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Abstract. In this collection we give an overview of Jacob Lurie’s construc-
tion of elliptic cohomology and Lubin Tate theory. As opposed to the original
construction by Goerss–Hopkins–Miller, which uses heavy obstruction the-
ory, Lurie constructs these objects by a moduli problem in spectral algebraic
geometry. A major part of this text is devoted to the foundations and back-
ground in higher algebra needed to set up this moduli problem (in the case
of Lubin Tate theory) and prove that it is representable.
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Introduction by the Organizers

Twenty or more years ago, Mike Hopkins and his collaborators began to uncover
a very strong connection between arithmetic algebraic geometry and stable ho-
motopy theory. This revolutionized stable homotopy theory and gave impetus to
the emergence of the field of derived algebraic geometry. We learned, in particu-
lar, that core objects in arithmetic geometry, such as the Lubin-Tate deformation
space and the Deligne-Mumford moduli stack of elliptic curves, have canonical
lifts to derived algebraic geometry. The original constructions used very difficult
homotopy theory, but Lurie has recently found a way to much more directly access
the classical geometry. The overall goal of the Arbeitsgemeinschaft is to give an
exposition of this viewpoint and constructions.

If algebraic geometry studies geometric spaces with sheaves of commutative
rings, then spectral algebraic geometry studies spaces with sheaves of rings in
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some category amenable to homotopy theory. If we would work in characteris-
tic zero, then we could work with commutative differential graded algebras, but
arithmetic geometry and homotopy theory both very much seek integral data, so
the natural setting here is that of E∞-ring spectra, or E∞-rings for short. Stable
homotopy theorists have long studied E∞-rings as they serve as a rigid refine-
ment of multiplicative cohomology theories – classical cohomology theories such
as complex K-theory and ordinary cohomology admit canonical refinements as
E∞-rings.

The key insight is this. There are important objects in algebraic geometry which
arise as solutions to moduli- or deformation theoretic problems. It turns out that
appropriate variations of the same problems have solutions in derived algebraic
geometry which lift the original object in algebraic geometry. Elliptic cohomology
is one key example. In this collection of extended abstracts we focus on explaining
this philosophy and its technical incarnation. All the material covered here is
classical or taken from the work of Lurie, especially [1]. We recommend that the
reader also consults this source, at least the introduction, to get an overview of
the ideas.

Some words on the approach of Lurie

At the center of the connection between geometry and homotopy theory are formal
groups. Every cohomology theory with a natural theory of Chern classes has
an associated formal group and, starting in about 1970, Quillen and subsequent
authors realized this connection was very rigid. In particular, there is a very
checkable criterion, due to Landweber, which allows us to assign a cohomology
theory to a formal group law.

There are two important examples of formal group laws for which this theory
applies:

(1) The Lubin-Tate formal group is defined as a universal deformation of a
formal group law of a given height n over a perfect field of characteristic p.
Through Landweber’s theorem one can assign a cohomology theory to the
Lubin-Tate formal group that is called Morava E-theory (or Lubin-Tate
theory) and denoted by En. By construction, En comes as a multiplica-
tive cohomology theory, but not as an E∞-ring. The classical story uses
complicated obstruction theoretic argument due to Goerss, Hopkins and
Miller to verify that En can be uniquely refined to an E∞-ring.

(2) The formal completion of an elliptic curve at the marked point is a formal
group. Under certain conditions on the elliptic curve (namely being étale
over the moduli stack of elliptic curves) one can use Landweber’s criterion
to associate a cohomology theory with this elliptic curve which we refer
to as elliptic cohomology. Another obstruction theoretic argument then
shows that the elliptic cohomology theory obtained in this way admits
a preferred refinement to an E∞-ring which is even functorial in elliptic
curves.
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The approach sketched above is very indirect, at times ad hoc, and it relies
on difficult and mysterious obstruction theory. The idea of Lurie is to describe
En as a universal deformation of the (ordinary) height n formal group law in the
world of E∞-rings. This technique is quite flexible and can be extended to more
global examples where the local deformation theory is governed by formal groups
or, more generally, p-divisible groups with one-parameter formal subgroup. This
includes elliptic cohomology.

References

[1] J. Lurie, Elliptic Cohomology II: Orientations, 2018, Available from
http://www.math.harvard.edu/~lurie/papers/Elliptic-II.pdf.
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Abstracts

Cohomology theories and formal group laws

Dan Berwick-Evans

Given a cohomology theory with Chern classes, the tensor product formula for the
tautological line bundle on CP∞ often determines a formal group law. This comes
from pulling back along the maps p1, p2 : CP

∞ × CP∞ → CP∞ where p1, p2 are
the two projections and m is the map classifying the tensor product of complex
line bundles. Then we can ask for a formula

m∗c = F (p∗1c, p
∗
2c) ∈ h(CP∞ × CP∞), c ∈ h(CP∞),

where c = c(O(1)) is the Chern class of the tautological line bundle on CP∞. The
fact that the tensor product of line bundles is unital, commutative, and associative
(up to isomorphism) translates into F defining a formal group law.

For ordinary cohomology (for example, with rational coefficients) one can show
that

F (p∗1c, p
∗
2c) = p∗1c+ p∗2c,

recovering the formal additive group law where c is the usual first Chern class of
a complex line bundle. In complex K-theory, the Chern class of a complex line
bundle L is c(L) = [L] − 1, where [L] denotes the K-theory class underlying the
line bundle. For c = c(O(1)), one can show that

F (p∗1c, p
∗
2c) = p∗1c+ p∗2c+ p∗1c · p∗2c

recovering the formal multiplicative group law.
The Lazard ring L encodes formal group laws via the following universal prop-

erty [1]: a homomorphism L → R is the same data as a formal group law over a
commutative ring R. Periodic complex cobordism MP has a canonical theory of
Chern classes. Quillen proved [4] that the associated associated formal group law
is the universal one: there is a canonical identification MP 0(pt) ∼= L.

A multiplicative cohomology theory h• is even if hk = 0 for k odd, and periodic
if there is some β ∈ h2(pt) that is invertible in h•(pt). Any even periodic cohomol-
ogy theory can be given a theory of Chern classes, and thereby defines a formal
group law. Conversely, given a formal group law determined by a homomorphism
MP 0(pt) ∼= L→ R one can consider the assignment

X 7→MP •(X)⊗MP 0(pt) R

where X is a finite CW complex. Landweber gives a criterion under which the
above determines a cohomology theory [3]. Ordinary cohomology with rational co-
efficients can be recovered this way using the additive formal group law. Complex
K-theory can be recovered this way using the multiplicative group law over Z.

These ideas are overviewed in §1.1-1.2 of [2].
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Height and Landweber exact functor theorem

Irina Bobkova

In this expository talk we reviewed some aspects of the theory of 1-dimensional
commutative formal groups and formal group laws, mostly following [1] and [2].
Let F be a formal group law over a commutative Fp-algebra R. Then it is easy to
see that for some n and some power series g we have

[p]F (x) := x+F x . . .+F x = g(xp
n

)

Definition 1. We say that a formal group law F over an Fp-algebra R has height

at least n if there exists a power series g(x) ∈ R[[x]], such that [p]F (x) = g(xp
n

).
We say that F has height exactly n, if [p]F (x) has leading term axp

n

for a ∈ R×.
If [p]F (x) = 0, then we say that F has height ∞.

A formal group law is a formal group together with a choice of a coordinate.
Below we define the notion of height for a formal group; for more details, see,
for example, [2, 3.2]. Consider a formal group F over a scheme X over Fp. Let

f : X → X be the Frobenius morphism. We define the formal group G(p) as
the pullback G(p) = f∗G and the relative Frobenius F : G → G(p) as the unique
morphism which makes the diagram

G

f

((

!!❈
❈❈

❈❈
❈❈

❈ F
// G(p)

��

// G

��
X

f // X

commute. If φ : G → H is a homomorphism of formal groups over X for which
dφ : ωH → ωG vanishes, then φ factors through the relative Frobenius of G.
This condition is satisfied for the endomorphism of G given by the [p]-series, and
there is a unique homomorphism V , called the Verschiebung, making the following
diagram commute

G

[p] !!❈
❈❈

❈❈
❈❈

❈
F // G(p)

V

��
G.
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Then, if dV vanishes, we have a factoring

G(p) F (p)
//

V
##●

●●
●●

●●
●●

● G(p2)

V2

��
G

and, if dV2 = 0, we can continue. This leads us to the following definition.

Definition 2. Let G be a formal group over a scheme X over Fp. We say that G
has height at least n if there is a factoring

G //

[p]

,,❨❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨❨
❨❨❨❨

❨❨❨
F // G(p) F (p)

//

V

++❲❲❲❲
❲❲❲

❲❲❲❲
❲❲❲

❲❲❲
❲❲❲❲

❲❲❲❲
❲❲ G(p2) F (p2)

// . . .
F (pn−1)

// G(pn)

Vn

��
G

We say G has height exactly n if dVn 6= 0.

Proposition 3 (Lazard’s Uniqueness Theorem, see, for example, [1, 5.24]). Let k
be a field of characteristic p and G1 and G2 two formal groups of height exactly n
over k. Then there is a separable extension f : k → k′ so that f∗G1 and f∗G2 are
isomorphic. In particular, if k is separably closed, then G1 and G2 are isomorphic.

Let vn be the coeffient of xp
n

in the p-series of the universal formal group law
over MU∗.

Theorem 4 (Landweber exact functor theorem). Let R be an MU∗-module. Sup-
pose for each prime p and each n the sequence

(p, v1, . . . vn−1)

is a regular sequence for R. Then the functor

X 7→MU∗(X)⊗MU∗ R

is a homology theory.

Given an elliptic curve E over Spec(R), its completion along the identity section
determines a formal group over Spec(R) [3, Chapter IV].

Proposition 5. [3, Corollary IV. 7.5] Let E be an elliptic curve over a field of

positive characteristic. Let Ê be the associated formal group law. Then the height
of Ê is either 1 or 2.

If ht(Ê) = 1, we say that E is ordinary and has Hasse invariant 1. If ht(Ê) = 2,
we say that E is supersingular and has Hasse invariant 0.



920 Oberwolfach Report 15/2019

References

[1] P. Goerss, Quasi-coherent sheaves on the moduli stack of formal groups,
https://arxiv.org/abs/0802.0996

[2] P. Goerss, Topological modular forms (after Hopkins, Miller, and Lurie),
https://arxiv.org/abs/0910.5130

[3] J. H. Silverman, The arithmetic of elliptic curves, volume 106 of Graduate Texts in Math-
ematics, Springer, Dordrecht, second edition, 2009.

Deformations of formal group laws

Alice Hedenlund

Introduction and preliminaries

Question 1. Let Ĝ0 be a formal group law defined “at a point”. What does Ĝ0

look like after we deform it to an “infinitesimal neighborhood”?

Let us rephrase this question in a more mathematically rigorous way. Algebro-
geometrically, we view fields k as “points”; indeed Spec(k) is a point. In this
context, an “infinitesimal neighborhood” of k is a local Artin algebra over k.1 We
denote this category by Artk. Indeed, Spec(A) for such a ring is also topologically

a point, but it is non-trivial as a ringed space; we talk about “fat points”. Let Ĝ0

be a formal group law over a field k of finite height n. In this talk we cover the
following.

• We give the definition of a deformation of Ĝ0 to a local Artin k-algebra.
• We show Lubin-Tate’s theorem, telling us, under mild conditions on the
field k and the formal group Ĝ0, that there is a universal deformation ĜLT

of Ĝ0.
• We show that the universal deformation ĜLT is Landweber exact.

We mainly follow [3, Lecture 21] with some extra details taken from [4].

1. Deformations of formal groups

We start by defining the notion of a deformation of Ĝ0. Let A be local Artin
algebra over k and note that the map ρA : A → k gives rise to a functor ρ∗A :
FGL(A) → FGL(k) between the corresponding small categories of formal group
laws, per the previous talks.

1Recall that a local Artin k-algebra is a commutative ring A equipped with a surjective
map ρA : A → k whose kernel m = ker(ρA) satisfies the following properties:

(1) The ideal m is nilpotent; ma = 0 for a ≫ 0.
(2) Each quotient ma/ma+1 is a finite-dimensional vector space over k.
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Definition 2. The category of deformations of Ĝ0 to A is the pullback in the
diagram

Def
Ĝ0

(A) //

��

FGL(A)

ρ∗
A

��
∗ // FGL(k)

where ∗ denotes the discrete category with one object, and the lower horizontal
functor is the functor that sends that one object to Ĝ0.

Remark. Note that the diagram in the definition is a diagram of small categories.
Now, Cat is really more that just a mere category: it is a 2-category. Usually we
are interested in categories only up to equivalence, and not up to isomorphism,
and so it makes sense to take this extra structure into account. The reader should
view this as a warm-up to working higher-categorical, an approach that will be
taken more seriously during the rest of the week. So to clarify: when we say that
the diagram in the definition is a pullback, we mean this in the 2-categorical sense.
That is, Def

Ĝ0
(A) is the essential fiber of the FGL(A)→ FGL(k) over Ĝ0.

If the last remark confuses you, know that you are not alone. It thus seems
like a good idea to explicitly describe the category Def

Ĝ0
(A) in a way that is

more digestible for people not well-versed in higher category theory. A priori, the
objects in this category are pairs (Ĝ, α), where Ĝ is a formal group law over A

and α : ρ∗(A) ∼= Ĝ0 is an isomorphism of formal group laws over k. However,
one can show, and we leave this to the reader, that the category Def

Ĝ0
(A) can

equivalently be described as follows.

• An object in the category is a formal group law Ĝ over A that reduces to
Ĝ0 modulo m.
• A morphism ϕ : Ĝ → Ĥ is an isomorphism of formal group laws over A
that reduces to the identity modulo the maximal ideal m. Such isomor-
phisms are referred to as ⋆-isomorphisms.

Although we could easily have defined Def
Ĝ0

by specifying the above data, the
definition in terms of the pullback diagram directly gives us some formal properties
of the category. Note for example that Def

Ĝ0
(A) depends functorially on A, so

we have a functor
Def

Ĝ0
: Artk → Grpd .

We will freely talk about homotopy groups of groupoids, with which we mean
the homotopy groups of their classifying spaces. Recall that we can explicitly
describe the homotopy groups as

π0 Def
Ĝ0

(A) = Iso⋆(FGL(A)) and π1(Def
Ĝ0

(A), Ĝ) = Aut⋆(Ĝ) ,

where the ⋆ is supposed to remind us that we want to take isomorphism classes
with respect to ⋆-isomorphisms, and automorphisms that are ⋆-isomorphisms. We
first show that the groupoid of deformations is much simpler than one might guess.

Proposition 3. The groupoid Def
Ĝ0

(A) is (homotopy) discrete.
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Proof. Let us explicitly write

ϕ(x) = c1x+ c2x
2 + · · ·

for a ⋆-automorphism of Ĝ. We want to show that ϕ is actually the identity. Since
the maximal ideal m is nilpotent, it suffices to prove that

ϕ(x) ≡ x mod ma

for all positive integers a. We proceed by induction on a. The case a = 1 is trivial.
For the induction step, let us assume that the assertion hold for a− 1. Let A′ be
the quotient of A[c±1 , c2, . . . ] classifying automorphisms of the given deformation

Ĝ. We refer to the map A′ → A classifying the automorphism ϕ as f , and the
map A′ → A classifying the identity as f0. The two compositions

A′
f0

//
f // A // A/ma−1

are the same by the induction hypothesis. We can hence view the difference

A′
f−f0 // A // A/ma

as an A-linear derivation d : A′ → ma−1/ma where the A′-module structure
on ma−1/ma is given by f (or equivalently by f0). The derivation factors as

A′ // A′ ⊗A k
d′

// ma−1/ma

where d′ is a k-linear derivation. Note that A′ ⊗A k is the ring classifying auto-
morphisms of our original formal group law Ĝ0, which we know is formally étale
over k, see for example [3, Lecture 14 Theorem 1]. It follows that d′ = 0, and
consequently that d = 0, which is what we wanted to show. �

Due to the proposition above it makes sense to focus our attention on only the
set of connected components. That is, we want to study the functor

π0 Def
Ĝ0

: Artk → Set .

2. The Lubin-Tate theorem

The fundamental theorem regarding deformation theory of formal group laws is
due to Lubin-Tate [2]. It asserts, under mild hypotheses, that the functor

π0 Def
Ĝ0

: Artk → Set

is pro-representable. This means that the functor is representable, maybe not by

an object of Artk, but at least by an object of the slightly bigger category Ârtk
consisting of complete local Noetherian algebras over k. For reference, let us phrase
the theorem in modern language.
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Theorem 4 (Lubin-Tate). Let k be a perfect field of characteristic p > 0 and

let Ĝ0 be a height n <∞ formal group law over k. Then the functor

π0 Def
Ĝ0

: Artk → Set

is pro-representable. That is, there is a complete local Noetherian k-algebra ALT

and a deformation ĜLT over this ring such that extensions of scalars

Ring/k(ALT , A) ∼= π0 Def
Ĝ0

(A), ϕ 7→ ϕ∗(ĜLT )

is a bijection.

The ring pro-representing the deformation functor is non-canonically isomorphic
to the complete local Noetherian ring

ALT
∼= W(k)[[u1, . . . , un−1]]

where n is the height of the formal group law Ĝ0 and W(k) denotes the p-typical
Witt vectors. This is equipped with the canonical map ALT → k whose kernel
is the maximal ideal (p, u1, . . . , un−1). To give an indication to why this indeed
must be the pro-representing object, recall that the p-typical Witt vectors W(k)
of a perfect field k of characteristic p has the following universal property: If A is
a complete Noetherian local algebra over k, then the diagram

W(k) //

!!❈
❈❈

❈❈
❈❈

❈
A

��✁✁
✁✁
✁✁
✁✁

k

can be supplied with a unique dotted map that makes it commute. This tells us,
in particular, that the Lubin-Tate universal ring has to be a W(k)-algebra. In
fact, we know that the Lubin-Tate ring contains W(k), since there exists at least

one deformation of Ĝ0 to W(k). So it is reasonable to believe that the Lubin-Tate
ring is a formal power series ring over W(k).

Now we can construct the universal deformation of Ĝ0 in the following way.
The formal group law Ĝ0 is classified by some ring homomorphism ϕ0 : L(p) → k
where L(p) denotes the p-localised Lazard ring. Note that

L(p) = Z(p)[t1, t2, . . . ],

and that we can, without loss of generality, assume that tpi−1 = vi, where vi
denotes the Hasse invariants of the universal formal group law, as discussed in the
previous talks. Since Ĝ0 is of height n, we may also assume that ϕ0 is such that

ϕ0(vi) = 0, 1 ≤ i ≤ n− 1 .

We let ϕ : L(p) → W(k)[[u1, . . . , un−1]] be any ring homomorphism that lifts ϕ0

and is such that
ϕ(vi) = ui, 1 ≤ i ≤ n− 1 .

This map classifies a formal group law over W(k)[[u1, . . . , vn−1]]; this is the uni-
versal deformation. All such lifts are ⋆-isomorphic, so the specific lift is not so
important.
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3. Proof of the Lubin-Tate theorem

In this section we sketch the proof for Lubin-Tate’s theorem following Schlessinger’s
more general theory on pro-representability of functors from Artin rings. In the
article [5] the author gives conditions that guarantees when a general functor

F : Artk → Set

is pro-representable by some R. Basically the idea is that to show that F behaves
similarly enough to Hom/k(R,−) to allow for the question of pro-representability
to be reduced to checking that the specific case

Hom/k(R, k[x]/(x
2))→ F (k[x]/(x2))

is a bijection. We outline how this works for the functor

π0 Def
Ĝ0

: Artk → Set

in two steps; we first show how some basic properties of π0 Def
Ĝ0

allow us to

reduce to the case k[x]/(x2), and we then show the Lubin-Tate theorem in that
specific case.

3.1. Step 1: Reduction to the case k[x]/(x2). We start with showing two “Sch-
lessinger type condition” lemmas. These are the lemmas that show that π0 Def

Ĝ0

behaves similarly enough to Hom/k(ALT ,−) to allow for a reduction. Indeed, it
is not hard to show that that the functor Hom/k(ALT ,−) satisfies the properties
below as well.

Lemma 5. If A→ B is a surjective map, then the induced map

π0 Def
Ĝ0

(A)→ π0 Def
Ĝ0

(B)

is surjective.

Lemma 6. For any pair of surjective maps A → B and C → B in Artk, the
canonical map

π0 Def
Ĝ0

(A×B C)→ π0 Def
Ĝ0

(A) ×π0 Def
Ĝ0

(B) π0 Def
Ĝ0

(C)

is a bijection.

For us, one of the most important consequenes of the last lemma is the following
corollary.

Corollary 7. The tangent space π0 Def
Ĝ0

(k[x]/(x2)) is a group.

Proof. Consider the “addition” map

k[x]/(x2)×k k[x]/(x
2)→ k[x]/(x2), (a+ bx, a+ cx) 7→ a+ (b + c)x

and use Lemma 6 to obtain a map

π0 Def
Ĝ0

(k[x]/(x2))× π0 Def
Ĝ0

(k[x]/(x2))→ π0 Def
Ĝ0

(k[x]/(x2)) .

This does indeed satisfy the necessary conditions for π0 Def
Ĝ0

(k[x]/(x2)) to be a
group. �
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We now start showing how the above results allow us to reduce to checking the
Lubin-Tate theorem in the case k[x]/(x2). We proceed by induction on the length
of the Artinian ring A. If A has length 1, then A = k and the map

Hom/k(ALT , k)→ π0 Def
Ĝ0

(k)

is clearly a bijection since both sides consist of a single element. If the length
of A is a ≥ 2, we can pick an element x in A which is annihilated by the maximal
ideal m. Note that A/x is an Artinian ring of length a − 1, so by the induction
hypothesis we know that

Hom/k(ALT , A/x)→ π0 Def
Ĝ0

(A/x)

is a bijection. Let us study the relationship between deformations to A and defor-
mations to A/x. First, note that we have a map

λ : k[x]/(x2)×k A→ A , (ρA(a) + bx, a) 7→ bx+ a

which fits into the commutative square

k[x]/(x2)×k A
pr2 //

λ

��

A

��
A // A/x

.

One can check that this is a pullback square, and by Lemma 6 we hence get a
pullback square

π0 Def
Ĝ0

(k[x]/(x2))× π0 Def
Ĝ0

(A)
pr2 //

λ

��

π0 Def
Ĝ0

(A)

��
π0 Def

Ĝ0
(A) // π0 Def

Ĝ0
(A/x)

.

Recall from Corollary 7 that π0 Def
Ĝ0

(k[x]/(x2)) is a group, and the left hand

vertical map in the diagram is indeed an action on π0 Def
Ĝ0

(A) by this group.
The fact that the above diagram is commutative shows that the projection map
from A to A/x induces a map

π0 Def
Ĝ0

(A)/π0 Def
Ĝ0

(k[x]/(x2))→ π0 Def
Ĝ0

(A/x) .

