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Abstract. The mini-workshop featured some open questions about the co-
homology of Hopf algebras and tensor categories. Questions included whether
the cohomology ring of a finite dimensional Hopf algebra or a finite tensor
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Introduction by the Organizers

The workshop brought together experts currently working on open problems about
the cohomology of Hopf algebras and tensor categories and applications. The work-
shop also included experts from related areas. We describe some open questions
that were of particular focus for the workshop: In the 1960s, Golod, Venkov, and
Evens proved that the cohomology rings of finite groups are finitely generated.
This landmark result led to the use of geometric methods in the representation
theory of finite groups, via the support varieties introduced by Quillen, Carlson,
Avrunin and Scott. This theory of varieties for modules continues to be a very
active and fruitful area of research in the representation theory of finite groups.
Since that time, finite generation has been proven for the cohomology rings of re-
stricted enveloping algebras (Friedlander and Parshall), of small quantum groups
and function algebras (Ginzburg and Kumar and Gordon), of finite-dimensional
cocommutative Hopf algebras generally (Friedlander and Suslin), and of many
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more types of Hopf algebras in the past 20 years. These results and more point to
the following question, asked by a number of mathematicians: Is the cohomology
ring of a finite dimensional Hopf algebra always finitely generated? In fact, this
question is stated as a conjecture in a 2004 paper of Etingof and Ostrik in a more
general setting: They conjectured that the cohomology ring of a finite tensor cat-
egory is always finitely generated. This conjecture remains open. Its importance
is attested by the ubiquity of Hopf algebras and tensor categories in many ar-
eas of mathematics, including representation theory, combinatorics, topology, and
statistical mechanics.

An obstacle to a general proof of finite generation is a lack of general knowl-
edge of the structure of finite dimensional Hopf algebras, and accordingly in recent
work, mathematicians focus on specific types of Hopf algebras for which helpful
structure results are known. The mini-workshop greatly benefitted many of these
mathematicians due to the time provided to meet and compare notes on their
techniques and results, facilitating further collaborations. Those Hopf algebras for
which cohomology is finitely generated enjoy the rich geometric methods afforded
by support variety theory, and the workshop also featured some open questions
about support varieties. We considered the same questions for finite tensor cate-
gories, where even less is known.

Homological and ring-theoretic properties of infinite dimensional noetherian
Hopf algebras have been investigated extensively since Brown’s lecture given in
Seattle in the summer of 1997. One of the questions proposed in Brown’s lecture
was whether or not a noetherian Hopf algebra is always Gorenstein, or equiva-
lently, has finite self-injective dimension. This question has been raised repeatedly
by Brown, Goodearl and others in recent years, and it is now called the Brown-
Goodearl Question. The same question can be asked for other classes of noetherian
algebras that are similar to Hopf algebras, for example, for weak Hopf algebras,
braided Hopf algebras, and Nichols algebras. In 2004 Andruskiewitsch indepen-
dently asked the following related question: If a noetherian Nichols algebra is a
domain, does it have finite global dimension? The Brown-Goodearl Question is
still wide open though it has been verified for all noetherian Hopf algebras that
are well-studied. It has been proven that the Brown-Goodearl Question is related
to the existence of rigid dualizing complexes over noetherian Hopf algebras and
therefore to the twisted Calabi-Yau property of these algebras. An affirmative
answer to this question would have many other consequences, especially in the
study of ring-theoretic properties of noetherian Hopf algebras. During this work-
shop several talks (including Brown’s survey talk) discussed recent progress on the
Brown-Goodearl Question, as well as several other related open problems.

Introductory talks. On the first day there were four introductory talks.
Witherspoon gave a historical survey about the finite generation conjectures for
the cohomology of finite-dimensional Hopf algebras and tensor categories. The
talk of Andruskiewitsch explained the special role of Nichols algebras in the study
of finite-dimensional Hopf algebras, including the classification of such algebras
and the finite generation problem for cohomology. Pevtsova gave an introduction
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to support theory for Hopf algebras, explaining the general concepts as well as
several examples. The survey of Brown featured homological properties of Hopf
algebras which are either noetherian or finitely generated with finite Gelfand-
Kirillov dimension.

Research talks. Most participants contributed talks about their recent re-
search, largely devoted to the finite generation problem. Let us mention a few
talks that were special. For instance, Touzé gave an expository talk on the co-
homology algebras of reductive algebraic groups, with an emphasis on the open
problems in this area. Negron’s talk discussed some recent progress on the finite
generation conjecture for finite tensor categories, explaining a transfer principle
involving the Drinfeld double. Many results in this area are based on extensive
calculations of examples. A talk of Solberg explained the use of a computer alge-
bra package which he developed over the last years. This was complemented by a
computer demonstration.

Finally, in the evening problem session on Thursday, many open problems
were discussed.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Finite generation conjecture for finite dimensional Hopf algebras and

finite tensor categories

Sarah Witherspoon

Around 1960, Golod [6], Venkov [8], and Evens [2] proved that the cohomology
ring of any finite group is finitely generated. Wilkerson [9] noted in 1981 that one
generalization of a group algebra is a cocommutative Hopf algebra and stated in
loc. cit. that it was “the intent of this work to push this analogy as far as possible”;
he proved finite generation for finite dimensional graded connected cocommutative
Hopf algebras. Friedlander and Suslin [4] proved this for general finite dimensional
cocommutative Hopf algebras in 1997 and stated that “we do not know whether it
is reasonable to expect” that the cohomology ring of any finite dimensional Hopf
algebra is finitely generated. In 2004, Etingof and Ostrik [1] conjectured that more
generally, the cohomology ring of a finite tensor category is finitely generated and
that the cohomology space of any object is finitely generated as a module over the
cohomology ring. These cohomology rings are known to be graded commutative
in general, leading to one application of finite generation, when it holds: a good
theory of support varieties, that is geometric techniques in representation theory.

Other 20th century results include a proof by Friedlander and Parshall [3] in
1983 that the cohomology ring of a restricted Lie algebra in positive characteristic
is finitely generated, preceding the more general result of Friedlander and Suslin [4]
for all finite dimensional cocommutative Hopf algebras, and a proof by Ginzburg
and Kumar [5] in 1993 that the cohomology ring of a small quantum group is
finitely generated, the first noncocommutative examples. Many more results were
published or announced in the 21st century, all proofs of finite generation of co-
homology rings for various classes of finite dimensional Hopf algebras. The finite
generation question remains open in general, one difficulty being that mathemati-
cians do not know enough about the structure of finite dimensional Hopf algebras.
A cautionary tale is provided by a counterexample of Xu [7, 10] to an analogous
conjecture about Hochschild cohomology rings.
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The role of Nichols algebras in the structure of finite-dimensional

Hopf algebras

Nicolás Andruskiewitsch

(joint work with Iván Angiono, Julia Pevtsova, Sarah Witherspoon)

1. Let H be a Hopf algebra with bijective antipode over a field k, H0 its coradical
[13] and H[0] = k〈H0〉 its Hopf coradical, a Hopf subalgebra of H [5]. The classifi-
cation of those H with finite Gelfand-Kirillov dimension can be organized in four
classes:

(a) H = H0, i. e. H is cosemisimple.

