy. In particular, they predicted that it
should be an affinoid torus fibration away from some codimension ě 2 discrim-
inant locus D in SkpXq, in accordance with the original statement of the SYZ
conjecture. When applied to the retraction map ρX , this means that, locally over
SkpXqzD, one should be able to identify ρX with the tropicalization map

trop: Gan
m,K Ñ Rn.

We have proven this conjecture in collaboration with Chenyang Xu and Tony Yue
Yu [4]. Our main technical result is that any Q-factorial minimal dlt-model X

of X such that X has reduced special fiber is semistable locally around the one-
dimensional strata of Xk. We then proved that, after blowing up finitely many zero-
dimensional strata in Xk, the formal completion of X along each one-dimensional
stratum is isomorphic to the formal completion of a toric R-scheme along a one-
dimensional stratum of its special fiber. This finally implies the conjecture of
Kontsevich and Soibelman, taking for D the union of codimension ě 2 faces in
SkpX q “ SkpXq.
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P-adic Riemann-Hilbert correspondence, de Rham comparison and

periods on Shimura varieties

Ruochuan Liu

(joint work with Kai-Wen Lan, Xinwen Zhu)

In previous works [2, 1], a p-adic Riemann–Hilbert functor was constructed as
an analogue of Deligne’s Riemann-Hilbert correspondence over C (see [1] for the
general introduction and backgrounds). In the present work, we further investigate
the properties of the p-adic Riemann–Hilbert functor. We establish the de Rham
comparison isomorphisms for the cohomology with compact support under the p-
adic Riemann–Hilbert correspondences, and show that they are compatible with
duality. Precisely, we first obtain the following theorem:

Theorem 1. Let U be a d-dimensional smooth algebraic variety over a finite
extension k of Qp, and let L be a de Rham p-adic étale local system on U . Then
there is a canonical comparison isomorphism

(1) Hi
ét,c

`

Uk,L
˘

bQp
BdR – Hi

dR,c

`

U,D
alg
dRpLq

˘

bk BdR

compatible with the canonical filtrations and the actions of Galpk{kq on both sides.

Here Dalg
dR is the (above-mentioned) p-adic Riemann–Hilbert functor constructed in

[1], and Hi
ét,c (resp. Hi

dR,c) denotes the usual étale (resp. de Rham) cohomology
with compact support.

In addition, the above comparison isomorphism (1) is compatible with the one
in [1, Theorem 1.1] (for varying L) in the following sense:

(1) The following diagram

Hi
ét,c

`

Uk,L
˘

bQp
BdR

„
//

��

Hi
dR,c

`

U,D
alg
dRpLq

˘

bk BdR

��

Hi
ét

`

Uk,L
˘

bQp
BdR

„
// Hi

dR

`

U,D
alg
dRpLq

˘

bk BdR
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is commutative, where the horizontal isomorphisms are the comparison
isomorphisms, and where the vertical morphisms are the canonical ones.

(2) The following diagram

Hi
ét,c

`

Uk,L
˘

bQp
BdR

≀

��

„
// Hi

dR,c

`

U,D
alg
dRpLq

˘

bk BdR

≀

��
´

H2d´i
ét

`

Uk,L
_pdq

˘

bQp
BdR

¯_ „
//

´

H2d´i
dR

`

U,D
alg
dRpL_pdqq

˘

bk BdR

¯_

is commutative, where the horizontal isomorphisms are given by the com-
parison isomorphisms (and where the duals are with respect to the base
field BdR), and where the vertical isomorphisms are given by the usual
Poincaré duality of étale and de Rham cohomology.

As a byproduct, we obtain Poincaré duality for (rational) étale cohomology
of smooth rigid analytic varieties that are complements of closed rigid analytic
subvarieties in proper rigid analytic varieties. Recall that Scholze noted in [3]
that it is interesting to prove Poincaré duality in the setup of proper smooth
rigid analytic varieties there (in which case the cohomology with compact support
coincides with the usual cohomology), and it is natural to ask whether the Poincaré
duality is compatible with the de Rham comparison isomorphisms there. More
precisely, we have the following theorem:

Theorem 2. Let U be a d-dimensional smooth rigid analytic variety over k, which
is of the form U “ X ´Z, where X is proper and Z Ă X is a closed rigid analytic
subvariety. Then there is a canonical trace morphism

tét : H2d
ét,cpUk,Qppdqq Ñ Qp,

satisfying certain natural compatibility conditions. In addition, for each Zp-local
system L on Uét (which is not necessarily de Rham), with LQp

:“ L bZp
Qp, we

have a canonical perfect pairing

Hi
ét,c

`

Uk,LQp

˘

bQp
H2d´i

ét

`

Uk,L
_
Qp

pdq
˘

Ñ Qp,

which we call the Poincaré duality pairing, defined by pre-composing tét with the
cup product pairing Hi

ét,c

`

Uk,LQp

˘

bQp
H2d´i

ét

`

Uk,L
_
Qp

pdq
˘

Ñ H2d
ét,c

`

Uk,Qppdq
˘

.

We remark that our definition of compactly supported cohomology for rigid
analytic varieties is different from the usual one (e.g. Huber’s definition), and is
based on the Kummer etale topology for log adic spaces developed in [1] . In
fact, we will do a little more in this article. We can also study the cohomology
with partial compact support and also some generalized interior cohomology, which
is the image of a morphism between cohomology with different partial compact
support conditions; and construct de Rham comparison isomorphisms for such
cohomology that are also compatible with Poincaré duality.
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Functorial semistable reduction and resolution of morphisms

Michael Temkin

(joint work with Dan Abramovich, Jaros law W lodarczyk)

1. Main results

In a joint project with Abramovich and Wlodarczyk, we construct a functorial
resolution of morphisms in characteristic zero, see [2]. Already in the case of
varieties, this leads to a new algorithm which is faster than the classical one and
possesses better functorial properties, see [1].

1.1. Historical background.

1.1.1. Classical desingularization. Until our work there was known an essentially
unique functorial (or canonical) resolution of singularities, to which we refer as the
classical algorithm. It is based on (originally non-canonical) method of Hironaka
developed further by Giraud, Bierstone-Millman, Villamayor, Wlodarczyk, Kollar,
and other experts. They suggested different descriptions, of essentially the same
algorithm with certain variations in combinatorial parts. In brief, the main result
was

Theorem 1.1.2. For any integral variety Z over a field k of characteristic zero
there exists a modification f : Zres Ñ Z such that Zres is smooth. Moreover, the
construction is smooth-functorial: if Z 1 Ñ Z is smooth, then Z 1

res “ Zres ˆZ Z
1.

The proof went by locally embedding Z into a manifold with a boundary pX,Eq
(i.e. X is smooth and E is an snc divisor) and principalizing the ideal IZ Ă OX ,
i.e. finding a sequence of blow ups g : pX 1, E1q Ñ ¨ ¨ ¨ Ñ pX,Eq such g´1pIZq is
invertible with support on E1. Hironaka showed that principalization easily implies
resolution, and also implies that on can resolve a closed subset T Ł Z to an snc
divisor T 1 “ f´1pT q.
1.1.3. Semistable reduction. Kempf, Knudsen, Mumford and Saint-Donat proved
the following theorem, which was the first instance of resolution of morphisms.

Theorem 1.1.4. Let Z be an integral scheme of finite type over a trait S “
SpecpRq of residual characteristic zero such that the generic fiber Zη is smooth.

(i) There exists proper Zres Ñ Z with Zres Ñ S log smooth and pZresqη “ Zη.
(ii) After a finite extension of R can even make Zres Ñ S semistable.
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Claim (i) follows by applying Hironaka’s theorem to Z and the divisor ZzZη,
and claim (ii) is then deduced by a complicated combinatorics. In general, one
can not make Z Ñ S smooth, so this is the best one might hope for. On the other
side this solution is rather non-canonical, e.g. it changes when one extends R.

1.2. Resolution of morphisms. It turns out that the theorem of KKMS can
be extended to more general morphisms and made functorial, but this requires to
work within the larger category of logarithmic DM stacks with finite diagonalizable
stabilizers. For simplicity, we will stick to the case of stacks of finite type over a
field k of characteristic zero.

Theorem 1.2.1 ([2]). To dominant morphisms f : X Ñ S of integral log varieties
(or log DM stacks) over k one can associate either a non-representable modification
Xres Ñ X or a ”fail output” Xres “ H such that Xres Ñ S is log smooth and

(i) Non-failure up to refining the base: for any f there exists a modification
S1 Ñ S such that pX ˆS S

1qres is non-empty.
(ii) Log smooth functoriality: if Xres is non-empty and X 1 Ñ X is log smooth,

then X 1
res “ Xres ˆX X 1.

(iii) Base change functoriality: if Xres ‰ H, then pX ˆS S
1qres “ Xres ˆS S

1 for
any base change S1 Ñ S.

Furthermore, generalizing the polyhedral subdivision theorem of KKMS to
maps of polyhedra Adiprasito, Liu and Temkin deduced the following refinement

Theorem 1.2.2 ([3]). After replacing S by an alteration, one can even achieve
that Xres Ñ S is semistable.

2. The method

2.1. Logarithmic geometry. Logarithmic structures are important both for
classical resolution, where they are encoded by the boundary, and semistable re-
duction. The starting idea of our project was that in order to construct log smooth
resolution of morphisms one should work log-smooth functorially. Already doing
this for varieties in [1] required to modify the algorithm tremendously, and in fact
the same new algorithm was extended in [2] to morphisms. We suggest:

Principle 2.1.1. If some aspects of the problem require to extend the notion of
smoothness, it is preferable to run the whole algorithm in the extended setting.

