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The new techniques and perspectives, such as methods from the theory of
perfectoid spaces, are leading to an extraordinary transformation in the field.
There is also remarkable progress on the study of singularities in positive
characteristics, and in particular on the problem of resolution of singulari-
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with a broader group of young researchers in commutative algebra and allied
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Introduction by the Organizers

The unifying theme of this workshop was resolutions, as in resolution of singu-
larities in the algebraic geometry, especially in positive and mixed characteristics,
and also in the sense of invariants derived from resolutions of modules over com-
mutative rings. This workshop drew together experts that, though united by their
interest in commutative algebra and singularities, do not often get an opportunity
to interact. This made for a lively gathering. One of the highlights of the work-
shop was the presence of Heisuke Hironaka, who gave the first proof of resolution
of singularities of characteristic zero algebraic varieties of arbitrary dimension in
1964. Another aspect that contributed to the success of the workshop was the par-
ticipation of experts on Scholze’s theory of perfectoid rings and spaces. Perfectoid
techniques made a dramatic entrance in commutative algebra when Yves André
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used them, in 2016, to settle the Direct Summand Conjecture. André himself was
present at the workshop. Other highlights of the meeting were Olivier Piltant’s
lecture on his monumental proof of the resolution of singularities of three-folds;
Claudiu Raicu’s presentation of a proof of Green’s conjecture for syzygies of gen-
eral canonical curves in characteristic 0 and large; and Linquan Ma’s lecture on
his proof of a conjecture of Stükrad and Vogel.

Resolution of singularities. As mentioned before, one focus of the workshop was on
resolution of singularities, and in particular on algorithmic methods used to resolve
or compute important invariants of resolution. Hironaka discussed his program to
prove resolution of singularities in positive and mixed characteristic. Piltant gave
an outline of his recent proof with Vincent Cossart of resolution of singularities
of reduced excellent schemes of dimension three. The previous strongest result in
positive characteristic was Abhyankar’s 1966 theorem showing that resolutions of
singularities exist for three dimensional algebraic varieties over an algebraically
closed field of characteristic greater than 5.

Ana Bravo discussed recent joint work with Santiago Encinas and Beatriz
Pascual-Escudero. A canonical resolution of singularities of a characteristic zero
algebraic variety is determined by a generalized order function on the variety. In
their work, invariants from the arc space of a variety X are used to determine
the first main invariant of the generalized order function. Ana Reguera discussed
joint work with Angelica Benito and Piltant. They consider the question of when
the space of arcs centered in the singular locus of an algebraic variety has a finite
number of irreducible components. Nash proved, using resolution of singularities,
that this is true in characteristic zero. Reguera, Benito and Piltant prove there
are only a finite number of components when local uniformization can be applied.

Bernd Schober explained joint work with Cossart. Given an ideal in a regular
local ring R, Hironaka associated the characteristic polyhedron, which can be
computed from suitable regular parameters in the formal completion of R. As a
tool in resolution of singularities, it is important to find regular parameters in
the original ring R which realize the characteristic polyhedron. They show that
this can be achieved in some important situations. Hussein Mourtada explained
his algorithm with Schober which determines if a characteristic zero hypersurface
singularity has quasi-ordinary singularities. Michael Temkin reported on his joint
work with Abramovich and Wlodarczyk. They prove a theorem on resolution
of singularities of morphisms, which generalizes earlier work of Abramovich and
Karu. After making a base change by a suitable modification, they are able to
make a morphism log smooth, for dominant morphisms of integral log varieities
and log DM stacks.

Applications of perfectoid techniques. André opened the proceedings with a mas-
terful survey of his proof of the Direct Summand Conjecture, and its history. The
conjecture, now a theorem, is remarkably easy to state: A regular (noetherian,
commutative) ring is a direct summand in any finite extension. This statement
has many equivalent formulations, which go under the rubric “The homological
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conjectures”, and these were one of driving forces for research in commutative al-
gebra for decades. It was proved by Hochster for rings containing fields, already by
the early 1970s. The “remaining” mixed characteristic was settled by André’s. His
work has lead to an explosion of new results in commutative algebra—the recent
work of Ma and Schwede on symbolic powers of ideals in mixed characteristic is a
striking illustration of this.

Rings of differential operators, and connections with non-commutative geometry.
One unexpected theme that emerged during this workshop was the theory of dif-
ferential operators. While this construct, introduced by Grothendieck, has for long
been of interest to commutative algebraists and algebraic geometers, the focus has
been on smooth algebras and over fields of characteristic zero. This has begun
to change and a number of researchers presented new advances on this subject,
and coming from different points of view. Veronica Ertl spoke on her work with
Miller on descent results on the sheaf cohomology of regular schemes over perfect
fields of positive characteristic, with coefficients the sheafification of the rational
de Rham - Witt differentials.

Holger Brenner spoke on his work with Jeffries and Núñez-Betancourt concern-
ing the maximal rank of a free summand of Pn, the module of principal parts of
degree n of an affine algebra A over a perfect field K. The A-dual of Pn con-
sists of differential operators of degree ≤ n, so the free rank of Pn corresponds
to differential operators E that satisfy E(f) = 1 for some f ∈ A. Besides of
intrinsic interest, the asymptotic behavior of the free rank, as n grows, provide
a characteristic-free analogue of the F -signature, an important invariant in the
study of singularities in positive characteristic. The F -signature is defined using
the free ranks of the Frobenius modules, namely, modules A1/pn

, when K is a field
of positive characteristic p.

In this lecture, Anurag Singh discussed the change of rings properties the ring of
differential operators. The motivation is the following question posed by K. Smith
and Van den Bergh, that arose in an approach to the still-open conjecture about
the simplicity of the rings of differential operators of the invariants of a linearly
reductive group: Given an domain R that is flat and finitely generated over a
Dedekind domain A, and a maximal ideal µ of A, is every A/µ-linear differen-
tial operator of R/µ induced by an A-linear differential operator of R? Singh
explained why the coordinate ring of the Grassmannian G(2, 4) under the Plücker
embedding furnishes a counter-example to this question. The computation, which
is part of an ongoing collaboration with Jeffries, exploits a recent result of Jeffries
that the derived functors of differential operators can be realised as certain local
cohomology modules.

When R is a regular ring of finite type over a perfect field k, the global dimension
of the ring of differential operators is finite. This was proved many years ago by
Roos (in characteristic 0) and P. Smith (in positive characteristic). It came as
a surprise (at least to one of the organizers) that the global dimension of the
ring of differential operators is also finite when R is a normal toric algebra. This
result featured in a talk by Eleonore Faber, based on her work with Muller and



410 Oberwolfach Report 6/2019

K. Smith. It was derived as a byproduct of a more precise result concerning the
endomorphism ring EndR(R1/q), where q is a positive integer and R1/q is the
ring spanned by qth roots of monomials in R. Namely, that this endomorphism
ring has finite global dimension for q ≫ 0, and hence it can be viewed a non-
commutative resolution of singularities of R, in the sense of Bondal and Orlov.
Under certain additional constraints on R, Faber also constructs non-commutative
crepant resolutions, in the sense of Van den Bergh.

Non-commutative geometry was also the topic of Vincent Gélinas’ talk on his
extension of the classical Bernstein, Gelfand, Gelfand (BGG) correspondence. The
BGG correspondence links the derived category of an exterior algebra to the de-
rived category of its Koszul dual symmetric algebra. Gélinas presented some of
the results contained in his Ph. D. thesis wherein the exterior algebra is replaced
by any Koszul Gorenstein algebra with the property that the minimal resolution
of any module is eventually linear. What is remarkable about this is that Koszul
dual of the algebra need not be noetherian. Using these results Gélinas has con-
structed counterexamples to a conjecture of Bondal, and one of Minamoto, both
concerning coherence of certain algebras.

Homological aspects. Another major theme of the workshop has been the study
of homological aspects of commutative algebra and related invariants. The topics
discussed included Castelnuovo-Mumford regularity, syzygies, the structure of free
resolutions, evolution of symbolic powers, Hilbert functions and coefficients of
various types.

Castelnuovo-Mumford regularity is a universal measure of the complexity of
a module and one of its incarnation is essentially homological. Central lines of
investigation are the study of the behaviour of the Castelnuovo-Mumford regularity
for discrete families (powers of ideals, Tor-modules etc..) and its relation with
invariants of algebraic varieties. Marc Chardin presented recent achievements
related to the Castelnuovo-Mumford regularity of Tor and Ext modules over non-
regular rings that generalize work of Eisenbud, Huneke and Ulrich.

Raicu presented a beautiful mathematical journey that, starting from resonance
varieties and the BBG correspondence and using Koszul modules, leads to a proof
of Green’s conjecture for the syzygies of general canonical curves of genus g in char-
acteristic 0 and large. Matteo Varbaro discussed a remarkable homological rigidity
property of algebras with straightening laws generalizing an unpublished result of
Buchweitz. Steven Sam generalized Stillman’s projective dimension conjecture,
now theorem of Ananyan and Hochster, to cohomology tables under suitable pre-
scriptions and, using the notion of strength, established an asymptotic version of
Hartshorne’s complete intersection conjecture.

Twenty years ago Ein, Lazarsfeld and K. Smith proved the following surpris-
ing result: the dn-th symbolic power of a prime ideal in a d-dimensional regular
ring is contained in the n-th ordinary power. Elóısa Grifo discussed generaliza-
tions and improvements of this result to rings of finite characteristic with mild
F -singularities. Hilbert coefficients of various type have been classically used to
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measure the singularity types and the (failure of) homological properties. Shree-
devi Masuti reported on the study of the Hilbert coefficients associated to the
filtration of the integral closure of the powers of m-primary ideals, the “normal”
Hilbert coefficients, and their use as singularity identifiers. Ma presented a proof
of a conjecture of Stükrad and Vogel asserting that for a local ring R with equidi-
mensional completion there exist a number c such that ℓ(R/I) ≤ ce(I) for every
ideal I primary to the maximal ideal of R. The proof is a mathematical symphony
with Vasconcelos’ homological degree and Huneke’s uniform Artin-Rees lemma as
principal interpreters.

Invariants of ideals related to singularities was also the topic of Shunsuke Tak-
agi’s talk on the localization problem for finitistic test ideals in rings of positive
characteristic. Brenner and Monsky constructed examples that showed that tight
closure does not commute with localization, but it is an open question whether the
formation of finitistic test ideals is compatible with localization. Takagi presented
his results that settle this question in the affirmative for numerically Q-Gorenstein
domains over F -finite field.

Finally two talks were devoted to introduce the audience to new research direc-
tions in neighbouring fields. In the spirit of the classical results of Stanley, Martina
Juhnke-Kubitzke highlighted the new frontiers of the search for inequalities that
characterize discrete objects with prescribed topological and combinatorial fea-
tures. Mateusz Micha lek described an exciting mathematical tour that start from
invariant theory and ends with the use of local cohomology to prevent injections
of algebraic varieties into projective spaces.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
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Abstracts

Singularities and perfectoid geometry

Yves André

1

Let S be a complete (noetherian) local ring S. If S is not Cohen-Macaulay and if
this creates trouble, one may adopt two different perspectives:

1) in the spirit of resolution, one may look for a Macaulayfication of S, i.e. a
surjective birational map Y → Spec S such that all s.o.p. (systems of parameters)
in the local rings OY,y are regular sequences (but s.o.p. in S might not remain
s.o.p. in Y ); such weak resolutions have been constructed by Faltings, Kawasaki
et al.

or
2) in the spirit of the homological conjectures, one may look for a (big, i.e. not

necessarily noetherian) Cohen-Macaulay S-algebra T , i.e. an S-algebra in which
all s.o.p. in S become regular sequences in T (but s.o.p. in T might fail to be
regular sequences). If S is a finite extension of a regular local ring R, an S-algebra
T is Cohen-Macaulay if and only if it is faithfully flat over R.

Theorem 1. (big) Cohen-Macaulay algebras exist and are weakly functorial.

This was proven by Hochster-Huneke in equal characteristic several years ago,
and recently by the speaker in mixed characteristic using perfectoid techniques.
This result implies many homological conjectures, such as the direct summand
conjecture, the syzygy conjecture...

Here is a sketch of the construction. Let (S,m, k) be a p-torsionfree complete
(noetherian) local ring of char. (0, p). Choose a lift x = (x1, . . . , xn) in S of a
s.o.p. of S/p, so that S is a finite extension of R = Λ[[x]] (Λ = Cohen ring of k, a
subring of W (k̄)), and let g ∈ R be a discriminant of S[ 1p ] over R[ 1p ].

First comes the perfectoid valuation ring V = W (k̄)[[p
1

p∞ ]]. After Scholze,
a p-adically complete p-torsionfree V -algebra A is called perfectoid if Frobenius

induces an isomorphism A/p
1
p → A/p.

We construct two perfectoid algebras

A = p-adic completion of ∪i W (k̄)[[p
1

pi , x
1

pi ]],

A′ = p-adic completion of the p-integral closure of A[g
1

p∞ ] in A[g
1

p∞ , 1
p ],

which turn out to be faitfully flat (hence Cohen-Macaulay) over R.
We then introduce the integral closure B of A′ in A′ ⊗R S[ 1

pg ], which turns

out to be “almost perfectoid” over V and “almost Cohen-Macaulay” over S (this
follows from a perfectoid version of the Abhyankar lemma). Here, “almost” is
taken in the sense of Almost ring theory introduced by Faltings and developed by

Gabber-Ramero: a V [g
1

p∞ ]-module is almost zero if it is killed by the idempotent

ideal ((pg)
1

p∞ ).
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In order to get rid of “almost”, and get a genuine perfectoid Cohen-Macaulay S-
algebra T , one may use either Hochster’s modification tehcnique, or the following
recent trick due to Gabber: replace B by

T = the m-adic completion of S−1(BN/B(N)), where S is the multiplicative set
of elements ((pg)ǫi), ǫi ∈ N[ 1p ], ǫi → 0. Note that the construction depends only

on S and on the choice of x, g.

