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Abstract. Nonlinear elastodynamics sets a plethora of challenging mathe-
matical problems such as those concerning wave propagation in solids. Elastic
vibrations and acoustic waves have been widely studied because of their ap-
plications in nondestructive tests of materials and structures, and, in recent
times, several novel aspects of the theory of wave propagation in solids have
blossomed thanks to the introduction of metamaterials and new technological
devices.
The goal of this workshop was to bring together researchers with different
backgrounds to discuss recent advances, and to stimulate future work.
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Introduction by the Organizers

The workshop Mathematical Aspects of Nonlinear Wave Propagation in Solid Me-
chanics, organised by Giuseppe Saccomandi (University of Perugia), Yasemin
Şengül (Sabancı University, Istanbul) and Luigi Vergori (University of Perugia)
was attended by 15 participants from 13 institutions, 12 of them European and
one North American. This workshop was a nice blend of researchers with various
backgrounds. There were mathematicians, physicists and engineers. Some of the
participants are experimentalists, some are interested in qualitative and quanti-
tative analysis of the PDEs governing wave propagation phenomena, and some
others are focused on mathematical modelling. What joined all the participants
was their will to share their knowledge in order to guide the future developments
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of the research in the intriguing field of wave propagation in solids. In this respect,
the workshop was successful.

The programme consisted of 15 talks and covered different aspects of nonlinear
elastodynamics such us wave propagation in soft tissues, in viscoelastic and ther-
moviscoplastic materials, in metamaterials, and surface and bulk waves. Some
talks posed the attention also to the mathematical modelling of brain matter,
a current hot topic in nonlinear elasticity. The diversity of the topics and the
participants stimulated fruitful discussions and gave rise to new collaborations.

In the following we include the abstracts in chronological order.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Non-linear elasticity: a disputatio

Giuseppe Saccomandi

The theory of nonlinear elasticity is central in continuum mechanics. On the
one hand nonlinear elasticity exhaustively describes the statics and dynamics of
any Noll’s simple material; on the other, it provides thorough descriptions of the
nonlinear behaviour of solids.

Despite its mathematical elegance and versatility, the theory of nonlinear elas-
ticity shows a challenging hauptproblem: the determination of the most appropri-
ate strain energy function to describe the behaviour of a given material. Several
important results have been obtained in this direction, but scholars are yet groping
in the dark. The main difficulty stands in the fact that the strain energy density
can be chosen in an infinite set of functional forms, and any reasonable mathe-
matical restriction imposed to such a set does not limit significantly the choice.
We can then claim that in contrast to the linear theory of elasticity, in which the
functional form of the strain energy is fixed up to some constants, in the nonlinear
theory there is a sort of Pandora’s box containing the infinitely many strain energy
functions which are, in principle, appropriate for describing the material response.

Unfortunately, the choice of the strain energy function is not the sole problem in
nonlinear elasticity. Indeed, once the functional form for the strain energy density
has been chosen, nonlinearities may generate problems with fitting the experimen-
tal data and hence with the determination of the material parameters. Specifically,
there may exist multiple sets of optimal material parameters for a given set of data.
As reasonable to expect, the non-uniqueness of the optimal material parameters
may lead to completely different solutions of a given boundary-value problem [7].

These difficulties might discourage even the willingest researcher and make them
give up the use of a so complex theory. It seems that the efforts necessary to draw
up interesting and sound results are out of all proportion to the resulting benefit.

To somehow confirm the last two sentences, let us consider the simple torsion
of an elastic cylinder. This is a static deformation presented in details in several
textbooks (see [1], for instance), and is widely adopted in experimental setups. In
the linearized theory of elasticity the relationship between the amount of twist,
say τ , and the couple M necessary to produce it is given by

(1) M =
π

2
µτa4o,

with µ being the constant infinitesimal shear modulus, and ao the radius of the
cylinder. The modern machines used in simple torsion tests can measure couples
of the order of 10−9 N/m.

Shear deformations and shearing motions are at the basis of the usual palpation
process of using the hands to check the body, especially while perceiving a disease
or illness. Such a process have been turned to an objective and quantitative
methodology by elastography. To give an idea of the measure of how nonlinear
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elasticity can help the modern elastography to detect suspicious masses, assume
that inside the cylinder there is a coaxial inclusion of radius ai ≪ ao and made of
an elastic material with shear modulus µi > µ. The difference between the couples
necessary to produce a given amount of twist with or without the inclusion is easily
found to be

(2) ∆M =
π

2
µτa4i

(

µi

µ
− 1

)

.

So, if the sample has radius ao = 3 cm and contains a cylindrical inclusion with
radius ai = 0.3 mm which is ten times stiffer than the bulk (namely µi/µ = 10),
from (2) we deduce that ∆M is of order 10−6 N/m. Such a discrepancy in the
couples is easily detectable by the current technology.

At this stage, it is natural to wonder whether the nonlinear theory of elasticity
may improve this measurement and allow the detection of smaller inclusions. The
deformation at hand is a universal solution for incompressible elastic materials
and thus formula (1) can be easily generalized to the nonlinear case. Within the
weakly nonlinear theory one obtains

(3) M =
π

2
µτa4o

(

1 +
γτ2

3
a2o

)

,

where γ is a coefficient accounting for the nonlinearities. As a consequence of not
neglecting the nonlinear effects, the extra term

(∆M)nl =
π

3
τ3a6i

(

µiγi
µ

− γ

)

,

with γi being the coefficient of nonlinearity of the inclusion, has to be added to
the right hand side of (2). Unless the amount of twist is very large, (∆M)nl
is of the order 10−9 N/m and thus at the borders of the current technological
precision. Thus one might think that resorting to an involved theory such as
nonlinear elasticity does not pay off.

Clearly, this is a rushed conclusion. In some pathologies the change of the
material properties of soft tissues may be so abrupt that the weakly nonlinear
theory of elasticity is not appropriate to give a satisfactory depiction of the reality.
For instance, consider the degradation of soft tissue causing the stiffening of the
material the tissue is made of. Guided by the analysis in [8], one can adopt the
Gent model for the strain energy function,

(4) W = −µ
2
Jm ln

(

1− I1 − 3

Jm

)

,

to studying the stiffening of the soft tissue. In (4) µ is, as before, the infinitesimal

shear modulus, I1 = tr(FF T ), with F being the deformation gradient, and Jm > 0
is constitutive parameter which imposes an upper bound to the extensibility of the
chain composing the macromolecular network of the soft tissue. The smaller Jm
is, the stiffer the material is [10]. When the strain energy is modelled as in (4),
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the relationship between the couple M and the amount of twist τ in a torsion test
reads [6]

(5) M = −µπJma
2
o

τ

[

1 +
Jm
τ2a2o

ln

(

1− τ2a2o
Jm

)]

.

In the limit as Jm → ∞ equation (5) reduces to (1), while for small values of
Jm the couple M necessary to produce a small amount of twist is very large. As
easy to deduce from (1), the latter situation cannot be predicted by the linearized
theory of elasticity.

There are other reasons why it is unavoidable to use the nonlinear theory of
elasticity. Many experimental evidences [5, 9, 4] reveal the coupling of deformation
modes, a phenomenon which cannot be described by the linear theory.

In view of these observations it is worth pursuing the rocky path to finding
the most appropriate strain energy function of a given material. This task is very
challenging, but some steps toward the desired goal have been made. In [3] we
have developed a method which provides models that describe the experimental
data with a very low quantitative relative error, and shows that the theory of
nonlinear elasticity is much more robust than seemed at first sight.

