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Juan Velázquez, Bonn

3 March – 9 March 2019

Abstract. This workshop had the aim to bring together leading experts
from different fields, i.e. interacting particle systems, dynamical systems and
kinetic theory, to consider questions related to the dynamics of the Lorentz
gas and to promote the exchange of information concerning the techniques
that have been developed in different contexts and communities.

Mathematics Subject Classification (2010): 82B40, 82C05, 76P05, 35Q20, 35Q84, 82D05,

70F45, 82C22, 37A60, 35B27, 82C70, 60J60, 60J65, 35Q70 .

Introduction by the Organizers

The mini-workshop Lorentz Gas Dynamics: particle systems and scaling limits,
organised by Alessia Nota (Bonn), Chiara Saffirio (Zürich) and Juan Velázquez
(Bonn) gathered together 18 participants, including the organisers, with broad
geographic and thematic representation. Indeed, being the Lorentz gas a proto-
type model in the derivation of effective equations from Hamiltonian mechanics,
it has been approached by several different mathematical communities using dif-
ferent mathematical tools from statistical mechanics to probability, from analysis
to number theory. The main goal successfully achieved in the workshop was to
strengthen the bridge among the communities of interacting particle systems, dy-
namical systems, kinetic theory and quantum mechanics.

The format of the workshop consisted of two to four one-hour lecture per day,
thus leaving several free slots for spontaneous discussions. Such free time was
very important for people from different communities to get to know each other,
deepening the arguments of the lectures and developing new scientific interactions.
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Young researchers especially benefit from it. Incidentally we underline that dif-
ferent scientific ages were represented, with a significant number of women and
young participants.

The workshop developed around the following main themes: validity of the
linear Boltzmann equation under different scatterers distributions; fluctuations;
nonlinear models; quantum many-body systems.

Concerning the linear models, a very interesting and highly animated talk has
been given by BerntWennberg, who reviewed the known results and open problems
on the Lorentz model with scatterer distributions different from Poisson and made
some conjectures supported by numerical simulations. Closely, Raphael Winter
provided a rigorous derivation of a linear Boltzmann equation with annihilation,
in the Boltzmann-Grad limit, from an ideal Rayleigh Gas with annihilation, while
Christopher Lutsko proved an invariance principle and a central limit theorem for
the Lorentz Gas in dimension 3 considering simultaneously the Boltzmann-Grad
kinetic limit and diffusive scaling.

Fluctuations around the effective dynamics were analysed in the talks by Giada
Basile and Sergio Simonella. Giada Basile presented a gradient flow approach
for the linear Boltzmann equation arising from a Lorentz model and the large
deviation asymptotics of a Kac random walk with bounded velocities, whereas
Sergio Simonella presented a work in progress concerning dynamical fluctuations
around the nonlinear Boltzmann equation, showing that a central limit theorem
holds in the low-density limit of a hard-sphere system.

A majority of the contributions were devoted to nonlinear models. They in-
cluded: some numerical simulations and analytical study of the limits at different
scales of the Uchiyama model presented by Nathalie Ayi; a microscopic approach
to classical quadratic models of cross diffusion appearing in population dynamics,
showing that the solutions of these models can be obtained as limits of solutions
of microscopic models in some suitable limit presented by Laurent Desvillettes;
entropy inequalities for the Kac model providing new estimates on the rate of
convergence to equilibrium presented by Maria C. Carvalho. On the same topic,
Eric Carlen and Mario Pulvirenti focused on thermodynamical properties of non-
equilibrium steady states for open systems in kinetic theory, respectively for the
BGK model and for the nonlinear stationary Boltzmann equation. These talks
were followed by several discussions that will certainly lead to future progresses.

The theme of many-body quantum systems has been addressed by: Giulia Basti,
who presented a quantum Lorentz gas with Gross-Pitaevskii potential which ex-
hibits a universal behaviour for large N ; François Golse, who introduced the new
notion of quantum empirical measures with a clear correspondence between clas-
sical and quantum objects, thus making easier for the participants from outside
the quantum community to understand and appreciate the powerfulness of these
new mathematical objects; Jory Griffin, who gave a talk on quantum transport
in a low-density periodic potential showing that the time evolution of a quan-
tum wave packet in a periodic potential converges in a combined high-frequency
Boltzmann-Grad limit, up to second order in the coupling constant, to terms
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that are compatible with the linear Boltzmann equation; Nikolai Leopold, who
focused on a quantum system of non-relativistic fermions coupled to a zero mass
quantized scalar field, proving that the time evolution in a coupled mean-field
and semiclassical limit of many fermions can be approximated by the fermionic
Schrödinger-Klein-Gordon equations.

Finally, the talk by Massimiliano Gubinelli – followed by stimulating discussions
– reviewed the theory of rough paths, which could be a new, powerful technique to
approach kinetic models. In particular, he presented some perspectives concerning
the derivation of the linear kinetic equations from the random Schrödinger equation
with a homogeneous random potential (Quantum Lorentz Gas).

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Numerical Study of the Uchiyama particle model

Nathalie Ayi

The physical context that we are interested in is the one of the kinetic theory
of gases. There exists several levels of description for this one: the microscopic,
the mesoscopic and the macroscopic scales. The famous sixth problem of Hilbert
is about linking these different scales. More specifically, it suggests to use the
Boltzmann equation as an intermediate step in the transition between atomistic
and continuous models for gas dynamics. The historical result addressing this
question is due to Lanford [10] who established the convergence in the low density
limit to the Boltzmann equation, starting from the particle system called hard
spheres (only for short times). Until the end of the 90’s, the proof of Lanford has
been completed by many authors. More recently, the proof has been improved
by means of quantitative estimates by Gallagher, Saint-Raymond, Texier [8], Pul-
virenti, Saffirio, Simonella [12]. Recent improvements regarding the linear setting
have been also made (Bodineau, Gallagher, Saint-Raymond[4], Ayi [2], . . . ).

We take an interest in a variant of this setting: discrete velocity models (DVM).
It consists in models involving particles which can take only a finite number of
velocities. The model we are interested in is the Broadwell one [5]: we define the
set S as follows

(1) S := {v1, v2, v3, v4},
with v1 := (1, 0), v2 := (−1, 0), v3 := (0, 1), v4 := (0,−1) and we study the
equation

(2) ∂tf(t, x, v) + v · ∂xf(t, x, v) = a[f(t, x, iv)f(t, x,−iv)− f(t, x, v)f(t, x,−v)]
with t ∈ R+, x ∈ R2, v ∈ S, a a nonnegative constant and where i denotes
the π/2 rotation operator. The two natural microscopic models which would be
the equivalent of the hard spheres for discrete velocities are the HPP model [9]
introduced by de Hardy, Pomeau et de Pazzis and the Uchiyama model [13]. The
first one is a lattice model while the second one is continuous.

The HPP model describes the evolution of particles on a lattice in dimension
two with particles which have their velocities living in S. The description of the
dynamics is the following: during one unit of time, each particle jumps in the
direction of its velocity. At each site where the number of particles is two and
where two particles have opposite velocities, there is a collision, and each velocity
turns with an angle of π/2. For all the other sites, nothing changes.

The Uchiyama model describes the evolution of “hard” squares in R2 whose
diagonals are of length ε and parallel (or orthogonal) to the coordinate axes.
Particles move freely with velocities belonging to S until they undergo a collision.
We distinguish two types of collision: the “head-on” collisions and the “side-to-
side” ones. The collision rules are the following: in case of a “side-to-side” collision,
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the particles involved exchange their velocities while in case of a “head-on”, the
velocities undergo a rotation of angle ±π/2.

Surprisingly, Uchiyama proved in [13] that, except for very particular situations,
in the low density limit, starting from his model, we do not obtain the Broadwell
equation. The same applies to the HPP model. The question of the limit model
associated with the Uchiyama one is then open. Indeed, one of the inherent dif-
ficulties of those DVM models is the appearance of a phenomenon of recollisions
between the particles which cannot be controlled. Therefore, if a kinetic equation
exists, it should contain a memory term associated with this phenomenon. Never-
theless, up to now, it is a very difficult problem and there is not much more which
is known. This is why we have decided, in a first place, to adopt a numerical
approach.

We carry out the molecular dynamics simulation for the Uchiyama’s particle sys-
tem using an Event-Driven algorithm. The Event-Driven method is concerned
with the times at which events, in this case collisions, take place. The algorithm
is the following: you establish a list of the collisions to come if the particles moved
only in straight lines. This list is ordered according to the time at which the col-
lisions will take place, the first element being the closest collision in time. The
particles are then displaced until this time and the collision is carried out. The
list of future collisions is then updated. Indeed, some of them may be invalidated
by the collision that has just taken place since the velocities and therefore the
direction of the two particles involved have changed, new ones may also become
possible for the same reasons. Then, again, we move to the nearest collision in
time and so on . . .

First, we take an interest in the low density limit, the one for which we fail to
obtain the Broadwell equation. In that case, in the spirit of the paper of Aoki et
al [1] in the hard spheres case, we study the backward cluster. A backward cluster
is defined as the group of particles involved directly or indirectly in the backwards-
in-time dynamics of a given tagged sphere. We denote Ji = {i1, i2, . . . , in} with
ir 6= is for i 6= s the backward cluster of the particle i, Ki = |Ji| the cardinality of
Ji. We are interested in < K >t the average with respect to the initial position
of the cardinality of the backward cluster of a tagged particle at time t. We focus
on the quantity

r = lim
t→∞

1

t
log(< K >t +1).

Our preliminary result shows that, as in[1], we should obtain an exponential esti-
mate of the growth in time of < K >t for the Uchiyama model, with a different r
than for the hard spheres.

We introduce the notion of internal and external recollisions: internal recolli-
sions (recollision in the pseudo-trajectory sense in the backward trajectory of a
particle), and external recollisions (when the two backward clusters of two parti-
cles have a non-empty intersection). Thus, for N particles and M trajectories, we
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are interested in the two quantities:

P i.r. =
1

N

1

M

M
∑

m=1

N
∑

i=1

1{particle i presents a recollision on the m-th trajectory}

and

P e.r. =
1

M

1
N(N−1)

2

M
∑

m=1

∑

1≤i<j≤N

1{particle i and particle j undergo an external recollision}.

We think that, most of the time, there is propagation of chaos, except exactly
where we would need to have it to obtain the Broadwell equation. Therefore, we
expect P i.r. not to be small and, on the contrary, P e.r. to be small for the Uchiyama
model, while it is clear that it is small in both cases for the hard spheres model.
The results numerically obtained goes exactly in that direction.

Uchiyama Hard Spheres

N t < K >t Pi.r. Pe.r.