2

Using (perfectoid) Cohen-Macaulay S-algebras T , one can introduce new “clo-
sures” of ideals: I 7→ IT ∩ S. In this guise, Ma and Schwede developed an analog
of tight closure theory - a promising tool for the study of singularities in mixed
characteristic.

More surprisingly, it also serves as a bridge between singularity theory in char.
0 and char. p: for instance, Ma and Schwede show that one can detect rationality
in char. 0 from F -rationality in reduction mod. p for any single p (under very
mild non-degeneracy assumption). Perfectoid are hidden in the proof that the
algorithm works.

References

[1] Y. André, Le lemme d’Abhyankar perfectöıde, Publ. Math. I.H.E.S. 127 no1 (2018), 1-70.
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Resolution of singularities: a proof in dimension 3.

Olivier Piltant

(joint work with Vincent Cossart)

In contrast with residue characteristic zero, the resolution of singularities problem
is still open in dimension higher than 3 for positive residue characteristic. It is
conjectured that any quasi-excellent reduced noetherian scheme has a resolution
of singularities. This extra assumption deals with the formal fibers (a condition on
the local rings) and the openness of regular loci (a condition on the open covering).
My talk explains some of the main ingredients of the proof of the conjecture in
dimension 3: ramification of valuations, tangent cone, characteristic polyhedron
and differential invariants.
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Singularities of Algebras with Straightening Law

Matteo Varbaro

(joint work with Alexandru Constantinescu, Emanuela De Negri)

Let A = ⊕i∈NAi be a graded algebra over a field A0 = K and let (H,≺) be a
finite poset set. Let H →֒ ∪i>0Ai be an injective function. The elements of H
will be identified with their images. Given a chain h1 � h2 � · · · � hs of elements
of H the corresponding product h1 · · ·hs ∈ A is called standard monomial. One
says that A is an Algebra with Straightening Law (ASL) on H (with respect to the
given embedding H into ∪i>0Ai) if three conditions are satisfied:

(1) The elements of H generate A as a K-algebra.
(2) The standard monomials are K-linearly independent.
(3) For every pair h1, h2 of incomparable elements of H there is a relation

(called the straightening law)

h1h2 =

u∑

j=1

λjhj1 · · ·hjvj

where λj ∈ K \ {0}, the hj1 · · ·hjvj are distinct standard monomials and,
assuming that hj1 � · · · � hjvj , one has hj1 ≺ h1 and hj1 ≺ h2 for all j.

It then follows from the three axioms that the standard monomials form a basis
of A as a K-vector space and that the straightening law gives indeed the defining
equations of A as a quotient of the polynomial ring K[H ] = K[h : h ∈ H ].
That is, the kernel I of the canonical surjective map K[H ] → A of K-algebras
induced by the function H → ∪i>0Ai is generated by the equations provided by
the straightening law, i.e.:

A = K[H ]/I with I = (h1h2 −
u∑

j=1

λjhj1 · · ·hjvj : h1 6≺ h2 6≺ h1).

Remark 1. Equipping the polynomial ring K[H ] with the N-graded structure in-
duced by assigning to h the degree of its image in ∪i>0Ai, then the ideal I is
homogeneous.

The ideal J = (h1h2 : h1 6≺ h2 6≺ h1) of K[H ] defines a quotient AD = K[H ]/J
which is an ASL as well, called the discrete ASL associated to H . In [2] it is proved
that AD is the special fiber of a flat family with general fiber A. Indeed, one can
obtain the same result by observing that with respect to (weighted) degrevlex
associated to a total order on H that refines the given partial order ≺ one has
J = in(I). In fact ASL’s can also be defined via Groebner degenerations. By
this view-point, if m is the maximal homogeneous ideal of K[H ], from the recent
result of [1] the Hilbert functions of the local cohomology modules Hi

m
(A) and of

Hi
m

(AD) agree for all i. In other words, the Hilbert function of Hi
m

(A) depends
only on the poset H (and not on the straightening law).
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De Concini, Eisenbud and Procesi in [2, 3] expressed the feeling that many
ASL’s over a field of characteristic 0 should have rational singularities. In an
unpublished work, Buchweitz confirmed their feeling as follows:

Theorem 2 (Buchweitz). If K has characteristic 0, A has rational singularities
in its punctured spectrum, and AD is Cohen-Macaulay (CM), then A has rational
singularities.

We can prove the same result without the CM assumption on AD, that so
becomes a consequence of A having rational singularities in its punctured spec-
trum. Our theorem works also in positive characteristic, by replacing rational with
F -rational. In fact, our argument shows:

Theorem 3. Let I be a homogeneous ideal of a positively graded polynomial ring
S over K such that in(I) is square-free for a degrevlex monomial order.

(1) If K has characteristic 0 and S/I has rational singularities in its punctured
spectrum, then S/I has rational singularities.

(2) If K has positive characteristic and S/I is F -rational in its punctured
spectrum, then S/I is F -rational.

To prove Theorem 3 one has to show that under the assumptions S/I is CM
with negative a-invariant. This suggested us the following:

Conjecture 4. Let I be a homogeneous ideal of a standard graded polynomial ring
S over K such that in(I) is square-free for some monomial order. If I defines a
nonsingular projective variety, then S/I is CM with negative a-invariant.

Theorem 3 solves positively the conjecture for degrevlex monomial orders; oth-
erwise, Conjecture 4 is open also for curves, for which it says: Let I be a homo-
geneous ideal of a standard graded polynomial ring S over K such that in(I) is
square-free for some monomial order. If I defines a nonsingular projective curve
C, then C has genus 0.

Given a simplicial complex ∆ on n vertices, we say that ∆ is Groebner-smooth-
able over K if there exists a homogeneous ideal I of a standard graded polynomial
ring S in n variables over K such that in(I) = I∆ for some monomial order (where
I∆ ⊂ S is the Stanley-Reisner ideal of ∆) and I defines a nonsingular projective
variety. By exploiting [1], Conjecture 4 is equivalent to:

Conjecture 5. If a simplicial complex is Groebner-smoothable over K then it is
Cohen-Macaulay and acyclic over K.

In this direction we can show:

Proposition 6. A Groebner-smoothable graph must have leaves.

References
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A Fedder-type criterion over Gorenstein rings and symbolic powers

Elóısa Grifo

(joint work with Linquan Ma and Karl Schwede)

Given a radical ideal I in a regular ring R, the n-th symbolic power of I is given
by

I(n) =
⋂

P∈Min(I)

InRP ∩R.

While symbolic powers have good geometric properties, they can be very difficult
to compute; on the other hand, ordinary powers are easily computable, but do
not enjoy good geometric properties. In general, In 6= I(n). The Containment
Problem tries to compare In and I(n) by asking when I(a) ⊆ Ib.

Theorem 1 ([3, 9, 10]). Let R be a regular ring and I be a radical ideal of big
height h. For all n > 1, I(hn) ⊆ In.

The big height of I is the maximum height of an associated prime. In characteristic
p, the result above can be improved; one has I(hq−h+1) ⊆ I [q] ⊆ Iq for all q = pe.

Conjecture 2 (Harbourne, 2008). Let R be a regular ring and I be a radical ideal
of big height h. Then for all n > 1, I(hn−h+1) ⊆ In.

Conjecture 2 holds for nice classes such as ideals defining general points in P2 [7]
and P3 [1]. In characteristic p, we have the following result:

Theorem 3 (Grifo–Huneke [6]). Let R be a regular ring of characteristic p > 0
and I be a radical ideal of big height h.

a) If R/I is F-pure, then I(hn−h+1) ⊆ In for all n > 1.
b) If R/I is strongly F-regular and h > 2, then h can be replaced by h−1, meaning

I(h(n−1)+1) ⊆ In for all n > 1. In particular, when h = 2 we obtain I(n) = In

for all n > 1.

When S is a ring of characteristic p, we write F e
∗ (S) to denote S with the the

S-module given by the action of the e-th iteration F e of the Frobenius map. An
F-finite ring S is F-pure (≡ F-split) if the S-module map F e : S −→ F e

∗ (S) splits.
Our goal is to improve this result to a non-regular setting. The F-purity condi-

tion is used via Fedder’s Criterion, which has a counterpart for strong F-regularity
in Glassbrenner’s Criterion [5].

Theorem 4 (Fedder [4]). Let (R,m) be a regular local ring of characteristic p > 0.
Given an ideal I in R, R/I is F-pure if and only if for all q = pe ≫ 0,

(
I [q] : I

)
* m

[q].

The main ingredients in the proof of Fedder’s criterion are the following:

• If R is regular, F e
∗ (R) is free, and thus every φ ∈ HomR/I(F e

∗ (R/I), R/I)

lifts to a map φ̃ ∈ HomR(F e
∗ (R), R).
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• If R is Gorenstein, HomR(F e
∗ (R), R) is cyclic, generated by Φe, so that

every element is of the form Φe(F
e
∗ r · −) for some r ∈ R. The elements

that induce maps on R/I are precisely those in (I [q] : I).

We will use the following generalized version of Fedder’s Criterion:

Theorem 5 (G–Ma–Schwede). Let R be an F-finite Gorenstein ring and Q be an
ideal of finite projective dimension.

(1) Every φ ∈ HomR/Q(F e
∗ (R/Q), R/Q) lifts to a map φ̃ ∈ HomR(F e

∗ (R), R).
(2) If R/Q is F-pure, then Φe (F e

∗ (Ie(Q) : Q)) = R for all e.

With this criterion, we can now obtain a generalization of Theorem 3:

Theorem 6 (Grifo–Ma–Schwede). Let R be a Gorenstein F-finite ring and I be
a radical ideal of big height h. Suppose that I has finite projective dimension.

a) If R/I is F-pure, then I(hn−h+1) ⊆ In for all n > 1.
b) If R/I is strongly F-regular and h > 2, then h can be replaced by h−1, meaning

I(h(n−1)+1) ⊆ In for all n > 1. In particular, when h = 2 we obtain I(n) = In

for all n > 1.
If the projective dimension of I is infinite, take J to be the Jacobian ideal.

c) If R/I is F-pure, then JnI(hn−h+1) ⊆ In for all n > 1.
d) If R/I is strongly F-regular and h > 2, JnI(h(n−1)+1) ⊆ In for all n > 1. In

particular, when h = 2 we obtain JnI(n) = In for all n > 1.

The statements in a) and b) can fail for ideals of infinite projective dimension.

Example 7. Consider the ideal Q = (x, z) in R = k[x, y, z]/(xy − za), where
a > 2. This is a height 1 prime of infinite projective dimension, and R/Q is
strongly F-regular. Statement b) would say Q(n) = Qn for all n, but this is false.
On the other hand, d) guarantees that JnQ(n) ⊆ Qn. In fact, one can show that
the best possible value of α such that J⌈αn⌉Q(n) ⊆ Qn is α = a−1

a .
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Some extensions of the Ananyan–Hochster principle

Steven V. Sam

(joint work with Daniel Erman, Andrew Snowden)

In response to a question posed by Stillman, Ananyan and Hochster proved the
following theorem [1]:

Theorem 1 (Ananyan–Hochster). Let d1, . . . , dr be positive integers. There exists
a bound N(d1, . . . , dr) such that any ideal in a polynomial ring over a field gen-
erated by homogeneous polynomials f1, . . . , fr of degrees d1, . . . , dr has projective
dimension at most N(d1, . . . , dr).

The main content is that the bound N(d1, . . . , dr) does not depend on the
number of variables in the polynomial ring. The main idea behind the proof is
that once the degrees d1, . . . , dr are fixed, polynomials behave as if they are defined
in a bounded number of variables.

More precisely, define the strength of a homogeneous polynomial f to be
the minimal k such that there is an expression f = g1h1 + · · · + gkhk where
deg(gi) < deg(f) and deg(hi) < deg(f). The collective strength of a vector
space of polynomials is the minimum strength of a nonzero homogeneous polyno-
mial contained in it. Using this, one gets the existence of “small subalgebras”:

Theorem 2 (Ananyan–Hochster). Let d1, . . . , dr be positive integers. There ex-
ists a bound M(d1, . . . , dr) such that any sequence of homogeneous polynomials
f1, . . . , fr of degrees d1, . . . , dr is contained in a subring generated by a regular
sequence of length at most M(d1, . . . , dr).

This immediately implies the first theorem: Hilbert syzygy theorem implies that
the projective dimension of (f1, . . . , fr) over the subring is at most M(d1, . . . , dr);
by flatness, the projective dimension can be computed either over the subring or
the original ring.

We extend this idea to two other settings. The first concerns Hartshorne’s
conjecture, which states that any smooth subvariety X of Pn of codimension
< n/3 is a complete intersection. One can show using the ideas above that if X
is equidimensional, then there exists a bound depending only on its codimension
and degree such that if its singular locus has codimension greater than this bound,
then X must be a complete intersection. The outline is as follows:

• When the codimension and degree are fixed, there is a finite list of possi-
bilities (d1, . . . , dr) such that the ideal of X is generated by homogeneous
polynomials of these degrees [2].
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• Fixing the degrees (d1, . . . , dr) now, an elementary argument with Jaco-
bian matrices shows that forcing the singular locus to have high codimen-
sion forces the strength of the polynomials to be high as well.
• Rearranging the generators if necessary, we may assume that the strength

is weakly decreasing and that the strength of fk is the collective strength of
the span of f1, . . . , fk. If c is codimension of X , this implies that f1, . . . , fc
generates a regular sequence if the strength is sufficiently large.
• If the locus cut out by f1, . . . , fc has multiple irreducible components,

then its singular locus has codimension at most 2c since the intersection
of two components gives singular points. Hence, if we assume that the
codimension is larger than 2c, the ideal generated by f1, . . . , fc must be
prime. However, if k > c, fc+1 is a nonzerodivisor on this complete inter-
section which contradicts that X has codimension exactly c. Hence X is
a complete intersection defined by f1, . . . , fc.