The fact that the square is a pullback means that this map is injective, and
Lemma 5 shows that it is also surjective. This exhibits π0 Def

Ĝ0
(A) as a principal

homogenous space for π0 Def
Ĝ0

(k[x]/(x2)) over π0 Def
Ĝ0

(A/x). All of the above

discussion goes through for the functor Hom/k(ALT ,−) as well. We conclude that
to show that the Lubin-Tate theorem holds for A it suffices to show that

Hom/k(ALT , k[x]/(x
2))→ π0 Def

Ĝ0
(k[x]/(x2))

is an isomorphism of groups.



926 Oberwolfach Report 15/2019

3.2. Step 2: The case k[x]/(x2). To finish the proof for the Lubin-Tate theorem
we explicitly construct an inverse for the functor

kn−1 ∼= Hom/k(ALT , k[x]/(x
2))→ π0 Def

Ĝ0
(k[x]/(x2)) .

Let Ĝ be a representative for a connected component of Def
Ĝ0

(k[x]/(x2)). In

particular, Ĝ is a formal group law over k[x]/(x2), and so it is classified by some
local ring homomorphism h : L(p) → k[x]/(x2), where again L(p) is the p-localised
Lazard ring. We have

h(vi) = cix , 1 ≤ i ≤ n− 1

for some elements ci in k. We now construct the map to kn−1 in the obvious way.

Lemma 8. The map

θ : π0 Def
Ĝ0

(k[x]/(x2))→ kn−1, Ĝ 7→ (c1, . . . , cn−1) .

is a well-defined group homomorphism.

Proof. It is not hard to see that the map is a group homomorphism. Let Ĥ be
another representative for the isomorphism class determined by Ĝ. Since the
two deformations are in the same isomorphism class we know that there is a ⋆-
isomorphism f between them. Let us compare the p-series of the two deformations.
They are related by the formula

[p]
Ĥ
(t) = f([p]

Ĝ
(f−1(t))) .

Since Ĝ0 has height n, the two p-series must be divisible by x modulo tp
n

.
Since f(t) ≡ t (mod x), we deduce that

[p]
Ĝ
(t) ≡ [p]

Ĥ
(t) (mod tp

n

) ,

which proves that the inverse map is well-defined. �

All that remains is to show that the map in the lemma is indeed the inverse to
the map in the Lubin-Tate theorem. The composition

kn−1 // π0 Def
Ĝ0

(k[x]/(x2)) // kn−1 ,

is the identity, essentially by construction, which shows that the map of the
Lubin-Tate theorem is injective. To show that θ is the inverse to the map of
the Lubin-Tate theorem is suffices to show that θ is injective as well. Note that
a formal group law Ĝ is in the kernel of θ if and only if it has height exactly n
over k[x]/(x2). We wish to show that Ĝ is ⋆-isomorphic to the trivial deforma-

tion Ĝ0,k[x]/(x2), that is, the deformation of Ĝ0 obtained by extension of scalars

along the counit k → k[x]/(x2). We remember that that the k[x]/(x2)-algebra R
classifying isomorphisms between formal group laws of height n is formally étale,
see [3, Lecture 14 Theorem 1]. It follows that the k[x]/(x2)-algebra homomor-

phism R → k classifying the identity automorphism id : Ĝ0 → Ĝ0 lifts extends
uniquely to a k[x]/(x2)-algebra homomorphism R→ k[x]/(x2) classifying some ⋆-

isomorphism Ĝ → Ĝ0,k[x]/(x2). This concludes the proof of the Lubin-Tate theo-
rem.
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4. Lubin-Tate theory

Recall that we have a way of producing a homology theory from a formal group
law in certain cases, namely via Landweber’s exact functor theorem. For example,
this gives a purely algebraic way of producing complex topological K-theory by
using the multiplicative formal group law Ĝm over Z. Given a finite height formal
group law Ĝ0 over a perfect field k of characteristic p, we might wonder whether
the universal deformation ĜLT over the Lubin-Tate ring satisfies the Landweber
condition. The answer is yes, and is an observation of Morava.

Proposition 9. The universal deformation ĜLT satisfies the Landweber condi-
tion.

Proof. The sequence (p, v1, . . . , vn−1) is regular by construction and vn is invertible

since Ĝ0 was assumed to be of height exactly n. �

The proposition implies, via Landweber’s exact functor theorem, that there is
a homology theory En such that

π∗En
∼= W(k)[[u1, . . . , un−1]][β

±1]

where |β| = 2. Despite the notational convention, En of course depends on both

the field k and the formal group law Ĝ0. The homology theory goes under many
different names; Morava E-theory, Lubin-Tate theory, and completed Johnson-
Wilson theory among them.

Note that the functor Def
Ĝ0

depends functorially on Ĝ0. This gives us an

action of the automorphism group Aut(Ĝ0) on our functor. We refer to the auto-

morphism group Aut(Ĝ0) as the Morava stabiliser group.2 The action extends to
an action on the pro-representing object, which extends to an action of the Morava
stabilier group on the Lubin-Tate spectrum En, at least in the homotopy category
of spectra. We will return to this subtle point in a moment, but let us first look
at an example.

Example 10. Consider the multiplicative formal group Ĝm over the prime field Fp.
This is a formal group law of height 1 so the Lubin-Tate ring is in this case given
by

ALT = W(Fp) = Zp ,

where Zp denotes the p-adic integers. The universal deformation is also the multi-

plicative group Ĝm, but this time defined over the p-adics. In this case Lubin-Tate

2We really have more functoriality than just in the formal group law Ĝ0. Although it is
hidden in the notation, the deformation functor also depends on the field k that we started with,
and we might want to vary this also. Consider the following category.

• Objects are pairs (k, Ĝ0) where k is a field and Ĝ0 is a formal group law over k.

• A morphism (k, Ĝ0) → (K, Ĥ0) is a pair (ϕ, f) where ϕ : k → K is a field homomor-

phism and f : ϕ∗(Ĝ0) → Ĥ0 is a map of formal groups law over K.

By the same logic as before, we have an action of the automorphism group Aut(k, Ĝ0) on the
functor Def

Ĝ0
. This is sometimes referred to as the extended Morava stabiliser group.



928 Oberwolfach Report 15/2019

theory is homotopy equivalent to p-completed complex topological K-theory:

E1 = KU∧p .

The Morava stabiliser group Aut(Ĝm) = Z×p is the group of p-adic units. A p-adic

unit ℓ acts on KU∧p via the p-adic Adams operations

ψℓ : KU∧p → KU∧p .

5. Where do we go from here?

The construction of Lubin-Tate theory has a number of issues that need to be
solved before we can go any further. The issue is not only localised to Lubin-Tate
theory though; it is more related to the Landweber exact functor theorem, and
the question of how much structure is actually obtained when going from a formal
group law to a spectrum.

To explain the issue, and why it is of interest to rectify it, let us return a bit
to previous talks, and recall the algebraic construction of complex topological K-
theory. The proceedure, is simple enough; we start with the multiplicative formal
group law Ĝm over Z, and use the Landweber exact functor theorem to conclude
that there is an even periodic homotopy commutative ring spectrum, namely KU,
with

π0 KU ∼= Z and Spf(KU0(CP∞)) ≃ Ĝm .

This constructs KU without any mention of complex vector bundles, and other
topological nastinesses. However, there are certain limitations to constructing KU
in this way. For example, we know than KU has more structure than just being
commutative and associative up to homotopy; it is commutative and associative
up to coherent homotopy. Briefly, this information is captured by the statement
“KU is an E∞-ring”. This is a structure that cannot be seen on the level of
the homology theory KU∗, and so it cannot be obtained from Landweber’s exact
functor theorem alone.

Why are we interested in the E∞-structure of KU in the first place? Well,
for one, it would allow us to construct real topological K-theory KO, which is
a spectrum that cannot be obtained from Landweber’s exact functor theorem
directly, as it is not even periodic. The two-element group 〈±1〉 acts on the formal

group law Ĝm, and so gives us an action on KU. In terms of complex vector
bundles, this is the action on KU by complex conjugation. However, because of the
above discussion, the group 〈±1〉 only acts on KU in the homotopy category hSp.
It would be nice to have more; a strict action of 〈±1〉 on KU would allow us to
construct KO as the homotopy fixed points:

KO = KUhC2 .

We have the same type of issues when it comes to the Lubin-Tate theory En

we constructed in this talk. As of now, we only have a construction of En as a
spectrum satifying

π0En
∼= W(k)[[u1, . . . , un−1]] and Spf(E0

n(CP
∞)) ≃ ĜLT
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with an action of the automorphism group Aut(Ĝ0), all on the level of the ho-
motopy category hSp. It has more structure than that though; Goerss, Hopkins,
and Miller showed that En carries an essentially unique E∞-structure and that
the action of the Morava stabiliser group can be strictified, see [1]. This, among
more general discussions on E∞-rings, is the topic of next talk.
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E∞-Rings, Lubin-Tate Theory and Elliptic Cohomology

Lior Yanovski

In this talk we shall give an overview of the results of Hopkins, Goerss and Miller
regarding the existence, uniqueness and functoriality of E∞-ring structures for two
important families of Landweber exact spectra:

(1) Lubin-Tate spectra.
(2) Elliptic Spectra.

We also review some applications of these results. Namely, that we can obtain
a coherent action of the Morava stabilizer group on Lubin-Tate spectra and that
we can construct various spectra of topological modular forms by gluing together
elliptic spectra.

The development of the obstruction theory for E∞-ring structures and its ap-
plication to Lubin-Tate spectra can be found in [1, 2]. A detailed treatment of the
application to elliptic cohomology and topological modular forms can be found in
chapter 12 of [4]. An ∞-categorical account of the said obstruction theory can be
found in [3].

1. Ring Spectra

There are several perspectives on what spectra are. For our purposes, the main
manifestation of spectra is as the homotopical analogue of abelian groups. In
particular, there is an ∞-category Sp of spectra and a diagram of functors

Set

Free

��

�

� // S
Σ∞

+

��

π0

ww

Ab

Forget

OO

�

�

H
// Sp .

Ω∞

OO

π0

ww
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Just like Ab, the∞-category Sp admits a canonical symmetric monoidal structure
⊗. It is characterized by the property that it distributes over colimits in each
coordinate and the unit is the sphere spectrum S = Σ∞+ (pt). This makes the
functor

Σ∞+ : (S,×, pt)→ (Sp,⊗, S)
symmetric monoidal. The symmetric monoidal structure allows us to consider
“coherent” algebraic structures in Sp and in particular (commutative) rings with
which we can do (commutative) algebra and even algebraic geometry. Roughly, a
ring should be a spectrum R with a unit map S → R and a multiplication map
µ : R ⊗ R → R, which is unital and associative in the homotopy coherent sense.
There are several approaches for making this precise. Classically, one works in a
model category which allows one to rectify the coherent structures into strict ones.
But, it is also possible to work completely ∞-categorically using the language of
∞-operads. The structure of an “associative ring” is then a structure of an algebra
over the ∞-operad E1 and the structure of a “commutative ring” is a structure
of an algebra over the ∞-operad E∞ (there are also the ∞-operads En which
interpolate between them). Since the functor

Sp→ h Sp

is symmetric monoidal, any E1-ring (resp E∞-ring) gives in particular a ring (resp.
commutative ring) in the homotopy category of Sp, but giving this structure on the
level of the ∞-category is much more than that (e.g. it induces power operations
on π∗R). Since the structure of, say, an E∞ (or even E1) ring is quite a lot of
highly structured data, it is not easy to construct. There some examples that
come from “formal considerations”:

Example 1.

(1) S is an E∞-ring (and so is any localization SE).
(2) HR for a commutative ring R is an E∞-ring.
(3) The internal mapping spectrum hom(E,E) is an E1-ring for any E ∈ Sp.

But there are also examples which are not (obviously) of this sort. In particular,
there are spectra for which we naturally have only a structure of a homotopy (com-
mutative) ring for which it is not obvious if there even exists an E∞-ring structure
that induces it. One particular family of such examples comes for Landweber’s
theorem. Recall that for every commutative ring R with a formal group law G,
that is classified by a flat map SpecR→MFG, Landweber’s theorem provides an
even periodic (hence complex orientable) homotopy commutative ring spectrum
ER with π0ER ≃ R and the associated formal group law isomorphic to G. In fact,
one can show a bit more:

Theorem 2. The above construction yields a fully faithful functor from the cat-
egory of such pairs (R,G) to the category of commutative rings in the homotopy
category of spectra.

It is interesting to know which ones can be upgraded to E∞-ring spectra (and
in how many different ways).
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Remark 3. Not every Landweber exact theory can be given the structure of
an E∞-ring. For example, by recent work of Tyler Lawson, the Brown-Peterson
spectrum BP at p = 2 can not be given the structure of an E∞-ring (and this was
also extended to odd primes by Andrew Senger)

2. Lubin-Tate Theory

In light of the above, we specialize to a particular class of Landweber exact spectra.
For a perfect field κ of characteristic p and a finite height n formal group law G0

over it, the pair (κ,G0) is itself not flat overMFG. Lubin-Tate theory constructs
functorially a ring

R ≃W(κ) [[u1, . . . , un−1]]

and a formal group law G over R, such that (R,G) is a universal deformation of
(κ,G0). The pair (R,G) satisfies the conditions of Landweber’s theorem, so we
get functorially a homotopy commutative ring spectrum E (κ,G0).

Corollary 4. There is a fully faithful functor from the category of pairs (κ,G0)
to the category of commutative rings in the homotopy category of spectra.

We are interested in upgrading (functorially) the homotopy commutative ring
structure of E (κ,G0) to an E∞-ring structure. One of the key points of this
workshop is to explain how this can be achieved by transporting the Lubin-Tate
theory into the ∞-categorical world. But long before this, it was achieved by
Goerss, Hopkins and Miller using a more “by hand” approach. Namely, they
developed a general obstruction theory for constructing algebras over ∞-operads
in spectra and showed that, in this particular case, the obstructions vanish.

Theorem 5 (Goerss-Hopkins-Miller). There is an essentially unique functor from
pairs (κ,G0) to E∞-ring spectra that lifts the Lubin-Tate construction E (κ,G0).

One consequence of the functorially is that the Morava Stabilizer group

Γ = Aut (κ,G0)

acts on En = E (κ,G0) in the ∞-categorical sense (namely, “coherently” and not
only up to homotopy) by E∞-ring maps. In particular, for any subgroup Γ0 ⊆ Γ we
can take the homotopy fixed points EhΓ0

n and this is again an E∞-ring spectrum.

Example 6. For the multiplicative formal group law over F2, we have E1 ≃ K̂U 2

and Γ = Z×2 . Taking Γ0 = {±1} ⊆ Z×2 we get EhΓ0
1 ≃ K̂O2, which is the 2-adic

completion of the real K-theory spectrum KO .

For n ≥ 2 and finite Γ0 ≤ Γ, we can think of EhΓ0
n as higher analogues of

(completed) real K-theory.

Remark 7. The group Γ is pro-finite and acts “continuously” on En. For non-
finite subgroups Γ0 ≤ Γ, one would actually like to take “continuous fixed points”.
Without going into details, this can be formalized and implemented. The most
drastic (and very useful) case is EhΓ

n ≃ SK(n) where K(n) is Morava K-theory.
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It is important to note that the E∞-ring spectra we get after taking fixed points
are no longer complex orientable and therefore can not be constructed (even just
as spectra) by Landweber’s theorem.

3. Elliptic Spectra & tmf

Another important source for Landweber exact theories (i.e. formal group laws
classified by a flat map) is the theory of elliptic curves. An elliptic curve C over a
commutative ring R is in particular a commutative 1-dimensional algebraic group

over R and hence its completion Ĉ is a formal group over R (which turns out to
always of height ≤ 2). If it is classified by a flat map to MFG, by Landweber’s
theorem, it can be associated with a homotopy commutative ring spectrum EC

(such spectra are known as “elliptic cohomology”). Using a more refined version of
the previously mentioned obstruction theory, Goerss, Hopkins and Miller proved:

Theorem 8 (Goerss-Hopkins-Miller). The spectrum EC admits a structure of an
E∞-ring.

Once again, there is also the question of functoriality, which in this case takes
the form of “globalization”. There is a Deligne-Mumford moduli stackMell that
classifies elliptic curves. For any commutative ring R, the collection of maps

f : Spec (R)→Mell

is equivalent to the groupoid of elliptic curves over R. The map that associates to
an elliptic curve its completion as a formal group is represented by a flat map of
stacks

Φ :Mell →MFG.

Namely, for each f as above, the composition Φ ◦ f classifies Ĉ/R. Hence, if f is
flat, we can associate to it by Landweber’s theorem a homotopy commutative ring
spectrum. This can be done in particular to any étale map f in a functorial way.
Thus, we get a presheaf Otop

0 of homotopy commutative ring spectra on the étale
site ofMell. With some considerable more work, one gets:

Theorem 9 (Goerss-Hopkins-Miller). There is a sheaf Otop of E∞-rings onMell,

which lifts the presheaf Otop
0 .

Having the sheaf Otop allows us to take sections over non-affine étale open
“subsets” of Mell obtaining new E∞-ring spectra. In particular, we can take
global sections:

TMF = Otop (Mell) .

In fact, the entire discussion can be extended to a certain compactification Mell

of Mell that classifies “generalized elliptic curves” (allowing a nodal singularity)
giving also:

Tmf = Otop
(
Mell

)
and tmf = τ≥0 (Tmf) .

We reiterate that all versions of tmf above are not complex orientable.
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Overview of the Classic Theory of p-Divisible Groups

Catherine Ray

We will discuss a victory of the 50s-60s: Lie theory for abelian schemes over perfect
fields of char p. For this lecture, until mentioned otherwise, we will fix a field k
which is perfect and of characteristic p. Further, everything is commutative.

1. Basic Definitons

Definition 1. Affine group scheme is SpecA where A is a bicommutative Hopf
k-algebra.

Definition 2. Finite group scheme is an affine group scheme represented by a
finite k-vector space A.

1.1. Z/pn, µpn , αp and their Hopf algebras. For example:

• Z/p = SpecHomSets(Z/p, k) = Spec
∏

Z/p k =
∐

Spec k;

• µpn = Spec k[x]/(xp
n − 1) is the pth roots of unity; ∆(x) = x⊗ x.

• αp = Spec k[x]/xp is the additive pth roots of unity; ∆(x) = x⊗ 1+1⊗x.
• E[p] ≃ µp × Z/p (the kernel of multiplication by p on an ordinary elliptic

curve)

1.2. Definition and examples of p-divisible groups. We give here examples
of p-div groups, Z/pn, µpn , A[pn].

Definition 3. A p-div group of height h is an inductive system (i.e., an inductive
limit before you take the limit) of commutative finite group schemes

G1
i1−→ G2

i2−→ G3
i3−→ · · ·

over k satisfying two properties:

(1) They must fit into an exact sequence

0→ Gn
in−→ Gn+1

pn

−→ Gn+1 → 0

(that is, the kernel of the map pn on Gn+1 is the copy of Gn sitting inside
of Gn+1).
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(2) rank(G1) = ph where h is an integer. (aka, G1 = SpecA1, and A1 is a free
k-algebra of dimension pn) This is called height.

Often, we will work with the individual finite group schemes rather than the
whole colimit, as they are easier to handle.

2. Formal groups are connected p-divisible groups

Definition 4. An affine finite group scheme is connected if its representing Hopf
algebra is a local ring.

Definition 5. A divisible formal group F is such that this sequence is exact
(as a sequence of formal group schemes)

F [p]→ F
[p]−→ F

Note that we may make a p-divisible group out of a divisible formal group
scheme F .

F 7→ (F [p] →֒ F [p2] →֒ ...)

Remark. It is important here that our formal groups are indeed smooth for-
mal groups, which implies that they locally look like Spf of a power series ring
quotiented by a closed ideal.

Theorem 6. (Serre-Tate equivalence) There is an equivalence of categories be-
tween divisible smooth formal groups over k, and connected p-divisible groups over
k. The functor sends:

F 7→ (F [p] →֒ F [p2] →֒ ...)

Let’s look at some finite flat group schemes, and see what their connected
components look like.

• SpecFp[x]/x
p is local, and thus connected.

• We see that for µp/Fp
= SpecFp[x]/(x

p − 1) is local, since (x − 1)p, so

G0 = G, and thus G/G0 = SpecFp

• Z/p is completely etale. (clearly disconnected)

• E[p] ≃ µp × Z/p

Definition 7. An affine group scheme G over k is etale if G×k k̄ ≃ Spec k̄[G(k̄)]
(the coproduct of constant group schemes).

3. Connected-Etale Sequence and Splitting

Let G0 be the connected component of the identity. Then, take Gét := G/G0.

0→ G0 → G→ Gét → 0

This sequence in fact always splits (over a perfect field of char p > 0). And this
splitting is natural!

We can think of this on the level of representing Hopf algebras, A ≃ A0 ⊗Aét.
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Example 8. (analogy)

H∗(Ω∞X ;Fp) ≃ Hom(π0X,Z/p)⊗Fp H
∗(Ω∞X0;Fp)

(An example of a connected etale splitting of Hopf algebras, first part is “etale”
(the only difference is that there could be an infinite number of connected compo-
nents), second is connected)

Remark. Any map from G to an etale finite flat group scheme will factor through
Gét.

Remark. The fact that G0 is a sub-group scheme relies on the general fact that
if X is connected and has a rational point over the base field, then it is geomet-
rically connected. If X is geometrically connected, then X ×k X is geometrically
connected.

Remark. We define this exact sequence for finite flat group schemes, then take
colimit to get the exact sequence for p-divisible groups.

4. Basics of Dieudonne Theory over k

4.1. Dieudonne Theory I: Classification up to Isomorphism. Moral: pDiv
is equivalent to a category of modules, which one?

Where do these theorems come from? Manin proved them for a special case
using the combination of a formal categorical statement of Gabriel, and some
geometric input [2]. (Then he used descent and duality, discussed in the last
section of [1], to prove the whole statement.)

We now discuss Gabriel’s theorem on taking an abelian category and construct-
ing a category of a modules.

4.1.1. Gabriel’s Theorem.

Definition 9. An injective hull of an object c in abelian category C is a monomor-
phism c →֒ I to an object I ∈ C such that:

• (injective) Hom(−, I) is exact
• (hull) c →֒ I and there are no “smaller” I, that is, every other monomor-

phism from c to an injective object in C factors through this morphism.

Definition 10. Let a locally finite category be an abelian category with a finite
set of generating objects, enough injectives, and “enough” colimits and limits.

Remark. (setup) Let C be a locally finite category, (Sα) the family of all simple
objects of C, and Iα the injective hull of Sα. Let I =

∐
Iα; the “universal” injective

object. Let E := EndC(I). Topologize E by taking as a base of neighborhoods of
zero the system of all left ideals I ⊂ E of finite colength. E is complete wrt this
topology. We denote by ME the category of complete topological left E-modules,
whose topology is linear and has a base of neighborhoods of zero consisting of all
sub-modules of finite colength.

Theorem 11. The contravariant functor C → ME, X 7→ Hom(X, I) is an
antiequivalence between the categories.
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There is little hope to compute injective objects for a general category, nor the
endomorphisms of an object in a category. The geometric input, and how we get
Dieudonne theory from this formal statement, is that we know the generators of
the category of certain finite flat group schemes. This category we will consider if
Ind of locally-local finite group schemes, fGrpℓ,ℓ:

Definition 12. A finite group scheme SpecA is locally-local, if A and A∗ are
both local rings.