3000 1 7 0.16 0.02
4000 1 7.8 0.15 0.02
5000 1 7.8 0.15 0.01
8000 1 7 0.15 0.008
10000 1 7.8 0.15 0.006
12000 1 7.6 0.14 0.005

N t < K >t Pi.r. Pe.r.

3000 1 7.3 0.02 0.02
4000 1 7 0.02 0.01
5000 1 7 0.02 0.01
8000 1 7 0.01 0.007
10000 1 7 0.01 0.006
12000 1 7 0.01 0.005

N t < K >t Pi.r. Pe.r.

3000 1.9 14.8 0.30 0.07
N t < K >t Pi.r. Pe.r.

3000 1.9 13.7 0.05 0.06

N t < K >t Pi.r. Pe.r.

3000 2.8 21.6 0.43 0.14

Finally, in a last part, we observe a regime which seems close enough from the
diffusive limit. We recall that for the hard-spheres, the limit process is a Brownian
motion. Of course, regarding our previous remarks, we have no hope to obtain
such a process for our diffusive limit. We numerically test a wider class: fractional
Brownian motion. Our preliminary results indicate that the limit process does not
belong to that class either.

From a theoritical point of view, there are many paths that we plan to explore.

• We could as in [6] work in an extended phase space. The good new set of
parameters would be given by the one which allows to make appear the
pathological structures (two particles moving one ahead of the other one
in the same direction).
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• We could put an additional term catching all the pathological situations
(like the “flowers” appearing in the case of the Two-Dimensional Magne-
totransport equation, see [3]).

• We could also rescale in time and take an interest in the super diffusion
limit as in [11] to obtain the usual limit process.

• We could study a version with randomness of the Uchiyama model for
which one we could hope to obtain the Broadwell equation (as it is the
case for the HPP model, see [7]).
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Large deviations for some linear kinetic equations

Giada Basile

Linear Boltzmann equations, such as the Boltzmann-Grad limit for the Lorentz
gas, have the following general form

(∂t + b(v) · ∇x)f(t, x, v) =

∫

V
π(dv′)σ(v, v′)

[

f(t, x, v′)− f(t, x, v)
]

,

where π(dv) is a probability measure on the velocity space V , b is the drift,
σ(v, v′) = σ(v′, v) ≥ 0 is the scattering kernel and f is the density of the one-
particle distribution with respect to dxπ(dv). The condition on σ follows from a
reversibility assumption. The velocity space V can be either Rd, Td, Sd−1, or a
discrete state space. We assume that the position space is the d dimensional torus.
From a probabilistic point of view, the equation is the Fokker-Planck equation of
the process (V (t), X(t))t≥0 where V (·) is an autonomous jump process, taking
value in V , with jump rate π(dv′)σ(v, v′) and X(·) is an additive functional of V ,

namely X(t) =
∫ t

0
b(Vs)ds.

Given N independent copies of the process (V (t), X(t))t≥0, one can construct

the empirical measure αN
t (dx, dv) = 1

N

∑N
i=1 δXi(t)(dx)δV i(t)(dv). The associated

linear Boltzmann equation (LBE) is the law of large numbers of the empirical
measure in the limit N → ∞.

We would like to investigate large deviations, i.e. the asymptotic probability
that the empirical measure differs from the typical one ftdx dπ, with ft solution
to the LBE. To this aim it is convenient to consider the current as a dynamical
variable. Set ηf = σ(v, v′)

[

f(t, x, v)− f(t, x, v′)
]

, then LBE can be rewritten as
{

(

∂t + b(v) · ∇x

)

f(t, x, v) +
∫

π(dv′) η(t, x, v, v′) = 0,

η = ηf

where the first equation plays the role of a continuity equation. Together with the
empirical measure consider the empirical current QN(dt, dx, dv, dw) as

QN (F ) =
1

N

N
∑

i=1

∑

k

F
(

τ ik, X
i(τ ik), V

i(τ i−k ), V i(τ ik)
)

,

for every F ∈ C([0, T ] × Td × V × V ) anti-symmetric in the exchange of the
velocities. The following continuity equation holds

αN
t (φ) − αN

0 (φ) =
1

N

N
∑

i=1

∑

k≥0

[

φ
(

X i(τ ik), V
i(τ ik)

)

− φ
(

X i(τ ik), V
i(τ i−k )

)

)
]

,

for any φ : Td×V → R continuous and bounded. Assume at time zero {V i(0), X i(0)}
iid with law ν. For every couple (µ,Θ) (measure and current) satisfying the con-
tinuity equation, one expects the following asymptotics

Pν

[

(αN , QN) ∼ (µ,Θ)
]

∼ e−N I(µ,Θ),
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with an action functional I(µ,Θ) = H(µ0|ν) + J(µ,Θ). Here the first term is the
relative entropy with respect to the initial distribution and

J(µ,Θ) =

∫ T

0

dt

∫

dx

∫∫

V×V
π(dv)π(dw)Φσ(g(t, x, v), g(t, x, w), ζ(t, v, w)),

where dµt = g(t)dπ, dΘ = ζ(t)dt dπ ⊗ dπ and Φ is a convex, positive function
which is equal to zero iff the couple g, η satisfies the LBE. The statement can be
easily proved at least in the homogeneous case, i.e. the drift b = 0 and f depending
only on time and velocity, under suitable assumption on the jump rate.

In a work in progress together with D. Benedetto, L. Bertini and C. Orrieri we
investigate the large deviation asymptotics for a Kac-like walk, which is described
at the kinetic level by a non linear homogeneous Boltzmann equation. At the
microscopic level, at random times two particles with velocities v and v∗ “collide”
and change their velocities in such a way the total momentum is preserved, i.e.,
denoting by v′, v′∗ their velocities after collision, v + v∗ = v′ + v′∗.

We expect that the action function is similar to the previous one, but now with
the function Φ computed on the product of the densities, namely Φσ(gg∗, g′g′∗, ζ),
where, using the usual kinetic notations, g∗ = g(t, v∗), g′∗ = g(t, v′∗). The solution
to the homogeneous Boltzmann equation is then the zero level set of the rate
function.

Universal low-energy behavior in a quantum Lorentz gas with

Gross-Pitaevskii potentials

Giulia Basti

(joint work with S. Cenatiempo, A. Teta)

Consider a quantum particle moving in three dimensions through a large number of
randomly distributed obstacles whose dimension is much smaller than the average
distance among them. If the energy of the particle is sufficiently small we can
assume its wavelength to be much larger than the two above mentioned length
scales. Under these assumptions, which describes situations emerging in physical
contexts such as scattering of slow neutrons from condensed matter, one reasonably
expects that the details of the interaction become irrelevant and the behavior of
the system can be characterized using only few physical parameters exhibiting
what is called a universal behavior.

In this talk I report a work in collaboration with S. Cenatiempo and A. Teta [1]
where we give a rigorous proof of this expectation. In our description we model
the obstacles rescaling a potential V ∈ L1(R3, (1 + |x|4)dx) ∩ L3(R3) defining

(1) V N
i (x) = N2V (N(x − yi))

where the positions {yi}i=1,...N of the N obstacles are assumed to be independent
and identically distributed random variables with common density W. Obviously,
W ≥ 0 and

∫

W (x)dx = 1. In addition, we ask W ∈ L1(R3) ∩ Lp(R3) for some
p > 3.
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The scaling defined in (1) is known as Gross-Pitaevskii scaling and describes
rare (the range of the interaction scales as N−1) but strong (due to the factor N2

in front of the interaction) interactions. It’s worth noticing, in particular, that
the range of the interaction is much smaller than the average distance among the
particles (which is of order N−1/3) and hence it is suitable to describe the regime
of our interest. The evolution of the particle is then given by the Hamiltonian
operator in L2(R3)

(2) HN = −∆+

N
∑

i=1

V N
i (x)

where we set ~ = 1 and we are assuming the particle to have mass 1/2.

Rewriting the interaction term as 1
N

∑N
i=1 w

N
i (x) we have that

wN
i (x) = N3V (N(x − yi)) converges toward a delta distribution in the limit

N → ∞ and by the law of large numbers one would expect the evolution to
be approximated by the Hamiltonian −∆ + bW where b =

∫

V (x)dx. Actually,
this formal computation leads to the wrong coupling constant. Indeed, the correct
limiting Hamiltonian turns out to be

(3) H = −∆+ aW

where the constant a is the scattering length of the unscaled potential V defined
by 4πa =

∫

V (x)f(x)dx where f is the solution of

(−∆+ V )f = 0

with boundary condition lim|x|→∞ f(x) = 1. Finiteness of a is guaranteed under
the assumption that 0 is neither an eigenvalue nor a resonance for V . Thus, in
the limit of a large number of obstacles the system is described by an Hamilton-
ian whose only dependence on the interaction potential is through its scattering
length, which is indeed known to be the correct parameter describing the inter-
action in the regime of low energy. We stress that the appearance of the scatter-
ing length seems to be in agreement with the more difficult many-body problem
where N particles interact through two-body Gross-Pitaevskii potentials exten-
sively studied, in particular, in the context of Bose-Einstein condensation (see,
e.g. [4, 5, 6, 7, 3, 2, 12, 11] ).

The convergence of the N dependent Hamiltonian (2) toward the limiting
Hamiltonian (3) is shown in probability in the strong resolvent sense (which in
particular implies convergence of the dynamics) and we are also able to charac-
terize fluctuations around the limiting Hamiltonian. For the precise statements of
our results we refer to [1, Theorem 1,2]. Remarkably, we don’t require positive-
ness of the potential and negative scattering length are also admissible. The proof
is strongly based on the analogy with the study of boundary value problems for
the Laplacian on randomly perforated domains addressed in [14, 13, 8, 9, 10] and
Hamiltonians with infinitely many point interactions considered in [7].
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[4] L. Erdős, B. Schlein, H.T. Yau. Derivation of the Gross-Pitaevskii hierarchy for the dynam-
ics of Bose-Einstein condensate, Comm. Pure Appl. Math., 59 (2006), 1659–1741
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Non-Equilibrium steady sates for a thermostatted Lorentz model

Eric Carlen

(joint work with R. Esposito, R. Marra, C. Mouhot and J. Lebowitz)

Consider a particle model for a of a gas of particles on the one-dimensional torus
that interact only through binary energy conserving collisions. We also suppose
that there are two types of scatterers distributed on the torus according to some
Poisson distribution, as in a Lorentz model, except that each scatterer has a tem-
perature, T1 or T2 depending on its type, and a certain radius of interaction, so
that when a gas particle travels across the interaction interval, a Poisson clock
runs, and if it goes off, the particle assumes a new velocity chosen at random
according to the Maxwellian distribution for the temperature of the scatterer.

