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Abstract. Uncertainty quantification (UQ) is concerned with including and
characterising uncertainties in mathematical models. Major steps comprise
proper description of system uncertainties, analysis and efficient quantifica-
tion of uncertainties in predictions and design problems, and statistical in-
ference on uncertain parameters starting from available measurements. Re-
search in UQ addresses fundamental mathematical and statistical challenges,
but has also wide applicability in areas such as engineering, environmental,
physical and biological applications. This workshop focussed on mathemati-
cal challenges at the interface of applied mathematics, probability and statis-
tics, numerical analysis, scientific computing and application domains. The

workshop served to bring together experts from those disciplines in order to
enhance their interaction, to exchange ideas and to develop new, powerful
methods for UQ.
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Introduction by the Organizers

Uncertainty quantification (UQ) is a research area at the interface of applied math-
ematics, probability and statistics, numerical analysis, scientific computing, and
typical application domains such as geosciences and engineering. UQ has assumed
increasing prominence over the last 10–15 years and concerns itself with the proper
incorporation of all forms of error and uncertainty in scientific inferences about
such applications. Major steps comprise proper description of system uncertain-
ties, analysis and efficient quantification of uncertainties in predictions and design
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problems, and statistical inference on uncertain parameters starting from avail-
able measurements. Research in this area addresses fundamental mathematical
and statistical challenges, but has also wide applicability in areas such as engi-
neering, environmental, physical and biological applications.

The workshop Uncertainty Quantification, organised by Oliver Ernst (Chem-
nitz), Fabio Nobile (Lausanne), Claudia Schillings (Mannheim), and Tim Sullivan
(Berlin), was the first full workshop on this theme to be hosted by the MFO.
In comparison to major international gatherings such as the SIAM Conferences
on Uncertainty Quantification (2012, 2014, 2016, 2018), this workshop featured a
focus upon European-based researchers in the field (with contributions also from
North America and Australasia) and emphasised meaningful interactions between
mathematicians and statisticians.

The workshop had a positive and productive atmosphere, with many intense
exchanges between participants of differing disciplinary and methodological back-
grounds, as had been hoped for by the organisers. The principal mathematical
themes of the workshop were

• forward uncertainty propagation,
• Bayesian inverse problems, and especially posterior consistency and con-
traction,

• data assimilation and filtering,
• statistical perspectives,
• data science perspectives,
• sampling methodology,
• optimization under uncertainty,
• interplay of probability and numerical analysis.

An intensive but flexible schedule was adopted to properly encompass this broad
range of topics: four longer 45-minute talks in the mornings, and four shorter 30-
minute talks in the afternoons; on the Tuesday afternoon, PhD students presented
their research in a “blitz session” of 10-minute talks that were particularly well
received.
Forward Uncertainty Propagation. The basic task of solving differential equations
with random inputs is a mature but active area of research. Here numerical meth-
ods for stochastic ordinary differential equations (SDEs) were presented by Lang,
who analysed new methods for stochastic Hamiltonian systems and Fischer, who
introduced a new construction principle for higher-order solvers for SDEs based
on spectral deferred correction. A fascinating presentation on random PDEs on
evolving hypersurfaces motivated by applications in cell biology was given by Djur-
djevac.
Bayesian Inversion, Consistency, and Contraction. A number of talks considered,
in addition to the well-posedness of Bayesian procedures with deterministic (Latz)
and randomised (Teckentrup) forward models, their consistency and contraction
properties. These properties are relatively standard in the finite-dimensional set-
ting (the Bernstein–von Mises theorem), but are much more subtle in the function-
space context that is frequently of interest in UQ, as explained by Nickl in the
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workshop’s opening talk. The practical importance of these considerations was
emphasised by Fox, who argued that industrial partners assess the worth of a UQ
study by its frequentist accuracy, as measured against withheld data. Frequen-
tist consistency properties are closely related to the small-noise limits of Bayesian
posteriors and their points of maximum probability (maximum a posteriori esti-
mators); for measures on infinite-dimensional spaces, such points are non-trivial
to characterise, and their analysis was addressed in the talks of Agapiou, Dashti,
and Lie. The question of frequentist coverage of credible sets in linear Bayesian
inverse problems in the small-noise limit was taken up again by Kekkonen, who
described Bernstein–von-Mises theorems for functionals of their solution. Bochk-
ina showed how Bernstein–von-Mises results can be generalised to linear inverse
problems which are misspecified in the sense that the true solution need not lie in
the support of the prior distribution on the parameter space.
Data Assimilation. Closely related to SDEs are the filtering problems arising in
Data Assimilation, where functionals of stochastic dynamical systems are to be in-
ferred given noisy partial observations in order to merge the evolution of a physical
system with observational data. A survey of mean-field approaches to the standard
filtering problem, attractive due to its amenability to Monte Carlo techniques, was
given by Reich. In the nonlinear high-dimensional setting, Marzouk presented an
approach for extending the ensemble Kalman filter based on transport maps con-
structed using convex optimisation techniques, and de Wiljes derived stability as
well as pathwise accuracy bounds for the ensemble Kalman–Bucy filter, while Du-
binkina proposed an alternative approach to variational data assimilation based
on numerical shadowing techniques. Progress in continuing work on applying the
ensemble Kalman filter for solving Bayesian inverse problems was reported by
Weissmann, who extended previous work utilising a continuous-time limit of the
analysis/update step that incorporates noisy observations.
Statistical Perspectives. A primary aim of the workshop was to foster better con-
nections between the mathematical and statistical communities, especially in the
European context, and many speakers offered primarily statistical perspectives
on UQ (Nickl, Dette, Simoni, Schlather, Klebanov, and Kekkonen). Many par-
ticipants commented favourably on the active engagement of the statistical com-
munity in this UQ workshop; conversely, the statisticians found the problems of
interest in UQ to be interesting and wholly non-trivial from a statistical point of
view, and also remarked positively on the welcoming and open-minded atmosphere
of the workshop.
Data Science. Particularly under the banner of Deep Learning, data science is
presently a hot topic that shares some common interests with UQ. Schwab and
Gottschalk offered contributions on the approximation properties of deep neural
networks versus (more traditional in the UQ community) sparse generalised poly-
nomial chaos expansions, and on uncertainty in semantic segmentation of images.
Sampling Methodology. Markov chain Monte Carlo (MCMC) methods for sam-
pling from the posterior distribution of a Bayesian inverse problem in a function
space setting is currently one of the most active and challenging UQ research
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topics, requiring tools from statistics, probability theory, functional analysis and
numerical analysis. Consequently, it constituted one of the major themes of the
workshop, covering issues such as non-Gaussian priors (Hosseini), the effects of
inexact evaluation of the transition kernel (Rudolf), robustness in the small-noise
limit (Sprungk), MCMC with quasi-stationary target distributions (Wang), non-
reversible non-smooth dynamics for faster exploration of the posterior (Ottobre),
and the extension of the Stein discrepancy framework for assessing MCMC con-
vergence to heavy-tailed target distributions (Mackey). Multilevel techniques for
accelerating Monte Carlo sampling by recursively combining model approxima-
tions of reduced accuracy as control variates were the subject of the lectures by
Haji-Ali in the context of evaluating risk measures and by Chernov, for estimating
the covariance and higher moments of a random field. Multilevel ideas are also at
the heart of a method presented by Bachmayr involving periodisation of the co-
variance kernel of stationary random fields in combination with Meyer wavelets to
arrive at alternatives to the standard Karhunen–Loève expansion, thereby yield-
ing improved convergence rates for Hermite expansions of the solution of random
diffusion equations. Alternative representation of random fields was also the topic
of Kuo, who proposed expansions in periodic functions of random variables which
allow the application of highly efficient quasi-Monte Carlo sampling techniques.
Optimisation. UQ methods for optimisation problems aim to minimise the un-
certainty/risk in decision and design processes and optimal control. Kouri and
Pichler offered talks on the analysis of the resulting optimisation problems, in-
cluding a discussion of appropriate risk measures in the optimisation framework.
In the framework of stochastic control, Tempone presented efficient UQ methods
to deal with high-dimensional parameter spaces. A closely related field is experi-
mental design under uncertainty, which was addressed by Kostina in the context
of a mixed-integer optimal control problem.
Interplay of Probability and Numerical Analysis. A newly emerging research area
known as Probabilistic Numerical Analysis advocates viewing standard numerical
tasks such as quadrature or equation solving as problems of Bayesian inference.
Treating the solution of linear systems of equations by Krylov subspace methods
in this way was the subject of the contribution of Cockayne. On the same theme,
but more comprehensively, Owhadi gave a fascinating overview of the connections
between interpolation, inference and learning as methods of estimating based on
partial information connected through the perspective of game theory.

The deep mutual engagement between the mathematical and statistical com-
munities at this workshop was very strongly praised, and bodes well for the UQ
community’s future. Other aspects of the workshop that attracted positive com-
ments from the participants included the emphasis given to the contributions of
younger researchers, e.g. through the 10-minute “blitz” talks on Tuesday after-
noon, and the high number of female attendees and speakers.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
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Abstracts

Bayesian Uncertainty Quantification for PDE constrained
regression problems

Richard Nickl

We discuss recent results that validate the use of Bayesian methods in infinite-
dimensional statistical inverse problems arising with partial differential equations
(PDEs). Particularly we prove Bernstein-von Mises theorems which show that the
posterior distributions are approximated by certain infinite-dimensional Gaussian
distributions whose covariance depends on the information operator characterising
the inverse problem, and which can be used to show that Bayesian uncertainty
quantification methods (such as credible sets) have objective scientific meaning
in the frequentist large sample size scenario. The key examples discussed are
a) inferring coefficients of a partial differential operator from noisy observations
of a solution of a PDE involving the operator [2], b) inferring an image whose
geodesic X-ray transform is observed under additive Gaussian white noise [1], and
c) inferring the unknown drift vector field of a multi-dimensional diffusion process
based on observations of the trajectory of the solution of the stochastic differential
equation describing the diffusion [3].

References

[1] F. Monard, R. Nickl, G. P. Paternain, Efficient Nonparametric Bayesian inference for X-ray
transforms, Annals of Statistics 47 (2019) 1113–1147.

[2] R. Nickl, Bernstein - von Mises theorems for statistical inverse problems I: Schrödinger
equation, Journal of the European Mathematical Society, to appear (2019).

[3] R. Nickl, K. Ray, Nonparametric statistical inference for drift vector fields of multi-
dimensional diffusions. arXiv (2018).

Bayesian methods in inverse problems, and polynomial
acceleration of MCMC

Colin Fox

Two under-developed methods that could greatly increase the quality of compu-
tational Bayesian methods for uncertainty quantification (UQ) are the mid-level
and high-level models for unknown fields in inverse problems, and Markov chain
Monte Carlo methods with better than geometric convergence.

The Bayesian formulation for an inverse problem posits the joint distribution
for the ‘state of nature’ x, measured data d̃, and (hyper)parameters θ. Inference
is then focused on the posterior conditional distribution

[x, θ|d̃] = constx[d̃|x, θ][x|θ][θ]
with the right-hand side giving the usual expansion as a product of distributions
produced in a hierarchical model. Some issues arise in practice: the modelled ‘state
of nature’ is a proxy for the actual processes in nature; evaluating [d̃|x, θ] requires
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simulating the forward map that is a complex non-linear computer model; the
physics and geometry are uncertain – this is often the greatest source of uncertainty
in practical inverse problems; and the data is sparse and uncertain.

Optimization-based methods seek a ‘best’ solution by evaluating

x̂ = argmin
x

− log [d̃|x] + λR(x)

for some regularizing functional R, and regularizing parameter λ > 0. Compu-
tational optimization may be performed by the stationary linear relaxation algo-
rithms of the 1950s, or the modern sophisticated algorithms such as Chebyshev
polynomial acceleration, PCG, GMRES, multigrid, and fast-multipole methods.
Models for unknown x are usually continuous valued, from Hilbert spaces, afford-
ing the convenience of gradients and projections. These models are low-level [5]
since they can represent any field but are convenient for stating local informa-
tion, only. The resulting point estimates suffer from well-known problems such as
stochastic bias and poor predictive distributions [6].

Valid quantification of uncertainties requires correctly tracking distributions, as
in the sample-based Bayesian approach, that evaluates expectations of any function
f via the Monte Carlo estimate

E [f(x)] ≈ 1

N

∑
f(xi), xi ∼ [x|d̃].

Computational methods for sampling are dominated by Markov chain Monte Carlo
(MCMC), and Gibbs sampling, that are essentially the stationary iterative meth-
ods from the 1950s, though more efficient algorithms do exist [3]. Sampling algo-
rithms operate on measure spaces, allowing models with continuous and discrete
components, that can be low-, mid-, and high-level [5]. In particular, high-level
models allow counting the number of objects in a scene [1], something that is
practically impossible with low-level function-space representations.

We seek to draw on the best of the optimization and inference approaches, by
utilizing the measure-space models used in inference, but accelerate sampling by
adapting the sophisticated algorithms developed for optimization.

The advantages of mid- and high-level models can be demonstrated in an ex-
ample of imaging from limited-angle X-ray absorption data, in an application of
automated inspection of solder joints in the electronics industry. Traditional pro-
cessing of this data first forms a high-resolution, linear-space reconstruction of the
X-ray absorption which is then passed to a classification algorithm. The inverse
problem is highly ill-posed, with about 15 times too little data. The left panel
in Fig. 1 shows a basic difficulty with linear space representations when using
limited-angle X-ray data, that reconstruction of a circular object (a) results in
‘cones’ (b) [2]. However, it is clear that the reconstruction is unphysical since the
density of ‘solder’ decreases in the cones. Problems caused by these unphysical
linear-space representations can be avoided by using a mid-level representation [5]
of the solder as an object with a bounding surface, and roughly constant prop-
erties within the solder, as depicted in Fig. 1 (centre). Then the surface is well
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Figure 1. Left: Two images from limited-angle X-ray tomogra-
phy; (a) true image, (b) TV reconstruction showing ‘coneheads’.
Centre: Surface representation of solder on gull-wing leads. Right:
Sample-based estimate of a BGA using a CSG representation.
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Figure 2. Top row shows the contours of a quadratic function
1
2x

TAx−bTx and the iteration paths for the optimizers: Gauss-
Seidel (left), Chebyshev accelerated Gauss-Seidel (mid), and con-
jugate gradients or Lanczos (right). Bottom row shows contours
of the normal density k exp

{
− 1

2x
TAx+ bTx

}
, and the paths of

the equivalent accelerated Gibbs samplers.

defined, and the Fisher information, as appears in the Bernstein von Mises the-
orem, shows that about 5 times more data has been measured than is required.
The ill-posedness was illusory. The right panel in Fig. 1 shows a reconstruction of
a BGA using a constructive solid geometry (CSG) representation with a random
number of primitives. This algebraic representation on a countably-infinite state
space poses significant computational challenges for sampling, though provides
excellent reconstructions with features at scales smaller than the ‘resolution’ of
limited-angle X-ray tomography.
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Polynomial acceleration and Krylov-space methods can be applied to MCMC,
exactly for some finite state-space cases and also for Gibbs sampling of multivariate
normal distributions. The latter case is summarized in Fig. 2.

In the quadratic case, these optimizers are usually described as solvers of Ax =
b. The iteration operators, and error polynomials, are identical for the equivalent
samplers and solvers, implying that the optimal solver is the optimal sampler.
In particular, the Chebyshev accelerated Gibbs sampler has the optimal rate of
convergence, in distribution, amongst non-stationary iterations that do not depend
on the residual, while the Lanczos sampler is a ‘perfect’ sampler that generates
independent samples in a finite number of steps (in exact arithmetic).

Research is ongoing to extend these results to general, non-normal distributions.

References

[1] Al-Awadhi, F., Jennison, C. and Hurn, M., 2004. Statistical image analysis for a confocal
microscopy two-dimensional section of cartilage growth. Journal of the Royal Statistical
Society: Series C (Applied Statistics), 53(1), pp.31-49.

[2] Chen, Z., Jin, X., Li, L. and Wang, G., 2013. A limited-angle CT reconstruction method
based on anisotropic TV minimization. Physics in Medicine & Biology, 58(7), pp.2119-2141.

[3] S. Dolgov, K. Anaya-Izquierdo, C. Fox, and R. Scheichl, Approximation and sampling
of multivariate probability distributions in the tensor train decomposition, arXiv preprint
arXiv:1810.01212 (2018).

[4] Fox, C. and Parker, A.E., 2017. Accelerated Gibbs sampling of normal distributions using
matrix splittings and polynomials. Bernoulli 23(4B), pp.3711-3743.

[5] Hurn, M.A., Husby, O. and Rue, H., 2003. Advances in Bayesian image analysis. In Highly
structured stochastic systems (pp. 301-322). Oxford University Press.

[6] Kaipio, J.P. and Fox, C., 2011. The Bayesian framework for inverse problems in heat transfer.
Heat Transfer Engineering, 32(9), pp.718-753.

MAP estimators and their consistency for nonparametric Bayesian
inverse problems

Masoumeh Dashti

(joint work with Sergios Agapiou, Martin Burger and Tapio Helin)

We consider the inverse problem of recovering an unknown functional parameter
u ∈ X from a noisy and indirect observation y ∈ Y. We work in a framework in
which X is an infinite-dimensional separable Banach space, while Y = RJ . In
particular, we consider the additive noise model

(1) y = G(u) + ξ,

where ξ is mean zero Gaussian observational noise, with a positive definite co-
variance matrix Σ ∈ RJ×J , ξ ∼ N(0,Σ). Here the possibly nonlinear operator
G : X → Y describes the system response, connecting the observation y to the
unknown parameter u. More specifically, G captures both the forward model and
the observation mechanism and is assumed to be known.

We adopt a Bayesian approach where prior information is encoded in the prior

distribution µ0 on the unknown u, and the Bayesian methodology is used to obtain
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the posterior distribution µy on u|y (provided that G satisfies some mild conditions
[9, 4]), in the form

(2) µy(du|y) ∝ exp
(
− Φ(u; y)

)
µ0(du),

where

Φ(u; y) =
1

2
‖Σ− 1

2

(
y − G(u)

)
‖2Y .