Acknowledgements
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Instability leading to localization in high strain-rate deformations of

metals

Athanasios E. Tzavaras

(joint work with Theodoros Katsaounis, Min-Gi Lee)

Shear bands are narrow zones of intensely localized shear that are formed during
the high speed plastic deformations of metals and often precede rupture [6, 1]. A
popular model, studied in both the mechanics and mathematics literature, is

(1)

vt = κθxx + σx,

θt = σγt,

γt = vx,

σ = f(θ, γ, u) = θ−αγmun , u = γt.(2)

It describes the adiabatic plastic shearing of a thermoviscoplastic material, where
(2) may be viewed as a yield surface or a plastic flow rule, and encompasses the
basic mechanisms entering in theories for the explanation of shear bands [6, 1].
The variable v is the shear velocity, γ the plastic strain, θ the temperature and
σ the stress. The parameters α > 0, m > 0 and n > 0 measure respectively the
degrees of thermal softening, strain hardening and strain-rate hardening; typically
n≪ 1, [1], and the parameters (α,m, n) are restricted to the range

α > 0 (thermal softening) m > −1 (strain softening/hardening),

− α+m < 0 (loss of hyperbolicity) n ≥ 0 (strain rate sensitivity).

An adiabatic hypothesis, κ = 0, is quite reasonable for studying the initial devel-
opment of shear bands and leads to the system of partial differential equations

(3)

vt = ∂x

(

θ−αγmvnx

)

,

θt = θ−αγmvn+1
x

γt = vx,

subject to velocity boundary conditions.
We first investigate the stability of the uniform shearing solutions. Since these

are time-dependent, the linearized theory has to account for the behavior of non-
autonomous systems. We present a rigorous theory that illustrates the behavior
of linearized modes around the time dependent base solutions, in the spirit of [2]
and developed in [5]. The functions

(4) γ∗s (t) = t+ γ0, θ∗s(t) = c
1

1+α (t+ γ0)
1+m
1+α , σ∗

s (t) = c
−α

1+α (t+ γ0)
−α+m

1+α ,

where c = 1+α
1+m , capture the leading order response of the uniform shearing solu-

tions. New dependent variables u(t, x), Γ(t, x), Θ(t, x) and Σ(t, x) are introduced,
(5)

u(t, x) = vx(t, x) , Γ̂(t, x) =
γ(t, x)

γ∗s (t)
, Θ̂

(

t, x
)

=
θ(t, x)

θ∗s (t)
, Σ̂(t, x) =

σ(t, x)

σ∗
s (t)

,
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that are called in [2] relative perturbations and lead to studying the system

(6)

∂τU = Σxx,

∂τΓ =
c

τ

(

U − Γ
)

,

∂τΘ =
1

τ

(

ΣU −Θ
)

,

where Σ = Θ−αΓmUn.

The uniform shearing solution is mapped to the equilibrium (1, 1, 1) via the trans-
formation (5).

The linearized system around the equilibrium state (1, 1, 1) takes the form:

(7)

∂τ ū = nūxx +mγ̄xx − αθ̄xx,

∂τ γ̄ =
c

τ
(ū− γ̄),

∂τ θ̄ =
1

τ

(

(n+ 1)ū+mγ − (α+ 1)θ̄
)

,

it is non-autonomous, and presents relaxation and cross-diffusional effects. The
boundary condition yields

(8) σ̄x(τ, 0) = σ̄x(τ, π) = 0,

∫ π

0

ū(t, x) dx = 0.

The system (7) can be diagonalized and, even if it is non-autonomous, the eigen-
values are strictly separated. This property together with a theory for stability of
such problems (see [5]) allows to conclude :

• the equilibrium (1, 1, 1) is asymptotically stable when −α+m+ n > 0,
• the equilibrium (1, 1, 1) is unstable in the region −α+m+ n < 0.

The instability has some analogies to the well-known Turing instability.
In the unstable regime−α+m+n < 0, at the initial stage, unstable modes begin

to grow and this process is captured by the linearized problem. However, the next
stage of localization lies within the realm of nonlinear analysis. The question arises
how the high frequency oscillations resulting from Hadamard instability interact
with the nonlinearity and the viscosity to form a coherent structure. Insight is
offered by investigating self-similar solutions, see [3] and [4].

Exploiting the scaling invariance of (3) (or (6)), we seek a class of self-similar
solutions of the form

(9)
γ(t, x) = taΓ

(

x tλ
)

, v(t, x) = tbV
(

x tλ
)

, θ(t, x) = tcΘ
(

x tλ
)

,

σ(t, x) = tdΣ
(

x tλ
)

, u(t, x) = ta−1U
(

x tλ
)

,

where λ > 0 and (α,m, n) take values in the range −α +m + n < 0. Parabolic
systems (such as (3)) usually admit diffusing self similar solutions, constant on lines
ξ = x

tρ . By insisting here on λ > 0, the solutions (9) will propagate information

on lines xtλ = const that focus around the origin. We seek that the profiles
(V,Σ,Γ,Θ) are localizing. We call a self-similar function

(10) f(t, x) = tbF (xtλ) , with F (−ξ) = F (ξ) and λ > 0
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localizing if it has the asymptotic behavior

(11) F (ξ) = O(ξp) as ξ → ∞
and satisfies that p < 0 when b > 0 while p > 0 when b < 0. Under this definition,
when f(t, 0) grows then f(t, x) grows at a slower rate when x 6= 0, while when
f(t, 0) decays then f(t, x) decays at a slower rate at x 6= 0. We will call a self-
similar function with an odd-profile F (−ξ) = −F (ξ) localizing when its derivative
fx(t, x) has the aforementioned behavior.

The ansatz (9) leads to solving the system

(12)

V ′(ξ) = U(ξ),

Σ′(ξ) = bV (ξ) + λξU(ξ),

aΓ(ξ) + λξΓ′(ξ) = U(ξ),

cΘ(ξ) + λξΘ′(ξ) = Σ(ξ)U(ξ),

Σ(ξ) = Θ(ξ)−αΓ(ξ)mU(ξ)n,

Γ(0) = Γ0 > 0, U(0) = U0 > 0, V (0) = U ′(0) = 0

for ξ ∈ [0,∞). This is a system of singular ordinary differential equations for
(V,Σ,Γ,Θ) with U defined by inverting (12)5. The main result in [4] is the con-
struction of solutions to (12), which turn out to exhibit localizing behavior in
space as time evolves. This is is justified by analysis of the qualitative properties
of the solutions (9) as well as by numerical calculation of the associated profiles.
The method of proof proceeds as follows: The system (12) is singular and non-
autonomous. Nevertheless, the singularity at ξ = 0 can be resolved and (12) is
desingularized using again the scale-invariance properties. Furthermore, upon in-
troducing a series of nonlinear transformations, the construction of solutions to
(12) is reduced to constructing a heteroclininc connection for a system of four
ordinary differential equations. The resulting system is singular for the parameter
n << 1 and the latter construction is effected by using the geometric theory of
singular perturbations, see [4].
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Waves in elastic and dissipative acoustic metamaterials

Anastasiia O. Krushynska

The concept of exploiting architecture to alter material behaviour and recent ad-
vances in additive manufacturing techniques have formed a foundation for de-
veloping innovative materials with unprecedented properties – metamaterials –
paving the way to previously unforeseen multifunctional applications in acoustics,
(bio)mechanics, optics, electro-magnetism, etc. [1]. Metamaterials are rationally
designed composites formed by rationally tailored building blocks that exhibit
effective medium properties going far beyond those of their ingredients [2]. In
mechanics and acoustics, these are advanced mechanical and acoustic properties,
including negative effective stiffness or mass density, topologically protected one-
way wave propagation, perfect absorption, programmability or chirality, among
others [1, 2, 3]. Acoustic metamaterials typically have a periodic structure of
crystallographic lattices or are hierarchically organized. They can be realized at
broad dimension scales, ranging from nanometers to several meters, and operate
at frequencies extending from GHz down to infrasound or frequencies of seismic
waves (<10 Hz).

Linear elastic metamaterials. A common acoustic metamaterial consists of
a host and a periodic set of (non-)resonant scatterers. In case of linear elastic
behaviour of the constituent materials, such a structure results in wave folding
at the boundaries of the high-symmetry directions in the reciprocal space [4] and
causes geometric dispersion of waves. The latter refers to the phenomenon of
frequency-dependent phase (or group) wave velocity at a boundary or an interface
[5, 6]. The geometric dispersion leads to the coupling of waves propagating in the
host at interfaces with scatterers. If the contrast in longitudinal and shear wave
velocities of constituents is high, a scattered wave field can cancel incident waves.
The frequencies at which this phenomenon occurs are known as frequency band
gaps.