An explicit bound can be found in [4].
Our second extension concerns the cohomology tables of coherent sheaves E on

projective space. The bound on projective dimension in the Ananyan–Hochster
theorem in fact implies that once the initial degrees are fixed, there are only a
finite set of possibilities for the graded Betti numbers of the ideal. Cohomology
tables are similar to graded Betti tables in many ways, and record the numbers
dim Hi(E(j)). More precisely, these dimensions are the graded Betti numbers
of the associated Tate resolution of E (up to a re-indexing), which is a doubly-
infinite minimal complex over an exterior algebra that complete encodes the data
of E . Define the kth column of a cohomology table to be the ranks of the graded
components of the kth term in this complex. We prove the following analogue of
finiteness of Betti tables in the polynomial ring case:

Theorem 3. Fix the values of the kth and (k + 1)st columns for some k. Then
there are only finitely many ways to complete this data to the cohomology table of
a coherent sheaf on some projective space.

Again, the main content is that this finiteness does not depend on a fixed pro-
jective space. This follows from an analogue of the existence of small subalgebras.
More precisely:

Theorem 4. Fix the values of the kth and (k + 1)st columns for some k. There
exist bounds k0 and n0 such that, for any coherent sheaf E on Pn (for any n)
whose cohomology table has these columns, we have:

• The regularity of E is at most k0, and
• E is the pushforward along some linear map Pn0 → Pn.

The main input is a recent noetherianity result of Draisma [3] for polynomial
functors (we just need the case of finite sums of exterior powers).
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Contact loci and Hironaka’s order

Ana Bravo

(joint work with Santiago Encinas, Beatriz Pascual-Escudero)

Constructive resolution of singularities. Hironaka’s Theorem on resolution
of singularities is existencial (see [8]). A constructive resolution of singularities of
an algebraic variety X consists on giving a procedure to select a sequence of blow
ups at regular centers:

(1) X = X0 ← X1 ← . . .← Xn

so that X ← Xn is a resolution of singularities of X . Algorithms of resolution of
singularities for varieties in characteristic zero were first given in [1], [15] and [14].

The sellection of the centers in sequence (1) is made via the so called resolution
functions. These are upper semicontinuous funtions fXi

: Xi → (Λ,≥) whose
maximum value Max(fXi

) is achieved at a regular (closed) subscheme which defines
the center of the blow up Xi → Xi+1. The resolution functions are defined so that,
first, they are constant if and only if the variety is regular and, second, so that at
each step in (1), Max(fXi

) > Max(fXi+1
).

For a singular point ξ ∈ X , fX(ξ) is ussually defined as a sequence of rational
numbers called resolution invariants. The first coordinates of fX(ξ) can be defined
in terms of the Hilbert Samuel function (in the spirit of [9]) or of the multiplicity
(as shown in [16]). In the latter case, the next piece of (relevant) information is

what we call Hironaka’s order function in dimension d, ord
(d)
X (ξ), where d is the

dimension of X .
The definition of Hironaka’s order function at a singular point requires either

the use of local (étale) embeddings of X into smooth varieties, or the construction
of suitable finite projections to smooth varieties (again in an étale neighborhood
of a singular point of X). It is quite natural to ask whether this function can be
defined in an intrinsic way. This has motivated our interest in the study of arc
spaces.

Arc spaces and Nash multiplicity sequences. The work of J. Nash on the
theory of arc spaces was in part motivated by Hironaka’s Theorem (cf. [12]). A
resolution of singularities of an algebraic variety X may not be unique; one may
wonder how much information about the process of resolution can be read from
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the space of arcs of X , L(X). Arcs and singularities have been widely studied in
a large number of paper by several authors.

As indicated above, we are interested in finding connections between the arc
space of a singular algebraic variety and its resolution invariants. In [2] and [3],

jointly with S. Encinas and B. Pascual-Escudero, we have found that ord
(d)
X can

be read from the Nash multiplicity sequences, introduced by M. Lejeune-Jalabert
in [11] and generalized afterwards by M. Hickel (see [7]). See also [13].

Suppose X is a singular variety of maximum multiplicity m > 1. Then, given a
point ξ ∈ Sing(X) of multiplicity m, and an arc ϕ with center ξ, the sequence of
Nash multiplicities of ϕ is a non-incressing sequence of integers,

(2) m = m0 ≥ m1 ≥ m2 ≥ . . .

where m0 = m is the multiplicity at the point ξ, and the rest of the terms in the
sequence can be interpreted as a refinement of the ordinary multiplicity at ξ along
the arc ϕ.

Currently we have been interested in trying to understand the set of arcs cen-

tered at ξ whose Nash multiplicity sequences determine ord
(d)
X (ξ). In [4] we explore

this question by considering the contact loci with a singular closed point ξ in a
variety X , say Cont≥n(mξ) (this refers to the set of arcs that have order at least
n at the maximal ideal mξ of ξ for n ∈ N; see [6], [5] and [10] where the struc-
ture of these sets is studied). Among other problems, we study the fat irreducible

components of Cont≥n(mξ) and find conditions under which the Nash multiplicity

sequences of their generic points determine ord
(d)
X (ξ).
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Asymptotic properties of differential operators around a singularity

Holger Brenner

(joint work with Jack Jeffries and Luis Núñez Betancourt)

For a local algebra R over a field, we study the decomposition of the module of
principal parts. A free summand of the nth module of principal parts is essentially
the same as a differential operator E of order≤ n with the property that the partial
differential equation E(f) = 1 has a solution f ∈ R. Such differential operators
are called unitary operators. The asymptotic behavior of the seize of the free part
gives a measure for the singularity represented by R, which we call differential
signature.

Motivation for this comes from the F -signature, which is an invariant in positive
characteristic defined by looking at the asymptotic decomposition of the Frobe-
nius. The study of the decomposition of the ring R considered as an R-module
via powers of the Frobenius goes back to Kunz, with important contributions by
Smith and van den Bergh, Seibert, Watanabe and Yoshida. The notion of F -
signature was introduced by Huneke-Leuschke, its existence was proved by Tucker
and the relation to strong F -regularity was proved by Aberbach-Leuschke. A se-
rious problem in this theory is that in a relative arithmetic situation it is not
possible to compare the Frobenius in different characteristics dierectly and there
is no replacement for it in characteristic zero.

The differential signature is an attempt to give a characteristic-free variant for
the F -signature. It does not give always the same numbers, but the positivity holds
for the same class of singularities (at least if we assume F -pure). We show that
the positivity of the differential signature implies for a standard-graded isolated
Gorenstein singularity that the a-invariant is negative and that it has rational
singularities. We compute this invariant for invariant rings, toric monoid rings,
determinantal rings (in this case the F -signature is not known). We also compute
this invariant for quadrics, where we use an algorithmic approach for the module
of principal part and methods from vector bundle theory.
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Witt differentials and the h-topology

Veronika Ertl

(joint work with Lance E. Miller)

The idea to use differential forms to obtain numerical invariants of algebraic vari-
eties dates back to Picard and Lefschetz. Meanwhile sheaves of differential forms
have become an important tool to study local and global properties of algebraic
varieties and schemes. However it is well-known that they are not well behaved in
the singular case even in characteristic 0. To get around the problems which occur
here, several competing generalizations of differential forms and of the de Rham
complex have been proposed.

In [3] Huber and Jörder introduce a new player using Voevodsky’s h-topology
[6]. It turns out that in characteristic 0 the h-sheafification of the sheaves Ωn,
n ≥ 0, of differential forms provides a conceptual extension to singular varieties.
The h-topology is useful in this context because it contains not only modifications,
but also alterations, so in some sense resolutions of singularities are built in.

In characteristic p > 0 the h-topology encounters a number of challenges. The
mein reason is that it contains inseparable morphisms. One consequence is for
example that the basic Kähler differentials become zero under h-sheafification.
However, it is possible to circumvent these difficulties to some extent with more
subtle sheaf theoretic methods by Huber, Kebekus, and Kelly, [4].

An alternative to address these issues is to change the coefficient sheaves and so
to speak lift them to characteristic 0 and to consider p-adic cohomolgy theories in-
stead. If a variety lifts only locally, one often turns towards crystalline cohomology
or one of its variants. In [5] Illusie introduced a complex of étale sheaves, called
the de Rham–Witt complex, which computes crystalline cohomology on smooth
schemes.

It is reasonable to expect that on local lifts, one can take advantage of the
properties of the h-topology that allowed Huber and Jörder to develop their theory.
The hope is to extend the program described in [3] and [4] to the de Rham–Witt
complex in order to obtain an equally conceptual approach to the study of singular
varieties in characteristic p.

To lay the base for this, we are especially interested in descent results for (ra-
tional) Witt differentials. An optimal result would be a cohomological descent
statement analogous to [3, Cor. 6.5]. If one assumes resolution of singularities in
positive characteristic we obtain indeed the following statement.

Theorem 1 (Ertl–Miller). Let k be a perfect field of characteristic p > 0 and let
X be a regular scheme over k. Then one has for all i, n ≥ 0 isomorphisms

Hi
Zar(X,WΩn

Q) ∼= Hi
h(X,WΩn

Q,h).

Without the assumption of resolution of singularities such a statement is only
known for Serre’s Witt vector cohomology [1]. For Witt differential forms of arbi-
trary degree full cohomological descent without resolutions of singularities remains
an unsurmountable challenge.
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However, using techniques from [4] we were able to obtain the following descent
result for Witt differentials of any degree without resolution of singularities.

Proposition 2 (Ertl–Miller). Let k be a perfect field of positive characteristic p.
For any regular scheme X over k, the change of topology map induces isomor-
phisms

WΩn
Q(X) ∼= WΩn

Q,h(X)

for all n ≥ 0.

The proof relies on a construction introduced in [4] which allows one to extend
a presheaf F on regular schemes to a presheaf Fdvr on arbitrary schemes.

An important insight by Huber, Kebekus and Kelly is that this construction
extends sheaves for topologies coarser than the étale topology. More precisely, if
F is for example an étale sheaf on regular schemes, Fdvr is an eh-sheaf on Sch(k).
However, to account for the finite morphisms in the h-topology we were lead to
show a similar result for the qfh-topology. Concretely, this means, that in order to
show that Fdvr is a qfh-sheaf, it suffices to show that F is a qfh-sheaf on a certain
smaller category. In prticular, we obtain the following.

Proposition 3 (Ertl–Miller). For a perfect field k of characteristic p > 0, the
extension WΩn

Q,dvr is a qfh-sheaf on Sch(k).

The proof of this explicitly uses properties of Witt differentials, notably the ex-
istence of a Frobenius and a Verschiebung map. As eh- and qfh-topology generate
the h-topology, this result implies that WΩn

Q,dvr is an h-sheaf on Sch(k).
Another ingredient for our main theorem is the statement that if Fdvr is an

h-sheaf, then it has no topological torsion. In particular this is true for WΩn
Q,dvr.

As a consequence the natural map WΩn
Q,h(X) → WΩn

Q,dvr(X) is injective. Our
main result then follows by a diagram chase.

We can draw several expected consequences from the h-descent. This includes
analogues for the rational Witt differentials of results from [3] on Kähler differen-
tials.
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Lech’s inequality and the Stückrad–Vogel conjecture

Linquan Ma

(joint work with Patricia Klein, Pham Hung Quy, Ilya Smirnov, Yongwei Yao)

We start by reinterpreting a classical inequality of Lech [4]:

Theorem 1 (Lech). Let (R,m) be a Noetherian local ring of dimension d. Then

inf√
I=m

{
l(R/I)

e(I)
} ≥

1

d!e(R)
.

It is thus quite natural to ask whether sup√
I=m
{ l(R/I)

e(I) } is finite. If we let

R = k[[x, y, z]]/(xy, xz) and I = (xn, y, z), then it is easy to see that l(R/I) = n
while e(I) = 1. Thus the question has a negative answer in general. However, we
notice that R is not equidimensional. Stückrad and Vogel [5] conjectured that this
is the only obstruction for the question to have a negative answer:

Conjecture 2 (Stückrad-Vogel). Let (R,m) be a Noetherian local ring. Then

sup√
I=m

{
l(R/I)

e(I)
} <∞

if and only if R̂ is equidimensional.

In [5] they proved the “only if” direction of the conjecture. The main result in
[3] settled the “if” direction of the conjecture.

Theorem 3 (Klein-Ma-Pham-Smirnov-Yao). Stückrad-Vogel’s conjecture holds.

Before we discuss the proof we point out two applications. Fix a Noetherian

local ring R such that R̂ is equidimensional. By combing Lech’s inequality and

the finiteness of Stückrad-Vogel invariant, one can show that the set { l(R.I)

l(R/I)
}√I=m

is bounded above. Moreover, we can show that for every ǫ > 0 there exists t0
such that for all t > t0 and all system of parameters x1, . . . , xd of R, the ratio
l(Hi(x

t
1,...,x

t
n;R))

l(H0(xt
1
,...,xt

n;R))
is < ǫ for all i > 0. The key point is that t0 is independent of the

system of parameters x1, . . . , xd (so this is a strong uniform convergence result).
We refer to [3] for more details.

We briefly explain the proof of the Stückrad-Vogel conjecture. Our main tool
is to use Vasconcelos’ homological degree [6] (see also [1]):

Definition 4 (Vasconcelos). Let (R,m) be a complete local ring and let I be an
m-primary ideal of R. Then for every finitely generated R-module M we define

hdeg(I,M) = e(I,M) +
dimM−1∑

i=0

(
dimM − 1

i

)
hdeg(I, (Hi

m
(M))∨).