We are interested in characterising the modes of the posterior measure or the
maximum a posteriori (MAP) estimates. These are of interest since the charac-
terisation of the full posterior measure is in general very difficult or infeasible in
the high- or infinite-dimensional case.

In finite dimensional contexts, especially when working with continuous proba-
bility distributions, the definition of a mode is straightforward as a maximiser of
the probability density function. If the prior has probability density function of
the form

π(u) ∝ exp(−W (u)),

for a suitable positive function W : X → [0,∞), the density of the posterior is

πy(u) ∝ exp(−I(u; y)),
where

(3) I(u; y) = Φ(u; y) +W (u).

In this case, a MAP estimator can be interpreted as a classical estimator of the
unknown, arising from Tikhonov regularisation with penalty term given by the
negative log-density of the prior [5].

In the infinite dimensional setting things are less straightforward due to the lack
of a uniform reference measure. an intuitive approach is looking at centre points
of small balls in X which have maximal probability at the vanishing limit of their
radius. The definition given in [3] grows out of this intuition: A point û ∈ X is a
mode of the measure µ if it satisfies

lim
ǫ→0

µ(Bǫ(û))

supu∈X µ(Bǫ(u))
= 1.

They then show in the case of Bayesian inverse problems with Gaussian prior
measures that such modes are characterised by the minimisers of the Tikhonov
functional

I(u; y) = Φ(u; y) + ‖u‖2Z,
where Z is the Cameron-Martin space of the Gaussian prior measure. Later, a
weaker notion of mode, which on the other hand allowed for study of the more
general class of differentiable priors with continuous logarithmic derivative, was
introduced by Helin and Burger [6]: A point û ∈ X is called a weak mode of µ if

lim
ǫ→0

µ(Bǫ(û− h))

µ(Bǫ(û))
≤ 1,



708 Oberwolfach Report 12/2019

for all h ∈ E, where E is a dense subspace ofX . These were then shown to coincide
with strong modes under certain conditions on the prior and forward operator G
by Lie and Sullivan [8].

We consider continuous, but not necessarily differentiable, prior measures. We
show that, for locally Lipschitz forward operators, weak modes of the posterior
coincide with minimisers of an appropriate Tikhonov functional [1]. One important
class of such priors, due to their sparsity promoting properties, is the class of p-
Besov priors with p = 1. These priors were proposed and shown to be discretisation
invariant in [7] and a well-posedness theory of the posterior was developed in
[2]. These priors are defined by a wavelet expansion with random coefficients,
motivated by a formal density of the form

π(u) ∝ exp(−‖u‖pBs
pp
),

where ‖·‖Bs
pp

is the Besov space norm with regularity parameter s and integrability

parameters p. For p = 1, we show that the modes of the posterior coincide with
the minimisers of

I(u; y) = Φ(u; y) + ‖u‖Bs
11
.

Such characterisation then allows for the study of the weak consistency of the
posterior: As the number of data points increases, or as the observational noise
decreases, the modes of the posterior converge in probability to the underlying
truth provided that the forward operator is injective.
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Functional data analysis in the Banach space of continuous functions

Holger Dette

(joint work with K. Kokot and A. Aue)

Most of functional data analysis is based on Hilbert space-based methodology for
which there exists by now a fully fledged theory. Since all functions utilized for
practical purposes are at least continuous, and often smoother we develop in this
talk methodology for functional data in the space of continuous functions.

We concentrate on the sapce C(T ), the space of continuous functions on the
compact interval T = [0, 1] equipped with the sup-norm ‖f‖ = supt∈T |f(t)|. If µ1

and µ2 are the mean functions corresponding to two samples we are interested in
testing hypotheses of the form

(1) H0 : ‖µ1 − µ2‖ ≤ ∆ and H1 : ‖µ1 − µ2‖ > ∆,

where ∆ ≥ 0 denotes a pre-specified constant. The classical case of testing perfect
equality, obtained by the choice ∆ = 0, is therefore a special case of (1). It turns
out that from a mathematical point of view the problem of testing relevant (i.e.,
∆ > 0) hypotheses is substantially more difficult than the classical problem (i.e.,
∆ = 0). In particular, it is not possible to work with stationarity under the null
hypothesis, making the derivation of a limit distribution of a corresponding test
statistic or the construction of a bootstrap procedure substantially more difficult.
If X1, . . . , Xm and Y1, . . . , Yn are two independent stationary samples in C([0, 1])
with mean functions µ1 and µ2 a test for the hypotheses (1) can be based on the
statistic

d̂∞ = ‖X̄m − Yn‖,
which is a natural estimate of the unknown distance

d∞ = ‖µ1 − µ2‖.

One of our main results establishes the asymptotic distribution of d̂∞.

Theorem 1. If X1, . . . , Xm and Y1, . . . , Yn are sampled from independent station-

ary time series (Xj : j ∈ N) and (Yj : j ∈ N) in C([0, 1]) with mean functions µ1

and µ2, respectively. satisfying the conditions

(A1) There is a constant K such that E[‖Xj‖2+ν ] ≤ K and E[‖Yj‖2+ν] ≤ K for

some ν > 0.
(A2) There is a real-valued random variable M with E[M2] <∞ such that

|Xj(t)−Xj(t
′)| ≤M |t− t′| , j = 1, . . . ,m

|Yj(t)− Yj(t
′)| ≤M |t− t′| , j = 1, . . . , n

holds almost surely for all t, t′ ∈ T .
(A3) (Xj : j = 1, . . . ,m) and (Yj : j = 1, . . . , n) are ϕ-mixing with exponentially

decreasing mixing coefficients, that is, there is a constant a ∈ [0, 1) such

that ϕ(k) ≤ ak for any k ∈ N.
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then as m,n→ ∞ and m/(m+ n) → λ ∈ (0, 1)

(2) Tm,n =
√
n+m(d̂∞ − d∞)

D−→ T (E) = max
{

sup
t∈E+

Z(t), sup
t∈E−

−Z(t)
}
,

where the centered Gaussian process Z with covariance structure

C(s, t) = Cov(Z(s), Z(t)) =
1

λ
C1(s, t) +

1

1− λ
C2(s, t),

C1(s, t) =

∞∑

i=−∞
Cov(X1(s), X1+i(t)) , C2(s, t) =

∞∑

i=−∞
Cov(Y1(s), Y1+i(t))

and the sets E+ and E− are defined in

E± =
{
t ∈ [0, 1] : µ1(t)− µ2(t) = ±d∞

}

As the asymptotic distribution in Theorem 1 is not distribution free, we also
develop estimates of the extremal sets E+ and E− which are defined by

Ê+
m,n :=

{
t ∈ [0, 1]

∣∣∣ X̄m(t)− Ȳn(t) ≥ d̂∞ − c
log(m+ n)√

m+ n

}

Ê−
m,n :=

{
t ∈ [0, 1]

∣∣∣ X̄m(t)− Ȳn(t) ≤ −d̂∞ + c
log(m+ n)√

m+ n

}

The second main result established consistency of these estimates with respect to
the Hausdorff distance dH .

Theorem 2. Let the assumptions of Theorem 1 be satisfied, then

dH(Ê±
m,n, E±)

P−→ 0.

The results of Theorem 1 and 2 are used to develop a multiplier bootstrap
procedure, to generate critical values for the test, which rejects the null hypotheses

for large vales the statistic d̂∞. We prove that this test has asymptotic level α and
is consistent.

Rates of contraction of posterior distributions with product priors:
beyond Gaussianity

Sergios Agapiou

(joint work with Masoumeh Dashti, Tapio Helin)

We are interested in performing Bayesian inference on functional unknowns. In
particular, we are interested in unknowns which exhibit blocky structure (large
areas of constant value) as well as sparsity in an appropriate expansion and this
should be taken into account in our choice of the prior.



Uncertainty Quantification 711

We construct priors on a function u, by randomising the coefficients in a series
expansion. For example, if we work in L2[0, 1], we let (ψℓ) be an orthonormal basis
and write

u(x) =

∞∑

ℓ=1

γℓξℓψℓ(x),

where (γℓ) is a deterministic decaying scaling sequence and (ξℓ) is a sequence
of independent and identically distributed real random variables. The scalings
γℓ determine the regularity of draws, while to indeed get priors which promote
sparsity and blocky structure we need to choose appropriately the distribution of
the ξℓ and the basis (ψℓ). A standard choice in the Bayesian inverse problems
community giving priors with these properties, is Laplace-distributed coefficients
coupled with appropriate wavelet bases, [7]. We have previously studied such
priors from the point of view of MAP estimators in [1].

In this talk we consider priors on a separable Banach space X constructed via
random series expansions with ξℓ having a mean-zero p-exponential distribution,
where p ∈ [1, 2]. For p = 1 we get Laplace-type priors while for p = 2 Gaussian
priors. We call these priors p-exponential.

We study rates of contraction of posterior distributions based on p-exponential

priors, in nonparametric settings where we observe X(n) ∼ P
(n)
θ and our aim is to

infer the functional parameter θ ∈ Θ. Such rates, assume that the observations
are generated from a fixed underlying value of the unknown, θ0, and measure the
concentration rate of the posterior distribution around this underlying value in the
limit n→ ∞, corresponding to infinitely informative data.

More specifically, we generalize the Gaussian contraction theory of Aad van
der Vaart and Harry J. van Zanten in [5], which is based on the concentration
properties of Gaussian measures. To this end we study the concentration of p-
exponential measures and use then use the techniques of [5].

We give a short overview of the general posterior contraction theory developed
in [3, 4], where general here refers to general models and general priors. This
theory gives conditions for a rate ǫn to be a rate of contraction: the prior needs
to put a certain minimum mass around the truth and we need to have subsets
Θn ⊂ Θ which contain the bulk of the prior mass and have appropriately bounded
complexity.

We start the study of the concentration properties of p-exponential priors, by
determining their space of admissible shifts Q, that is the space of translations
which are such that the translated and the original measures are equivalent. This
space is a weighted ℓ2-type space, with weights given by the scalings γℓ. We also
determine the Radon-Nikodym derivative between the translated and the original
measure, which involves weighted ℓp-type terms.

We next define another space Z which is a weighted ℓp-type space, again with
weights given by γℓ and where p is the exponent of the prior. For Gaussian
measures, p = 2, Z = Q and these spaces are identified to the Reproducing Kernel
Hilbert Space, while for p ∈ [1, 2) we have Z ⊂ Q. We show a lower bound on
the loss of probability occured by shifting from balls in X centered at the origin
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to balls centered around an h ∈ Z. This loss is exponential in the Z-norm of the
center. Based on this lower bound and approximation, we can define the so called
concentration function φw(·) of a p-exponential measure, for a fixed w ∈ X . The
concentration function at an ǫ > 0 controls the probability of balls in X centered
at w.

We also present a concentration inequality, which is based on a two-level con-
centration inequality due to Talagrand [6]. Eventhough it is straightforward to see
that both the spaces Q and Z have zero measure, this inequality shows that the
bulk of the mass of a p-exponential prior is contained in ǫBX +M

p
2BQ +MBZ

for small ǫ > 0 and large M > 0.
We then present our contraction result for general models for p-exponential

priors. This result says that for a fixed w0 ∈ X , if a rate ǫn satisfies φw0(ǫn) ≤ nǫ2n,
then the prior puts a certain minimum mass around w0, and we can find sets
Xn ⊂ X which contain the bulk of the prior mass and have bounded complexity.

The proof of this theorem follows in a relatively straightforward way using
our previous considerations. Its assertions point to the conditions of the afore-
mentioned general contraction results in [3, 4] for obtaining rates of contraction.
Compared to the Gaussian case p = 2, there is a certain intricacy in the complex-
ity bound when p ∈ [1, 2), due to the space Z being a strict subset of the space Q.
Whether this intricacy affects the obtained rates or not, depends on the quality of
approximation of Q by Z in the norm of X .

Finally, we apply our contraction result to obtain rates of posterior contraction
in the white noise model in L2[0, 1], with α-regular p-exponential priors, under
Sobolev-type regularity of the truth. In this case the intricate complexity bound
is benign, and the rates we obtain are minimax optimal when the regularity of
the prior matches the regularity of the truth. We can get similar rates in other
separable Hilbert space settings, such as nonparametric binary regression or non-
parametric regression in L2.

A preprint of the article containing this work can be found in [2]. Possible future
directions include studying the frequentist performance of credible sets with p-
exponential priors, or studying contraction rates for heavier-tailed product priors.
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Drift-preserving numerical integrators for stochastic
Hamiltonian systems

Annika Lang

(joint work with Chuchu Chen, David Cohen, Raffaele D’Ambrosio)

For a positive integer m and a smooth potential V : Rm → R, let us consider the
separable Hamiltonian

H(p, q) =
1

2

m∑

j=1

p2j + V (q).

The goal of this presentation is to introduce a new approximation scheme for the
stochastic Hamiltonian system

dq(t) = ∇pH(p(t), q(t)) dt

dp(t) = −∇qH(p(t), q(t)) dt +ΣdW (t)

with initial condition (p(0), q(0)) driven by an additive Rd-valued Wiener pro-
cess W in the p component. This system simplifies to

dq(t) = p(t) dt

dp(t) = −V ′(q(t)) dt +ΣdW (t).

By the Itô formula, one shows that p and q satisfy for all t > 0 the following trace

formula for the energy

E [H(p(t), q(t))] = E [H(p0, q0)] +
1
2 tr
(
Σ⊤Σ

)
t.

For an equidistant time discretization (t0, . . . , tN ) with step size h, define the new
approximation scheme

Ψn+1 = pn +Σ∆Wn − h

2

∫ 1

0

V ′(qn + shΨn+1) ds

qn+1 = qn + hΨn+1

pn+1 = pn +Σ∆Wn − h

∫ 1

0

V ′(qn + shΨn+1) ds

with (p0, q0) = (p(0), q(0)). This scheme preserves the trace formula, i.e., for all
n = 1, . . . , N

E [H(pn, qn)] = E [H(p0, q0)] +
1
2 tr
(
Σ⊤Σ

)
tn.
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Figure 1. Sample path of a Wiener process (left) and the corre-
sponding solution of the linear stochastic oscillator (right).

Furthermore, the scheme converges strongly and weakly with order 1. More specif-
ically, for sufficiently small h > 0, one proves

(
E
[
|q(tn)− qn|2

])1/2
+
(
E
[
|p(tn)− pn|2

])1/2 ≤ Ch

and for sufficiently smooth test functions f

|E [f(p(tn), q(tn))]− E [f(pn, qn)]| ≤ Ch.

It is clear from the trace formula that the choice f = H leads to no weak error.
In numerical experiments one observes further for specific test functions weak
convergence of order 2.

The approximation of the expectation by a multilevel Monte Carlo methods de-
creases the computational work to essentially h−2 compared to h−3 for a standard
Monte Carlo approximation while preserving the accuracy.

Numerical examples including the linear stochastic oscillator, the stochastic
mathematical pendulum, and a double well potential confirm the theoretical re-
sults. A sample path of a Wiener process and the corresponding solution for the
linear stochastic oscillator is shown in Figure 1.

Multilevel Multilevel Monte Carlo approximation of moments,
covariance functions and the maximum entropy reconstruction

Alexey Chernov

(joint work with Claudio Bierig, Erik M. Schetzke)

The Multilevel Monte Carlo Method (MLMC) is a technique for efficient computa-
tion of observable’s statistics by approximate sampling in the case when generation
of samples of different accuracy is possible. The method is particularly advanta-
geous for complex (possibly non-smooth/nonlinear) problems with low regularity,
typically resulting in high memory and CPU time demands. The idea is based on
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the observation that coarse sample approximations can be used as control variates
for more accurate sample approximations and thereby reduce the variance of the
Monte Carlo estimator [1, 2, 3].

In this talk we explain how to use the MLMC framework to estimate the point-
wise variance, pointwise higher order centred moments and the covariance of a
random field. The estimators are unbiased and have the form of multilevel tele-
scoping sums. Once (generalized) moments of arbitrary order are computed via
MC or MLMC simulations, they can be used for reconstruction of the density
function by the maximum entropy method. We discuss this methodology as well.

To set up the stage, let (Ω,F ,P) be a complete probability space and H be a
separable Hilbert space. We are interested in estimating probabilistic characteris-
tics of random fields X : Ω → H . For example, if X is a solution of a second order
random elliptic PDE in a physical domain D, then H is the Sobolev space H1(D),
or a closed subspace thereof, cf. e.g. [2]. For a more involved example modelling
contact with rough random obstacles see [4, 5, 6]. In the case when X is the value
of a linear on nonlinear functional of the computed solution (e.g. a point value, or
a volume/surface average) we may have H = R, cf. [3]. It is well known, that the
expectation E[X ] can be well approximated by the sample average

(1) EM [X ] =
1

M

M∑

i=1

X i, where X i are i.i.d. samples of X.

Typically (this also applies to the above examples) practical evaluation of sam-
ples X i of X involves some sort of approximation procedure, e.g. discretization
of a PDE, at a prescribed accuracy level ℓ. In other words, only an approximate
random field Xℓ ≈ X is practically available for sampling. This introduces an
additional bias in the estimate so that it holds that

(2) ‖E[X ]− EM [XL]‖2L2(Ω,P;H) = ‖E[X −XL]‖2H +
1

M
V(XL)

where V(X) = ‖X − E[X ]‖2L2(Ω,P;H) is an aggregated variance (it coincides with

the standard variance of X if X is real-valued, i.e. H = R). Relation (2) clearly
demonstrates that any a priori prescribed error tolerance ε can be achieved if
the approximation error level L and the number of samples M are appropriately
balanced.

As indicated in [1, 2, 3] the same accuracy ε can be achieved at a reduced
computational cost if the following multilevel estimator is used instead of (1)

(3) EML[X ] =

L∑

ℓ=1

EMℓ
[Xℓ −Xℓ−1], X0 ≡ 0

with the variable number of samples Mℓ at different levels ℓ = 1, . . . , L. Impor-
tantly, the samples of the level correction X i

ℓ − X i
ℓ−1 =: Y i

ℓ are built upon two

correlated approximate realizations of X : X i
ℓ and X i

ℓ−1 as approximations for the

same sampleX i at two consecutive levels. If, moreover, Y i
ℓ and Y j

k are independent
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for k 6= ℓ, the mean squared error admits the representation

(4) ‖E[X ]− EML[X ]‖2L2(Ω,P;H) = ‖E[X −XL]‖2H +
L∑

ℓ=1

1

Mℓ
V(Yℓ).