Due to a structural periodicity, the wave dispersion in a metamaterial can be
analysed by considering a representative building block and applying Floquet-
Bloch periodic conditions on its boundaries [4, 7]. The related eigenfrequency
problem can then be solved for real values of the wavevector along the boundary
of the irreducible Brillouin zone. Solutions constitute infinite non-condensed sets
of eigenfrequencies corresponding to pass bands of propagating waves. If they
are represented graphically with the wavevector values along a horizontal axis
and frequencies along the vertical axis, these eigenfrequencies form a dispersion
spectrum, in which band gaps are recognized as frequency regions without pass
bands.

From the physical point of view, a dispersion spectrum cannot have any gaps,
as each mode should continuously span from zero to infinite frequency (see e.g.
[8] and the references therein). To solve this issue and complete the spectrum of
a metamaterial, one needs to include into consideration non-propagating modes
with imaginary and complex values of the wavevector [9]. Thus, another definition
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for a band gap is that it is a frequency region with only non-propagating modes.
The trends (shape) of non-propagating bands can suggest a physical mechanism of
band-gap generation [10]. The knowledge of a full dispersion spectrum including
non-propagating modes can also be useful to estimate the level of wave attenuation
within band gaps [9].

Dissipative metamaterials. If either a host or scatterers (or both) are made
of materials with non-negligible energy dissipative behaviour, the situation be-
comes more complicated, since apart from the geometric dispersion, the material
dispersion takes place. Due to the presence

of losses, propagating waves attenuate during propagation that can be taken
into account by a non-zero imaginary part of the wavevector. Thus, a dispersion
spectrum contains only bands with complex-values wavevectors, and the intro-
duced notion of a band gap, strictly speaking, becomes meaningless [9]. Material
dispersion in dissipative materials can be exploited to achieve enhanced wave at-
tenuation or suppress the resonant-induced wave scattering [9].

New trends in the metamaterial design. One of recent tendencies in the
design of mechanical metamaterials is based on the enriched continuum model at
the building block level. Such a model can be obtained e.g. by introducing chiral
effects to enable the coupling between displacement and rotation [2, 11]. In our
works, we translate this idea into the wave dynamics domain by exploiting a known
property of regular tensegrity units to undergo twisting under axial loading. In this
way, we have developed an acoustic metamaterial with coupled translation-rotation
modes. By tailoring geometry of the twisted components, we have obtained very
light-weight configurations with extremely broadband low-frequency band gaps
and advanced energy absorption ratio [13]. An additional benefit is a tunability
feature allowing to control the effective material stiffness by varying the level of
pre-strain in incorporated strings [12, 13].

Finally, we mention another strategy to induce omnidirectional wave attenua-
tion performance in three-dimensional acoustic metamaterials. It implies a combi-
nation of a phononic plate of an arbitrary configuration with a rotation-symmetric
zincblende lattice unit [14]. Such a hybrid designs activates a band-gap mechanism
attributed solely to the material architecture, rather than to a specific choice of
geometric or material properties. We have shown that the hybrid metamaterials
can efficiently attenuate low-frequency waves by means of a few materials building
blocks and exploiting structural damping inherently present in realistic materials.

Acknowledgements. The works mentioned here were done in close collaboration
with Eindhoven University of Technology (the Netherlands), University of Turin
(Italy), University of Salerno (Italy), University of Wisconsin-Madison (U.S.A.),
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Small-amplitude elastic waves in soft matter

Michel Destrade

Introduction

Biological soft tissues and soft gels are difficult to study and model mathematically.
Bioengineers often see them as engineering materials and try to evaluate their me-
chanical properties with standard testing protocols, such as tensile testing, simple
shear, torsion, etc. These processes are destructive for tissues, as a sample is taken
out of the body and placed in a device. The resulting measured parameters and
models are expected to be very different from their in vivo counterparts.

To test soft tissues properly, non-destructively, and non-invasively, we can rely
on elastic waves. We can study the influence of pre-stress on their speed and
obtain the nonlinear elastic parameters by inverse analysis. This idea forms the
basis of the theory of acousto-elasticity, which can be dated back to early works of
Brillouin, and has been used successfully in the past for “hard” elastic solids such
as rocks and metals.
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Here we explore the extension of acousto-elasticity to “soft” elastic solids, which
can be subjected to large deformations in service. We look at theoretical, numeri-
cal, experimental, and even clinical results, generated in particular on gels, brain,
breast, and skin.

Destructive testing of soft matter

To test soft biological tissue, we can rely on existing testing protocols for soft
solids such as rubber. Hence we can, in principle, stretch, twist, shear, inflate,
and bend them, but in practice it is not always possible to obtain reliable and
accurate measurements. Soft tissues ex vivo have very different properties from
when they are “in service”, because of cell death, dehydration, release of residual
stresses and many other factors. Moreover, they do not all lend themselves to be
tested in those protocols.

For instance, brain matter is extremely soft and fragile, and cannot be tested as
a thin membrane, which rules out the inflation, pure shear, and dog-bone tensile
tests. It cannot be gripped or attached by hooks, and must be glued instead.
That limitation rules out cylinder tension and compression tests, as inhomogeneous
local effects then develop near the attached platens and makes modelling difficult.
But within this limitation, simple shear and torsion do work reasonably well, see
Figures 1(a)-(d).

Experimentally, we find linear relationships between the Cauchy shear stress
component T12 and the amount of shear K, and between the torque τ and the
twist φ, when we test pig brain samples in simple shear and torsion, see Figures
1(e)-(f). Using the general expressions

(1) T12 = 2

(

∂W

∂I1
+
∂W

∂I2

)

K, τ = 4πφ

∫ a

0

r3
(

∂W

∂I1
+
∂W

∂I2

)

dr,

(where r is the radial distance and a is the radius of the twisted cylinder), we see
that the Mooney-Rivlin strain energy density WMR is particularly appropriate,

(2) WMR = 1
2C1(I1 − 3) + 1

2C2(I2 − 3),

(where C1 > 0, C2 > 0 are constants, and I1 = trC, I2 = tr(C−1) are the first two
principal invariants of the right Cauchy-Green deformation tensor C), because it
provides indeed exact linear relationships.

Non-destructive testing with acousto-elasticity

To test soft tissues in situ, we may rely on acousto-elasticity theory, which gives
the relationship between the speed of an elastic wave and the deformation of the
soft solid.

For example, a homogeneous plane wave of small amplitude travels in an in-
compressible solid of mass density ρ and strain energy density W with speed v
given by the formula

(3) ρv2 =

(

λ2
∂W

∂λ2
− λ1

∂W

∂λ1

)

λ22
λ22 − λ21

,
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Figure 1. Standard testing protocols for soft solids applied to brain

matter (porcine): (a) tensile test with glued ends and (b) compression

test with lubricated faces: notice the inhomogeneity of the resulting

deformations; (c) simple shear and (d) torsion: here the samples behave

as required for the modelling. (e): shear stress Vs amount of shear [1];

(f): torque Vs twist [2].

where the λs are the principal stretches along the Eulerian principal directions
x1, x2, x3 (specifically, the body wave travels in the x2−direction and is polarised
in the x1− direction).

Hence consider measuring the speed of a shear wave in an intact brain, subject
to a small-but-finite compression described by λ1 = 1+e, λ2 = λ3 = 1−e/2+3e2/8,
where e (small) is the amount of contraction (a contraction of 10% corresponds to
λ1 = 0.9, e = −0.1). Then the formula above gives [3],

(4) ρv2 = µ+ (A/4)e+ (2µ+A+ 3D)e2,

where µ is the initial shear modulus, and A, D are the Landau coefficients of third-
and fourth-order weakly non-linear elasticity, respectively. It is then a simple
matter to estimate these material parameters, by collecting the ρv2 − e data and
fitting it to quadratic, see Figure 2.