In an appropriate scaling limit, the net effect of the background scatterers is to
produce two uniform thermal reservoirs. Whatever the speed of a gas particle, its
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rate of interaction with the reservoirs depends only on the density of the scatterers,
again in an appropriate limit in which their intervals of interaction are unlikely to
overlap. The kinetic equation that one would expect to arise from such a model
in such a limit would be of the type

∂tf + v∂xf = αMf + (1− α)ρf
1

2
(MT1 +MT2)− f

where α ∈ [0, 1], f = f(t, x, v), and

MTi
(v) :=

e−|v|22Ti

√
2πTi

, Mf (t, x, v) := ρf(t, x)
e
− |v|2

2Tf (t,x)

√

2πTf (t, x)
.

except that one might expect a Kac-Povzner type collision kernel, also known
as a “soft-spheres” kernel. Our work concerns the kinetic equation itself, and
not its rigorous derivation from an underlying particle system, although the brief
description of such a system that we have given hopefully illuminates the physical
context of our model.

We are concerned with the existence and uniqueness of non-equilibrium steady
states (NESS) for our system. It is easy to see that the unique spatially homoge-
neous steady state is given by

f∞ := αMT∞ + (1− α)
MT1 +MT2

2
, T∞ =

1

2
(T1 + T2)

Theorem For all T1, T2, there is an explicitly computable α0 > 0 such that for all
α ∈ [0, α0), every steady state solution f∞ that belongs to L1(T × R), has finite
second moment and is such that ρ ∈ Lp(T ) for some p > 1, is constant in x.

We also prove the stability under perturbation for all α ∈ [0, 1]. For this, we
introduce the (real) Hilbert Space H1

α with inner product

〈f, g〉H1
α
=

∫

T×R

(f(x, v)(1 − ∂2x)g(x, v))
1

fα,∞
dxdv .

Theorem For all α ∈ [0, 1], the spatially homogeneous steady state described
above is asymptotically stable under perturbation in H1

α. Small perturbations decay
exponentially fast in time in this space.

The theorem shows that if for some α > α0 there do exist non-uniform steady
states, they do not arise as a branch bifurcating off the family of spatially homo-
geneous steady state solutions.

If α = 0, the term Mf is not present, the only spatially homogeneous steady
state is f∞ = 1

2 (MT1 +MT2), and the equation is linear. It can be interpreted as
the forward equation of a Markov process probabilistic methods can-be used to
prove that this steady state is unique and is approached exponentially fast. Hence,
for α = 0, there are no steady states that are spatially inhomogeneous.

Next, consider the case α = 1: there are no thermal reservoirs and energy is
conserved. There is a one-parameter infinite family of steady states, namely MT
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for all T > 0. Moreover, if f0 is such that
∫

T×R

v2f0(x, v)dxdv = T,

∫

T×R

f0(x, v) ln f0(x, v)dxdv < +∞,

and f(t, x, v) is the solution of with initial datum f0, then

H (f(t, ·, ·)|MT ) =

∫

T×R

f(t, x, v) ln
f(t, x, v)

MT (v)
ddxdv

decreases monotonically to zero, and is stationary only when f = MT . It follows
that MT is the unique steady state among solutions with second moment equal
to T and finite entropy, and thus every steady state for α = 1 with finite second
moment and entropy is spatially homogeneous (and equal to MT ).

The rigorous study of NESS for nonlinear kinetic equations remains very chal-
lenging. One problem that has been studied by several authors is the Boltz-
mann equation in a slab with different temperatures on the two walls, with and
without external forces. At this level of generality, one cannot always expect a
unique NESS – there may be a symmetry breaking transition, such as the onset of
Rayleigh-Bernard flow. Even without external forces, existence of NESS for the
slab problem is a highly non-trivial, and existing results do not yield provide any
information on uniqueness or non-uniqueness. The results obtained here are the
only non-perturbative results on this problem that we are aware of.

The Entropy Problem for the Kac Model

Maria Carvalho

(joint work with E. Carlen and A. Einav)

The Entropy Problem for the Kac Model has been actively studied in recent years.
We present some new results and discuss some of the remaining problems. This is
joint work with E. Carlen and A. Einav.

The Kac Walk is a Markov jump process for an N particle model of a gas
interacting through binary collisions between molecules. At random times arriving
in a Poisson stream, pairs of indistinguishable particles, with one clock for each
pair, undergo an energy conserving collision in which their velocities are rotated
at a random angle, again, chosen uniformly. In a more physically realistic version,
the Poisson clocks governing the collision times for pairs of particles could run
at rates that are related to the energy of these pairs of particles. In the original
model by Kac in 1956 these rates were uniform.

More precisely, the Kac Walk is a continuous time Markov jump process whose
state space is S, the sphere of radius

√
N in RN . Let v = (v1, . . . , vN ) denote

a generic element of the state-space. The generator LN,γ , acting on continuous
functions F on S, is given by

LN,γF (v) = −N
(

N

2

)−1
∑

i<j

(1 + v2i + v2j )
γ 1

2π

∫ π

−π

(F (v) − F (Ri,j,θv))dθ
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where (Ri,j,θv)k = vi(θ) = vi cos θ+vj sin θ for k = i, and equals vj(θ) = −vi sin θ+
vj cos θ for k = j and equals vk otherwise, and where γ ∈ [0, 1] is the parameter
that measures the relation of the Poisson clocks and the energy of the colliding
pair of particles. Let dσN denote the uniform probability measure on S. It is
the unique invariant measure for this process, which is ergodic and reversible.
Therefore, the Kac Master equation,

∂

∂t
F (v, t) = LN,γF (v, t) ,

is the forward Kolmogorov equation describing the evolution of the law F (v, t)dσN
of the state under the process (assuming that the law of the initial state is abso-
lutely continuous with respect to dσN .) The purpose of Kac’s model was to give
a probabilistic description of a N particle gas from which he could deduce, in the
limit N → ∞, the evolution of the single particle marginals of solutions of the Kac
Master equation with ‘chaotic’ initial data, by a one dimensional Boltzmann-like
equation

∂

∂t
f(v, t) = Qγf(v, t)

where the non-linear operator Qγ is given below. (In his 1956 paper, Kac only
consider the case γ = 0, but more recent work has extended his results to other
values of γ as discussed below.)

Kac proposed that this rigorous connection between the Master equation and
the non-linear Kac-Boltzmann equation could be exploited to prove results on the
non-linear evolution equation via analysis of the Kac Walk. He was particularly
interested in rates of of approach to equilibration. Some recent work on the Kac
program has gone in the opposite direction. While the rigorous mathematical
investigation of non-linear kinetic equations such as was in a primitive state in
1956 when Kac made his proposal, with most of what was known contained in a
1932 paper of Carleman, it has advanced considerably since that time. A recent
paper of Mischler and Mouhot entitled On Kac’s program in kinetic theory uses
the analytic advances in the understanding of the non-linear Boltzmann equation
to obtain deep results on the behavior of the Kac Walk.

In this work, we validate Kac’s original vision for his program by giving direct
proofs of some new functional inequalities for the Kac Walk from which we deduce
bounds on the rates of relaxation to equilibrium for solutions of the Kac-Boltzmann
equation, just as Kac had proposed. The results we obtain for the Kac Walk them-
selves are new and interesting, and can be viewed as a partial positive resolution
of the ‘Almost’ Cercignani Conjecture for the Kac Walk, as discussed by Villani.
The key to our approach is the introduction of a new strong form of Kac’s notion
of chaos, and we shown that (1) under the assumption of such chaos, there is rapid
approach to equilibrium of the ‘Almost’ Cercignani Conjecture type, and that (2)
the chaotic state formed by restricted tensor products satisfy this stronger form of
chaos. From these results we deduce ‘Almost’ Cercignani Conjecture bounds for
the Kac-Boltzmann equation.
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A microscopic approach to quadratic cross diffusion systems

Laurent Desvillettes

Cross diffusion models are ubiquitous in population dynamics as well as physics.
One of the most famous models was proposed by Shigesada, Kawasaki and Ter-
amoto in 1979, cf. [7]. It describes two populations in competition, in which
the individuals of one of the populations try to avoid the individuals of the other
population, by increasing their diffusion rate in presence of those individuals.

The equations for the densities of the two populations u1 := u1(t, x) and u2 :=
u2(t, x), write:

∂tu1 −∆x

(

u1

[

D1 +A12 u2

])

= (r1 − S11 u1 − S12 u2)u1,

∂tu2 −∆x

(

u2

[

D2 +A21 u1

])

= (r2 − S21 u1 − S22 u2)u2,

where Di, Aij are diffusion rates, and ri, Sij are coefficients related to the births
and deaths of the individuals, taking into account the competition.

Neumann boundary conditions on the boundary of the domain Ω can be added
to this system: (for t ≥ 0, x ∈ ∂Ω)

∇xu1(t, x) · n(x) = 0, ∇xu2(t, x) · n(x) = 0.

The study of existence of solutions for this system started with the use of
general methods such as those appearing in [1], leading to local strong solutions,
and was transformed by the observation, due to Chen and Jüngel (cf. [2]), that
the functional

J(u1, u2) = A21

∫

Ω

(u1 lnu1 − u1 + 1) +A12

∫

Ω

(u2 lnu2 − u2 + 1)

satisfies the following inequality:

d

dt
J(u1, u2) +A21D1

∫ |∇xu1|2
u1

−A12D2

∫ |∇xu2|2
u2

+A12A21

∫

u1 u2

∣

∣

∣

∣

∇xu1
u1

+
∇xu2
u2

∣

∣

∣

∣

2

≤ C(ri, Sij , Aij),

where C(ri, Sij , Aij) > 0 is a constant. After integration in time, we get indeed
that for any T > 0,

∫ T

0

∫

Ω

(

|∇x
√
u1|2 + |∇x

√
u2|2

)

<∞,

so that compactness can be obtained for u1 and u2 (thanks to some variant of
Aubin-Lions’ lemma), leading first to weak stability of the system, and then, as
announced, to existence of global weak solutions in any dimension.
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This entropy-like structure can be found in many variants of the Shigesada-
Kawasaki-Teramoto system, such as the system (cf. [6]):

∂tu1 −∆x

[

(D1 +A12 u
α12
2 )u1

]

= u1

(

r1 − S11 u
β11

1 − S12 u
β12

2

)

,

∂tu2 −∆x

[

(D2 +A21 u
α21
1 )u2

]

= u2

(

r2 − S21 u
β21

1 − S22 u
β22

2

)

,

when 0 < α12 α21 < 1, and 0 < βij < 1.
Attempts to explain the appearance of such an entropy-like structure have been

made by using microscopic models which converge in some limit to the system of
PDEs, and which are naturally endowed with an entropy. They can be larger
systems of PDEs depending on a small parameter (related to the time scales), we
refer for example to [5] for such a situation. We present here a different approach
based on microscopic models which are simple Markov processes. It was observed
by Chen, Daus and Jüngel (cf. [3]) that the Shigesada-Kawasaki-Teramoto system
for an arbitrary number of species, defined as (for i = 1, .., n):

∂tui = ∆x





[

Di +

n
∑

j=1

Aijuj

]

ui



 ,

together with Neumann boundary conditions, is related to the entropy

J(u1, .., un) :=

n
∑

i=1

∫

πi [ui ln(ui)− ui + 1] ,

as soon as the following condition holds:

∀i, j πiAij = πj Aji.