Note that this is well defined recursively, because dim(Hi
m

(M))∨ < dimM for
every 0 ≤ i ≤ dimM − 1. This is one typical example of an “extended degree”
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(see [6, 1]). In particular, it satisfies the property that hdeg(I, R) ≥ l(R/I). We
make an elementary but important observation that

hdeg(I, R) =
∑

P∈Λ

e(I, R/P )

where Λ is a finite set of prime ideals of R depending only on R, but not on I.
In order to prove Stückrad-Vogel’s conjecture, we can assume that R is a com-

plete local domain by [5]. Using the properties of homological degree discussed
above, it is enough to show that for every fixed prime ideal P , the set

{
e(I, R/P )

e(I)
}√I=m

is bounded above. Now we pick a nonzero element x ∈ P and pick a minimal
prime Q of x contained in P (these choices depend only on R and P but not on
I), and we write

e(I, R/P )

e(I)
=

e(I, R/P )

e(I, R/Q)
·
e(I, R/Q)

e(I, R/(x))
·
e(I, R/(x))

e(I)
.

The first factor is bounded above independent of I by induction on dimR, the
second one is bounded by 1 by the associativity formula for multiplicities, and
finally the last factor is bounded above independent of I by the uniform Artin-Rees
number of (x) ⊆ R, this follows from a simple computation and using Huneke’s
uniform Artin-Rees lemma [2]. Putting all these together we complete the proof
of Stückrad-Vogel’s conjecture.
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On the Bernstein-Gel’fand-Gel’fand correspondence for absolutely
Koszul Gorenstein algebras

Vincent Gélinas

1. History

Let k be a field, S = k[x0, . . . , xn] a polynomial algebra and Λ =
∧∗

(y0, . . . , yn)
be the exterior algebra on dual variables. The classical BGG correspondence
states:

Theorem (Bernstein-Gel’fand-Gel’fand ’78). There is an equivalence of triangu-
lated equivalence

F : grmodΛ ∼= Db(cohPn).

The algebras S and Λ are Koszul dual, so that Ext∗S(k, k) ∼= Λ and Ext∗Λ(k, k) ∼= S.
More generally let R be a standard graded, two-sided Noetherian, Gorenstein k-
algebra (meaning inj.dimRR <∞ and inj.dimRR < ∞ if R is non-commutative),
and let grmodR stand for finitely presented graded R-modules. If we let

MCMgr(R) := {M ∈ grmodR | ExtiR(M,R) = 0 for i > 0}

be the category of finitely presented graded MCM modules, and define

MCMgr(R) := MCMgr(R)/{projective modules}

qgrR := grmodR/{finite-length modules}

then the above becomes F : MCMgr(Λ) ∼= Db(qgrS). More generally:

Theorem (Buchweitz ’87, [1]). Let R,E be Koszul dual, two-sided Noetherian
Gorenstein algebras. Then there are equivalences

F1 : MCMgr(R) ∼= Db(qgrE)

F2 : MCMgr(E) ∼= Db(qgrR).

When R is commutative, this applies to complete intersections of quadrics R =
S/(q), with q = (q1, . . . , qc), in which case the Koszul dual is a graded Clifford al-
gebra over the algebra of Gulliksen operators E = Ext∗S/(q)(k, k) = Clk[χ1,...,χc](q).
Conversely, having a Noetherian Yoneda algebra characterises complete intersec-
tions by Bøgvad-Halperin, and so the proof does not reach beyond this case.

2. Beyond complete intersections of quadrics

When R is either a complete intersection or its Koszul dual, one first corrects the
statement to a contravariant equivalence by precomposing with a duality D

F̃ = F ◦D : MCMgr(R)op ∼= Db(qgrE)

so that F̃−1(qgrE) ∼= Hlin(R) ⊆ MCMgr(R) consists of eventually linear modules:

Hlin(R) := {M ∈MCMgr(R) | TorRi (M,k)i+j = 0 for j 6= 0 whenever i≫ 0}.

In general Hlin(R) ⊆ MCMgr(R) need not be the heart of a bounded t-structure.
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In [4], Herzog-Iyengar introduced the class of absolutely Koszul algebras in links
with the rationality problem for Poincaré series of modules. These are the algebras
over which minimal free resolutions are eventually dominated by their linear parts,
in the sense of Eisenbud-Fløystad-Schreyer. The following is shown in [3]:

Theorem A. Let R be Koszul Gorenstein. ThenHlin(R) is the heart of a bounded
t-structure if and only if R is absolutely Koszul. When this holds, there is an
equivalence of triangulated categories

Db(Hlin(R))
∼=
−→ MCMgr(R).

Theorem B. Let R be absolutely Koszul Gorenstein and E = Ext∗R(k, k). Then

E is graded coherent, and there is an equivalence Hlin(R)op
∼=
−→ qgrE.

Theorem C (BGG Correspondence). Let R be absolutely Koszul Gorenstein.
Then there is an equivalence of triangulated categories

MCMgr(R)op ∼= Db(qgrE)

restricting to Hlin(R)op ∼= qgrE.

Theorem (Serre Duality). Let R be absolutely Koszul Gorenstein with isolated
singularities, and with canonical module ωR

∼= R(a). Let τω(−) = Ωa(−)(a) and
νR = dimR− 1 + a. Then for any M,N ∈ Hlin(R), we have natural isomorphisms

ExtiHlin(R)(M, τwN) ∼= ExtνR−i
Hlin(R)

(N,M)∗

and so gldimHlin(R) = νR <∞. Moreover, when νR ≤ 1 then any indecomposable
MCM modules is in Hlin(R) up to degree shift.

For R Koszul Gorenstein, R is absolutely Koszul if:

• R is generalised Golod (e.g. R is the image of a complete intersection under
a Golod map, R has embedding codimension ≤ 4, or whenever νR ≤ 1);
• There is a map ϕ : R→ S of finite flat dimension to S absolutely Koszul;
• R is the homogeneous coordinate ring (over k = k) of an elliptic normal

curve E ⊆ Pd−1 of degree d ≥ 4, a del Pezzo surface S ⊆ Pd of degree
d ≥ 4, or (in char k = 0) a canonical curve C ⊆ Pg−1 satisfying Petri’s
Theorem, a K3 surface in an appropriate embedding, or many others.

The last two points are due to Conca-Iyengar-Nguyen-Römer [2]. The second
provides the following Hyperplane Section Principle:

Theorem ([2]). Let X ⊆ Pn be projective and X∩H a general hyperplane section.
If the homogeneous coordinate ring RX∩H is absolutely Koszul Gorenstein, then
so is RX . In this case, we have νRX∩H

= νRX
.
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Noncommutative resolutions and global dimension of rings of
differential operators of toric rings

Eleonore Faber

(joint work with Greg Muller, Karen E. Smith)

Let R be the coordinate ring of an affine toric variety over a field k of arbitrary
characteristic. The module R1/q of q-th roots of R, where q is a positive integer,
is then the direct sum of so-called conic modules. In this talk we are interested
in homological properties of the endomorphism ring EndR(R1/q), in particular its
global dimension. If k is a perfect field of prime characteristic p and q = pe,
then the ring of differential operators Dk(R) is a direct limit of EndR(R1/q) and
this description allows us to make statements about the global dimension of the
non-noetherian ring Dk(R).

1. A noncommutative desingularization of a commutative ring R is a certain non-
commutative R-algebra of finite global dimension which can in turn be viewed as a
potential analogue of a resolution of singularities of Spec(R). Van den Bergh intro-
duced noncommutative crepant resolutions (=NCCRs) to interpret Bridgeland’s
solution to the conjecture by Bondal and Orlov on the derived invariance of flops in
2004. A noncommutative resolution of singularities (NCR) of a commutative noe-
therian ring R (or the scheme Spec(R)) is defined to be an associative R-algebra
A = EndRM , where M is a finitely generated R-module of full support and A
has finite global dimension. This notion was introduced 2015 by Dao–Iyama–
Takahashi–Vial. For A to be crepant, that is, a NCCR, one needs additionally
that M is torsion-free and A is a non-singular order.

2. Let now R be the coordinate ring of an affine normal toric variety, that is,
R = k[C∩M ], where M ∼= Zd is a lattice and C is assumed to be a full dimensional
rational polyhedral cone in the vector space MR = M⊗R. Let R1/q = Span{xm/q :
m
q ∈ C ∩ q−1M}. The main result of [FMS18] is the following

Theorem 3. The global dimension of EndR(R1/q), for q large enough, is equal to
the Krull-dimension of R. In particular, EndR(R1/q) is a NCR of R.

The finiteness of the global dimension also follows from Špenko and Van den Bergh
[ŠVdB17b, 1.3.6], who proved with a much more general machinery the existence
of NCRs for reductive quotient singularities, albeit with less explicit bounds on
the global dimension.

4. Our proof of Theorem 3 is combinatorial and constructs minimal projective
resolutions of the M -graded simples of an endomorphism ring EndR(A), where A
is a complete sum of conic modules (definitions see below).
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The key observation, which dates back to Bruns–Gubeladze [BG03], is that R1/q is
a direct sum of conic modules A∆, which can be described as follows: Let v ∈MR,
then the corresponding conic module is Av := Span{xm : m ∈ M ∩ (C + v)}.
Conic modules are maximal Cohen–Macaulay R-modules of rank 1 and can be
parametrized by chambers of constancy ∆ := {w ∈ MR : Av = Aw} in MR. Each
chamber of constancy ∆ is a disjoint union of open polyhedral cells. Together,
ranging over all chambers of constancy, these cells define a CW decomposition of
MR.
Since there are only finitely many isomorphism classes of conic modules, see
[Bru05], we may index them by chambers of constancy (that is, Av = A∆ for
v ∈ ∆). For each chamber of constancy ∆, we use the combinatorics of the faces
of ∆ to construct a chain complex K•

∆ of conic modules. We prove an Acyclicity
Lemma for these conic complexes: the complex HomR(A∆′ ,K•

∆) is either acyclic
or a resolution of the ground field k, depending on whether or not A∆

∼= A∆′ .
These results are then used as follows: we call a direct sum A of conic modules
complete if every conic R-module is isomorphic to a direct summand of A. An
example of a complete conic module is R1/q for q large enough, see [Bru05] and
also cf. [SVdB97]. The Acyclicity Lemma implies that the complex HomR(A,K•

∆)
is a finite projective resolution of a simple EndR(A)-module. Using standard ar-
guments on global dimension of noetherian rings, we show that every finitely gen-
erated EndR(A)-module has finite global dimension, and thus gl. dim(EndR(A)) is
also finite.

5. The combinatorial structure of the conic modules allows us to show

Corollary 6. The ring EndR(A) is a NCCR if and only if Spec(R) is a simplicial
toric variety.

Finally, if k is perfect of prime characteristic p, then Dk(R) =
⋃

e∈N EndRpe (R).

The Frobenius map F e : R −→ Rpe

induces an isomorphism
EndRpe (R) ∼= EndR(R1/pe

). Combining this fact with Theorem 3 and a result
about global dimension of direct limits [Ber58], if follows that in this case

gl. dim(Dk(R)) ≤ lim
e∈N

(EndRpe (R)) + 1 = dim(R) + 1 .

It is not clear whether this bound is sharp.

7. Further research questions: in which case is there some (non-complete) direct
sum B of conic modules such that EndR(B) is a NC(C)R?
More generally one can ask what conditions on a commutative ring R ensure that
Dk(R) has finite global dimension. And also: What conditions on R imply that
the global dimension of EndR(R1/q), q ≫ 0, is finite?
In prime characteristic, a natural candidate for gl. dim(Dk(R)) < ∞ seem to be
rings R of finite F -representation type, a class of rings including toric rings.
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Characteristic polyhedra without completion

Bernd Schober

(joint work with Vincent Cossart)

Let R be a regular local ring, J ⊂ R be a non-zero ideal and (u) = (u1, . . . , ue)
be a R-regular sequence. To this situation, Hironaka introduced the characteristic
polyhedron ∆(J ;u) [9], which is a useful tool in resolution of singularities providing
a convex geometric viewpoint on X = Spec(R/J). For example, it appears in
the resolution of excellent surfaces ([10], [3], [8]) and of (arithmetic) threefolds
([4], [5]), or in any dimension over fields of characteristic zero ([12]), or in the
characterization of quasi-ordinary singularities via overweight deformations ([11]).

For simplicity, we restrict our attention to principal ideals J = 〈f〉, for f ∈ R
with f /∈ 〈u〉. (We refer to [7] for the case of any ideals). Let (y) = (y1, . . . , yr) be
a system of elements in R extending (u) to a regular system of parameters (r.s.p.)
for R. We fix a finite expansion of f in R,

f =
∑

(A,B)∈Ze
≥0

×Zr
≥0

CA,Bu
AyB, with CA,B ∈ R× ∪ {0}

(Here, we abbreviate uA = uA1

1 · · ·u
Ae
e and yB = yB1

1 · · · y
Br
r ). We define

m := m(f) := min{|B| = B1 + . . . + Br | C0,B 6= 0}

and the symbol ∆(f ;u; y) denotes the convex hull of the following subset of Re
≥0,

{
A

m− |B|
+ Re

≥0 | CA,B 6= 0 and |B| < m

}
.

Using this, we can give an ad hoc definition of the characteristic polyhedron as

∆(f ;u) :=
⋂

(ŷ) : (u,ŷ) is r.s.p. of R̂

∆(f ;u; ŷ) ⊂ Re
≥0.



Singularities and Homological Aspects of Commutative Algebra 435

Let in0(f) :=
∑

B:|B|=m

CA,BY
B ∈ k[Y ], where CA,B denotes the image of CA,B in

the residue field k := R/〈u, y〉. An important hypothesis when explicitly comput-
ing ∆(f ;u) is:

There exists no proper k-submodule T ( k[Y1, . . . , Yr]1 such that
in0(f) ∈ k[T ].

(∗)

Here, we consider k[Y ] as a standard graded ring and k[Y ]1 is the part homoge-
neous of degree 1. As a consequence of [9] Theorems (3.17) and (4.8) one gets

Theorem 1 (Hironaka). Suppose (∗) holds. There exist ϕ̂1, . . . , ϕ̂r ∈ 〈u〉R̂ such
that, for ŷj := yj + ϕ̂j , 1 ≤ j ≤ r, we have ∆(f ;u; ŷ) = ∆(f ;u).