With this talk we will explore further extensions of the theory of acousto-
elasticity. First, with the propagation of waves in thin-walled, pre-stretched soft
solids, which are commonly found in the body (Achille’s tendon, arterial walls,
bladder, mitral valve, dura matter, etc.). In that case the mathematics becomes
more involved because of dispersion but good and practical approximations can
be found. Then, with waves travelling on the surface of the human skin, which, it
turns out, must be modelled as a pre-strained, hyperelastic solid with two orthog-
onal embedded families of parallel fibres [4].
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Figure 2. Using acousto-elasticity to find the material parameter

of an intact pig brain. The curve fitting exercise on the right yields

µ = 2.2, A = −15.0, D = 8.7 kPa.
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PDE analysis of a class of thermodynamically compatible viscoelastic

rate-type fluids with stress-diffusion

Miroslav Buĺıček

Short abstract of the result

Here we shortly describe the result of the presentation that was delivered in Ober-
wolfach during the workshop “Mathematical Aspects of Nonlinear Wave Propaga-
tion in Solid Mechanics” in March 4 - March 8, 2019. The result is published in
[1].

Governing equation and the main result. For any given Lipschitz domain
Ω ⊂ Rd, d > 2, v0 : Ω → Rd, b0 : Ω → R and for any T > 0, we set Q := Ω× (0, T )
and we seek the functions (v, p, b) : Q→ Rd × R× R satisfying, in Q, the system
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of PDEs:

div v = 0,(1)

̺(∂tv + div(v ⊗ v))− divT = 0,(2)

T = −p I+ 2νD− σ(∇b ⊗∇b),(3)

ν1∂tb+ ν1 div(bv) + µ(b2 − b)− 2σb2∆b = 0,(4)

together with the following boundary conditions, where n denotes the unit outward
normal vector on ∂Ω:

(5) v = 0 and ∇b · n = 0 on ∂Ω× (0, T ),

and the initial conditions:

(6) v(0, ·) = v0(·) and b(0, ·) = b0(·) in Ω.

Here, v is the velocity, T is the Cauchy stress, p is the spherical stress (the modi-
fied pressure), b is a scalar quantity characterizing the volumetric elastic changes
exhibited by the fluid; D denotes the symmetric part of the velocity gradient, i.e.,
D = (∇v+(∇v)T)/2; ν is the viscosity, ̺ is the density, and ν1, σ and µ are other
material constants, all of which are positive.

The main result for the above system reads as

Theorem 1. Let the initial conditions satisfy

v0 ∈ L2
0,div(Ω)

d,

b0 ∈W 1,2(Ω), b0 > 0 a.e. in Ω, b0 ∈ L∞(Ω) and
1

b0
∈ L∞(Ω) ,

(7)

then for any Lipschitz domain Ω ⊂ Rd, T > 0, ν > 0, ν1 > 0, µ > 0, σ > 0 and
̺ > 0 there exists a couple (v, b) solving the problem (1)–(6) in a weak sense.

Derivation of the model and basic a priori estimates based on the first

and the second laws of thermodynamics. Note that if σ = 0 in the above
equations the problem splits into two separate problems: a transport equation
with damping for b and the standard Navier–Stokes equations for (v, p). Since the
work of Leray [4] on the incompressible Navier–Stokes equations, see also [3, 2], the
question of long-time existence of large-data weak solutions has also been explored
for more general classes of viscous fluids. It is then natural to attempt to advance
this program by exploring how large the class of fluids might be for which long-
time and large-data existence of weak solutions can be established. This task is
particularly interesting if one considers fluid models that include terms that are
associated with elastic properties of the material.

Note also that if σ > 0 then not only is there a diffusion term present in the
equation for b, but also the Korteweg stress appears in the expression for the
Cauchy stress T featuring in the equation for the balance of linear momentum.
This structure of the governing equations results from a careful derivation of the
model based on the thermodynamical approach established for viscoelastic rate-
type fluids in [7] and further refined in [6], and extended to rate-type fluids with
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stress-diffusion in [5]. This thermodynamical approach automatically guarantees
that the resulting model is consistent with the laws of thermodynamics. From
the point of view of PDE analysis, the approach readily provides the relevant a
priori estimates upon which the analysis is based, and which would be otherwise
completely nontrivial to discover solely from the PDE system (1)–(4).

We briefly explain the thermodynamical background of (1)–(4). We denote by
the superscript ˙ the material derivative, i.e., ż = ∂z

∂t +(v ·∇)z for a scalar function
z. The fundamental balance equations of mass, linear momentum and energy as
well as the formulation of the second law of thermodynamics are the following:

˙̺ = −̺ div v,(8)

̺v̇ = divT, T = T
T,(9)

̺ė = T : D− div je,(10)

̺η̇ = ̺ζ − div jη with ζ > 0,(11)

where ̺ is the density, v is the velocity, e is the specific internal energy, η is the
specific entropy, je and jη are the energy and entropy fluxes, and ζ stands for the
specific rate of entropy production. Introducing the Helmholtz free energy ψ by

ψ := e− θη,

where θ stands for the (positive) temperature, the equations (10) and (11) lead
for isothermal processes to

(12) T : D− ̺ψ̇ − div(je − θjη) = ξ with ξ > 0,

where ξ := ̺θζ denotes the rate of dissipation.
The approach that we will exploit is based on the concept of natural con-

figuration that splits the total response described by the deformation tensor F

between the current and initial configuration into the purely elastic (reversible,
non-dissipative) part Fkp(t) that operates between the natural and current config-
uration and the dissipative part G that maps from the reference to the natural
configuration, i.e. F = Fkp(t)G. In analogy with the relations L = ḞF−1 and

D = (L+LT)/2, we set Lkp(t) := ĠG−1 and define Dkp(t) := (Lkp(t)+(Lkp(t))
T)/2.

We also set Bkp(t) := Fkp(t)F
T
kp(t)

. Finally, we postulate the constitutive relation

for the Helmholtz free energy in the form:

(13) ψ = ψ0(̺)+
µ

2̺
(tr Bkp(t)−3− ln detBkp(t))+

σ

2̺
|∇ tr Bkp(t)|2 =: ψ0(̺)+

π

̺
,

with µ > 0, σ > 0 constant, and

π :=
µ

2
(tr Bkp(t) − 3− ln detBkp(t)) +

σ

2
|∇ tr Bkp(t)|2.

Then after setting b := tr Bkp(t) and evaluating ψ̇ in (12) we obtain (see [1] for
details)

ξ =
(

T− µ(Bkp(t) − I) + σ((∇b ⊗∇b) + 2∆bBkp(t)) + (̺2ψ′
0(̺)− π)I

)

: D

+
(

µ(Ckp(t) − I)− 2σ∆bCkp(t)

)

: Dkp(t) − div(je − θjη + σḃ∇b) with ξ > 0.
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Finally, setting

jη =
je + σḃ∇b

θ
, pNS

th := ̺2 ψ′
0(̺),

Tel := −(pNS
th − π)I+ µ(Bkp(t) − I)− σ((∇b ⊗∇b) + 2∆bBkp(t)),

we arrive at

ξ = (T− Tel) : D+
(

µ(Ckp(t) − I)− 2σ∆bCkp(t)

)

: Dkp(t) with ξ > 0.(14)

Reduction of the model. Here, we make three simplifications: the fluid is
assumed to be incompressible, the density is taken to be uniform and the elastic
part of the deformation is supposed to be purely spherical. This means that

(15) div v = 0, ̺ is a positive constant and [Ckp(t)]δ = O.

Then,

Ckp(t) = [Ckp(t)]δ +
tr Ckp(t)

3
I = O+

tr Bkp(t)

3
I =

b

3
I,

where O is the zero tensor; note that [Bkp(t)]δ also vanishes. As a consequence of
these simplifications, we have

ḃ = −2

3
b tr Dkp(t),(16)

and

(17) ξ = (Tδ − [Tel]δ) : D+ (µ(b− 3)− 2σb∆b)
tr Dkp(t)

3
with ξ > 0,

where

[Tel]δ = −σ(∇b⊗∇b)δ.