The generator of Ind(fGrpℓ,ℓ) is αp, and we know that the injective hull of αp is
the colim of truncated Witt-schemes.

Definition 13. The Witt scheme is a ring scheme whose k points are the rings of
k-Witt vectors.

Remark. F and V act on a point of the Witt scheme as:

F : (x0, x1, x2, ...) 7→ (xp0, x
p
1, x

p
2, ...)

V : (x0, x1, x2, ...) 7→ (0, x0, x1, ...)

Definition 14.

W r := ker(W
F r

−−→W )

Ws := coker(W
V s

−−→W )

W r
s = Spec k[x0, ..., xs]/(x

pr

0 , ..., x
pr

s )

colimW r
s is an infinite dimensional formal group, an an object in Ind(fGrpℓ,ℓ).

Now all that is left is to understand

EndInd(fGrpℓ,ℓ)(colimr,sW
r
s )

It ends up being

W (k){F, V }/(∼)
These are formal variables, let’s discuss the equivalence relations. We need

Cartier duality to think of these relations properly, but suffice to say (for a ∈W (k),
where σ is the Frobenius in Witt vectors):

F (a) = σ(a)F

V (σ(a)) = aV

FV = p

Theorem 15. (finite Dieudonne) There is a categorical anti-equivalence between
finite group schemes of order ph; and E-modules with W (k)-length n.

Corollary 16. (Dieudonne up to isomorphism) There is a categorical anti-equiva-
lence between pDiv of height h; and free E-modules which are free asW (k)-modules
(of rank h).
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Proof. Taking a colimit over diagrams on one side, and a limit on the other. The
freeness comes from the fact that with torsion, the length of the W (k)-module
doesn’t grow fast enough to make it into the limit. �

4.2. Dieudonne Theory II: Classification up to Isogeny. Can we under-
stand this category of modules? Well, to understand it we must make some sacri-
fices.

Definition 17. An isogeny is a map whose kernel is a finite flat group scheme.

Let EF be W (k)[ 1p ]{F}/(Fa = σ(a)F ).

Theorem 18. (Dieudonne up to isogeny) The category of p-divisible groups over
up to isogeny pDivisog has a fully faithful embedding into the category of finitely
generated EF -modules.

Theorem 19. (Dieudonne-Manin Classification Theorem)

• The category of finitely generated EF -modules is semi-simple.
• If k = k̄ the simple objects are of the form Gs,r := EF /EF (F

r − ps). This
s/r is called the slope.

Remark.

EF /EF (F
r − ps) ≃ EF ⊗E E/E(F r−s − V s)

Remark. A technical point on simple objects in the case of general k. Given a
simple module M over k̄ of slope s/r, then Aut(M) = D∗, where D is a skew field
over Qp with invariant s/r. There are different simple objects of slope s/r over k,
they are of the form H1(Gal(k̄/k), D∗), for different actions of Gal(k̄/k) on D∗.

Example 20. Let’s discuss some isocrystals of familiar p-divisible groups:

• µp∞ = Gm[p∞] is isogenous to G1/1

• Z/p∞ ≃ Qp/Zp is isogenous to G0/1

• For an ordinary elliptic curve, G0/1 ⊕G1/1.
• For a supersingular elliptic curve, G1/2

• For the Honda formal group of height h over Fp is G1/h, EF /(F
h − p),

this has basis {1, F, ..., F (h−1)} and

V F i =

{
Fh−1, i = 0;

pF i−1, 1 ≤ i ≤ h− 1

Remark. The left category EF − Modf.g. is sometimes called the category of
isocrystals.
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5. p-divisible groups over a more general base

We can get pretty far with fields.

Theorem 21. (Reynaud-Tate) (Tate’s rigidity theorem) Let R be a local DVR
with residue characteristic p, and K := Frac(R) of characteristic 0. Then, the
generic fiber functor is fully faithful.

pDiv/R → pDiv/K

G 7→ GK

This tells us that we can understand a p-divisible group over SpecR by its
generic fiber. To do p-divisible groups over more general schemes, we repeat the
original definition but make our constituent group schemes finite flat, rather than
just finite. This was implicit before, but we were working over a field so everything
was automatically flat.

Definition 22. A p-div group of height h is an inductive system (i.e., an in-
ductive limit before you take the limit) of commutative flat group schemes (locally
of finite presentation)

G1
i1−→ G2

i2−→ G3
i3−→ · · ·

over a base scheme S satisfying two properties:

(1) They must fit into an exact sequence

0→ Gn
in−→ Gn+1

pn

−→ Gn+1 → 0

(that is, the kernel of the map pn on Gn+1 is the copy of Gn sitting inside
of Gn+1).

(2) rank(G1) = ph where h is a locally constant function h : S → Z

Fact: h is invariant under base change S′ → S. So p-divisible groups are great
for deformation theory.

6. Serre-Tate Theorem

Set up. Let R be a base ring where p is nilpotent. p ∈ I ⊂ R is a nilpotent ideal.
Let AbSch/R be the category of abelian schemes over R. Let Def(R,R0) be the
category of triples (A0, G, ε) consisting of:

• A0 ∈ AbSch/R0

• G ∈ pDivR
• an isomorphism in pDiv/R0

;

ε : G×R R0
≃−→ A[p∞]

Theorem 23. Serre Tate (Katz 1.2.1 [3]): Let R and R0 be as above. Then the
functor

AbSch/R → Def(R,R0)

A 7→ (A0, A0[p
∞], ε)

is an equivalence of categories.
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In other words, we can completely understand the deformations of an abelian
scheme in terms of the deformations of its associated p divisible group.

Remark. Note that this does not depend on the choice of G0 := G ×R R0 ∈
pDiv/R0

. That is, we are not fixing a group which we are lifting. This is a more
general statement. We can take a fiber and recover the case that Betram and Alice
discuss, where G0 is fixed.
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The main theorem of Lurie’s Elliptic Cohomology II: Orientations

Bertram Arnold

Recall from the previous talk the following theorems:
(Lubin-Tate). Let k be a perfect field, Ĝ a formal group law of height n <

∞. Then there is a universal deformation ĜLT of Ĝ defined over ALT (k, Ĝ) ∼=
W (k)[[u1, . . . , un−1]].

(Morava). The formal group law ĜLT is Landweber exact, hence defines a homo-
topy commutative complex oriented ring spectrum E(k, F ).
(Goerss-Hopkins). There is a unique E∞-ring structure on E(k, F ) compatible
with the homotopy ring structure, which in addition is functorial in the pair (k, F ).

We generalize this by replacing k by a Fp-algebra R0 and allowing deformations
over (connective) E∞-rings. To do this, we need to replace formal groups by
p-divisible groups, which have a better-behaved deformation theory.

Theorem 1 (0.0.8). Let R0 be a F-finite Noetherian Fp-algebra and G0 ∈ BT p(R0)
a nonstationary 1-dimensional p-divisible group over R0. Then there is a univer-
sal deformation Gcl defined over a complete adic ring Rcl and a complex periodic
E∞-ring spectrum Run

G0
such that πoddR

un
G0

= 0, π0(R
un
G0

) ∼= Rcl
G0

and the formal

group on Rcl
G0

defined via the complex orientation is isomorphic to (Gcl)
◦.

Furthermore, both of these are functorial in (R0, G0).

Here is what the two conditions mean:
F-finite means that the Frobenius φR0 : R0 → R0, x 7→ xp is a finite algebra

map, i.e. there are elements x1, . . . , xn ∈ R0 such that {∑i xir
p
i | ri ∈ R0} = R0.

This is automatic if R0 is semiperfect, i.e. R = Rp.
Nonstationary means that the morphism SpecR0 →MBTp is unramified, i.e.

infinitesimal deformations admit at most one lift. More explicitly, for any x ∈
| SpecR0| with residue field R0

β0−→ κ(x), the base change map Der(R0, κ) =

CAlg♥/κ(x)(R0, κ(x)[ǫ]/ǫ
2)→ BT p(κ(x)[ǫ]/ǫ2)/∼= which sends β = β0 + ǫd to β∗G0
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is injective. If R0 is semiperfect, the calculation d(xp) = pβ0(x)dx = 0 shows that
the source of this map is zero, so this condition is vacuous.

Complex periodic means that the spectrum E = Ror
G0

is complex orientable and
weakly periodic, i.e. the multiplication map πn(E)⊗π0(E) π2(E)→ πn+2(E) is an
isomorphism for all n ∈ Z. In particular, π2(E) is a rank 1 projective module over
π0(E), and the even homotopy groups of E are given by its powers.

Example 2. If G0 = Ĝ[p∞] for a divisible formal group of finite height over a

perfect field, Rcl
G0

∼= ALT (k, Ĝ) and R
or
G0

∼= E(k, Ĝ).

Recall that we proved the Lubin-Tate theorem by using formal smoothness to
lift the universal first-order deformation to ALT (k, Ĝ) and then used induction
over the lengths of Artinian algebras to show that this deformation is universal
since the lifts of a map from ALT (k, Ĝ) and a deformation of Ĝ along a square-
zero extension are both torsors over the space of first-order deformations. For the
more general theorem, a deformation doesn’t necessarily have to lift over a square-
zero extension, so it’s already not clear what Rcl

G0
should be. Furthermore, it’s

in general quite hard to write down an E∞-ring explicitly in terms of generators
and relations. Instead we first define the unoriented deformation ring Run

G0
via its

corepresented functor MapCAlgad
cpl

(Run
G0
, A) = DefG0(A), using an abstract theorem

to guarantee its representability. The two conditions are needed to control the
cotangent complex of the functor DefG0(A): F -finiteness guarantees it is almost
perfect and connective, while nonstationarity means its zero-truncation vanishes,
i.e. that it is 1-connective.

Then, we build Ror
G0

by adjoining and inverting a “Bott element”, which means
that maps out of it also have an explicit description. After defining it this way,
it is not at all clear how to control maps into either of these rings, i.e. their
homotopy groups! Once existence has been established, the hard work in the proof
of Theorem 0.0.8 is in showing that πodd(R

or
G0

) = 0 and that the map Run
G0
→ Ror

G0

is an isomorphism on π0. The advantage of introducing Run
G0

is that it maps to
both R0 (classifying the trivial deformation) and Ror

G0
(classifying the fact that we

can forget the orientation), so that these statements can be checked flat-locally on
Run

G0
.

Definition 3 (0.0.11). An adic E∞-ring is an E∞-ring A equipped with an adic
topology τ on π0(A), i.e. such that there is a finitely generated ideal I ⊂ π0(A)
with {x+In} a basis of τ . Such an I is called an ideal of definition. The adic E∞-
ring (A, τ) is complete if A is I-complete for some ideal of definition I, i.e. if for

x ∈ π0(A) topologically nilpotent we have lim(· · · ·x−→ A
·x−→ A) ≃ ∗. Morphisms

of adic E∞-rings are E∞-ring morphisms which are continuous on π0, i.e. map an
ideal of definition to an ideal of definition.

There is a generalization of the notions of p-divisible and formal group to E∞-
rings which recovers the usual notions when restricted to CAlg♥. We will see the
precise definitions in Talks 7 through 9. For now, we take for granted that for
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A ∈ CAlg there is an∞-category BT p(A) which furthermore depends functorially
on A.

Definition 4 (3.1.4). Let R0 be a commutative ring, G0 ∈ BT p(R), A an adic
E∞-ring. A deformation of G0 over A consists of G ∈ BT p(A), a morphism
µ : R0 → π0(A)/I for some ideal of definition I, and an isomorphism α : µ∗G0

∼=
G|π0(A)/I , up to equivalence. Formally:

DefG0(A) := lim−→
I

BT p(A) ×BTp(π0(A)/I Map(R0, π0(A)/I) .

Note that for f : R0 → S0, there’s a canonical map Deff∗G0(A)→ DefG0(A).

Remark 5 (3.1.8). Suppose f : R0 ։ R1 with finitely generated nilpotent kernel
J and let (G, I, µ, α) ∈ DefG0(A), in particular I is an ideal of definition. Then

the preimage J ′ of µ(J)π0(A)/I is contained in
√
I, so I + J ′ is also an ideal of

definition, and (G, I + J ′, µ/J, α|π0(A)/(I+J′)) ∈ Deff∗G0(A). This construction
provides a homotopy inverse to the above map; in particular, if R0 is Noetherian,
we may replace R0 by its reduction and obtain an equivalent functor.

Theorem 6 (3.1.15). Let R0 be a F -finite Fp-algebra and G0 ∈ BT p(R0) a non-
stationary p-divisible group. Then there is a complete adic E∞-ring Run

G0
corepre-

senting DefG0(−), i.e. there is (Gun, . . . ) ∈ DefG0(R
un
G0

) such that for A complete
adic, the map MapCAlgad(Run

G0
, A)→ Def(G0) is a weak equivalence.

It is connective and Noetherian, the map ρ : Run
G0
→ R0 classifying the trivial

deformation is surjective on π0, and its kernel is an ideal of definition.

Remark 7 (3.1.16). If all these conditions are satisfied, R0 must be F -finite and
G0 nonstationary.

Example 8. If G0 ∈ BT p(Fp) is étale, the deformation functor is given by

A 7→
{
∗ if p ∈ π0(A) topologically nilpotent

∅ else

Thus Run
G0
≃ S∧(p) is the p-completed sphere.

Example 9. Cartier duality works for general E∞-rings, in particular it induces a
natural isomorphism DefG0(A) ≃ DefG∨

0
(A). In particular, since the Cartier dual

Qp/Zp of µp∞ ∈ BT p(Fp) is étale, we obtain Run
µp∞

≃ S∧(p). Contrast this with

Theorem 0.0.8’s assertion that Ror
µp∞ ≃ K∧(p).

Example 10. Let G0 ∈ BT p(R0) and G1 its image in BT p(R0[ǫ]/ǫ
2). We obtain

a commutative diagram

Run
G0

Run
G1

R0 R0[ǫ]/ǫ
2

≃

where the top horizontal map is a weak equivalence since the map between corep-
resented functors is. It follows that the right-hand vertical map is not surjective
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on π0 since it factors through R0. Of course, G1 is not nonstationary, since it is
“constant along the fibers of the projection to R0”.

Theorem 11 (6.3.1). Suppose in addition to R0 F-finite and G0 nonstationary

that G◦0 is 1-dimensional. Then Run
G0

[p−1] ∈ CAlg♥, i.e. all higher homotopy
groups are p-torsion.

We now turn our attention to Ror
G0

. To define it, we first need to define the

Quillen formal group GQ
A which is defined for any complex periodic E∞-ring A.

It induces a formal group on π0(A) which is just the formal group we get from
the complex orientation. Given any formal group G ∈ FG(R), we can define its
orientation classifier Or(G), which is initial amongst complex periodic E∞-rings

receiving a map f : R→ Or(G) together with an isomorphism f∗G ∼= GQ
A .

Construction (6.0.1). Ror
G0

is the orientation classifier of the identity component of
the universal deformation of G0. It satisfies

MapCAlgad
cpl

(Ror
G0

, A) =







fib
{G

Q
A

}
(DefG0(A)

(G,··· ) 7→G◦

−−−−−−−→ FG(A)) A complex periodic

∅ else

If G0 = G◦
0 is connected, its universal deformation Gun is formally connected, and since

formally connected p-divisible groups form a full subcategory of formal groups, the space
of maps MapCAlgad

cpl
(Ror

G0
, A) for some complex periodic A is equivalent to the set of

equivalence classes of maps f : R0 → π0(A)/I , together with an isomorphism between
the formal group f∗G0 and the image of the classical Quillen formal group on π0(A).

Formal groups over E∞-rings

Johannes Anschütz

1. Description of the talk

The aim of this talk is to present a definition of a formal group over E∞-rings,
which extends the classical definition over discrete commutative rings.

2. Conventions

Let R be a (discrete) commutative ring and let A be an adic R-algebra, i.e., A is
a complete topological R-algebra whose topology is I-adic for a finitely generated
ideal I ⊆ A. Then the formal spectrum of A is defined as the functor

Spf(A) : (R−Alg)→ (Sets), B → HomR,cts(A,B) = lim−→
n

HomR(A/I
n, B)

on the category (R − Alg) of (discrete) commutative R-algebras. In this talk all
formal schemes we consider will be of this form. Moreover, the functor A→ Spf(A)
is fully faithful. Given Spf(A) we set OSpf(A)(Spf(A)) := A.

We denote by (Sets) resp. (Ab) the categories of sets resp. of abelian groups.
We denote furthermore by S the ∞-category of spaces, i.e., Kan complexes.
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3. Formal groups over discrete commutative rings

Let k be a field.

Definition 1. A formal group over k is a functor

G : (k −Alg)→ (Ab)

whose underlying functor to sets is isomorphic to Spf(k[[t1, . . . , tn]]) for some n ≥
0. The (uniquely determined) integer n is called the dimension of G.

Remark 2. • More precisely, such a G should be called a “commutative,
smooth, connected” formal group. For simplicity we stick with “formal
group”.

• If n = 1, i.e., G ∼= Spf(k[[t]]) is one-dimensional (with zero section auto-
matically given by the locus t = 0), then (as in talk 2) the multiplication

µ : G×G ∼= Spf(k[[t1, t2]])→ G ∼= Spf(k[[t]])

is determined by the power series f(t1, t2) := µ∗(t) ∈ k[[t1, t2]], which
satisfies the relations

f(0, t) = t = f(t, 0),
f(t1, t2) = f(t2, t1),

f(t1, f(t2, t3)) = f(f(t1, t2), t3),

i.e., f is a formal group law over k (in the sense of talk 1). Conversely,
for a formal group law f(t1, t2) defining µ by µ∗(t) := f(t1, t2) enhances
the functor G := Spf(k[[t]]) to a formal group.1 Thus formal group laws
over k are equivalent to formal groups over k together with the choice of
a coordinate.2

Let R be a (discrete) commutative ring. The direct analog of a formal group
over R in the sense of Definition 1, i.e., just replacing the field k by the ring R, is
not reasonable: the requirement that as formal schemes G ∼= Spf(R[[t1, . . . , tn]]) is
too strong, because this requirement is not Zariski local on Spec(R). The following
lemma explains how this condition can be corrected.

Lemma 3. Let R be a (discrete) commutative ring and let Spf(A)→ Spec(R) be
a formal scheme over R. The following are equivalent:

(1) there exists a covering Spec(R) =
m⋃
i=1

Spec(Ri) by affine open subsets such

that for all i there is an isomorphism

Spf(A) ×Spec(R) Spec(Ri) ∼= Spf(Ri[[t1, . . . , tni ]])

for some ni ≥ 0.

1The only thing to check is that f automatically admits an inverse, i.e., there exists a power
series ι ∈ k[[t]] such that f(t, ι(t)) = t.

2And the morphisms of formal groups don’t respect the coordinate.
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(2) there exists a finite projective R-module M and an isomorphism

A ∼= ̂Sym•R(M),

where the completion is (M)-adic.

Proof. (Sketch) That (2) implies (1) is clear. Assume the converse. It suffices to
show that Spf(A)→ Spec(R) has a section

s : Spec(R)→ Spf(A)

as we then can set M := R ⊗A J where J ⊆ A is the ideal of elements a ∈ A
such that the pull back s∗(a) vanishes. The module M will be finite projective

and the canonical morphism ̂Sym•R(M) → A will be an isomorphism. It is clear
that there exists a unique section s0 : Spec(Rred) → Spf(A) over the reduction
Rred := R/Nil(R) as the sections Ri[[t1, . . . , tn]]→ Ri,red must all send ti to 0 and
thus glue to a global one. By formal smoothness of Spf(A)→ Spec(R) the section
s0 extends then to some section s : Spec(R) → Spf(A) as the pair (R,Nil(R)) is
henselian. �

Remark 4. The R-module M in Lemma 3 is not determined by Spf(A) but as
the proof shows is determined by the choice of a section s : Spec(R)→ Spf(A).

We introduce a name for formal schemes isomorphic to the one appearing in
Lemma 3.

Definition 5. Let R be a (discrete) commutative ring and let Spf(A)→ Spec(R)
be a formal scheme overR. We call Spf(A) a formal hyperplane overR if it satisfies
the conditions in Lemma 3. We denote by

Hyp(R)

the category of formal hyperplanes over R.

If A ∼= ̂Sym•R(M), then we call the function rkR(M) on Spec(R) the dimension
of Spf(A) (which might be non-constant) .

Remark 6. It is technically convenient (and equivalent) to describe formal hy-
perplanes over R via the cospectrum of a coalgebra (cf. [2, Section 1.1]). Namely,
define a coalgebra C over R to be smooth if it is isomorphic to the (topological)
R-module dual

HomR,cts( ̂Sym•R(M), R)

of the completed symmetric algebra of some finite projective R-module M .3 For
a morphism R → R′ of (discrete) commutative rings, the base change C ⊗R R

′ is
a smooth coalgebra over R′ and one can define the cospectrum

cSpec(C) : (R −Alg)→ (Sets), R′ 7→ HomR′−coalg(R
′, R′ ⊗R C)

of C. By dualizing one obtains a (covariant) equivalence

{ smooth coalgebras over R } ∼= Hyp(R), C 7→ cSpec(C).

3These coalgebras can also be described via divided power algebras, cf. [2, Definition 1.1.14.].
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A technical advantage is thatthere is no need to consider the topology of adic
R-algebras A anymore when passing to coalgebras. Moreover, smooth coalgebras
are flat over R while this need not be true for completed symmetric algebras (if R
is not noetherian).

We can now give the correct definition of a formal group over Spec(R).

Definition 7. Let R be a (discrete) commutative ring. A formal group G over
R is a functor G : (R −Alg)→ (Ab) such that the underlying functor to sets is a
formal hyperplane.

Remark 8. • Equivalently, a formal group can be defined to be an abelian
group object in the category Hyp(R) of formal hyperplanes over R.4

• If G is a formal group over R, then automatically

G ∼= Spf( ̂Sym•R(g
∨))

where g := Lie(G) is the Lie algebra of G. This follows from Remark 4
and the definition of the Lie algebra as the tangent space along the zero
section of G.

• Similarly to Remark 2 one-dimensional formal groups G over R with the
choice of an isomorphism R[[t]] ∼= OG(G) (which might not exist for a
general G) are equivalent to formal group laws over R.

4. Formal groups over E∞-rings

We want to extent Definition 7 to a definition of a formal group over an arbitrary
E∞-ring (cf. [2, Section 1.6]). For the definition of an E∞-ring we refer to talk 4.

In order to obtain this we are facing two problems:

• What should replace the category Hyp(R) of formal hyperplanes over R?
• What should replace the notion of an abelian group in an ∞-categorical
setting?

The features of E∞-rings we use are mostly formal. Most importantly, we need
that over an E∞-ring there is a well-behaved symmetric monoidal ∞-category
ModR of R-modules (aka R-module spectra) via the tensor (or smash) product
− ⊗R −. In particular, we can define an ∞-category cCAlgR of commutative5

coalgebras over R.6

We recall that an R-module (or coalgebra) M is flat if π0(M) is a flat π0(R)-
module and for all n ∈ Z the natural morphism πn(R)⊗π0(R) π0(M)→ πn(M) is
an isomorphism (cf. [3, Definition 7.2.2.10.]).