(b) H = H[0] 6= H0.

(c) H 6= H[0] = H0.

(d) H 6= H[0] 6= H0.

Nichols algebras are relevant to the study of classes (c) and (d). See [1] for an
introduction to Nichols algebras and [3] for recent advances in class (d).

In [8] it was asked whether the cohomology ring H(H, k) is finitely generated–
for brevity, H has fgc–when dimH < ∞. Inspired by work of several authors
on this question, Etingof and Ostrik, conjectured that the analogous one is true
in the setting of finite tensor categories. We discuss how fgc for Nichols algebras
impacts in this question. We observe that if the Drinfeld double D(H) of a finite-
dimensional H has fgc, then so do the dual Hopf algebra H∗ and any cocycle twist
of either H or H∗, see [12, Theorem 3.4].

2. Let H be in class (c) i. e. H0 is a proper Hopf subalgebra. Let grH be the
graded Hopf algebra associated to the coradical filtration of H ; grH ≃ R#H0,
where R = ⊕n∈N0

Rn is a connected graded Hopf algebra in the braided monoidal

category H0

H0
YD. The assumption implies that R is coradically graded, hence its

subalgebra generated by V := R1 is isomorphic to the Nichols algebra B(V ).

Assume from now on that k is algebraically closed, that chark = 0 and that
dimH < ∞. Then H0 is semisimple by [13, 16.1.2]. By [15, 2.17], H(grH, k) =
H(R, k)H0 . Consequently, if R has fgc, then so does grH by [14, Theorem 6.2
(iii)].
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3. Assume next that H is pointed, i. e. H0 ≃ kG, and that G := G(H) is abelian.
Then B(V ) is of diagonal type. By [6], respectively [7], we know that

(e) R = B(V ), i. e. H is generated by group-like and skew-primitive elements.

(f) H is a cocycle deformation of grH , i. e. H ≃ (B(V )#kG)σ.

We announce the following results to appear in [4].

Theorem 1. The cohomology ring of a finite-dimensional Nichols algebra B(V )
of diagonal type is finitely generated.

We elaborate and derive from Theorem 1 that the Drinfeld double
D (B(V )#kG) has fgc. Together with previous remarks, we conclude:

Theorem 2. Let H be a finite dimensional pointed Hopf algebra with G abelian.
Then H and H∗ have finitely generated cohomology.

Theorem 2 generalizes the main results of [9, 11]. However the proof has some
differences. Via the Anick resolution, we reduce the proof of Theorem 1 to ver-
ification in root systems of Nichols algebras of diagonal type that we perform
case-by-case in the list of [10] using the information from [2].

If H0 is an arbitrary semisimple Hopf algebra, then we expect that (e) and
(f) still hold; at least this was verified in many examples with H0 = kG, G not
necessarily abelian. In this way, the question of fgc for finite-dimensional Nichols
algebras appears to be crucial.
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[15] D. Ştefan and C. Vay. The cohomology ring of the 12-dimensional Fomin–Kirillov algebra,

Adv. Math. 291 (2016), 584–620.

Supports: axiomatics and examples, a survey talk

Julia Pevtsova

The purpose of this extended abstract is to give a snapshot of what was covered
in a one and a half lecture survey given at the beginning of the mini-workshop on
“Cohomology of Hopf Algebras and Tensor Categories”. My lectures focused on
support theories for finite dimensional Hopf algebras with the key example being
the group algebra of a finite group scheme.

We start with some terminology. A finite group scheme G defined over a field
k is a representable functor:

G : {comm k-algebras} → {groups}
such that the representing algebra k[G] is finite dimensional as a vector space over
k. For what follows, we assume that k has positive characteristic p. Dualizing
the coordinate algebra, we get the group algebra kG which is a finite dimensional
cocommutative Hopf algebra. This correspondence gives an equivalence of cate-
gories

(1)

{

finite group
schemes

}

∼
{

finite dimensional co-
commutative Hopf algebras

}

Examples of these structures include finite groups, restricted Lie algebras and
Frobenius kernels of algebraic groups. On the other hand, based on the equivalence
of categories (1), representations of a finite group scheme G are equivalent to
representations of its group algebra kG, and hence, give an example of a finite
tensor category. Since any finite dimensional Hopf algebra is Frobenius, one can
construct the stable module categories StmodG and stmodG of all and finite
dimensional representations of G which are tensor triangulated categories. Hence,
on can study tensor triangular geometry in the sense of Balmer in this context.

Another corollary of kG being a finite dimensional Hopf algebra is that the
cohomology algebra H∗(kG, k) is graded commutative. The question of finite
generation of the cohomology algebra H∗(A, k) for any finite dimensional Hopf
algebra A was the central question of the mini-workshop. In the case of A = kG
for a G a finite group scheme (or a finite supergroup scheme) the finite genera-
tion of cohomology is known thanks to a celebrated theorem of Friedlander and
Suslin [4], extended by Drupieski to the super case [3]. These finite generation
results opened the door to developing the support for representations of finite
(super)group schemes, the theory pioneered by Alperin-Evens and Carlson, which
followed the ground breaking work of Quillen on mod p group cohomology.
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We proceed with a partial list of finite dimensional Hopf algebras (or algebraic
objects whose categories of representations are equivalent to those of some finite
dimensional Hopf algebras) for which finite generation of cohomology is known.
The support theory has been developed for some of these examples, many open
problems are still waiting to be solved for others.

(1) Finite groups
(2) Finite group schemes
(3) Small quantum groups
(4) Pointed Hopf algebras of diagonal type with abelian groups of group like

elements (see N. Andruskiewitsch abstract in the same report for more
details on this type of Hopf algebras)

(5) Finite supergroup schemes
(6) Finite dimensional Hopf subalgebras of the mod p Steenrod algebra.

In the first part of the survey I reviewed the general construction of the stable
module category, the Balmer spectrum and the Benson-Iyengar-Krause local co-
homology support theory. The abstract support datum as defined by Balmer is a
function from the objects of a tensor triangulated category such as stmodG to an
ambient topological space which satisfies a certain natural list of properties ([2]).
The concrete Benson-Iyengar-Krause (BIK) theory constructs supports via the ac-
tion of the graded center of a tensor triangulated category on the graded homs. In
the case of kG or any finite-dimensional Hopf algebra A, this produces supports
of kG-modules living in ProjH∗(kG, k). The BIK theory, though applicable very
generally, lacks an important property required of Balmer’s support data, known
as the tensor product property: for two modules M , N , one would like to have the
following formula:

supp(M ⊗N) = suppM ∩ suppN.