Requiring that

Tδ − [Tel]δ = 2ν D with ν > 0,

µ(b − 3)− 2σb∆b = 2ν1
tr Dkp(t)

3
with ν1 > 0,

(18)

we obtain

(19) ξ = 2ν|D|2 + 2ν1
| tr Dkp(t)|2

9
.

Referring then to (16) we deduce that (18) leads to

T = mI+ 2νD− σ(∇b ⊗∇b)δ = φI+ 2νD− σ(∇b ⊗∇b),

ν1
ḃ

b
+ µ(b − 3)− 2σb∆b = 0,

(20)

which after a possible rescaling leads to (1)–(4).
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Viscoelasticitiy with limited strain: traveling waves and the Cauchy

problem

Yasemin Şengül

The talk is concerned with the dynamics of a viscoelastic medium governed by the
equation

(1) Txx + νTxxt = g(T )tt,

where T (x, t) is the Cauchy stress at point x and time t, g(T ) is a nonlinear function
and ν is a constant. Equation (1) is a one dimensional nonlinear differential
equation in T resulting from the equation of motion and a constitutive equation
relating the stress, the linearized strain and the strain rate. In the first part of
the talk, I will investigate traveling wave solutions of (1) based on [4], whereas
in the second part I will prove local well-posedness for the corresponding Cauchy
problem based on [5].

As opposed to the classical models in mechanics, the strain can be written as a
function of the stress, rather than expressing the stress in terms of the kinematical
variables. As explained by Muliana et al. [7], force, and hence the stress, is the
cause for deformation, hence for the strain. Because of this the strain should be
described in terms of the stress or its history than vice versa. The motivation for
this idea is that in the classical elasticity theory, there cannot be a nonlinear rela-
tionship between the linearized strain and the stress, which, in fact, is observed in
some experiments. There are numerous models introduced by Rajagopal [10] with
implicit constitutive relations between the stress and the strain including mod-
els for elastic fluids, inelastic materials and non-hyperelastic materials. Following
these models, various forms of non-linear constitutive relations have been studied
in different contexts (see e.g. [1, 2, 3, 11, 12]).
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Rajagopal [8, 9, 10] introduced a generalization of the theory of elastic materials
by suggesting implicit models allowing for approximations where the linearized
strain is a nonlinear function of the stress. The advantage of this new idea is that
it allows for the gradient of the displacement to stay small so that one could treat
the linearized strain, even for arbitrary large values of the stress. The fracture of
brittle elastic bodies is a possible application area for such implicit theories, where
one can obtain bounded strain at the crack tip due to the possibility of having
a nonlinear relationship between the linearized strain and the stress. There has
been quite an interest in such strain-limiting models recently where most of the
studies are for elastic materials. For the first part of the talk, I focus on five
different nonlinear functions g(T ), that have been studied in the literature in the
elastic setting, and reconsider them in the context of viscoelasticity. To describe
the response of viscoelastic solids I assume a nonlinear relationship among the
linearized strain, the strain rate and the Cauchy stress. I look at traveling wave
solutions that correspond to the heteroclinic connections between the two constant
states, and establish conditions for the existence of such solutions, and find them
explicitly, implicitly or numerically.

In the second part of the talk, I am interested in local well-posedness of equation
(1). For viscoelasticity, not much has been done in the literature. One can refer to
Muliana et al. [7] who developed a quasi-linear viscoelastic model where the strain
is expressed as an integral of a non-linear measure of the stress, or to Rajagopal
and Saccomandi [12] where rate-type strain-limiting viscoelasticity is modelled by
considering a special subclass of the general implicit constitutive relations. In [5]
we convert the equation for the stress to obtain an equation in the strain variable
and write it as a time-dependent heat equation. We use the results related to the
variable coefficient heat equation and the techniques from the theory of elliptic
operators. The proof of the main theorem includes linearization around a given
state, definition of a contractive mapping and the usage of Banach’s fixed theorem.
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One-dimensional nonlinear waves in nonlocal elastic materials

Husnu Ata Erbay

(joint work with S. Erbay, A. Erkip)

In contrast with classical elasticity, the theory of nonlocal elasticity is based on
integral constitutive relations in which the stress at a point depends on the strain
field at every point in the body [1]. There is a large literature concerning the
theory of nonlocal elasticity but they are mostly restricted to linear models of
nonlocal elasticity. In [2] a one-dimensional nonlinear model of nonlocal elasticity
was proposed and, under certain conditions, the global existence of solutions to the
initial-value problem was established. In terms of non-dimensional quantities, the
model in [2] is based on the one-dimensional nonlinear nonlocal partial differential
equation

(1) utt = (β ∗ (u+ g(u)))xx

with

β ∗ u =

∫

R

β(x − y)u(y)dy,

where β is an integrable function whose Fourier transform is nonnegative. Some
well-known examples of nonlinear wave equations, such as Boussinesq-type equa-
tions, follow from the above model for suitable choices of the kernel function β.
For instance, when β(x) = e−|x|/2, equation (1) becomes the improved Boussinesq
equation

(2) utt − uxx − uxxtt = (g(u))xx.

In this talk we review some recent results concerning the nonlocal model given
above. (i) We start with a convergence result for a semi-discrete numerical method
proposed for the Cauchy problem and, as an application of this result, in the
case of several kernel functions we compute numerically the blow-up times for
solutions that blow-up in a finite time [3]. (ii) Next we present a comparison
result for the solutions of the two Cauchy problems with the same initial data
but with two different kernel functions that have similar dispersive characteristics
in the long-wave limit. The comparison result shows that the difference between
the two solutions remains small over a long time interval in a suitable Sobolev
norm [4]. (iii) Finally we discuss the approximation errors for Camassa-Holm-type
asymptotical models describing the propagation of small-but-finite amplitude long
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waves as solutions to the nonlocal equation. A careful theoretical analysis allows
us to justify the single Camassa-Holm equation

(3) wt + wx + wwx − 3

4
wxxx − 5

4
wxxt −

3

4
(2wxwxx + wwxxx) = 0

for the unidirectional propagation of waves [5]. In order to write (3) in a more
standard form we may use the coordinate transformation defined by x̄ = 2√

5
(x− 3

5 t)

and t̄ = 2
3
√
5
t. Under the coordinate transformation, (3) becomes

(4) vt̄ +
6

5
vx̄ + 3vvx̄ − vt̄x̄x̄ − 9

5
(2vx̄vx̄x̄ + vvx̄x̄x̄) = 0,

with v(x̄, t̄) = w(x, t). A similar analysis based on the two uncoupled Camassa-
Holm equations is also shown to be valid for bidirectional wave solutions of the
improved Boussinesq equation [6]. We show that, in both cases, the approximation
errors remain small in terms of nonlinearity and dispersion parameters over a long
time interval.
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Lipschitz metrics for nonlinear PDEs

Katrin Grunert

(joint work with J. A. Carrillo, H. Holden)

Partial differential equations, that govern the motion of waves, model also wave
phenomena such as wave breaking. One example of such an equation is the Hunter–
Saxton equation

ut(t, x) + uux(t, x) =
1

4

∫ x

−∞
u2x(t, y)dy −

1

4

∫ ∞

x

u2x(t, y)dy,

which we will consider here. It models the director field of a nematic liquid crystal
[7].
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Starting out with some smooth initial data, one obtains, in general, no classical
global solution. To be more precise, classical solutions do not exist globally, but
only locally in time, if wave breaking occurs in finite time. That is, the spatial
derivative ux becomes unbounded from below pointwise, while the solution u itself
remains bounded and continuous. Furthermore, energy concentrates on sets of
measure zero when wave breaking occurs. Thus the prolongation of solutions
beyond wave breaking is non-unique and depends heavily on how the concentrated
energy is manipulated.

In this talk we motivate how to construct a Lipschitz metric, which measures
the distance between two conservative solutions, i.e., solutions where the energy is
not manipulated at breaking time. Such metrics show in what sense the solutions
are stable and reflect the influence of the wave phenomena on the solutions. We
focus on the approach used in [4] and compare it with the approach used in [8].