The reduction of the computational cost is justified by the following observation:
when Xℓ → X in an appropriate sense, it follows that V(Yℓ) → 0 as ℓ→ ∞. Hence,
the optimal balance in the right-hand side of (4) is achieved when {Mℓ} a rapidly
decreasing sequence, we refer to [1, 2, 3] and [4, Sect. 3] for further details. On
the other hand, the estimator (3) can be viewed as a variance reduction technique,
where the level corrections Yℓ serve as control variates for Yℓ+1.

If realizations of X are functions in a physical domain D, then µ = E[X ] is a
pointwise average µ = µ(x), x ∈ D. The next quantity that we are interested in
is the pointwise variance v(x) = Var[X(x)] where

(5) Var[X ] = E[(X − E[X ])2].

Mimicking the hierarchical structure in (3), we propose in [4] the following
pointwise multilevel sample variance estimator

(6) VarML[X ] :=

L∑

ℓ=0

{
VarMℓ

[Xℓ]−VarMℓ
[Xℓ−1]

}

with the unbiased sample variance

(7) VarM [X ] :=
1

M − 1

M∑

i=1

(X i − EM [X ])2.

Similarly as in (3), the expression in (6) in curly brackets involves two correlated

approximate realizations of X : X i
ℓ and X

i
ℓ−1 as approximations for the same sam-

ple X i at two consecutive levels. This structure results in the error representation
[4, (5.5)] that is similar to (4). The error/cost estimates [4, Theorems 5.2, 7.4]
demonstrate, in particular, that E[X ] and Var[X] can be estimated by (3) and (6)
to the same accuracy with nearly the same computational cost. In [5] these results
were extended to multilevel approximations of the centred moments of arbitrary
order r.

The situation is somewhat different when (auto)covariance functions are esti-
mated. Here the issue is that handling the natural one-level estimator

(8) CovM [Xℓ, Xℓ] =
1

M − 1

M∑

i=1

(X i
ℓ − EM [Xℓ])⊗ (X i

ℓ − EM [Xℓ])

leads to the asymptotic complexity O(N2
ℓ ) (e.g. due to storage requirements),

when the representation of one sample X i
ℓ involves O(Nℓ) unknowns. In [7] we

propose a simple sparse tensor multilevel covariance estimator that overcomes this
difficulty and does not require complicated tools, as wavelet projections, cf. [2].

Suppose now that X is real-valued, i.e. H = R, and {φ1, . . . , φR} is a linearly
independent family, e.g. algebraic or trigonometric polynomials. The previously
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described techniques enable estimation of (generalized) moments µk = E[φk(X)].
In [6] we address the question of approximate recovery of the unknown density ρ of
X from its first R generalized moments, and the convergence of the approximation
ρR → ρ as R → ∞. Notably, if the reconstruction ρR exists, it is usually non-
unique. To gain a unique reconstruction ρR we select the one that, in addition to
the moment constraints, maximizes the Shannon entropy. Such densities can be
equivalently characterized as elements of exponential families

(9)





ρR ∝ exp

(
R∑

k=1

λkφk(x)

)
, λk ∈ R,

µk =

∫
φk(x)ρR(x) dx, k = 1, . . . , R.

Here the coefficients λk should be determined so that the moment constraints in the
second line are satisfied. The nonlinear system of equations (9) can be solved e.g.
by the Newton-Raphson method. In [6] we provide a complete a priori asymptotic
convergence theory for the maximum entropy approach combined with the MLMC
approximation of the generalized moments. Our numerical tests demonstrate that
the regularity assumptions can possibly be relaxed. An interesting open question
is how to select the concrete number of moments R in practical computations: an
overestimation may lead to overfitting and thereby to inaccurate reconstructions.

References

[1] M.B. Giles, Multilevel Monte Carlo path simulation, Oper. Res. 56(3) (2008), 607–617
[2] A. Barth, C. Schwab, N. Zollinger, Multi-level Monte Carlo finite element method for elliptic

PDEs with stochastic coefficients, Numer. Math. 119(1) (2011), 123–161
[3] K.A. Cliffe, M.B. Giles, R. Scheichl, A.L. Teckentrup, Multilevel Monte Carlo methods and

appli cations to elliptic PDEs with random coefficients Comput. Vis. Sci. 14(1) (2011), 3–15
[4] C. Bierig and A. Chernov, Convergence analysis of multilevel Monte Carlo variance esti-

mators and application for random obstacle problems, Numer. Math., 130 (2015), 579–613
[5] C. Bierig and A. Chernov, Estimation of arbitrary order central statistical moments by the

multilevel Monte Carlo method, J. Stoch. PDE Ana. Comp., 4 (2016), 3–40
[6] C. Bierig and A. Chernov, Approximation of probability density functions by the Multilevel

Monte Carlo Maximum Entropy method, J. Comput. Physics, 314 (2016), 661–681
[7] A. Chernov and E. Schetzke, A simple, bias-free approximation of covariance functions by

the Multilevel Monte Carlo method having nearly optimal complexity, in prep. (2019)



718 Oberwolfach Report 12/2019

Bayesian Estimation and Comparison of Conditional Moment Models

Anna Simoni

(joint work with Siddhartha Chib, Minchul Shin)

We consider models in which the unknown distribution of the outcomes is non
specified except for a set of conditional moment restrictions of the type

(1) EP [ρ(X, θ)|Z] = 0,

where ρ(X, θ) is a known vector-valued function of a random vector X and an
unknown parameter vector θ, and P is the unknown conditional distribution of X
given a random vector Z. Models of this type arise in many different situations
(e.g. in causal inference – where Z is typically a vector of instrumental variables,
or in models of heteroskedasticity of unknown form), and provide a useful semi-
parametric modeling of outcomes under minimal probabilistic assumptions. In this
article, we provide a Bayesian analysis of such problems, extending and completing
the theory developed by [3] for models with unconditional moment conditions. The
prior-posterior analysis is based on the nonparametric exponentially tilted empiri-
cal likelihood (ETEL) function, constructed to satisfy a sequence of unconditional
moments which are obtained from the conditional moments by an increasing (in
sample size) vector of approximating functions.

Let X := (X ′
1, X

′
z)

′ be an Rdx-valued random vector and Z := (Z ′
1, X

′
z)

′ be
an RdZ -valued random vector. The vectors Z and X have elements in com-
mon if the dimension of the subvector Xz is non-zero. Moreover, we denote
W := (X ′, Z ′

1)
′ ∈ Rdw and its (unknown) joint distribution by P . By abuse

of notation we use P also to denote the associated conditional distribution. We
suppose that we are given a random sample w1:n = (w1, . . . , wn) of W . Hereafter,
we denote by EP [·] the expectation taken with respect to P and by EP [·|·] the
conditional expectation taken with respect to the conditional distribution associ-
ated with P .

Under certain circumstances (see e.g. [1, 2]), conditional moment restrictions
are equivalent to a countable number of unconditional moment restrictions. The
equivalent set of unconditional moments are obtained through approximating func-
tions. Let qK(z) = (qK1 (z), . . . , qKK (z))′, K > 0, denote a K-vector of functions of
Z, for instance, splines, truncated power series, or Fourier series. We assume that
these functions are good approximating functions in the following sense. For allK,
we assume that EP [qK(Z)′qK(Z)] is finite, and for any a(z) with EP [a(Z)2] <∞
there are K × 1 vectors γK such that as K → ∞,

EP [(a(Z)− qK(Z)′γK)2] → 0.

If EP [ρ(X, θ)′ρ(X, θ)] < ∞, then [4, Lemma 2.1] established that: (I) if equation
(1) is satisfied with θ = θ∗ then EP [ρ(X, θ∗)⊗qK(z)] = 0 for all K; (II) if equation
(1) is not satisfied then EP [ρ(x, θ∗)⊗ qK(z)] 6= 0, ∀K large enough. It follows that
we can construct our Bayesian inference based on the expanded moment functions

g(W, θ) := ρ(X, θ)⊗ qK(Z),
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and on the unconditional moment conditions

(2) EP [ρ(X, θ)⊗ qK(Z)] = 0

which are equivalent to (1) as K → ∞.
For a given value of K, the prior on (θ, P ) is specified as π(θ)π(P |θ,K), where

the prior on θ is standard. Our default prior on θ is a product of independent
student-t distributions with 2.5 degrees of freedom on each component of θ. Our
prior on P is a mixture of uniform probability densities restricted to satisfy the
expanded moment restrictions EP [g(W, θ)] = 0, given (θ,K), and is an extension
of the prior proposed by [5] for the unconditional moment condition models. As
in the case of the unconditional moments problem, the posterior distribution of θ,
after marginalization over the nonparametric prior on P , has the form

π(θ|w1:n,K) ∝ π(θ)p(w1:n|θ,K)

where

p(w1:n|θ,K) =

n∏

i=1

p̂i(θ)

is the Exponential Tilting (ET) empirical likelihood (ETEL) for a given K, and
{p̂i(θ), i = 1, . . . , n} are the probabilities that minimize the KL divergence be-
tween the probabilities (p1, . . . , pn) assigned to each sample observation and the
empirical probabilities ( 1

n , . . . ,
1
n ), subject to the conditions that the probabili-

ties (p1, . . . , pn) sum to one and that the expectation under these probabilities
satisfy the given unconditional moment conditions (2). That is, for every θ,
{p̂i(θ), i = 1, . . . , n} solve the following constrained maximization problem:

max
p1,...,pn

n∑

i=1

[−pi log(npi)] subject to:
n∑

i=1

pi = 1,
n∑

i=1

pig(wi, θ) = 0, pi ≥ 0.

These probabilities are computed conveniently from the dual representation as

p̂i(θ) :=
eλ̂(θ)

′

g(wi, θ)∑n
j=1 e

λ̂(θ)′g(wj ,θ)
(i = 1, . . . , n)

where λ̂(θ) = argminλ∈RdK
1
n

∑n
i=1 e

λ′g(wi,θ) is the estimated tilting parameter.
Therefore, by multiplying the ETEL function by the prior density of θ, the poste-
rior distribution takes the form

π(θ|w1:n,K) ∝ π(θ)

n∏

i=1

eλ̂(θ)
′g(wi,θ)

∑n
j=1 e

λ̂(θ)′g(wj ,θ)
.

In the paper, we study asymptotic properties of the posterior distribution of θ
from a frequentist point of view. This means that we admit the existence of a true
value θ∗ of the parameter of interest θ and a true value P∗ of the data distribution
P . A powerful result of our theory shows that, subject to a growth rate condition
on the number of approximating functions, the Bayesian posterior distribution of
the local parameter h :=

√
n(θ − θ∗) satisfies the Bernstein-von Mises theorem.
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Theorem 1 (Bernstein - von Mises). Under Assumptions 3.1-3.7 in the paper, if

K → ∞, ζ(K)K2/
√
n→ 0, and if for any δ > 0, ∃ǫ > 0 such that as n→ ∞

(3) P

(
sup

‖θ−θ∗‖>δ

1

n

n∑

i=1

(ℓn,θ(wi)− ℓn,θ∗(wi)) ≤ −ǫ
)

→ 1,

then the posterior distribution of the local parameter h converges in total variation

towards a random Normal distribution, that is,

(4) sup
B

∣∣π(
√
n(θ − θ∗) ∈ B|w1:n)−N∆n,θ∗ ,Vθ∗

(B)
∣∣ p→ 0

where B ⊆ Θ is any Borel set, ∆n,θ∗ := − 1√
n

∑n
i=1 Vθ∗D(zi)

′Σ(zi)−1ρ(xi, θ∗) is

bounded in probability and Vθ∗ :=
(
EP [D(Z)′Σ(Z)−1D(Z)]

)−1
.

In the theorem we have used the notation ℓn,θ(wi) := log p̂i(θ), ρθ(X, θ) :=
∂ρ(X,θ)

∂θ′ , D(z) := EP [ρθ(X, θ∗)|z], and Σ(z) := EP [ρ(X, θ∗)ρ(X, θ∗)′|z]. Moreover,

ζ(K) is a constant scalar such that supz∈Z ‖qK(z)‖ ≤ ζ(K) for each K. The
asymptotic covariance Vθ∗ of the posterior distribution coincides with the semi-
parametric efficiency bound given in [2] for conditional moment condition models.

In the paper we also show that a Bernstein-von Mises theorem holds even when
the set of conditional moments contains misspecified moment conditions. Large-
sample theory for comparing different conditional moment models, that are non-
nested (or nested) and misspecified, based on the behavior of the model marginal
likelihoods, is also developed. We prove an important result that the marginal
likelihood criterion selects the model that is less misspecified, that is, the model
that is closer to the unknown true distribution in terms of the Kullback-Leibler
divergence. Several examples with simulated and real data are used to illustrate
the large practical ramifications of the framework and results.
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Continuous time state and parameter estimation from noisy
state increments

Sebastian Reich

(joint work with Nikolas Nüsken, Paul Rozdeba)

We consider the problem of inferring the states and parameters of a stochastic
differential equation (SDE)

(1) dXt = f(Xt, θ)dt+GdWt

from a given initial state X0 = x0 and noisy and partial observations Yt of the
form

(2) Yt = HXt +R1/2Vt.

Here Wt and Vt denote uncorrelated Brownian motion. Such inference problems
arise, for example, when a particle with position Xt moves under a stochastic
velocity field given by the right hand side of (1) and in case those velocities fields
are only partially and noisily observed.

More specifically, since (2) implies

(3) dYt = HdXt +R1/2dVt = Hf(Xt, θ)dt+HGdWt +R1/2dVt,

the noise in the observation process is correlated with the model errors in (1).
The implications of such correlations on the law πt of Xt conditioned on the
observations Y[0,t] up to time t and a given parameter value θ have been discussed
in [1]. In particular, the associated Kushner–Stratonovitch equation for the time
evolution of πt is given in weak form by

(4) dφt = Lφtdt+
{
φht − φtht

}T
C−1

{
dYt − htdt

}
,

where φt = πt[φ] denotes the expectation value of an observable φ with respect to
the conditional density πt, C = GGT +R,

(5) ht(x) = Hf(x, θ)−GGT∇x log πt(x),

and L denotes the generator of (1).
In my talk I have discussed McKean–Vlasov mean-field equations of the form

(6) dX̃t = f(X̃t, θ)dt+GdWt +Kt(X̃t) ◦ dIt +Ωt(Xt)

such that πt = law (X̃t). Here the matrix-valued Kt is called the gain, It is the
innovation and Ωt denotes a Ito correction term. Such mean-field approaches to
the standard filtering problem have first been discussed in [3] and in the specific
form (6) in [4]. The ensemble Kalman–Bucy filter [2] fits into the framework (6)

with Kt independent of X̃t and, more specifically,

(7) Kt = (P xf
t +GGT)C−1

for the correlated filtering problem (1)–(2) and Ω ≡ 0 [5]. Here P xf
t denote the

correlation between Xt and f(Xt, θ). An appropriate innovation process is given
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by

(8) It = Yt −
{
HXt +R1/2Ut

}
,

where Ut denotes Brownian motion independent of Wt and Vt. Note that the

special case H = I and R = 0 leads to dX̃t = dYt and hence X̃t = Yt for all t ≥ 0.
Such mean-field equations are computationally attractive as they can easily

be implemented using Monte–Carlo techniques and lead to robust and in many
situations sufficiently accurate algorithms. Furthermore, the combined state and
parameter estimation problem can be treated by a simple state augmentation
z = (xT, θT)T.

See [5] for more details on the numerical implementation of (6) and applications
to state-parameter estimation problems in the context of averaging, homogenisa-
tion and non-parametric drift estimation.
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On coupling methods for nonlinear ensemble filtering

Youssef Marzouk

(joint work with Ricardo Baptista, Alessio Spantini)

We consider the Bayesian filtering problem for high dimensional non-Gaussian
state-space models with challenging nonlinear dynamics, and sparse observations
in space and time. While the ensemble Kalman filter (EnKF) yields robust en-
semble approximations of the filtering distribution, it is limited by linear forecast-
to-analysis transformations. To generalize the EnKF, we propose a methodology
that transforms the non-Gaussian forecast ensemble at each assimilation step into
samples from the current filtering distribution via a sequence of local nonlinear
couplings. These couplings are based on transport maps that can be computed
quickly using convex optimization, and that can be enriched in complexity to re-
duce the intrinsic bias of the EnKF. We discuss the low-dimensional structure
inherited by the transport maps from the filtering problem, including decay of
correlations, conditional independence, and local likelihoods. We then exploit this
structure to regularize the estimation of the maps in high dimensions and with a
limited ensemble size.
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Computational approximations in Bayesian inverse problems

Aretha Teckentrup

(joint work with Han Cheng Lie, Tim Sullivan, Andrew Stuart)

We are interested in the inverse problem of estimating unknown parameters in a
mathematical model from observed data. We follow the Bayesian approach, in
which the solution to the inverse problem is the probability distribution of the
unknown parameters conditioned on the observed data, the so-called posterior

distribution. Specifically, this talk considers the stability of the posterior distri-
bution when an accurate but computationally intractable model is replaced by a
surrogate (or emulator). A particular focus is on stochastic surrogates, which often
arise in practice. An expensive model such as the solution of a PDE may replaced
by a kriging/Gaussian process (GP) model [1]. Or, in the realm of “big data”, a
residual vector of prohibitively high dimension may be randomly subsampled or
orthogonally projected onto a randomly-chosen low-dimensional subspace [1, 2].