The system is then said to be detailed balanced.

The corresponding Markov process that we introduced in [4] uses a discretized
space domain: ΩM = {0, 1

M , 2
M , .., 1}, and nonnegative constants πi, Di, Dij such

that
∑n

i=1 πi = 1 and Dij = Dji for i, j = 1, . . . , n. We consider n species
of particles located on ΩM . Then we consider [πiN ] particles of species i, and

introduce the time-continuous Markov chain on ΘM,N := Ω
[π1N ]+···+[πnN ]
M by the

transitions

x→ x+ eai + ebj

x→ x− eai − ebj

}

with rate δ(i,a) 6=(j,b)δxa
i =xb

j

Dij

N

x→ x+ eai

x→ x− eai

}

with rate Di

for i, j = 1, . . . , n and a = 1, . . . , [πiN ], b = 1, . . . , [πjN ], where eai is the vector
with components of value zero at all places, except for the a-th particle of species
i, where the value is h = 1/M .
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We show that the functional defined by

H̃(µN )(t) :=
∑

x

µN (t, x) ln

(

µN (t, x)

M [π1N ]+···+[πnN ]

)

is decreasing with respect to time.
When N → ∞, under the assumption (of indinstinguishability and) chaos prop-

agation:

µN (t, x11, . . . , x
[π1N ]
1 , . . . . . . . . . , x1n, . . . , x

[πnN ]
n )

≈ u1(t, x
1
1) · · ·u1(t, x[π1N ]

1 ) · · · · · · · · ·un(t, x1n) · · ·un(t, x[πnN ]
n ),

one can show that

d

dt
ui(t, x) = Di

[

ui(t, x+ h) + ui(t, x− h)− 2ui(t, x)
]

+
n
∑

j=1

Dijπj

[

uj(t, x+ h)ui(t, x + h) + uj(t, x− h)ui(t, x− h)− 2uj(t, x)ui(t, x)
]

.

and
1

N
H̃(µN ) =

∑

x

µN (x) ln

(

µN (x)

M ([π1N ]+···+[πnN ])

)

≈ 1

N

n
∑

i=1

M−1
∑

ℓ=0

[πiN ]ui(xℓ) ln

(

ui(xℓ)

M

)

→
n
∑

i=1

πi

M−1
∑

ℓ=0

ui(xℓ) ln

(

ui(xℓ)

M

)

.

When h = 1/M → 0, defining Aij := πj Dij , and rescaling in time (in such a
way that ∂t is replaced by h2 ∂t), one recovers the original Shigesada-Teramoto-
Kawasaki system for an arbitrary number of species, and its entropy-like functional

J(u1, .., un) :=

n
∑

i=1

∫

πi [ui ln(ui)− ui + 1] .

The condition ∀i, j Dij = Dji then becomes the detailed balance condition.
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Empirical Measures and Quantum Dynamics

François Golse

(joint work with Thierry Paul)

1. Introduction. A remarkable feature of the classical mechanics of systems of
N idential point particles is the notion of Klimontovich solutions of the Vlasov
equation, recalled below. Let V ∈ C1,1(Rd) be an even function. For each N ≥ 2,
and each ZN := (z1, . . . , zN ) ∈ (R2d)N , set

µZN
:=

1

N

N
∑

j=1

δzj .

Klimontovich’s Theorem Let t 7→ ZN (t) be a C1 N -particle trajectory. Then
t 7→ µZN (t) is a weak solution to the Vlasov equation

(1) (∂t +
1
mξ · ∇x)f(t, x, ξ) −∇xVf (t, x) · ∇ξf(t, x, ξ) = 0 ,

where

Vf (t, x) :=

∫∫

R2d

V (x− y)f(t, y, η)dydη ,

if and only if zj(t) = (qj(t), pj(t)) is a solution to the system of Newton’s 2nd law
written for each particle (with m denoting the mass of each particle)

(2) q̇j =
1
mpj , ṗj = − 1

N

N
∑

k=1

∇V (qj(t)− qk(t)) , j = 1, . . . , N .

The proof of this result is elementary if one observe that ṗj(t) = −∇xVµ(t, qj(t)),
so that (2) is the equivalent to the defining equations for characteristic curves of
the Vlasov equation. With this observation, deriving the Vlasov equation from the
dynamics of N -particle systems amounts to proving the continuous dependence of
the solution of the Vlasov equation on its initial data for the weak topology of
Borel probability measures on R2d. This has been done in [1, 2]. Whether an
analogue of the Klimontovich theorem exists in quantum dynamics has been an
open question1 since the work of Braun-Hepp [1].

2. A Quantum Notion of Empirical Measure. Denote by TN
t the flow

generated by the differential system (2). Let F in
N ≡ F in

N (z1, . . . , zN ) be a symmetric

1We thank Mario Pulvirenti for introducing us to that problem.
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probability density on (R2d)N , and set FN (t, ZN ) := F in
N (TN

−tZN ). Then FN (t, ·)
is also a symmetric function of the variables zj and one has

(3)

∫

(R2d)N
〈µTN

t ZN
, φ〉F in

N (ZN )dZN =

∫

R2d

φ(x, ξ)FN :1(t, x, ξ)dxdξ

for all φ ∈ Cb(R
2d), where FN :1 is the first marginal of FN , defined by the formula

FN :1(t, z) :=

∫

(R2d)N−1

FN (t, z, z2, . . . , zN )dz2 . . . dzN , z = (x, ξ) ∈ R2d .

This follows for instance from Theorem 3.1 (a) in [4].
Our definition of the quantum analogue of the notion of empirical measure is

based on (3). Denote H := L2(Rd) and HN := H⊗N ≃ L2(RNd), and define the
set of density operators on H as

D(H) := {R ∈ L(H) s.t. R = R∗ ≥ 0 and trace(R) = 1} .
For each permutation σ ∈ SN , denote by Uσ the operator defined on HN by

UσΨN(x1, . . . , xN ) := ΨN (xσ−1(1) . . . , xσ−1(N)) .

An operator T ∈ L(HN ) is said to be symmetric if UσSU
∗
σ = S for all σ ∈ SN . One

denote by Ls(HN ) the set of symmetric bounded operators on HN , by L1
s(HN ) :=

L1(HN ) ∩ Ls(HN ) and Ds(HN ) := D(HN ) ∩ Ls(HN ) (the sets of symmetric trace-
class operators and of symmetric density operators on HN ). For all T ∈ L1

s(HN ),
one denotes by T:1 its partial trace defined by

traceH(AT:1) = traceHN
((A⊗ IHN−1)T ) , for each A ∈ L(H) .

Finally, the quantum dynamics is defined in terms of the quantum Hamiltonian

HN := − 1
2m~

N
∑

j=1

∆xj
+

1

N

∑

1≤j<k≤N

V (xj − xk) ,

which has an unbounded self-adjoint extension on HN for V ∈ L∞(Rd).

Definition. The quantum Klimontovich density evolved along the quantum dy-
namics defined by HN is the adjoint, denoted MN (t), of the linear map

L1
s(HN )T 7→

(

e−itHN/~Te+itHN/~
)

:1
∈ L1(H) .

In other words, for each A ∈ L(H), the quantum analogue of the identity (3) is

(4) traceHN
((MN (t)A)T ) = traceH

(

A
(

e−itHN/~Te+itHN/~
)

:1

)

.

One easily checks that, for each A ∈ L(H) and each t ≥ 0, one has

MN (t)A = e+itHN/~(MN (0)A)e−itHN/~ ,

and that

MN (0) =
1

N

N
∑

k=1

Jk , where JkA := I
⊗(k−1)
H

⊗A⊗ I
⊗(N−k)
H

.
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3. An Equation for MN (t). That there is a “closed” equation satisfied by
MN (t) is not obvious a priori, since there is no closed equation for the first mar-
ginal of the solution of the N -particle von Neumann equation — this is the reason
for considering the BBGKY hierarchy when dealing with N -particle systems in
quantum mechanics.

Theorem A. [5] Denoting by F the Fourier transformation, let V ∈ FL1(Rd) be
a real-valued even function. Then MN (t) is a weak solution of

(5) i~∂tMN (t) = ad∗(− 1
2m~2∆)MN (t)− C[V,MN (t),MN (t)] ,

where, for each Λ ∈ L(L(H),Ls(Hn) and each unbounded operator H on H,

(ad∗(H)Λ)A := −Λ([H,A]) for each A ∈ L(H) such that [H,A] ∈ L(H) ,
while, denoting Eω the operator on H defined by Eωψ(x) = eiω·xψ(x),

C[V,Λ,Λ]A :=

∫

Rd

(Λ(E∗
ω)Λ(EωA)− Λ(AEω)Λ(E

∗
ω))FV (ω) dω

(2π)d
.

At variance with the case of classical mechanics, (5) does not coincide with
the Hartree equation (which is the quantum analogue of the Vlasov equation).
However, it contains the Hartree equation as explained below.

Theorem B. [5] Denote by RN (t) the time-dependent element of L(L(H),Ls(Hn))
defined by

RN (t) := trace(AR(t))IHN
,

where t 7→ R(t) is a continuous time-dependent density operator on H. Then RN

is a weak solution of (5) if and only if R is a weak solution to the Hartree equation

i~∂tR(t) = [− 1
2m~2∆+ VR(t), R(t)] , VR(t)(x) := traceH(V (x− ·)R(t)) .

4. Application to the Mean-Field Limit in Quantum Mechanics. Assume
further that V := ‖(1 + |ξ|)[d/2]+3FV ‖L1(Rd) <∞ and set

ΨN,~(t, x1, . . . , xN ) := e−itHN/~
n
∏

k=1

ψin
~ (xk) , with ‖ψin

~ ‖L2(Rd) = 1 ,

while ψ~ ≡ ψ~(t, x) is the solution of

i~∂tψ~(t, x) =
(

− 1
2m~2∆x + V ⋆ |ψ~(t, ·)|2(x)

)

ψ~(t, x) , ψ~(0, ·) = ψin
~ .