The main result addresses the question when it is possible to avoid passing to
the completion.

Theorem 2 (Cossart-Piltant, Cossart-S.). Suppose (∗) holds, R is excellent, and
one of the following condition holds:

(1) char(k) ≥ dim(X)/2 + 1.
(2) dim(Rid(in0(f))) = dim(Dir(in0(f))).
(3) R = S[y]〈u,y〉, for S an excellent regular local ring, and f ∈ S[y] with

degy(f) = m(f).

Then there exit (z) = (z1, . . . , zr) in R such that (u, z) is a r.s.p. for R, 〈z〉R̂ = 〈ŷ〉,
and ∆(f ;u; z) = ∆(f ;u).

Here, Rid(in0(f)) (resp. Dir(in0(f))) is the ridge (resp. directrix) of the cone
defined by the homogeneous polynomial in0(f), which are objects encoding in-
formation on the singularity and its behavior under blowing ups, introduced and
studied by Hironaka and Giraud. We refer to [1] for more details.

In [6], Cossart and Piltant proved the result for principal ideals with r = 1
(which implies (2)), while [7] is neither restricted to principal ideals nor to r = 1.

Strategy for the proof. First, we reduce to the case of an empty characteristic
polyhedron. Suppose ∆(f ;u) 6= ∅. Then, there are finitely many linear forms
defining half spaces in Re

≥0 whose intersection is ∆(f ;u). Fixing one of these

linear forms, say L, the number δL(f ;u; y) := min{L(v) | v ∈ ∆(f ;u; y)} measures
the difference of ∆(f ;u; y) and ∆(f ;u) with respect to L. By passing to the initial
form with respect to L, say inL(f), we obtain an element in the graded ring grL(R)
whose characteristic polyhedron is empty if the previous difference is non-trivial.
If we can find suitable coordinates in grL(R), we can choose lifts (y(1)) in R such
that δL(f ;u; y(1)) > δL(f ;u; y) and one can show that the difference to ∆(J ;u)
strictly decreased. This procedure does not require any of the assumptions (1)–(3).

If the characteristic polyhedron is empty, the extra assumptions are essential.
If (1) or (2) holds, one can deduce that the maximal Hilbert-Samuel locus in the
completion is defined by 〈ŷ〉. As R is excellent, the latter behaves well with respect
to completions, which provides the desired elements (z). Under hypothesis (3), we
can apply differential operators in the variables (y), which eventually leads to (z).
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One may ask whether Theorem 2 is true for any excellent ring. This leads to

Question 3. Let R be an excellent regular local ring with r.s.p. (u, y). Let f ∈ R
with f /∈ 〈u〉 and m = m(f) be as above. Suppose (∗) holds and f ∈ 〈ŷ〉m, for

ŷj := yj + ϕ̂j, with ϕ̂j ∈ 〈u〉R̂ and 1 ≤ j ≤ r. Do there exist (z) = (z1, . . . , zr)

such that (u, z) is a r.s.p. for R, 〈z〉R̂ = 〈ŷ〉, and f ∈ 〈z〉m?
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Functorial semistable reduction and resolution of morphisms

Michael Temkin

(joint work with Dan Abramovich, Jaros law W lodarczyk)

1. Main results

In a joint project with Abramovich and Wlodarczyk, we construct a functorial
resolution of morphisms in characteristic zero, see [2]. Already in the case of
varieties, this leads to a new algorithm which is faster than the classical one and
possesses better functorial properties, see [1].
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1.1. Historical background.

1.1.1. Classical desingularization. Until our work there was known an essentially
unique functorial (or canonical) resolution of singularities, to which we refer as the
classical algorithm. It is based on (originally non-canonical) method of Hironaka
developed further by Giraud, Bierstone-Millman, Villamayor, Wlodarczyk, Kollar,
and other experts. They suggested different descriptions, of essentially the same
algorithm with certain variations in combinatorial parts. In brief, the main result
was

Theorem 1. For any integral variety Z over a field k of characteristic zero there
exists a modification f : Zres → Z such that Zres is smooth. Moreover, the con-
struction is smooth-functorial: if Z ′ → Z is smooth, then Z ′

res = Zres ×Z Z ′.

The proof went by locally embedding Z into a manifold with a boundary (X,E)
(i.e. X is smooth and E is an snc divisor) and principalizing the ideal IZ ⊂ OX ,
i.e. finding a sequence of blow ups g : (X ′, E′) → · · · → (X,E) such g−1(IZ) is
invertible with support on E′. Hironaka showed that principalization easily implies
resolution, and also implies that on can resolve a closed subset T  Z to an snc
divisor T ′ = f−1(T ).

1.1.2. Semistable reduction. Kempf, Knudsen, Mumford and Saint-Donat proved
the following theorem, which was the first instance of resolution of morphisms.

Theorem 2. Let Z be an integral scheme of finite type over a trait S = Spec(R)
of residual characteristic zero such that the generic fiber Zη is smooth.

(i) There exists proper Zres → Z with Zres → S log smooth and (Zres)η = Zη.
(ii) After a finite extension of R can even make Zres → S semistable.

Claim (i) follows by applying Hironaka’s theorem to Z and the divisor Z \ Zη,
and claim (ii) is then deduced by a complicated combinatorics. In general, one
can not make Z → S smooth, so this is the best one might hope for. On the other
side this solution is rather non-canonical, e.g. it changes when one extends R.

1.2. Resolution of morphisms. It turns out that the theorem of KKMS can
be extended to more general morphisms and made functorial, but this requires to
work within the larger category of logarithmic DM stacks with finite diagonalizable
stabilizers. For simplicity, we will stick to the case of stacks of finite type over a
field k of characteristic zero.

Theorem 3 ([2]). To dominant morphisms f : X → S of integral log varieties (or
log DM stacks) over k one can associate either a non-representable modification
Xres → X or a ”fail output” Xres = ∅ such that Xres → S is log smooth and

(i) Non-failure up to refining the base: for any f there exists a modification
S′ → S such that (X ×S S′)res is non-empty.

(ii) Log smooth functoriality: if Xres is non-empty and X ′ → X is log smooth,
then X ′

res = Xres ×X X ′.
(iii) Base change functoriality: if Xres 6= ∅, then (X ×S S′)res = Xres ×S S′ for

any base change S′ → S.



438 Oberwolfach Report 6/2019

Furthermore, generalizing the polyhedral subdivision theorem of KKMS to
maps of polyhedra Adiprasito, Liu and Temkin deduced the following refinement

Theorem 4 ([3]). After replacing S by an alteration, one can even achieve that
Xres → S is semistable.

2. The method

2.1. Logarithmic geometry. Logarithmic structures are important both for
classical resolution, where they are encoded by the boundary, and semistable re-
duction. The starting idea of our project was that in order to construct log smooth
resolution of morphisms one should work log-smooth functorially. Already doing
this for varieties in [1] required to modify the algorithm tremendously, and in fact
the same new algorithm was extended in [2] to morphisms. We suggest:

Principle 2.1.1. If some aspects of the problem require to extend the notion of
smoothness, it is preferable to run the whole algorithm in the extended setting.

Implementing it in our case suggested to work with log varieties, log smooth-
ness, etc. In particular, resolution is reduced to principalization of ideals on log
smooth (or toroidal) varieties (X,E), without the assumption that X is smooth.
In addition, we replaced all basic resolution tools, such as derivation of ideals, order
of ideals, hypersurface of maximal contact, etc., by their logarithmic analogs.

2.2. Stacks. Surprisingly for us, the log smooth functoriality forced the new prin-
cipalization algorithm to perform certain weighted blow ups that produced not log
smooth varieties. However, working with stacks it is possible to realize these blow
ups as coarse spaces of smooth non-representable modifications, which we call
Kummer blow ups. This suggested to extend our category further, in accordance
with the above principle. Thus, our log smooth-functorial algorithm principalizes
ideals on log smooth DM stacks even when the it starts with an ideal on a smooth
variety. It is possible after that to return to log smooth or even smooth varieties by
an additional modification, but the latter step can be only made smooth-functorial.
Perhaps usage of stacks is unavoidable for getting a log smooth-functorial algo-
rithm and resolution of morphisms. In the end, our algorithm operates with more
complicated objects and modifications, but it is simpler and faster than its classical
predecessor.

2.3. Future works. Our algorithm only performs weighted blow ups of a special
form, and we expect that there exists a much more efficient algorithm which also
works with DM stacks and performs arbitrary weighted blow ups. This is the main
topic of our current research.
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Test ideals on numerically Q-Gorenstein rings

Shunsuke Takagi

Throughout, let R be a Noetherian domain of characteristic p > 0, a be a nonzero
ideal of R and t > 0 be real number. We assume in addition that R is F -finite,
that is, the Frobenius map F : R → R is a finite map. Let c be an ideal of R
which is a canonical module of R and c

(n) denotes the n-th symbolic power of c
for each integer n ≥ 1.

Definition 1 (Hochster-Huneke [6], Hara-Yoshida [5]). The a
t-tight closure I∗a

t

of an ideal I ⊆ R is defined to be the ideal of R consisting of elements x ∈ R for
which there exists a nonzero element c ∈ R such that cxq

a
⌈tq⌉ ⊆ I [q] for all large

q = pe, where ⌈tq⌉ is the least integer which is greater than or equal to tq and I [q]

is the ideal generated by the q-th powers of all elements of I.
The finitistic test ideal τfg(at) of a with exponent t is defined by τfg(at) =⋂

J⊆R(J : Ja
t

), where J runs through all ideals of R.

It is known by Brenner-Monsky [3] that tight closure does not commute with
localization in general. On the other hand, the following conjecture is still open.

Conjecture 2. The formation of finitistic test ideals commutes with localization,
that is, S−1τfg(at) = τfg((S−1

a)t) for every multiplicative subset S of R.

In order to state a stronger conjecture, we introduce another kind of test ideals.

Definition 3 ([6], [5]). Let M be a (not necessarily finitely generated) R-module.

The at-tight closure 0∗a
t

M of the zero submodule in M is defined to be the submodule
of M consisting of elements z ∈M for which there exists a nonzero element c ∈ R
such that (ca⌈tq⌉)1/q ⊗ z = 0 ∈ R1/q ⊗R M for all large q = pe.

Let E =
⊕

m
ER(R/m) be the direct sum of the injective hulls of the residue

fields R/m, where m runs through all maximal ideals of R. The big test ideal τb(at)

of a with exponent t is defined by τb(at) = AnnR 0∗a
t

E ⊆ R.

Conjecture 4. τfg(at) = τb(at).

Since the formation of big test ideals commutes with localization, Conjecture 4
implies Conjecture 2. Conjecture 4 is known to be true in the following cases:

(1) ([1]) R =
⊕

n≥0 Rn is a graded ring and a is a homogeneous ideal.

(2) ([7]) R is a local ring with isolated singularity and a = R.
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(3) ([5]) R is normal and Q-Gorenstein, that is, there exists an integer r ≥ 1
such that the r-th symbolic power c

(r) of c is locally free.
(4) ([4]) a = R and R is a normal domain such that the anti-canonical ring⊕

n≥0 c
(−n) of Spec R is Noetherian, where c

(−n) = HomR(c(n), R).

(4) is a generalization of the case (3) when a = R. In this talk, we discuss
another generalization of (3).

Definition 5 (cf. [2]). Let R be a normal domain of finite type over a field.
We say that R is numerically Q-Gorenstein if there exist a regular alteration
π : Y → X = Spec R and a Q-Weil divisor on Y such that π∗D = KX and D is
π-numerically trivial.

Remark 6. (i) Q-Gorenstein rings are numerically Q-Gorenstein.
(ii) Two-dimensional normal domains are numerically Q-Gorenstein.
(iii) R is Q-Gorenstein if and only if it is numerically Q-Gorenstein and the

anti-canonical ring of Spec R is Noetherian. In particular, when R is a normal
semigroup ring or a generic determinantal ring, R is Q-Gorenstein if and only if
it is numerically Q-Gorenstein.

The following is the main result of this talk.

Theorem 7. Let R be a localization of a numerically Q-Gorenstein normal domain
of finite type over an F -finite field. Then Conjecture 4 holds.

The proof of Theorem 7 is based on valuative techniques (Lemmas 8, 9).

Lemma 8 ([2]). Let R be the same as in Theorem 7. Suppose that v is a divisorial
valuation on R centered at m. Then limn→∞ v(c(n)c(−n))/n = 0.

Lemma 9. Let (R,m) be an F -finite complete local domain of characteristic p > 0,
u ∈ R and I ⊆ R. Fix a Q-valued valuation v which is nonnegative on R and is

positive on m. Then u ∈ I∗a
t

if and only if there exists a sequence {ce}e∈N of
nonzero elements ce ∈ R such that {v(ce)/p

e}e∈N is a monotonically decreasing
sequence whose limit is zero and that cex

q
a
⌈tq⌉ ⊆ I [q] for all q = pe.

We close this abstract with a conjecture that implies Theorem 7. Let R+

be the absolute integral closure of R, that is, the integral closure of R in an
algebraic closure of the fractional field Frac(R) of R. Given an ideal I of R, the
plus closure I+ of I is defined by I+ = IR+ ∩ R. We define the ideal P (R) of
R by P (R) =

⋂
I⊆R(I : I+), where I runs through all ideals of R. In general,

τb(R) ⊆ τfg(R) ⊆ P (R), where τb(R) (resp. τfg(R)) is nothing but the big (resp.
finitistic) test ideal τb(Rt) (resp. τfg(Rt)) of the unit ideal R.