The approach in [8] relies on the fact that conservative solutions of the Hunter–
Saxton equation can be described with the help of a generalized method of charac-
teristics. Thus one way to measure the distance between two solutions, is to define
their distance to be equal to the distance of the corresponding equivalence classes
in Lagrangian coordinates. The drawback of this idea is that it is very difficult to
compute the difference even for very simple examples.

The approach in [4] is based on the fact that each solution is uniquely deter-
mined by a pair (u, µ), where µ describes the energy distribution. In the case of
the total energy being equal to one, µ can be seen as a probability measures, for
which a natural way to measure the distance are Wasserstein metrics. With this
observation in mind, one can use pseudo inverses together with relabeling to intro-
duce new variables, which form the basis for our approach. These new variables
have the good properties of the Lagrangian coordinates, but not the extra degree
of freedom leading to equivalence classes.

Similar results can be obtained for the Camassa–Holm equation, see [6] and [5],
respectively.
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Shear shock wave propagation in soft solids and the brain: ultrasound

imaging and simulations

Gianmarco Pinton

The soft tissue of the human body supports both fast acoustic waves (1540 m/s)
and slow shear waves (2 m/s). At large amplitudes, these waves exhibit nonlinear
behavior, such as harmonic development and shock formation. We develop models
and simulation tools that describe the physics of nonlinear acoustic propagation,
attenuation, and scattering in highly realistic representations of the human body.
We use these models to develop new ultrasound imaging methods. For example, to
understand brain motion during the rapid events associated with traumatic injury,
we have developed a new high framerate (10,000 images/second) imaging technique
that measures image brain motion down to the micron level. By interrogating this
spatiotemporal regime, we have discovered that destructive shear shock waves form
and propagate deep inside the brain. We develop models and simulation tools that
describe the formation, propagation, and attenuation of these shock waves in the
brain. It is shown experimentally and numerically that this previously unknown
phenomenon can dramatically amplify the acceleration and strain rates within the
brain.

Riemann-Cartan geometry as a framework for modeling of nonlinear

dispersive waves in solids

Ilya Peshkov

We are developing a unified Riemann-Cartan theory for continuum solid and fluid
mechanics. The continuous medium is treated as a Riemann-Cartan manifold with
the main field of the theory being the field of anholonomic basis triads, also called
the distortion field in our papers. The distortion field describes micro-deformations
and micro-rotations of the material elements. To account for the rotational degrees
of freedom, we use the torsion tensor and treat it as a new independent state
variable. We observed that the obtained system of governing PDEs can be viewed
as a non-classical dispersive system in which all the equations are first order PDEs
while the dispersive terms are local relaxation-type source terms. We then discuss
possible applications of the theory to the modeling of dispersive waves in acoustic
metamaterials.
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The mechanics of a twisted brain

Valentina Balbi

Biological soft tissues are particularly common in nature. For instance, many
organs in the human body such as the skin, the brain, the gastro-intestinal system
are made of soft tissues. The brain, among all is particularly soft and delicate.
Following an impact to the skull, brain matter can experience large stretches,
possibly resulting in Diffuse Axonal Injury (DAI), which is the second leading
cause of death from traumatic brain injury in the United States [1]. Previous

Figure 1. A boxer receiveing a lateral punch which induces an
accelerated rotation of the head.

studies have focused on tensile, compression and shear deformation modes of brain
to investigate DAI. A comprehensive collection of mechanical data (elastic and
viscoelastic) can be found in [2]. However, in reality brain matter undergoes a
mix of deformation modes during an accident. Especially during sport and car
accidents the head may be subjected to a quick rotation which in turn generates
twisting moments within the brain tissue, see Figure 1. Therefore modelling the
mechanical behaviour of the tissue in torsion is crucial to help gaining a better
understanding of the mechanisms of DAI.

In this work, in collaboration with University College Dublin, we collected data
from torsion tests on (pigs) brain samples and modelled the experiments to finally
quantify the elastic properties of the brain tissue. By using a rheometer (Discovery
HR-2, TA instruments R©), we tested 9 cylindrical samples and measured the torque
and the normal force required to twist each sample at a constant twist rate (a
measure of the rotational speed). From our experiments we observed that the
brain pushes against the upper plate of the rheometer when twisted (see Figure
2), indicating that the tissue tends to expand in the direction perpendicular to
the twisting plane, a typical effect which is called the positive Poynting Effect
[3]. By using the theory of non linear elasticity we followed Rivlin [4] and derived
the equations for the torque and the normal force and we fitted the experimental
data with a Mooney-Rivlin (MR) strain energy function. With this procedure we
were able to extract the two elastic constants appearing in the MR model and
thus quantify the shear modulus of the brain and the Poyniting effect (given by
the second MR constant). We then used the elastic parameters to implement
Finite Element (FE) simulations of a rotational head impact in Abaqus. In Figure
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Figure 2. The brain tends to expand longitudinally when twisted.

3 we show the distribution of the normal and shear Cauchy stress components
S33 and S23, respectively, in the brain. These results were obtained with the
University College Dublin Brain Trauma Model (UCDBTM) [5]. To simulate a
realistic impact scenario we used the rotational acceleration values measured from
studies on boxing accidents. The simulations show that during such impacts the
brain experiences not only high shear stresses, but also high normal stresses. We
then concluded that it is crucial to account for the normal forces developing within
the brain during rotational impacts to correctly estimate the effects of TBI.

S33 [Pa]

Sagittal section Coronal section

Axial section

Figure 3. FE simulation of a rotational head impact. Distribu-
tion of the normal (left) and shear (right) Cauchy stress compo-
nents within the brain.
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Shear wave pattern in the elastodynamic of a cracked half-space with

microstructure

Andrea Nobili

(joint work with Enrico Radi, Gennadi Mishuris)

We investigate diffraction of reduced traction shear waves applied at the faces
of a stationary crack in an elastic solid with microstructure, under antiplane de-
formation. The material behavior is described by the indeterminate theory of
couple stress elasticity and the crack is rectilinear and semi-infinite. A remarkable
wave pattern appears which consists of entrained waves extending away from the
crack, reflected Rayleigh waves moving along the crack, localized waves irradiating
from the crack-tip with, possibly, super-Rayleigh speed and body waves scattered
around the crack-tip. The displacement along the crack line is given by [3]

w(ξ1, 0, τ) = ıλ3τ0
exp ıΩτ

πK−(k)

∫

L

exp(−ısξ1)
(s+ k)K−(s)

ds,

where (c is a constant, a is the Rayleigh pole and b the leaky pole)

K±(s) =
√
c
(s∓ a)(s± ıb)

α±(s)

s± s3
s± s0

F±(s).

Here

α±(s) = e∓ıπ/4
√
s∓ δ, β±(s) = e∓ıπ/4

√
s± ı,

with F∓(s) = expG∓(s), being

G−(s) =
δ + ı

π

∫ 1

0

arctanψ(t)

δ − (δ + ı)t+ s
dt,

and

ψ(t) =

(

(1 + η)[(δ + ı)t− δ]2 − δ2

(1 + η)[(δ + ı)t− δ]2 + 1

)2
√

(1 − t)2δ − ı(1− t2)

(2− t)δt− ıt2
.

Ahead of the crack tip, displacement can be conveniently determined closing the
integration path L around the top branch cut, K+, and adding the contribution
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(a) Displacement wave entrained
by the traction shear wave applied
at the crack faces

(b) Scattered body wave

(c) Localized wave travelling along
ξ2

(d) Total wave pattern

Figure 1. Schematic representation of the wave pattern for k <
−a (each wave is scaled as to improve clarity and only one wave
is considered for each contribution; reflected Rayleigh waves are
disregarded)

of the poles s = −k,−a and s = ıb, namely

w(ξ1, 0, τ) = −2λ3τ0
exp ıΩτ

K−(k)

[

1

2πı

∫

K+

exp(−ısξ1)
(s+ k)K−(s)

ds+
exp(ıkξ1)

K+(k)

− exp(ıaξ1)

k − a

α+(a)√
c(a+ ıb)F+(a)

a+ s0
a+ s3

+
exp(bξ1)

k + ıb

α−(ıb)√
c(a+ ıb)F−(ıb)

ıb− s0
ıb− s3

]

,

ξ1 < 0.