Mathematically, the inverse problem of interest is to determine the parameters
u ∈ U from the noisy data y ∈ Rdy given by y = G(u) + η, where U is a separable
Banach space. Given the prior measure µ0 and data y, we are interested in the
posterior distribution µy on the conditioned random variable u|y, which can be
characterised by Bayes’ Theorem as follows:

dµy

dµ0
(u) =

1

Z
exp

(
− Φ(u)

)
, Z = Eµ0

(
exp

(
− Φ(u)

))
,

where the form of the negative log-likelihood Φ depends on the distribution of η.
In many practical applications, Φ is computationally too expensive or impossible

to evaluate exactly; one therefore often uses an approximation ΦN of Φ. This
leads to an approximation µy

N of the exact posterior µy, and a key desideratum is
convergence, in a suitable sense, of µy

N to µy as the approximation error ΦN − Φ
tends to zero. Convergence in the Hellinger distance can be shown [1, 2], for a
broad class of prior distributions and approximations schemes ΦN , giving bounds
on (moments of) the Hellinger distance between µy

N and µy in terms of ‖ΦN−Φ‖ (in
a suitably chosen norm). To obtain convergence rates in terms of the discretisation
parameter N , we need to use the specific form of ΦN . For approximations by GP
models, convergence rates in N follow from results in scattered data approximation
[1]. For random projection methods in the data space, convergence rates follow
from Monte Carlo estimates [2].
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Sampling from some high dimensional distributions

Martin Schlather

(joint work with Felix Ballani, Marco Oesting, Claudia Schillings)

A max-stable process Z on Rd with standard Fréchet margins is characterized by
the equality Z =d 1

n

∨n
i=1 Zi for any n ∈ N and i.i.d. Zi ∼ Z. A subclass is given

by the mixed moving maxima processes that can be represented by

Z(x) =
∨

(u,y,S)∈Π

uS(x− y)

where Π is a Poisson point process with intensity u−2du×dy×dH for a probability
measure H on some measurable function space H of non-negative functions, and∫
Rd

∫
H
S(y)H(dS)dy = 1. Since

Z(x) =d
∨

(u,y,S)∈Π̃

S(x− y)/f(y, S)

for a Poisson point process Π̃ with intensity u−2du×f(y, S)dyH(dS), the question
of an optimal f appears with respect to sampling from Z. [2] show that an efficient
sampling from Z can be obtained by choosing f(y, S) = c−1 supx∈K S(x− y) and
c =

∫
Rd

∫
H
supx∈K S(x− y)H(dS)dy.

The construction of a random coin model Z̃ on Rd is related to that of a mixed
moving maximum process. Let Π a Poisson point process on Rd×H with intensity
λdy × dH for λ > 0 and some probability measure H on a measurable function
space H with ∫

Rd

∫

H

S2(y)H(dS)dy = 1

and random sign, i.e. H(S ∈ A) = H(−S ∈ A) for all measurable subsets A ⊂ H.
Then the random field

Z̃(x) = λ−1/2
∑

(y,S)∈Π

S(x− y).

has expectation zero, variance 1, and correlation function

C(x, y) =

∫

Rd

∫

H

S(t− x)S(t− y)H(dS)dt.
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As λ → ∞, Z̃ converges to a Gaussian random field. Assume for simplicity that
S is deterministic except for the sign. Let f be any density function on Rd. Then

Z∗(x) =
∑

(y,S)∈Π

S(x− y)/
√
f(y)

has the first two moments in common with Z̃, independently of f , but not the
higher moments. Following the Berry-Esseen theorem we search for a density f
such that the third moments of Z∗ become minimal on a fixed compact set K with
respect to a given Lp norm. Solutions can be obtained for special settings, e.g.
when K is finite. [1] present a specification in case of the Brown-Resnick process.

References

[1] M. Oesting, M. Schlather and C. Schillings, Sampling Sup-Normalized Spectral Functions
for Brown-Resnick Processes, Submitted (2019).

[2] M. Oesting. M. Schlather and C. Zhou Exact and fast simulation of max-stable processes on
a compact set using the normalized spectral representation, Bernoulli 24 (2018), 1497–1530.

Random PDEs on moving hypersurface

Ana Djurdjevac

(joint work with L. Church, C. Elliott, R. Kornhuber, T. Ranner)

Our goal is to include and treat the uncertainty in models, which comes from
geometry. More precisely, we consider: partial differential equations (PDEs) with
random coefficients posed on an (evolving) deterministic hypersurface and a PDE
posed on a randomly evolving domain. Our main motivation for considering these
types of problems comes from the cell-biology.

In the first part we analyse the advection-diffusion equation with random coef-
ficients that is posed on an evolving hypersurface {Γt}

∂•u−∇Γ · (α(ω)∇Γu) + u∇Γ ·w = f.

We will consider both cases, uniformly bounded and log-normal distributions of the
coefficient α. We will define the solution space and prove the well-posedness using
Banach - Nečas - Babuška theorem [1]. Furthermore, we will introduce and analyse
the evolving surface finite element discretization of the equation, introduced by
Dziuk and Elliott. In the uniformly bounded case, we will show unique solvability
of the resulting semi-discrete problem and prove optimal error bounds for the
semi-discrete solution and Monte Carlo of its expectation [2]. The plan for the
future work is to consider the numerical analysis in the log-normal case.

In the last part we will study the case when the velocity of a hypersurface
is the uniformly bounded random field. First we will consider a heat equation
posed on a flat domain that evolves by a given random velocity field [4]. To deal
with this problem, we will use the domain mapping method which will result in a
parabolic equation with random coefficients on a fixed cylindrical domain. Then
we will study an elliptic PDE on a random curved domain [3]. For this problem
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we will again apply the domain mapping method. This includes computations of
geometric quantities of functions given over parametrised hypersurfaces in terms
of quantities of the reference surface and derivatives of the domain mapping and
corresponding pull-back function. Natural questions that arise are: what could one
say about parabolic PDEs posed on a randomly evolving curved domain and how
rough can be the random velocity which defines the evolution of the hypersurface.
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Higher-order methods for stochastic differential equations

Lisa Fischer

(joint work with Matthew R. Christian, Sebastian Götschel, Michael L. Minion)

Stochastic differential equations (SDE) are used for modeling real-world problems
such as biological or physical processes which are often stochastic in nature. The
most common methods to numerically approximate solutions to SDEs are the
Euler-Maruyama (EM) and Milstein scheme, which are of low-order [5]. While
more advanced methods have been developed, they as well are typically limited
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Figure 1. Illustration of
the SDC method using a
constant initialization, i.e.,
x[0](t) = x(0) for all t.

with respect to their convergence order [5, 9, 7, 1, 4, 8].
If higher accuracy approximations are required, e.g,
to reduce bias in Monte Carlo estimators, this leads
to high computational effort. Here, we investigate a
Spectral Deferred Correction (SDC) based method
to numerically solve SDEs given in Stratonovich
form. SDC methods, first introduced in [2], are
well known for generating high-order solutions for
ODEs. We use the Wong-Zakai approximation
[11, 12] and a smooth approximation of Brownian
bridges, and apply SDC to the resulting equation.
The SDC method is an iterative scheme, that com-
putes corrections to the current solution x[j] , i.e.,
x[j+1] = x[j] + δ[j] with δ[j](t0) = 0. The method is
very flexible with respect to time discretization en-
abling time adaptivity, parallel-in-time algorithms,
and multilevel approaches [3, 10]. Figure 1 illustrates the method. Starting
from the Picard integral formulation of the initial value problem on a single time
step [t, t + ∆t], M collocation points ti are chosen, e.g., a Lobatto time grid, as
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well as an initial solution, e.g., constant initialization. Since the initial value is
known, the correction at t0 is 0 for all iterations j. Given the Stratonovich form

Xt = X(t0)+
t∫

t0

a(s,Xs)ds+
t∫

t0

b(s,Xs) ◦ dWs, we can derive the correction scheme

based on [2] as

δ[j](ti) = δ[j](ti−1) +

∫ ti

ti−1

[
a(s, x[j](s) + δ[j](s)) − a(s, x[j](s))

]
ds

+

∫ ti

ti−1

[
b(s, x[j](s) + δ[j](s))− b(s, x[j](s))

]
◦ dWs

+

∫ ti

ti−1

a(s, x[j−1](s))ds+

∫ ti

ti−1

b(s, x[j−1](s)) ◦ dWs + x[j](ti−1)− x[j](ti).(1)

The first two integrals of equation (1) can be approximated by low-order schemes
(explicit, implicit, or semi-implicit). The more interesting parts are the two
last integrals where the calculation of the integral of the drift term a(t, x(t))
and of the diffusive term b(t, x(t)) are required; for this we use spectral quad-

rature. For the drift term the approximation is well known,
∫ ti
ti−1

a(s, x[j](s))ds ≈
M−1∑
k=0

Si,k a(tk, x[j](tk)), i = 1, . . . ,M, with S being the spectral integration matrix

involving Lagrange polynomials. To apply spectral quadrature to the diffusive
term as well, we replace the Wiener process by a smooth approximation. More
specifically, we smoothly approximate the Brownian bridge between samples from
the Wiener process at t and t+∆t by its truncated Fourier series,

BK(t) =
tη0√
(∆T )

+

√
2∆T

π

K∑

k=1

sin (kπt/∆T )

k
ηk,

ηk ∼ N (0, 1) i.i.d., for all k = 0, . . . ,K. This transforms the SDE to the ODE

dx(t)

dt
= a(t, x(t)) + b(t, x(t))

dBK(t)

dt
.

Note that while the Brownian bridge approximation contains random variables,
they are not time-dependent, such that in principle the usual spectral quadrature
can be used, analogously to the drift term. Small time steps, or using a large
truncation index K, leads to highly oscillatory terms in the expansion and requires
specialized quadrature.

To illustrate convergence of the method consider the following simple linear
scalar example,

dXt = XtdWt,(2)

with initial value X0 = 1 and exact solution Xt = X0 exp (Wt) . Note that as the
drift term is a multiple of the diffusive term, the B0 term of the Brownian bridge
approximation is sufficient. One can show that every two sweeps the convergence
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Figure 2. Strong convergence error (left) and computational ef-
fort (right) of SDC-n (n Lobatto nodes), EM, and Milstein.

order increases by 1. When using the linear term of the Brownian bridge approx-
imation only, the convergence order is limited by half the order of the underlying
quadrature rule. Figure 2 (left) shows the strong convergence order of the EM,
Milstein and SDC-n, n = 3, 4, 5 collocation points, methods, whereas the dashed
and dotted lines represent the theoretical convergence order. For reaching the
same accuracy (below 10−2), the computational effort shown in figure 2 (right) of
SDC is smaller than the cost of EM and Milstein.

In the future, we will extend the presented work to real-world problems such
as problems with non-commutative noise, and jump-diffusion SDEs. Looking at
randomized Bayesian inverse problems, efficient solvers are required if accurate
estimations of the system’s parameters are important. Here, the strong conver-
gence order of the numerical method translates into a convergence order for the
posterior estimate [6]. In view of multilevel Monte-Carlo sampling, multilevel SDC
approaches and parallel-in-time algoithms can be beneficial.
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On the well-posedness of Bayesian inverse problems: The Gaussian
noise case

Jonas Latz

In this work, we introduce a weaker concept of well-posedness for Bayesian inverse
problems (BIPs) and show that a popular class of BIPs is well-posed according to
this concept. In particular, we are given an inverse problem

Find θ† ∈ X : y = G(θ†) + η

where y is observed data and η ∼ µnoise := N(0,Γ) is measurement noise that
is modelled as a non-degenerate Gaussian random variable. Data and noise take
values in the finite dimensional data space Y := Rk, equipped with a norm ‖ · ‖Y .
The parameter space X is a Radon space.

We apply a Bayesian approach. Hence, we assume that θ ∼ µ0 is uncertain
and modelled as a random variable. Then, we use Bayes’ formula to obtain the
posterior measure

µy := P(θ ∈ ·|G(θ) + η = y),

by conditioning the random variable θ with respect to the event of observing y.
Numerical computability of the posterior measure has been quantified by [3] in
terms of - what we will refer to by - Lipschitz well-posedness. A Bayesian inverse
problem is Lipschitz well-posed, if the posterior measure exists, if it is unique, and
if the map

f : (Y, ‖ · ‖Y ) → (Prob(X,µ0), dHel), y 7→ µy

is locally Lipschitz continuous. Here, (Prob(X,µ0), dHel) is the metric space of
probability measures µ on (X,BX), where µ≪ µ0, and the metric is the Hellinger
distance. This concept is fairly strong, considering the fact that the continuity
condition is only a stability criterion: One may find contradictory that a con-
tinuous, non-Lipschitz transformation of the data can turn a well-posed problem
into an ill-posed problem. Moreover, there are practical non-Lipschitz well-posed
Bayesian inverse problems. Such are the Bayesian elliptic inverse problem with
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certain geometric prior measures, see [1]. In both cases, one can show continuity
in the posterior measure under perturbations in the data. This motivates us to
consider a weaker concept of well-posedness.

A Bayesian inverse problem is well-posed, if the posterior measure µy exists,
if it is unique, and if the aforementioned map f is continuous. We give easily
verifiable assumptions in [2] that imply well-posedness. Indeed, the assumptions
are fulfilled by any Bayesian inverse problem described in the beginning of this
abstract: the data space is a finite dimensional Banach space, the measurement
noise is additive, non-degenerate Gaussian and the forward map G : X → Y is
measurable.

This has several practical implications: A thorough analysis of the forward
operator is not necessary to make well-posedness statements. Moreover, the well-
posedness statement is independent of the prior probability measure. Hence, com-
plicated hierarchical priors (such as Deep Gaussian processes), as well as discrete
priors (in discretisations and mixed-integer inverse problems), and combinations
of these (e.g. transdimensional estimations) are covered.
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Quasi-stationary Monte Carlo

Andi Q. Wang

(joint work with Martin Kolb, Divakar Kumar, Murray Pollock, Gareth Roberts,
David Steinsaltz)

In recent years there has been significant interest in developing Monte Carlo meth-
ods based on continuous-time processes. Examples include diffusions (MALA and
ULA, [5]), ODE dynamics (HMC, [3]), inhomogeneous Poisson processes, (BPS
[2] and Zig-Zag [1]). This talk concerns quasi-stationary Monte Carlo (QSMC)
methods, which draw on both diffusion processes and inhomogeneous Poisson pro-
cesses.

Recall that for a Markov process X killed at a time τ∂ , a probability measure
µ is quasi-stationary if for all t ≥ 0,

Pµ(Xt ∈ · |τ∂ > t) = µ(·).
The idea behind QSMC is to construct a killed Markov process whose quasi-
stationary distribution coincides with a target distribution π of interest. In [4] it
was shown that such methods can make use of subsampling techniques without
error, leading to unbiased algorithms for posterior sampling which scale well as
the number of observations in the Bayesian experiment grows.
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In this talk I will discuss theoretical advances in QSMC. I will give sufficient
conditions for the quasi-stationary distribution of a killed diffusion to coincide with
a given target density π. I will also describe a stochastic approximation approach
to the simulation of quasi-stationary distributions of killed diffusions. The details
can be found in [6] and [7], respectively.
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Analysis of the ensemble Kalman inversion

Simon Weissmann

(joint work with Dirk Bloemker, Claudia Schillings, Philipp Wacker)

The goal in the inverse problem setting is to recover an unknown u ∈ X from
(typically a finite number of) observations y ∈ Rk where

y = G(u) + η.

Here X is a separable Hilbert space, G : X → Rk is a nonlinear, continuous operator
and η ∼ N (0,Γ−1) denotes the observational noise. In Bayesian regularization
(u, y) is viewed as a jointly varying random variable and, assuming that η is
independent of u according to µ0, the solution to the inverse problem is the random
variable u|y characterized by

µ(du) ∝ exp(−1

2
‖Γ− 1

2 (y − G(u))‖2
Rk)µ0(du).

In many cases it is not possible to compute the posterior distribution in a closed
form or even simulate straightforwardly from this distribution.

The ensemble Kalman filter (EnKF) is a widely used metheodology for data
assimilation problems and has also been generalized to inverse problems. We are
interested in studying properties of ensemble Kalman inversion (EKI). We view
the method as a derivative free optimization method for the least-squares misfit
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functional. This opens up the perspective to use the method in various areas of
applications such as imaging, groundwater flow problems, biological problems and
machine learning.

Based on recent results for the analysis of the EKI for linear forward problems
[2], we focus on the generalization of the ideas to the case of perturbed observations,
i.e.

y(j) = y + η(j).

The analysis is based on the continuous time limit of the algorithm, which leads to
the following system of stochastic differential equations (SDEs). Firstly let G(·) =
A·, for some A ∈ L(X ,Rk), be a bounded linear operator, for u = {u(j)}Jj=1, u

(j) ∈
X where J is the number of ensemble members. Then we define the empirical
covariance operator

C(u) =
1

J

J∑

k=1

(u(k) − ū)⊗ (u(k) − ū),

and consider the system of SDEs

du(j) = C(u)A∗Γ−1(y −Au(j)) dt+ C(u)A∗Γ− 1
2 dW (j),

where {W (j)}Jj=1 are independent Brownian motions in Rk.
We have shown well-posedness of the scheme, i.e. existence and uniqueness of

strong solutions of the limiting system of SDEs. Furthermore, we have quantified
the ensemble collapse in the observation space Rk as well as in the parameter space
X in the sense of moments and almost sure convergence with a given rate.

In the case of non perturbed observations, by using variance inflation we were
able to prove convergence to the truth in the observation space, in the sense of
L2-convergence and almost sure convergence with a given rate.

There remain open and interesting questions related to this work:

• Verification of the continuous time limit of the ensemble Kalman filter.
• Extension to nonlinear forward operators.
• Study of the empirical covariance of the particles, in particular the quan-
tification of the convergence rate of the smallest eigenvalues.