4It suffices to note that the product of two formal hyperplanes over R is a again a formal
hyperplane.

5Strictly speaking, these should be called “cocommutative”, but we stick with this lighter
terminology.

6More formally, cCAlgR := CAlg(Cop)op where C := ModR and CAlg(D) denotes the ∞-

category of commutative algebra objects in a symmetric monoidal ∞-category D.



946 Oberwolfach Report 15/2019

We want to present a good definition of a formal hyperplane over an E∞-ring
R. The most naive one would be to imitate the description of these as the formal
spectra

Spf( ̂Sym•R(M))

of completed symmetric algebras of a finite projective R-module M . However,
over a general E∞-ring R the free symmetric algebra

Sym•R(M) =
∞⊕

n=0

(M⊗Rn)hΣn

on a finite projective R-moduleM need not be flat over R because of the occurence
of group homology of the symmetric groups Σn.

The correct definition will proceed via Remark 6.

Definition 9. Let R be an E∞-ring and let C ∈ cCAlgR be a commutative
coalgebra over R. Then C is called smooth if it is flat over R and π0(C) is a
smooth coalgebra over π0(R) in the sense of Remark 6.

Remark 10. • The π0(R)-module π0(C) is naturally a coalgebra because
the functor M 7→ π0(M) commutes with the tensor product for flat R-
modules (cf. this follows from (Equation (2))).

• The flatness condition in Definition 9 ensures that if R is discrete the
categories of smooth coalgebras in the sense of Definition 9 and Remark 6
are equivalent. This will later ensure that the definition of a formal group
over an E∞-ring R recovers the classical one if R is discrete.

Flat modules over an E∞-ring R are equivalent to flat modules over its connec-
tive cover τ≥0R (cf. [3, Proposition 7.2.2.16.]). The proof relies on the spectral
sequence

(1) Epq
2 = Torπ∗(R)

p (π∗(M), π∗(N))q ⇒ π∗(M ⊗R N)

from [3, Proposition 7.2.1.19.], which computes the homotopy of a tensor product
via graded Tor-groups. If N is flat over R, then the spectral sequence (Equa-
tion (1)) degenerates and yields isomorphisms

(2) πn(M)⊗π0(R) π0(N) = Tor
π0(R)
0 (πn(M), π0(N)) ∼= πn(M ⊗R N)

for n ∈ Z.
This leads to the desired equivalence.

Proposition 11. Let R be an E∞-ring and τ≥0R its connective cover. Then the
base change functor

Mod♭τ≥0R
→ Mod♭R, M → R ⊗τ≥0R M

is an equivalence between flat R- and τ≥0R-modules with inverse functor N 7→
τ≥0N .

Proof. Cf. [3, Proposition 7.2.2.16.(3)]. �



Arbeitsgemeinschaft: Elliptic Cohomology according to Lurie 947

Thus it is reasonable to define formal hyperplanes, formal groups etc. on an
arbitrary E∞-ring R via formal hyperplanes, formal groups on its connective cover
τ≥0R.

¿From now we will concentrate on E∞-rings which are connective.

Definition 12. Let R be a connective E∞-ring and let C ∈ cCAlgsmR be a smooth
coalgebra. We define the cospectrum cSpec(C) of C to be the functor

CAlgcnR → S, R′ 7→ MapcCAlgR′
(R′, R′ ⊗R C)

from connective E∞ −R-algebras to spaces.

Remark 13. • The base change R′ ⊗R C is again a smooth coalgebra over
R′ because by flatness of C there is a canonical isomorphism π0(R

′⊗RC) ∼=
π0(R

′)⊗π0(R) π0(C) (cf. (Equation (2))).
• If R′ is discrete, then the mapping space MapcCAlgR′

(R′, R′ ⊗R C) is dis-

crete and thus, if R is discrete, the restriction of cSpec(C) to discrete rings
recovers the definition of the cospectrum from Remark 6.

• The functor C 7→ cSpec(C) from smooth coalgebras over R to the ∞-
category Fun(CAlgcnR ,S) of functors from connective R-algebras7 to spaces
is fully faithful (cf. [2, Proposition 1.5.9.]).

Thanks to remark Remark 13 we can now define a category of formal hyper-
planes.

Definition 14. Let R be a connective E∞-ring. Then we define the category
Hyp(R) of formal hyperplanes over R to be the essential image of the (fully faithul)
cospectrum functor

cCAlgsmR → Fun(CAlgcnR ,S)
from smooth coalgebras over R to S-valued functors on connective R-algebras (cf.
Definition 12).

Remark 15. • From Remark 13 we can conclude that Definition 14 agrees
(up to equivalence) with Definition 5 in the case where R is discrete.

• Let A be a flat R-algebra such that π0(A) is smooth over π0(R), i.e., A
is fiber smooth over R in the sense of [4, Section 11.2.3.] (cf. [4, Remark
11.2.3.5.]). Then for any morphism s : A → R of R-algebras the formal
completion of A along s (cf. [4, Definition 8.1.6.1.]) is a formal hyperplane
over R (cf. [2, Proposition 1.5.15.]).

• It is possible to give a definition of formal hyperplanes in terms of a formal
spectrum of a “formally smooth” adic E∞-ring (cf. [2, Section 1.4.] and
[2, Section 1.5.]). First, define an adic E∞ −R-algebra to be an E∞ −R-
algebra A together with the I-adic topology on π0(A) for some finitely
generated ideal I ⊆ π0(A).

8. If A is a connective adic E∞ − R-algebra,

7Recall that we assumed R to be connective.
8Following [2, Definition 0.0.11.] we don’t require π0(A) to be I-adically complete. However,

duals of smooth coalgebras will automatically complete.
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then its formal spectrum Spf(A) (cf. [2, Section 1.5.]) is defined to be the
functor

Spf(A) : CAlgcnR → S, B 7→ MapcontR (A,B)

on connective R-algebras. Here a morphism A → B is called continuous
if π0(A) → π0(B) is continuous (for the discrete topology on π0(B)).
For a smooth coalgebra C over R the R-linear dual C∨ := HomR(C,R)
is naturally an adic E∞ − R-algebra (cf. [2, Proposition 1.3.10.]) and the
formal spectrum Spf(C∨) of C∨ is isomorphic to the cospectrum cSpec(C)
of C (cf. [2, Proposition 1.5.8.]). Moreover, an adic E∞ − R-algebra A is
isomorphic to the dual C∨ of some smooth coalgebra C over R if and only
if there exists an isomorphism of graded π∗(R)-algebras

π∗(A) ∼=
∏

n≥0

(Symn
π0(R)(M)⊗π0(R) π∗(R))

for some finite projective π0(R)-module M (cf. [2, Proposition 1.4.11.]).
If M is finite free, i.e., π∗(A) ∼= π∗(R)[[t1, . . . , tn]] for some n ≥ 0, such
an adic E∞ − R-algebra is isomorphic as an E1 − R-algebra to the adic
E∞ −R-algebra R[[t1, . . . , tn]] (cf. [2, Proposition 1.4.5.]).9

After having defined a reasonable definition of formal hyperplanes over an E∞-
ring R we pass to the second question of how to define an abelian group object in
an ∞-categorical context.

Unfortunately, there is not a unique answer, but there are (at least) two reason-
able. For spaces the distinction would be between topological abelian groups (or
simplicial abelian groups) and (grouplike) E∞-spaces, i.e., whether commutativity
and associativity are required to hold “on the nose” or “up to coherent homotopy”.

Formal groups will be defined as abelian group objects (and not via E∞-spaces)
and thus the following definition is the one relevant to us.

Definition 16. (cf. [1, Definition 1.2.4.]) Let C be an ∞-category which admits
finite products. An abelian group object of C is a functor A : Latop → C from (the
nerve) of the category of finite, free abelian groups Lat to C which commutes with
finite products.

We denote by Ab(C) ⊆ Fun(Latop, C) the full subcategory of abelian group
objects in the ∞-category C.

Remark 17. • If C is (the nerve) of the category (Sets) of sets, then the
abelian group objects in the sense of Definition 16 are equivalent to clas-
sical abelian groups by evaluating a functor A : Latop → (Sets) on the
cogroup object Z (cf. [1, Proposition 1.2.7.]).

9The reason that one gets only an isomorphism of E1 − R-algebras is that the polynomial
algebra R[t] is a free E1 − R-algebra on one generator, but not a free E∞ − R-algebra unless R
is a Q-algebra (cf. [2, Warning 1.4.2.] and [2, Remark 1.4.3.]).
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• Similarly, topological abelian groups (or equivalently simplicial abelian
groups) are equivalent to abelian group objects in spaces. More precisely,
the ∞-category Ab(S) of abelian group objects in spaces is equivalent to

the∞-category Ab∆
op

of simplicial abelian groups (cf. [1, Example 1.2.9.]).

Using the Dold-Kan correspondece the ∞-category Ab∆
op

of simplicial
abelian groups is equivalent to the ∞-category ModcnZ of connective Z-
module spectra (cf. [1, Remark 1.2.10.]).

As a concrete example, by the Dold-Thom theorem the free simplicial abelian
group on the 2-sphere S2 has homotopy given by the reduced homology H̃∗(S2)
and is thus a K(Z, 2), i.e., equivalent to CP∞. In this case the corresponding
abelian group object in spaces is given by the functor Latop → S, Λ 7→ K(Λ∨, 2).

Finally we are able to give the definition of a formal group over an E∞-ring.

Definition 18. Let R be a connective E∞-ring. A formal group over R is a
functor

G : CAlgcnR → Modcn
Z

such that the underlying functor to spaces is a formal hyperplane in the sense of
Definition 14.

Remark 19. • If R is an arbitrary E∞-ring, then we define the∞-category
FGroup(R) of formal groups over R as the category FGroup(τ≥0R) of
formal groups10 over its connective cover τ≥0R.

• Examples (and non-examples) of formal groups will be given in talk 8.
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Examples of formal groups

Achim Krause

In this talk, we gave examples for the previously introduced notion of formal groups
over a connective E∞-ring R. These are given by functors

CAlgR → ModcnZ ,

whose underlying space-valued functor, given by the composite

CAlgR ModcnZ S
Ω∞

is a formal hyperplane, i.e. of the form MapcontCAlgR
(A,−) for an adic R-algebra A

which is dual to a smooth coalgebra. These adic algebras A are also characterized
by their homotopy: A is the dual of a smooth coalgebra if there is a finitely
generated projective π0(R)-module M and a continous isomorphism

π∗(A) ∼=
∏

n≥0

(Symn
π0(R)(M)⊗π0(R) π∗(R)).

For M free of rank k, this is precisely the statement that π∗(A) has the form
π∗(R)[[x1, . . . , xk]] with x1, . . . , xk in degree 0.

Contrary to the classical situation, where formal hyperplanes over an ordinary
ring R are, Zariski-locally, classified by their dimension, and the interesting part
of a formal group is definitely the group structure, over an E∞-ring R there are
typically many nonequivalent ways to realize the same power series algebra over
π∗(R) as homotopy groups of an adic R-algebra.

Example 1: The multiplicative formal group

In ordinary rings, the multiplicative group Gm is given by the functor of points
CAlg♥ → Ab, R 7→ (R×, ·), i.e. the functor that sends a ring to its unit group.
This is corepresented by the ring Z[t±1], and the group structure is induced by
the Hopf algebra structure ∆t = t ⊗ t. Observe that we can also write this as a
group ring Z[Z], where the Hopf algebra structure is just induced by the diagonal
Z→ Z× Z.

The formal completion of Gm, i.e. the formal multiplicative group, is given by

Ĝm(R) = fib(Gm(R)→ Gm(Rred)).

Explicitly, it is given by sending R 7→ (1 +N, ·), with N ⊆ R the nilradical of R.
This functor is corepresented by the completion Z[t±1]∧(t−1), in the sense that

MapcontCAlg♥(Z[t±1]∧(t−1), R) = 1 +N.

The adic algebra Z[t±1]∧(t−1) is of course isomorphic to Z[[u]], with u = t − 1. In

terms of this generator, we see that the Hopf algebra structure ∆t = t ⊗ t turns
into ∆u = u⊗ 1 + 1⊗ u+ u⊗ u, the usual multiplicative formal group law.
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This story carries over completely to the world of E∞-algebras, but one has to
be careful about the notion of units in a ring. For R an E∞-ring spectrum, Ω∞R
inherits a second, “multiplicative” E∞-algebra structure due to the fact that Ω∞

is lax symmetric monoidal. This E∞-space is not grouplike, since π0 of it is the
monoid π0(R) with multiplication. But we can define a grouplike sub-E∞-space
GL1(R) by passing to the full subspace on the units π0(R)

× (i.e. the union of the
corresponding connected components). GL1(R) is the space of units of R, and its
E∞-structure provides us with a lift to a connective spectrum gl1(R).

However, gl1(R) is very rarely a Z-module spectrum. We thus neeed a stricter
notion of units. To that end, we let ourselves be guided by the previously discussed
classical multiplicative group, which turned out to be corepresented by the group
ring of Z. We define

Gm(R) := MapCAlg(S[Z], R).

This functor CAlg → S actually admits a natural lift CAlg → ModcnZ , since we
can extend MapCAlg(S[Z], R) to a functor Latop → S , sending a finitely generated
free abelian group M to MapCAlg(S[M ], R).

Note that, by a chain of adjunctions,

Gm(R) = MapCAlg(S[Z], R)

≃MapE∞
(Z,Ω∞R)

≃MapE∞
(Z,GL1(R))

≃MapSp(Z, gl1(R)).

The third line of this chain of equivalences demonstrates that Gm(R) should be
thought of as some kind of “space of units of R that commute coherently with
themselves”. Also, the last line shows that in general, Gm(R) is much more mys-
terious than gl1(R), since maps out of HZ are difficult to compute.

The formal multiplicative group Ĝm(R) of a connective ring R is now defined
as the fiber, taken in connective Z-modules,

Ĝm(R) = fib(Gm(R)→ Gm(Rred)),

where Rred denotes the ordinary ring π0(R)
red, consistent with the slogan that

a connective E∞ ring R should be thought of as a fancy nil-thickening of its
underlying ordinary ring π0(R). One can verify that

Ĝm(R) = MapCAlgcont(S[Z]∧t−1, R),

where t is the generator of Z.
The homotopy groups of S[Z]∧t−1 are of the form π∗(S)[[u]], with u = t − 1, so

Ĝm is a formal hyperplane. Note however that S[Z]∧t−1 is not equivalent as an
E∞-ring to the most immediate candidate with those homotopy groups, namely
S[u]∧u (where S[u] := S[N]), see Remark 4.
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(Non-)example 2: The additive formal group

The additive group in ordinary rings is given by the functor Ga : CAlg♥ → Ab
sending a ring R to its additive group (R,+). This is corepresented by the free
ring Z[t], with group structure corepresented by the Hopf algebra structure ∆t =
t⊗ 1 + 1⊗ t. Its formal completion

Ĝa(R) := fib(Ga(R)→ Ga(R
red))

sends a ring R to the abelian group (N,+), where N is the nilradical of R. One

therefore sees that Ĝa is corepresented by the adic algebra Z[[t]], with group struc-
ture corepresented by the Hopf algebra structure given by ∆t = t⊗ 1 + 1⊗ t.

The adic algebra Z[[t]] admits a reasonable lift to S, given by S[t]∧t , where S[t]
denotes S[N]. However, it is not obvious how to put a Z-module structure on the
functor CAlg → S given by MapcontCAlg(S[t]

∧
t ,−). One could try to first tackle the

less structured problem of finding a lift of the comultiplication on Z[[t]], i.e. an
E∞ ring map S[t]∧t → S[t1, t2]

∧
(t1,t2)

which on homotopy sends t 7→ t1 + t2. The

problem one runs into is that S[t] is not free as an E∞-ring, for similar reasons as
the ones that came up during the discussion of the different notions of units for
E∞-rings in the previous section. So we cannot define a map S[t] → S[t1, t2] by
just defining it on t. And in fact, there is no map with the desired properties, as
the proof of Proposition 3 shows.

The nonexistence will follow from properties of a certain kind of power oper-
ation. Observe first that for any spectrum X , we can form the extended power
(X ⊗ X)hC2. Given an element x ∈ π0(X), we obtain a map S → X , which the
extended power construction turns into a map ShC2 → (X ⊗ X)hC2 . As ShC2 is
the suspension spectrum Σ∞+ (BC2), we have a distinguished element in π1(ShC2)
coming from the generator of π1(BC2) = Z/2.

Definition 1. For an E∞ ring R, we define an operation ηm : π0(R)→ π1(R) by
sending x : S→ R to the composite

S1 → ShC2 → (R⊗R)hC2 → R.

This has an interpretation in terms of unstable homotopy: The multiplicative
E∞ structure of Ω∞R gives us a natural homotopy

Ω∞R× Ω∞R Ω∞R

Ω∞R× Ω∞R Ω∞R.

µ

flip id

µ

Evaluated at any point x ∈ Ω∞R, this produces a loop γx at µ(x, x) ∈ Ω∞R.
Under the isomorphisms π0(Ω

∞R) ∼= π0R and π1(Ω
∞R, µ(x, x)) ∼= π1R, this

construction corresponds to ηm.

Lemma 2. The operation ηm satisfies

ηm(x + y) = ηm(x) + ηm(y) + ηxy.
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Proof. Given two elements x, y ∈ π0(R), we get a map S ⊕ S → R representing
them. We can thus form the following commutative diagram

S1 ShC2 ((S⊕ S)⊗ (S⊕ S))hC2

S1 ShC2 (R⊗R)hC2 R

id id

Now we have a splitting as follows:

((Sx⊕Sy)⊗(Sx⊕Sy))hC2 = (Sxx⊕Sxy⊕Syx⊕Syy)hC2 = (Sxx)hC2⊕(Syy)hC2⊕Sxy,
where the subscripts are just to distinguish the roles of the various summands.
The map ηm(x + y) : S1 → R can thus be written as sum of three maps

S1 → (Sxx)hC2 → R,

S1 → (Syy)hC2 → R,

S1 → Sxy → R.

The first two are, by naturality considerations, given by ηm(x) and ηm(y). The
last one is of the form c · xy, with c ∈ π1(Sxy) some fixed element, which we need
to identify with η. To do so, we observe that π1(S) = Z/2 = {0, η}, and so we
either globally have

ηm(x + y) = ηm(x) + ηm(y) + ηxy,

or

ηm(x+ y) = ηm(x) + ηm(y).

To preclude the second option, it is sufficient to find some E∞-ring R where ηm
is not linear. We turn to the sphere spectrum, and analyze for some x ∈ π0S, the
path in π1(Ω

∞S, x · x) given by the natural homotopy

Ω∞S× Ω∞S Ω∞S

Ω∞S× Ω∞S Ω∞S.

µ

flip id

µ

For positive x, we can compare this to the natural homotopy given by the symmetric-
monoidal structure on the groupoid Fin∼ of finite sets:

N(Fin∼)×N(Fin∼) N(Fin∼)

N(Fin∼)×N(Fin∼) N(Fin∼)

⊗

flip

⊗

For a finite set x, this produces the automorphism x × x→ x × x given by inter-
changing the two coordinates. As the map N(Fin∼)→ Ω∞S is on π1(N(Fin∼), y)
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= Aut(y) given by the sign homomorphism Aut(y)→ Z/2, and the flip automor-

phism of x× x has sign (−1)(|X|
2 ), we see that, for x ∈ π0(S) with x ≥ 0:

ηm(x) =

{
0 if x = 0, 1 mod 4

η if x = 2, 3 mod 4

In particular, ηm is not additive. So our previous discussion proves the lemma. �

Proposition 3. The formal additive group Ga over Z does not admit a lift along
the map S→ τ≤0S ∼= Z.

Proof. Suppose Ĝ were such a lift. Then the formal hyperplanes Ĝ and Ĝ× Ĝ are
corepresented by adic algebras A and B with π0(A) = Z[[t]], π0(B) = Z[[t1, t2]],
and higher homotopy groups given by π∗(A) = π∗(S)⊗π0(S) ⊗π0(A) and π∗(B) =

π∗(S) ⊗π0(S) ⊗π0(B). In addition, the map µ : Ĝ × Ĝ → Ĝ is corepresented by
a map A → B which, on π0, sends t 7→ t1 + t2. Since ηm is natural, we get the
following commutative diagram on π0 and π1:

π0(A) π0(B) Z[[t]] Z[[t1, t2]]

π1(A) π1(B) Z/2[[t]] Z/2[[t1, t2]]

ηm ηm ηm

t7→t1+t2

ηm

t7→t1+t2

Now let f ∈ Z/2[[t]] be characterized by ηm(t) = f(t). So the commutative diagram
expresses that ηm(t1 + t2) = f(t1 + t2). By naturality applied to the both maps

A→ B corepresenting the two projections Ĝ× Ĝ→ Ĝ, which on homotopy send
t 7→ t1 and t 7→ t2 respectively, we see that also ηm(t1) = f(t1) and ηm(t2) = f(t2).
Lemma 2 shows that

f(t1 + t2) = f(t1) + f(t2) + t1t2.

This is absurd, since the t1t2-coefficient of f(t1 + t2) − f(t1) − f(t2) is always 0
mod 2. �

Note that this proof also shows that Ĝa doesn’t even admit a lift to τ≤1S.

Remark 4. The same techniques apply to show that the adic algebra S[t±1]∧t−1
corepresenting the underlying formal hyperplane of Ĝm is not equivalent to S[[t]] =
S[t]∧t . To see this, note that any equivalence would have to send t−1 to a generator
g(t) of the ideal of definition of S[[t]], i.e. a power series of the form g(t) =
a1t + a2t

2 + . . . with a1 a unit, i.e. a1 = ±1. Now one checks that on both
sides, ηm(tk) = 0, since the elements tk come from the unstable π0Z. Using the
additivity relation from Lemma 2, one sees

ηm(t− 1) = −tη = −(t− 1)η − η in π1(S[t
±1]∧t−1).

and

ηm(−t) = −ηt2 in π1(S[[t]]).
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Naturality of ηm now implies that ηm(g(t)) = −g(t)η − η in π1(S[[t]]). However,
Lemma 2 together with ηm(t) = 0 and ηm(−t) = −ηt2 implies that ηm(g(t)) has
vanishing linear term, whereas the right hand side has a nontrivial linear term.

Example 3: The Quillen formal group

The most important example for a formal group over a ring spectrum is given
by the Quillen formal group, which is defined over any complex-orientable weakly
even-periodic ring spectrum R. This is well-known on homotopy, for R strongly
even-periodic: The cohomology R0CP∞ is then noncanonically just a power series
ring π0(R)[[t]], and the multiplication map CP∞ × CP∞ → CP∞ gives rise to a
formal group law in π0(R)[[t1, t2]]. We want to quickly outline how this actually
gives a formal group in this more highly structured sense discussed here.

Proposition 5. For R weakly even-periodic and complex-orientable, the adic R-
algebra given by the mapping spectrum RCP∞

corepresents a formal hyperplane.
This formal hyperplane admits a natural formal group structure.