To obtain the tensor product property one needs to develop a different approach
to supports - the one via rank varieties or π-points.

The second half of the survey went through the list of several examples (much
more limited than the list of finite dimensional Hopf algebras in the first part) for
which such a description is known and the full force support theory exists:

(1) Restricted Lie algebras
(2) Frobenius kernels of algebraic groups
(3) Elementary abelian p-groups
(4) Finite group schemes
(5) Quantum complete intersections (special cases)
(6) Complete intersections (via Avramov-Iyengar hypersurface approach [1])
(7) Finite unipotent supergroup schemes.

There was not much time to focus on the applications of support theories but it
was briefly mentioned that they were directly relevant to the determination of the
representation type of a Hopf algebra, computations of Balmer’s spectrum, and
classifications of localizaing and colocalizaing subcategories.
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Homological properties of noetherian Hopf algebras

Ken Brown

This talk was a survey of the key homological properties satisfied by, or conjectured
to be satisfied by, noetherian Hopf algebrasH . Relations between these properties
were discussed, and their connection to various dimensions defined on H-modules,
such as the Gel’fand-Kirillov dimension. For reasons of space this last aspect, and
its connection to the (commutative) Cohen Macaulay property, is not discussed
here.

The discussion has two starting points. On the one hand consider the heirar-
chy of three - by now, classical - properties which may be satisfied by an affine
commutative k-algebra R: namely R might be regular, meaning it has finite global
dimension, gl.dimR <∞; or R might be Gorenstein, meaning it has finite injective
dimension, inj.dimR <∞; or R could be Cohen Macaulay. Here, the first implies
the second implies the third; see for example [3] for details. When R is in addi-
tion a Hopf algebra, it is always Gorenstein, (with injective dimension equal to its
Gel’fand-Kirillov dimension); moreover, R is regular if and only if it is semiprime;
when k has characteristic 0 it is always semiprime, hence always regular. See [9]
for details.

The second starting point is the 1969 theorem of Larson and Sweedler: a finite
dimensional Hopf algebraH is Frobenius [4], (and consequentlyH has finite global
dimension if and only if it is semisimple).

Motivated by these cases and a number of other examples, Brown and Goodearl
proposed [1] in 1997 that every noetherian Hopf algebra might have finite injective
dimesnion, a possibility which remains open and which has been refined as follows
in succeeding years.

Definition 1. (1) A noetherian Hopf algebra H is Artin-Schelter Gorenstein
(AS-Gorenstein) if it has finite (left) injective dimension d, and

ExtiH(k,H) = δidk, where k here denotes the trivial left H-module;
and similarly on the right.

(2) H is AS-regular if it is AS-Gorenstein with gl.dimH < ∞. (In this case,
gl.dimH = d.)

Question 2. Is every noetherian Hopf algebra AS-Gorenstein?
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At the present time, all known noetherian Hopf algebras are AS-Gorenstein - see
[2, §6] for a summary of the state of play in this regard at 2008. The most striking
general theorem so far obtained in support of a positive answer is:

Theorem 3. (Wu, Zhang, 2003 [10]) Every affine noetherian Hopf algebra satis-
fying a polynomial identity is AS-Gorenstein.

A key outgrowth of work on Question 2 has been the generalisation of the integral
from the finite dimensional case to AS-Gorenstein Hopf algebras by Lu, Wu and
Zhang in 2007, as follows.

Definition 4. Let H be an AS-Gorenstein noetherian Hopf algebra with

inj.dimH = d. The (left) integral
∫ ℓ

H
is the one-dimensional H-bimodule

ExtdH(k,H).

Observe that, as a left module,
∫ ℓ

H
is simply a copy of the trivial H-module,

whereas, on the right, the action may be through a non-trivial character χ of
H , generalising the fact that a finite dimensional Hopf algebra is not in general
unimodular. Brown and Zhang [2] in 2008 used the integral along with a seminal
paper of Van den Bergh [8] to connect the AS-Gorenstein condition with the
existence of a balanced dualising complex for H . They assumed that the antipode
S of H was bijective, but this hypothesis was removed in [6], where it was shown
that bijectivity of S is a consequence of the AS-Gorenstein condition. Summing
up this circle of ideas, we state:

Theorem 5. Let H be a noetherian Hopf algebra.

(1) The following are equivalent:
(a) H is AS-Gorenstein, with inj.dimH = d;
(b) H has a rigid dualising complex V [s], V an invertible bimodule, [s]

denoting the shift, s ∈ Z;
(c) H has a rigid dualising complex νH1[d], for an algebra automorphism

ν of H.
(2) When the equivalent conditions (a)-(c) hold, S is bijective.
(3) Suppose that (a)-(c) hold, and in addition that gl.dimH < ∞. Then

gl.dimH = d and H is twisted Calabi-Yau. In particular, H satisfies
“twisted Poincaré duality”: for all H-bimodules M and for all i = 0, . . . , d,

Hi(H,M) = Hd−i(H,
ν−1

M).

The twisting automorphism ν occurring above was christened in [2] the Nakayama
automorphism of H since it generalises the earlier incarnation for Frobenius al-
gebras. It is determined up to an inner automorphism of H , equalling S2 ◦ τ ℓχ,
where τ ℓχ is the left winding automorphism determined by the character χ of the

right structure on
∫ ℓ

H
. Since the dualising complex depends only on the algebra

structure of H , it can be calculated also for Hcop. Equating the two answers, one
obtains a generalisation of the famous 1976 formula [7] of Radford for S4 in the
finite dimensional case:
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Corollary 6. Let H be an AS-Gorenstein Hopf algebra, and retain the above
notation. Then there is an inner automorphism γ of H such that

S4 = γ ◦ τ ℓχ ◦ τr−χ.

Question 7. What is the inner automorphism γ in the corollary?

References

[1] K.A. Brown & K.R. Goodearl, Homological aspects of noetherian PI Hopf algebras and
irreducible modules of maximal dimension, J. Algebra 198 (1997), 240-265.

[2] K.A. Brown & J.J. Zhang, Dualising complexes and twisted Hochschild (co)homology for
noetherian Hopf algebras, J. Algebra 320 (2008), 1814-1850.

[3] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Graduate
Texts in Math. 150, Springer (Berlin) (2004).

[4] R.G. Larson and M. Sweedler, An associative orthogonal bilinear form for Hopf algebras,
Amer. J. Math. 91 (1969), 75-93.

[5] D.-M. Lu, Q.-S. Wu, J.J. Zhang, Homological integral of Hopf algebras Trans. Amer. Math.
Soc. 359 (2007), no. 10, 4945-4975.
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Finite generation of the cohomology of reductive groups

Antoine Touzé

Let G be a reductive group scheme over a field k (for example G = GLn). Let
A be a finitely generated commutative k-algebra, acted on by G by algebra auto-
morphisms. Then it is proved in [6] that the cohomology H∗(G,A) is a finitely
generated k-algebra. This theorem is a natural generalization of:

(1) the results of Evens [1] and Friedlander and Suslin [2] on the cohomology
of finite dimensional cocommutative Hopf algebras, and

(2) the results of classical invariant theory, which assert that the algebra of
invariants H0(G,A) = AG is finitely generated [4, 5, 3].