Theorem C. [5] There exists C[V, d] > 0 such that, for each t ≥ 0

‖W~[|ΨN,~〉〈ΨN,~|:1(t)]−W~[|ψ~〉〈ψ~|(t)]‖′[d/2]+2 ≤ C[V, d]eC[V,d]tetC[V,d]

√
N

,

where ‖ · ‖′n designates the dual norm of

‖φ‖′n := sup

{∫

R2d

φf(x, ξ)dxdξ for all f s.t. max
|α|,|β|≤n

‖∂αx ∂βξ f‖L∞(R2d) ≤ 1

}

,
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while W~[R] is the Wigner transform of the density operator R, defined in terms
of the integral kernel r of R by the formula (see [8]):

W~[R](x, ξ) :=
1

(2π)d

∫

Rd

e−iξ·yr(x + 1
2~y, x− 1

2~y)dy .

Theorem C provides an O(1/
√
N) convergence rate uniformly in ~ for the mean-

field limit in the quantum dynamics of N identical particles interacting via the
potential V . The interest for the uniformity in ~ stems for very small size of the
Planck constant ~ = 1.1 · 10−34J · s. Earlier estimates (see for instance [10, 9]) for
the convergence rate in that limit allowed for more singular potentials (including
the Coulomb potential) but typically led to a nonuniform in ~ control of order

O(eCt/~/
√
N). Other approaches to the uniformity in ~ of the convergence rate

for the mean-field limit in quantum mechanics can be found in [7, 3, 6] — see also
the bibliography of [5] for more references on this topic.

References

[1] W. Braun, K. Hepp: The Vlasov dynamics and its fluctuations in the 1/N limit of inter-
acting classical particles, Commun. Math. Phys. 56 (1977), 101–113.

[2] R.L. Dobrushin: Vlasov equations, Funct. Anal. Appl. 13 (1979), 115–123.
[3] F. Golse, C. Mouhot, T. Paul: On the Mean Field and Classical Limits of Quantum Me-

chanics, Commun. Math. Phys. 343 (2016), 165–205.
[4] F. Golse, C. Mouhot, V. Ricci: Empirical Measures and Vlasov Hierarchies, Kinetic and

Related Models 6 (2013), 919–943.
[5] F. Golse, T. Paul: Empirical Measures and Quantum Mechanics: Applications to the Mean-

Field Limit, Commun. Math. Phys., to appear.
[6] F. Golse, T. Paul, M. Pulvirenti: On the derivation of the Hartree equation in the mean-field

limit: uniformity in the Planck constant, arXiv:1606.06436 [math.AP].

[7] S. Graffi, A. Martinez, M. Pulvirenti: Mean-field approximation of quantum systems and
classical limit, Math. Models Methods Appl. Sci. 13 (2003), 59–73.

[8] P.-L. Lions, T. Paul: Sur les mesures de Wigner, Revista Mat. Iberoam. 9 (1993), 553–618.
[9] P. Pickl: A simple derivation of mean-field limits for quantum systems, Lett. Math. Phys.

97 (2011), 151–164.
[10] I. Rodnianski, B. Schlein: Quantum fluctuations and rate of convergence towards mean-field

dynamics, Commun. Math. Phys. 291 (2009), 31–61.

Quantum Transport in a Low-Density Periodic Potential:

Homogenisation via Homogeneous Flows

Jory Griffin

(joint work with J. Marklof)

The Quantum Lorentz Gas The quantum Lorentz gas consists of an initial
wave packet that evolves according to the d-dimensional Schrödinger equation
with potential given by an infinite array of compactly supported profiles placed
on the elements of some discrete point set. It is shown by Eng and Erdös [2]
that if the scatterers are placed randomly, then the Husimi function converges, in
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the Boltzmann-Grad or low-density limit, to a solution of the linear Boltzmann
equation

(1) ∂tf(t, x, y) + y · ∇xf(t, x, y) =

∫

Σ(y, y′)[f(t, x, y′)− f(t, x, y)] dy′.

This result is directly analogous to those of Gallavotti, Spohn, and Boldrighini-
Bunimovich-Sinai [3, 7, 1] for when the underlying dynamics is classical rather
than quantum.

Our focus is to investigate the case of scatterers placed on Zd. In words, the
main result of our work is that convergence in the Boltzmann-Grad limit occurs
in the periodic case, at least up to second order in the coupling constant (i.e. the
‘strength’ of the scatterers). In contrast with the classical case (See e.g. [6]), the
limit (up to second order) agrees with the linear Boltzmann equation, although
we conjecture disagreement at all orders larger than four.

Fig. A schematic picture showing a wave packet evolving in a periodic array of
scatterers with the relevant scales marked.

The Model Let W be some smooth function with compact support in the unit

ball. Consider the Hamiltonian Hh,λ = − h2

8π2∆+ λV where

(2) V (x) = Vr(x) =
∑

m∈Zd

W

(

x−m

r

)

.
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The Boltzmann-Grad limit corresponds to taking the limit r → 0 while simulta-
neously rescaling space and time. We work in the Heisenberg picture, and assume
the initial condition Op(a) is the Weyl quantisation of some classical phase space
density. At time t the Heisenberg evolution of Op(a) is given by

(3) A(t) = Uh,λ(t)Op(a)Uh,λ(−t)
where Uh,λ(t) = e(−Hh,λt/h) and we define e(x) = e2πix. In order to pass to the
Boltzmann-Grad limit we introduce the dilation operator

(4) Dr,ha(x, y) = rd(d−1)/2hd/2a(rd−1x, hy)

and put Opr,h(a) = Op(Dr,ha). The object of interest is then the operator

(5) Ar(t) = Uh,λ(r
1−dt)Opr,h(a)Uh,λ(−r1−dt)

∣

∣

∣

h=r
.

The scaling regime a → Dr,ha and t → r1−dt is precisely analogous to the
Boltzmann-Grad regime in the classical problem, and the choice h = r is to ensure
truly quantum scattering (wavelength is comparable to scatterer size).

Statement of Results Convergence is established term-by-term in a formal ex-
pansion. Duhamel’s principle tells us that

(6) Uh,λ(t) = Uh,0(t)− 2πiλ

∫ t

0

Uh,λ(s)Op(V )Uh,0(t− s) ds,

which after iterating yields the formal expansion Ar(t) =
∑∞

n=0 λ
nA

(n)
r (t). Simi-

larly, if one returns to the linear Boltzmann equation (1), integrates, and expands
in λ, one obtains the formal expansion f(t, x, y) =

∑∞
n=0 λ

nf (n)(t, x, y).

Theorem 1. For a and b smooth and compactly supported and for n = 0, 1, 2 we
have

lim
r=h→0

〈A(n)
r (t),Opr,h(b)〉HS =

∫

R2d

f (n)(t, x, y) b(x, y) dxdy.

In fact we prove something stronger than this. Floquet-Bloch theory allows one
to decompose the periodic problem on Rd into a family of quasiperiodic problems
on Td parametrised by α. We denote the solutions to this family of problems by

Ar,α and the terms in their Duhamel expansions by A
(n)
r,α. One should think of

the Ar,α as being solutions to the problem on the torus, with a single scatterer,
and with domains restricted to quasiperiodic functions that satisfy f(x + m) =
e(m · α)f(x) for m ∈ Zd.

Theorem 2. Let α satisfy an explicit Diophantine condition. Then, for a and b
smooth and compactly supported and for n = 0, 1, 2 we have

lim
r=h→0

〈A(n)
r,α(t),Opr,h(b)〉HS =

∫

R2d

f (n)(t, x, y) b(x, y) dxdy.

The terms at orders zero and one converge using standard techniques so we focus
on order two. The approach will be to prove Theorem 2 first, and then Theorem



Lorentz Gas Dynamics: particle systems and scaling limits 643

1 will follow by integrating over α and applying some dominated convergence
estimates.

Homogeneous Dynamics Consider the semi-direct product group
G = SL(2,R)⋉R2d with multiplication law

(7) (M, ξ)(M ′, ξ′) = (MM ′, ξ +Mξ′),

where M,M ′ ∈ SL(2,R), ξ, ξ′ ∈ Rd × Rd and the product Mξ is defined via the
embedding ( a b

c d ) 7→ ( aI bI
cI dI ).

It is well known that one can associate SL(2,R) with the unit tangent bundle of
the complex upper half plane H = {τ ∈ C : ℑτ > 0} via the Iwasawa decomposition

(8) M =

(

1 u
0 1

) (

v1/2 0
0 v−1/2

) (

cosφ − sinφ
sinφ cosφ

)

.

We can thus use the notation (M, ξ) or (τ, φ, ξ) interchangeably. In the following,
Γ is a subgroup of SL(2,Z)⋉ (12Z)

2d of finite index. In this case the quotient Γ\G
is a non-compact manifold with finite volume with respect to the Haar measure µ.

Proposition 1 (Marklof [5]). Fix y ∈ Rd\Qd so that the components of (1, yt) are
linearly independent over Q. Let w : R → R piecewise continuous with compact
support. Let F : Γ\G→ R be bounded continuous. Then for all σ ≥ 0 we have

lim
v→0

vσ
∫

R

F ((u + iv, 0, ( 0y )))w(v
σu) du =

1

µ(Γ\G)

∫

Γ\G
F dµ

∫

R

w(u) du.

Let us explain this proposition intuitively. We are computing the average of
some ‘nice’ function F over a curve (in fact a piece of a horocycle) parametrised
by vσu ∈ suppw. The curve sits at height v in the complex upper half plane, and
in the limit v → 0, due to the hyperbolic geometry and the fact that σ ≥ 0, it
gets longer and longer. This proposition tells us that eventually this long segment
becomes equidistributed on the entire manifold, so the one dimensional average of
F can be replaced by the µ average.

Proposition 2. There exists an explicit subgroup Γ and an explicit convergent
sequence of C∞ functions (Fr)r≥0 : Γ\G× R → C such that

(9) 〈A(2)
r,α(t),Opr,r(b)〉HS = rd−2

∫

R

Fr((u + iv, 0, ( 0
−α )), r

d−2u) du+O(r∞)

Our second order terms can thus be viewed as a nice function on the manifold Γ\G
averaged along a curve that becomes equidistributed. Theorem 2 then follows by
taking the limit r → 0, computing the µ integral, and comparison with f (2). To do
this we need to generalise Proposition 1 in a few ways. First of all our functions Fr

are not bounded – it is for this reason that one needs some Diophantine condition
on α (see [5]). Secondly, we need to be able to apply Proposition 1 to a convergent
sequence of functions Fr, and finally we need to replace F (g)w(u) by F (g, u), that
is, we should include functions on the product space Γ\G × R which cannot be
factorised.



644 Oberwolfach Report 10/2019

References

[1] C. Boldrighini, L.A. Bunimovich and Y.G. Sinai, On the Boltzmann equation for the Lorentz
gas. J. Stat. Phys. 32 (1983), 477–501.

[2] D. Eng and L. Erdös. The linear Boltzmann equation as the low density limit of a random
Schrödinger equation. Reviews in Mathematical Physics, 17(06):669–743, 2005.