Implementing it in our case suggested to work with log varieties, log smooth-
ness, etc. In particular, resolution is reduced to principalization of ideals on log
smooth (or toroidal) varieties pX,Eq, without the assumption that X is smooth.
In addition, we replaced all basic resolution tools, such as derivation of ideals, order
of ideals, hypersurface of maximal contact, etc., by their logarithmic analogs.

2.2. Stacks. Surprisingly for us, the log smooth functoriality forced the new prin-
cipalization algorithm to perform certain weighted blow ups that produced not log
smooth varieties. However, working with stacks it is possible to realize these blow
ups as coarse spaces of smooth non-representable modifications, which we call
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Kummer blow ups. This suggested to extend our category further, in accordance
with the above principle. Thus, our log smooth-functorial algorithm principalizes
ideals on log smooth DM stacks even when the it starts with an ideal on a smooth
variety. It is possible after that to return to log smooth or even smooth varieties by
an additional modification, but the latter step can be only made smooth-functorial.
Perhaps usage of stacks is unavoidable for getting a log smooth-functorial algo-
rithm and resolution of morphisms. In the end, our algorithm operates with more
complicated objects and modifications, but it is simpler and faster than its classical
predecessor.

2.3. Future works. Our algorithm only performs weighted ideals of a special
form, and we expect that there exists a much more efficient algorithm which also
works with DM stacks and performs arbitrary weighted blow ups. This is the main
topic of our current research.
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Degenerations of p-adic volume forms

Mattias Jonsson

(joint work with Johannes Nicaise)

Let K be a field and X a smooth proper variety over K of dimension n ě 1. It
is of general interest to understand the structure of the set XpKq of K-rational
points. For example:

(i) when K is a finite field, XpKq is a finite set, whose cardinality is governed
by the Lang–Weil estimates;

(ii) when K “ C, XpKq is a complex manifold of dimension n;
(iii) more generally, when K is a local field, XpKq is a compact K-analytic

manifold, locally isomorphic to the open unit ball in Kn (and thus home-
omorphic to a Cantor set);

(iv) whenK is a general non-Archimedean field, XpKq often fails to be (locally)
compact, but embeds as a subset of the Berkovich analytification Xan of
X , and this analytification is compact.

Now suppose we are given the additional data of a global regular n-form θ P
H0pX,ωXq. We allow θ to have zeros, but we assume that θ is not identically zero
on any connected component of X . To the pair pX, θq we can associate analytic
data in cases (ii)-(iv) above. Namely, when X “ C, θ induces a volume form |θ|2
on the complex manifold XpCq defined by |θ|2 “ in

2

θ ^ θ. Similarly, if K is a
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non-Archimedean local field K, then θ induces a smooth volume form |θ| (which
we view as positive measure) on XpKq: if θ “ fdz1 ^ dzn in local coordinates
pz1, . . . , znq, then |θ| “ |f |µHaar, where µHaar is Haar measure on Kn, normalized
so that the closed unit ball has mass 1.

Finally consider the case when K is a discretely valued non-Archimedean field.
The work of Kontsevich–Soibelman [3], Mustaţă–Nicaise [4], and Temkin [5] allows
us to associate to θ a function on (a dense subset of) Xan, called the weight
function wtθ. The (closure of the) locus where the weight function is minimal
is the Kontsevich–Soibelman skeleton SkpX, θq Ă Xan of pX, θq. If X admits an
snc model X over the valuation ring R of K, then SkpX, θq is a subcomplex of
the skeleton SkpX q, which in turn can be identified with the dual complex of the
special fiber of X . In this case, SkpX, θq can further be endowed with a Lebesgue
measure λSkpX,θq induced by the integral (piecewise) linear structure on SkpX q.
Now suppose K is a local non-Archimedean field. We can then ask if there is
any relation between the measure |θ| on XpKq Ă Xan and the Lebesgue measure
λSkpX,θq on the Kontsevich–Soibelman skeleton SkpX, θq. We prove that this is
indeed the case. To explain the result, note that for any finite extension K 1{K,
we have a finite positive measure |θbK K

1| on XpK 1q. Now XpK 1q embeds in the
K 1-analytic space Xan

K1 , and there is a natural continuous map πK1 : Xan
K1 Ñ Xan,

so the pushforward pπK1 q˚|θ bK K 1| is a finite positive (Radon) measure on the
compact topological space Xan.

Main Theorem. Assume that X admits a semistable model over the valuation
ring R. Then we have

lim
K1

qwrK1:Ks

epK 1{Kqd pπK1 q˚|θ bK K 1| “ λSkpX,θq,

in the weak sense of Radon measures on Xan. Here K 1 runs over the directed
set of finite extensions of K contained in a fixed algebraic closure of K (the set of
extensions is partially ordered by inclusion), q is the cardinality of the residue field
of K, epK 1{Kq is the ramification index, w is the minimum of the weight function
wtθ, and d is the dimension of the Kontsevich–Soibelman skeleton.

We also obtain convergence results when restricting either to tame, or to unram-
ified extensions K 1{K. In these cases we need less assumptions on X : for the
tame case, the existence of an snc model for X is enough, whereas the unramified
case is unconditional. The limit measures are now Lebesgue measures on suitable
subcomplexes of SkpX, θq, and d has to be replaced by the dimension of these.

The main ingredients in the proof of the main theorem are: the usage of log
smooth (or log regular) models, the specialization map associated to a model of
X , the Lang–Weil estimates, and the convergence of suitably normalized “lattice”
measures to Lebesgue measure on a simplex.

The main theorem can be viewed as a p-adic version of the main result in [BJ17],
which dealt with the case when X Ñ D˚ is proper smooth family of complex
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manifolds, meromorphic at 0 P D. In this case, given θ P H0pX,ωX{Dq, we have

lim
tÑ0

|t|´2w

plog |t|´1qd |θ|Xt
|2 “ λSkpX,θq,

where the convergence now takes place in a hybrid space obtained by adding the
Berkovich space Xan

Cpptqq as a central fiber to X , and topologizing in a suitable way.

References

[1] S. Boucksom, M. Jonsson, Tropical and non-Archimedean limits of degenerating families of
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Intermediate extensions and crystalline distribution algebras

Christine Huyghe

(joint work with Tobias Schmidt, Matthias Strauch)

1. Introduction

Let o denote a complete discrete valuation ring with uniformizer ̟ and fraction
field K. Let G be a connected reductive group over o which is o-split. In [11]
we have introduced and studied the crystalline algebra of arithmetic distributions
D:pGqQ associated to the p-adic completion G of G. It is a certain weak completion
of the classical universal enveloping algebra Upgq associated to the Lie algebra g

of G (tensored with Q). The interest in this algebra comes at least from two
sources: on the one hand, D:pGqQ acts as global arithmetic differential operators
[3] on any formal o-scheme endowed with a G-action. On the other hand, D:pGqQ
is canonically isomorphic to Emerton’s analytic distribution algebra DanpG˝q of
the rigid-analytic group G˝ (equal to the generic fibre of the completion of G at
the unit section of its special fibre) which plays a crucial role in the representation
theory of p-adic Lie groups [9].

Due to its relation to representation theory, it is of considerable interest to have
information about the D:pGqQ-modules of finite length. In the classical setting of
Upgq-modules, a geometric classification of many irreducible Upgq-modules can be
achieved through a combination of the Beilinson-Bernstein localization theorem
over the flag variety [2,6], Kashiwara’s theorem and the formalism of intermediate
extensions [10]. A natural question is therefore whether a similar strategy works
for D:pGqQ-modules.
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In [12] we have completed the first step and established an analogue of the lo-
calization theorem for arithmetic differential operators. The aim of this note is
to deal with the second step: we explain how the intermediate extension functor
for arithmetic D-modules, developed recently by Abe-Caro [1], together with our
localization theorem can be used to geometrically construct interesting irreducible
D:pGqQ-modules.

2. Complements on arithmetic differential operators

Let P be a smooth formal o-scheme, following [3], we introduce the ring of arith-

metic differential operators D
:
P over P . If U Ă P is an affine formal scheme

endowed with coordinates x1, . . . , xM , | ¨ | be a Banach norm on the Tate algebra

OPpUq b Q, an element P P D
:
P pUq can be written

P “
ÿ

ν

aνBrνs “
ÿ

ν

aνBν{ν!,

where there exist C ą 0, η ă 1 (depending on P ), such that |aν | ď Cη|ν|.

We call D
:
P,λ a sheaf of twisted arithmetic differential operators on P , a sheaf

of rings on P , together with an injective ring homomorphism

ι : OP,Q ãÑ D
:
P,λ

such that the pair pι,D:
P,λq is locally isomorphic to the usual pair OP,Q ãÑ D

:
P [2].

For example if Lpλq is an invertible sheaf of OP -modules, the following sheaf is a
sheaf of twisted arithmetic differential operators on P

D
:
P,λ “ Lpλq´1 bOP

D
:
P bOP

Lpλq.

We first state the Berthelot-Kashiwara theorem for twisted differential opera-
tors. Let P be a smooth formal o-scheme and let

i : Q ãÑ P

be a smooth closed formal subscheme. We let D
:
P,λ be a sheaf of twisted arithmetic

differential operators on P (and similarly for Q). Let us recall the direct image

functor i` following [5]. So let D
:
PÐQ,λ be the pi´1D

:
P,λ,D

:
Q,λq-bimodule equal

to the inverse image i˚D
:
P,λ followed by the side-changing operation. For a given

coherent D
:
Q,λ-module M we let

i`M :“ i˚pD:
PÐQ,λ b

D
:
Q,λ

M q.