In this talk, we explain the connections between this theorem and the ongo-
ing work on the cohomology of finite dimensional Hopf algebras. For example,
we underline the role important role of the nontrivial coefficients. Indeed, while
H∗(GLn, k) is a trivial k-algebra (i.e. equal to the field k in degree zero and zero
in higher degrees), the cohomology of all finite group schemes can be realized as

H∗(GLn, A) for A = CoindGLn

G k = k[GLn]
G.
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Then we review the spectral sequence technique used to prove finite generation
of cohomology, which goes back to Evens [1]. This technique relies on the com-
putation of permanent cocycles. Such permanent cocycles have to be computed
directly, i.e. without the specral sequence. Evens did produce these permanent
cocycles for finite groups by using his norm map. In the talk, we explain how
Friedlander and Suslin computed the permanent cocycles in the case of finite group

schemes [2] from the computation of the cohomology groups H∗(GLn, gl
(r)
n ). The

main theorem of [6] relies (among other things) on a more general cohomology
computation, of a similar nature.

Finally, we mention some of the many open questions around the cohomology
of reductive group schemes. In particular

(1) what is the geometric interpretation of the cohomology rings H∗(G,A)?
(Geometric invariant theory tells us about the interpretation of AG =
H0(G,A), the variety corresponding to H∗(G,A) is something bigger and
quite mysterious.)

(2) Can we obtain more information on the cohomology rings H∗(G,A)? Ex-
plicit computations would be welcome, but classical invariant theory al-
ready tells us that one should not have too great expectations in this
direction. One could also ask for which properties of A transfer to the
cohomology.

(3) Finally, one could wonder the role of the cohomology algebras H∗(G,A)
for smooth reductive groups (such as G = GLn) with respect to their
representation theory.
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Cohomology and support varieties for finite supergroup schemes

Christopher M. Drupieski

(joint work with Jonathan R. Kujawa)

In 1997, Friedlander and Suslin (FS) [5] showed that the cohomology ringH∗(G, k)
of a finite group scheme G over a field k—equivalently, a finite-dimensional cocom-
mutative Hopf algebra over k—is a finitely-generated k-algebra. Combined with
subsequent work by Suslin, Friedlander, and Bendel (SFB) [6, 7], this opened the
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door to studying the representation theory of finite group schemes by way of the
geometry of the corresponding affine scheme |G| := Spec (H∗(G, k)). There are,
however, many interesting objects, such as certain finite-dimensional cocommuta-
tive Z-graded Hopf algebras, that are ‘morally’ but not literally equivalent to finite
group schemes, and hence to which the FS and SFB theories cannot be applied.
More generally, one can consider finite supergroup schemes, that is, finite group
scheme objects in the braided monoidal category of Z/2-graded (‘super’) k-vector
spaces. In this category, the usual twist map V ⊗W ∼= W ⊗ V is replaced by a
graded analogue in which v ⊗ w 7→ −w ⊗ v whenever v and w are both homoge-
neous of odd superdegree. In this talk we’ll discuss recent progress in generalizing
the work of FS and SFB to the context of finite supergroup schemes. The first
main result is the following theorem of Drupieski [2]:

Theorem 1. Let G be a finite supergroup scheme (equivalently, a finite-dimen-
sional cocommutative Hopf superalgebra) over the field k, and let M be a finite-
dimensional G-supermodule. Then H∗(G, k) is finitely-generated as a k-algebra,
and H∗(G,M) is finitely-generated as a module over H∗(G, k).

In parallel to the work of FS, the theorem is proved by first reducing toGLm|n(r),
the r-th infinitesimal Frobenius kernel of the general linear supergroup, and then
by constructing certain universal extension classes coming from the category of
strict polynomial superfunctors. These calculations demonstrate interesting new
‘super’ phenomena, showing for example that odd degree cohomology classes play
a role that is invisible in the classical ‘purely even’ theory.

The next results, which are joint with Jonathan Kujawa [3], are a description
for G infinitesimal unipotent of the spectrum |G| and the cohomological support
varieties |G|M ⊆ |G| associated to each finite-dimensional G-supermodule M . For
each r ≥ 1, we define a Hopf superalgebra Pr, and a superalgebra homomorphism
ι : P1 →֒ Pr. Let kG be the group algebra of G, a finite-dimensional cocommu-
tative Hopf superalgebra, and let Vr(G) := HomHopf (Pr, kG) be the set of Hopf
superalgebra homomorphisms ν : Pr → kG. We then show:

Theorem 2. Let G be an infinitesimal unipotent supergroup scheme of height ≤ r,
and letM be a finite-dimensional G-supermodule. Then Vr(G) admits the structure
of an affine scheme, and there exists a universal homeomorphism |G| ≃ Vr(G).
Under this identification, |G|M ≃ {ν ∈ Vr(G) : projdimP1

(ι∗ν∗M) = ∞}.
The proof of the theorem relies on two major inputs. The first is a generalization

to supergroups of the characteristic extension classes constructed by SFB [4]. The
second is a detection theorem of Benson, Iyengar, Krause, and Pevtsova [1].
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Cohomology of finite tensor categories: Duality and Drinfeld centers

Cris Negron

(joint work with Eric M. Friedlander, Julia Plavnik)

Let us call a finite tensor category C of finite type (over a given base field k) if the
following conditions hold: The self-extensions of the unit Ext∗C(1,1) are a finitely
generated algebra, and for any object X in C the extensions Ext∗C(1, X) are a
finite module over the extensions of 1, via Yoneda composition. The question of
whether of not all finite tensor categories are in fact of finite type has persisted in
the literature at least since the 90’s.

Here we study the behavior of the finite type property under certain now-
standard operations on finite tensor categories. Namely, we consider duality
C  C∗

M with respect to exact module categories M and the Drinfeld center
construction C  Z(C).

In the case of the representation category rep(A) of a finite-dimensional Hopf
algebra A, one recovers the representations of the linear dual rep(A∗), as well
as arbitrary cocycle twists rep(Aσ), as duals rep(A)∗M with respect to specific
choices of M. The center construction for rep(A) recovers the Drinfeld dou-
ble Z(rep(A)) ∼= rep(D(A)), and can more generally be obtained via a duality
(C ⊗ Ccop)∗C

∼= Z(C). Whence this categorical M-relative duality is seen to be a
generalization of many important constructions for Hopf algebras.