[3] G. Gallavotti, Divergences and approach to equilibrium in the Lorentz and the Wind-tree-
models, Physical Review 185 (1969), 308–322.

[4] J. Griffin and J. Marklof, Quantum Transport in a Low-Density Periodic Potential: Ho-
mogenisation via Homogeneous Flows, arXiv:1805.06860.

[5] J. Marklof, Pair correlation densities of inhomogeneous quadratic forms II, Duke. Math. J.
115 (2002) 409-434, Correction, ibid. 120 (2003) 227-228
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Rough paths and the random Schrödinger equation

Massimiliano Gubinelli

Introduced by Lyons in his influential ’98 paper [6], rough paths have nowadays
grown to a very complete theory for the study of controlled differential equations
driven by rough signals [2]. One of the key ideas is that of working with description
of the functions of interest in terms of local developments around an arbitrary
point. Rough path theory allows both to parametrise these local developments
and also “integrate” them to produce global analytic objects. These features are
also at the base of Hairer’s regularity structures theory [4].

In this talk we discussed the relevance of these local descriptions in the analysis
of the long time behaviour of a random Schrödinger equation. A motivation for
this is to have a toy model where to explore the applicability of ideas from rough
path theory to the analysis of the kinetic limit of certain systems evolving in
random environment like a classical particle colliding with Poissonian obstacles or
a quantum particle in a Gaussian random environment (see the work of Gallavotti
or Kesten and Papanicolau [5] in the classical case or the work of Erdös and Yau [1]
for the kinetic limit in the quantum case).

Consider the following random Schrödinger equation on Td:

(1) i∂tϕ(t) = ∆ϕ(t) + εV ϕ(t),

where V is a time-independent centered Gaussian random potential with smooth
covariance. The parameter ε will be taken to go to zero. Let ψε(t) = eit∆/εϕ(t/ε2)

then i∂tψε(t) = ε−1eit∆/ε2V e−it∆/ε2ψε(t) and by expanding the solution around
an arbitrary point s we get

(2) ψε(t) = ψε(s) + X
1,ε
s,tψε(s) + X

2,ε
s,tψε(s) + o(|t− s|)

where we introduced the random operators

X
1,ε
s,t = − i

ε

∫ t

s

eir∆/ε2V e−ir∆/ε2dr, X
2,ε
s,t = − i

ε

∫ t

s

(eir∆/ε2V e−ir∆/ε2)X1
s,rdr,
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which satisfy the operator Chen relation

X
2,ε
s,t = X2,ε

s,u + X
2,ε
u,t + X

1,ε
u,tX

1,ε
s,u, s 6 u 6 t.

The local expansion (2) can be used in the spirit of controlled paths [3] to obtain
uniform control on the solution ψ wrt. the data Xε = (X1,ε,X2,ε) which can be
viewed as a rough path. Some probabilistic estimate allow to control the limit
ε → 0 of Xε (in law) and show that, after a renomalization which removes some

resonant terms one has X1,ε → 0 and X
2,ε
s,t → (t− s)(−iH) for some deterministic

operator H : L2 → L2. The convergence is in the Hilbert-Schmidt topology wrt.
L2(Td). As a consequence ψε converges to the solution ψ of the linear equation

i∂tψ = Hψ.

Unfortunately the need for renormalisation, due to resonances produced by the
periodic boundary conditions force to modify eq. (1) adding non-local O(1) terms
and making the problem less natural. A possible way out is to set up the problem
in the space of quasi-periodic functions which would allow to remove the bad
resonances. It would also be interesting to work in the full space but this causes
much trouble in the identification of the suitable topology in which to look for
the convergence of the stochastic operators Xε and we could not yet find a viable
approach.
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Effective dynamics for the Nelson model with many fermions

Nikolai Leopold

(joint work with S. Petrat)

Quantum fields are used in various branches of physics, such as quantum optics,
ultra-cold quantum gases and condensed matter physics. The underlying picture
is that particles create and annihilate field bosons. This leads to an exchange
of energy and creates an interaction between the particles. In the presence of a
large number of bosons the action of an individual one is often negligible and the
bosons collectively behave like a classical radiation field. To a good extent it is then
possible to approximate the evolution of the system by a set of simpler effective
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equations in which the quantum field is replaced by a pair potential or a classical
field obeying a wave equation. A mathematical justification of this approximation
is important because it shows its validity and provides insights into the mechanism
that leads to the emergence of classical radiation. In [1, 3, 4, 5, 6, 7, 8, 9, 11, 12]
classical field equations were derived from systems in which bosons or a small
number of fermions couple to a quantized radiation field. Moreover, it was shown
(see [10] for references) that quantum fields can sometimes be approximated by
a two-particle interaction if the particles are much slower than the bosons of the
radiation field. Our goal is to show the creation of classical radiation in a many
particle limit of fermions. We consider N identical fermions which interact by
means of a quantized scalar field. The state of the system is described by a wave
function ΨN,t ∈ L2

as(R
3N )⊗F , where ”as” indicates antisymmetry under exchange

of variables and F denotes the bosonic Fock space over L2(R3). The time evolution
of the system is described by the Schrödinger equation

i∂tΨN,t = N−1/3HNΨN,t,(1)

where

HN =

N
∑

j=1

(

−∆j + Φ̂Λ(xj)
)

+ δNHf with Hf =

∫

d3k ω(k) a∗(k)a(k) and

Φ̂Λ(x) =

∫

d3k
1

√

16π3ω(k)
1|k|≤Λ(k)

(

eikxa(k) + e−ikxa∗(k)
)

is the Nelson Hamiltonian with ultraviolet cutoff Λ. We are interested in situations
in which the electrons are localized in a volume of order one. The average momen-
tum per fermion is then of order N1/3 because of the Fermi statistics. Thus if we
want to monitor the particles while they are moving in the volume of order one,
we have to consider time scales of order N−1/3. This explains the factor N−1/3

in the Schrödinger equation. The dispersion relations of the field bosons is given
by ω(k) =

√

|k|2 +m2 with m ≥ 0 and δN is a N-dependent parameter. Our

main result holds for all δN . However, we think that the choice δN = N1/3 is the
most interesting because it implies that the velocities of the electrons and the field
bosons scale equally and that the interaction plays a significant role in the effective
evolution equations (4). Also δN = 1 is a good choice as our model then describes
an unscaled system whose dynamics is inspected on times of order N−1/3. In this
case the group velocity of the field bosons is too slow to mediate an interaction
and the electrons approximately behave like free particles in a stationary external
potential (see Theorem II.9 in [10]).

We consider initial states of product form ΨN,0 =
∧N

j=1 ϕ
0
j⊗W (N2/3α0)Ω where

α0 ∈ L2(R3),
∧N

j=1 ϕ
0
j is the antisymmetrized product of orthonormal functions

ϕ0
1, . . . , ϕ

0
N ∈ L2(R3), Ω denotes the vacuum in F and W is the Weyl operator

W (f) = exp

(∫

d3k f(k)a∗(k)− f(k)a(k)

)

for all f ∈ L2(R3).
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To derive our result on the chosen time scale, it is in addition necessary to require
(an important fact which we learned from [2]) that the momenta of the electrons are
uniformly distributed (first condition in (2)) and that the density of the electrons
varies on a scale of order one (second inequality in (2)).

Assumption 1. Let ϕ0
1, . . . , ϕ

0
N ∈ H2(R3) be orthonormal and such that

Tr
∣

∣p0eikxq0
∣

∣ ≤ C(1 + |k|)N2/3 ∀ k ∈ R3 and Tr
∣

∣p0∇q0
∣

∣ ≤ CN(2)

for some C > 0, where p0 =
∑N

j=1

∣

∣ϕ0
j

〉 〈

ϕ0
j

∣

∣ and q0 = 1− p0.

If the system evolves in time correlations among the particles and in the ra-
diation field emerge and the many-body state will no longer be exactly of prod-
uct type. However, the structure of the state is approximately preserved in the
limit N → ∞. The fact that N−2/3a(k)W (N2/3αt)Ω = αt(k)W (N2/3αt)Ω and

N−2/3a∗(k)W (N2/3αt)Ω ≈ αt(k)W (N2/3αt)Ω motivates to approximate the ac-

tion of N−2/3Φ̂Λ on ΨN,t by the classical scalar field

ΦΛ(x, t) =

∫

d3k
1

√

16π3ω(k)
1|k|≤Λ(k)

(

eikxαt(k) + e−ikxαt(k)
)

.(3)

The Ehrenfest equations of the field operator and the expected antisymmetrized
produced state of the fermions propose to couple the scalar field to the mean

electron density ρt =
∑N

i=1 |ϕt
i|2. In total, this suggests that the state of the

system ΨN,t at later times is approximately given by
∧N

j=1 ϕ
t
j ⊗W (N2/3αt)Ω with

(ϕt
1, . . . , ϕ

t
N , α

t) solving the Schrödinger-Klein-Gordon equations

{

N−1/3i∂tϕ
t
j(x) =

(

N−2/3(−∆) + ΦΛ(x, t)
)

ϕt
j(x), for j = 1, . . . , N,

i∂tα
t(k) = N−1/3δNω(k)α

t(k) +N−1(2ω(k))−1/2
1|k|≤Λ(k)FT [ρt] (k),

(4)

where ΦΛ is defined as in (3).
In order to formulate the precise statement we define the k-particle reduced

density matrices of the fermions by γ
(k,0)
N,t = Trk+1,...,N ⊗TrF |ΨN,t〉 〈ΨN,t| (where

Trk+1,...,N denotes the partial trace over the coordinates xk+1, . . . , xN and TrF
the trace over the Fock space) and the one-particle reduced density matrix of the

bosons via the integral kernel γ
(0,1)
N,t (k, k′) = N−4/3 〈ΨN,t, a

∗(k′)a(k)ΨN,t〉 . Our
main theorem is the following.

Theorem 1 (Theorem II.3. in [10]). Let Assumption 1 be satisfied,
α0 ∈ L2(R3, (1+ k2)dk), N =

∫

d3k a∗(k)a(k) and ΨN,0 ∈ L2(R3N )⊗F ∩D(N )∩
D(NHN ) with ||ΨN,0|| = 1. Moreover, let ΨN,t be the solution to (1) with initial
condition ΨN,0, and ϕt

1, . . . , ϕ
t
N , α

t be the solution to (4) with initial condition
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ϕ0
1, . . . , ϕ

0
N , α

0. We define pt =
∑N

j=1

∣

∣ϕt
j

〉 〈

ϕt
j

∣

∣, qt = 1− pt for any t ∈ R and

aN = Tr
∣

∣

∣γ
(1,0)
N,0 −N−1p0

∣

∣

∣ ,

bN = N1/3 Tr
(

γ
(2,0)
N,0 q

0 ⊗ q0
)

,

cN = N−1
〈

W−1(N2/3α0)ΨN,0,NW−1(N2/3α0)ΨN,0

〉

.