We also let

i6M “ Hom
i´1D

:
P,λ

pD:
PÐQ,λ, i

´1
M q.

This is a left-exact functor from D
:
P,λ-modules to D

:
Q,λ-modules and in [13], we

state the following twisted analogous of Berthelot-Kashiwara theorem.
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Proposition 2.1. The functor i` induces an equivalence of categories between

the category of coherent D
:
Q,λ-modules and the category of coherent D

:
P,λ-modules

supported on Q. The functor i6 is a quasi-inverse functor.

We now come to the intermediate extension as constructed be Abe-Caro [1, 1.4.1]

in the non twisted case. Denote by Db
ovholpD

:
Pq the triangulated category of com-

plexes of overholonomic D
:
P -modules as defined by Caro [8]. Let Y be a locally

closed smooth subvariety of Ps, the special fibre of P . If X is the Zariski closure of
Y in Ps, then Y “ pY,X,Pq is what Caro calls a frame, as well as P “ pPs,Ps,Pq
and we have a natural morphism of frames u : Y Ñ P. In loc. cit. Abe-Caro
form the abelian category OvholpY{Kq of overholonomic arithmetic D-modules
on Y. It is a full subcategory of the derived category of bounded complexes of

overholonomic modules Db
ovholpD

:
Pq, whose cohomology sheaves have support in

X . A typical example is the following : let Z ãÑ Ps be a divisor, X “ Ps,
Y “ XzZ, and E “ OP p:Zq P OvholpY{Kq defined in this way : take U Ă P ,
affine open, t P OPpUq, t its reduction in OPs

pUsq such that Us
Ş

Z “ V ptq, then
an element h of OPp:ZqpUq can be written h “

ř

ně0
an
tn
, with an P OP,QpUq and

there exist C ą 0, η ă 1 (depending on h), such that |an| ă Cηn, where | ¨ |
is any Banach norm on OP,QpUq. With our notations, this is a result of Berth-
elot [4], that OPp:Zq P OvholpY{Kq for Y “ pPszZ,Ps,Pq. The sheaf OPp:Zq is
the sheaf of overconvergent functions along the divisor Z. In this situation, ob-

jects of OvholpY{Kq consist of single overholonomic modules D
:
P , endowed with a

structure of OPp:Zq-module (compatible with the D
:
P -module structure).

Let us come back now to the general case, for E P OvholpY{Kq, Abe-Caro define
the functors [1, 1.2.9,1.4] u0! and u0`, and the intermediate extension of E

u!`pEq :“ Im
`

θ0u,E : u0! E ÝÑ u0`E
˘

P OvholpP{Kq.
Considering the previous example when Z is a divisor of Ps, we see that, if PszZ
is connected, u!`pOP p:Zqq “ OP,Q.

More generally, if Z is any closed subscheme of X , Caro defined in [7] the con-
stant overconvergentF -isocrystal on the k-scheme Y , that belongs to OvholpY{Kq,
and that we denote here OX,Qp:Zq. Let U “ PzZ, when the closed immersion :
Y ãÑ Us can be lifted to an immersion of smooth formal schemes v : Y ãÑ U , then
one has v6pOX,Qp:Zqq|U “ OY . Using this we prove that the sheaf OX,Qp:Zq is an

irreducible D
:
P -module when Y is connected. Thus, using [1, 1.4.7] we have the

following

Proposition 2.2. If Y is connected, the intermediate extension u!`OX,Qp:Zq is

an irreducible overholonomic D
:
P -module.

All this extends in a straightforward manner to twisted coefficients. Let D
:
P,λ

be a sheaf of twisted arithmetic differential operators on P . A D
:
P,λ-module M is

called overholonomic if, for every open U Ă P trivializing the twist, the restriction

M|U to U is an overholonomic D
:
U -module in the usual sense. Imitating the con-

struction of Abe-Caro, we obtain the abelian category OvholλpY{Kq consisting of
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bounded complexes of overholonomic D
:
P,λ-modules with support on X . More-

over, the category OvholλpY{Kq is noetherian and artinian. Analogously, there is
a twisted intermediate extension functor

u!` : OvholλpY{Kq ÝÑ OvholλpP{Kq
for any immersion of couples u : Y Ñ P as above. It is locally isomorphic to the
usual (untwisted) intermediate extension functor and hence, shares the analogous
properties.

3. Compatibilities

Let us consider now the following situation: let Po be a smooth and proper scheme
over o, Yo an open subscheme of Po and Xo be the Zariski closure of Yo into Po.
Call PQ, YQ and XQ the generic fibers of the previous schemes, and Ps, Y and
X their special fibers. We also denote Z “ XzY , and we consider P the formal
scheme obtained by p-adic completion of the scheme Po, so that we have a frame
Y “ pY,X,Pq and a natural morphism of frames u : Y Ñ P.

Denote by j the open immersion : PQ ãÑ Po and by α the closed immersion
Ps ãÑ Po. Over the scheme PQ we have the usual algebraic sheaf of differential
operators DPQ

. Let uQ be the open immersion YQ ãÑ PQ, E be an holonomic
DYQ

-module, uQ!`E the intermediate extension, we can then consider

D
alg
PQ

:“ α´1j˚DPQ
, and ualg!` E :“ α´1j˚uQ!`E ,

that are sheaves over the topological space underlying the special fiber |Ps|. Then

the sheaf D
alg
PQ

is a subsheaf of the sheaf D
:
P and using previous notations, we have

the following isomorphism [13]

D
:
P b

D
alg

PQ

u
alg
!` OYQ

» u!`pOX,Qp:Zqq.

4. Crystalline distribution algebra and the O:-category

Let G be a connected split reductive algebraic group over Speco. The crystalline
distribution algebra D:pGq is introduced in [11]. It contains Upgq, the envelopping
algebra tensored with Q, of g “ LiepGq and is naturally a locally convex algebra
of compact type. In particular, it is Hausdorff, complete and barrelled. For θ
a central character of Upgq we will always denote by D:pGqθ the corresponding
central reduction of D:pGq.
We now fix a central character θ and let λ P t˚ be a character associated to θ via
the Harish-Chandra morphism. Let Φ be the root system attached to pG, T q and
let ρ be half the sum over the positive roots of Φ relative to B. One can associate

to λ a twisted sheaf of differential operators D
:
P,λ (which coincides with D

:
P when

θ is trivial) and we have the following

Theorem 4.1. (a) Suppose λ ` ρ is dominant and regular. The global section

functor induces an equivalence of categories between coherent D
:
P,λ-modules and

coherent H0pP ,D:
P,λq-modules.
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(b) The G-action on P induces an algebra isomorphism

D:pGqθ »ÝÑ H0pP ,D:
P,λq.

Proof. For λ algebraic, this summarizes the main results of [12] and [14]. The
general case is proved in [15]. Note that if θ is trivial, then (a) and (b) hold for

D
:
P . �

Definition 4.2. A D:pGqθ-module is called overholonomic if its associated D
:
P,λ-

module is overholonomic.

Remark 4.3. The overholonomicD:pGqθ-modules form an abelian category which
is noetherian and artinian. In particular, any object is of finite length. Conversely,
if the semisimple rank of G is one (e.g. G “ GL2) then any finite length D:pGqθ-
module is overholonomic.

Let us define now the analytic highest weight representations. Let O be the
classical BGG category. For any M P O let

M : :“ D:pGq bUpgq M

and let O: be the full subcategory inside all D:pGq-modules generated by the M :.
Applying a result of Schmidt [16], we observe that we have the following

Proposition 4.4. The functor M ù M : induces an equivalence of categories

O
»ÝÑ O:.

For simplicity we now let θ be the trivial central character, and let O0 Ă O

be the principal block, i.e. the block with trivial center character. Let W be the
Weyl group of pG, T q. For any w P W we let λw “ ´wpρq ´ ρ. Let Mw P O0

be the Verma module of highest weight λw and let Lw be its irreducible quotient.
The modules Lw exhaust all irreducible modules in O0. Consider the localization

L:
w “ D

:
P bD:pGq L

:
w.

Let Yw “ BswBs{Bs Ă Ps be the w-th Bruhat cell in Ps and let Xw “ Ȳw be
the corresponding Schubert variety. Let Zw “ XwzYw and consider the constant
overconvergent isocrystal OXw,Qp:Zwq on the frame Yw “ pYw, Xw,Pq. Let u :
Yw Ñ P be the inclusion. Then, applying the compatibility results of 3, Schmidt’s
result, as well as the analogous result in the classical algebraic setting, we prove
in [13] the

Theorem 4.5. One has an isomorphism of D
:
P -modules

L:
w

»ÝÑ u!`pOP,Qp:Zwqq.

As a corollary, we see that the category O: consists of overholonomic D:pGq-
modules.
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[2] A. Bĕılinson and J. Bernstein. Localisation de g-modules. C. R. Acad. Sci. Paris Sér. I
Math., 292(1):15–18, 1981.