Proof. RCP∞

is the R-dual of R⊗CP∞. This splits, due to complex-orientability,
into

R ⊗ CP∞ ≃
⊕

n≥0

Σ2nR,

so

RCP∞ ≃
∏

n≥0

Σ−2nR.

R being weakly 2-periodic means that π2(R)⊗π0(R) πn(R) = πn+2(R). In partic-
ular, π2(R) is an invertible projective module over π0(R), and π2n(R) is its n-th
tensor power. Also, all the Σ−2n(R) are flat over R. It follows that

π∗(R
CP∞

) ≃
∏

n≥0

Symn
π0(R)(π2(R))⊗π0(R) π∗(R),

which is exactly saying that RCP∞

corepresents a formal hyperplane.
The formal group structure comes from the fact that MapcontCAlgR

(
RCP∞

, A
)
ad-

mits extra functoriality in lattices: For a finitely generated free abelian group M ,
consider the space

MapcontCAlgR

(
RK(M∨,2), A

)
.

This defines a functor Latop → S , whose underlying object (i.e. value at M = Z)
agrees with MapcontCAlgR

(
RCP∞

, A
)
, since CP∞ = K(Z, 2) �

Remark 6. Both the nonexistence result for the additive formal group (Propo-
sition 3) as well as the nonequivalence of the formal hyperplane underlying the
multiplicative formal group and the “additive” formal hyperplane S[[t]] (Remark
4) rely crucially on the nontriviality of η ∈ π1(S). Over Z the two formal hyper-
planes agree, and the additive formal group exists. One can ask whether there are
more interesting spectra where this still happens. A convincing candidate is given
by the periodic bordism spectrum MP . Concretely, we can ask:
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(1) Does there exist a formal group over MP with underlying formal hyper-
plane MP [[t]], for which the corresponding formal group over π0(MP ) is
the additive one?

(2) Do the three formal hyperplanes considered over MP , namely the ones
corepresented by MP [t±1]∧t−1, MP [[t]], and MPCP∞

, agree?
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p-divisible groups over E∞-rings

Viktoriya Ozornova

In this talk, we discussed the basics of p-divisible groups over E∞-rings. It turns
out to be convenient to switch to the functor of points perspective, introduced in
Talk 7 on formal groups. Moreover, instead of the collection of group schemes,
which could be thought of as pn-torsion, we consider the colimit of all such. In
total, a p-divisible group over a connective E∞-ring R is defined to be a functor
G : CAlgcnR → ModcnHZ with the following properties:

• G(A) is p-nilpotent for all connective E∞-rings A, i.e., G(A)
[
1
p

]
≃ 0,

• for every finite abelian p-group M , the space-valued functor
MapModcn

HZ
(M,G(−)) is corepresentable by a finite flat R-algebra,

• multiplication by p is surjective in finite flat topology, i.e., for every x ∈
π0G(A) there is a finite flat algebra morphism A→ B so that the image of
x is divisible by p in π0G(B) and the induced map Specπ0B → Specπ0A
is a surjective map of sets.

We note that this definition is generalizing the definition of Talk 5, although
it looks different at the first glance. The individual Gn considered before cor-
respond to pn-torsion of the ‘colimit’ G, and the former can be recovered as
MapModcn

HZ
(Z/pn,G(−)). Starting from the classical definition, it is easy to see

that the first two conditions of the new definition are satisfied. The last condition
is, roughly speaking, encoding the notion of ‘p-divisibility’, and the local nature
of this condition makes it slightly more subtle.

After giving the definition and recovering the discrete examples, we discussed
two further examples. The first one is the multiplicative p-divisible group µp∞ ,
which is defined over the sphere spectrum and thus, by extension of scalars, over
any E∞-ring, and determined by the formula

A 7→ fibModcn
HZ

(Gm(A)→ Gm(A)
[
1
p

]
),

where Gm denotes the strict multiplicative group. The second example was given
by the constant p-divisible group Qp/Zp, determined by the formula

A 7→ {locally constant maps |Specπ0A| → Qp/Zp} .

http://www.math.harvard.edu/~lurie/papers/Elliptic-II.pdf
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Next, we discussed a connection between formal groups and p-divisible groups,
which is originally due to Messing in the classical case:

Theorem. Let R be a (p)-adically complete connective E∞-ring and let G be a
p-divisible group over R. Then the restriction of the functor

A 7→ fibModcn
HZ

(G(A)→ G(Ared))

to the subcategory of CAlgcnR spanned by truncated, p-nilpotent R-algebras is also
the restriction of an essentially unique formal group G◦ over R, called the identity
component of G.

It is not hard to see that the identity component of the multiplicative p-divisible
group is, as the name suggests, the multiplicative formal group. In the second
example, we observe that the identity component of Qp/Zp is trivial.

It turns out that the relationship between the p-divisible group and its identity
component is the closest under certain connectedness assumptions. One defines
a p-divisible group over a connective E∞-ring R to be connected if for the R-
algebra A corepresenting MapModcn

HZ
(Z/p,G(−)) the induced map of underlying

sets Specπ0A→ Specπ0R is a bijection. However, this first notion of connectivity
generalizing the classical one is too restrictive. The existence of a non-trivial
connected p-divisible group over R (with a further mild assumption) would already
imply that p is nilpotent in π0R, which is too limiting for our purposes. Instead,
the more flexible notion of a formally connected p-divisible group over an adic E∞-
ring R with an ideal of definition I is defined as being connected after extension
of scalars to π0R/I.

On the full subcategory (or more precisely, ∞-subcategory) of formally con-
nected p-divisible groups in the category BTp(R) of p-divisible groups the identity
component functor is fully faithful, and the formal groups in the essential image
of this subcategory are called p-divisible formal groups.

A notion of p-divisible groups being as far from connected as possible is that of
an étale p-divisible group. A p-divisible group over R is called étale if the algebras
corepresenting MapModcn

HZ
(M,G(−)) for finite abelian p-groups M are in addition

étale. It can be shown that a p-divisible group is étale if and only if its identity
component is trivial, and in particular, Qp/Zp is an example of an étale p-divisible
group.

Finally, we briefly discussed connected-étale exact sequences for p-divisible
groups. We remarked that the notion of exact sequences for p-divisible groups
is slightly subtle, cf. [2, §2.4]. In many situations, it is possible to ‘decompose’
a p-divisible group G into formally connected and étale pieces, more precisely, to
find an exact sequence

0→ G′ → G→ G′′ → 0

with G′ formally connected and G′′ étale. If such exact sequence exists, it is
necessarily unique. A special case of situations where any p-divisible group G

admits a connected-étale exact sequence is over a complete local noetherian E∞-
ring R whose residue field is of characteristic p.
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The cotangent complex

Gijs Heuts

The aim of this talk was threefold:

(1) Introduce the (algebraic) cotangent complex L
alg
A of a simplicial ring A, as

well as the topological cotangent complex LA which exists for any E∞-ring
A.

(2) Discuss some finiteness properties of LA in the case where A is an F -finite
Noetherian Fp-algebra.

(3) Introduce the notion of cotangent complex for a functor X : CAlgcn → S,
where CAlgcn is the ∞-category of connective E∞-algebras.

The general philosophy is mostly Quillen’s [3]. Here we follow Sections 17 and 25
of [1] and Section 3.3 of [2].

1. The cotangent complex

If A is a commutative ring and M an A-module, the trivial square-zero exten-
sion of A by M is the abelian group A ⊕ M equipped with the ring structure
(a,m)(a′,m′) = (aa′, am′ + a′m). There is an evident projection A ⊕M → A.
Sections of this ring homomorphism correspond precisely to derivations A → M .
Derivations out of A are corepresented by the A-module ΩA of Kähler differen-
tials. Writing CAlg♥ for the category of (ordinary) commutative rings, we find an
adjoint pair of functors

CAlg♥/A ModA,
A⊕−

where the left adjoint sends a morphism B → A of rings to the A-module A⊗BΩB.
The cotangent complex arises from deriving this construction. Write CAlg∆

for the ∞-category of simplicial commutative rings and, for a given simplicial ring
A, write Mod∆A for the ∞-category of simplicial A-modules. The construction of
trivial square-zero extensions A⊕M still makes sense in this context.

Definition 1. The space of derivations of A into M is

Der(A,M) := MapCAlg∆
/A
(A,A⊕M).

http://www.math.harvard.edu/~lurie/papers/Elliptic-I.pdf
http://www.math.harvard.edu/~lurie/papers/Elliptic-II.pdf
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We now observe the following:

(1) The functor Der(A,−) is corepresentable by an A-module L
alg
A , which we

refer to as the algebraic cotangent complex of A. This corepresentability
follows from the adjoint functor theorem; alternatively, we will describe

an explicit construction of Lalg
A shortly.

(2) For a polynomial ring P on a set of generators S, the space Der(P,M) is

easily identified with Map(S,M). Thus L
alg
P
∼= ΩP is the (discrete) free

simplicial P -module generated by S.
(3) There is an adjoint pair of functors

CAlg∆/A Mod∆A ,
A⊕−

where the left adjoint sends B → A to the simplicial A-module A⊗B L
alg
B .

Any commutative ring A admits a simplicial resolution P• → A by polyno-
mial rings. An immediate consequence of (2) and (3) above is that there is an
equivalence of simplicial A-modules

L
alg
A ≃ A⊗P• ΩP• .

Definition 2. For a morphism A → B of simplicial rings, the relative algebraic

cotangent complex L
alg
B/A is the cofiber of

B ⊗A L
alg
A → L

alg
B

in Mod∆B .

The simplicial B-module L
alg
B/A classifies A-linear derivations out of B. For

morphisms A → B → C of simplicial rings, one easily constructs the transitivity
sequence

C ⊗B L
alg
B/A → L

alg
C/A → L

alg
C/B ,

which is a cofiber sequence in Mod∆C .
There is a topological version of these constructions. Consider the ‘forgetful

functor’

CAlg∆ → CAlg : A 7→ A◦

from the ∞-category of simplicial rings to the ∞-category of E∞-rings. It assigns
to an ordinary ring the corresponding Eilenberg–MacLane spectrum and is charac-
terized by this and the fact that it preserves colimits. (The terminology ‘forgetful’
is justified by the fact that this functor is conservative; it is even monadic and
comonadic.)

Definition 3. The space of E∞-derivations of A into M is

DerE∞(A,M) := MapCAlg/A◦
(A◦, (A⊕M)◦).
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Of course the above definition makes sense more generally; one can replace A◦

by a general E∞-ring R. There is an adjunction

CAlg/R ModR,
R⊕−

which can be constructed by exploiting universal properties; the∞-category ModR
is the stabilization of CAlg/R and the trivial square-zero functor R ⊕ − plays

the role of the right adjoint Ω∞CAlg/R
. As before, the functor DerE∞(A,−) is

corepresentable by an A-module LA which we refer to as the cotangent complex of
A. There are evident analogs of observations (2) and (3) above for this construction
as well.

Remark 4. For A a simplicial ring, we will tacitly identify the equivalent ∞-

categories Mod∆A and ModcnA◦ , so that Lalg
A and LA can be considered as objects of

the same∞-category. The constructions above can be summarized by saying that
the cotangent complex LA arises from stabilization in the ∞-category CAlg/A,

whereas the algebraic cotangent complex L
alg
A arises from derived abelianization.

These are analogous, but one is not a special case of the other (unless A is a
Q-algebra).

The relation between L
alg
A and LA can be understood by studying the following

diagram:

CAlg∆/A (CAlgHZ)/A◦

Sp(CAlg∆/A) ModA◦ .

Σ∞
+ Σ∞

+

u

The vertical arrows are stabilization; in particular, the one on the right gives
Σ∞+ A

◦ = LA◦/HZ by construction. The top horizontal arrow is the forgetful
functor (−)◦ and the bottom one u is its stabilization (or ‘linearization’). The
augmentation ideal functor

CAlg∆/A → Sp: (B → A) 7→ fib(B◦ → A◦)

is part of a monadic adjunction; similarly, its linearization

ψ : Sp(CAlg∆/A)→ Sp

exhibits Sp(CAlg∆/A) as monadic over Sp for some colimit-preserving monad T on

Sp. Such a monad is necessarily of the form T (X) = A+ ⊗ X for some E1-ring
spectrum A+. Thus we may identify

Sp(CAlg∆/A) ≃ LModA+ .

Since ψ factors over u, the functor u must be given by restriction of scalars along
a map α : A◦ → A+ of E1-rings. Summarizing, we see that for a simplicial com-
mutative ring A, the cotangent complex LA◦/HZ is canonically a left A+-module.
Its usual A◦-module structure is retrieved by restriction along α.
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We aim to give an explicit formula relating L
alg
A and LA◦/HZ. To do this, note

that the assignment M 7→ A⊕M factors through a functor θ on stabilizations as
follows:

ModcnA◦
θ−→ Sp(CAlg∆/A)

Ω∞

−−→ CAlg∆/A.

The composition uθ gives the identity. It follows that θ is induced by restriction
along a morphism of E1-rings γ : A

+ → A◦ such that γα is homotopic to the
identity of A◦. Taking left adjoints in the composition of arrows above (once of
the composite, once of the two arrows individually), we conclude that

L
alg
A ≃ A◦ ⊗A+ LA◦/HZ.

Here LA◦/HZ has the left A+-module structure described in the previous paragraph

and A◦ is regarded as a right A+-module via γ.
Finally, we will need the following result of Schwede (cf. Proposition 25.3.4.2

of [1]). It is important to note that this is a description of the underlying left
A◦-module of A+, rather than of its ring structure.

Theorem 5 (Schwede). There is an equivalence of left A◦-modules

A+ ≃ A◦ ⊗S Z.

2. The cotangent complex of an F -finite ring

Fix a Noetherian Fp-algebra R that is F -finite (i.e., the Frobenius ϕR exhibits R
as a finitely generated module over its subring of pth powers). Throughout this
section we will consistently use the term R-module to mean an object of ModHR,
i.e. a module for the Eilenberg–MacLane spectrum HR. The following plays an
important role in later lectures:

Proposition 6. The absolute cotangent complex LR is an almost perfect R-
module.

Recall that an R-module M is almost perfect if for all n ≥ 0 and all filtered
diagrams {Nα}α∈I of n-truncated R-modules, the natural map

lim−→
α

Map(M,Nα)→ Map(M, lim−→
α

Nα)

is an equivalence. For Noetherian R this can be simplified as follows: M is al-
most perfect if and only if it is bounded below and each homotopy group πnM
is a finitely presented (discrete) R-module. Roughly, the proof of Proposition 6
proceeds through the following steps:

(1) The E∞-ring HZ is almost of finite presentation over the sphere spectrum
S, meaning that for every n ≥ 0 there exists a finitely presented commu-
tative S-algebra A such that HZ is a retract of the Postnikov truncation
τ≤nA. As a consequence, LHZ/S is an almost perfect HZ-module. By
the transitivity sequence, the absolute cotangent complex LR is an almost
perfect R-module if and only if the relative one LR/Z is.



962 Oberwolfach Report 15/2019

(2) It follows from Theorem 5 that R+ is an almost perfect R-module. To
prove that LR/Z is an almost perfect R-module, it therefore suffices to

prove that it is almost perfect as an R+-module. Using that γ : R+ → R◦

is a map of connective E1-rings that induces an isomorphism on π0, it is
not hard to see that any connective left R+-module M is almost perfect
if and only if R◦ ⊗R+ M is an almost perfect R◦-module. In particular,

the equivalence Lalg
R ≃ R◦⊗R+ LR◦/HZ shows that it suffices to prove that

L
alg
R is an almost perfect R-module.

(3) We write R1/p for R regarded as an R-algebra via the Frobenius ϕR. The
conditions that R be Noetherian and F -finite clearly imply that R1/p is
an almost perfect R-module. This guarantees that in fact R1/p is almost
of finite presentation over R as an E∞-algebra (cf. Corollary 5.2.2.2 of
[1]). It follows that the relative cotangent complex LR1/p/R is an almost
perfect R-module. Switching back and forth between the algebraic and
topological cotangent complex as in items (1) and (2), we conclude that

also Lalg
R1/p/R

is an almost perfect R1/p-module.

(4) The Frobenius of R induces the map ϕR in the following transitivity se-
quence:

R1/p ⊗R L
alg
R/Fp

ϕR−−→ Lalg
R1/p/Fp

→ Lalg
R1/p/R

.

Since d(xp) = 0 for any derivation d out of an Fp-algebra, the map ϕR is

canonically null. Hence Lalg
R1/p/Fp

is a direct summand of Lalg
R1/p/R

as an

R1/p-module and therefore an almost perfect R1/p-module. Regarded as

an Fp-algebra R
1/p is just R, so that Lalg

R/Fp
is an almost perfect R-module.

(5) Finally, consider the transitivity sequence

R⊗Fp L
alg
Fp
→ Lalg

R → Lalg
R/Fp

.

The algebraic cotangent complex Lalg
Fp

of Fp is quite easily seen to be ΣFp.

Hence the first term can be identified with ΣR and it follows that the
middle term Lalg

R is indeed an almost perfect R-module.

3. The cotangent complex of a functor

The definition of the cotangent complex of a ring can be globalized to give a
construction of the cotangent complex of a scheme or stack. It is a quasi-coherent
sheaf on such and reduces to the previous construction in the affine case. However,
what will be needed for future lectures is a formalism of cotangent complexes for
general functors

X : CAlgcn → S
of which we do not (yet) know that they are representable by a reasonable geo-
metric object. Recall that here CAlgcn denotes the ∞-category of connective
E∞-rings.
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Fix X as above and let
X → CAlgcn

be a left fibration classified by X . In particular, the fiber of X over A ∈ CAlgcn is
equivalent to the space X(A). A quasi-coherent sheaf F on X is a commutative
diagram

X Mod

CAlgcn

F

with the horizontal map preserving coCartesian edges. Here the right slanted arrow
is the coCartesian fibration classified by the functor A→ ModA. In particular, the
objects of Mod can be identified with pairs (A,M) of A ∈ CAlgcn andM ∈ ModA.
Informally, a quasi-coherent sheaf consists of the following:

• For every pair (A, η ∈ X(A)) an A-module Fη.
• For every morphism f : A→ B with f∗(η) = η′, an equivalence

B ⊗A Fη ≃ Fη′ .

• Homotopies expressing the coherence of these data.

Of course the last item consists of a lot of data; the definition given above is an
efficient way to package it.

Definition 7. Write
ModcnX := X ×CAlgcn Modcn

and q : ModcnX → X for projection onto the first factor.

In particular, q is a coCartesian fibration. The objects of ModcnX can be iden-
tified with triples (A, η,M) with η ∈ X(A) and M a connective A-module. The
following is the point of this section. We will explain the terminology below.

Definition 8. Consider two functors X,Y : CAlgcn → S and a natural transfor-
mation α : X → Y . Define F : ModcnX → S by

F (A, η,M) := fibη
(
X(A⊕M)→ X(A)×Y (A) Y (A⊕M)

)
.

Then α admits a cotangent complex if F is locally almost corepresentable with
respect to q.

Concretely the condition that F be locally almost corepresentable means the
following:

(a) For every A and η ∈ X(A), the functor

F (A, η,−) : q−1(A, η) ≃ModcnA → S
is almost corepresentable, meaning that there exists an A-moduleMη which
is almost connective (i.e. bounded below) and an equivalence

F (A, η,N) ≃ MapModA
(Mη, N).

natural in N .
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(b) The modulesMη are natural in η, in the sense that for a morphism f : A→
B the induced map

B ⊗A Mη →Mf∗η

is an equivalence.

Observe that if (a) and (b) are satisfied, then the modules Mη define a quasi-
coherent sheaf on X . This sheaf is denoted LX/Y and called the relative cotangent
complex of α.

Remark 9. In the special case Y = ∗ and X = Spec(R), the functor F of
Definition 8 is given by

F (A, η : R→ A,M) ≃ DerE∞(R,M).

This is a locally corepresentable functor; the quasi-coherent sheaf LX on Spec(R)
corresponds precisely to the R-module LR of previous sections.

We conclude with two useful elementary properties of the cotangent complex.

Proposition 10. A natural transformation α : X → Y admits a cotangent com-
plex if and only if for every corepresentable functor Y ′ and ϕ : Y ′ → Y , the natural
transformation Y ′ ×Y X → Y ′ admits a cotangent complex.

Proposition 11. Consider natural transformations X
f−→ Y

g−→ Z. If g and gf
admit cotangent complexes, then so does f . In this case there is a cofiber sequence

f∗LY/Z → LX/Z → LX/Y

of quasi-coherent sheaves on X.
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Formal Thickenings

Lukas Brantner

Overview. In this talk, we will discuss Lurie’s generalisation of Schlessinger’s
criterion, which specifies conditions for when a functor from connective E∞-rings
to spaces can be represented by an adic E∞-ring.

Background. Recall the following classical result in algebraic geometry (cf. [6]):

Theorem 1 (Schlessinger’s criterion, weak form). Let k be a perfect field of
characteristic p. Assume that F : {Local Artin rings with residue field k} −→ Set
is a functor satisfying the following properties:
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(1) Normalisation. The set F (k) ≃ ∗ consists of a point.
(2) Gluing. Given a pair of surjections A′ → A and A′′ → A, the natural map

F (A′ ×A A
′′)

≃−−→ F (A′)×F (A) F (A
′′) is a bijection.

(3) Formal smoothness. If A′ → A is surjective, then so is F (A′)→ F (A).
(4) Finiteness. The k-vector space F (k[ǫ]/ǫ2) is finite-dimensional.

Then F is prorepresented by W (k)[[x1, . . . , xd]], where d = dimk(F (k[ǫ]/ǫ
2)).

In Lecture 3, we have applied this criterion to the deformation functor attached
to a height n formal group law, thereby constructing Lubin-Tate space.

Formal representability. In order to later construct spectral deformation rings
for p-divisible groups (cf. [5, Theorem 6.0.3]), we shall need to generalise Sch-
lessinger’s criterion in two ways. First, we will work in the context of functors
defined on (connective) E∞-rings; second, we will allow the base to be a ring
(rather than just a perfect field). The following appears as [5, Theorem 18.2.3.2]:

Theorem 2 (Lurie). Let B be a connective E∞-ring. Suppose that

f : Spec(B) −→ Y

is a transformation of functors CAlgcn → S from connective E∞-rings to spaces
satisfying the following properties:

(1) The functor Y is nilcomplete (cf. Definition 17.3.2.1 in [5]), that is, the

canonical map Y (R)
≃−→ lim←−n

Y (τ≤nR) is an equivalence for all R ∈
CAlgcn.

(2) The functor Y is infinitesimally cohesive (cf. Definition 17.3.1.5 in [5]).
This means that whenever A ≃ B×h

DC is a (homotopy) pullback in CAlgcn

with π0(B) ։ π0(D) and π0(C) ։ π0(D) surjective, applying Y gives a
(homotopy) pullback Y (A) ≃ Y (B)×h

Y (D) Y (C).

(3) The functor Y admits a cotangent complex (cf. Definition 17.2.4.2 in [5]).
(4) The relative cotangent complex LSpec(B)/Y is almost perfect and 1-connec-

tive.
(5) The functor Y is formally complete along f (cf. Definition 18.2.1.6 in [5]).