This will be subject to future work.
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Accuracy and stability of EnKBF for finite ensemble sizes in a
non-linear setting

Jana de Wiljes

(joint work with Sebastian Reich, Wilhelm Stannat, Xin Tong)

In the context of nonlinear high dimensional filtering problems ensemble based
techniques such as the Ensemble Kalman Filter are still consider state of the art
despite the lack of mathematical foundation in this setting. Here the continuous-
time filtering problem is considered, i.e, the aim is to approximate the conditional
distribution in Xt given by

(1) dXt = f(Xt)dt+
√
2CdWt

for given observations Ys, s ∈ [0, t] that evolve according to

(2) dYt = h(Xt)dt+R1/2dBt.

where f : RNx → RNx is a Lipschitz-continuous drift, C ∈ RNx×Nw , R ∈ RNy×Ny

and Wt ∈ RNw and Bt ∈ RNy denote independent Brownian motion. For the
following deterministic variant of the Ensemble Kalman Bucy Filter
(3)

dX i
t = f(X i

t)dt+D(PM
t )−1(X i

t − x̄Mt )dt− 1

2
QM

t R
−1
(
h(X i

t)dt+ h̄Mt dt− 2dYt
)

lower and upper bounds of the covariance matrix PM
t are derived for the fully-

observed case with small measurement noise ǫ andM > Nx. These stability results
are then used to obtain point and path-wise accuracy results in terms of ability to
track the true solution:

(4) E

[
sup
t≤T

Et

]
≤ Cε

1
2−η

with η ∈
(
0, 14
)
. These results are extended to the case where the ensemble size

is larger than the state space, i.e., Nx > M for a localised deterministic Ensemble
Kalman Bucy Filter

dX i
t = f(X i

t)dt+C(PL
t )†(X i

t − x̄t)−
1

2
PL(t)R−1(HX i(t)dt+Hx̄(t)dt− 2dY (t)).

where

PL
t =

1

M − 1

∑
(X i

t − x̄t)(X
i
t − x̄t)

T ◦DL(5)

with DL being an appropriate localization matrix.
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Numerical Shadowing for Data Assimilation

Svetlana Dubinkina

(joint work with Bart de Leeuw)

A data assimilation method combines a solution of a physical system model with
measurement data to obtain an improved estimate for the state of a physical
system. We study problems for which the system model is discrete in both space
and time, and may be contaminated by model errors

(1) xn+1 = Fn(xn) +Qn, xn ∈ Rm, n = 0, . . . , N − 1,

where Fn : Rm → Rm andQn is some unknown model error drawn from a Gaussian
distribution with zero mean and covariance matrix Cm. We assume Fn to be C3 for
all n. Let the sequence X := {X0, . . .XN} be a distinguished orbit of (1), referred
to as the true solution of the model, and presumed to be unknown. Suppose we
are given a sequence of noisy observations y := {y0, . . . yN} related to X via

(2) yn = H(Xn) + ξn, yn ∈ Rd, n = 0, . . . , N,

where H : Rm → Rd, d ≤ m, is the observation operator, and the noise vari-
ables ξn are drawn from a normal distribution with zero mean and known ob-
servational error covariance matrix Co. The goal of data assimilation is to find
u = {u0, u1, . . . , uN}, un ∈ Rm, such that the differences ‖yn − H(un)‖ and
‖un+1 − Fn(un)‖, n = 0, . . . , N are small in an appropriately defined sense.

The data assimilation problem may be solved using variational data assimilation
approach. Variational data assimilation methods are based on minimization of a
cost function. In [1], we proposed a strong constraint data assimilation method
that, instead of minimizing a cost function, searches for a zero of the cost operator
G(u) defined as

(3) G(u) =




G0(u)
G1(u)

...
GN−1(u)


 , Gn(u) = un+1 − Fn(un), n = 0, . . . , N − 1.

Instead of solving directly for the initial condition as in variational data assimila-
tion, we solve for the whole orbit at once. This approach is motivated by research
on numerical shadowing methods.

Suppose u is an ε-orbit in a neighborhood of a hyperbolic set for F , namely
‖Gn(u)‖ < ε, n = 0, . . . , N−1, where ‖·‖ is a norm in Rm. The shadowing lemma
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(e.g. Theorem 18.1.2 of [2]) states that, for every δ > 0 there exists ε > 0 such that
u is δ-shadowed by an orbit of F , i.e. there exists an orbit x satisfying G(x) = 0
such that ‖un − xn‖ < δ for all n = 0, . . . , N . For example, let F be the exact
time-τ flow map of an autonomous ODE ẋ = f(x). If the components of u are the
iterates of a numerical integrator with local truncation error bounded by ε, then
these define an ε-orbit of F . Shadowing refinement [3] employs the pseudo-orbit as
an initial guess for G(u) = 0 and, as opposed to proving the existence of a nearby
zero of G, iteratively refines the pseudo-orbit to obtain an improved approximation
of a true solution. The inverse problem to shadowing is to determine an optimal
initial condition u0 for a numerical integration, such that the numerical iterates u
δ-shadow a desired orbit of ẋ = f(x).

Shadowing theory has already motivated a practical data assimilation algorithm
known as pseudo-orbit data assimilation (PDA) [4], which solves a problem of
minimizing 1

2‖G(u)‖2I . In order to stay close to observations, PDA is initialized at
observations and the minimization is approximately solved using a fixed number
of gradient descent steps to satisfy a stopping criterion.

In [6], we formulate the shadowing-based method of [1] in a weak constraint
form. Initializing at observations, we take model error into account following
the Levenberg-Marquardt regularization approach and impose a stoping criterion
based on data mismatch. Denoting by k the index of the Newton’s iteration, we

have at k = 0 u = y and we seek an update δ(k) by approximately solving

(4) G(u(k) + δ(k)) = 0.

We then update using u(k+1) = u(k) + δ(k), where

(5) δ(k) = −CoG
′T (u(k))

(
G′(u(k))CoG

′T (u(k)) + α(k)Cm

)−1

G(u(k)),

for α(k) > 0. Under some regularity conditions and algorithms for choosing α(k),
convergence to a model orbit can be proven as k → ∞ [5]. We remark that
if Co = I and we choose α(k) = 0, for all k, then (5) reduces to the strong
contstraint shadowing of [1]. If Cm = Co = I and we choose α(k) → ∞, for all
k, then (5) reduces to the gradient descent algorithm of PDA. The Jacobian of G
has a m(N − 1)×mN block structure:

G′(u) =




−F ′
0(u0) I

−F ′
1(u1) I

. . .
. . .

−F ′
N−1(uN−1) I


 .

The solution δ(k) to (5) is the minimizer of

(6)
1

2
‖G′

(
u(k)

)
δ(k) +G

(
u(k)

)
‖2Cm

+
α(k)

2
‖δ(k)‖2Co

,

where u(k+1) = u(k)+δ(k). At the first iteration the weak constraint shadowing is
identical to the weak constraint 4DVar, when initialized at the full observations.
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As the iteration proceeds it, however, becomes distinct since (6) does not stay
fixed throughout the iteration.

The regularization parameter α(k) can be determined uniquely by imposing that
for some 0 < ρ < 1 α(k) is the smallest non-negative scalar satisfying

(7) ρ−1‖δ
(
α(k)

)
‖Co ≤

√
Nd− ‖H(u(k))− y‖Co,

where we made the dependency of the update step δ on the parameter α(k) explicit.
For the stopping criterion we require that the distance between analysis and

observations remains bounded. Denoting the principal square root of the observa-

tional precision by C
− 1

2
o , C

− 1
2

o (H(X) − y) is distributed according to a standard
normal distribution. In particular, E(‖H(X) − y‖2Co

)/Nd = 1 and when the

number of observations is large enough we may assume ‖H(X) − y‖2Co
)/Nd ≈ 1

with high probability. Thus we stop the algorithm at the minimum k for which
‖H(u(k))− y‖2Co

)/Nd > r for a predefined parameter r close to 1.
We show that for fully observed linear systems, the solution is unbiased with

respect to the truth and the variance is consistent with least-square minimization.
We extend the weak constraint shadowing to ensemble approximation and show
for fully observed linear systems that the ensemble mean is unbiased with respect
to the truth. For nonlinear systems, well-possedness of the method in algorithmic
time limit is guaranteed. In future, we plan to study error bounds of the shadowing
method for nonlinear partially observed dynamical systems.
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A Primal-Dual Algorithm for Large-Scale Risk Minimization

Drew P. Kouri

(joint work with Thomas M. Surowiec)

Many practical applications require the optimization of systems (e.g., partial dif-
ferential equations) with uncertain inputs such as noisy problem data, unknown
operating conditions, and unverifiable modeling assumptions. In this work, we
formulate such problems as risk-averse stochastic optimization problems for which
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we minimize a measure of risk associated with the system outputs. For many
popular risk models, the resulting risk-averse objective function is not differen-
tiable, which significantly complicates the numerical solution of the optimization
problem. Methods for nonsmooth optimization often exhibit slow convergence
rates (i.e., (sub)linear) and therefore are often intractable for problems in which
the objective function and its derivative are expensive to evaluate. To address
this challenge, we introduce a general primal-dual algorithm for solving large-scale
nonsmooth risk-averse optimization problems. At each iteration of the algorithm,
we approximately solve a smooth optimization problem using, e.g., a rapidly-
converging derivative-based optimization method.

Let Z be a reflexive Banach space and let (Ω,F ,P) be a probability space where
Ω denotes the set of outcomes, F ⊆ 2Ω is a σ-algebra of events and P : F → [0, 1] is
a probability measure. We denote the expectation of a random variable X defined
on (Ω,F ,P) by E[X ]. We consider optimization problems of the form

(1) min
z∈Zad

R(F (z)) + ℘(z)

where Zad ⊆ Z is a nonempty, closed and convex set of admissible optimization
variables, F : Z → L2(Ω,F ,P) is a random loss function, ℘ : Z → R is a deter-
ministic loss functional, and R : L2(Ω,F ,P) → R is a risk functional. We make
the following basic assumptions on the risk functional: R is convex, positively
homogeneous and satisfies the monotonicity condition

∀X, X ′ ∈ L2(Ω,F ,P) with X ≤ X ′ a.s. =⇒ R(X) ≤ R(X ′).

Under these assumptions, the Fenchel-Moreau Theorem [2] ensures that

(2) R(X) = sup
θ∈A

E[θX ] where A ⊆ { θ ∈ L2(Ω,F ,P) | θ ≥ 0 a.s. }.

Substituting (2) into the optimization problem (1) results in the min-max problem

(3) min
z∈Zad

sup
θ∈A

{ℓ(z, θ) := E[θF (z)] + ℘(z)}.

The functional in (3) resembles the Lagrangian functional from nonlinear pro-
gramming. With this as motivation, we define the generalized augmented La-
grangian functional as

(4) L(z, λ, r) := max
θ∈A

{
ℓ(z, θ)− 1

2r
E[(λ − θ)2]

}

for z ∈ Z, λ ∈ L2(Ω,F ,P) and r > 0. Applying results from variational analysis,
one can show that L(z, λ, r) is continuously Fréchet differentiable with respect to
z and λ with partial derivatives given by

∇zL(z, λ, r) = PA(rF (z) + λ) and ∇λL(z, λ, r) = (PA(rF (z) + λ)− λ)/r

where PA denotes the projection onto the convex set A [1, 3]. Based on these
properties of L, we have the following generalization of the classical method of
multipliers.
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Algorithm 1 Primal-Dual Risk Minimization

Initialize: Given z0 ∈ Zad, r0 > 0 and λ0 ∈ A.
While(“Not Converged”)

(1) Compute zk+1 ∈ Zad that approximately minimizes L(·, λk, rk).
(2) Set λk+1 = PA(rkF (zk+1) + λk).
(3) Update rk+1.

End While

When the iterates xk+1 of Algorithm 1 are ǫk-minimizers of L(·, λk, rk), i.e.,
L(xk+1, λk, rk)− inf

x∈Xad

L(x, λk, rk) ≤ ǫk,

then we can show that any weak accumulation point of {xk} is an ǫ-minimizer of
(1) [4, Th. 1]. Under additional conditions on the sequence {ǫk}, we can further
show that the entire sequence {λk} converges to a maximizer of the dual problem

max
θ∈A

v(θ) where v(θ) := inf
z∈Zad

ℓ(z, θ)

[4, Th. 2]. This result follows from the relationship of Algorithm 1 with the
proximal point method [5]. These results typically only apply to convex problems
for which we can ensure that xk+1 is in fact an ǫk-minimizer. For general nonconvex
problems, we often can only ensure that the iterates xk+1 are ǫk-stationary points
of L(·, λk, rk). That is, if ℘ and F are continuously Fréchet differentiable, then

〈℘′(zk+1) + E[λk+1F
′(zk+1)], z − zk+1〉Z∗,Z ≥ −ǫk‖z − zk+1‖Z ∀ z ∈ Zad.

Under additional assumptions on the continuity of ℘′ and F ′, we can prove that
if xk+1 are ǫk-stationary points and ǫk → 0, then any weak accumulation point of
{xk} is a stationary point of (1) [4, Th. 3].
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Uncertainty quantification: dynamic optimization with risk

Alois Pichler

(joint work with Alexander Shapiro, Ruben Schlotter)

The talk addresses stochastic optimization. The following points cause particular
complications in stochastic optimization:

(1) the decision variables are functions;
(2) in real applications, the random process is often not known in detail;
(3) the curse of dimensionality;
(4) the summary functions can be more complicated than usual expectation;
(5) continuous time processes.

An initial emphasize is given to point 2 above, i.e., to the fact that the process is
not known in detail in usual real applications.

We elaborate that the Wasserstein distance is of crucial importance for these
types of problems, as its convex dual, the Kantorovich–Rubinstein theorem, pre-
cisely describes the aberration of evaluations of expectations with respect to vary-
ing probability measures.

The subsequent step generalizes the situation to non-Markovian optimization
problems in multiple stages and what is called the process or nested distance is
introduced (cf. [1]). This distance allows to assign a distance to stochastic processes
quantitatively. It is demonstrated that optimization problems are continuous,
given reasonable regularity conditions, with respect to varying unerlying stochastic
processes. This observation paves the way for replacing complicated stochastic
processes by simpler processes, which are eligible for numerical computations.

It turns out, however, that the empirical measure corresponding to a stochastic
process has a finite process distance, compared with the initial distance. Even for
an increasing number of samples, their distance does not tend to zero. Smoothing
techniques, as well-known from kernel density estimation, can be used to overcome
this difficulty. It is demonstrated that the smoothed empirical process indeed
converges to the genuine process and an explicit quantitative result is presented;
this result follows the pattern of large deviation results. However, the result as
well reveals the curse of dimensionality.

A second part of the talk involves risk measures (cf. [3]). They replace the expec-
tation in the objective of the corresponding stochastic problem. Again, continuity
results are given which allow exchanging the probability measure, i.e., replacing
the measure by simpler measures, which are eligible for numerical computations
and evaluations. At this point it is essential to discuss the spaces of natural do-
main, which are Banach spaces allowing to define the risk measure rigorously. The
continuity results mentioned above then involve the norm of the dual spaces.

A particular emphasize is given to Entropic Value-at-Risk (cf. [2]), its definition
involves the usual entropy.



740 Oberwolfach Report 12/2019

The history process always allows formulating dynamic programming equations
(Hamilton-Jacobi-Bellman equations) given the expectation as objective. In the
context of risk averse stochastic programming, this is no longer the case unless
the risk functionals can be decomposed or nested. In this context, the risk func-
tionals can be nested in a generalized way in continuous time. Employing the
Entropic Value-at-Risk, the corresponding evolution equations have an additional
term which corresponds to risk. The additional term makes the infinitesimal gen-
erator non-linear, as risk is directed and distinguishes risk from profit.

It turns out that the additional non-linear term can be handled effectively in the
Hamiltonian. The presented framework thus gives rise to successfully generalize
stochastic and dynamic optimization to risk averse situations.

References

[1] G. Ch. Pflug and A. Pichler Multistage Stochastic Programming, Springer Series in Opera-
tions Research and financial Engineering (2014), DOI: 10.1007/978-3-319-08843-3.

[2] A. Pichler and R. Schlotter, Entropy based risk measures, European Journal of Operational
Research, DOI: 10.1016/j.ejor.2019.01.016 (2019).

[3] A. Pichler and A. Shapiro, Risk averse stochastic programming: time consistency and opti-
mal stopping, preprint (2019).

Meta Classification for Semantic Segmentation

Hanno Gottschalk

(joint work with M. Rottmann, P. Colling, T. Hack, F. Hüger and P. Schlicht )

1. Semantic Segmentation

Deep Learning approaches have been particularly sucessful on image perception
tasks [3]. At the time of writing, deep convolutional neural networks have de facto
become the industry standard. In semantic segmentation, this task is combined
with localization [1, 3]. A classification problem is solved pixel wise and thereby
partitions the image in a number of segments, each containing the pixels adhering
to one class.

Mathematically, we consider a nx × ny input image X and a corresponding

class matrix Y ∈ C(nx×ny) where C is the finite set of q classes. Y is also re-
ferred to as the ground truth. A convolutional neural network defines a function
fz(y|x,w) depending on a (high diemensional) vector of weights w which gives the
model-probabilities of observing class y ∈ C at output pixel (z = (x, y) given the
input image X . The model is trained on i.i.d. samples (X(i), Y (i)) by minimizing
(’learning’ in machine learning lingo) the cost function given by the negative log
likelihood (’cross entropy’) in the weights w,

−
n∑

j=1

∑

z

log fz(Y
(i)
z |X(i), w) −→ min .
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Given an (approximate) solution ŵ to the above optimization problem, we obtain
the class prediction per pixel:

Ŷz(X) = argmax
y∈C

fz(y|X, ŵ).

We consider ground thruth class masksMy(Y,X) = {z ∈ {1, . . . , nx}×{1, . . . , ny} :

Yz = y} and predicted masks M̂y(X, ŵ) = {z ∈ {1, . . . , nx}×{1, . . . , ny} : Ŷz(X) =

y}, y ∈ C. Let CMy(Y,X) and CM̂y(X, ŵ) be respective the sets of connected

components. For k ∈ CM̂y(X, ŵ) we define the (adjusted) intersection over unions
(IoU) as

IoUadj.(k̂) =
|k̂ ∩ CMy(Y,X)|

k̂ ∪⋃k∈CMy(Y,X):k∩k̂ 6=∅ k \
⋃

k∈CMy(Y,X):k∩k̂=∅

(
k ∩CM̂y(X, ŵ)

) .

Here, IoU(k̂) = 1 corresponds to a perfect prediction of the instance k, whereas

IoU(k̂) = 0 marks k̂ as a false positive having no intersection with the ground
thruth mask CMy(Y,M). The adjusted IoU is a measure of quality which can
only be calculated if the ground truth CMy(Y,X) is available. Therefore, this
meaure of quality is not available at the time of inference.