Conjecture 10. Let R be the same as in Theorem 7. Then τb(R) = P (R).
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Irreducible components inside the space of arcs in positive
characteristic

Ana J. Reguera

(joint work with A. Benito, O. Piltant)

In 1968, J. Nash initiated the study of the space of arcs X∞ of a (singular) al-
gebraic variety X with the purpose of understanding the structure of the various
resolutions of singularities of X . His work [4] was done shortly after Hironaka’s
proof of Resolution of Singularities in characteristic zero, and it was spread by H.
Hironaka and later by M. Lejeune-Jalabert.

Nash proved, using Resolution of Singularities that the space of arcs XSing
∞ centered

in the singular locus of X has a finite number of irreducible components. His
argument, expressed in nowadays terms, is the following: let X be a variety over
a field k of characteristic zero and let π : Y → X be a resolution of singularities.
For every irreducible component E of the exceptional locus of π, the Nash family
of arcs NE ⊂ X∞ is defined to be the Zariski closure of the image of the set of
arcs on Y which are centered at some point of E. Each NE is irreducible and,
moreover, NE only depends on the divisorial valuation defined by E. Due to the
properness of π, every arc in X∞ \ (Sing X)∞ which is centered at some point of
Sing X lifts to Y , hence it belongs to some of the NE ’s. That is, we have

(1) XSing
∞ = ∪ENE ∪ (Sing X)∞.

From this one deduces that the number of irreducible components of XSing
∞ is

finite (see [4] or [3], [6]). It is in general not easy to deduce the decomposition
of XSing

∞ into its irreducible components from the one above; the Nash problem
consists precisely in characterizing these irreducible components.

This Nash program extends, with some important differences, to perfect ground
fields k of characteristic p > 0. The first difference is that Resolution of Singular-
ities is still an open problem if char k = p > 0 and dimX ≥ 4. Although Nash
families NE can be defined only in terms of divisorial valuations, it is not known
that the indexing set in (1) can be chosen to be a finite set. In [5] we have proved
that Hironaka’s “Resolution of Singularities” can be substituted by the weaker
notion of Zariski’s generalized “Local Uniformization” along valuations in Nash’s
argument.
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More precisely, let X be an irreducible variety over a perfect field k, and Z ⊆ X
be a Zariski closed subset, let XZ

∞ be the space of arcs on X centered at some
point of Z. We consider valuation rings (Ov,Mv, kv) of the field of fractions
k(X) of X . We say that LU(X, ζ) holds for ζ ∈ X an arbitrary point if for
any valuation ring Ov dominating OX,ζ , there exists a finitely generated algebra
R = OX,ζ [f1, . . . , fr] ⊆ Ov such that RMv∩R is a regular local ring. Then, we
have:

Theorem 1 ([5], corollary 3.7). Let X |k be a k-variety (not necessarily ir-
reducible) and Z ⊆ X . Assume that, for every z ∈ Z and for every irreducible
subvariety V ⊆ X with z ∈ V , Local Uniformization holds on V at z, i.e. LU(V, z)
holds. Then XZ

∞ has a finite number of irreducible components.

But it is not known whether Local Uniformization holds if char k = p > 0 and
dimX ≥ 4. So, we propose the following question:
Question 1: Does XSing

∞ have a finite number of irreducible components?

Another difference in extending Nash’s program to positive characteristic is
that, in contrast with characteristic zero, the right hand side term (Sing X)∞ in
(1) may contain some of the irreducible components of XSing

∞ . Understanding
these “small” components is the main purpose of our article [1]. Underlying the
existence of small components when char k = p > 0 is the fact that Kolchin’s
irreducibility theorem is not valid in positive characteristic. If X = SpecR is
an irreducible affine variety of characteristic zero, then R∞ := OX∞

is isomor-
phic to the differential algebra associated with R which Kolchin proved to be
irreducible. But this statement does not hold in general when char k = p > 0;
the most simple counterexample appeared in [3]. It is the irreducible surface
X := V (yp + zxp) ⊂ A3

k = Speck[x, y, z]. Here SingX = V (x, y) is the z-axis
and X∞ has two irreducible components, (SingX)∞ and the Zariski closure of its
complement in X∞. More generally, Let k be a field of characteristic p > 0. For
n ≥ 1, let Xn be the 2n-dimensional variety given by

(
· · · ((yp + z1x

p
1)p + z2x

p
2)

p
+ · · ·

)p
+ znx

p
n = 0

in A2n+1
k . Then (Xn)∞ has exactly n + 1 irreducible components.

In general, if X is an irreducible variety over a perfect field, we have that

X◦
∞ := X∞\(SingX)∞

is irreducible ([2] and [6]). Our main results in [1] are:

Theorem 2 ([1], theorem 4.4). Let X |k be a k-variety, ζ ∈ X and

Z := {ζ} ⊆ X . Assume that there exists P ∈ X∞ such that the image by the arc
hP : Spec κ(P )[[t]] → X of the closed (resp. generic) point of Spec κ(P )[[t]] is ζ
(resp. is in Reg(X)), and κ(P )|k(ζ) is a finite and separable field extension. Then
Z◦
∞ ⊂ X◦

∞.
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Theorem 3 ([1], theorem 5.5). If dimOX,ζ = 1 then the converse to theorem 2
holds.

Question 2: Given a variety X , does there exist a birational and proper morphism
Y → X such that Y∞ is irreducible?

With the help of theorem 2 and a classical result of Albanese, we have been
able to give the following partial answer to question 2:

Proposition 4 ([1], proposition 6.7). Let k be an algebraically closed field of
characteristic p > 0 and K|k be a function field of dimension d ≥ 1. If p > d!,
there exists a projective variety X |k such that k(X) = K and X∞ is irreducible.
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Can local cohomology prevent injections?

Mateusz Micha lek

The following problems are our main motivation:

• construction of small sets of separating invariants [10, 5, 6];
• construction of low dimensional k-interpolating spaces [9, 11];
• construction of k-regular injections of complex varieties [3].

Let us recall the necessary definitions.

Definition 1. • Let G be a group acting on a vector space V . A set F of
invariants is separating if for any v, w ∈ V we have:

∀f∈F f(v) = f(w)⇔ for all invariants g we have g(v) = g(w).

• A space V of functions on X is called k-interpolating if for any distinct
points x1, . . . , xk and scalars λ1, . . . , λk there exists such an f ∈ V that
f(xi) = λi for all 1 ≤ i ≤ k.

• A map X → An is called k-regular if the images of any k distinct points
span a k − 1-dimensional affine space.

The following example is not meant to be optimal, but only to demonstrate
some of the connections.
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Example 2. Let G be a group of 3-rd roots of unity acting on C2 by coordinatewise
multiplication. The ring of invariants is C[x3, x2y, xy2, y3]. The set {x3, x2y, y3}
is a separating set of invariants. The projection map SpecC[x3, x2y, xy2, y3] →
SpecC[x3, x2y, y3] ⊂ C3 is 2-regular, i.e. injective, but not an embedding.
The space spanned by {1, x3, x2y, y3} is 2-interpolating on SpecC[x3, x2y, xy2, y3].

An algebraic approach to provide solutions to all of the above problems is based
on the notion of the k-th secant locus of a projective variety X ⊂ PN :

σ◦
k(X) =

⋃

x1,...,xk∈X

〈x1, . . . , xk〉,

where 〈S〉 denotes the projective span of S. Trivially, a projective subspace L does
not intersect σ◦

k(X) if and only if dimensions of projective spans of k points of X are
preserved after projection from L. In particular, for k = 2 we obtain a necessary
and sufficient condition to obtain a (point-wise) injection. If X ′ → X ⊂ PN is
(projectively) k-regular then the condition above implies that composition with
projection from L remains k-regular.

One of the questions we find particularly interesting is the following.

Question 3. Can every smooth, complex projective curve be injected to P2?
In general, can every smooth d dimensional projective variety be injected to P2d?

Clearly, there always exist embeddings in P2d+1. However, not every such em-
bedding may be further projected in an injective way [13]. For recent partial
results in the case of curves we refer to [1].

For nice constructions of small sets of separating invariants we refer to Dufresne-
Jeffries [7] and very recent results of Görlach [8]. These allow often to find an
injective map from a Segre-Veronese variety to a small projective space. However,
at current stage we are not aware even if the following question has a positive
answer:

Question 4. Can every Segre-Veronese variety be injectively projected to a pro-
jective space of twice its dimension?

In many cases we know that, if the answer is positive, then this bound is op-
timal. The proof relies on arguments based on local cohomology; more precisely
estimation of cohomological dimension of the ideal of the separating variety. Still,
this is not always the case, as there exist Segre-Veronese varieties that can be
projected to even smaller spaces.

For constructions of k-regular maps we refer to a joint work with Buczyński,
Januszkiewicz and Jelisiejew [4]. There, the existence of k-regular maps was related
to bounds on the dimension of the so-called areole variety of the Veronese vr(Pn):

ak(vr(Pn, p)) =
⋃

suppS=p,degS≤k
S smoothable

〈vr(S)〉,

for p ∈ Pn. Due to classification results of small Gorenstein local schemes, the
dimension bounds allow to confirm a few cases of the following general conjecture.
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Conjecture 5. There exists a continuous k-regular map Cm → CN if and only if

N ≥ m(k − 1) + 1.

For upper bounds (close, but not equal to those from the conjecture), relying
on methods from algebraic topology, we refer to [2]. Explicit constructions of k-
regular maps and interpolating spaces, relying on Gorenstein schemes and areole
varieties, can be found in [12].
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Resolution of singularities

Heisuke Hironaka

(Abstract written by Bernd Schober). Resolution of singularities has been an ex-
citing, interesting, and important problem for many years. We explain some of
the main ideas and the use of graded algebras in the recent proofs for resolution in
characteristic zero. After that, we discuss new ideas for the positive characteristic
case. In particular, we consider so called “differential products” which we use to
modify the algebra of characteristic zero in order to obtain better insight in the
singularity. Eventually, we outline a strategy for the arithmetic case using the
existence of resolution of singularities in characteristic zero and positive.
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The (ir)regularity of Tor and Ext

Marc Chardin

(joint work with Dipankar Ghosh, Navid Nemati)

There has been a keen interest in understanding the behavior of reg(In) as a func-
tion of n, where I is a homogeneous ideal in a polynomial ring Q = K[X1, . . . , Xd]
over a field. Following earlier results by Geramita, Gimigliano and Pitteloud, by
Chandler and by Swanson, Cutkosky, Herzog and Trung and Kodiyalam indepen-
dently showed that asymptotically reg(In) is a linear function of n. This behavior
also has been studied for powers of more than one ideal.

One notices that TorQ1 (Q/Ip, Q/Iq) = Ip/Ip+q if p ≥ q, which relates this
question to more general results for finitely generated graded Q-modules M and
N . The following results are known in this case

(1) If dim(TorQ1 (M,N)) 6 1, then

max
06i6d

{reg
(

TorQi (M,N)
)
− i} = reg(M) + reg(N).

This generalizes results of Sidman, Conca-Herzog, Caviglia, and Eisenbud-
Huneke-Ulrich. The equality in (1) extends to the case when Q is standard
graded, and M or N has finite projective dimension, replacing the right hand
side by reg(M) + reg(N)− reg(Q).

(2)

min
06i6d

{indeg(ExtiQ(M,N)) + i} = indeg(N)− reg(M)

where indeg(W ) := inf{n ∈ Z : Wn 6= 0}.

When working over standard graded algebras that are not regular (i. e. not a
polynomial ring over a regular ring), one can also bound regulariy of Tor modules
under the same kind of hypothesis, for instance

Theorem 1. Suppose Q is a standard graded ring over a field, but Q is not
a polynomial ring. Let M and N be finitely generated graded Q-modules, and

d := min{dim(M), dim(N)}. If dim
(

TorQi (M,N)
)
6 1 for all i > i0, then

reg
(

TorQi (M,N)
)
− i 6 reg(M) + reg(N) +

⌊
i + d

2

⌋
(reg(Q)− 1), ∀i > i0.

This implies that if Proj(Q) has isolated singularities, then the estimate above
holds true for i > dim(Q)− 1.

Over complete intersection ring, Ghosh and Puthenparakal controls the asymp-
totic behavior with respect to both a power of an ideal and the homological degree,
and raised the following question,

Question 2. For ℓ ∈ {0, 1}, do there exist aℓ, a
′
ℓ ∈ Z>0 and eℓ, e

′
ℓ ∈ Z ∪ {−∞}

such that

(i) reg
(

Ext2i+ℓ
A (M,N)

)
= −aℓ · i + eℓ for all i≫ 0 ?

(ii) reg
(
TorA2i+ℓ(M,N)

)
= a′ℓ · i + e′ℓ for all i≫ 0 ?
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In this work we are addressing this question. We prove that the answer to (i)
is positive, even in a more general situation, while the answer to (ii) is negative.

However, if dim
(
TorAi (M,N)

)
6 1 for all i≫ 0, the second question does have a

positive answer. Our main positive result on these questions is the following,

Theorem 3. Let Q be a standard graded Noetherian algebra, A := Q/(f), where
f := f1, . . . , fc is a homogeneous Q-regular sequence. Let M and N be finitely
generated graded A-modules such that ExtiQ(M,N) = 0 for all i≫ 0. Then,

(i) for ℓ ∈ {0, 1}, there exist aℓ ∈ {deg(fj) : 1 6 j 6 c} and eℓ ∈ Z∪{−∞} such
that

reg
(

Ext2i+ℓ
A (M,N)

)
= −aℓ · i + eℓ for all i≫ 0.

(ii) if further Q is *local or the epimorphic image a Gorenstein ring, M has finite
projective dimension over Q and

dim
(
TorAi (M,N)

)
6 1, ∀i≫ 0,

then, for ℓ ∈ {0, 1}, there exist a′ℓ ∈ {deg(fj) : 1 6 j 6 c} and e′ℓ ∈ Z∪{−∞}
such that

reg
(
TorA2i+ℓ(M,N)

)
= a′ℓ · i + e′ℓ, ∀i≫ 0.