In joint work with J. Plavnik [2] we conjecture that the finite type property for
finite tensor categories is preserved under duality. That is, for any finite type tensor
category C, the center Z(C) should be of finite type as well, as should arbitrary
duals C∗

M. We also conjecture that the Krull dimension of cohomology is preserved
under duality. (From a certain perspective, this conjecture only makes sense in
characteristic 0. However, we heedlessly proceed without deep consideration of
this point.)

We show in [1, 2], with E. Friedlander and J. Plavnik, that for the represen-
tation categories rep(G(r)) of Frobenius kernels in a smooth algebraic group G,
in finite characteristic, the Drinfeld center of rep(G(r)) is in fact of finite type,
and that all duals are of finite type as well. We additionally provide a uniform
bound on the Krull dimensions of cohomology for arbitrary duals. (Recall that the
rep(G(r)) are themselves of finite type by Friedlander-Suslin.) We similarly show
that Conjecture [2] holds for quantum groups, and generalized quantum groups à la
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Andruskiewitsch-Schneider. This leads to new examples of finite type tensor cate-
gories, including those coming from cocycle twists of function algebras on (some)
infinitesimal group schemes, and so-called dynamical quantum groups. Finally, we
discuss our proof of Conjecture [2] for braided tensor categories in characteristic
0 with semisimple Müger center, i.e. with semisimple braiding degeneracy.
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Symmetry of the Mackey algebra

Baptiste Rognerud

Mackey functors were introduced as a convenient tool for handling the induction
theory of several objects having a similar behavior (group representations; rep-
resentation rings, group cohomology, etc;). Later, it was proved by Th??venaz
and Webb that the category of Mackey functors is equivalent to the category of
modules over a finite dimensional algebra called the Mackey algebra. The proof
is far from being difficult, but this result is of crucial importance : one can study
Mackey functors using ring and module theory. It turns out that the Mackey alge-
bra is, in many aspects, similar to the group algebra but there are many interesting
differences.

Let k be a field of characteristic p and G be a finite group. We denote by kG the
group algebra of G, by µk(G) its Mackey algebra and by coµk(G) the cohomological
Mackey algebra of G which is an interesting quotient of the Mackey algebra. Here
we give some classical properties of these algebras.

Property kG µk(G) coµk(G)
Dimension |G| independant of k

∑

H,K≤G |H\G/K|
Semisimple p 6 ||G| p 6 ||G| p 6 ||G|
Symmetric Yes p2 6 ||G| p 6 ||G|

Finite Rep type Sylow Cyclic p2 6 ||G| p2 6 ||G|
Gorenstein Yes p2 6 ||G| Sylow cyclic or Dihedral

It is well-known that the group algebras of finite representation type are product
of semisimple algberas and Brauer trees algebras. This is also true for the Mackey
algebras but not for the cohomological Mackey algebras.

Another interesting property of the categories of Mackey functors is that they
have a ‘canonical’ structure of closed symmetric monoidal category. By canonical,
we mean that it extends the cartesian product of G-sets. Note that the Mackey
algebras are not Hopf algebras in general. The monoidal structure can be con-
structed by Day convolution or by using an associative tri-module for the Mackey
algebra.
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Using this monoidal structure, I explained how to build central linear forms for
the Mackey algebra. This leads to a characterization of the Mackey algebras that
are symmetric.
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Cohomology of some local selfinjective algebras

Karin Erdmann

It is open at present whether the cohomology of finite-dimensional Hopf algebras
which are not cocommutative, is finitely generated. The paper [3] classifies con-
nected Hopf algebras of dimension p3 over fields of characteristic p, and in [1] the
structure of these algebras, and in particular finite generation of their cohomology
is analysed. The algebras come in 24 families. For all but one family, it could be
shown in [1] that the cohomology is finitely generated. The missing case is the
family called A5(β) for characteristic p > 2 and β ∈ k. We had noted without
proof in [1] that its cohomology is finitely generated for β 6= 0.

This is now settled in [2], by a construction which applies to more general
classes of local selfinjective algebras, they need not be Hopf algebras. The input
consists of some partial information on the algebra, and with this it is shown that
the cohomology is finitely generated. The construction applies in particular to the
algebras A5(β) for β non-zero.

We consider local selfinjective algebras of the form

A = k〈x, y〉/I
where k is a field of arbitrary characteristic, and where x, y are independent gen-
erators of the radical of A. We impose three conditions on the ideal I. The first
two are:
(1) There is a minimal relation ψ1x + ψ2y = 0 with ψ1, ψ2 independent modulo
the square of the radical of A.
(2) There are minimal relations

σ1x+ σ2y = 0, θ1x+ θ2y = 0

Moreover, let ψ = (ψ1, ψ2), σ = (σ1, σ2) and θ = (θ1, θ2). Then σ and θ are
independent modulo Aψ.

The crucial observation is that σ, ψ and θ form a minimal generating set for
the A-module Ω2(k). Therefore the module Ω2(A) is completely determined by
specifying elements ρi for 1 ≤ i ≤ 4 such that



682 Oberwolfach Report 11/2019

xσ + ρ1ψ = 0, yσ + ρ2ψ = 0

xθ + ρ3ψ = 0, yθ + ρ4ψ = 0.

With this, in addition to (1) and (2) we require the following condition:
(3) We have

σ1ρ1 + σ2ρ2 = 0, ψ1ρ1 + ψ2ρ2 = 0,

ψ1ρ3 + ψ2ρ4 = 0, θ1ρ3 + θ2ρ4 = 0.

Moreover θ1ρ2 + θ2ρ2 is non-zero and lies in the socle of A, and

θ1ρ1 + θ2ρ2 + c(σ1ρ3 + σ2ρ4) = 0.

Assuming only (1) and (2) one can show that the elements listed in (3) must
necessarily belong to the socle, and it is possible that (3) is redundant.

Example 1 Let A := k〈x, y〉/(xn, ym, xy− qyx) where n,m ≥ 2 and where q is a
non-zero element of k. This includes group algebras of 2-generated finite abelian
p-groups, and also 2-generated quantum complete intersections. For these algebras
it is easy to establish conditions (1) to (3), taking
σ = (xn−1, 0), ψ = (−qy, x), θ = (0, ym−1).

Example 2 The algebra A = A5(β) of [3] has presentation

A = k〈z, y〉/〈[y, z]p, , yp, [[y, z], y], [[y, z], z], zp + [y, z]p−1y − β[y, z]〉
for β ∈ k, we take β 6= 0. We set a := yz−zy, this is a central element and ap = 0.

One can see that zp
2−1 6= 0 but zp

2

= 0. We establish conditions (1) to (3) (with

z, y instead of x, y) taking σ = (zp
2−1, 0), ψ = (zp−1 + βy, ap−1 − βz)

and θ = (0, yp−1).

Using (1) to (3) we compute an explicit minimal projective resolution, and some
cohomology products of elements of degree r with elements of degree 1 and with
elements of degree 2, and obtain:

Theorem The cohomology H∗(A, k) is finitely generated, with generators in de-
grees ≤ 2.