[3] P. Berthelot. D-modules arithmétiques I. Opérateurs différentiels de niveau fini. Ann. Sci.
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Crystalline Chebotarëv Density Theorems

Urs Hartl

(joint work with Ambrus Pál)

We formulate a conjectural analogue of Chebotarëv’s density theorem for conver-
gent F -isocrystals over a smooth geometrically irreducible curve defined over a
finite field using the Tannakian formalism. We prove this analogue for several
large classes, including direct sums of isoclinic convergent F -isocrystals and semi-
simple convergent F -isocrystals which have an overconvergent extension and such
that their pull-back to a sufficient small non-empty open sub-curve has connected
monodromy.
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1. A Conjecture

Let U be a smooth, geometrically irreducible curve over a finite field Fq having
q elements and characteristic p, and denote by |U | the set of closed points of U .
Let F : U Ñ U be the (absolute) q-Frobenius which is the identity on |U | and the
q-power map on the structure sheaf. Let K{Qq be a totally ramified finite field
extension. We take F “ idK as a lift of the q-Frobenius F “ idFq

. For every
x P |U | let Fx, degpxq and qx denote the residue field of x, its degree over Fq and
its cardinality, respectively. For e P N let Ke be the unramified field extension of
K of degree e. Then GalpKe{Kq “ xFrobqy.

Let F -IsocKpUq denote the K-linear rigid abelian tensor category of K-linear
convergent F -isocrystals on U ; see [Cre92, Chapter 1] for details. It is a Tannakian
category with fiber functors ωx for every x P |U | with e :“ degpxq given by

ωx : F -IsocKpUq ÝÑ pKe-vector spacesq , F ÞÑ x˚F .

This fiber functor is non-neutral if e ą 1. Actually, x˚F is an F -isocrystal over
Fx, that is an object of

F -IsocKpFxq :“
 

pW,FW q : W a Ke-vector space,

FW : W Ñ W a Frobq -semilinear automorphisms
(

.

So F eW : W „ÝÑW is a Ke-linear automorphism of W .
Now fix a base point u P UpFqq. (We assume degpuq “ 1 only for simplicity of

the exposition.) For F P F -IsocKpUq let xxFyy Ă F -IsocKpUq be the Tannakian
subcategory generated by F . Its monodromy group is defined as

GrpF{U, uq :“ Autbpωu|xxFyyq .

It is a linear algebraic group over K, not necessarily connected.
For every x P UpFqeq there is a non-canonical isomorphism of fiber functors

ωx bKe
K – ωu bK K, where K is an algebraic closure of K. This induces a

non-canonical isomorphism

(1) Autbpωx|xxFyyq ˆKe
K – GrpF{U, uq ˆK K .

We define FrobxpFq Ă GrpF{U, uqpKq as the conjugacy class of the image under
the isomorphism (1) of F ew P Autbpωx|xxFyyq. This conjugacy class is independent
of the choice of the isomorphism (1), and hence it is K-rational.

Conjecture A. For every subset S Ă |U | of Dirichlet density one the set

ď

xPS

FrobxpFq Ă GrpF{U, uq

is Zariski-dense.
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2. Applications

Corollary. Let F ,G P F -IsocKpUq be convergent F -isocrystals on U of the same
rank with TrpFrobxpFqq “ TrpFrobxpGqq for all points x in a subset S Ă |U | of
Dirichlet density one. If Conjecture A holds for the direct sum Fss ‘ Gss of the
semi-simplifications then Fss – Gss.

Proof. Since Fss lies in xxFyy there is an epimorphism of linear algebraic groups
GrpF{U, uq ։ GrpFss{U, uq under which FrobxpFq maps onto FrobxpFssq. The
two spaces ωupFssq and ωupGssq are semi-simple representations of the group
Gr

`

pFss ‘ Gssq{U, u
˘

. By our hypothesis their trace functions coincide on the
subset FrobxpFss ‘ Gssq. By Conjecture A the two trace functions coincide on all
of Gr

`

pFss‘Gssq{U, u
˘

. This implies that the two representations are isomorphic;
see [Ser98, Lemma in § I.2.3 on p. I-11]. And therefore the convergent F -isocrystals
Fss and Gss are isomorphic. �

Example. If A and B are abelian varieties over U with Dieudonné isocrystals
F “ DpAq and G “ DpBq, this gives an isogeny criterion for A and B.

3. Cases we can prove

Definition. Let F P F -IsocKpUq. We define

‚ the slopes of F at x P |U | as

1
degpxq ¨ ordp

`

eigenvalues of FrobxpFq on ωupFq
˘

.

‚ F to be isoclinic if for all x P |U |, F has a single slope at x (which is then
the same for every x).

‚ F to be unit-root if it is isoclinic of slope zero.

Proposition. Conjecture A holds for unit-root convergent F -isocrystals F on U .

Proof. Choose a geometric base point ū above u and let πét
1 pU, ūq be the étale

fundamental group of U . By a result of R. Crew [Cre87, Theorem 2.1 and Re-
mark 2.2.4] the full subcategory of F -IsocKpUq consisting of unit-root F -isocrystals
is tensor equivalent to the category RepK π

ét
1 pU, ūq of continuous representations

of πét
1 pU, ūq on finite dimensional K-vector spaces. Moreover, under this equiv-

alence the fiber functor ωu : F -IsocKpUq Ñ pK-vector spacesq and the forgetful
fiber functor ωforget : RepK π

ét
1 pU, ūq Ñ pK-vector spacesq become isomorphic over

K.
Let ρF : πét

1 pU, ūq Ñ GLrpKq be the representation corresponding to a unit-
root F -isocrystal F . Then GrpF{U, uq is a closed subgroup of GLr,K such that

GrpF{U, uq ˆK K equals the Zariski-closure of the image of ρF . Moreover, for all

points x P |U | the GrpF{U, uqpKq-conjugacy classes of ρpx˚ Frob´1
x q and FrobxpFq

coincide, where Frob´1
x P GalpFx{Fxq is the geometric Frobenius at x which maps

a P Fx to a1{qx for qx “ #Fx.
If S Ă |U | is a subset of Dirichlet density one, then by the classical Chebotarëv

density theorem [Ser63, Theorem 7] the union of the Frobenius conjugacy classes
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Frob´1
x for the points x P S are dense in πét

1 pU, ūq with respect to the pro-finite
topology. Since this topology is finer than the restriction of the Zariski topology
from GrpF{U, uq, the set

Ť

xPS FrobxpFq is Zariski-dense in GrpF{U, uq. �

Example. Let C be the pullback to U of the constant F -isocrystal on Fq of rank
one given by pK,F “ πsq with s P Z, where π P K is a uniformizing parameter.
If s ‰ 0 then GrpF{U, uq “ Gm,K . Indeed, GrpF{U, uq is a closed subgroup

of AutKpu˚Cq “ Gm,K which contains FrobxpCq “ tπs degpxqu. Since this set is
infinite, the only such group is Gm,K . The set

Ť

xPU FrobxpFq Ă πZs Ă Gm,K is
Zariski-dense. However, this set is discrete in GmpKq for the p-adic topology. For
that reason we can only expect density for the Zariski-topology.

Theorem 1. Conjecture A holds for the direct sum F “ À

i Fi of isoclinic con-
vergent F -isocrystals Fi on U .

Idea of the proof. We twist away the slope of Fi by a constant rank one F -isocrys-
tal Ci (after enlarging K). Then Gi :“ Fi bCi is unit-root. We set G :“

À

i Gi and
C :“ À

i Ci. Since F P xxG ‘ Cyy it is enough to prove Conjecture A for G ‘ C. In
the diagram

GrpG ‘ Cq GrpGq ˆ
GrpxxGyy X xxCyyq

GrpCq

C : ρG
`

πét
1 pU, ūq

˘

?�

OO

F Z
C

?�

OO

the subgroup C is compact, and hence a p-adic Lie group by [Ser92, Part II, § V.9,
Corollary to Theorem 1 on page 155]. We now count the cardinality of

 

c P C : D x P S with pc, F degpxq
C q P FrobxpG ‘ Cq

(

.

A lower bound is provided by the Chebotarëv density for G. If
Ť

xPS FrobxpG ‘ Cq
was contained in a hyperplane we would obtain a contradicting upper bound by a
result of Oesterlé [Oes82]. �

For the next result we let F P F -IsocKpUq be semi-simple. By the slope filtra-
tion theorem of Grothendieck and Katz [Kat79, Corollary 2.3.2] there is a non-
empty open subcurve f : V ãÑ U such that f˚F has a slope filtration with isoclinic
subquotients. It is always true that

Grpf˚F{V, uq � � // GrpF{U, uq

is a closed immersion. Note, that in contrast to ℓ-adic and p-adic Galois represen-
tations this closed immersion can be strict for F -isocrystals.

Conjecture B. Grpf˚F{V, uq ãÑ GrpF{U, uq is a parabolic subgroup.

Theorem 2. Conjecture B for F implies Conjecture A for F .

Theorem 3. If Grpf˚F{V, uq is connected and F extends to an overconvergent
F -isocrystal on U , then Conjecture A holds for F .
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Idea of the proofs for both theorems. We use Theorem 1 for pf˚Fqss which is a
direct sum of isoclinic convergent F -isocrystals on V . In the diagram

Grpf˚F{V, uq �
�

β
//

α
����

GrpF{U, uq Frobxpf˚Fq �
�

//

����

FrobxpFq

Gr
`

pf˚Fqss{V, u
˘

Frobx
`

pf˚Fqss
˘

the vertical morphism α identifies Gr
`

pf˚Fqss{V, u
˘

with the maximal reductive
quotient of Grpf˚F{V, uq. We then (develop and) use the theory of maximal
quasi-tori as in the following

Definition. Let G be a linear algebraic group over an algebraically closed field
L of characteristic zero, which is not necessarily connected. A closed subgroup

T Ă G is a maximal quasi-torus if the morphism α : G ։ G{RuG “: ‹G onto the

maximal reductive quotient ‹G of G induces an isomorphism α : T „ÝÑαpT q Ă ‹G
and there is a maximal torus and a Borel subgroup T̃ ˝ Ă ‹B Ă ‹G˝ such that αpT q
equals the intersection N

G̃
p‹Bq XN

G̃
pT̃ ˝q of the normalizers. (Then αpT q˝ “ T̃ ˝q.