On the negative side, we provide exemples showing that the behavior of the
regularity of Tor modules could be very different without the assumptions as in
the result above. The most striking one is maybe the following.

Example 4. Let Q := K[X,Y, Z, U, V,W ] be a standard graded polynomial ring
over a field K of characteristic 2. Set A := Q/(X2, Y 2, Z2). We write A =
K[x, y, z, u, v, w], where x, y, z, u, v and w are the residue classes of X,Y, Z, U, V
and W respectively. Set

M := Coker

([
x y z 0 0 0
u v w x y z

]
: A(−1)6 −→ A2

)
and N := A/(x, y, z).

Then, for every n > 1, we have

(i) indeg (ExtnA(M,N)) = reg (ExtnA(M,N)) = −n.
(ii) indeg

(
TorAn (M,N)

)
= n and reg

(
TorAn (M,N)

)
= n + f(n), where

f(n) :=

{
2l+1 − 2 if n = 2l − 1
2l+1 − 1 if 2l 6 n 6 2l+1 − 2

for all integers l > 1.

As a consequence, in this example,

lim inf
n→∞

reg(TorAn (M,N))

n
= 2 and lim sup

n→∞

reg(TorAn (M,N))

n
= 3.

Furthermore, for any α ∈ (2, 3), by choosing any subsequence nα(l) such that
|nα(l)− ⌊2l/(α− 1)⌋| is bounded for all l > 1,

lim
l→∞

reg(TorAnα(l)(M,N))

nα(l)
= α.

In particular, nα(l) can be a sequence of even (resp. odd) integers.
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Face enumeration for (balanced) manifolds

Martina Juhnke-Kubitzke

(joint work with S. Murai, I. Novik, C. Sawaske)

At the intersection of geometry, algebra, and combinatorics is the study of the face
numbers of simplicial complexes. If fi(∆) denotes the number of i-dimensional
faces of a (d − 1)-dimensional simplicial complex ∆, then the h-numbers hi(∆)

are defined by hi(∆) =
∑i

j=0(−1)i−j
(
d−i
j−i

)
fj−1(∆). Of the most important results

in the study of face numbers of simplicial complexes, many have been elegantly
phrased in the language of the h-numbers. Principal among these are the Dehn–
Sommerville relations, the lower and upper bound theorems, and their culmination
– the g-theorem. Our starting point is the following generalized lower bound
theorem (or GLBT) conjectured by McMullen and Walkup [4] and proved by
Stanley [11], and Murai and Nevo [6]:

Theorem 1. Let P be a d-dimensional simplicial polytope. Then

h0(P ) ≤ h1(P ) ≤ · · · ≤ h⌊ d
2
⌋(P );

also the equality hi−1(P ) = hi(P ) occurs for a certain i ≤ ⌊d2⌋ if and only if P is
(i− 1)-stacked.

It is natural to ask to what extent these inequalities can be specialized. In
particular, are there classes of simplicial polytopes whose successive h-numbers
satisfy more drastic inequalities? Of recent interest have been balanced simplicial
complexes (those complexes whose underlying graphs have a “minimal” coloring),
introduced by Stanley in [10]. Examples of balanced simplicial complexes include
barycentric subdivisions of regular CW complexes, Coxeter complexes, and Tits
buildings. The following strengthening of Theorem 1 for balanced simplicial poly-
topes was conjectured in [3] and proved by Juhnke-Kubitzke and Murai in [1].

Theorem 2. Let P be a d-dimensional balanced simplicial polytope. Then

h0(P )(
d
0

) ≤
h1(P )(

d
1

) ≤ · · · ≤
hi(P )(

d
i

) ≤ · · · ≤
h⌊d/2⌋(P )
(

d
⌊d/2⌋

) .

We examine extensions of this result to more general complexes. More precisely,
we study balanced F-homology manifolds without boundary, where F is a field.
When confining our attention to this class of simplicial complexes, the natural
analog of the h-numbers turns out to be the h′′-numbers (for polytopes, these
are one and the same): for a (d − 1)-dimensional complex ∆ and i < d, h′′

i (∆)

is defined by hi(∆) −
(
d
i

)∑i
j=1(−1)i−j β̃j−1(∆), where β̃j−1(∆), 1 ≤ j ≤ d, are

the reduced Betti numbers computed over F. Specifically, the manifold GLBT
asserts that if ∆ is a (d − 1)-dimensional F-homology manifold with or without
boundary whose vertex links have the weak Lefschetz property, then h′′

i (∆, ∂∆) ≥

h′′
i−1(∆, ∂∆) +

(
d

i−1

)
β̃i−1(∆, ∂∆) for all i ≤ ⌊d/2⌋; see [9, eq. (9)] and [7, Theorem

1.5]. In view of this result, it seems plausible that the statement of Theorem 2
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can be appropriately extended to balanced F-homology manifolds. Indeed, the
following is one of our main results [2].

Theorem 3. Let ∆ be a (d− 1)-dimensional balanced simplicial complex. If ∆ is
an F-homology manifold without boundary and d ≥ 4, then

h′′
2(∆)(
d
2

) ≥
h′′
1 (∆)(
d
1

) + β̃1(∆).

Equivalently, 2h2(∆)−(d−1)h1(∆) ≥ 4
(
d
2

)
(β̃1(∆)−β̃0(∆)). Furthermore, if d ≥ 5,

then this inequality holds as equality if and only if each connected component of ∆
is in the balanced Walkup class.

This result provides a balanced analog of [8, Theorem 5.2] (see also [5, Theorem
5.3]) and settles Conjecture 4.14 of [3] (see also [3, Remark 3.8]). It is worth
mentioning that for d − 1 ≥ 4, the condition that ∆ is in the balanced Walkup
class is equivalent to all vertex links of ∆ being stacked cross-polytopal spheres
(see [3, Corollary 4.12]).

We remark that, in the general as well as in the balanced situation, there
exist analog result for higher h′′-numbers as well as for orientable manifolds with
boundary under relatively weak additional assumptions.
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Teissier singularities: a viewpoint on quasi-ordinary singularities in
positive characteristics:

Hussein Mourtada

(joint work with Bernd Schober)

Let K be an algebraically closed field of characteristic 0. A Weierstrass polynomial
f ∈ K[[x1, . . . , xd]][z], satisfying f(0) = 0, is called quasi-ordinary if its discrim-
inant with respect to z is a unit times a monomial in K[[x1, . . . , xd]] (we refer
to this condition as the discriminant condition). Note that we have a finite map

{f = 0} −→ Kd (the projection on the first d coordinates) and that its ramifi-
cation locus is the zero locus of the discriminant. If {f = 0} is singular at the
origin, we say that 0 ∈ {f = 0} is a quasi-ordinary singularity. Quasi-ordinary
singularities appear in Jung’s method of resolution of singularities in char 0: for
any f ∈ K[[x1, . . . , xd]][z], this method is recursive on the dimension and consists

in using embedded resolution of singularities φ : Z −→ Kd in dimension d− 1, to
transform the discriminant of f into a normal crossing divisor (locally a unit times
a monomial). The pull back of {f = 0} by φ will then have only quasi-ordinary
singularities and the resolution problem is reduced to the problem of resolution
of quasi-ordinary singularities and then patching these local resolutions. We first
give a characterization of quasi-ordinary singularities in terms of an invariant of f,
that we denote by κ(f) (see [4]) and that we construct using a weighted version of
Hironaka’s characteristic polyhedron and successive embeddings of the singularity
defined by f in affine spaces of higher dimensions; this invariant is inspired on
one hand by resolution invariants in char 0 (and p) and on the other hand by
Teissier’s approach to the resolution of singularities by changing the embedding
(see [6]). Note that Hironaka’s characteristic polyhedron is a projection of the
classical Newton polyhedron, but it has some intrinsic properties thanks to the
minimizing process explained in [3]. The invariant κ(f) is a string whose compo-

nents are all in Qd
+, except of the last one which is either −1 or ∞. The size of

κ(f) depends on f. In [4] we prove the following theorem:

Theorem 1: Let f be as above. The singularity {f = 0} is quasi-ordinary with

respect to the projection {f = 0} −→ Kd if and only if the last component of κ(f)
is ∞.

It is worth mentioning that when K = C, we prove that the invariant κ(f) is a

complete invariant of the topological type of ({f = 0}, 0) ⊂ (Cd+1, 0).
On the one hand, while we know how to resolve quasi-ordinary singularities (in
char 0), in positive characteristics, the singularities which satisfy the condition
on the discriminant can be extremely wicked; e.g. hundred of pages of the proof
of Cossart-Piltant of resolution in dimension 3 are dedicated to this type of sin-
gularities (see [1] for the arithmetical case). So, in positive characteristics, the
reduction of the resolution of singularities problem to the singularities satisfying
the discriminant condition cannot be compared with Jung’s approach in charac-
teristic 0. On the other hand, while in characteristic 0, the last component of κ(f)
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being ∞ is equivalent to f being quasi-ordinary, in characteristic p, the invariant
κ(f) is still meaningful but the condition on its last component gives rise to a
different condition than the one given by the discriminant. This leads us to define
the following class of singularities [5]:

Definition: Let K be an algebraically closed field of characteristic p > 0. Let
f ∈ K[[x1, . . . , xd]][z] satisfying f(0) = 0. The hypersurface singularity (X, 0) =
{f = 0} is a Teissier singularity if the last component of κ(f) is ∞.

The name ”Teissier singularities” was suggested by the fact that Teissier proved
that along an Abhyankar rational valuation, any hypersurface singularity can be
embedded in a higher dimension affine space with a special type of equations
that define an ”overweight deformation” whose generic fiber is isomorphic to the
singularity and whose special fiber is the toric variety associated with the graded
algebra of the valuation [6]. For a Teissier singularity, all the valuations which
extend rational monomial valuations on K[[x1, . . . , xd]] to K[[x1, . . . , xd]][z]/(f)
induce the ”same overweight deformation” and this property characterizes them
[2]. Teissier singularities do not satisfy the discriminant condition in general, and
a singularity satisfying the discriminant condition is not Teissier in general. But
these singularities give a very good positive characteristics counterpart of quasi-
ordinary singularities thanks to the following result:

Theorem 2: A Teissier singularity (X, 0) sits in an equisingular family χ over
Spec(OCp

) as a special fiber, and the generic fiber of χ has only quasi-ordinary
singularities.

Note that the generic fiber is defined over a field of characteristic 0. Here,
equisingular means that we have a simultaneous resolution of χ. Although Teissier
singularities are complicated in general, we can resolve their singularities thanks to
the understanding of the neighbor quasi-ordinary singularities. Note also that any
quasi-ordinary singularity in characteristic 0 gives rise to a Teissier Singularity.
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Koszul Modules

Claudiu Raicu

(joint work with Marian Aprodu, Gavril Farkas, Ştefan Papadima, Jerzy
Weyman)

We consider a field k, a k-vector space V of dimension n, and let K ⊆
∧2 V be

a subspace of dimension m ≤
(
n
2

)
. We let S = Sym(V ) denote the symmetric

algebra on V , and define the Koszul module W (V,K) to be the middle homology
of the complex

(1) K ⊗ S
δ2|K⊗S

// V ⊗ S
δ1

// S

where δ1 : V ⊗ S −→ S is the natural multiplication map, and

δ2 :

2∧
V ⊗S −→ V ⊗S, (v∧v′)⊗f

δ2−→ v⊗ (v′f)−v′⊗ (vf) for v, v′ ∈ V, f ∈ S,

is the second differential of the Koszul complex on V . We put a grading on the
free modules in (1) so that K is placed in degree zero, and the maps δ1, δ2 are
homogeneous, which implies that W (V,K) is a graded S-module generated in de-
gree zero. We note that any inclusion K ⊆ K ′ induces a surjective homomorphism
W (V,K) ։ W (V,K ′), that is, bigger subspaces K correspond to smaller Koszul
modules. At the extremes we get that K = 0 if and only if W (V,K) = ker(δ1) is

the module of syzygies between linear forms, and that K =
∧2

V if and only if
W (V,K) = 0. The next smallest Koszul modules are those that have finite length,
for which we have the following sharp estimate on their Hilbert function [1, 2].

Theorem 1. Suppose that n ≥ 3, and that char(k) = 0 or char(k) ≥ n− 2. We
have the equivalence

(2) Wq(V,K) = 0 for q ≫ 0⇐⇒ Wq(V,K) = 0 for q ≥ n− 3.

Moreover, if the equivalent statements in (2) hold then

dim Wq(V,K) ≤

(
n + q − 1

q

)
(n− 2)(n− q − 3)

q + 2
for q = 0, · · · , n− 4,

with equality for all q if m = 2n− 3.

Papadima and Suciu show in [6, Lemma 2.4] that the set-theoretic support of
W (V,K) is given by the resonance variety

(3) R(V,K) :=
{
a ∈ V ∨ | there exists b ∈ V ∨ such that a∧b ∈ K⊥\{0}

}
∪{0},

where K⊥ = {φ ∈
∧2

V ∨ : φ|K = 0}. The equivalent statements in (2) can then be
rephrased as the vanishing of the resonance R(V,K), which is in turn equivalent
to the fact that the linear space PK⊥ is disjoint from the Grassmannian Gr(2, V ∨)
of 2-dimensional subspaces of V ∨, when both are viewed as subsets of the Plücker

space P
(∧2

V ∨
)

. Koszul modules have numerous incarnations, as follows.
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BGG Correspondence. If we let E =
∧
V ∨ denote the exterior algebra, think

of K⊥ as a space of quadrics in E, and let A = E/〈K⊥〉, then

Wq(V,K) ≃ TorEq+1(A,k)∨q+2 for all q.

Group Cohomology. Let G be a finitely generated group, and define the pair
(V,K) by letting V = H1(G,k) = H1(G,k)∨, and

K⊥ = ker

(
2∧
H1(G,k)

∪
−→ H2(G,k)

)
,

the kernel of the cup product map. We call W (G) := W (V,K) the Koszul module
of G. The Hilbert function of W (G) is closely related to the Chen ranks of G, and
Theorem 1 can be used to deduce many interesting consequences about related
invariants of G (see [1]).