We remark that simple poles represent travelling waves. Indeed, the second term
in square brackets provides the displacement wave entrained by the traction wave
applied at the crack faces, Fig.1a, while the third term brings outgoing Rayleigh
waves, reflected by the crack-tip. The last term is remarkable in that it represents
waves that decay exponentially for ξ1 < 0 and yet propagate along the ξ2 direction,
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Fig.1c. To see this, we note that α(ıb) = −ı
√
b2 + δ2 and β(ıb) = −ı

√
b2 − 1,

whence a pair of waves arises with speed

cb1
cs

=
Ω√

b2 + δ2
λ, and

cb2
cs

=
Ω√
b2 − 1

λ.

Such waves may be put to great advantage in non-destructive material testing
for they are highly localized along ξ1 in correspondence of the crack-tip location.
Furthermore, we observe that unlike cb1 < cR ≤ cs, cb2 may be very large and
greater than the Rayleigh wave speed. The possibility of surface waves moving
at super-Rayleigh speed in couple-stress materials has been pointed out in [2] and
discussed in [4, 1], in the context of plane strain. Interestingly, we note that for
η = 0, s = −a and s = ıb are no longer poles. The first term in square brackets
represents non-planar body waves, moving with speed c̃ along the crack line and
away from the crack-tip, Fig.1b.

It’s interesting to observe that unboundedness (resonance) occurs only for k =
−a, that is when the reduced traction shear wave is associated with Rayleigh edge-
waves being fed into the crack-tip. Indeed, when k = a and Rayleigh waves move
out of the crack-tip, the second and the third term in square brackets combine
into a bounded term.

We now consider the pole s = −k in the context of the full-field solution. Then,
the real interval |k| < δ is associated with a decaying and a propagating wave
along ξ2, the latter with speed c ≥ cR greater than Rayleigh. Indeed, this result
corresponds to a super-Rayleigh loading condition. The condition of exponential
loading, k = ık2,−1 < k2 < 0, still brings a pair of waves along ξ2, one de-
caying and the other propagating, yet the latter moves with sub-Rayleigh speed
Ωλcs(k

2
2 + δ2)−1/2. However, when decay is strong enough along ξ1, i.e. k2 < −1,

the decaying wave turns propagating along ξ2 with speed Ωλcs/
√

k22 − 1, which
generally exceeds cR.

By Jordan’s lemma [5, §1.5], the displacement w(ξ1, 0) vanishes beyond the
crack tip, in agreement with the boundary conditions. The full displacement field
beyond the crack-tip is obtained closing the integration path around K−. Then,
only body waves moving with speed c̃ along the crack line and away from the
crack-tip appear. It is concluded that the crack tip acts as a scatterer of the
applied traction shear wave, Fig.1d.
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Traveling and standing solitary waves in a prestressed coated elastic

half-space.

Yibin Fu

The current study is motivated by the recent surge of interest in strain-induced
buckling patterns that are recognized to have applications at the micrometer and
submicrometer scales ranging from cell patterning, optical gratings, and creation
of surfaces with desired wetting and adhesion properties, to metrology of ultrathin
film properties. One of the fundamental problems that has been much studied is
the buckling of a compressed coated half-space. It is known that when the coating
is much stiffer than the half-space, the initial sinusoidal buckling pattern may
in general suffer a period-doubling secondary bifurcation [1, 2]. However, if the
substrate is subjected to a large enough prestretch before the coated half-space is
compressed, then the period-doubling wrinkling pattern is replaced by a mountain
ridge pattern that looks like a standing solitary wave ([3], figure 14). We first
compute traveling solitary wave solutions for a coated elastic half-space that is
subjected to a general uniaxial compression. We then increase the compression to
reduce the wave speed to zero in order to obtain standing solitary wave solutions.
Connections will be made with previous studies of solitary waves in coated half-
spaces that are un-stressed [4, 5, 6].
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Large strain viscoelastic response of fibre-reinforced materials

Jacopo Ciambella

Fibre-reinforced solids are a class of materials ubiquitously found either in nature
and in artificially made structures. They have peculiar mechanical characteristics
that derive from the combination of a (soft) homogeneous matrix with (stiff) re-
inforcing fibres [1]. Examples includes muscles, arteries, elastomers and soft gels,
to cite but a few. Despite being macroscopically diverse, these materials share mi-
crostructural similarities due to the presence of long-chain molecules intertwined
to each other, which form a spaghetti-like bundled structure with a high-degree of
flexibility. As a result of an externally imposed stress, the long chains may alter
their configurations relatively rapidly due to their high mobility. The requirement
of linking the chains into a network structure is associated with solid-like features,
which allow the material to be stretched up to about ten times of its original
length. In addition, the long molecules may partially slide onto each other causing
an internal reorganization which, macroscopically, manifests itself in a viscous-like
behaviour. The combination of these two effects allows the materials to exhibit
simultaneously the characteristics of a viscous fluid and of an elastic solid.

Reliable constitutive equations, able to predict correctly these effects and en-
ergy dissipation at finite strains, must consider the dependence of the stress upon
the entire strain history (materials with memory). To date, several modelling
strategies have been proposed, including: state variables [2], hereditary integral
[3] and multi-integral formulations [4], as well as elastic-viscoplastic constitutive
relationships [5].

In this talk, I will present a microscopically informed model to describe the large
strain viscoelastic response of fibre-reinforced solids. The main kinematic assump-
tion consists in the multiplicative decomposition of the deformation gradient into
a viscous and an elastic part:

(1) F = FvFe

in which Fe is the macroscopic degree of freedom associated with the elastic (re-
versible) deformation, whereas Fv is the microscopic degree of freedom associated
with the material reorganisation (irreversible process). In addition, at each ma-
terial point x in the current configuration of the solid, one can define the local
orientation of the microstructure through the unit vector field n.

If we further assume that dissipation only occurs because of the internal reor-
ganization of the long molecular chains, the elastic strain energy must depend on
the elastic part of the deformation gradient through the left-Cauchy Green strain
tensor, i.e., Be = FeF

T
e . With this in hand, the internal rate of working is

W int = Ḟ =

∫

Pt

1

2
(ρv2)· + ρΨ̇(Be,n⊗ n)

=

∫

Pt

(

ρv̇ · v + ρ
∂Ψ

∂Be
· Ḃe + ρ

∂Ψ

∂A
· Ȧ

)

dv(2)
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in which the structural tensor A = n ⊗ n appears in strain energy density due
to the transverse isotropy nature of the material. As such, the external rate of
working is given by

Wext =

∫

Pt

b · v dv +

∫

∂Pt

t · v da+

∫

Pt

g · ṅ dv +

∫

Pt

σv ·B▽

e dv(3)

where b and t are the external body force and surface traction, respectively, and
b is the velocity field. g are the external generalised forces conjugate to the
microstructure and represent an external body moment. In Eq. (3) σv is the so
called active stress, that is the dual variable of the internal remodelling velocity
B▽

e = F
(

F−1
v F−T

v

)·
FT also known as Oldroyd upper convected derivative [6]. By

prescribing that the dissipation must be positive for every realizable process, one
obtain the Clausius-Duhem inequality, which prescribes a positive dissipation for
every realizable process:

(4) D = Wext −Wint =

∫

Pt

ξ dv, ξ ≥ 0.