Now Conjecture B (and likewise the hypotheses of Theorem 3) implies that β
maps any maximal quasi-torus of Grpf˚F{V, uq onto a maximal quasi-torus T of
GrpF{U, uq. Then we (prove and) use that in the reductive group GrpF{U, uq the
Zariski-density of the union

Ť

xPS FrobxpFq is equivalent to the Zariski-density in

T of
Ť

xPS T X FrobxpFq. �

References

[Cre87] R. Crew, F -isocrystals and p-adic representations, Algebraic geometry, Bowdoin, 1985
(Brunswick, Maine, 1985), 111–138, Proc. Sympos. Pure Math., 46, Part 2, Amer. Math.
Soc., Providence, RI, 1987.

[Cre92] R. Crew, F -isocrystals and their monodromy groups, Ann. Sci. École Norm. Sup. 25
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The essential skeletons of pairs and the geometric P=W conjecture.

Enrica Mazzon

(joint work with Mirko Mauri and Matthew Stevenson)

The geometric P=W conjecture is a conjectural description of the asymptotic be-
havior of a celebrated correspondence in non-abelian Hodge theory. In particular,
it is expected that the dual boundary complex of the compactification of character
varieties has the homotopy type of a sphere. In the joint work [4] with Mirko Mauri
and Matthew Stevenson, we compute the first non-trivial examples of these dual
boundary complexes in the compact case. In this talk I will explain how the result
is a combination of techniques from birational and non-archimedean geometry.

1. The geometric P=W conjecture

Let C be a complex projective smooth curve. The main object of study in non-
abelian Hodge theory are the representations of the topological fundamental group
of C in a reductive linear group G. The associated moduli space

MB :“ Hompπ1pCq, Gq {{G
is the GIT quotient by the conjugation action of G: it is usually called the Betti
moduli space, or also the G-character variety associated to C.

A fundamental correspondence in non-abelian Hodgen theory relates MB to
another moduli space: the Hitchin’s moduli space MDol of semistable principal
Higgs G-bundles on X with vanishing Chern classes, also known as the Dolbeault
moduli space. A distinctive feature of the moduli space MDol is that it comes
equipped with the so-called Hitchin map

H : MDol Ñ CN ,

with 2N “ dimCpMDolq.
The geometric P=W conjecture predicts the behaviour of the fundamental

correspondence between MB and MDol at infinity, in the following sense. Con-
sider compactifications MB of MB, resp MDol of MDol, with boundaries BMB :“
MBzMB, resp BMDol :“ MDolzMDol, and punctured neighbourhoods at infinity
N˚
B

:“ NBzBMB, resp N˚
Dol

:“ NDolzBMDol. The Hitchin map induces a map from
N˚

Dol to a neighbourhood at infinity of CN , so up to homotopy we obtain a map

h : N˚
Dol

HÝÑ CNzt0u „ÝÑ S2N´1.

Assuming that the dual boundary complex DpBMBq is well-defined, by means of
a partition of unity one can construct a map from N˚

B to DpBMBq
α : N˚

B Ñ DpBMBq.
Note that if BMB is an snc divisor, the homotopy type of DpBMBq is independent
of the choice of the snc compactification.

Stated by Katzarkov, Noll, Pandit and Simpson in [2], the geometric P “ W

conjecture proposes a correspondence between the dual boundary complex of MB

and the sphere at infinity of the Hitchin base for MDol.
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Conjecture 1 (Geometric P “ W conjecture). There exists a homotopy equiva-
lence

DpBMBq „ S2N´1

such that the following diagram is homotopy commutative

N˚
Dol

„
//

h

��

N˚
B

α

��

S2N´1 „
// DpBMBq.

A first evidence for the conjecture is due to Simpson: when MB is the SL2-
character variety of local systems on a punctured sphere (such that conjugacy
classes of the monodromies around the punctures are fixed), he proves in [6, The-
orem 1.1] that the dual boundary complex DpBMBq has the homotopy type of a
sphere; see also [3, Theorem 1.4].

Our main result is the following:

Theorem 2. Let C be a Riemann surface of genus 1. The dual boundary complex
DpBMBq of a dlt log Calabi–Yau compactification of MG has the homeomorphism
type of S2n´1 if G “ GLn, and of S2n´3 if G “ SLn.

2. The dual boundary complex DpBMGq
The first part of my talk will be focused on the definition of the dual boundary

complex DpBMBq. We identify a suitable class of compactifications of MB such
that the character varieties considered in Theorem 2 admit such a compactification,
and the dual complex associated to the boundary is well-defined.

For G “ GLn or SLn, the affine variety MB is singular with canonical and fac-
torial singularities. Hence, MB does not allow an snc compactification. However,
it admits dlt compactifications, and among all possible dlt compactifications of
MB we restrict to special ones, namely the dlt log Calabi–Yau compactifications.

In general, the advantage in considering a dlt log Calabi–Yau compactification
of MB is that its dual boundary complex identifies a distinguished homeomorphism
class in the homotopy equivalence class of the dual complex of any dlt compact-
ification. Moreover, this homotopy class actually coincides with that of the dual
complex of any snc compactification of a resolution of MB.

3. Non-archimedean approach

In the second part of my talk, I will introduce a characterization of the dual
complex DpBMBq in terms of non-archimedean geometry.

Building on the work of [5, 7, 1], we construct weight functions, Kontsevich–
Soibelman skeletons, and essential skeletons associated to pairs pX,Dq over a
trivially-valued field of characteristic zero. In particular, we prove that the dual
complex of a log canonical log Calabi–Yau pair pX,Dq is homeomorphic to the
link of the essential skeleton of pX,Dq.
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We apply this result for the character variety associated to a Riemann surface
of genus 1 when G “ GLn or SLn: the dual complex DpBMBq is homeomorphic
to the essential skeleton of pMB, BMBq, and the explicit computation relies on the
properties of the essential skeleton under the operations of taking products and
finite quotients.

4. Degeneration approach

I will conclude by mentioning an alternative proof of Theorem 2. This approach
adopts the notion of the essential skeleton in the discretely-valued field setting. It
is technically more demanding, since it requires the construction of a degeneration
of compact hyper-Kähler manifolds, but it suggests a relation of the geometric
P=W conjecture with the conjecture below:

Conjecture 3. Let X be a maximally unipotent good minimal dlt degeneration
of compact hyper-Kähler manifolds over Cpptqq. Then, the dual complex of the
special fibre of X is homeomorphic to PnpCq.
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Tropical Dolbeault cohomology of non-archimedean curves and

harmonic tropicalizations

Philipp Jell

Let K be an algebraically closed complete non-archimedean field and X a variety
over K of dimension n. We denote by Xan the Berkovich analytification of X and
by Ap,q the sheaf of smooth real-valued differential forms on Xan, as introduced
by Chambert–Loir and Ducros [1].

We state the following properties, all due to Chambert–Loir and Ducros.

‚ The Ap,q are fine sheaves of real vector spaces.
‚ The sheaf A0,0 is a subsheaf of the sheaf of continuous functions.
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‚ There exist differential operators

d1 : Ap,q Ñ Ap`1,q and d2 : Ap,q Ñ Ap,q`1.

‚ There is integration of top dimensional forms with compact support that
satisfies Stokes’ theorem. It was shown by Gubler that Stokes’ theorem
for An,n

c is equivalent to the balancing condition in tropical geometry [2].

Definition 1. We define the tropical Dolbeault cohomology of Xan to be

Hp,qpXanq :“ HqpAp,‚pXanq, d2q “ ker
`

d2 : Ap,qpXanq Ñ Ap,q`1pXanq
˘

im pd2 : Ap,q´1pXanq Ñ Ap,qpXanqq .

Question 2. What can we say about Hp,qpXanq?
The first result in this direction was the following Poincaré lemma type result.

Theorem 3. [4, Theorem 4.5] The sequence of sheaves

0 Ñ Ap,0 d2

Ñ . . . Ñ Ap,n Ñ 0

is exact at Ap,q for all p ě 0, q ą 0.

Note that this does not give a cover of Xan by acyclic domains. However, as a
consequence we can show that there are sheaves which compute tropical Dolbeault
cohomology. We write Fp :“ kerpd2 : Ap,0 Ñ Ap,1q.
Corollary 4. We have

Hp,qpXanq “ HqpXan,Fpq and H0,qpXanq “ Hq
singpXan,Rq.

Note that it follows from a result by Hrushovsky and Loeser that Hq
singpXan,Rq

is finite dimensional [3].
As far as constructing non-trivial and interesting classes, Liu provided a lot of

them with his construction of cycle class maps.

Theorem 5. [7, Theorem 1] Let X be a smooth variety. Then for all k there is a
homomorphism

cl : CHkpXq Ñ Hk,kpXanq
that is compatible with products on both sides.

From now on, let X be a proper variety. There is a natural pairing

Hp,qpXanq ˆ Hn´p,n´qpXanq Ñ R; prαs, rβsq ÞÑ
ż

Xan

α ^ β.(1)

Question 6. When is ( 1) a perfect pairing?

For curves, if p1q is a perfect pairing, we can compute all Hp,qpXanq using iden-
tification with singular cohomology. Of course singular cohomology of Berkovich
curves is well understood.