A complete presentation of the cohomology H∗(A, k) would depend on the
precise details of (1) to (3). Though one can see in the case of A5 directly that
the cohomology is graded commutative.

References

[1] K. Erdmann, Ø. Solberg, X. Wang On the structure and cohomology ring of connected Hopf
algebras, J. Algebra 527 (2019), 366-398.

[2] K. Erdmann, Cohomology of some local selfinjective 2-generated algebras, arxiv: 1904.04533.
[3] V. C. Nguyen, L.-H. Wang, X.-T. Wang, Classification of connected Hopf algebras of di-

mension p3, J. Algebra 424 (2015), 473-505.



Mini-Workshop: Cohomology of Hopf Algebras and Tensor Categories 683

Extension of Brown’s table to weak Hopf algebras

James J. Zhang

(joint work with Daniel Rogalski, Robert Won)

Brown-Goodearl Question asks if every noetherian Hopf algebra has finite self-
injective dimension. The theme of my talk is about the Brown-Goodearl Question
and related homological properties of noetherian weak Hopf algebras, which can
be viewed as an extension of Ken Brown’s survey talk on “Homological properties
of noetherian Hopf algebra” on the first day.

Throughout let W be a weak Hopf algebra that is a finitely generated module
over its center and assume that the center of W is an affine algebra over the base
field. We show that the Brown-Goodearl question has a positive answer in this
case.

Theorem 1: Let W be as above. Then W has finite self-injective dimension.
Further, as an algebra, W is a finite direct sum of Artin-Schelter Gorenstein and
Cohen-Macaulay algebras.

We also prove a few other results.

Theorem 2: LetW be as above. ThenW has a quasi-Frobenius artinian quotient
ring.

Let GKdim denote the Gelfand-Kirillov dimension. We say an algebra W is
homogeneous if GKdim L = GKdimW for all nonzero left ideals L ⊆W .

Theorem 3: Let W be as above. If W has finite global dimension, then W is a
direct sum of prime algebras and each summand is a homogeneous, Artin-Schelter
regular, Auslander regular and Cohen-Macaulay algebra.

The following is a version of Nichols-Zoeller Theorem for infinite dimensional
weak Hopf algebras.

Theorem 4: Let W1 and W2 be two noetherian weak Hopf algebras satisfying
the general hypothesis as in the previous theorems, and homogeneous of the same
Gelfand-Kirillov dimension. Suppose that W2 has finite global dimension. If there
is an algebra map f : W1 → W2 such that W2 is a finitely generated module over
W1 on both sides, then W2 is a projective module over W1 on both sides.

This talk is based on joint work with Daniel Rogalski and Robert Won.
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On the existence of permanent cocycles via twisted tensor product

and Anick resolutions

Van C. Nguyen

(joint work with Xingting Wang and Sarah Witherspoon)

The cohomology ring of a finite dimensional Hopf algebra is conjectured to be
finitely generated. Friedlander and Suslin proved this for cocommutative Hopf
algebras, generalizing earlier results of Evens, Golod, and Venkov for finite group
algebras and of Friedlander and Parshall for restricted Lie algebras. There are
many finite generation results as well for various types of noncocommutative Hopf
algebras. Most of these results are in characteristic 0.

In this talk, we prove finite generation of cohomology for classes of noncocommu-
tative Hopf algebras over a field of prime characteristic p > 2. These algebras arise
in the classification of finite dimensional pointed Hopf algebras in positive char-
acteristic given by Nguyen and Wang [3]. They include bosonizations of Nichols
algebras of Jordan type in a general setting. Our proofs are based on an algebra
filtration and a lemma of Friedlander and Suslin, using both twisted tensor product
resolutions (introduced by Shepler and Witherspoon [4]), and Anick resolutions
(introduced by Anick [1, 2]). We describe the constructions of these resolutions
and use them to explicitly locate the needed permanent cocycles in the May spec-
tral sequences associated to these algebras. As a result, we obtain:

Main Result. Let k be an algebraically closed field of prime characteristic p > 2.
Consider the following Hopf algebras over k:

(1) The p2q-dim bosonization R#kCq of a rank two Nichols algebra R of
Jordan type over a cyclic group Cq = 〈g〉, where q is divisible by p. As
Hopf algebras, R#kCq is isomorphic to k〈w, x, y〉, where w = g−1, subject
to relations

wq, xp, yp, yx− xy − 1

2
x2, xw − wx, yw − wy − wx− x.

(2) The 27-dim liftings H := H(ǫ, µ, τ) of R#kCq when p = q = 3, which is
isomorphic to k〈w, x, y〉 subject to relations

w3 = 0, x3 = ǫx, y3 = −ǫy2 − (µǫ − τ − µ2)y,

yw − wy = wx+ x− (µ− ǫ)(w2 + w), xw − wx = ǫ(w2 + w),

yx− xy = −x2 + (µ+ ǫ)x+ ǫy − τ(w2 − w),

with ǫ ∈ {0, 1} and τ, µ ∈ k.

Then the cohomology rings of R#kCq and of H are finitely generated.

Our main result is exclusive for odd characteristic since the Nichols algebra of
Jordan type does not appear in characteristic 2. Part (2) of our main result
above is only stated for characteristic 3; this is because we use the classification of
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such Hopf algebras from [3]. There, a complete classification is given only in case
p = 3 of the Hopf algebra liftings H of R#kCq, that is the Hopf algebras whose
associated graded algebra with respect to the coradical filtration is R#kCq. We
expect our homological techniques will be able to handle liftings in case p > 3 once
more is known about their structure.
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Connected Hopf algebras and related homological properties

Xingting Wang

Connected (or called irreducible by Sweedler) Hopf algebras are generalizations of
universal enveloping algebras of finite dimensional Lie algebras in Lie theory and
coordinate rings of unipotent group schemes in affine algebraic groups. Recently,
there are many new developments in understanding these non-commutative and
non-cocommutative Hopf algebras both in zero and positive characteristic.

First of all, in characteristic zero, connected Hopf algebras of finite Gelfand-
Kirillov dimension (GK-dimension) are all deformations of polynomial algebras
and hence they possess excellent homological and ring-theoretic properties. This
phenomena was first observed by Zhuang in his paper [14] and further he proved
the following result: Let H be a connected Hopf algebra of finite GK-dimension
over an algebraically closed field of characteristic zero. Then we have

• H is a noetherian domain.
• H is Auslander-regular and Cohen-Macaulay.