Vector bundles. Let E be a locally free sheaf of finite rank on a projective
variety X and consider the exterior multiplication map

d2 :

2∧
H0(X, E)→ H0

(
X,

2∧
E

)

The Koszul module of E is W (X, E) := W (V,K), where V = H0(X, E)∨ and K⊥ =
ker(d2). Suppose now that E is globally generated and consider the associated
Lazarsfeld bundle ME = ker

(
H0(X, E)⊗OX ։ E

)
. In analogy with a well-known

result for Koszul cohomology groups, we can show that if H1(X,OX) = 0 then
Wq(X, E)∨ ∼= H1(X, Symq+1 ME) for all q ≥ 0.

sl2-representation theory. Let U = Span{1, x} be a 2-dimensional vector space.
There is a natural sl-equivariant map

Ψ :

2∧
(Symn−1 U) −→ Sym2n−4 U, Ψ(xs ∧ xt) = (s− t)xs+t−1.

We define W (n−1) := W (V,K) for V ∨ = Symn−1 U and K⊥ = ker Ψ, which is
referred to as a Weyman module in [3, Section 3.I.B]. The map Ψ is surjective
when char(k) 6= 2, so that dim(K) = 2n − 3, and W (n−1) has finite length when
char(k) = 0 or char(k) ≥ n, so Theorem 1 applies to W (n−1) in the strongest form.

In [2], we use the modules W (n−1) to study the syzygies of the tangent developable
T ⊂ Pg to a rational normal curve of degree g, and complete the program put for-
ward in [3] for the proof of Green’s Conjecture in the case of general canonically
embedded curves of genus g [5, Conjecture 5.6]. Writing R (resp. S) for the ho-

mogeneous coordinate ring of T (resp. of Pg), and bi,j(T ) = dim
(
TorSi (R,k)i+j

)

for the Betti numbers of T , we show the following.

Theorem 2. If char(k) 6= 2 then R is Gorenstein with Castelnuovo–Mumford
regularity 3. Moreover,

bi,2(T ) = bg−2−i,1(T ) = dimW
(i+2)
g−3−i for i = 1, · · · , g − 3.
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In particular, if char(k) = 0 or char(k) ≥ (g + 2)/2 then

(4) bi,2(T ) = 0 for i ≤
g − 3

2
.

Using the fact that a general linear section of T is a canonically embedded ratio-
nal g-cuspidal curve, together with the semicontinuity property of Betti numbers,
we conclude that (in suitable characteristics) a general canonical curve of genus g
has the same Betti numbers as T . More precisely, we have the following.

Theorem 3. If char(k) = 0 or char(k) ≥ (g+2)/2 then a general curve of genus g
satisfies Green’s Conjecture.

In characteristic zero, this theorem has been proved using geometric methods in
two landmark papers by Voisin [8, 9]. Schreyer [7] observed that Green’s conjecture
fails in small characteristics, for instance when g = 7 and char(k) = 2, or g = 9
and char(k) = 3. Together with Eisenbud they conjecture in [4, Conjecture 0.1]
that Theorem 3 should extend to char(k) ≥ (g − 1)/2. However, when char(k) ≤
(g + 1)/2 the vanishing (4) fails, due to the fact that T is contained in a rational
normal scroll of too large codimension. This means that (4) also fails for rational
g-cuspidal curves, so they can’t be used to improve on the statement of Theorem 3.
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Normal Hilbert Coefficients and Singularities

Shreedevi K. Masuti

(joint work with K. Ozeki, M. E. Rossi and H. L. Truong)

Normal Hilbert coefficients are important numerical invariants associated to an
m-primary ideal I in an analytically unramified local ring (R,m). Recall that R

is said to be analytically unramified if its m-adic completion R̂ is reduced. Let
R(I) := ⊕n≥0I

ntn ⊆ R[t] denote the Rees algebra of I. It is well known that the

integral closure of R(I) in R[t] is R(I) := ⊕n≥0Int
n where I denotes the integral

closure of I. In [8] D. Rees proved that if R is analytically unramified, then R(I)
is a finite R(I)-module. Hence there exist integers ei(I), called the normal Hilbert
coefficients of I such that for all n≫ 0

ℓR(R/In+1) = e0(I)

(
n + d

d

)
− e1(I)

(
n + d− 1

d− 1

)
+ · · ·+ (−1)ded(I)

where d = dimR and ℓR(N) denotes, for an R-module N , the length of N .

Very often the Rees algebra R(I) and the normalized Rees algebra R(I) do not
have “good” homological properties even if the ring R is “good”. In fact, this is
one of the main obstacles in the resolution of singularities. As a remedy one tries
to find available information from other numerical invariants such as the normal
Hilbert coefficients. It is a usual philosophy that if the normal Hilbert coefficients
achieve “extremal” values with respect to some bounds, then the blow-up algebras
have good homological properties. In this talk we are interested in the “extremal”
value of e2(I).

We remark that the normal Hilbert coefficients carry important geometric infor-
mation of a point corresponding to the local ring on a variety. In fact, these
coefficients are useful to detect the type of singularities. For instance, let R be an
excellent normal local domain of dimension two. Then R has a rational singularity
(resp. minimally elliptic singularity) if and only if e2(I) = 0 for every m-primary
ideal I in R (resp. R is Gorenstein and max{e2(I) : I is m-primary} = 1). Ratio-
nal singularities have been investigated by J. Lipman [4] and D. Cutkosky [1] in
dimension two.

Recently, T. Okuma, K.-i. Watanabe and K. Yoshida in [6] introduced a class of
ideals, namely the pg-ideals, which inherit nice properties of integrally closed ideals
in a rational singularity. In an excellent normal local domain of dimension two
e2(I) = 0 characterizes the pg-ideals [7]. We remark that e2(I) ≥ 0 in a normal
local ring of dimension two by [2]. Thus the pg-ideals characterize the minimal
value of e2(I). However, there is a better bound on e2(I) due to S. Itoh [3] in any
Cohen-Macaulay local ring of dimension d ≥ 2.

From now onwards, let (R,m) be an analytically unramified Cohen-Macaulay local
ring of dimension d ≥ 2 with infinite residue field. Following Ooishi we call gs(I) :=
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e1(I) = e0(I) + ℓR(R/I) the normal sectional genus of I. In [3] Itoh proved that

e2(I) ≥ gs(I) ≥ ℓR(I2/JI)

where J is a minimal reduction of I. Moreover, he showed that either of the
inequality is an equality if and only if rJ (I) ≤ 2 where

rJ(I) := min{r ≥ 0 | In+1 = JIn for all n ≥ r}

is the normal reduction number of I with respect to J. In particular, in this case the
normal associated graded ring G(I) := ⊕n≥0In/In+1 is Cohen-Macaulay. In this
talk we are interested in the almost minimal value of e2(I), that is, e2(I) = gs(I)+
1. In [5] we proved that if e2(I) = gs(I)+1 and e3(I) 6= 0, then depth G(I) ≥ d−1.
Moreover, we gave a complete structure of the Sally module in this case. We also
gave an example which shows that the result is sharp. In the case e2(I) = gs(I)+1
and e3(I) = 0 in dimension 3, we proved that G(In) is Cohen-Macaulay for all
n ≥ 2. We remark that this case would not have been occurred in the Gorenstein
case if the following conjecture by S. Itoh [3] would have been true:
Itoh’s Conjecture [3]: Assume additionally R is Gorenstein. Then e3(I) = 0 if
and only if rJ (I) ≤ 2.

The main tools that we use to prove our results are the vanishing theorem on
local cohomology modules of the normalized Rees algebra [3], and the Sally module

SJ(I) : ⊕n≥1In+1/JnI introduced by W. V. Vasconcelos in [9]. In particular,

we study the suitable filtration {C
(i)
} where C

(i)
:= ⊕n≥iIn+1/Jn−i+1Ii of the

Sally module that was introduced by M. Vaz Pinto in [10]. If e2(I) = gs(I) + 1

and e3(I) 6= 0, we prove that C
(2)
≃ B(−2) as graded B-module where B =

R(J)/mR(J). This implies, in particular, depthG(I) ≥ d− 1 and rJ (I) = 3.
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Differential operators on some invariant rings

Anurag K. Singh

(joint work with Jack Jeffries)

The differential operators on a commutative ring R are defined inductively as
follows: set D0(R) := HomR(R,R), and

Dk(R) := {δ ∈ HomZ(R,R) | δ ◦ ϕ− ϕ ◦ δ ∈ Dk−1(R) for all ϕ ∈ D0(R)}.

It is readily verified that D(R) :=
⋃

k D
k(R) is a subring of HomZ(R,R).

When R is an algebra over a commutative ring A, we set DA(R) to be the
subring of D(R) consisting of differential operators that are A-linear. If R is a
polynomial ring in the variables x1, . . . , xn over A, then, by [2, Théorème 16.11.2],
the ring DA(R) is a free R-module, with basis

1

t1!

∂t1

∂xt1
1

· · ·
1

tn!

∂tn

∂xtn
n

for (t1, . . . , tn) ∈ Nn.

In this case, it follows that for each A-algebra B one has

DA(R)⊗A B ∼= DB(R⊗A B).

The isomorphism above holds more generally whenever R is a smooth A-algebra.
If G is a group acting on R, the action extends to D(R) as follows:

g(δ) : r 7−→ g(δ(g−1(r)))

where g ∈ G, δ ∈ D(R), and r ∈ R. Using (−)G to denote G-invariants, one
obtains a restriction homomorphism

D(R)G −→ D(RG).

If R is an A-algebra, and G acts A-linearly on R, one similarly obtains

DA(R)G −→ DA(RG).

The surjectivity of this homomorphism has been studied extensively, see for ex-
ample [9] and the references therein; we mention two specific results:

Theorem. (Kantor, [5]) Let G be a finite subgroup of GLn(C), acting linearly
on a polynomial ring R := C[x1, . . . , xn]. Then DC(R)G −→ DC(RG) is surjective
if and only if the group G contains no pseudoreflections.

Theorem. (Levasseur-Stafford, [6]) Let G be either the general linear group,
or the orthogonal group, or the symplectic group, acting linearly on a polynomial
ring R over C, such that RG is, respectively, either a generic determinantal ring, or
defined by the minors of a symmetric matrix of indeterminates, or by the Pfaffians
of an antisymmetric matrix of indeterminates. Then DC(R)G −→ DC(RG) is
surjective if and only if RG is not a regular ring.

In each of the cases covered by the theorems above, the ring DC(RG) is a
simple ring. More generally, the following has been raised as [6, Question 0.13.2],
[8, Conjecture 2], and [10, Conjecture 1.1]:

Conjecture. Let G be a linearly reductive group acting linearly on a polyno-
mial ring R over C. Then DC(RG) is a simple ring.
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The conjecture also holds when G is a torus [7]. The analogous question in pos-
itive characteristic has an affirmative answer by [10, Theorem 1.3]; more generally:

Theorem. (Smith-Van den Bergh, [10]) Let R be a polynomial ring over a
perfect field F of positive characteristic, and S a graded subring such that S ⊂ R
splits in the category of graded S-modules. Then DF(S) is a simple ring.

Towards an attack on the conjecture, Smith and Van den Bergh ask if reduction
modulo p works for differential operators in the context of invariant rings: let A
be a Dedekind domain and RA a finitely generated flat A-algebra. Set

P k
RA|A := (RA ⊗A RA)/∆k+1,

where ∆ is the kernel of the multiplication map RA ⊗A RA → RA. Suppose
furthermore that each P k

RA|A is a flat A-module; this can be achieved via generic

flatness after inverting an element of A. For each maximal ideal µ of A, one then
has an exact sequence

0→ DA(RA)⊗A A/µ→ DA/µ(RA ⊗A A/µ)→ TorA1 (A/µ,R1DA(RA))→ 0,

where R1DA is the right derived functor introduced in [10, §2.2].
Question. [10, Question 5.1.2]) Suppose A is a Dedekind domain that is a

finitely generated Z-subalgebra of C, and RA is a finitely generated A-algebra
such that RA ⊗A C is the ring of invariants for a linearly reductive group acting
linearly of a polynomial ring over C. Then does TorA1 (A/µ,R1DA(RA)) vanish for
all maximal ideals µ in a Zariski dense open subset of MaxSpecA?

The vanishing of TorA1 (A/µ,R1DA(RA)) implies the isomorphism

DA(RA)⊗A A/µ ∼= DA/µ(RA ⊗A A/µ).

We establish that the answer is negative in the case of certain SL2 invariants:
Let F be a field. The hypersurface F[u, v, w, x, y, z]/(ux+ vy+wz) is the homoge-
neous coordinate ring of the Grassmannian G(2, 4) under the Plücker embedding.
For F an infinite field, this hypersurface arises as the invariant ring for an action
of SL2(F) on the polynomial ring F[X ], where X is a 2×4 matrix of indeterminates;
for characteristic-free proofs, see [1, 3]. The defining equation of the hypersurface
is also the Pfaffian of an antisymmetric 4× 4 matrix of indeterminates; hence this
hypersurface is also the invariant ring for a symplectic group action. Set

RZ := Z[u, v, w, x, y, z]/(ux + vy + wz),

and let p > 0 be an arbitrary prime integer. We prove that the map

DZ(RZ)⊗Z Z/p −→ DZ/p(RZ ⊗Z Z/p)

is not surjective.
Our proof relies on a recent result of Jeffries [4] that provides an isomorphism

R1DZ(RZ) ∼= H6
∆(RZ ⊗Z RZ),

and on establishing that the local cohomology module H6
∆(RZ⊗ZRZ) has nonzero p-

torsion elements for each prime integer p.
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4 place Jussieu
75252 Paris Cedex 05
FRANCE

Prof. Aldo Conca

Dipartimento di Matematica
Università di Genova
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