The next theorem provides a complete answer to Question 6 for curves. It turns
out that the reduction behavior of the curve is crucial.
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Definition 7. Let X be a smooth projective curve. Let X be a strictly semistable
model of X and let C1, . . . , Ck be the irreducible components of the special fiber of
X . Then

SX :“
k
à

i“1

Pic0pCiq b R.

Theorem 8. [5, Theorem A] Let X be a smooth projective curve. Then ( 1) is a
perfect pairing for all p, q if and only if SX “ 0.

There are two particular cases in which SX “ 0: When X is a Mumford curve,
i.e all the Ci are isomorphic to the projective line and when the residue field of
K is algebraic over a finite field. The fact that (1) is a perfect pairing for all p, q
for Mumford curves was already known by joint work of Wanner and the author,
using very different techniques [6].

We give a short idea of the proof of Theorem 8, since it will provide some insight
where SX comes into play.

Proof. The proof is based on two exact sequences of sheaves on Xan. We denote
K :“ kerpd1d2 : A0,0 Ñ A1,1q. Then the following two sequences of sheaves on Xan

are exact:

0 Ñ R Ñ K Ñ F1 Ñ 0 and(2)

0 Ñ K Ñ H Ñ SX Ñ 0,(3)

where H is Thuillier’s sheaf of harmonic functions [9] and SX is a sum of skyscraper
sheaves that satisfies SXpXanq “ SX . Sequence (2) is a non-archimedean analogue
of the tropical exponential sequence as introduced by Mikhalkin and Zharkov [8].
Exactness of sequence (3) was proved by Thuillier [9, Lemme 2.3.22], who used an
explicit description of K.

Writing down the two long exact sequences in cohomology, we find

0 Ñ H1,0pXanq Ñ H0,1pXanq Ñ H1pXan,Kq Ñ H1,1pXanq Ñ 0 and

0 Ñ SX Ñ H1pXan,Kq Ñ H1pXan,Hq Ñ 0.

Now using that H1,1pXanq is at least one-dimensional (which follows from Stokes’
theorem) and H1pXan,Hq is one-dimensional (which can be shown using tools
provided in Thuillier’s thesis), after a short diagram chase we see that the theorem
is true dimension-wise, and it is not difficult to prove the theorem from there. �

If the residue field of K is C and X is a curve of good reduction and positive
genus, SX is an infinite dimensional real vector space. The same diagram chase
as above then shows that H1,1pXanq is infinite dimensional.

Problem. “Not all harmonic functions are smooth”

By this slogan we mean the problem that the sheaf K and the sheaf H do in
general not agree and problems show up precisely when this happens.

Further evidence that this indeed poses a problem is a result by Wanner. She
proves a version of a regularization theorem for plurisubharmonic functions on
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non-archimedean curves, again under the assumption that SX “ 0 (meaning that
all harmonic functions are smooth) [10, Corollary 5.4].

Vague Solution. Tweak the theory defined by Chambert–Loir and Ducros in a
way that makes all harmonic functions smooth.

The implementation of this solution is the subject of ongoing joint work with
Joe Rabinoff, where we allow for a more flexible smooth functions via a notion of
“harmonic tropicalization”, which we also introduce and study in our work. As a
short term goal this will provide a theory of forms in arbitrary dimension. This
theory keeps the good properties of the theory by Chambert–Loir and Ducros and
fixes the problems we already encountered for curves, such as the failure of duality
and finite dimensionality. As a long term goal we plan to show finite dimensionality
and duality also in higher dimension.
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Reduction and lifting of Berkovich curves with differentials

Ilya Tyomkin

(joint work with Michael Temkin)

In a recent paper [3], Bainbridge, Chen, Gendron, Grushevsky, and Möller studied
what they called Incidence compactification of strata of abelian differentials. For a
given pattern of zeroes (and poles) µ P Nr, they considered pairs pC, p;ωq consist-

ing of a smooth projective curve C with r marked points p, and a (meromorphic)
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differential form ω up-to a multiplicative scalar, such that divpωq “
ř

µipi. The in-
cidence compactification then is the closure of this locus in the projectivised Hodge
bundle on Mg,r. The main result of [3] provides an explicit description of complex
points of the incidence compactification in terms of level graphs (functions) and
twisted differentials satisfying the usual compatibilities and a new striking condi-
tion introduced in [3] - the global residue condition for twisted differentials with
respect to a level function.

The results of [3] have many important applications. In particular, Möller,
Ulirsch, and Werner used [3] to provide a description of the liftable loci in the
canonical systems on tropical curves [5]. More explicitly, given a tropical curve Γ
and a divisor D in the canonical system on Γ, Möller, Ulirsch, and Werner provide
a purely combinatorial necessary and sufficient condition for the pair pΓ, Dq to
be the tropicalization of a smooth curve X over a non-Archimedean field of zero
equicharacterstic and an effective canonical divisor K on X .

In our work we studied meromorphic differential forms on nice k-analytic curves,
i.e., quasi-smooth connected compact separated strictly k-analytic curves. One of
our motivations was to find a Berkovich analytic proof of the main result of [3].
Starting with a nice curve X equipped with a non-zero meromrphic differential
ω we describe a natural tropicalization datum associated to the pair. If pX,ωq is
the analytification of an algebraic pair then the datum we associate to it almost
coincides with the datum of [3] and [5], but in addition we associate a canonically
defined residue function on the set of oriented edges of the skeleton Γ of pX, divpωqq
with values in k. The residue function R satisfies the very common in Berkovich ge-
ometry harmonicity condition: for any vertex x of Γ we have

ř

ePStarpxq Rpeq “ 0.

If pX,ωq is the analytification of an algebraic pair then the harmonicity condition
of R together with its compatibility with the residues of the associated twisted
differential implies the global residue condition of [3].

Our main result is the lifting theorem asserting that given a tropical datum
satisfying natural compatibility conditions and such that the residue function is
harmonic, there exists a nice k-analytic curveX with a meromorphic differential ω,
whose tropicalization coincides with the given datum. The proof of the theorem is
based on the key lemma asserting that for any differential form ωA on an analytic
annulus A “ Mtt, rt´1u that has neither zeroes nor poles, there exists a good
analytic coordinate s on A such that ωA “ adsn`Rds

s
. The main conclusion from

the key lemma is that a differential form on an annulus without zeroes and poles
is determined by its norm and its residue uniquely up-to an orientation preserving
automorphism. We shall emphasize that a similar lemma about the existence of
good coordinates in the case of differential forms on small punctured complex discs
was one of the ingredients also in the complex-analytic proof of the main theorem
in [3]. Good coordinates allow us to patch local liftings along annuli similarly to
the patchings of coverings of curves in the work of Amini, Baker, Brugallé, and
Rabinoff [1, 2] in characteristic zero, and in the work of Brezner and Temkin [4]
in positive characteristic. Also in the problem of patching of coverings of curves
there were similar key lemmas providing explicit description of isomorphism classes
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of coverings of annuli, see e.g., [4, Thm. 4.3.8, Cor. 4.3.9]. To the best of our
understanding, the patching technique we use in the Berkovich-analytic setting is
close analogue of the plumbing technique used in [3].

We shall also mention, that our tropical reduction datum contains one more
ingredient. Namely, for any oriented edge e of Γ with head x and tail y, consider
an open annulus whose skeleton is the edge e. Then the set of good coordinates
on the annulus induces a canonical identification of the torsors of good formal
coordinates for the reduction pCx, ωxq and pCy, ωyq at the points corresponding to
e. This extra “stacky” piece of reduction is not needed in the proof of the lifting
theorem, but as it is absolutely canonical, we expect it to be useful for other
applications. The situation here is analogues to the tropical and stacky tropical
reductions introduced in [6]. In [6], one could prove the lifting result for regular
non-stacky tropical reductions, but for a correspondence theorem one had to work
with the stacky reductions.
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Formal groups and p-adic dynamical systems

Laurent Berger

I started my talk by explaining some results about formal groups that can be
proved using ideas coming from Lubin’s theory of p-adic dynamical systems. Let
K be a finite extension of Qp, with integers OK , and let F pX,Y q P OKrrX,Y ss be
a formal group law over OK . Let TorspF q denote the set of torsion points of F
in mCp

. To what extent is F determined by its torsion points? The first result is
that if two formal groups F and G have infinitely many torsion points in common,
then F “ G. The proof of this theorem rests on a rigidity result: if F is a formal
group and if hpXq P X ¨ OKrrXss is such that hpzq P TorspF q for infinitely many
z P TorspF q, then h is an endomorphism of F . When F “ Gm, such a rigidity
result had already been proved by Hida. The proofs of these theorems rest on (1)
power series arguments inspired by Lubin’s theory of p-adic dynamical systems
and (2) the fact that if F is a formal group of finite height, then the image of the
attached Galois representation contains an open subgroup of Zˆ

p ¨ Id. This fact
follows from a theorem of Serre and Sen.
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After discussing the proofs of these theorems, I gave a brief survey of some
of Lubin’s results on p-adic dynamical systems. I introduced the notion of a
Lubin pair, namely a pair pf, uq of elements of X ¨ OKrrXss that commute under
composition, with f and u stable, and with f noninvertible and u invertible. I
discussed Lubin’s observation that given a Lubin pair, there must be a formal group
somehow in the background. For example, if K “ Qp and if pf, uq is a Lubin pair
in which f and all of its iterates have simple roots, and f ı 0 mod p, then f and
u are endomorphisms of a formal group over Zp. In general, I conjectured that
given a Lubin pair pf, uq with f ı 0 mod mK , there is a formal group S such that
f and u are semiconjugate to endomorphisms of S.