This means that for any ordinary commutative ring R, the canonical map
lim−→I

Spec(B)(R/I) → lim−→I
Y (R/I) is an equivalence, where the colimits

range over all nilpotent ideals I ⊂ R.
Then there is a connective E∞-ring A and a π0-surjective map ρ : A → B such
that B is almost perfect as an A-module. Moreover, the kernel of π0(ρ) makes A
into a complete adic E∞-ring, and f is equivalent to Spec(B) −→ Spf(A) ≃ Y .

The key technical tool in the proof of Theorem 2 is the cotangent complex for-
malism, which was discussed in the preceding lecture. It will serve as our main tool
for constructing new E∞-rings: given an E∞-ring B and a map η : LSpec(B) →M
from its cotangent complex to another B-module M , we can form the homotopy
pullback
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Bη −−−−−−−−−→ By
ygη

B
g0−−−−−−−−→B ⊕M

.

Here gη and g0 denote the maps classified by η, 0 : LSpec(B) →M , respectively. We

say that the E∞-ringBη is a square-zero extension ofB by Σ−1M ; this terminology
is justified by [4, Proposition 7.4.1.14].

In the context of the above theorem, we can iterate this construction to canon-
ically factor the transformation f : Spec(B) → Y through an infinite chain of
morphisms

(1) Spec(B) = Spec(B0)
f0−−−−→ Spec(B1)

f1−−−−→ . . . −−−→ Y.

Indeed, assume that we have constructed the first n stages of the above dia-
gram, with LSpec(Bi)/Y being 1-connective and almost perfect for all i = 0, . . . , n.

We then define Bn+1 as the square-zero extension of Bn by Σ−1LSpec(Bn)/Y cor-
responding to the canonical map

ηn : LSpec(Bn) −→ LSpec(Bn)/Y .

In order to proceed with the recursive definition of sequence (1), and later prove
Theorem 2, we will need several basic facts.

Factorisation. Since LSpec(Bn)/Y is 1-connective, the infinitesimal cohesiveness of
Y gives rise to a homotopy pullback

Y (Bn+1) −−−−−−−−−−−→ Y (Bn)y
yY (gηn )

Y (Bn)
Y (g0)−−−−−−−−−→ Y (Bn ⊕ LSpec(Bn)/Y )

.

The images of fn ∈ Y (Bn) under Y (g0) and Y (gηn) both lie in the same path com-
ponent of Y (Bn ⊕LSpec(Bn)/Y ), and we may therefore deduce that the morphism

Spec(Bn)→ Y admits a factorisation

Spec(Bn)
fn−−−−→ Spec(Bn+1) −−−→ Y.

Vanishing of transition maps. Unravelling the definitions, we can prove that the
identity map on LSpec(Bn)/Y factors through LSpec(Bn)/Y → LSpec(Bn)/ Spec(Bn+1),

which in turn implies that the following morphism is null:

(2) f∗n(LSpec(Bn+1)/Y ) −→ LSpec(Bn)/Y .

1-Connectivity. Informally speaking, Theorem 7.4.3.12 of [4] bounds the differ-
ence between cofibre and relative cotangent complex for an arbitrary morphism
of connective E∞-rings. In our situation, this means that the following map has
2-connective cofibre:

Bn ⊗Bn+1 cofib(Bn+1 → Bn) −→ LSpec(Bn)/ Spec(Bn+1).
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By a further argument, this implies that the relative cotangent complex
LSpec(Bn+1)/Y is again 1-connective.
Almost perfectness. Since Bn+1 is a square-zero extension of Bn by the almost
perfect Bn-module LSpec(Bn)/Y , Corollary 5.2.2.5 and Proposition 2.7.3.2 in [5]
together imply that LSpec(Bn+1)/Y is an almost perfect Bn+1-module.

We can therefore proceed with our recursive definition of sequence (1) above; a
detailed treatment of this construction can be found in [5, Construction 18.2.5.5].
The E∞-ring A appearing in the conclusion of Theorem 2 above is then given by
the inverse limit

A := lim←−
n

(Bn),

and the finitely generated ideal ker(π0(A)→ π0(B)) equips A with an adic topol-
ogy. To verify that the formal spectrum Spf(A) is indeed equivalent to the functor
Y , we make use of the following detection criterion (cf. [5, Theorem 18.2.5.3]):

Theorem 3 (Lurie). Let f : X → Y be a natural transformation between func-
tors X,Y : CAlgcn → S which are both nilcomplete and infinitesimally cohesive.
Moreover, assume that LX/Y exists and vanishes, and that Y is formally complete
along f . Then f is an equivalence.

The key condition in this criterion is the vanishing of the relative cotangent
complex LX/Y , which is satisfied in the situation of interest because the transition
maps appearing in expression (2) above vanish (cf. [5, Lemma 18.2.5.6]).

The proof of Theorem 3 relies on the fact that any connective E∞-ring R can
be written as an inverse limit of its Postnikov tower

R −−−→ . . . −−−→ τ≤2R −−−→ τ≤1R −−−→ τ≤0R ,

with each stage τ≤nR being a square-zero extension of the preceding stage τ≤n−1R
(cf. Corollary 7.4.1.28 in [4]). This last observation can be traced back to the
classical work of Kriz [2], which was developed further by Basterra [1].
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The unoriented deformation ring

Allen Yuan

Let R0 be an Fp-algebra and let G0 be a p-divisible group over R0 classified

by a map SpecR0
η−→ MBT . We saw in previous lectures that one can write

down a functor DefG0(−) : CAlgadcpl → S which roughly corresponds to the formal
completion of MBT along η. The goal of this lecture is to prove the following
theorem, which says that under certain conditions, this deformation functor is
corepresented by an E∞-ring spectrum Run

G0
, known as the unoriented spectral

deformation ring:

Theorem 1 ([1], Theorem 3.1.15). Suppose that R0 is F -finite and Noether-
ian, and G0 is nonstationary. Then, the functor DefG0(−) is corepresented by
a complete adic Noetherian E∞-ring Run

G0
. Moreover, there is a canonical map

ρ : Run
G0
→ R0 which is surjective on π0 and for which the kernel on π0 is an ideal

of definition for Run
G0
.

We will review the meaning of the hypotheses and describe how they are used
in the proof in the course of the talk.

The strategy for the proof is to apply the following theorem (stated here infor-
mally) which was the main result of the previous lecture:

Theorem 2 ([2], Theorem 18.2.5.1). Let SpecR0
η−→ Y be a natural transformation

of functors CAlgcn → S. Suppose that:

(1) Y is nilcomplete, infinitesimally cohesive, and admits a cotangent complex.
(2) Y is formally complete along η.
(3) The cotangent complex LSpecR0/Y is 1-connective and almost perfect.

Then Y is corepresented by a complete connective adic E∞-ring A which is
Noetherian if R0 is.

We will apply this in the case Y = DefG0 |CAlgcn and SpecR0 → Y being the
tautological deformation. We will not discuss the first condition of the theorem
as it has to do with setting up the theory of spectral p-divisible groups, and the
second condition follows more or less by construction of the functor DefG0(−).
We therefore focus on the condition on the cotangent complex. In fact, since Y

was obtained by formally completing the classifying map SpecR0
η−→ MBT , it

suffices to show that LSpecR0/MBT
is 1-connective and almost perfect. There is a

transitivity sequence

η∗LMBT → LSpecR0 → LSpecR0/MBT
.

The conclusion will therefore follow from the following three statements:

(1) The cotangent complex LR0 is almost perfect when R0 is a Noetherian
F -finite Fp-algebra.

(2) The relative cotangent complex LSpecR0/MBT
is 1-connective when G0 is

non-stationary and LR0 is almost perfect.
(3) The R0-module η∗LMBT is almost perfect when p is nilpotent in R0.
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In the remainder of the talk, we will first make a digression on finiteness con-
ditions in E∞-rings, and then prove these three statements in order.

0.1. Finiteness conditions for E∞-algebras and modules. The finiteness
conditions of almost perfect and almost of finite presentation were already dis-
cussed more precisely in the previous two talks, but in this talk, we discuss what
they mean on a more heuristic level. The goal is to get a feeling for them and
understand why they are the appropriate replacement for the corresponding finite-
ness restrictions in the classical case. The reader is invited to consult [3, Section
7.2.4] for a more detailed discussion.

For the remainder of this subsection, let R be a connective E∞-ring, let M be
a module over R, and let R→ A be a connective R-algebra.

Then M is perfect roughly when it is built up from finitely many shifted copies
of R under extensions and retracts. The analog of this condition for algebras is
that the algebra R → A is finitely presented, meaning that it is built out of finite
colimits by free E∞-algebras over R.

These conditions are often too strong in practice. For instance, if R and M
are discrete, and M is finitely generated as a discrete R-module, then M need
not be perfect in the above sense. The problem is that one can imagine creating
a resolution of M by free R-modules; the condition that M is finitely generated
ensures that the first stage of this resolution consists of finitely many free R-
modules. However, two things could go wrong:

(1) The resolution may not terminate at a finite stage.
(2) The resolution could at some stage involve an infinite number ofR-modules.

In many of the situations in higher algebra, the first issue is not so bad; each
successive stage in the resolution involves higher and higher cells, and so if we
want to know about a particular homotopy group, only finitely many stages of the
resolution will contribute to it.

The notion of almost perfect is exactly designed so that the second issue does
not happen. Namely, a module M is almost perfect roughly if it is bounded below,
and it can be built from shifted copies of R using only a finite number of ΣiR for
each particular i.

Example 3. For instance, one can show that if M is almost perfect and · · · →
N2 → N1 → N0 is an inverse system of connective R-modules, then the natural
map

M ⊗ (lim←−Ni)→ lim←−(M ⊗Ni)

is an equivalence.

Analogously, one says the connective algebra A is almost of finite presentation
if it is built from R by attaching finitely many free E∞ R-cells in each nonnegative
dimension.

Example 4. It is easy to see from these descriptions that if R → A is almost
of finite presentation, then the cotangent complex LA/R is an almost perfect A-
module.
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This concludes the digression and we shall proceed to prove the three statements
outlined above.

0.2. LR0 is almost perfect. We have already seen this in the previous talk; we
saw that if R was a Noetherian F -finite Fp-algebra, then LSpecR is an almost
perfect R-module.

In this talk, we review the proof briefly so that we can make one additional

remark (Remark 5). For general reasons, it was enough to see that Lalg
R/Fp

was

almost perfect. We observe two things about the situation:

(1) The Frobenius ϕ : R → R1/p always induces 0 on cotangent complexes
roughly because d(fp) is divisible by p and p = 0 in R.

(2) When R is a perfect Fp-algebra in the sense that the Frobenius is an
equivalence, then ϕ also induces an equivalence on cotangent complexes.

As a result, if R is a perfect Fp-algebra, then the Frobenius map ϕ simulta-
neously induces 0 and an equivalence on cotangent complexes, so we learn that

Lalg
R/Fp

= 0. If R is not perfect, then by the transitivity sequence on the map ϕ,

the failure of this argument to go through is measured by Lalg

R1/p/R
. The condition

that R is Noetherian and F -finite implies that ϕ : R → R1/p is almost of finite

presentation, and by Example 4, this means that Lalg
R1/p/R

is almost perfect, and

so Lalg
R/Fp

remains almost perfect.

Remark 5 ([1], Remark 3.4.2). In the proof of the Theorem 1, the condition
of “Noetherian and F -finite” is used only in the above way to see that LSpecR0

is almost perfect. We have just seen that this holds when R0 is any perfect Fp

algebra. Hence, it follows that Run
G0

exists for any p-divisible group G0 over a

perfect Fp-algebra R0. For instance, one could input a ring like R0 = Fp[t
1/p∞

].

0.3. LSpecR0/MBT
is 1-connective. This relative cotangent complex arises as the

cofiber of a map η∗LMBT → LSpecR0 . The latter term is certainly connective, and
the first term is connective for general reasons that we will not discuss. Therefore,
LSpecR0/MBT

is connective, and it suffices to show that the map above is surjective
on π0.

We first explain what is happening heuristically. One has a map η : SpecR0 →
MBT and we are attempting to build the formal neighborhood of SpecR0 by
iterated infinitesimal extensions. One way for the map induced by η on differentials
to fail to be surjective is if the dual map on tangent vectors fails to be injective.
In other words, if η sends some tangent vector in SpecR0 to zero. The condition
of G0 being nonstationary is exactly saying that this does not happen.

Definition 6. A p-divisible group G0 over R0 is nonstationary if for any point
x ∈ | SpecR0| and any tangent vector at x, given by p : Specκ(x)[ǫ]/ǫ2 → SpecR0,
the restriction p∗G0 of G0 to the tangent vector is a nontrivial deformation of
(G0)x.
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The desired statement now follows from:

Claim 7. If G0 is nonstationary and π0LR0 is finitely generated (e.g., if LR0

is an almost perfect R0-module), then the natural map π0η
∗LMBT → π0LR0 is

surjective.

To see this, we would like to see that the cokernel is zero. We observe that the
cokernel is, by assumption, finitely generated, and thus, by Nakayama’s lemma,
it suffices to check surjectivity at each residue field. This is exactly dual to the
definition of G0 being nonstationary.

0.4. η∗LMBT is almost perfect. Motivated by Example 4, we might hope to
prove this by showing that MBT is almost of finite presentation. The following
example shows that this is not true:

Example 8 ([1], Warning 3.1.9). Let A = Fp[x
1/p∞

]/(x− 1). The ring A has all
pth power roots of unity, so there is a canonical map of p-divisible groups

γ :
(
Qp/Zp

)
A
→ (µp∞)A

given by sending 1/pn to x1/p
n

. This map has the feature that it is nonzero in
A/I for any finitely generated nilpotent ideal I because I cannot contain all the
pth power roots of unity, but the map is zero in Ared ≃ Fp.

The claim is that this means that the functor R 7→ BT p(R) does not commute
with filtered colimits of ordinary rings, and thus, is not almost of finite presenta-
tion. Strictly speaking, the functor BT p(−) takes values in spaces, and thus, only
sees equivalences of p-divisible groups. We therefore take G = Qp/Zp ⊕ µp∞ and

consider the transformation defined by the matrix

(
id γ
0 id

)
. It is the identity in

Ared but not in A/I for any finitely generated nilpotent ideal I.

Nevertheless, in our situation, η∗LMBT is still almost perfect by the following
proposition:

Proposition 9 ([1], Proposition 3.2.5). Let R be a connective E∞-ring, and let
G be a p-divisible group over R classified by a map η : SpecR → MBT . If p is
nilpotent in π0(R), then η

∗MBT is connective and almost perfect.

The R-module η∗LMBT has something to do with the infinitesimal automor-
phisms of G. The idea will be that when pk = 0 in R, these will be essentially
controlled by things involving the pk-torsion in G, and thus will have nice finiteness
properties.

Proof sketch. Let Aut(G) be the functor which assigns to a connective E∞-ring A
the space of pairs (u, f) where u : R→ A is a map of E∞-rings and f : GA → GA

is an automorphism of G defined over A. One can easily reduce to showing that
LAut(G)/ SpecR is 1-connective and almost perfect. In fact, one can replace Aut(G)
by the related functor Map

Z
(G,G), where the map f is no longer required to be an

automorphism, but only a natural transformation of functors valued in connective
Z-modules.
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Suppose that pk = 0 in π0(R). Consider the short exact sequence

G[pk]→ G
[pk]−−→ G

of groups. This induces a pullback square

Map
Z
(G,G) Map

Z
(G,G)

SpecR Map
Z
(G[pk],G).

[pk]

For ease of notation, let Z := Map
Z
(G,G) and Zpk := Map

Z
(G[pk],G). In fact,

Zpk can be expressed as Map
Z/pk

(G[pk],G[pk]), which depends only on finite flat

group schemes. We then have the following fact which we will not prove:

Lemma 10 ([1], Lemma 3.2.11). LZ
pk

is connective and almost perfect.

We would like to check that for any A-point of Z, the restriction LZ |A is 1-
connective and almost perfect. Without loss of generality, we may choose this
point to correspond to the 0-map GA → GA. Then, one obtains a transitivity
sequence

LZ
pk
|A → LZ |A q−→ LZ |A

where q is induced by [pk]. One can check that q is in fact the map of A-modules
given by multiplication by pk. Since pk = 0 in A, we conclude that q = 0. It
follows that we have a splitting:

LZ
pk
|A ≃ LZ |A ⊕ Σ−1LZ|A.

Because the left-hand side is connective and almost perfect by the above lemma,
we conclude that LZ |A is 1-connective and almost perfect.

�
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Orientations of formal groups

Christian Wimmer

In this talk, we discussed the theory of orientations of formal groups over E∞-
rings. This adresses the basic

Question. Let Ĝ : CAlgcnτ≥0R
→ ModcnZ be a (1-dimensional) formal group over a

complex periodic E∞-ring R. When does Ĝ admit a morphism ĜQ
R → Ĝ from the

Quillen formal group associated with R and when is it an equivalence?

In the following we will assume that all formal hyperplanes and formal groups
are one-dimensional, although many of the definitions and statements make sense
in any dimension.

We first generalize the classical concept of dualizing lines to the spectral set-
ting, which will allow us to detect equivalences. Let X : CAlg → S∗ be a
pointed formal hyperplane with coordinate ring OX and basepoint η ∈ X(τ≥0R) ≃
MapCAlgR

(OX , R) classified by η : OX → R.

Definition. Let OX(−η) ∈ ModOX be the fiber of η. The dualizing line ωX,η of
X at the point η is defined as the R-module R⊗OX O(−η).

Since the induced map π∗(η) on homotopy groups is locally of the form (after
translating by nilpotents)

(π∗R)[[t]]→ R, t 7→ 0,

the dualizing line is a locally free R-module of rank 1. The fact that this map
detects units is the main non-formal input used to show

Proposition. Let f : X → X ′ be a morphism of pointed formal hyperplanes
over an E∞-ring R. Then f is an equivalence if and only if the induced map
f∗ : ωw′,η′ → ωw,η is an equivalence of R-modules.

The dualizing line can also be described as the desuspension of the fiber of the
multiplication map in the sequence

Σ(ωw,η)→ R⊗OX R→ R.

If Ĝ is a formal group, we write ωĜ for the dualizing line of the underlying

pointed formal hyperplane Ω∞Ĝ with the basepoint η corresponding to the unit
in the group structure.

Example. Let R be a complex periodic E∞-ring. The coordinate ring of the

Quillen formal group Ĝ = ĜQ
R is given by the mapping spectrum C∗(CP∞, R) and

we have a fiber sequence

C∗red(CP
∞, R)→ C∗(CP∞, R)→ R.

From this we obtain an identification of the dualizing line ωĜ ≃ C∗red(CP
1, R) ≃

Σ−2R with the 2-fold desuspension of R.
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Definition. Let X be a pointed formal hyperplane. A preorientation is a map

e : S2 → X(τ≥0R)

of based spaces. The space of preorientations is the twofold loop space Pre(X) =
Ω2X(τ≥0R).

Given a preorientation e ∈ Pre(X), we can associate with it a Bott map

βe : ωw,η → Σ−2R.

It is constructed as the image of e under the composition

Ω2X(τ≥0R) ≃ ΩMapCAlg(R ⊗OX R,R) −→
−→ ΩMapModR

(Σωw,η, R) ≃MapModR
(ωX,η,Σ

−2R),

where the map in the middle is induced by precomposition with ΣωX,η → R⊗OXR.

Definition. A preorientation e ∈ Pre(X) is called an orientation if the Bott map
βe : ωw,η → Σ−2R is an equivalence. The space of orientations OrDat(X) ⊂
Pre(X) is the subspace given by the corresponding components.

Now let R be complex periodic and Ĝ a formal group. Then preorientations of

Ĝ classify maps from the Quillen formal group:

Proposition. There is an equivalence Pre(Ĝ) ≃ MapFG(R)(Ĝ
Q
R , Ĝ).

Under the identification ωĜQ
R
≃ Σ−2R the Bott map is given by the ‘derivative’

of the associated morphism of formal groups, so that orientations correspond to
equivalences. More precisely:

Proposition. Let R be an E∞-ring, Ĝ a formal group over R, and e ∈ Pre(Ĝ)
a preorientation. Then e is an orientation if and only if the following conditions
are satisfied:

(i) R is complex periodic.

(ii) The morphism ĜQ
R → Ĝ classified by e is an equivalence.

Let X be a pointed formal hyperplane. Then it is possible find an R-algebra
R → R′ together with a universal preorientation of the basechange XR′ of X to
R′. More precisely, we have:

Proposition. The functor CAlgR → S,R′ 7→ Pre(XR′) is corepresentable by
A = R⊗B R, where B = R⊗OX R.

To obtain a universal orientation, we need to ’invert’ the Bott map βe : ωXA,η →
Σ−2A of the tautological preorientation coming with the R-algebra A. More gen-
erally, for any map u : L → L′ between locally free A-modules of rank 1 we
can form the localization A[u−1]. As a commutative A-algebra it is characterized
by the following universal property: For every B ∈ CAlgA, the mapping space
MapCAlgA

(A[u−1], B) is contractible if B ⊗A u is an equivalence and empty oth-
erwise. Moreover, the underlying A-module can be identified with the colimit of
the sequential system

A
u−→ L′−1 ⊗A L

u−→ (L′−1)⊗2 ⊗A L
⊗2 −→ · · ·
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Corollary. The functor CAlgR → S,R′ 7→ OrDat(XR′) is corepresentable by the
localization DX = A[β−1e ].

We will also refer to DX as an orientation classifier of X . If Ĝ is a formal group,
we write DĜ for the orientation classifier of the underlying formal hyperplane

Ω∞Ĝ.
In the larger context of this Arbeitsgemeinschaft, this was used to define ori-

ented deformation rings:

Definition. Let R0 be a Noetherian F -finite Fp-algebra and G ∈ BTp(R0) a non-
stationary p-divisible group. Let G ∈ BTp(Run

G0
) be the universal deformation over

the spectral deformation ring. The oriented deformation ring of G0 is defined as

an orientation classifier Ror
G0

= DĜ of the identity component Ĝ = G◦.

At this point, it is not even clear that oriented deformation rings are non-trivial.
We conclude by stating one of the main results, which was discussed in a later talk:

Theorem. In the above situation, the following holds:

(i) The map Run
G0
→ Ror

G0
induces an isomorphism on π0 .