Let aN + bN + cN +N−1 ≤ N1/3. Then there exists a constant C > 0 such that

Tr
∣

∣

∣γ
(1,0)
N,t −N−1pt

∣

∣

∣ ≤
√

aN + bN + cN +N−1 ee
CΛ4(1+‖α0‖2)(1+t2)

,

Tr
∣

∣

∣γ
(0,1)
N,t −

∣

∣αt
〉 〈

αt
∣

∣

∣

∣

∣ ≤
√

N−1/3(aN + bN + cN ) +N−4/3 ee
CΛ4(1+‖α0‖2)(1+t2)

for any t ≥ 0. In particular, for ΨN,0 =
∧N

j=1 ϕ
0
j ⊗W (N2/3α0)Ω we have aN =

bN = cN = 0 and one obtains

Tr
∣

∣

∣γ
(1,0)
N,t −N−1pt

∣

∣

∣ ≤ N−1/2ee
CΛ4(1+‖α0‖2)(1+t2)

,

Tr
∣

∣

∣γ
(0,1)
N,t −

∣

∣αt
〉 〈

αt
∣

∣

∣

∣

∣ ≤ N−2/3ee
CΛ4(1+‖α0‖2)(1+t2)

.
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Invariance Principle for Random Lorentz Gas in the Boltzmann-Grad

Limit

Christopher Lutsko

(joint work with B. Tóth)

Consider the random Lorentz process t 7→ Xr,ρ(t) with hard-core spherical scat-
terers of radius r > 0 and density ρ > 0. Namely

• Consider a Poisson point process of intensity ρ, P = P(ρ), and a field of
Poisson distributed scatterers P +Bd

r where Bd
r denotes a ball of radius r.

• If the origin is covered by a scatterer (i.e 0 ∈ P + Bd
r ), then Xr,ρ(t) = 0

for all t > 0. (In our setting this will occur with probability tending to 0).
• If the origin is not covered by a scatterer then Xr,ρ(0) = 0 and
• Xr,ρ moves in straight lines with unit speed and collides elastically on the
boundary of (P + Bd

r )
c.

An open question of significant interest is to understand the long time behavior of
t 7→ Xr,ρ(t) in either of the following settings:

• Quenched Limit: For a typical realization of the Poisson point process
averagivng over the initial velocity.

• Average-Quenched Limit: Averaging over the initial velocity and the Pois-
son configuration.

In either of these settings, the ’holy grail’ of the field would be to prove an invari-
ance principle in the diffusive limit :

(1) t 7→ Xr,ρ(T t)√
T

as T → ∞

(that is, to show that the process in (1) converges weakly to a Wiener process)
(see [7] for a detailed survey).

In the periodic setting, this limit is (relatively) well understood (see the sur-
veys [3], [5]), because of the applicability of methods from hyperbolic dynamical
systems theory. However, in the random setting less is known with mathemat-
ical rigour. Gallavotti [2] showed that the Lorentz process t 7→ Xr,ρ(t) obeys a
linear Boltzmann equation in the Boltzmann-Grad limit. Spohn [6] then showed
that the Lorentz process, in the annealed setting (and for a wide class of scatterer
configurations) converges to a Markovian flight process (i.e a process moving in
straight lines with instantaneous velocity jumps separated by independent expo-
nential flight times). Then Boldrighini, Bunimovich, and Sinai [1] proved the same
convergence result in the quenched setting.

However these results are all restricted to finite time intervals in the Boltzmann-
Grad limit:

ρ→ ∞
r → 0 ρrd−1 → Ωd−1

(2)
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where Ωd−1 is the volume of the d − 1-dimensional ball. In this setting and on
these time scales, the memory effects of the Lorentz process do not occur (with
high probability).

In a recent work [4] Tóth and the author proved that, in dimension 3, in the
joint Boltzmann-Grad and diffusive limits, the Lorentz process stays close in this
particular coupling to a Markovian flight processes in the annealed sense. More
precisely, given velocities, uniformly distributed on S2 (the unit sphere), {vi}∞i=1

and exponentially distributed flight times {ξi}∞i=1, denote

(3) Y0 = 0 , Yn =
n
∑

i=1

ξivi

and let t 7→ Y (t) be the process moving with unit speed between Yi−1 and Yi with
velocity vi - the Markovian flight process. In this case, with ρ = Ωd−1r

−(d−1) (i.e
Boltzmann-Grad scaling):

Theorem 2. Let T = T (r) be such that limr→0 T (r) = ∞ and
limr→0 r

2| log r|2T (r) = 0. Then, for any δ > 0,

lim
r→0

P( sup
0≤t≤T

|Xr,ρ(t)− Y (t)| > δ
√
T ) = 0,(4)

and hence
{

t 7→ T−1/2Xr,ρ(T t)
}

⇒ {t 7→W (t)} ,(5)

as r → 0, in the averaged-quenched sense. On the right hand side of (5) W is a
standard Wiener process of variance 1 in R3.

The proof is based on probabilistic coupling. As this coupling argument is
central to the proof we summarize it here. We will realize the Lorentz process
as an exploration process. That is, as the Xr,ρ process evolves it discovers more
of the environment: discovering yet-unseen scatterers with rate 1 (just like the
Y process). However, the Xr,ρ process has a long memory and scatters off of
the previously discovered scatterers (recollisions). Similarly, as the Xr,ρ process
evolves it traces out a path of previously explored space, hence the new scatterers
cannot be placed over the old path.

The coupling is then realized as follows, let U(t) = Ẏ (t) and V r(t) = Ẋr,ρ(t)

• At time 0, V r(0) = U(0).
• With frequency of typical order r two kinds of mismatches occur, during
which the two velocity processes do not coincide:

– Recollisions of the Lorentz process with previously placed scatterers
(hence V r(t) changes when U(t) does not).

– Scatterings of the Markovian flight process at a time and in a direction
such that the Lorentz process would block its old path if it placed the
appropriate scatterer (we call these shadowed scatterings). During
these mismatches V r(t) remains the same while U(t) changes.
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• After a mismatch a new, jointly realized, scattering event of the two pro-
cesses occurs, recoupling the two velocity processes.

To prove Theorem 2 we show that such mismatches occur with typical frequency
of order r. Not only that but the mismatches are direct (i.e involve only 3 con-
secutive path segments of the Markovian flight process). Hence we use geometric
observations to show that the typical time to recouple after a mismatch is EXP (1)
distributed. With that, we show that the mismatches are well separated in time.
Therefore in time T the separation is given by

|Xr,ρ(T )− Y (T )|√
T

≤ T−1/2

∫ T

0

|U(t)− V r(t)|dt(6)

≤ T−1/2(T · r) → 0,

which follows since there are O(T ) collisions in time T , each with a probability r
of being a mismatch, and the separation during each mismatch is of order O(1).
Note that the log correction is not shown by this handwaving argument.

Finally (5) follows from (4) and a classical invariance principle for the process
t 7→ Y (t).
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On the particle approximation to stationary solutions of the

Boltzmann equation

Mario Pulvirenti

As it is well known, the Boltzmann equation is a useful tool to understand the
behaviour of a rarefied gas. From a mathematical side the study of the Boltzmann
equation is mostly devoted to the initial value problem. On the other hand in most
of the physical applications the solutions of the Boltzmann equation are seen in a
stationary non-equilibrium regime. Indeed after a short time dependent transient,
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the system has the tendency to stabilize in a non trivial stationary state which
should describe transport phenomena.

The problem of the derivation of the Boltzmann equation in such a situation is
much beyond our knowledge at moment. In fact even having a long time validity
result (and this is not the case) we do not expect that the limits t → ∞ and
N → ∞ according to the Boltzmann-Grad limit are commutable. Here t is the
time and N the particle number.

Some years ago in [3] a stochastic particle system in a container with diffusive
boundary with varying temperature was proven to approximate the stationary so-
lution of the corresponding Boltzmann equation (actually the Povzner equation
which is a regularization of the true Boltzmann equation). The proof works only
under severe assumptions on the Maxwellian at the boundary, namely it was as-
sumed an unphysical cutoff on small and large velocities. We discuss the possibility
of removing such a cutoff in the special situation of a gas contained between two
planes with diffusive boundary conditions at different temperature, assuming also
the existence of a non vanishing horizontal constant external field F and the in-
tensity of the collisions among the particles sufficiently small, namely the Benard
problem for a very rarefied gas [7].

More precisely we consider, as in [3], a gas modelled by a stochastic particle
system which is the non-homogeneous extension of the well known Kac’s model
( see [5] and [6]). The particle models we are considering is the basis for the so
called direct Montecarlo simulation method [1] and [2], which is widely used for
the numerical simulations of a real gas. Therefore this result can be seen as a
justification of the use of such algorithm assuming ”true” the Boltzmann equation
which however should be still derived from mechanical particle systems.

The approximation result I am discussing can be obtained via a sequence of
steps.

1) There exists a unique stationary solution of our model of Boltzmann equation
g(x, v) being x, v position and velocity respectively.

2) The N -particle system has a unique invariant measure denoted by f̃N and

marginals f̃N
k , k = 1 . . .N .

3) The convergence result can formulated as:
suppose the mean-free path sufficiently large. Then for any integer k:

(1) ‖f̃N
k − gk‖L1 ≤ ck2

N

where gk = g⊗k, being g the solution of the stationary Boltzmann equation and
c2 some positive computable constant.

The proof is based on a careful analysis of the Knudsen flow (free particles with
diffusive boundary conditions) and a precise control of the correlation error.
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Fluctuation theory at low density

Sergio Simonella

(joint work with T. Bodineau, I. Gallagher, L. Saint-Raymond)

The aim of this talk is to report on recent and ongoing progress on the mathe-
matical treatment of the fluctuation theory at the kinetic scale. The focus is on
analysing quantitatively the decay of correlations in the limit of low density for
the hard sphere gas.

As reference model we take a three-dimensional, macroscopic box filled with
hard balls of diameter ε → 0 and average number of particles increasing as ε−2,
so that the mean free path remains of order one. At time zero the center of
the hard spheres is approximately Poisson-distributed, with density f0 arbitrarily
prescribed. In particular, weak correlations are due to the condition of non-overlap
among different spheres.

At leading order the dynamics is driven by the Boltzmann equation. The classi-
cal result in the field (Lanford’s theorem) is a rigorous derivation of such equation
as a law large numbers for times shorter than (and order of) the mean free time.
Specifically, the empirical measure on the one-particle phase space converges to
the smooth Boltzmann density f(t), with f(t = 0) = f0, at least if the initial
measure satisfies suitable uniform bounds.