2. Meta Regression and Classification

Here we propose methods to predict the IoU-value at the time of inference using
aggregated pixel wise dispersion measures. In the first step, we use pixel wise
dispersion measures like the entropy Ez or the difference between the leading and
the next highest probability Dz to create uncertainty heat maps over the predicted
image.

Ez(x,w) = − 1

log(q)

∑

y∈C
fz(y|w, x) log fz(y|w, x),

Dz(x,w) = 1− fz(ŷz(x,w)|x,w) + max
y∈C\{ŷz(x,w)}

fz(y|x,w).

We thereafter aggregate these quantities over the boundary or inner regions of

the predicted instance k̂ of the class y ∈ C. This generates a set of uncertainty
features per every such instance. We complete the data set by the predicted class

and information on the size and boundary length of k̂ and thus obtain a set of

covariates ξ(k̂) which can be calculated without knowledge of the ground thruth.
Based on this set of data per instance we progress to the task of metaclassifica-

tion training a LASSO [8] logistic regression model that is trained to classify false
positives (IoU = 0) vs non false positives. We thus solve numerically

−
n∑

i=1

∑

y∈C

∑

k̂∈CM̂(X(i),ŵ)

{
χ{IoU(k̂)=0} log

(
τ(ξ(k̂)′β)

)

+ χ{IoU(k̂)>0} log
(
1− τ(ξ(k̂)′β)

)}
+ λ‖β‖1 −→

′
min
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where the minimization is in β and the shrinkage hyper parameter λ is adjusted
afterwards to minimize cross validation error on a separate validation data set.
Here τ is the logistic function and χA the indicator function of the set A. Likewise,

we perform a regression analysis to predict the unknown IoU(k̂) from the known

covariates ξ(k̂) encoding - among other information - the aggreated uncertainty
measures.

3. Results

We perform numerical experiments for two segmentation networks, namely the
high end Google network Xception65 [4] and a less performant network designed
for mobile applications Mobilenet V2 [7]. The nets are publicly available including
wthe weigt set ŵ containing 22M weights for the Xception65 and 2.3M weights
for the Mobilenet V2. Both networks are evaluated on the Cityscapes data set [5]
leading to a quota of non IoU = 0 instances of 75% and 58%, respectively. These
quantities mark the guessing baseline.

Using the mataclassification approach described above, we achieve 81.51% meta
classification accuracy for the strong Xception65 network and 78.65% for the Mo-
bilenet V2. Metaclassification is thus able to enhance the metaclassification by
roughly 7% and 20%, respectively, compared to the baseline set by guessing that
all instances have IoU > 0, see Table 1.

A paremeter selection method by gradually decreasing λ is used to determine

influential covariates withe D̄(k̂), the average over the probability distance found
to be most influential. A small set of only 4 four parameters is empirically shown
to be almost as efficient as the entire parameter set.

Xception65 MobilenetV2
training validation training validation

Classification IoU = 0, > 0
ACC, penalized 81.88%(±0.13%) 81.91%(±0.13%) 78.87%(±0.13%) 78.93%(±0.17%)
ACC, unpenalized 81.91%(±0.12%) 81.92%(±0.12%) 78.84%(±0.14%) 78.93%(±0.18%)
ACC, entropy base-
line

76.36%(±0.17%) 76.32%(±0.17%) 68.33%(±0.27%) 68.57%(±0.25%)

Regression IoUadj.

σ, all metrics 0.181(±0.001) 0.182(±0.001) 0.130(±0.001) 0.130(±0.001)
σ, entropy baseline 0.258(±0.001) 0.259(±0.001) 0.215(±0.001) 0.215(±0.001)
R2, all metrics 75.06%(±0.22%) 74.97%(±0.22%) 81.50%(±0.23%) 81.48%(±0.23%)
R2, entropy base-
line

49.37%(±0.32%) 49.02%(±0.32%) 49.32%(±0.31%) 49.12%(±0.32%)

Table 1. Comparison of metaclassification results with two nets
using only aggregated entropy quantities (’entropy baseline’) and
further dispersion measures with (λ > 0) and without (λ = 0)
weight penalization. The number in brackets denote the standard
deviations of averaged values over 10 runs with resmpled valida-
tion sets.
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An extended version of this abstract can be found in [6], see also [2] for an
approach to detect false negatives.
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When it comes to sampling, is smoothness a good thing?

Michela Ottobre

As is well known, a large number of approaches to sampling for a given distribu-
tion π consists in designing a dynamics {xm}, n ∈ N which converges (in some
appropriate sense) to π; running the dynamics long enough will then provide the
desired samples, approximately distributed according to π. Broadly speaking, one
could either design a continuous-time dynamics and then discretize it, or come up
straight away with a discrete-time dynamics. If the former approach is chosen,
one needs to make sure that the discretization {xn}n of the continuous-time pro-
cess {xt}t does still retain all the relevant properties of xt - for example, that the
invariant measure has not been altered.

Popular continuous-time dynamics used in the context are Langevin dynamics

(1) dxt = −∇V (xt)dt+ dWt π(x) = e−V (x)

and, more recently, their non-reversible modifications

(2) dyt = −∇V (yt)dt+A · ∇V (yt) + dWt

where A is any antisymmetric matrix. The second approach is instead the one
taken by Markov Chain Monte Carlo (MCMC) algorithms. Typically such algo-
rithms are reversible.

Very recently the interest has shifted towards the use of Piecewise Deterministic

Markov processes. These processes are fundamentally different from those tradi-
tionally used, not only because they are non-reversible, but also because they are
non-smooth. In their simplest form they indeed move along straight lines until, at
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a random time (typically a non-homogeneous Poisson time), they change velocity
and resume their linear motion until the next random check goes off. Because of
their ODE-like behaviour these processes have a clear edge with respect to slower
diffusion-like algorithms, such as the Random Walk Metropolis algorithm. How-
ever, to the best of our knowledge, such processes still remain, in general, quite
difficult to simulate.

One of my recent interest is in finding a class of dynamics which is at the same
time easy to simulate while retaining this lack-of-smoothness property. One pos-
sible directions, which seems promising, consists in considering a class of SDEs,
so-called UFG-SDEs (UFG is an acronym for uniformly finely generated) which,
roughly speaking, strictly contains the wider class of well known hypoelliptic dif-
fusions. The reason why UFG-type SDEs could perform better comes from the
following observation: if an SDE is of UFG-type, then there always exist a local
change of coordinate such that the original SDE can be turned into a decoupled
system ODE+SDE see [1]. In other words, such SDEs are not smooth in every
direction, and we believe that such a lack of smoothness could in principle be used
to explore the modes of a distribution faster.
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Uncertainty quantification using periodic random variables and lattice
quasi-Monte Carlo rules

Frances Y. Kuo

(joint work with Vesa Kaarnioja, Ian H. Sloan)

Many studies in uncertainty quantification have been carried out under the as-
sumption of an input random field in which a countable number of independent
random variables are each uniformly distributed on an interval, with these ran-
dom variables entering linearly in the input random field — the so-called “affine”
model, see e.g., [1, 2, 3, 4, 5]. Here we propose an alternative model of the ran-
dom field, in which the random variables have the same uniform distribution on
an interval, but the random variables enter the input field as periodic functions.
The field is constructed in such a way as to have the same mean and covariance

function as the affine random field. Higher moments differ from the affine case,
but in general the periodic model seems no less desirable.

More precisely, we consider a random field on a bounded physical domain D ⊆
Rd, where d = 1, 2 or 3, with Lipschitz boundary ∂D. The affine model of the
random field takes the form

(1) A(x, ω) = a(x) +
∞∑

j=1

Yj(ω)ψj(x), x ∈ D, ω ∈ Ω,
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with (Ω,A,P) a probability space. Here (Yj)
∞
j=1 are i.i.d. random variables uni-

formly distributed on [− 1
2 ,

1
2 ], while a and (ψj)

∞
j=1 are real-valued L∞ functions on

D satisfying
∑∞

j=1 ‖ψj‖L∞
<∞. With these definitions the sum in (1) converges

uniformly on D for all values of Yj , and the random field is pointwise well defined,
with mean

E[A(x, ·)] = a(x) +
∞∑

j=1

E[Yj ]ψj(x) = a(x),

and covariance function

cov(A)(x,x′) =

∞∑

j=1

∞∑

j′=1

E[Yj Yj′ ]ψj(x)ψj′ (x
′) =

1

12

∞∑

j=1

ψj(x)ψj(x
′).

The fact that the random variables in (1) occur linearly seems to be a result
of history, rather than something imposed by modeling assumptions. Suppose
instead that we replace Yj in (1) by Θ(Yj), where Θ: [− 1

2 ,
1
2 ] → R is a continuous

function with the properties that

∫ 1/2

−1/2

Θ(y) dy = 0 and

∫ 1/2

−1/2

Θ2(y) dy =
1

12
.

Then (1) is replaced by a random field with exactly the same mean and covariance.
Specifically, we explore a periodic choice of Θ, namely

Θ(y) =
1√
6
sin(2πy) for y ∈ [− 1

2 ,
1
2 ].

The motivation for this choice is that the random field is now a 1-periodic function

of the random variables, and periodic spaces are known to be especially advan-
tageous in the context of lattice quasi-Monte Carlo rules. By using the periodic
model of random fields instead of the affine model, it is possible to carry out
lattice rule calculations of expected values in high dimensions with higher order

convergence rates.
We apply the new periodic model of the random field in the context of comput-

ing expected values of a quantity of interest arising from an elliptic PDE with ran-
dom coefficients. Following [4], the parametric weak problem is: for f ∈ H−1(D)
and y ∈ [− 1

2 ,
1
2 ]

N, find u(·,y) ∈ H1
0 (D) such that

∫

D

a(x,y)∇u(x,y) · ∇φ(x) dx =

∫

D

f(x)φ(x) dx for all φ ∈ H1
0 (D).(2)

The quantity of interest is the expected value of some bounded linear functional
G(·) of the PDE solution u(·,y), taken over the parameter space:

(3) E[G(u)] = lim
s→∞

∫

[− 1
2 ,

1
2 ]

s

G(u(·, (y1, . . . , ys, 0, 0, . . .))) dy1 · · · dys.
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However, instead of the affine model in [4], the diffusion coefficient a(x,y) is now
1-periodic with respect to y, as given by

(4) a(x,y) = a(x) +
1√
6

∞∑

j=1

sin(2πyj)ψj(x).

We approximate the expected value by truncating the series in (4) to s terms,
discretizing the PDE (2) using a (piecewise linear) finite element method with
meshwidth h, and then approximating the (now s-dimensional) integral (3) using
lattice rules with n points.

The key step in our analysis is to obtain a new regularity estimate of the PDE
solution with respect to the parametric variable y within the new periodic frame-
work. Under a number of assumptions, including f ∈ H−1+t(D) with 0 ≤ t ≤ 1,

G ∈ H−1+t′(D) with 0 ≤ t′ ≤ 1, and

∞∑

j=1

‖ψj‖pL∞
<∞ for some 0 < p < 1,

we obtain the overall error bound of

O(s−2/p+1 + ht+t′ + n−1/p),

with the implied constant independent of s, h, and n. In particular, the lattice
integration error of O(n−1/p) beats the O(n−min(1/p−1/2,1−δ)) rate in [4, 5], δ > 0,
for the affine model with randomly shifted lattice rules, and matches the rate
in [2] for the affine model with interlaced polynomial lattice rules. The dimension
truncation error of O(s−2/p+1) matches the rate in [3]. The finite element error of

O(ht+t′) can potentially be improved by using higher order elements.
In summary, lattice rules can achieve higher order convergence rates in the

periodic setting, either as deterministic rules or randomized rules. Lattice rules
are elegant and easy to implement: all we require is an integer generating vector
and modulo arithmetic. We see great potential for lattice rules to be widely used
for uncertainty quantification under the new periodic model of the random field.
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Multilevel representations of stationary Gaussian random fields and
efficient sampling methods

Markus Bachmayr

(joint work with Albert Cohen, Ivan Graham, Giovanni Migliorati, Van Kien
Nguyen, Robert Scheichl)

Circulant embedding is a technique for drawing samples of stationary Gaussian
random fields on uniform spatial grids. Using the fast Fourier transform (FFT),
the method requires only O(N logN) operations to create a sample in N points.
This requires the symmetric Toeplitz covariance matrix corresponding to the grid
points to be embedded into a positive definite circulant matrix. For ensuring pos-
itive definiteness, in many cases it suffices to choose the domain before embedding
sufficiently large, exploiting the spatial decay of the covariance function. In the
important case of covariance functions ρλ,ν from the Matérn family with smooth-
ness parameter ν and correlation length λ, it has recently been shown in [4] that
an extension of the dimensions of the original domain by a factor proportional to
λ
√
νmax{log ν, |log(h/λ)|}, with ν ≥ 1/2 and grid size h > 0, suffices to ensure

positive definiteness of the resulting circulant. It was also conjectured in [4] that
the eigenvalues of this circulant exhibit, uniformly in N , the same asymptotic
decay as the exact Karhunen-Loève (KL) eigenvalues of ρλ,ν ; this property is par-
ticularly relevant for QMC integration methods. In [2], we prove this conjecture
to hold true up to a modification by a factor of order O(|log h|).

The embedding into a circulant can also be interpreted as a periodisation of
the underlying covariance function by a simple reflection. Alternatively, as consid-
ered in [1] (see also [3] for a similar approach), a periodisation based on a smooth
truncation of ρλ,ν leads to a grid-independent periodic random field. We show
in [2] that it suffices in this case to extend the domain by a factor proportional
to λmax{√ν log ν, 1/√ν} for any λ, ν > 0. Numerical experiments show that
the grid-independence of this factor leads to substantial computational savings
already for moderate h. By this periodisation, as described in [1], one also obtains
an alternative to the standard KL expansion on complicated domains, where the
decay of the eigenvalues (which can be computed by FFT) is preserved, but the
eigenfunctions are explicitly known restrictions of trigonometric functions. Apply-
ing the square root of the covariance operator to periodic Meyer wavelets in this
representation, in [1] we obtain wavelet expansions for a class of random fields
including the Matérn family, which yield improved convergence rates for tensor
Hermite polynomial approximations of solutions of random diffusion equations
with lognormal coefficients.
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Glorified linear interpolation

Houman Owhadi

Although numerical approximation, statistical inference and learning are tradi-
tionally seen as entirely separate subjects, they are intimately connected through
the common purpose of making estimations with partial information. This talk
is an invitation to explore these connections from the consolidating perspective of
game/decision theory and it is motivated by the suggestion that these confluences
might not just be objects of curiosity but can constitute a pathway to simple solu-
tions to fundamental problems in all three areas. We illustrate this point through
problems related to numerical homogenization, operator adapted wavelets, com-
putation with dense kernel matrices and to the kernel selection/design problem in
Machine Learning. In these interplays, accurate reduced/multiscale models (for
PDEs) can be identified as optimal bets for adversarial games describing the pro-
cess of computing with partial information. Moreover, efficient kernels (for ML)
can be selected by using relative energy content at fine scales (with a notion of
scale corresponding to the number of data points) as an ordering criterion leading
to the identification of (data driven) flows in kernel spaces (Kernel Flows), that
(1) enable the design of bottomless networks amenable to some degree of analysis
(2) appear to converge towards kernels with good generalization properties.

This talk covers joint work with F. Schäfer, C. Scovel, T. Sullivan, G. R. Yoo
and L. Zhang.

A Bayesian Conjugate Gradient Method

Jon Cockayne

(joint work with Chris J. Oates, Ilse Ipsen, Mark Girolami)

A fundamental task in numerical computation is the solution of large linear systems
of the form

(1) Ax∗ = b

where A ∈ Rd×d and x, b ∈ Rd. The conjugate gradient (CG) method is an
iterative method which offers rapid convergence to the solution, particularly when
an effective preconditioner is employed. However, for more challenging systems a
substantial error can be present even after many iterations have been performed.
The estimates obtained in this case are of little value unless further information
can be provided about the numerical error. Probabilistic numerical methods are a
class of numerical methods that return probability measures designed to provide
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probabilistic uncertainty quantification for numerical error. In [1] we develop a
probabilistic numerical method for the task of solving linear systems.

A Bayesian approach is employed. To this end, we assume that x∗ is a-priori
unknown and model this uncertainty with a prior distribution. For a generic
Gaussian prior, x ∼ N (x0,Σ0), introduce an as-yet arbitrary set of search di-
rections s1, . . . , sm ∈ Rd. Let Sm ∈ Rd×m denote the matrix with these search
directions as its columns. Then it is straightforward to show that

x|S⊤
mAx = S⊤

mb ∼ N (xm,Σm).

where xm,Σm have closed-form expressions that involve the inversion of the ma-
trix Λm = S⊤

mAΣ0A
⊤Sm. The Bayesian conjugate gradient method (BayesCG)

follows a similar procedure to classical iterative methods such as CG by iteratively
constructing search directions sm so that Λm = I, i.e. so that the search direc-
tions are AΣ0A

⊤-orthonormal. To be specific, the BayesCG search directions are
defined as

s̃1 = r0

s̃m = r̃m − 〈sm−1, rm〉AΣ0A⊤sm−1 m = 2, . . . , d(2)

sm = s̃m/‖s̃m‖AΣ0A⊤ m = 1, . . . , d

where rm = b − Axm. It can then be shown that these search directions are
AΣ0A

⊤-orthonormal, and moreover that with these search directions xm,Σm can
be computed iteratively as

xm = xm−1 +Σ0A
⊤sm(s⊤mrm)

Σm = Σm−1 − Σ0A
⊤sms⊤mAΣ0.

The posterior mean xm has interesting optimality properties when computed
in this way. Define the mth Krylov Subspace generated by a matrix B ∈ Rd×d and
a vector v ∈ Rd as

Km(B,v) = span(v, Bv, . . . , Bm−1v).

Then, introducing the affine space K∗
m = x0+Σ0A

⊤Km(AΣ0A
⊤, r0), we can show

that xm is optimal in the following sense:

(3) xm = arg min
x∈K∗

m

‖x− x∗‖Σ−1
0
.