One of the famous conjectures about noetherian Hopf algebras is the Brown-
Goodearl Conjecture (BGC) [1, Question E] which states that every noetherian
Hopf algebra is Artin-Schelter Gorenstein (AS-Gorenstein). As a consequence of
Zhuang’s result, every connected Hopf algebra of finite GK-dimension in charac-
teristic zero belongs to this nice family of algebras in the sense of Artin-Schelter
regularity. Moreover, their structures are interesting to people working in non-
commutative invariant theory, non-commutative algebraic geometry, deformation
theory, representation theory, and etc. Meanwhile, at least for low GK-dimension,
the classification program about possible algebraic structures of connected Hopf
algebras over an algebraically closed field of characteristic zero took place simulta-
neously. The most current status of this classification program can be summarized
as follows.
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• GK dimension 0: No such Hopf algebras.
• GK dimension 1: Polynomial algebra of one variable.
• GK dimension 2: Universal enveloping algebras of 2-dimensional Lie alge-
bras by Goodearl-Zhang [6].

• GK dimension 3: Universal enveloping algebras of 3-dimensional Lie alge-
bras by Zhuang [14].

• GK dimension 4: Universal enveloping algebras of 4-dimensional Lie alge-
bras by Wang-Zhuang-Zhang [10].

• GK dimension 5: There exists a connected Hopf algebra of GK-dimension
5 that is NOT isomorphic to, as algebras, any universal enveloping algebra
by Brown-Gilmartin-Zhang [2].

In the other hand, connected Hopf algebras appearing in positive characteristic
p > 0 have rich algebra structures even in GK-dimension 0 or finite dimensional
case. Wang in [13] showed that these finite dimensional connected Hopf alge-
bras are all deformations of restricted polynomial algebras (truncated polynomials
where every variable’s pth power vanishes). The classification program about their
possible algebra structures in dimension pn for n ≤ 3 has been recently accom-
plished by Nguyen-Wang-Wang in a series of papers [7, 8, 9, 11, 12, 13]. Moreover,
Erdmann, Ø. Solberg and X. Wang in [3] showed the representation types of these
low-dimensional connected Hopf algebras can only be

• semisimple algebras;
• finite group algebras;
• selfinjective Nakayama algebras;
• restricted enveloping algebras of finite dimensional restricted Lie algebras;
• covering of local algebras;
• other types of local algebras.

In particular, these finite dimensional connected Hopf algebras are Frobenius al-
gebras whose cohomology rings play an important role in their support variety
theory. It is conjectured by Etingof and V. Ostrik [4] these cohomology rings are
always finitely generated, which is an essential assumption in support variety the-
ory (see for instance [5]). As a result of the previous discussion, the conjecture
holds for all low-dimensional connected Hopf algebras.
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Cyclic A∞-algebras and cyclic homology

Estanislao Herscovich

In [3], the authors gave a new description of Hochschild and cyclic homology in
characteristic zero, based on noncommutative (formal) geometry. In particular,
they showed that the complex computing the cyclic cohomology of a homologi-
cally unitary A∞-algebra A is quasi-isomorphic to a(n even shift of the) complex
Ω2

cyc,cl(A[1]) of closed cyclic 2-forms. By combining this with a formal version of
Darboux’s theorem, they showed that a closed cyclic 2-form induces an isomor-
phism class of symplectic structures on the minimal model H•(A) of A, if H•(A)
is finite dimensional. On the other hand, C.-H. Cho noted in [1] that a constant
closed cyclic 2-form on a finite dimensional A∞-algebra A is the same as a strict
isomorphism of A∞-bimodules between A and its dual A#. He also found an
equivalent description for the existence of a symplectic structure on a minimal
model (see [1], Thm. 4.1, but also [2], Thm. 3.6), and Cho and S. Lee found
an explicit description of the quasi-isomorphism of A∞-bimodules between H•(A)
and its dual H•(A)# stated in [3], that they called strong homotopy inner product
(see [2]). Their proof is however somehow ad hoc as well as computationally highly
involved, and the proof of several steps are omitted.

Our goal is to show that the mentioned results in [1] and [2] can be directly de-
duced from a new description of the complex computing the Hochschild homology
of A, which is closer to the complex Ω2

cyc,cl(A[1]) in [3]. In order to express our
results more clearly, we consider the dual noncommutative Cartan calculus of A:
in this case, the complex computing the cyclic homology is a(n even shift of the)
complex (℧2

cyc(A[1])/ Im(dDR3), dual to Ω2
cyc(A[1]).

Recall that, given a dg bicomodule N over a dg coalgebra C, with left and right
coactions ρl : N → C⊗N and ρr : N → N⊗C, one definesN ♮ = Ker(ρl−τN,C◦ρr).
Given an A∞-algebra A and two A∞-bimodulesM and N , we introduce the tensor
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product M⊗∞
AeN of M and N as the dg vector space

(

Bu(A,M,A) �
B(A)+ Bu(A,N,A)

)♮

,

where Bu(A,M,A) is the bar construction ofM and B(A)+ is the coaugmentation
of the bar construction of A. If A is H-unitary, then A ⊗∞

Ae A computes the
Hochschild homology HH•(A) of A. We are interested in the previous complex
for the following reason.

Proposition 1. If A is an H-unitary A∞-algebra, there is a canonical isomor-
phism between H0((A⊗∞

Ae A)#) and the space of morphisms HomD∞(Ae)(A,A
#).

Moreover, we also have the following result.

Proposition 2. If A is an H-unitary A∞-algebra, there is a morphism sym :
A⊗∞

Ae A→ (℧2
cyc(A[1])/ Im(dDR3) of complexes inducing the map I : HH•(A) →

HC•(A) from the SBI sequence.

We obtain as a consequence Thm. 4.1 in [1] (see also [2], Thm. 3.6).

Theorem 3. Let A be an H-unitary A∞-algebra having finite dimensional coho-
mology such that A# is an H-unitary A∞-bimodule. Let uF•,• : A → A#[d] be a
morphism of A∞-bimodules. Then, uF•,• is a strong homotopy inner product if
and only if there is a quasi-isomorphism of A∞-algebras G : B → A with B is

finite dimensional and uG̃#
•,•[d] ◦ uF•,• ◦ uG̃•,• a d-cyclic structure on B, where

uG̃•,• is the associated morphism of A∞-bimodules over B.