On substituting (2) and (3) in (4) and on assuming that the material response
is elastic with respect to the natural configuration and dissipation is only asso-
ciated to the microscopic reorganization, one obtains the following set of balance
equations:

ρv̇ = b+ div σ, σ = 2ρ
∂Ψ

∂Be
Be(5)

n×
(

g − ρ
∂Ψ

∂A
n
)

= 0(6)

which represent the balance of linear momentum and the balance of torques, re-
spectively. Therefore, the Clausius-Duhem inequality requires

(7) ξ =
(

σv − ρ
∂Ψ

∂Be

)

·B▽

e ≥ 0

which holds true for every B▽

e , if the following assumption is made

(8) D(B▽

e ) = σv − ρ
∂Ψ

∂Be

where D is a fourth-order positive definite tensor. Equation (8) represents an evo-
lution equation for the elastic deformation Fe. In order to solve it, a constitutive
equation for the active stress σv must be provided; possible choices were presented
in [6, 7], for nematic elastomers and anisotropic fluids, respectively. Equations
(5)-(6) together (8) define the equilibrium of the nonlinear viscoelastic solid. The
evolution equation of the elastic strain is a nonlinear differential equation that can
be solved numerically. However, when the material reorganization is much faster
than the deformation, one could recover a linear evolution equation that gives the
classical Cauchy stress of a viscous fluid. On the other hand, a second order ex-
pansion of the remodelling equation around the passive equilibrium solution gives
the classical nonlinear Maxwell model [8, 9, 10].
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Linearly polarised waves in pre-strained elastic materials

Luigi Vergori

The propagation of waves in elastic materials has been investigated extensively for
many decades. Nevertheless, the existence and uniqueness of solutions to Cauchy
problems governing the wave propagation in a solid represent still nowadays an
extremely challenging problem in nonlinear elasticity.

To the best of our knowledge, the best-so-far approaches to tackle the existence
of Cauchy problems related to the wave propagation in three-dimensional nonlin-
early elastic solids are based on the Glimm scheme and its variants, or the method
of compensated compactness. These methods have however produced results only
in very special cases. Concerning the full three-dimensional equations, very little
is known with the desirable detail.

Small amplitude waves. The difficulty of solving the full nonlinear three-dimen-
sional equations of wave propagation in elastic solids has been one of the reasons
for the development of the theory of incremental motions. In this theory a wave is
regarded as an infinitesimal perturbation superposed to a finite static deformation
of an elastic material. The concept of incremental motions was introduced in the
pioneering paper by Hayes and Rivlin [7], and since then the theory of small-
on-large elastic deformations has been refined by several authors. The small-on-
large theory has revealed effective not only to analyze the stability of equilibria in
solid mechanics (see, for instance, the works of Destrade, Ogden and co-workers



Mathematical Aspects of Nonlinear Wave Propagation in Solid Mechanics 611

[3, 4, 15] and references therein), but also to studying the propagation of shear
waves generated by acoustic radiation forces in soft tissues [8, 9, 10].

Recently, we have shown that the incremental theory can be adopted to test
whether or not a given strain energy function is good enough to model the elastic
response of a material. In [13] we discuss the appropriateness of modelling brain
tissue as a Mooney-Rivlin material by recurring to some identities derived within
the theory of small-on-large deformations.

Simple shear tests performed on small rectangular fresh samples of porcine brain
at quasi-static strain rates revealed a linear shear stress-shear strain relationship
over a significant range of amount of shear (up to 60% of strain) [2]. In view of
this linear relationship, brain tissue is often modelled as a Mooney-Rivlin material.
However, as pointed out by Mangan et al [11], a strain energy function in the form

(1) W =
C10

2
(I1 − 3) +

µ− C10

2
(I2 − 3) + Ĥ(I1 − I2),

with C10 and C01 being constants, I1 and I2 the first two principal invariants of

the left Cauchy-Green deformation tensor, and Ĥ an arbitrary smooth response
function depending on I1 − I2, allows the linear relationships between shear stress
and shear strain in simple shear tests. Clearly, for Ĥ ≡ 0 the strain energy density
(1) reduces to the Mooney-Rivlin model. That is why the strain energy function
(1) is known as generalized Mooney-Rivlin (GMR) model, and the corresponding
class of elastic solids is said to be constituted by GMR materials.

It is therefore natural to wonder whether a GMR model with a non-identically
vanishing Ĥ might lead to a deeper interpretation of the experimental data than on
using the Mooney-Rivlin model. To give an answer, one can resort to the pseudo-
universal relations for GMR materials which relate the speeds of small-amplitude
shear waves propagating in a pre-strained material. In this talk we will show how
these relations serve as necessary conditions for the strain energy function of an
incompressible, isotropic hyperelastic solid to be modelled through (1), and help

with the introduction of the response function Ĥ which fits best the experimental
data.

Finite amplitude waves. In 2003 Catheline et al [1] reported the first experi-
mental observation of a shock transverse wave propagating in an elastic medium.
The shock formation was observed in Agar powder (3%) in suspension in a solid
gelatin solution (3%) thank to an ultra-fast scanner able to acquire 5000 frames
per second. The experimental data recorded are in good agreement with the
theoretical predictions based on the modified Burger’s equation derived for the
propagation of plane transverse waves in nonlinear Kelvin-Voigt materials. One
year later Sack et al [14] used magnetic resonance elastography to observe non-
linear shear waves and deduce from their shapes valuable information about the
nonlinear stress-strain behaviour of soft tissues.

Differently from the analyses and simulations conducted by Li and co-workers
[9, 10] which are based on the incremental equations of motion, the experimental
data and theoretical predictions contained in [1] have been obtained by considering
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waves of small-but-finite (and not infinitesimal) amplitude. Recently, the approach
of Catheline et al [1] has been adopted to study the internal deformation of brain
from an impact. Esṕındola et al [5] considered linearly-polarised waves of small-
but-finite amplitude to obtain valuable information about the nonlinear stress-
strain behavior of brain tissue. This means that non-linear acoustic methods have
a potential to improve non-destructive diagnostic of soft tissues. In this framework
it is therefore of fundamental interest to study small-but-finite-on-large motions
as the investigation of wave propagation on a given static pre-stretch may enlarge
the horizon of experimental evaluations.

Within the theory of small-superposed-on-finite deformations, Fu and Ogden
[6] explain thoroughly the analytical scheme to study the nonlinear stability of
equilibrium configurations of hyperelastic bodies. The standard procedure is to
study the evolution in time of a perturbation in the form of a small-amplitude
(say O(ǫ), with |ǫ| ≪ 1) travelling wave. The linear theory provides only the wave
modes and the conditions under which no perturbation propagates through the
pre-strained material. The wave amplitude, which cannot be determined from the
linear theory, is instead to be obtained from a weakly nonlinear stability analysis in
which the wave amplitude is assumed to depend on the slow-time variable τ = ǫt.
By following a similar approach in [12] we have studied the wave propagation of
finite amplitude in a pre-strained incompressible hyperelastic solid with the clear
intention to provide experimentalists a precise and feasible guidance to new exper-
imental settings for the investigation of nonlinear effects and the determination of
some elastic moduli of solids.

The objective of this part of the talk is threefold. Firstly, we focus on the
necessary conditions for linearly polarized transverse waves of finite amplitude to
propagate in a pre-strained incompressible hyperelastic solid. We shall show that
these waves can propagate only if the cross product of the directions of polarization
and propagation is a principal direction of the left Cauchy-Green deformation
tensor associated with the pre-strained state (which, for the sake of brevity, is
denoted B̄ in what follows). This means that linearly polarized transverse waves
of finite amplitude can propagate only in principal planes of B̄. Secondly, we show
that, when the wave amplitude is much smaller than the maximum displacement
from the reference configuration in the pre-strained state, depending on the angle
subtended by the direction of propagation and the principal directions of B̄ the
nonlinear effects become important at time-scales of different orders. Finally, we
shall design theoretically a procedure aiming at the determination of the Landau
constants of the fourth-order weakly nonlinear theory of elasticity.
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Università di Roma ”La Sapienza”
Via Eudossiana 18
00184 Roma
ITALY

Prof. Dr. Michel Destrade

School of Mathematics, Statistics and
Applied Mathematics
National University of Ireland, Galway
University Road
Galway H91 TK33
IRELAND

Prof. Dr. Hüsnü A. Erbay
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