This optimality result also allows us to bound the contraction of the relative error
of the posterior mean:

(4)
‖xm − x∗‖Σ−1

0

‖xm − x∗‖Σ−1
0

≤ 2

(√
κ(Σ0A⊤A)− 1√
κ(Σ0A⊤A) + 1

)m

which, importantly, is exponential in m.
Eq. (3) also leads to an interpretation of BayesCG as a generalisation of CG, in

the sense that when Σ0 = A−1 the CG iterate is recovered as the posterior mean.
This can be seen by comparing Eq. (3) to the similar optimality result for the
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solution estimate produced by CG [2]. Note however that this is not a practical
choice of prior, as computing Σm would then require computation of A−1.

This leads to the critical question of prior choice. We particularly advocate
the idea of using a preconditioner to construct a prior covariance. Given a pre-
conditioner P which is such that κ(P−1A) ≪ κ(A), the choice Σ0 = (P⊤P )−1

accelerates the rate of convergence of the posterior mean, as is clear from Eq. (4).
However, it can be shown both theoretically and empirically that the rate of con-
traction of the posterior covariance is essentially linear regardless of choice of Σ0,
implying that the uncertainty quantification provided by the posterior will be
conservative in general. This mismatch is because the search directions in Eq. (2)
depend implicitly on x∗, in a way that violates the linearity assumption exploited
to produce a conjugate Gaussian posterior mean. Correcting for this issue is the
subject of ongoing research.
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Objective priors in the empirical Bayes framework

Ilja Klebanov

(joint work with Alexander Sikorski, Christof Schütte, Susanna Röblitz)

The choice of the prior distribution for Bayesian inference is a controversial issue
in the statistics community. When no prior information on the parameter θ is
available, one may want to choose a prior that is in some sense non-informative,
thus letting the information within the posterior be dominated by the measurement
x. Here we assume that the parametric model

M = {p(x|θ) : θ ∈ Θ, x ∈ X}

is given. Objective priors [1, 2] provide one attempt of defining such priors, which
besides non-informativity have the desirable property of being invariant under
transformations of the parameter (reparametrization). This idea follows the rea-
soning of Shore and Johnson [6], that

“[. . . ] reasonable methods of inductive inference should lead to
consistent results when there are different ways of taking the same
information into account (for example, in different coordinate sys-
tems).”

The key idea behind reference priors [2], a commonly used objective Bayes method,
is to use information-theoretic concepts such as mutual information I[M] and
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missing information I[M∞], which are transformation-invariant by nature,1

I[M] = DKL

(
p(x, θ) ‖ p(x)p(θ)

)
,

I[M∞] = lim
k→∞

I[M(k)], M(k) = {p(x(k)|θ) : θ ∈ Θ, x(k) ∈ X k},

where DKL denotes the Kullback-Leibler divergence and x(k) denotes the measure-
ment corresponding to k (artificial) independent replications of x. Maximizing the
missing information I[M∞] as a function of the prior can be argued to favor
non-informativity of the prior, see [1].

In the case when information is available in the form of data X = {x1, . . . , xM}
stemming from the hierarchical model

θm
iid∼ p(θ), xm ∼ p(x|θm), m = 1, . . . ,M,

– the reader may think of large clinical studies with patient-specific parametriza-
tions – empirical Bayes methods [3] provide an alternative approach for choosing
the prior. Roughly speaking, these methods proceed by first estimating the prior
distribution from X and then applying Bayes’ rule for each parameter θm and
measurement xm (each patient) separately.2 From now on we will focus on the
first step, the estimation of the prior, where we will denote such estimates by the
letter π. The (conceptually) simplest approach is to maximize the likelihood L(π)
of the prior,

πMLE = argmax
P

L(π), L(π) = p(X |π) =
M∏

m=1

∫
p(xm|θ)π(θ) dθ.

However, in the non-parametric case, i.e. when no parametric form of the prior dis-
tribution is assumed, this leads to overfitting. In fact, πMLE is provably a discrete
distribution with at most M nodes [7]. A natural workaround is regularization
or penalization, where a penalty term Φ(π) is subtracted from the log-likelihood,
resulting in the so-called maximum penalized likelihood estimate (MPLE)

πMPLE = argmax
P

logL(π)− γΦ(π).

Here, γ > 0 is the smoothness parameter which balances the goodness of fit with
the smoothness or non-informativity of the prior. Typical penalty terms are

Φ1(π) = ‖π‖L2, Φ2(π) =

∫
π′(θ)2

π(θ)
dθ, Φ3(π) =

∫
π(θ) log π(θ) dθ.

However, all these penalty terms are variant under reparametrizations, resulting
in inconsistent estimates of the prior: If ϕ : Θ → Θ̃ is a reparametrization and the
estimation process is performed in the transformed parameter space Θ̃ in place of

1Note that I[M(k)] typically tends to infinity for k → ∞, which requires a technical
workaround not discussed here, see e.g. [2].

2One might object that such an approach uses the data twice – more precisely the prior esti-
mate should be used for any potential new measurement xM+1 or, alternatively, the estimation
of the mth parameter should rely on a prior estimated from all but the mth measurement. Since
we are mainly interested in the estimation of the prior, we will omit this detail here.
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∗

Figure 1. MPLE using Tikhonov regularization (denoted by
πL2) is not invariant under reparametrizations, πϕ

est 6= ϕ#πest.
The missing information, on the other hand, is transformation-
invariant, hence the empirical reference prior is consistent under
reparametrizations, πϕ

er = ϕ#πer.

Θ, the resulting estimate πϕ
est can differ from the pushforward of the estimate in

the original space, πϕ
est 6= ϕ#πest, see Figure 1. In order to overcome this obstacle

and motivated by the definition of reference priors [2], we suggest using the missing
information I[M∞](π) as a penalty term for MPLE, thus combining the objective
Bayesian and empirical Bayes methodologies. The resulting prior estimate will be
referred to as the empirical reference prior and is given by3

πer = argmax
P

logL(π) + γI[M∞](π).

As visualized in Figure 1, this estimate is consistent under reparametrizations.
Under the assumption of asymptotic normality [4], the penalty term can be

simplified to Φ(π) = DKL (π ‖ πJ), where πJ denotes the Jeffreys prior [5].
Similar to reference priors, the generalization of this approach to dimensions

d > 1 of the parameter space is not unambiguous [4].

3Again, we omit the technical workaround necessary to handle the limit I[M∞] =

limk→∞ I[M(k)]. For details see [4].
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Modes of measures on infinite-dimensional topological vector spaces

Han Cheng Lie

(joint work with T. J. Sullivan)

In Bayesian inference, maximum a posteriori (MAP) estimators are modes of the
posterior probability measure. Together with the posterior mean and median,
they provide imperfect but nevertheless useful descriptions of the posterior. When
the unknown parameter lives in a finite-dimensional topological vector space, then
Lebesgue measure provides a canonical reference measure; if in addition the poste-
rior measure of interest is absolutely continuous with respect to Lebesgue measure,
then a mode of the posterior measure may be characterised as a maximiser of the
Lebesgue density. In contrast, if the parameter lives in an infinite-dimensional
topological vector space, then there is no canonical reference measure, and thus
the notion of a mode as a maximiser of a Lebesgue density no longer applies. This
raises the question of how to define a mode of a measure on an infinite-dimensional
topological vector space as an object intrinsic to the measure.

Dashti et al. [2] considered the setting of a posterior measure µ on a real
separable Banach space (X, ‖ · ‖), given a centred Gaussian prior µ0 supported
on X , and given standard assumptions on the observational noise and misfit. A
(strong) mode of the posterior µ was defined to be any vector x ∈ X such that

(1) lim
r↓0

supz∈X µ(B(z, r))

µ(B(x, r))
= 1,

where B(z, r) = {z ∈ X : ‖z − x‖ < r}. The interpretation of (1) is that, in the
small radius limit, translating a ball of radius r away from a mode x cannot yield
an increase in measure. Furthermore, the presence of the supremum in (1) implies
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that this domination over all translations is uniform. One of the key results in [2]
is to show that strong modes must belong to the Cameron-Martin space of µ0.

In [3], Helin and Burger considered the setting of arbitrary priors µ0 supported
on a real separable Banach space X . They defined a weak mode with respect to a
dense proper subspace E of X as some x ∈ X such that

(2) lim
r↓0

µ(B(z, r))

µ(B(x, r))
≤ 1, ∀z ∈ x− E.

As is the case in (1), (2) captures the property that the measure of a small ball
centred at a mode dominates that of translates of the ball. Unlike strong modes
however, only translations by vectors in E are permitted for E-weak modes, and
the domination is not uniform. One motivation for considering dense proper sub-
spaces E is to establish a connection to the work of Dashti et al. considered above:
if one chooses the prior to be a centred Gaussian, then one can choose the set E
to be the Cameron-Martin space of µ0.

One of the questions raised by Helin and Burger was to determine whether
there exist conditions for an E-weak mode to be a strong mode. This problem
was motivated by the fact that any strong mode is also an E-weak mode for
any arbitrary dense proper subspace E. The significance of this problem was
emphasised in the recent work of Agapiou et al. [4], in which it is suggested that
the E-weak mode may be more practical to work with in certain applications.

In this talk, we present our solution to the problem of equivalence of modes,
as presented in [1]. The first step is to introduce a new type of mode, hereafter
referred to as an ‘E-strong mode’, which is a vector x ∈ X for which

(3) lim
r↓0

supz∈x−E µ(B(z, r))

µ(B(x, r))
≤ 1.

We show that if E is topologically dense in X , then an E-strong mode is a strong
mode. This result relies on our result that for every r > 0, the evaluation map
z 7→ µ(B(z, r)) is lower semicontinuous on X . Furthermore, we introduce a new
concept: given some x ∈ X and ∅ 6= E ⊆ X , the pair (x,E) is said to satisfy the
‘uniformity condition’ if there exists a v∗ ∈ E and a 0 < r∗ < 1 such that

(4) µ(B(x − v∗, r)) = sup
z∈x−E

µ(B(z, r)), ∀r ∈ (0, r∗).

We show that for a given E-weak mode x, if (x,E) satisfies the uniformity condi-
tion, then x is an E-strong mode. Thus, topological density of E and the unifor-
mity condition suffice for an E-weak mode to be a strong mode.

We further investigate the uniformity condition by presenting an example of a
finite measure on X = R2 with dense subset E = Q2, where the measure does
not satisfy the uniformity condition and has countably many E-weak modes but
no E-strong mode. This example shows that the uniformity condition cannot be
removed in general, and shows that it is possible for measures to have no strong
mode. We also show that if the measure µ satisfies Anderson’s inequality, i.e. if
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for any symmetric, convex, measurable set A it holds that

µ(A+ x) ≤ µ(A), ∀x ∈ X,

then for any ∅ 6= E ⊆ X it holds that (0, E) satisfies the uniformity condition.
Finally, we discuss extensions of the preceding results to metrisable topological
vector spaces and possibly infinite measures.
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Bernstein–von Mises Theorems for Linear Inverse Problems

Hanne Kekkonen

(joint work with Matteo Giordano)

We consider the continuous linear inverse problem of recovering an unknown func-
tion f † from a noisy indirect measurement

Mε = Af † + εW,(1)

where W is assumed to be Gaussian white noise in a separable Hilbert space W2.
Note that while W can be defined by its actions on W2, it does not take values
there almost surely.

We follow the Bayesian approach to inverse problems, choosing a centred Gauss-
ian prior Π for the unknown. The solution to the statistical inverse problem is
then the conditional distribution of f given Mε, and the mean or mode of this
posterior distribution can be used as a point estimator. The main appeal of the
method is, however, that it automatically delivers a quantification of uncertainty
in the reconstruction, obtained through credible sets, i.e. regions of the parameter
space with specified high posterior probabilities.

We are interested whether this uncertainty quantification is objectively valid.
The central question is: Do credible sets have the correct frequentist coverage in
the small noise limit? That is, do we have, for some C = C(Mε),

Π
(
f ∈ C |Mε

)
≈ 1− α ⇔ P

(
f † ∈ C(M †

ε )
)
≈ 1− α,(2)

with a small α ∈ (0, 1) as ε → 0? The importance of the above questions is
not restricted just to the Bayesian paradigm. In linear Bayesian inverse problems
with Gaussian priors the conditional mean estimator coincides with a Tikhonov
regulariser f̄ with a Cameron-Martin space norm penalty. Thus, if (2) holds for
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a credible set C centred at the posterior mean, we can use C as an (asymptotic)
frequentist confidence region for the Tikhonov regulariser f̄ .

Obtaining optimal contraction rates is not enough to answer the above ques-
tion even in the parametric case. For finite-dimensional models the Bernstein–
von Mises (BvM) theorem implies that credible sets coincide asymptotically with
frequentist confidence regions. Understanding the frequentist properties of non-
parametric credible sets presents a more delicate matter. It is well known that
the BvM phenomenon may fail to hold even in a simple nonparametric regression
model, where credible balls in L2 can have null asymptotic coverage.

In paper [3] we follow the semiparametric approach presented in [1] and extend
the results to linear inverse problems of the general form (1). In particular, we
prove BvM theorems for functionals 〈f, ψ〉, with a large family of test functions
ψ, which entails the convergence of ε−1〈f, ψ〉 |Mε to a limiting Gaussian process
with optimal covariance structure that recovers the semiparametric information
lower bound. As a consequence, we deduce the statistical efficiency of plug-in
Tikhonov regularisers 〈f̄ , ψ〉 and that credible intervals centred at such estimators
constitute asymptotically valid and optimal confidence intervals. The applicability
of the general theory is illustrated by deriving sufficient conditions on the test
functions for the BvM phenomenon to occur in case of recovering an unknown
source function in elliptic boundary value problems (BVP).

We also show for the elliptic BVP example, in which the properties of the
crucial ’inverse Fisher information’ operator (A∗A)−1 are well-understood, that
the techniques employed previously can be refined to further relax the assumptions
on the test functions to depend only on the smoothing properties of A. Finally, by
requiring a slightly stronger smoothness, we adapt the program laid out in [2] to
the problem at hand, and obtain a nonparametric BvM theorem which implies that
certain nonparametric credible sets built around the Tikhonov regulariser f̄ have
asymptotically correct coverage and optimal diameter. Note that we do not make
additional assumptions about the smoothness of f . Instead of assuming a source
condition to achieve convergence in a desired space, we study the convergence in
a larger space which is defined by the smoothness of ψ.
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Perturbation theory of Markov chains and Monte Carlo within
Metropolis

Daniel Rudolf

(joint work with Felipe Medina-Aguayo and Nikolaus Schweizer)

Perturbation theory for Markov chains addresses the question how small differences
in the transition mechanism of Markov chains are reflected in differences between
their distributions after a certain number of steps. In the statistical analysis
of datasets the approximate simulation/sampling of posterior distributions is of
particular interest. For this goal approximations of transition kernels can be used
(and considered as perturbations) which might lead to implementable algorithms
and a reduction of the computational cost. However, they also might change
the invariant distribution, such that posterior and stationary distribution do not
coincide anymore. By using the perturbation theory we derive estimates of the bias
of such approximations of geometrically ergodic Markov chains. We illustrate the
result by considering a Monte Carlo within Metropolis (MCWM) algorithm. Here
it is essential to control the error in the approximation of the likelihood function
and, in addition to that, we need to verify a stability condition of the MCWM
Markov chain, either by proving a Lyapunov-type condition, or by a restriction to
the center of the state space. The talk was based on [1, 2] and we refer for further
details to that papers.
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Noise-Level Robust Sampling Methods for Bayesian Inverse Problems

Björn Sprungk

(joint work with Daniel Rudolf, Claudia Schillings, Philipp Wacker)

The Bayesian approach to inverse problems and the corresponding numerical meth-
ods for sampling or integrating w.r.t. the resulting posterior measure has drawn a
lot of attention in recent years. For instance, there has been an intense research on
dimension-independent sampling methods suitable for Bayesian inference in high-
or even infinite-dimensional spaces. Also the development of multilevel techniques
or the employment of surrogate methods for reducing the computational burden
of expensive likelihood models has been a fruitful field of research. However, a
third important computational challenge has drawn less attention so far, namely,
the case of a concentrated posterior measure. Such a situation occurs if the obser-
vational data is highly informative, e.g., due to a small noise or a large amount of
data. From a statistical point of view a concentrated posterior is a rather desirable
situation but for (näıve) numerical methods this can pose a serious challenge.
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In this talk, we provide some first analysis of several sampling methods such
as Markov chain Monte Carlo, importance sampling, and quasi Monte Carlo for
the case of concentrated posterior measures. In particular, we show that standard
algorithms based on the prior measure yield a decreasing efficiency as the posterior
becomes more concentrated. As a remedy we propose to use of the Laplace approx-
imation of the posterior in order to construct noise-level robust sampling methods.
The Laplace approximation is a Gaussian measure centered at the MAP estimate
of the posterior with a covariance based on the local curvature of the log posterior
density at the MAP. It is derived from the classical Laplace method for asymptotic
approximations of integrals. We show that the posterior converges to its Laplace
approximation in the small noise limit in Hellinger distance. This implies that the
density of the posterior w.r.t. its Laplace approximation converges to one, whereas
the density of the posterior w.r.t. the prior deterioates to a Dirac function as the
observational noise decays. This suggests that numerical methods based on the
Laplace approximation behave well in the small noise limit. In fact, we prove
for the case of a concentrating posterior measure that: (1) Metropolis–Hastings
algorithms employing the Laplace approximation in their proposal kernel have a
nondegenerating mean acceptance rate and mean squared jump distance, (2) the
error of importance sampling based on the Laplace approximation decreases with
the noise-level, (3) shifted lattice rules with random shifts, when transformed using
the Laplace approximation, have a nondegenerating relative error for computing
the normalization constant of the posterior.
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Multilevel Monte Carlo for Efficient Risk Estimation

Abdul-Lateef Haji-Ali

(joint work with Michael B. Giles)

We investigate the problem of computing a nested expectation of the form
P[E[X |Y ] ≥ 0] = E[H(E[X |Y ])] where H is the Heaviside function. This nested
expectation appears, for example, when estimating the probability of a large loss
and other risk measures of a financial portfolio. The typical method is a “Uniform
Monte Carlo” [4] method where the outer expectation is estimated with M i.i.d.
samples of Y and the inner expectation is estimated with N i.i.d. samples of X
conditioned on each value of Y , i.e.,

E[H(E[X |Y ])] ≈ 1

M

M∑

m=1

H
(
ÊN

(
Y (m)

))
.
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where Y (m) is the mth sample of Y and

ÊN (y) :=
1

N

n∑

n=1

X(n)(y) ≈ E[X | Y = y]

where X(n)(y) is the nth sample of X given Y = y. To achieve a root mean-
squared error ε, the computational complexity of Uniform Monte Carlo is O(ε−3).
On the other hand, Multilevel Monte Carlo [2] uses correlated estimators with
increasing number of inner samples to reduce the overall computational complexity
by reducing the number of Y samples with a large number of inner samples. The
MLMC estimator can be written as

L∑

ℓ=0

1

Mℓ

Mℓ∑

m=1

H
(
ÊNℓ

(
Y (ℓ,m)

))
−H

(
ÊNℓ−1

(
Y (ℓ,m)

))
.

where Nℓ = N02
ℓ for some N0 > 0 and H

(
ÊN−1(·)

)
:= 0. Here again {Y (ℓ,m)}ℓ,m

are i.i.d. samples of Y . The cost of computing H
(
ÊNℓ

(
Y (ℓ,m)

))
is O(Nℓ) = O(2ℓ)

and one can show that

E

[
H(ÊNℓ

(Y ))−H(E[X | Y ])
]
= O(2−ℓ)

and Var
[
H(ÊNℓ

(Y ))−H(E[X | Y ])
]
= O(2−ℓ/2),

cf. [3, 4]. Hence, the optimal computational complexity of the MLMC method is
O(ε−5/2), cf. [2].