Besides the purely deterministic evolution, by looking at finer scales one discov-
ers random fluctuations, which retain a larger amount of microscopic information.
This feature is understood at best by studying data far from equilibrium. At order
ε, corrections are described in the physical literature by means of a stochastic PDE
(“fluctuating Boltzmann”) given by a linearized (around f(t)) Boltzmann opera-
tor, plus a Gaussian white noise in spacetime. The latter is due to characteristic
dynamical events called recollisions, as pointed out by Herbert Spohn in 1981 in
his explicit derivation of the covariance. Such collisions keep memory of the past
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trajectory from time t to time zero, and their effect is visible in the nonequilibrium
state.

In our contribution [3] we prove the central limit theorem for the fluctuation field
of the hard sphere gas, and that the process converges to a generalized Ornstein-
Uhlenbeck given by the predicted fluctuating equation. This is worked out under
the same assumptions of Lanford’s result (and if a central limit theorem holds
at time zero). Moreover, in doing so, we optimally quantify the correlations at
arbitrary order. Technically, this means that we obtain the limiting equations for
the whole hierarchy of cumulants. These functions measure events where j par-
ticles are completely connected by chains of collisions preventing their statistical
independence. As j is arbitrary, ultimately we hope to derive the probability of
not only small, but also large deviations from the average profile f(t).

The core of the work is a combinatorial problem on clusters of particles (“col-
lision trees”) connected by collision relations. The convenient quantities are the
analogue of the truncated correlation functions commonly used in equilibrium sta-
tistical mechanics. In this connection, we stress that we consider systems in which
only the average number of particles is fixed (i.e. of grand canonical type), so
that the cumulants do not have a spurious part due to a given total cardinality.
The cluster expansion method fits then very well with the collisional trees at low
density, if combined with geometrical estimates on hard sphere trajectories.

A similar approach has been used recently (although with slightly different types
of truncation) to obtain results beyond the classical one by Lanford. In [4] the
truncated functions are estimated pointwise in space and up to j of polynomial
order. In [1] a cumulant type expansion is crucially used to reach arbitrary times
in a hard disk gas at equilibrium. Finally in [2] the cluster expansion is applied to
construct counterexamples to the validity theorem and clarify the mathematical
meaning of molecular chaos.
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The Lorentz model with different scatterer distributions

Bernt Wennberg

In this talk the Lorentz model consists of a random set of discrete points Ξ ⊂ R2,
and a set of circular obstacles with diameter ε and center at the points,

⋃

ξ∈ΞBε(ξ).

Then one studies the motion (x(t), φ(t)) of a point particle where x(t) is in Ωε, the
whole plane except the areas covered by obstacles, Ωε = R2\⋃x∈ΞBε(x), and φ(t)
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the direction of its motion. The point particle is moving with constant velocity in,
and specularly reflected when hitting an obstacle.

Assuming the speed of the particle to be one, its phase space is Ωε×S1. Let the
initial position in phace space , (x(0), φ(0)) be random with density f0(x, φ). Then
the distribution of (x(t), φ(t)) is given by a density depending on Ξ, fΞ(x, φ, t).
Gallavotti ([5]) and later Spohn [11] proved that if Ξ = Ξε is a Poisson process
with intensity ε−1, then E[fΞε

](x, φ, t) converges weakly to a density f(x, φ, t) in
R2, and that f satisfies a linear Boltzmann equation

∂tf(x, φ, t) + ω · ∇xf(x, φ, t) =

∫

S1

f(x, φ′, t)|φ · ω| dω − f(x, φ, t) ,(1)

where φ′ is the angle resulting from a specular reflection. This is the equation
for a random flight process, where (x(t), φ(t)) moves an exponentially distributed
distance (or time) along a straight line, and then the velocity jumps to a new
random direction, φ′ 7→ φ, indepently of the free flight time.

Contrary to this, it is possible to prove that when Ξε is a regular lattice with
parameter ε1/2, which gives the same average number of obstacles per unit area
as a Poisson process with intensity ε−1, the corresponding family of functions fΞε

do not converge to a solution of (1). In fact the free flight times T of the limiting
dynamics are not exponentially distributed, but decay as t−1 (i.e., P[T > t] ∼ 1/t)
(see [1, 6]). However, by a suitable extention the phase space, it is possible to
derive a kinetic equation (see e.g. [3, 8]).

With these two examples in mind, it is natural to investigate what properties
family of point processes Ξε must satisfy to obtain (1) in the limit when ε → 0.
Gallavotti’s proof is carried out by a change of variables which indentifies the the
sequence of free paths and velocity jumps of the process generated by (1) and
a Poisson point process, and hence that in some Ξε must asymptotically be a
Poisson process with the right density; it is not so clear in which sense that shoud
be interpreted, however, and I have seen no mathematical statement of this.

But one may study other examples of point processes. One such example is

a diluted regular lattice: Let Ξε be a regular lattice with parameter ε
1+δ
2 . This

gives a lattice that is too dense to yield (1), the free flight times would converge
to zero when ε → 0. But the density ε−1 can be recovered by removing obstacles
independently with probability 1 − ε. Caglioti et. al. [2] proved that this model
results in the linear Boltzmann equation (1) in the case δ = 1, and the same result
is actually true for any δ > 0 (see ([10])). Perhaps this result is not surprising,
these Ξε are asymptotically Poisson distributions in a rather strong sense, but the
proof is anyway carried out by explicit calculations.

Quasi crystals give examples of non-periodic point distributions that fail to
yield (1), and because the mean free paths decay as t−1, just as in the periodic
case. A first numerial study of this can be found in ([12]), and then a rigorous
study was carried out in ([9]). Both the periodic setting and the quasi crystals are
point distributions with very long range correlations.

It is most natural to consider point processes that at least in the limit are invari-
ant under translations and rotations, and asymptotically the intensity should be
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ε−1. The examples given above all satisfy these properties, but there are other ex-
amples: Cox processes which are Poisson point processes where the intensity itself
is random, given by a Gaussian random field, for example (see [4]). Determiental
and permanental processes with kernel K are simple point processes whose inten-
sity functions for n points x1, ..., xn are given by ρn(x1, ..., xn) = det(K(xi, xj)) or
ρn(x1, ..., xn) = per(K(xi, xj)), respectively. The determinental processes avoid
clustering of points, whereas the points in a permanental process are more clus-
tered than the Poisson process.

Another interesting example is the set of zeros of Gaussian Analytic Functions
(GAF), which are described in [7] (there are also examples of determinental and
permanental point processies in this reference). Essentially only one particular case
of such functions are relevant here: Let (ξk)

∞
k=0 be a sequence of i.i.d. standard

complex Gaussian R.V., and set f(z) =
∑∞

k=0
ξk√
k!
zk . The resulting point process

is like the determinental process in that it avoids clustring of the points.
Here I present some numerical illustrations of the above models for the Poisson

process, for a diluted lattice, for a point set given by a Penrose tiling, and finally, for
the zero set of a GAF. For the four different cases I have generated approximately
103 points in a disk of radius 30 (in Fig. 1), or 100000 points in a disk of radius 300
(Fig. 2), and analysed trajectories of point starting with random direction from
a random point close to the origin. Figure. 1 illustrates the difference between
the obstacle distributions, and just one random trajectory for each case. And
Figure 2 shows the distribution of free path lengths, again computed from a large
number of trajectories with random initial points. Three of the four examples
are very similar, but the Penrose tiling differs, according to the rigorous results
that have been obtained for the Poisson distribution, the diluted periodic and for
quasi crystals. There is no result for the GAF zero distribution, but judging from
this simulation, it is very similar to the Poisson distribution: even if locally the
point distribution avoids clustering of points, the corrlation decays rapidely, and
therefore in the present limit the behaviour is like the Poisson process. A more
careful analysis of this is work in progress.
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Kinetic description of a Rayleigh Gas with annihilation

Raphael Winter

(joint work with B. Lods, A. Nota)

We consider the dynamics of a tagged point particle in a gas of moving hard-
spheres that are non-interacting among each other. This model is known as the
ideal Rayleigh gas.

The tagged particle is initially placed at a random position (x0, v0) ∈ R3 × R3

according to some probability density f0(x, v).
The background gas is given by a grand-canonical ensemble (cj , wj)j∈J ⊂ R3 ×

R3 in the phase space, where the velocity wj of the obstacles (cj , wj) is distributed
according to Maxwellian distribution Mβ(v) with inverse temperature β > 0. The
radius ǫ > 0 of the obstacles will be used as a scaling parameter. The density µǫ

of particles is given by the Boltzmann-Grad scaling, i.e.:

µǫ = ǫ−2µ, for some µ > 0.

To this model we add the possibility of annihilation, to be able to describe
systems without mass conservation, e.g. due to chemical reactions. To this end,
each obstacle is assigned a Boolean variable zj ∈ {0, 1} which determines whether
it is annihilating (zj = 0) with probability α ∈ [0, 1], or elastic (zj = 1) with
probability 1− α.

Given the initial values (x0, v0) and (cj , wj , zj)j∈J , the dynamics of the system
is given by the collisions between the tracer particle and an obstacle. If the particle
is elastic, the velocities are updated by the hard-sphere collision rule:

v(t) = v(t−)−
1

ǫ2
(

v(t−)− wj(t−)
)

·
(

x(t−)− cj(t−)
)

(x(t−)− cj(t−)),

wj(t) = v(t−)−
1

ǫ2
(

v(t−)− wj(t−)
)

·
(

x(t−)− cj(t−)
)

(x(t−)− cj(t−)),

If the obstacle is annihilating, the tracer particle is removed from the system.
In this way obtain an evolution for the probability density f(t, x, v) of the tracer
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particle. We prove rigorously the convergence of fǫ to a solution f of the Rayleigh-
Boltzmann equation:

∂tf + v · ∇xf + µαλ(v)f = µ(1 − α)Q(Mβ , f).(1)

Here the collision operator Q(Mβ, f) and the collision frequency λ(v) are given
by:

Q(Mβ, f)(v) =

∫

R3

∫

S2

[(v − v1) · n̂]+ (Mβ(v
′
1)f(v

′)−Mβ(v1)f(v)) dv1dn̂,

λ(v) = λ0

∫

R3

dv1Mβ(v1)|v − v1|, λ0 =

∫

S2

dn̂ [n̂ · v̂]+, v̂ ∈ S2,

Moreover, we give explicit algebraic error bounds, that allow to consider hydrody-
namic limits of the model.

Without quantative bounds, the convergence has been shown in [1] and [4]. For
the nonideal Rayleigh gas, that is for a tracer particle in an interacting heat bath,
the convergence has been shown in [2].
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Winterthurerstrasse 190
8057 Zürich
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