(ii) The homotopy groups π∗(R
or
G0

) are concentrated in even degrees.
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The eye of the storm: Lubin-Tate spectra

Charles Rezk

We describe the theorem proved by Goerss-Hopkins-Miller, which asserts the exis-
tence of an E∞-ring E called Morava E-theory. This object is associated to a pair

(κ, Ĝ0) consisting of a perfect field κ and a one-dimensional commutative formal

group Ĝ0 of finite height over κ, and is equipped with an isomorphism

α : (κ, Ĝ0)
∼−→ (π0E/In, Ĝ

Qn

E )

of formal groups, where ĜQE is the Quillen formal group (a formal group over the

E∞-ring E), we write ĜQ0

E for the induced formal group over the ordinary ring

π0E, and ĜQn

E for its base-change to the quotient by π0E by the nth Landweber
ideal. and is characterized by either of the following properties:

(1) The spectrum E is even periodic (i.e., π2E⊗π0Eπ−2E ≈ π0E and πoddE =

0), and the induced map (π0E, Ĝ
Q0

E ) → (κ, Ĝ0) exhbits the (classical)

universal deformation of the formal group (κ, Ĝ0).
(2) The spectrum E is K(n)-local, and for any complex periodic K(n)-local

E∞-ring A the evident map induces an equivalence

MapCAlg(E,A) ≈ HomFG((κ, Ĝ0), (π0A/In, Ĝ
Qn

A ).
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We describe how the existence of E and α satisfying both properties implies
that it is uniquely characterized by both properties. Then we outline how the
existence of E and α satisfying property (2) is proved, using the theory of the
universal oriented p-divisible groups. More precisely, we have

E = LK(n)R
or
G0
,

where G0 is the connected p-divisible group over κ with associated formal group

Ĝ0, and R
or is the E∞-ring which carries the universal deformation of G0.
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Lubin Tate Spectra and the Goerss Hopkins Miller Theorem

Hood Chatham

Let R0 be a perfect Fp-algebra, Ĝ0 a formal group of strict height n over R0, G0

a p-divisible group with G◦0 = Ĝ0, and E = LK(n)R
or
G0
.

Construction 1 (5.1.4). Corollary 4.4.25 gives a map π0(R
un
G0
)→ R0 with kernel

J Ĝ
n . From this we get a map of formal groups α : (R0, Ĝ0) → (π0(E)/J E

n , Ĝ
Qn

E )
as the following composite:

(R0, Ĝ0)

(
π0(R

un)/Jn,
(
Ĝ0

)
π0(Run)/J

Ĝ0
n

)

(
π0(R

or)/Jn,
(
Ĝ0

)
π0(Ror)/J

Ĝ0
n

)

(
π0(R

or)/JRor

n , ĜQn

Ror

)

(
π0(E)/J E

n , Ĝ
Qn

E

)

∼=

Our goal in this section is to prove that our oriented deformation ring is E-
theory. We want to reprove the theorem of Goerss-Hopkins-Miller:
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Theorem 2 (5.0.2). The spectrum E and the map α have the following properties:

(i) The map

(π0E, Ĝ
Q0

E ) (π0E/J E
n , Ĝ

Qn

E ) (k, Ĝ0)
α−1

exhibits (π0E, Ĝ
Q0

E ) as a universal deformation of (R0, Ĝ0). In particular,

π0(E) ∼= RLT(Ĝ0)
(ii) The ring E is K(n) local and for a K(n)-local E∞ ring A, the composition

CAlg(E,A) FG((π0E, ĜQ0

E ), (π0A, Ĝ
Q0

A ))

FG((π0E/J E
n , Ĝ

Qn

E ), (π0A/JA
n , Ĝ

Qn

A )) FG((R0, Ĝ0), (π0A/JA
n , Ĝ

Qn

A ))α∗

is an equivalence. In particular, the mapping space CAlg(E,A) is discrete.

Charles Rezk proved our E theory satisfies (ii) and showed that given the ex-
istence of E theory, either property (i) or property (ii) classifies E theory. If all
we wanted was to show that our E theory is the Goerss-Hopkins-Miller E-theory,
we could be done. Our goal for this talk is to reprove the Goerss-Hopkins-Miller
theorem, so we need to show that our E theory satisfies property (i).

We will prove the following restated version of part (i):

Theorem 3 (5.4.1). Let R0 be a perfect Fp-algebra, let Ĝ0 be a 1-d formal group
of exact height n over R0 and let E be the Lubin Tate spectrum. Then

(a) The map α induces an isomorphism R0 → π0E/J E
n .

(b) The homotopy groups of E are in even degrees.
(c) Choose a sequence of elements p = v0, . . . , vn−1 lifting vm ∈ π∗E/J E

m . Then
v0, . . . , vn−1 is a regular sequence in π∗E.

This implies (i): since α is an isomorphism, there is a map RLT → π0E corre-

sponding to the deformation (π0(E), ĜQ0

E )→ (R0, Ĝ0). Theorem 5.4.1 shows that
there is a diagram

RLT π0(E)

R0

where the maps RLT → R0 and π0(E) → R0 are complete, the kernels are gener-
ated by regular sequences of the same length, and the map RLT → π0(E) takes
the regular sequence generating the kernel of RLT → R0 to the regular sequence
generating the kernel of π0(E)→ R0. This implies that they are isomorphic, and

that (π0(E), ĜQ0

E )→ (R0, Ĝ0) is the universal deformation.
So what’s our approach? First we base change to the universal coordinatized

formal group over R0 (this is the same as trivializing the dualizing line ω
Ĝ0
).

Later, we will use faithfully flat descent to deduce our results about Ĝ0 from
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similar results on the universal coordinatized formal group over Ĝ0. Let R0 → R̃0

classify the universal coordinate on Ĝ0. If Ĝ0 has a coordinate t then R̃0
∼=

R0[b
±
0 , b1, b2, . . .] where the universal coordinate is

∑
bit

i+1. The descent coalgebra

R̃0 ⊗R0 R̃0
∼= R̃0[x

±
0 , x1, x2, . . .] looks like R̃0 ⊗MP0

MP0MP ⊗MP0
R̃0.

There is a canonical map ρ0 : L/In → R̃0 classifying our formal group law. We
show:

Proposition 4. There is a pushout square:

MP≥0 τ≥0LK(n)(MP ∧ E)

L/In R̃0
p

From this, 5.4.1 will be pretty easy. We will prove the proposition by recognizing

τ≥0LK(n)(MP ∧ E) as a “thickening” of the map ρ0 : L/In → R̃0.

Definition 5. Let S be a commutative E∞-ring, let I ⊆ π0S a finitely generated
ideal, and set S0 = π0(S)/I. Suppose given a diagram:

σ :

S T

S0 T0

f

f0

where T0 is discrete. We say that σ exhibits f as an S-thickening of f0 if:

(a) T is I-complete
(b) σ is a pushout diagram.

(c) CAlgS(T, U) ≃ CAlg♥S0
(T0, U0).

We’ll use (a) to show that T is K(n)-local, (b) to demonstrate our pushout
proposition, and (c) to produce a map τ≥0MP ∧ E → T . We need a way to know
that thickenings exist.

Theorem 6 (5.2.5 – existence of thickenings). Let S be a commutative E∞ ring,
I ⊆ π0(S) a finitely generated ideal, and S0 = π0(S)/I. Suppose

(a) S0 is a perfect S-module.
(b) S0 is an Fp-algebra and φ is flat.
(c) f : S0 → T0 is a relatively perfect map of Fp-algebras.

Then there is a diagram

S T

S0 T0

f

f0

exhibiting f as an S-thickening of f0.
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Proposition 7 (Prop 5.4.6). There exists a diagram

MP≥0 Ã

L/In R̃0

ρ

ρ0

exhibiting ρ as an MP≥0 thickening of ρ0.

Proof. We need to check the conditions of the existence theorem. (a) and (b) are
easy and Niko Naumann will prove that (c) is satisfied in his talk. �

Let A = Ã[u−1] where u is the image of u ∈ π2MP under ρ. The ring A is even
periodic. We know that π0(A) is J A

n -complete. The following proposition tells us
that A is K(n)-local:

Theorem 8 (4.5.2). Let A be a p-local complex periodic E∞-ring and n a positive
integer. Then A is K(n)-local if and only if:

(a) A is complete with respect to JA
n ⊆ π0A

(b) The (n + 1)st Landweber ideal J A
n+1 is the unit ideal. Equivalently, Ĝ0 has

height at most n.

Now we’ll show:

Theorem 9. LK(n)MP ∧ E ≃ A.

This will complete the proof of the pushout proposition which is the hard part
of proving Theorem 5.4.1. First we need maps MP → A and E → A. We have
the map MP → A by construction. Because E satisfies theorem 5.0.2(ii) already,

we know that CAlg(E,A) ≃ FG(Ĝ0, Ĝ
Qn

A ). There is a natural map Ĝ0 → ĜQn

A

coming from the fact that ĜQn

A is the universal coordinatized formal group on Ĝ0.

Proof. Let U be aK(n)-local complex period E∞ ring and U0 = π0(U)/J U
n . There

is a restriction map CAlgMP (A,U) → CAlg(E,U). We will show that this is an
isomorphism. We compare:

CAlgMP(A,U) ≃ CAlgMP≥0
(A≥0, U≥0)

≃ CAlg♥(R̃0, U0)

≃ FG
(
Ĝ0, Ĝ

Qn

U

)

CAlg(E,U) ≃ FG
(
Ĝ0, Ĝ

Qn

U

)

�
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Now we have a pushout diagram

MP≥0 Ã

L/In R̃0

p

where Ã = τ≥0LK(n)(MP ∧ E). For a complex periodic ring S, let S(m) =⊗m−1
i=0 C(vm) where vm is any lift of the Hasse invariant in π0(S)/J

S
m to π0(S).

Our pushout diagram tells us that Ã(n) ∼= R̃0[u]. Inducting downwards on m

and using the J Ã
n completeness of Ã, we deduce that (p, v1, . . . , vn−1) is a regular

sequence in π0(Ã) so it’s also a regular sequence in π0(A). Inducting back up on

m, we deduce that A(n) ≃ R̃0[u
±]. By descent we deduce that E(n) is even and

5.4.1(a). Inducting down on m and using J E
n completeness shows that E(m) is

even for each m and the vi’s are regular in π0(E) which is 5.4.1(b) and 5.4.1(c).

Spectral Witt vectors

Niko Naumann

We presented a result of Lurie’s allowing to lift certain discrete algebras to connec-
tive E∞-ring spectra and applied it to support a technical step in the computation
of the homotopy of Lubin-Tate spectra. The result is the following.

Theorem 1 (Lurie). Assume that A is a connective E∞-ring and I ⊆ π0(A) is a
finitely generated ideal such that the map

A −→ A0 := π0(A)/I

makes A0 an almost finitely presented A-module.1 Then, given any A0-algebra

A0 −→ B0

with LB/A = 0, there is a unique connective A-albegra

A −→ B

which is I-adically complete, has π0(B)/I · π0(B) ≃ B0 and is such that for every
connective I-adically complete A-algebra R, the canonical map

mapE∞−A−alg(B,R) −→ mapA0−alg(B0, π0(R)/I · π0(R))

is an equivalence. In particular, the space mapE∞−A−alg(B,R) is homotopy dis-
crete.

1This holds automatically if A is coherent.
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Proof of a main theorem

Dylan Wilson

Let k be a perfect field of characteristic p and Γ a height n formal group over k.
We have seen that Morava E-theory E(k,Γ) arises as the K(n)-localization of the
E∞-ring which carries the universal, oriented deformation of the pair (k,Γ). In this
talk we compute the homotopy groups of oriented deformation rings in general.
As a consequence, we will see that the K(n)-localization above is unnecessary.

Before stating the theorem, we recall some notation.

Notation 1. • We will denote by (R0,G0) a pair consisting of a Noetherian,
F -finite Fp-algebra R0 and a nonstationary, one-dimensional p-divisible
group G0 over R0.

• We denote by Run(G0) the unoriented deformation ring of the pair
(R0,G0), and by G the corresponding universal deformation.

• We denote by Ror(G0) the oriented deformation ring, or the orienta-
tion classifer of the connected component G◦. That is:

Ror(G0) ≃
(
Run(G0)⊗Run(G0)⊗O

G◦Run(G0) R
un(G0)

)
[β−1]

where β is the Bott element.

Theorem 2. [1, 6.0.3,6.4.6] G◦ is balanced over Ror(G0). In other words:

πoddR
or(G0) = 0

Rcl(G0) := π0R
un(G0)

≃−→ π0R
or(G0)

The talk will proceed by first explaining some general dévissage techniques
for deformation rings, using these to reduce to the case when R0 is a field, and
then proving the result in that case by combining the K(n)-local result with the
dévissage techniques. To motivate this procedure, let’s examine an example.

Example 3. Let C be the family of elliptic curves defined by

C : y2 = 4x3 + u1x
2 + 2x

over the ring W(F3)[[u1]]. Modulo 3, the 3-series is given by

[3](t) ≡ u1t3 + 2(1 + u21)t
9 + · · · mod 3

In particular, we learn that C deforms a supersingular elliptic curve

C0 := C
F3

: y2 = x3 − x,

http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
http://www.math.harvard.edu/~lurie/
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and hence that the 3-divisible group C[3∞] deforms a height 2 formal group over
F3. In fact, this is the universal such deformation. But C[3∞] is also a deformation
of a (non-connected) 3-divisible group over F3[[u1]], and it is also the universal such-
though, viewing it this way privileges the 3-adic topology on W(F3)[[u1]] instead of
the (3, u1)-adic topology. At the generic point, e.g. over F3((u1)) or its algebraic
closure, the connected component of our 3-divisible group has height one, as we
can see by looking at the 3-series above. The universal deformation of this generic

member of the family turns out to live over W(F3((u1)))[[x1]], and we get a natural
zig-zag:

W(F3)[[u1]] // W(F3((u1)))[[x1]] W(F3((u1)))oo

Rcl(G
F3[[u1]]

) // Rcl(G
F3((u1))

) Rcl(G◦
F3((u1))

)oo

The key observations are: (i) the first map is faithfully flat after localizing at 3,
(ii) the second map is faithfully flat, and (iii) the connected component of the
3-divisible group lying over the middle term is pulled back from the connected
component over the right-hand term. Thus: questions about the connected com-
ponent of the p-divisible group over the left hand term can be related to the same
questions for the deformation of a p-divisible group of smaller height.

We want to generalize the lessons we learned in the previous example. The
main technique is summarized in the following result:

Theorem 4. Let p ⊆ Rcl(G0) be a prime and m ⊆ R0 a maximal ideal. Suppose
that the residue field k(p) has characteristic p. Then we have two natural zig-zags:

Run(G0) Run(GRcl(G0)/p)
Aoo B //Run(G

k(p)
) Run(G◦

k(p)
)

Coo

Run(G0)
D //Run((G0)k(m)) Run((G0)

◦

k(m)
)

Eoo

with the following properties:

(i) A is an equivalence of E∞-rings (but not of adic E∞-rings in general.)
(ii) B is flat and becomes faithfully flat after localization at p.
(iii) D is flat and becomes faithfully flat after localization at m.
(iv) C and E are flat and the connected components of the p-divisible groups on

their targets are obtained by extension of scalars along the respective maps.

We will refer to the first of these zig-zags as the height reduction zig-zag

because it relates a given deformation ring to the deformation ring for a formal
group of smaller height (in the case that p is non-maximal). We refer to the
second zig-zag as the Lubin-Tate reduction zig-zag because it relates a general
deformation ring to the deformation ring for a formal group over an algebraically
closed field.
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Proof sketch. Claim (i) is not hard to prove from the definitions of the associated
deformation functors. The flatness claims (ii) and (iii) follow from a more general
result [1, 6.1.2] which states that, whenever R0 → R′0 has the property that
ΩR′

0/R0
vanishes, then we get an induced map Run(G0) → Run((G0)R′

0
) which is

flat. Ultimately this boils down to a general criteria for detecting flatness of a
map between p-complete, Noetherian E∞-rings in terms of the relative cotangent
complex [1, 6.1.8,3.5.5]. This, in turn, eventually reduces to the claim [1, 3.5.4]
that, if R is a Noetherian E∞-ring over a field k and LR/k = 0, then R is discrete
and regular. That claim is proved by comparison with the algebraic cotangent
complex where an explicit calculation can be made.

Finally, claim (iv) rests on an understanding of the relationship between de-
forming p-divisible groups and deforming their associated connected component
[1, 6.2.4]. The intuition is that finite étale group schemes do not deform, so a
deformation of a p-divisible group should be controlled by deforming its connected
component together with some an extension class. The extension class parameter
is ‘free’, by an explicit computation of Ext groups, so the ring governing defor-
mations of the p-divisible group is flat over the ring governing deformations of its
connected component. One should compare Example 3 to see this in action. �

With these tools in hand, we can embark on a proof of Theorem 2.
Recall that if X is a one-dimensional, pointed hyperplane over an E∞-ring R,

we say that it is balanced if the orientation classifier Or(X) has no odd homotopy
and the map R→ Or(X) is an isomorphism on π0. Here is an outline of the proof
of Theorem 2:

Step 1: Reduce to the case R0 = k is a perfect field and G0 is connected.
Step 2: In that case, show by induction on the height that, for every non-

maximal ideal p ⊆ Rcl(G0) with residue field of characteristic p, the hy-
perplane (G◦)p is balanced.

Step 3: Do the same in the case that k(p) has characteristic zero.

Proof that these steps imply the theorem. By Step 1 we are reduced to the case
when R0 = k is a perfect field and G0 is connected. We have already seen that
the completion Ror(G0)

∧
In

has even homotopy and the correct π0, where In is
the Landweber ideal. Thus, G0 is balanced if and only if the map Ror(G0) →
Ror(G0)

∧
In

is an equivalence. It suffices to check this is an equivalence after lo-

calization at each non-maximal ideal p ⊆ Rcl(G0), since the fiber of the map is
In-nilpotent and In is the maximal ideal in Rcl(G0). This, in turn, is equivalent to
showing that (G◦)p is balanced for all non-maximal primes, which is the content
of Steps 2 and 3. �

Proof of Step 1. A hyperplane is balanced if and only if it becomes balanced after
localizing at every maximal ideal, and, moreover, the property of being balanced
is stable under flat extension of scalars. So this step follows immediately from the
Lubin-Tate reduction zig-zag applied to each maximal ideal in R0. �
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Proof of Step 2. Argue by induction on n, and use the height reduction zig-zag
and the comments about balanced hyperplanes in the previous proof. �

Step 3 is more complicated, and breaks up into two further steps:

Step 3a: Every hyperplane over a discrete Q-algebra R is balanced [1, 6.4.4].

Step 3b: Run(G0)[p
−1] is discrete [1, 6.3.1].

The first of these is a pleasant exercise.

Proof of Step 3a. The question is local on R so we may assume X = Spf(R[[t]]).
(Recall that, in general, the E∞-rings of functions on formal hyperplanes can be
quite complicated, but in characteristic zero things are much nicer). Now, the
preorientation classifer can be computed in several steps:

R[[t]] R⊗R[[t]] R = R ∧ S1
+  R⊗R∧S1

+
R = R ∧ CP∞+

In general we know that R∗CP
∞ ≃ Γ{β} is a divided power algebra on the class

corresponding to [CP 1], i.e. the Bott element. In characteristic zero, this is the
same as a polynomial algebra, so we deduce that the orientation classifier has
homotopy R[β±1] as desired. �

The last step is harder.

Proof sketch for Step 3b. First, using the Lubin-Tate reduction zig-zag, one re-
duces to the case R0 = k is algebraically closed of characteristic p and G0 is
connected. Now we examine the support K of the module πkR

un(G0), where
k 6= 0. We want to show that K is contained in the locus {p = 0}. The idea is
roughly that there are two possibilities: either K only intersects {p = 0} at the ori-
gin, or K∩{p = 0} has a non-closed point x. We can rule out the latter possibility
using induction on height and the height-reducing zig-zag to relate the problem to
the Lubin-Tate ring of a formal group of smaller height over the residue field k(x).
In the former case, we now have a bizarre subscheme of Lubin-Tate space which is
preserved under the action of the Morava stabilizer group Γ = Aut(G0). Now, re-
strict attention to an irreducible component K ′ of K with generic point the prime
ideal p, and to the finite index subgroup Γ′ of Γ which fixes this component. This
subgroup now acts faithfully on GRcl(G0)/p, and still acts faithfully after inverting
p. Finally, this produces a faithful action on the Lie algebra, i.e. an injection
Γ′ → (Rcl(G0)/p)[p

−1]×. But there are no finite index abelian subgroups of the
Morava stabilizer group at heights greater than one, so we get a contradiction. �

This completes the sketch of the proof of Theorem 2.
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Spectral Elliptic Curves

Andrew Senger

The goal of this talk is to set up the spectral algebraic preliminaries for the con-
struction of elliptic cohomology. We will describe the construction of the moduli
stack of (strict) spectral elliptic curves and state the Serre-Tate theorem for spec-
tral elliptic curves.

Elliptic cohomology will be constructed as the structure sheaf on the moduli
stack of oriented spectral elliptic curves. To see that this gives the desired result,
one must show that the formal group associated to the universal elliptic curve is
balanced in the sense of Definition 6.4.1 of [2]. The Serre-Tate theorem for spectral
elliptic curves reduces this to the main result of Dylan’s talk.

1. Definitions in Spectral Algebraic Geometry

We begin with a series of definitions leading up to the definition of a spectral
Deligne-Mumford stacks. Instead of defining ∞-topoi in their full generality, we
will restrict ourselves to the case of 1-localic∞-topoi, which correspond to spectral
Deligne-Mumford 1-stacks. All of the spectral Deligne-Mumford stacks that we
will need in this talk will be spectral Deligne-Mumford 1-stacks.

Definition 1. Given a site S and an ∞-category C, we define the category of
sheaves on S with values in C to be the full subcategory ShvC(S) ⊂ Fun(Sop, C)
consisting of those functors F which satisfy the following condition: given any
cover U → X in S, the augmented cosimplicial diagram

F (X) −→ F (U)
−→
←−
−→
F (U ×X U)

−→
←−
−→
←−
−→

F (U ×X U ×X U) · · ·

produced by applying F to the augmented Čech nerve of U → X is a limit diagram
in C.
Remark 2. In the case that C is a 1-category, then the above definition recovers
the classical definition of a sheaf on a site.

We let S denote the ∞-category of spaces.

Definition 3. A 1-localic∞-topos is an∞-category of the form ShvS(S) for some
site S.

Definition 4. Given ∞-topoi X and Y, a geometric morphism

f∗ : X → Y
of ∞-topoi is a functor f∗ which admits a left adjoint f∗ that preserves finite
limits.

Definition 5. Let C denote an ∞-category with limits and let X be an ∞-topos.
Then we define ShvC(X ) to be the full subcategory of Fun(X op, C) consisting of
limit-preserving functors.

Remark 6. When X = ShvS(S) for a site S, then ShvC(X ) ∼= ShvC(S).
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Definition 7. A spectrally ringed ∞-topos is a pair X = (X ,OX) where X is an
∞-topos and OX is a sheaf of E∞-rings on X . A morphism X → Y of spectrally
ringed ∞-topoi is a geometric morphism f∗ : X → Y and a morphism of sheaves
of E∞ rings f∗OY → OX .

Definition 8. Given an E∞-ring R, we set

SpecR = (ShvS(Ret),OR)

where Ret is the étale site of R and OR is the tautological sheaf of E∞ rings on
Ret which on an étale algebra S takes value S: OR(S) = S.

Remark 9. While Ret is a priori an∞-site, the invariance of the étale site implies
that Ret

∼= (π0R)et and is in particular a 1-category.

Definition 10. Let X be an ∞-topos. Then a collection of morphisms {Ui →
X}i∈I is a covering of X if the augmented Čech nerve

· · ·
−→
←−
−→
←−
−→

∐

(i1,i2)∈I×I

Ui1 ×X Ui2

−→
←−
−→

∐

i∈I

Ui −→ X

is a colimit diagram.