I finished by explaining my motivation for considering p-adic dynamical systems.
They occur in the study of pϕ,Γq-modules. If K8{K is a sufficiently ramified (more
precisely: strictly APF) Galois extension, and if Γ “ GalpK8{Kq, then the field of
norms of K8{K is a local field of characteristic p, endowed with a Frobenius map
ϕ and an action of Γ. In order to have a theory of pϕ,Γq-modules for this Γ, we
need to lift these actions to a ring of characteristic zero, such as OKrrXss. Such a
lift gives rise to a p-adic dynamical system, and using Lubin’s results we can prove
that if such a lift exists, then K8{K is abelian. A recent result of Léo Poyeton
then says that K8{K is generated by the torsion points of a relative Lubin-Tate
group S, and that the power series that give the lifts of ϕ and of the elements of
Γ are semiconjugate to endomorphisms of S.

References

[Ber14] L. Berger, Lifting the field of norms, J. École polytechnique - Math. 1 (2014), 29–38.
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[Hid14] H. Hida, Hecke fields of Hilbert modular analytic families, in Automorphic forms and

related geometry: assessing the legacy of I. I. Piatetski-Shapiro, Contemp. Math., vol.
614, Amer. Math. Soc., Providence, RI, 2014, 97–137.

[Lub94] J. Lubin, Nonarchimedean dynamical systems, Compositio Math. 94 (1994), no. 3, 321–
346.

[Sen73] S. Sen, Lie algebras of Galois groups arising from Hodge-Tate module, Ann. of Math.
(2) 97 (1973), 160–170.

[Ser67] J.-P. Serre, Sur les groupes de Galois attachés aux groupes p-divisibles, in Proc. Conf.
Local Fields (Driebergen, 1966), Springer, Berlin, 1967, 118–131.



564 Oberwolfach Report 8/2019

Heights and moments of abelian varieties

Farbod Shokrieh

(joint work with Robin de Jong)

Let pA, λq be a principally polarized abelian variety over Q of dimension g ě 1. One
has naturally associated to pA, λq the Néron-Tate height h1

LpΘq of any symmetric
effective divisor Θ defining λ on A, where L “ OApΘq. Another invariant attached
to A is the stable Faltings height hF pAq as introduced by Faltings [Fal83]. It is
natural to ask how h1

LpΘq and hF pAq are related. We prove a formula relating
h1
LpΘq and hF pAq, completing earlier results due to Bost, Hindry, Autissier, and

Wagener.
Assume A and L are defined over a number field k. In the papers [Aut06] and

[Hin93] by Autissier resp. Hindry one finds an identity relating h1
LpΘq and hF pAq

under the assumption that A has everywhere good reduction over k. Such an
identity is also implicit in the paper [Bos96b] by Bost. Assume that an admissible
adelic metric p} ¨ }vqvPMpkq has been chosen on L. Let s be any nonzero global
section of L on A. For each v P Mpkq8 (archimedean place) one defines

IpAv, λvq “ ´
ż

Aan
v

log }s}v dµv ` 1

2
log

ż

Aan
v

}s}2v dµv ,

where µv denotes the probability Haar measure on the complex torus Aan
v “ AvpCq.

The real-valued local invariant IpAv, λvq is independent of the choice of s and L.
Autissier in [Aut06] proposed the following relation between h1

LpΘq and hF pAq:
assume that A has semistable reduction over k. One should have an identity of
the type

hF pAq ` κ0g “ 2g h1
LpΘq ` 1

rk : Qs
ÿ

vPMpkq0

αv logpNvq ` 2

rk : Qs
ÿ

vPMpkq8

IpAv, λvq ,

where αv, for each v P Mpkq0 (non-archimedean place), is a non-negative rational
number that can be calculated from the reduction of A at v, with αv “ 0 if A has
good reduction at v. Here κ0 “ logpπ

?
2q. For non-archimedean places v, the size

of the residue field at v is denoted by Nv.
As already mentioned, if A has everywhere good reduction, the equality was

known, with αv “ 0 for all v P Mpkq0, by the works of Bost, Hindry, and Autissier.
Autissier also proved such an identity in the case where pA, λq is a principally
polarized abelian variety of dimension one or two (or is a product of such). de
Jong in [dJ18] exhibited natural αv for all Jacobians; the necessary local invariants
αv are expressed in terms of the combinatorics of the dual graph of the underlying
semistable curve at v.

We give a complete answer, relating h1
LpΘq and hF pAq, for general principally

polarized abelian varieties. We show that the mysterious number αv must be
expressed in terms of theta functions in tropical and non-archimedean geometry.

Let v be a non-archimedean place and assume A has semistable reduction at
v. Berkovich [Ber90] showed that the analytification Aan

v contains a canonical real
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torus Σv, called the canonical skeleton, onto which Aan
v deformation retracts. This

skeleton is a tropical abelian variety: we have a finitely generated, free abelian
group Λ (of rank at most g) equipped with a positive-definite, symmetric bilinear
pairing r¨, ¨sv : Λ ˆ Λ Ñ R such that the real torus (skeleton) is Σv “ ΛR{Λ.

We define our modified tropical theta function }Ψv} : ΛR Ñ R by

}Ψv}pxq “ 1

2
min
λPΛ

rx´ λ, x´ λsv .

This is Λ-periodic and descends to a well-defined function on the real torus Σv,
which we again denote by }Ψv}. This function is closely related to non-archimedean
and tropical theta functions, see [FRSS18].

For each v P Mpkq0, the tropical moment of pAv, λvq (or of Σv) is the real
number

IpAv, λvq “ 2

ż

Σv

}Ψv}dµv ,

where µv denotes the probability Haar measure on Σv. Clearly, IpAv, λvq ě 0.
Also IpAv, λvq “ 0 if and only if A has good reduction at v (so Σv is just a point).
In our setup, the associated bilinear map can be written in terms of the discrete
valuation at v and, therefore, the tropical moment IpAv, λvq is a rational number.

Theorem 1 ([dJS18a]). Let pA, λq be a principally polarized abelian variety of
dimension g ě 1 with semistable reduction over a number field k. Let Θ be an
effective symmetric ample divisor on A that defines the principal polarization λ,
and put L “ OApΘq. For a finite place v of k let IpAv, λvq be the tropical moment
of the skeleton of the Berkovich analytic space Aan

v of A at v. Then the following
equality holds in R:

hF pAq`κ0g “ 2g h1
LpΘq` 1

rk : Qs

¨

˝

ÿ

vPMpkq0

IpAv, λvq logpNvq ` 2
ÿ

vPMpkq8

IpAv, λvq

˛

‚.

In other words, the mysterious number αv of Autissier is the same as the asso-
ciated tropical moment.

When g “ 1 our equality in Theorem 1 boils down to the well-known Faltings-
Silverman formula for Faltings heights of elliptic curves (see [Fal84, Theorem 7]
and [Sil86, Proposition 1.1]). We also obtain the lower bounds

hF pAq ě ´κ0 g ` 2

rk : Qs
ÿ

vPMpkq8

IpAv, λvq ą ´κ0 g

for hF pAq. These lower bounds were obtained in the 90s by Bost [Bos96a]. We also
mention that Wagener, in his 2016 PhD thesis [Wag16, Thórème A], has obtained
the refined lower bound

hF pAq ` κ0g ě 1

rk : Qs

¨

˝

ÿ

vPMpkq0

IpAv, λvq logpNvq ` 2
ÿ

vPMpkq8

IpAv, λvq

˛

‚.
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Motivated by Theorem 1, we also study (in [dJS18c, dJS18b]) the local in-
variants attached to Jacobians in more detail and relate Arakelov heights to the
combinatorics and potential theory of metric graphs. Let C be a smooth projective
geometrically connected curve over a number field k. Let v P Mpkq0 and assume
C has semistable reduction at v. Let Γv be a skeleton of the Berkovich curve Can

v .
The tau invariant, denoted by τpΓvq, is the ‘capacity’ associated to (1{2 times)
the effective resistance function (see, e.g., [BR07, Corollary 14.2]). We prove the
following remarkable relation. Let ℓpΓvq denote the total length of Γv. Let J be
the Jacobian of C endowed with its canonical principal polarization λ.

Theorem 2 ([dJS18c]). IpJv, λvq “ 1
8
ℓpΓvq ´ 1

2
τpΓvq.

This yields an efficient formula for computing the local terms in Theorem 1.
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Gromov-Hausdorff limits of flat Riemannian surfaces and

non-Archimedean geometry

Dmitry Sustretov

Let X Ñ Cˆ be a holomorphic family of smooth compact complex curves of
genus ě 1, and let Ω be a relative holomorphic 1-form on X . Assume that the
action of the monodromy on H1pXtq for t close to 0 has a Jordan block of size
2. Consider the pseudo-Kahler metric on the fibres Xt with the Kahler form
i{2Ωt ^ Ω̄t and further rescale it so that the diameter of Xt is constantly 1. I
describe the Gromov-Hausdorff limit of Xt as t tends to 0 in terms of the Berkovich
analytification Xan of the variety X over Cpptqqalg associated to X . In particular,
the shape of the limit depends on the weight function wtΩ on Xan associated to the
form Ω. This weight function was introduced by Kontsevich and Soibelman and
further studied by Mustata, Nicaise, Xu, and Temkin [KS04,MN15,NX16,Tem16].