The number of inner samples need not be large for certain values of Y for which

|E[X |Y ]| is large since even a rough approximation ÊNℓ
(Y ) ≈ E[X |Y ] would still

yield H(ÊNℓ
(Y )) = H(E[X | Y ]) exactly. This is the idea of adaptive sampling [1],

where the number of inner samples Nℓ is not chosen uniformly with respect to all
samples of Y . Instead, for a given value of Y and depending on relatively cheap
Monte Carlo approximations of E[X | Y ] and Var[X | Y ], a small number of inner
samples Nℓ(Y ) is sampled which still maintains a high accuracy of the estimate

H
(
ÊNℓ(Y )(Y )

)
with high probability. In particular, we prove that there is a such

choice of Nℓ(Y ) satisfying

E[Nℓ(Y )] = O(2ℓ)

and Var[H(ÊNℓ(Y )(Y ))−H(E[X | Y ])] = O(2−ℓ).

The result is that an MLMC method with such a choice for the number of inner
samples has an average computational complexity of O(ε−2|log ε|2).

The theoretical analysis is presented in this talk and is verified by numerical
experiments on a simple model problem. We also discuss a stochastic root-finding
algorithm that, combined with the presented MLMC methods, can be used to
compute other risk measures such as Value-at-Risk (VaR) and Conditional Value-
at-Risk (CVaR), with the latter being achieved with O(ε−2) computational com-
plexity.
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Pricing American options by exercise rate optimization and
markovian projections

Tempone, Raúl

(joint work with Christian Bayer, Juho Häppolä, Sören Wolfers)

This talk addresses the problem of pricing American basket options in a multi-
variate setting, which includes among others, the Bachelier and the Black-Scholes
models. In high dimensions, nonlinear partial differential equation methods for
solving the problem become prohibitively costly due to the curse of dimensional-
ity.

In the first part, we present a novel method [1] for the numerical pricing of
American options based on Monte Carlo simulation and the optimization of ex-
ercise strategies. Previous solutions to this problem either explicitly or implicitly
determine so-called optimal exercise regions, which consist of points in time and
space at which a given option is exercised. In contrast, our method determines
the exercise rates of randomized exercise strategies. We show that the supremum
of the corresponding stochastic optimization problem provides the correct option
price. By integrating analytically over the random exercise decision, we obtain an
objective function that is differentiable with respect to perturbations of the exer-
cise rate even for finitely many sample paths. The global optimum of this function
can be approached gradually when starting from a constant exercise rate. Numer-
ical experiments on vanilla put options in the multivariate Black–Scholes model
and a preliminary theoretical analysis underline the efficiency of our method, both
with respect to the number of time-discretization steps and the required number
of degrees of freedom in the parametrization of the exercise rates. Finally, we
demonstrate the flexibility of our method through numerical experiments on max
call options in the classical Black–Scholes model, and vanilla put options in both
the Heston model and the non-Markovian rough Bergomi model.

In the last part of the presentation, we proposed to use a stopping rule that de-
pends on the dynamics of a low-dimensional Markovian projection of the given
basket of assets [2]. It is shown that the ability to approximate the original
value function by a lower-dimensional approximation is a feature of the dynamics
of the system and is unaffected by the path-dependent nature of the American
basket option. Assuming that we know the density of the forward process and
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using the Laplace approximation, we first efficiently evaluate the diffusion coef-
ficient corresponding to the low-dimensional Markovian projection of the basket.
Then, we approximate the optimal early-exercise boundary of the option by solv-
ing a Hamilton-Jacobi-Bellman partial differential equation in the projected, low-
dimensional space. The resulting near-optimal early-exercise boundary is used to
produce an exercise strategy for the high-dimensional option, thereby providing a
lower bound for the price of the American basket option. A corresponding upper
bound is also provided. These bounds allow to assess the accuracy of the pro-
posed pricing method. Indeed, our approximate early-exercise strategy provides
a straightforward lower bound for the American basket option price. Following a
duality argument due to Rogers, we derive a corresponding upper bound solving
only the low-dimensional optimal control problem. Numerically, we show the fea-
sibility of the method using baskets with dimensions up to fifty. In these examples,
the resulting option price relative errors are only of the order of few percent.
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Bernstein – von Mises theorem and nonregular constrained
ill-posed models

Natalia Bochkina

(joint work with Peter J. Green)

A broad class of statistical models is considered that can be misspecified and ill-
posed, under a positivity constraint, from a Bayesian perspective. This provides
a flexible and interpretable framework for their analysis, but it is important to
understand robustness of the chosen Bayesian model and its effect on the resulting
solution, especially in the ill-posed case where in the absence of prior informa-
tion the solution is not unique. We address this problem by studying the local
behaviour of the posterior distribution around the point of its concentration as
the observation error decrease, from the frequentist perspective. The results apply
to misspecified models which allows, for instance, to evaluate the effect of model
approximation on statistical inference. Emission tomography is taken as a canon-
ical example for study, but our results hold for a wider class of generalised linear
inverse problems with constraints. This work extends the results of [1] to ill-posed
models.
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Prior aware Metropolis-Hastings for posterior measures with
non-Gaussian priors

Bamdad Hosseini

Markov Chain Monte Carlo (MCMC) algorithms are perhaps the most common
methods for extraction of information from high-dimensional probability measures
with wide spread applications in uncertainty quantification, applied probability
and statistics. The main focus of my talk was the development of a class of
MCMC algorithms for probability measures on Banach spaces that are absolutely
continuous with respect to non-Gaussian measures. Almost all MCMC algorithms
in the literature somehow use a Gaussianity assumption which is very restrictive
in high dimensions. As far as I know my algorithm is the first of its kind that does
not use any assumptions of Gaussianity.

Often times in practice we need to simulate samples from a target probability
measures ν on a Banach space X . For example suppose we need to approximate
integrals of the form

(1)

∫

X

f(u)dν(u),

for some function f : X 7→ R. If X is high dimensional we can’t use standard
quadrature. Now if we had access to a sequence of random variables {u(j)}∞j=1

that were distributed according to ν then we could approximate (1) by

1

N

N∑

j=1

f(u(j)),

for some large N . The goal of MCMC is precisely to generate such a sequence of
random variables. In fact, MCMC algorithms generate a Markov chain {u(j)}∞j=1

so that the law of u(j) converges in some sense to ν as j → ∞.
In my talk I introduced a new class of MCMC algorithms under the subcategory

of Metropolis-Hastings (MH) algorithms as outlined in my preprint [1]. I started
by assuming that the target measure ν is given in terms of an underlying prior
measure µ via its Radon-Nikodym derivative

dν

dµ
(u) =

1

Z
exp(−Ψ(u)),

where Z is a normalizing constant and Ψ : X 7→ R is the negative log-density of ν
with respect to µ or simply referred to as “the potential”. I refer to µ as the prior
in analogy with Bayesian inverse problems [2].

Then our ultimate goal is to construct a Markov transition kernel P (viewed as
an operator on probability measures) so that

(2) Pν = ν, and d(Pnδu(0) , ν) ≤ γnd(δu(0) , ν),

where d : P (X) × P (X) 7→ R is an appropriate distance on P (X) the space of
probability measures on X , γ ∈ (0, 1) is a uniform constant and δu(0) is a point
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mass at some initial point u(0) ∈ X . Basically, if (2) holds then u(j) = Pjδu(0)

forms a Markov chain that can be used to approximate the integral in (1).
I introduced such a kernel using the MH recipe by assuming the form

P(u, dv) = Q(u, dv)α(u, v) + dδu(v)

∫

X

(1− α(u,w))Q(u, dw),

where Q is the MH proposal kernel (it is a Markov transition kernel itself) and
α : X ×X 7→ [0, 1] is the acceptance ratio. The above definition of P gives rise to
the well-known MH algorithm:

(1) Start with some point u(0) and set j = 1.
(2) At step j propose v ∼ Q(u(j−1), dv) conditioned on u(j−1).
(3) Accept v as a new point in the Markov chain with probability α(u(j−1), v)

and set u(j) = v.
(4) Otherwise set u(j) = u(j−1).
(5) Set j = j + 1 and go to Step 2.

The basic idea of my algorithm is that if we pick the right Q and α then the
resulting P will have the desirable properties in (2). In fact, I show in [1] and
together with J. E. Johndrow in [3] that if we take

α(u, v) = min{1, exp(Ψ(u)−Ψ(v))}
and pick Q so that

Q(u, dv)dµ(v) = Q(v, du)dµ(u),

in the sense of probability measures on X×X , then P satisfies (2) (we need a few
more technical assumptions for this to hold that I will skip for brevity). Note that
the equation for Q only depends on the prior µ and does not involve the target ν,
hence the name “prior aware Metropolis-Hastings”.

Choosing the correct Q is often quite difficult in practice so I spent the rest
of my talk introducing a concrete numerical example from [1] where I derive the
kernel Q for a certain type of prior µ. I won’t discuss the details of the example
here since it can be accessed in the preprint but it involves recovering an unknown
function from its convolution with a smoothing kernel. This is a classic inverse
problem called deconvolution which is often used for benchmarking in the inverse
problems literature. I showed that my algorithm works very well with some classes
of highly non-Gaussian priors based on the gamma distribution even in cases where
X is a function space and therefore infinite-dimensional.
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Measuring Sample Quality with Diffusions

Lester Mackey

(joint work with Jackson Gorham, Andrew B. Duncan, Sebastian J. Vollmer)

Stein’s method for measuring convergence to a continuous target distribution relies
on an operator characterizing the target and Stein factor bounds on the solutions
of an associated differential equation. While such operators and bounds are readily
available for a diversity of univariate targets, few multivariate targets have been
analyzed. In [1], we introduce a new class of characterizing operators based on
Ito diffusions and develop explicit multivariate Stein factor bounds for any target
with a fast-coupling Ito diffusion. As example applications, we develop computable
and convergence-determining diffusion Stein discrepancies for log-concave, heavy-
tailed, and multimodal targets and use these quality measures to select the hy-
perparameters of biased Markov chain Monte Carlo (MCMC) samplers, compare
random and deterministic quadrature rules, and quantify bias-variance tradeoffs in
approximate MCMC. Our results establish a near-linear relationship between dif-
fusion Stein discrepancies and Wasserstein distances, improving upon past work
even for strongly log-concave targets. The exposed relationship between Stein
factors and Markov process coupling may be of independent interest.

References

[1] Gorham, J. and Duncan, A. and Vollmer, S. and Mackey, L., Measuring Sample Quality
with Diffusions, Annals of Applied Statistics, in press.

Optimal Experimental Design Problem as Mixed-integer Optimal
Control Problem

Ekaterina Kostina

(joint work with Hans Georg Bock)

We consider a dynamic process, that is described by a system of ordinary differ-
ential equations (ODE)

ẋ = f(x(t), u(t), p), t ∈ [0, T ], x(0) = x0(p),

where x : [0, T ] → Rnp denotes the states of the process, p ∈ Rnp is a vector of
unknown parameters, u : [0, T ] →∈ Rnu denotes the vector of control functions,
which describe experimental conditions. Further, the states and parameters may
satisfy possible boundary or interior type constraints.

We assume that at times 0 ≤ t1 < t2 < ... < tM we get the measurement data η
from the measurement devices. The measurements are assumed to be equal to the
model response h(·) subject to measurement errors, which are normally distributed
with zero mean and known variances: ηij = hi(x(tj)) + εij , εij ∈ N (0, σ2

ij), i =
1, ..., nh, j = 1, ...,M.
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In order to estimate the unknown parameters p we solve the following parameter
estimation problem, for given controls u(·) and sampling design ωij

min
x(·),p

1

2

M∑

j=1

nh∑

i=1

ωij

(
ηij − hi(x(tj))

)2

σ2
ij

, ωij ∈ {0, 1},∀i, j,

s.t. ẋ = f(x(t), u(t), p), t ∈ [0, T ], x(0) = x0(p).

Here, the sampling design variables ωij indicate at when the measurements should
be taken and by which measurement device.

For a given control function u(·) and given sampling design ωij we evaluate the
information matrix F ∈ Rnp×np :

F (T ) :=

M∑

j=1

nh∑

i=1

ωijy(tj)y(tj)
T , y(tj) =

[
∂hi
∂x

(x(tj))G
p(tj)

]T
,

where the derivative
∂x(tj)
∂p =: Gp(tj) solves the variational differential equation:

Ġp =
∂f

∂x
(x(t), u(t), p)Gp(t) +

∂f

∂p
(x(t), u(t), p), Gp(0) = 0,

or the covariance matrix C(T ) = F (T )−1.
Now, we can formulate the optimal experimental design (OED) problem: De-

termine sampling design variables ωij and experimental control functions u(·) by
solving the nonlinear mixed integer control problem (MIOCP):

max
x(·),u(·),ω

Φ(F (T )) resp. min
x(·),u(·),ω

Ψ(C(T )),

s.t. ẋ = f(x, u, p), x(0) = x0(p),

F (T ) =
M∑

j=1

nh∑

i=1

ωijy(tj)y(tj)
T , y(tj) =

[
∂hi
∂x

(x(tj))G
p(tj)

]T
,

resp.

C(T ) = −
M∑

j=1

nh∑

i=1

ωijz(tj)z(tj)
T , z(tj) =

[
∂hi
∂x

(x(tj))G
p(tj)C(tj)

]T
,

Ġp =
∂f

∂x
(x(t), u(t), p)Gp(t) +

∂f

∂p
(x(t), u(t), p), Gp(0) = 0,

ωij ∈ {0, 1}, ∀i, j, further possible constraints on ωij , u(·), x(·).
The usual choice of the cost function Φ resp. Ψ is the trace, minimal resp. max-
imal eigenvalue or minimal resp. maximal diagonal element of the corresponding
matrix.

Although OED is a complex non-standard nonlinear mixed-integer optimal con-
trol problem, the efficient numerical methods have been developed, see, e.g., [1].
The characteristic features of these numerical methods are that the methods are
structure exploiting, direct, all-at-once optimization algorithms for dynamic mod-
els, based on multiple shooting. Treatment of integer sampling decisions can be
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performed by very efficient methods for nonlinear mixed integer optimal control
problems, e.g., [5].

Our aim is to further improve the developed numerical methods. That is why we
are interested in an asymptotic analysis of the OED problem from the point of view
of the Pontryagin’s Maximum Principle. For this purpose, we consider a “relaxed”
version of a sampling design problem. The relaxed cost function in the parameter

estimation problem now takes the form: min 1
2

T∫
0

nh∑
i=0

wi(t)

(
ηi(t)−hi(x(t))

)2
σi(t)

dt. Here,

we have introduced a new control wi(t) which is the derivative of the relaxed
sampling design ωij .

The corresponding relaxed OED control problem reads: Find x(·), u(·), w(·)
such that

max Φ(F (T )) resp. minΨ(C(T )),

s.t. ẋ = f(x, u, p), x(0) = x0(p),

Ġp =
∂f

∂x
(x(t), u(t), p)Gp(t) +

∂f

∂p
(x(t), u(t), p), Gp(0) = 0,

Ḟ =

nh∑

i=1

wi(t)yi(t)yi(t)
T , F (0) = 0, yi(t) =

[
∂hi
∂x

(x(t))Gp(t)

]T
,

resp. Ċ = −
nh∑

i=1

wi(t)zi(t)zi(t)
T , C(0) = C0, C0 a priori information,

zi(t) :=

[
∂hi
∂x

(x(t))Gp(t)C(t)

]T
, further constraints on w(·), u(·), x(·).

In this problem, the dynamic controls u(t) are usually nonlinear; but the new
“sampling” controls w(t) enters linearly the right hand side of the ODE system.
Since the cost function (e.g. the trace or the maximal eigenvalue) is monotonous
in w, additional constraints on the sampling design w(·) are required in order to
avoid unboundedness of the cost function.

The most obvious restrictions are constraints on the measurement costs, e.g.,
T∫
0

nh∑
i

costi(t)wi(t)dt ≤M, which can be also interpreted as the l1 penalty on w(·).
Application of the Pontryagin’s Maximum Principle yields the conclusion, thar

optimal sampling design w(·) has a finite support on [0, T ], which is in agree-
ment with the theoretical results, which state, namely, that at most np(np + 1)/2
measurement points are necessary to get an optimal information or covariance
matrix, see, e.g., [2, 3, 4, 6]. In other words, natural l1 constraint resp. penaliza-
tion leads to sparse sampling design. Using the Pontryagin’s Maximum Principle
allows to understand the structure of the sampling design, thus we may further
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improve numerical methods by new strategies for computing intelligent approxi-
mation strategies of integer sampling design and by adaptive refinement of design
grids.
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