As an application of this result we obtain that a strongly smooth pseudo-
compact local augmented dg algebra satisfies the (resp., almost exact) d-Calabi-
Yau property if and only if its Koszul dual has a (resp., strong) homotopy inner
product, extending Thm. 11.1 in [4], but with a completely different proof.
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Analyzing Hopf algebras using QPA

Øyvind Solberg

The aim of the talk/the computer demonstration was to show how one can use
the deposited GAP-package QPA (https://github.com/gap-packages/qpa) to
analyze the structure of finite dimensional Hopf algebras in prime characteristic
and their cohomology ring. In particular we analyzed the example (A5) from [1]
for both β 6= 0 and β = 0 with p = 3, the algebras (A) and (B) from [2, Theorem
5.1.2] and [2, Theorem 5.2.1], respectively, for p = 3 and the latter with ǫ = µ = 1
and τ = 0, and the super Jordan plane (SJP) given by

Fp

(

1x1
::

x2
dd

)

/〈x21, [x1, x2]− x21x1, x
p
21, x

2p
2 〉

with [x, y] = [xy−yx] and x21 = x1x2+x2x1 and p = 3. The computer calculations
showed that the algebra (A5) for β 6= 0 and β = 0 had different algebra structure
and cohomology structure, the algebra (A) has 1, 2, 5 generators in the degrees
0, 1, 2 and none in the degrees 3, 4, the algebra (B) is decomposable, and the
cohomology algebra of (SJP) has 1, 2, 3 generators in degrees 0, 1, 2 and none in
the degrees 3, 4, 5.
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Completing the representation ring of a finite dimensional

Hopf algebra, I

David Benson

This talk was given both at this mini workshop and at the workshop ID 1913
“Representations of finite groups” three weeks later. It breaks down naturally
into two parts, so I have decided to report on the first part here and the second
for that meeting.

Let H be a finite dimensional Hopf algebra over a field k; for example, the group
algebra of a finite group, or a finite group scheme. We only consider finitely gen-
erated H-modules. These are usually of wild representation type, so we shouldn’t
contemplate classifying the indecomposables. The subject of this talk is the asymp-
totics of the decomposition of tensor products and tensor powers of modules. We
obtain a new invariant of modules reflecting this information, and interpret it as a
spectral radius in a suitable Banach algebra. Part of this is joint work with Peter
Symonds, and the rest grew out of that work.

The representation ring a(H) has generators [M ] with M an H-module, and
relations [M ] + [N ] = [M ⊕N ] and [M ][N ] = [M ⊗k N ]. Additively, it is the free
abelian group on the isomorphism classes [M ] of indecomposable H-modules M .
This ring encodes information about summands of tensor products. We’ll assume
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that we have isomorphisms M∗∗ ∼=M and M ⊗N ∼= N ⊗M , although much can
be done without these assumptions.

We regard the projective H-modules as well understood. So we define the core
ofM to be the non-projective part. In other words, writingM =M ′⊕P where P
is projective and M ′ has no non-zero projective summands, core(M) = M ′. The
question we wish to address is,

how does the dimension of core(M⊗n) grow with n?

To address this, we form a generating function

fM (t) =

∞
∑

n=0

tncn(M), cn(M) = dim core(M⊗n).

The radius of convergence of this power series is given by

1/r = lim sup
n→∞

n

√

cn(M).

We write γ(M) = 1/r, and regard this as an invariant of the module M .
As an example, let G = 〈g〉 ∼= Z/5, k a field of characteristic five, and M the

two dimensional module g 7→ ( 1 1
0 1 ). We have

dim core(M⊗2n) ∼ τ2n+1, dim core(M⊗2n+1) ∼ 2τ2n+1,

where τ = (1 +
√
5)/2 = 2 cos(π/5) is the golden ratio. In this example, we have

γ(M) = τ . Asymptotically, most of M⊗n is projective, but the non-projective
part still grows exponentially, like τn.

Some properties of the invariant γ(M) are as follows.

(1) γ(M) = limn→∞
n

√

cn(M) = infn→∞
n

√

cn(M).
(2) 0 ≤ γ(M) ≤ dimM .
(3) Some M⊗n has a projective summand ⇐⇒ γ(M) < dimM .
(4) M is projective if and only if γ(M) = 0. Otherwise γ(M) ≥ 1.

(5) If 1 ≤ γ(M) <
√
2 then M is endotrivial, i.e., M ⊗M∗ ∼= k ⊕ (projective).

In the case of kG-modules, G a finite group, this implies γ(M) = 1.

(6) If M is not endotrivial, γ(M) =
√
2 ⇒M ⊗M∗⊗M ∼=M ⊕M ⊕ (projective).

(7) γ(M) = γ(M∗).
(8) If 0 →M1 →M2 →M3 → 0, each γ(Mi) is at most the sum of the other two.
(9) max{γ(M), γ(N)} ≤ γ(M ⊕N) ≤ γ(M) + γ(N).
(10) γ(m.M) = m.γ(M).
(11) γ(k ⊕M) = 1 + γ(M).
(12) γ(M ⊗N) ≤ γ(M).γ(N).
(13) γ(M⊗m) = γ(M)m.
(14) In the case of kG-modules, G a finite group, we have
γG(M) = maxE≤G γE(M), where the maximum is taken over the elementary
abelian p-subgroups of G, p = char(k).

To clarify the input from representation theory, we formulate axioms for an ab-
stract representation ring. We define a representation ring a to be a commutative
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ring whose additive group is free abelian on a basis xi, i in an index set I. The
identity 1 = x0 is a basis element, and

xixj =
∑

k∈I

[xixj : xk]xk

with structure constants [xixj : xk] ≥ 0. The axioms are as follows.
(1) There is an involution i 7→ i∗ of I inducing an involutive automorphism of a
sending x =

∑

i aixi to x
∗ =

∑

i aixi∗ .
(2) If [xixj : 1] > 0 then j = i∗.
(3) If [xixi∗ : 1] = 0 then [xixi∗xi : xi] ≥ 2.
(4) There is a dimension function dim: a → Z with dim(xi) = dim(xi∗) > 0.
(5) There is an element ρ ∈ a<0 such that ∀x ∈ a, xρ = dim(x).ρ.

A representation ideal is a proper subset X ⊂ I such that
(1) if i ∈ X and [xixj : xk] > 0 then xk ∈ X; and
(2) if i ∈ X then i∗ ∈ X.

For example, the unique maximal representation ideal Xmax consists of those
i ∈ I such that [xixi∗ : 1] = 0.

If [ρ : 1] > 0 then a has finite rank and is semisimple; this is called ordinary
representation theory. In this case, the only representation ideal is ∅. Otherwise,
it is called modular representation theory, and the unique minimal non-zero rep-
resentation ideal is Xproj, the set of i ∈ I such that [ρ : xi] > 0. There are many
other examples of representation ideals, such as those given by support varieties.

Let X be a representation ideal in a representation ring a. If x =
∑

i∈I
aixi ∈

a<0, we set coreX(x) =
∑

i∈I\X aixi. Then as before, for x ∈ a<0 we set

cXn (x) = dim coreX(x
n), γX(x) = lim sup

n→∞

n

√

cXn (x).

There is a list of properties of this invariant γX(x) just as before.
In the second part of this talk, described separately, we put a Banach space

structure on aC = C⊗Z a by setting ‖
∑

i∈I
aixi‖ =

∑

i∈I
|ai| dimxi. The comple-

tion of aC with respect to this norm is a commutative Banach ∗-algebra â. If X is
a representation ideal in a then we write âX for the quotient of â by the closure
of the ideal generated by X, and we interpret γX(x) as the spectral radius of the
image of x in âX.

Reporter: Baptiste Rognerud
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