There are two cases depending on the dimension of the limit: collapsed and
non-collapsed. The limit is non-collapsed if and only if the weight function is
never constant on an edge of the dual intersection complex of the special fibre of
any semi-stable model of X . In the collapsed case the limit is a metric graph,
the quotient of a dual intersection complex as above by an equivalence relation
defined in terms of wtΩ. In the non-collapsed case it is a union of flat surfaces
corresponding to the components of the special fibre on which the function wtΩ
reaches its minimum, glued along finitely many points in a way determined by the
dual intersection complex.
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Anticanonical metrics as operator norms of Cartier operators

Eric Canton

A number of complications arise when attempting to work with singular varieties
and Kähler differentials in positive characteristic due the existence of the Frobenius
morphism. In this talk, I propose an approach to seminorms on canonical bundles
that makes direct use of the Frobenius via Grothendieck duality.
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1. Cartier operators and anti-pluricanonical forms

Suppose X is a normal variety over a field k of characteristic p ą 0, assumed to be
perfect. The aboslute Frobenius morphism F : X Ñ X is finite, since X is of finite
type over a perfect field. Consequently, we can apply Grothendieck duality to F ,
which has a very simple form in this case. The category of coherent sheaves of OX -
modules and F˚OX -modules are equivalent 2, and so the coherent F˚OX -module
HomXpF˚OX ,Gq corresponds uniquely, up to isomorphism, to some coherent sheaf
F !G. Said differently, F˚F

!G “ HomXpF˚OX ,Gq uniquely specifies F !G. The two
important examples we will need are:

(1) F !OX “ HomXpF˚OX ,OXq. Note that the OX -module structure is in
the “first coordinate” (i.e. as an F˚OX -module).

(2) F !ωX – ωX , since F˚F
!ωX “ HomXpF˚OX , ωXq is well-known to be

(isomorphic to) F˚ωX .

Putting these together, an easy consequence is the following.

Proposition 1. F˚ω
bp1´pq
X – F !OX as F˚OX-modules.

Consequently, we can interpret θ P ΓpX,ωbp1´pq
X q as an OX -linear map ψθ :

F˚OX Ñ OX . Alternatively, to any nonzero ψ P ΓpX,F !OXq one can associate

an (essentially unique) θψ P ΓpX,ωbp1´pq
X q, and thus also a effective divisor

(‹) ∆ψ :“ divXpθψq
p ´ 1

with the property that pp´ 1qpKX ` ∆q „ 0; sometimes such an pX,∆q would be
described as a Q-log Calabi Yau pair with index p ´ 1. Summarizing, we have a
bijection on normal varieties X over perfect fields:
"

nonzero ψ P ΓpX,F !OXq
up to global units u P ΓpX,F˚O

ˆ
Xq

*

Ø
"

Cartier divisors ∆ ě 0
such that pp´ 1qpKX ` ∆q „ 0

*

2. Operator norms of Cartier operators

Suppose k is equipped with a norm, fix ψ P ΓpX,F !OXq and x P Xan. Suppose
kerpxq “ Q P X , and set R “ OX,Q. The unique way to equip F˚R with an R-

module norm compatible with x is as |F˚f |x :“ |f |1{p
x . Since ψQ : F˚R Ñ R is a

map of R-seminormed modules, it has an operator norm in the sense of functional
analysis.

Definition 1. The operator norm of ψ at x P Xan is

}ψ}op,x :“ inftC ą 0 : |ψpF˚fq|x ď C|f |1{p
x for all f P Ru.

In the remainder of the talk, we compare }¨}op,‚ with other seminorms on canon-
ical bundles seen in this workshop, namely Temkin’s canonical (Kähler) seminorms
[10] and the log discrepancy. Summarizing:

2which is a bit confusing in this case, since as sheaves of abelian groups OX is the same as
F˚OX ; the only difference is how we view F˚OX as coherent sheaf of OX -modules
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Suppose X is smooth. Let x P Xan, and equip ωX with a seminorm } ¨ }1
x

as follows. Let θ P ΓpX,ωXq; working locally near kerpxq P X , we can con-
sider F˚θ

bp1´pq P F˚ωX,kerpxq. To this, we can associate ψθ P F !OX,Q, and thus
}ψθ}op,x. Define

}θ}1
x :“ }ψθ}

p

1´p
op,x.

Then }θ}1
x “ }θ}ω,x for all x P Xan, where }θ}ω,x is Temkin’s seminorm.

Suppose k is trivially valued. For ψ P ΓpX,F !OXq, we have the divisor
∆ψ from (‹). Now if E Ă Y is a prime divisor on a normal variety admitting a
proper birational morphism π : Y Ñ X , we have the divisorial point ordE P Xan.
One defines a Q-Weil divisor ∆ψ,Y on Y via

KY ` ∆ψ,Y “ π˚pKX ` ∆ψq.
The log discrepancy of pX,∆ψq along E is

ApE;X,∆ψq “ 1 ´ ordEp∆ψ,Y q.
The key result here is

ApE;X,∆ψq “ log }ψ}op,ordE

p´ 1

for all E Ă Y . This result is due to Cascini, Mustaţă, and Schwede in (something
close to) this form; however, knowledge of results of this type goes back at least
to [7, 9] and very explicitly appear in [5].

Continuing with k trivially valued, suppose also that log resolutions exist
in characteristic p; then one has available the description of Xbir XXi (the space
of valuations centered on X) used in [8] to extend log discrepancies to arbitrary
valuations. One of the main theorems in the speaker’s thesis [4] is that

(‹‹) Apx;X,∆ψq “ sup
ně1

log }ψn}op,x
pn ´ 1

for all x P Xbir X Xi. Here, ψn “ ψ ˝ F˚ψ
n´1 (so ψ2 “ ψ ˝ F˚ψ). Thus, log

discrepancy becomes the “spectral radius seminorm” of ψ P ΓpX,F !OXq.
Taking the right hand side of (‹‹) as the definition of Apx;X,∆ψq (without

assuming log resolutions exist) gives a function Ap´;X,∆ψq : Xi Ñ r´8,8s with
properties mirroring those known to experts on log discrepancy in characteristic
zero. For example:

‚ Ap´;X,∆ψq is lower-semicontinuous [4, 8, 3, 1].
‚ When X is smooth, there exist valuations minimizing the log canonical

threshold lctp´;X, a‚q of any graded sequence of ideals a‚ onX . (assuming
there exists x P Xi with lctpx;X, a‚q ă 8). See [4, 8].

The main point here is that these results rely on resolutions of singularities, and
can be quite delicate and involved, over fields of characteristic zero. In positive
characteristics, the proofs are significantly simpler, often amounting to elementary
(if messy) real analysis.

(Brought to the speaker’s attention by Temkin after this talk.) Brezner and
Temkin use a construction nearly identical to the Cartier operator seminorms
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presented here in their study [2] of minimally wild covers of Berkovich curves.
They use that the canonical (trace) morphism ψf : f˚ΩX Ñ ΩY is a non-zero
morphism between seminormed sheaves (where f : X Ñ Y is a finite morphism of
Berkovich curves) and so naturally this morphism has an operator seminorm. In
their setting, they realize this as the different δf . When f “ F : X Ñ X is the

Frobenius, F˚ΩX “ Ωbp
X , and so ψF can be viewed as a section OX Ñ Ω

bp1´pq
X .

Questions:

(1) What can we say about the minimal locus of }ψ}op,‚ as a function on Xan?
This should be like a skeleton of ψ (in the sense of Kontsevich-Soibelman);
in analogy with other settings, we expect combinatorial structures on this
locus, and for there to be links with tropicalizations.

(2) When X is only normal, or when k is not perfect, how does Temkin’s
Kähler seminorm compare with the operator seminorms?
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Universitätsstrasse 31
93053 Regensburg
GERMANY

Dr. Marvin A. Hahn

Institut für Mathematik
Goethe-Universität Frankfurt
Robert-Mayer-Straße 8
60325 Frankfurt am Main
GERMANY

Prof. Dr. Urs Hartl

Mathematisches Institut
Universität Münster
Einsteinstrasse 62
48149 Münster
GERMANY

Prof. Dr. Eugen Hellmann

Mathematisches Institut
Universität Münster
Einsteinstrasse 62
48149 Münster
GERMANY

Dr. Katharina Hübner
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Université de Caen
BP 5186
14032 Caen Cedex
FRANCE

Prof. Dr. Joseph Rabinoff

School of Mathematics
Georgia Institute of Technology
686 Cherry Street
Atlanta, GA 30332-0160
UNITED STATES

Prof. Dr. Tobias Schmidt

U. F. R. Mathématiques
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Université de Rennes I
Campus de Beaulieu
35042 Rennes Cedex
FRANCE

Prof. Dr. Peter Schneider

Mathematisches Institut
Universität Münster
Einsteinstrasse 62
48149 Münster
GERMANY

Dr. Farbod Shokrieh

Department of Mathematical Sciences
University of Copenhagen
Universitetsparken 5
2100 København
DENMARK

Dr. Dmitry Sustretov

Department of Mathematics
National Research University
Higher School of Economics
6 Usacheva str.
Moscow 119 048
RUSSIAN FEDERATION

Prof. Dr. Michael Temkin

Einstein Institute of Mathematics
The Hebrew University
Givat Ram
Jerusalem 91904
ISRAEL

Dr. Amaury Thuillier

Institut Camille Jordan
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Universitätsstrasse 31
93053 Regensburg
GERMANY

Veronika Wanner

Fakultät für Mathematik
Universität Regensburg
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