Definition 11. A spectral Deligne-Mumford stack is a spectrally ringed ∞-
topos X = (X ,OX) for which there exists a covering {Ui → ⋆}i∈I for which
(X/Ui

,OX |Ui)
∼= SpecRi

1 for some Ri.
A morphism X → Y of spectral Deligne-Mumford stacks is a morphism of

spectrally ringed ∞-topoi which satisfies the following condition: for each point p
of X , the map π0OY,f(p) → π0OX,p is a local homomorphism of local rings.

Fact 1. The functor Spec : CAlg → SpDM is fully faithful.

Fact 2. The functor SpDM → Fun(CAlg,S) which takes a spectral Deligne-
Mumford stack its functor of points is fully faithful.

Definition 12. A spectral Deligne-Mumford 1-stack is a spectral DeligneMumford
stack X = (X ,OX) for which X is 1-localic. This is equivalent to asking that
X(R) = Map(SpecR,X) is equivalent to a 1-groupoid for all discrete commutative
rings R.

Definition 13. We say that a spectral Deligne-Mumford stack X is a spectral
algebraic space if X(R) is equivalent to a set for every discrete commutative ring
R.

Definition 14. Given a spectral Deligne-Mumford stack X = (X ,OX), we define
the underlying Deligne-Mumford stack of X to be X0 = (X♥, π0OX), where X♥
is the underlying topos of X .
Remark 15. In the case that X = ShvS(S) is 1-localic, X♥ = ShvSets(S).

1OX |Ui
is defined to be the composition X op

/Ui
→ X op → CAlg.
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2. Spectral Elliptic Curves

We will define spectral elliptic curves to be spectral abelian varieties of dimension
one.

Warning 16. They are not spectral genus 1 curves with a marked point: there
is no guarantee that a product structure will exist on such a curve, nor will such
a product structure be uniquely determined if it does exist.

In general, one needs to be careful: there are several notable differences between
the theory of spectral abelian varieties and the classical theory of abelian varieties.
For example, the dual spectral abelian variety A∨ doesn’t classify line bundles on
A. Moreover, spectral elliptic curves are not canonically self-dual, though oriented
spectral elliptic curves are.

In the following, let R denote an E∞ ring.

Definition 17. A variety over R is a morphism

X → SpecR

of spectral algebraic spaces which is flat and locally almost of finite presentation
such that

X0 → Specπ0R

is proper, geometrically connected and geometrically reduced. We let Var(R)
denote the ∞-category of varieties over R.

In the above definition, we say that a morphism of spectral Deligne-Mumford
stacks X → SpecR is flat (resp. locally almost of finite presentation) if and only
if for one (and hence every) étale covering

∐
i SpecSi → X , the maps R→ Si are

flat (resp. almost of finite presentation).

Definition 18. A strict abelian variety over a R is an abelian group object of
Var(R):

AVars(R) = Ab(Var(R)) = Fun×(Latop,Var(R)).

Remark 19. When R is discrete, the category of strict abelian varieties over R
is equivalent to the category of abelian schemes over SpecR. This is not a priori
obvious, since in the above definition we only require A to be an abelian algebraic
space over SpecR. However, it is a theorem due to Raynaud that every abelian
algebraic space is equivalent to an abelian scheme.

Definition 20. A strict elliptic curve over R is a strict abelian variety A over R
such that its underlying abelian scheme A0 over π0R is of relative dimension one.

We let Ells(R) denote the full subcategory of AVars(R) spanned by the strict
elliptic curves.
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3. The Moduli Stack of Spectral Elliptic Curves

Theorem 21 (Theorem 2.4.1 in [1]). The functor

Ells(−)≃ : CAlg→ S
is representable by a Deligne-Mumford 1-stack M s

ell.

This may be proved by invoking the following theorem, which proof is similar
to that of the representability theorem proved in Lukas’s talk.

Theorem 22 (Theorem 18.1.0.2 in [3]). A functor X : CAlgcn → S is repre-
sentable by a connective Deligne-Mumford 1-stack if and only if

(1) X |CAlg♥ is representable by a classical Deligne-Mumford stack.
(2) X is nilcomplete.
(3) X is infinitesimally cohesive.
(4) X admits a cotangent complex.

Since (1) is classical and may be proved, for example, by working explicitly
with Weierstrass equations for elliptic curves, to prove Theorem 21 we just need
to verify (2), (3) and (4) by studying the deformation theory of strict elliptic
curves.

In fact, the key point is to study the deformation theory of (spectral) varieties:
it is not very difficult to get to the deformation theory of strict elliptic curves (or,
more generally, strict abelian varieties) from there.

Unfortunately, it is outside the scope of this talk to get into the details of the
proof of (2), (3) and (4) for X = Var(−). Nevertheless, we will at least interpret
what they mean.

Condition (2) just comes down to the fact that a spectral Deligne-Mumford
stack (X ,OX) with OX connectie is the limit of the truncated spectral Deligne-
Mumford stacks (X , τ≤nOX). This may be checked locally, and so comes down to
the convergence of Postnikov towers for connective E∞ rings.

Condition (3) follows from the fact that varieties may be glued along closed
subvarieties: this is Theorem 16.3.0.1 and Proposition 19.4.2.1 of [3].

Condition (4) comes down to two things: the existence of cotangent complexes
for spectral Deligne-Mumford stacks, which is easy, and Grothendieck duality for
varieties, which is Chapter 6 of [3].

4. The Serre-Tate Theorem

Finally, we wish to conclude by stating the Serre-Tate theorem for strict abelian
varieties.

Let A denote a strict abelian variety. Then we define

A[pn] = fib(A
pn

−→ A).

As n varies, these fit together into a p-divisible group A[p∞].
It is a fact of the classical theory of abelian schemes that if A is of dimension

g, then A[p∞] has height 2g.
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This construction defines a natural transformation

AVarsg(R)→ BTp
2g(R).

The spectral Serre-Tate theorem then states that in the p-complete context the
deformation theory of a strict abelian variety is equivalent to that of its associated
p-divisible group.

Theorem 23 (Theorem 7.0.1 of [1]). Let R be a connective E∞ ring and let R
denote a square-zero extension of R by a p-complete connective R-module. Then
the following square is a pullback of ∞-categories:

AVarsg(R) AVarsg(R)

BTp
2g(R) BTp

2g(R).
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Applications

Jonas McCandless

1. Introduction

The goal of this talk is to explain some applications of the machinery developed
in [1] and [2]. Concretely, we will show that Snaith’s theorem on the structure of
KU is a formal consequence of classical Bott periodicity combined with the obser-
vation that the formal multiplicative group over the sphere spectrum is balanced.
Secondly, we show that the formal completion of a strict elliptic curve over a con-
nective E∞-ring is balanced. Consequently, we deduce the Goerss–Hopkins–Miller
theorem using the methods of [1, 2] bypassing complicated obstruction theoretic
arguments. We will rely heavily on the following result of [2] which we recall for
convenience.

Theorem 1 ([2, Theorem 6.4.6]). Let G0 be a non-stationary p-divisible group
of dimension 1 over an F -finite Noetherian Fp-algebra R0, and let G denote its
universal deformation. Then the identity component of G is a balanced formal
group over the spectral deformation ring of G0.

http://www.math.harvard.edu/~lurie/papers/Elliptic-I.pdf
http://www.math.harvard.edu/~lurie/papers/Elliptic-II.pdf
http://www.math.harvard.edu/~lurie/papers/SAG-rootfile.pdf
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2. Snaith’s theorem on the structure of KU

The connective complex K-theory spectrum ku admits the structure of an E∞-ring
and there exists a map of E∞-rings Σ∞+ (CP∞)→ ku. The composite map

S2 ≃ CP1 →֒ CP∞ → Ω∞Σ∞+ CP∞

determines an element β ∈ π2(Σ∞+ (CP∞)) which we refer to as the Bott element.
By inverting the Bott element we obtain a commutative square of E∞-rings

Σ∞+ (CP∞) ku

Σ∞+ (CP∞)[β−1] KU,

where KU denotes the periodic complexK-theory spectrum. We have the following
result.

Theorem 2 (Snaith, [4]). The map Σ∞+ (CP∞)[β−1] → KU is an equivalence of
E∞-rings.

The first goal of this talk will be to show that Theorem 2 is a formal consequence
of the classical Bott periodicity theorem combined with the observation that the
formal multiplicative group over the sphere spectrum is a balanced. The latter will
be a consequence of Theorem 1 above. Let us recall the definition of a balanced
formal group.

Definition 3 ([2, Definition 6.4.1]). Let R be a connective E∞-ring. Let X be a 1-
dimensional pointed formal hyperplane over R, and let OX denote the orientation
classifier of X ([2, Definition 4.3.14]). We will say that X is balanced if the
following two conditions are satisfied:

(1) The map of E∞-rings R → OX which exhibits the orientation classifier
OX of X as an E∞-algebra over R induces an isomorphism of commutative
rings π0(R)→ π0(OX).

(2) The homotopy groups of OX are concentrated in even degrees.

A 1-dimensional formal group Ĝ over R is balanced if the underlying formal hy-

perplane with basepoint given by the identity section of Ĝ is balanced.

Remark 4. Let f : R → R′ be a morphism of connective E∞-ring, and let X be
a 1-dimensional pointed formal hyperplane over R. Let X ′ be the pointed formal
hyperplane over R′ obtained from X by extension of scalars along f . It follows
that

R R′

OX OX′

f

is a pushout square of E∞-rings. An immediate consequence of this is the following
two assertions:



Arbeitsgemeinschaft: Elliptic Cohomology according to Lurie 991

(1) If f is flat and X is balanced, then X ′ is balanced.
(2) If f is faithfully flat and X ′ is balanced, then X is balanced.

In particular, if m is a maximal ideal of π0(R), then the canonical map of E∞-rings
R→ Rm is faithfully flat. It follows that X is balanced if Xm is balanced for every
maximal m of π0R, where Xm denotes the pointed formal hyperplane over the
localization Rm.

Proposition 5 ([2, Proposition 6.5.2]). The formal multiplicative group Ĝm is
balanced over the sphere spectrum.

Proof. Let p be a prime number. It suffices to show that Ĝm is balanced over the
p-local sphere S(p) by Remark 4. Since the canonical map of E∞-rings S(p) → S∧(p)

is faithfully flat, it suffices to show that Ĝm is balanced over the (p)-complete
sphere spectrum by Remark 4. Recall that the (p)-complete sphere spectrum is
equivalent to the spectral deformation ring of the p-divisible group µp∞ over Fp

by ([2, Corollary 3.1.19]). Moreover, it follows from ([2, Proposition 2.2.12]) that

the identity component of the p-divisible group µp∞ over S∧(p) is equivalent to Ĝm.

Thus, the formal multiplicative group Gm is balanced over the p-complete sphere
spectrum by virtue of Theorem 1. �

Proof of Theorem 2. It follows from the classical Bott periodicity theorem that
inverting the Bott element β gives an isomorphism of graded rings Z[β±1] →
π∗(KU). The localization Σ∞+ CP∞[β−1] is an orientation classifier of the formal

multiplicative group Ĝm over the sphere spectrum ([2, Corollary 4.3.27]). There
is an isomorphism of graded commutative rings Z[β±1] → π∗(Σ

∞
+ (CP∞)[β−1])

since Ĝ0 is balanced over the sphere spectrum by Proposition 5. Finally, there is
a commutative diagram

Z[β±1] π∗(KU)

π∗(Σ
∞
+ (CP∞)[β−1])

≃

≃

which shows the wanted. �

3. Elliptic cohomology and topological modular forms

The goal of the second part of this talk is to reprove the Goerss–Hopkins–Miller
theorem using the machinery developed in [1] and [2]. The formulation of this
result will require some preliminaries.

Remark 6. Let U denote the category whose objects are pairs (R,E), where R is
a commutative ring and E is an elliptic curve over R which is classified by an étale
morphism Spec(R)→MEll. A morphism from (R,E) to (R′, E′) in U is given by
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a pullback diagram of schemes

E E′

Spec(R) Spec(R′)

f

with the property that f induces an isomorphism E → Spec(R) ×Spec(R′) E
′ of

elliptic curves over R. The underlying étale topos of the Deligne–Mumford stack
MEll is equivalent to the category of Set-valued sheaves on the category U . We
equip the category U with the structure of a site whose coverings are given by
the étale coverings. The structure sheaf OMEll

of the moduli stack of elliptic
curves can be viewed as a sheaf of commutative rings on the category U given by
OMEll

(R,E) = R.

Remark 7. Let E be an elliptic curve over a commutative ring R classified by
an étale morphism Spec(R)→MEll. In this case we can extract a 1-dimensional

formal group Ê by formally completing E along its identity section and one can

show that the formal group Ê is Landweber exact. Consequently, there exists an
essentially unique even periodic homotopy commutative ring spectrum AE which is

characterized by R ≃ π0(AE) and Ê ≃ SpfA0
E(CP∞). Moreover, the construction

(R,E) 7→ AE determines a presheaf

Oh
MEll

: Uop → CAlg(hSp).

which is a refinement of the structure sheaf OMEll
of the moduli stack of elliptic

curves in the sense that OMEll
= π0(Oh

MEll
).

Theorem 8 (Goerss–Hopkins–Miller). There exists a functor Otop
MEll

: Uop →
CAlg such that the following diagram of ∞-categories commutes

CAlg(Sp)

Uop CAlg(hSp)

O
top
MEll

Oh
MEll

Moreover, the functor Otop
MEll

is a CAlg-valued sheaf with respect to the étale topol-
ogy on U .
Definition 9. Let TMF denote the E∞-ring of global sections of the sheaf
Otop
MEll

: Uop → CAlg concretely given by the formula

TMF ≃ lim←−
(R,E)∈U

Otop
MEll

(R,E).

The rest of this talk will be devoted to the proof of Theorem 8. We will start
by showing that every strict elliptic curve X over an E∞-ring admits a formal

completion X̂ which is a 1-dimensional formal group over R. Next, we construct
the moduli stack of oriented elliptic curves. This is a variant of the moduli stack
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of strict elliptic curves which classifies strict elliptic curves X together with an

orientation of the formal completion X̂. The structure sheaf of the moduli stack of
oriented elliptic curves determines a CAlg-valued sheaf Otop

MEll
on the category U .

We will show that the underlying presheaf of homotopy commutative ring spectra
agrees with Oh

MEll
. We will deduce this from the Serre–Tate theorem ([1, Theorem

7.0.1]) and Theorem 1 above.

Definition 10 ([2, Construction 7.1.1]). Let R be an E∞-ring and let X be a strict
elliptic curve over R which we identity with its functor of points X : CAlgcnτ≥0R

→
ModcnZ . The formal completion of X is the functor X̂ : CAlgcnτ≥0R

→ ModcnZ deter-

mined by the construction

A 7→ fib(X(A)→ X(Ared)).

Remark 11. If X is a strict elliptic curve over an E∞-ring, then the formal
completion of X is a formal group over R. See [2, Proposition 7.1.2] for a proof of
this fact.

We will need to adapt the notion of (pre)orientations to the setting of strict
elliptic curves.

Definition 12. Let X be a strict elliptic curve over an E∞-ring R.

(1) A preorientation of X is a preorientation of the formal group X̂.

(2) An orientation of X is an orientation of the formal group X̂.

Let Pre(X) = Pre(X̂) denote the space of preorientations of X.

Construction 13. Let X be a strict elliptic curve over an an E∞-ring R. The
construction X 7→ Pre(X) determines a functor Ells(R)→ S which is classified by
a left fibration of ∞-categories Ellpre(R) → Ells(R). We will refer to Ellpre(R)
as the ∞-category of preoriented elliptic curves over R. Note that an object of
Ellpre(R) can be identified with a pair (X, e), where X is a strict elliptic curve over
R and e is a preorientation of X. We let Ellor(R) denote the full subcategory of
Ellpre(R) spanned by those pairs (X, e) where e is an orientation of X. We will
refer to Ellor(R) as the ∞-category of oriented elliptic curves.

Remark 14. If R is an E∞-ring, then the functor determined by the construction
R 7→ Ellor(R)≃ is representable by a nonconnective spectral Deligne–Mumford
stack Mor

Ell. Moreover, the canonical map of nonconnective spectral Deligne–
Mumford stacksMor

Ell →Ms
Ell is affine. See [2, Proposition 7.2.10] for details.

The proof of Theorem 8 will be a consequence of the following result.

Theorem 15 ([2, Theorem 7.3.1]). Let R be a connective E∞-ring. If X is a strict
elliptic curve over R classified by an étale morphism Spec(R) → Ms

Ell, then the

formal completion X̂ of X is a balanced formal group over R.

Proof of Theorem 8 from Theorem 15. We regard the moduli stack of strict ellip-
tic curves Ms

Ell as a spectral Deligne–Mumford stack with underlying ∞-topos
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X and structure sheaf OMs
Ell
. The underlying 0-truncated spectral Deligne–

Mumford stack (τ≤0X , π0(OMs
Ell
)) is equivalent to the classical moduli stack of

elliptic curves MEll. It follows that the category U is equivalent to the full sub-
category of X spanned by the affine objects by virtue of ([3, Corollary 1.4.7.3]).
Let φ :Mor

Ell →Ms
Ell denote the canonical map of nonconnective spectral Deligne–

Mumford stacks. The pushforward φ∗OMor
Ell

is a sheaf of E∞-rings on X , which
defines a functor Otop

MEll
: Uop → CAlg which is a sheaf for the étale topology on

U since φ is affine. We will show that the underlying presheaf of homotopy com-
mutative ring spectra coincides with the presheaf described in Remark 7. Let
U be an object of U given by a commutative ring R = OMEll

(U) together with
an elliptic curve X over R classified by an étale morphism f : Spec(R) → MEll.
Set R′ = OMs

Ell
(U) and note that R′ is a connective E∞-ring with π0(R

′) ≃ R
equipped with an étale map f ′ : Spec(R′)→Ms

Ell classifying a lift of X to a strict
elliptic curve X′ over R′. In other words, the elliptic curve X is obtained by exten-
sion of scalars of X′ along the canonical map R′ → τ≤0R

′ ≃ R. Set A = Otop
MEll

(U)

and note that A is an orientation classifier of X̂′. It follows from [Proposition

4.3.23] that A is complex periodic and its Quillen formal group ĜQA is equivalent
to the formal completion of X′A. Consequently, the classical Quillen formal group

ĜQ0

A is obtained from the formal completion X̂ of X be extending scalars along the
composite R ≃ π0(R

′) → π0(A) where the map π0(R
′) → π0(A) is induced by

the E∞-R′-algebra structure of A. We will complete the proof by showing that
π0(R

′) → π0(A) is an isomorphism and that the homotopy groups of A are con-
centrated in even degrees. This follows readily by Definition 3 since Theorem 15

ensures that X̂′ is balanced. �

The remainder of this talk will be devoted to proving Theorem 15 which will
be an immediate consequence of the following result.

Proposition 16 ([2, Proposition 7.4.2]). Let R be a connective E∞-ring and let X
be a strict elliptic curve over R classified by an étale morphism Spec(R)→Ms

Ell.
Let m be any maximal ideal of R. Then:

(1) The residue field κ = π0(R)/m is finite.

(2) Let R̂ denote the completion of R with respect to the maximal ideal m and
let p be the characteristic of the residue field κ. Then the p-divisible group
X[p∞]R̂ is a universal deformation of X[p∞]κ.

Proof. We first prove (1). The spectral Deligne–Mumford stack Ms
Ell is locally

almost of finite presentation over the sphere spectrum by virtue of ([1, Theorem
2.4.1]). It follows that the residue field κ is finite since the quotient π0(R)/m is a

field which is a finitely generated Z-algebra. We now prove (2). The completion R̂
of R with respect to the maximal ideal m is a complete local Noetherian E∞-ring
with residue field κ, so the deformation X[p∞]R̂ of G0 is classified by a map of

connective E∞-rings f : Run
G0
→ R̂ which is the identity on residue fields. We wish

to show that f is an equivalence. It suffices to show that for every complete local
Noetherian E∞-ring A equipped with a map ρ : A → κ which exhibits κ as the
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residue field of A, composition with f induces an equivalence

MapCAlg/κ
(R̂, A)→ MapCAlg/κ

(Run
G0
, A).

Using that A is a complete local Noetherian E∞-ring we may assume that A is
truncated and that π0(A) is Artinian. Hence, there exists a finite sequence of maps

A = Am → Am−1 → · · · → A0 = κ

such that Ai+1 → Ai exhibits Ai+1 as a square-zero extension of Ai by an almost
perfect Ai-module for every i. Consequently, we have reduced to showing the
following claim:

(∗) Let A be as above and suppose that Ã is a square-zero extension of A by
a connective A-module which is almost perfect over A, then the following
diagram is a pullback:

MapCAlg/κ
(R̂, Ã) MapCAlg/κ

(Run
G0
, Ã)

MapCAlg/κ
(R̂, A) MapCAlg/κ

(Run
G0
, A)

Let ρ̃ denote the composite Ã→ A
ρ−→ κ. Combining [2, Theorem 3.0.11] and the

universal property of completions, it suffices to show that the following commuta-
tive diagram

MapCAlg/κ
(R, Ã) DefG0(Ã, ρ̃)

MapCAlg/κ
(R,A) DefG0(A, ρ)

is a pullback. The map MapCAlg/κ(R, Ã) → DefG0(Ã, ρ̃) is equivalent to the
following composite

MapCAlg/κ
(R, Ã) −→ Ells(Ã)×Ells(κ) {Xκ} −→ DefG0(Ã, ρ̃),

where the first map is given by sending α : R → Ã to the strict elliptic curve XÃ
obtained from X by extension of scalars along α. The second map is given by
sending a strict elliptic curve X to the p-divisible group X[p∞]. Consequently, we
can identity the diagram above with the outer square in the following commutative
diagram

MapCAlg/κ
(R, Ã) Ells(Ã)×Ells(κ) {Xκ} DefG0(Ã, ρ̃)

MapCAlg/κ
(R,A) Ells(A)×Ells(κ) {Xκ} DefG0(A, ρ)

where the horizontal composites are given as described above. The left square
in this diagram is a pullback since the strict elliptic curve X over R is classified
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by an étale morphism Spec(R) → Ms
Ell. The right square is a pullback by the

Serre–Tate theorem ([1, Theorem 7.0.1]). This ends the proof. �

Proof of Proposition 15. Let X be a strict elliptic curve over R classified by en
étale morphism f : Spec(R) → Ms

Ell. By Remark 4 it suffices to show that the

formal group X̂m is balanced over the localization Rm for every maximal ideal m

of π0(R). Let p be the characteristic of the residue field κ = π0(R)/m and let R̂
denote the completion of R with respect to the maximal ideal m as in Proposition

16 above. Since R̂ is faithfully flat over Rm it suffices to show that X̂R̂ is balanced

over R̂ by Remark 4. We can identify X̂R̂ with the identity component of the p-

divisible group X[p∞]R̂ by ([2, Proposition 7.4.1]) since R̂ is (p)-complete. Finally,
since X[p∞]R̂ is a universal deformation of X[p∞]κ by Proposition 16 we conclude
the wanted by virtue of Theorem 1. �
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