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24 March – 30 March 2019

Abstract. The workshop Representations of Finite Groups was organised
by Joseph Chuang (London), Meinolf Geck (Stuttgart), Radha Kessar (Lon-
don) and Gabriel Navarro (Valencia). It covered a wide variety of aspects
of representation theory of finite groups and its relations to other areas of
mathematics.

Mathematics Subject Classification (2010): 20CXX.

Introduction by the Organizers

The workshop Representations of Finite Groups was organised by Joseph Chuang
(London), Meinolf Geck (Stuttgart), Radha Kessar (London) and Gabriel Navarro
(Valencia). It covered a wide variety of aspects of representation theory of finite
groups and its relations to other areas of mathematics, including Lie theory, ho-
motopy theory, homological algebra, number theory and combinatorics. It was
attended by 54 participants with broad geographical representation.

In fifteen lectures of 50 minutes each and twelve shorter contributions of 30 min-
utes each, speakers presented recent progress in the representation theory of finite
groups and proposed new research directions. Plenty of time was available outside
of the lectures for informal discussion between participants, either on continuing
research cooperation or on new projects.

To give one example of a successful outcome of informal discussion, Geck solved
a long-standing conjecture about the divisibility of degrees of Glauberman corre-
spondents, using some recent results on Green functions (https://arxiv.org/pdf/
1904.04586.pdf).
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One of the major themes of the talks was progress on the remarkable local-
global conjectures which drive the subject. Malle started the workshop with two
generalisations of Brauer’s height zero conjectures, one involving nonabelian defect
groups and the other a pair of prime numbers. Spath explained new methods for
the Alperin-McKay conjecture that lead to some verifications for special linear
groups in non-defining characteristic. Three talks concerned refinements of the
character counting conjectures involving Galois automorphisms: Turull on the
computation of local invariants, Boltje on a reformulation in terms of matrix rings
over the p-adic numbers and Schaeffer Fry on recent progress for groups of Lie
Type. Sambale discussed to what extent versions of the counting conjectures
can be formulated and proven for blocks of finite groups with respect to a set
of primes. Semeraro spoke on the interpretation of the local-global conjectures
for fusion systems. Finally, in a talk that closed the week, Hiss gave a detailed
account of the Alperin weight conjecture in a particular example, providing a
fitting reminder of the enduring mystery of the counting conjectures in modular
representation theory.

Donovan’s conjecture, and the exploration of properties of blocks of finite groups
that distinguish them from finite dimensional algebras in general, was another
focus of the week. Eaton surveyed recent progress on the conjecture, notably
for the prime 2, and the related classification of Morita equivalence classes of
blocks with a fixed defect group. An important ingredient in these results is
the consideration of Picard groups of blocks; in their talks Livesey discussed the
relevant Clifford theory while Eisele explained that even in a more general setting
Picard groups are affine algebraic groups. Linckelmann spoke on another, possibly
related, way that Lie theory enters the picture, giving a broad survey on what
is known about the Lie algebra structure of the first Hochschild cohomology of a
block.

Such investigations of the structure of blocks often rely on knowledge of special
modules. Grodal presented a homotopy theory approach to endotrivial modules
that allows classification and explicit calculation. Lassueur spoke on a variety of
results on the lifting of endopermutation modules.

Several interesting new results were presented on the representation theory of
symmetric groups. Bessendrodt described progress on the Kronecker problem
and Saxl’s Conjecture through 2-modular representations and spin characters.
Giannelli spoke on certain monomial characters of symmetric groups, inspired
by McKay’s conjecture and by work of Navarro on p-solvable groups. Morotti
spoke on the completion of the classification of representations of symmetric and
alternating groups restricting to irreducible representations of subgroups. Fayers
demonstrated a combinatorial formula a la Richards for defect 2 blocks of spin
representations.

Lacabanne explored categorification in the the classification of unipotent char-
acters of finite groups of Lie type. Taylor surveyed Geck’s unitriangularity con-
jecture for decomposition matrices of such groups, including the announcement of
a proof in almost all cases. Tiep presented new bounds on character degrees and
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character ratios of finite groups of Lie type - potential applications range from
covering number problems to mixing times for random walks on groups. Turning
to algebraic groups, Williamson presented a character formula for simple modules
of reductive groups in terms of periodic polynomials, building on work on tilting
modules presented at the previous workshop in 2015.

Several other interesting topics were covered. Margolis reported on the resolu-
tion of some open problems on units in group rings related to the Isomorphism
Problem and the Zassenhaus Conjectures. Tong-Viet presented his recent results
on the role of reality in character theory, in particular some interesting classifica-
tion free proofs of theorems which were previously proved using the classification
of finite simple groups. Symonds gave a proof of Carlson’s coclass conjecture
for finite p-groups (for all primes p). Benson reported on the study of invariants
attached to the complexified representation ring of a finite group, viewed as a com-
mutative Banach ∗-algebra (related to his talk in the mini workshop ID 1910c).
Bouc gave a survey of the ambitious project, joint with Thevenaz, of developing a
representation theory of sets.

Acknowledgement: The MFO and the workshop organizers would like to thank the
National Science Foundation for supporting the participation of junior researchers
in the workshop by the grant DMS-1641185, “US Junior Oberwolfach Fellows”.
Moreover, the MFO and the workshop organizers would like to thank the Simons
Foundation for supporting Jon Carlson in the “Simons Visiting Professors” pro-
gram at the MFO.
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Abstracts

Completing the representation ring of a finite dimensional Hopf
algebra, II

David Benson

This talk was given both at the mini workshop ID 1910c “Cohomology of Hopf
Algebras and Tensor Categories” and at this workshop three weeks later. It breaks
down naturally into two parts, so I have decided to report on the first part there
and the second here.

In this writeup, I shall only discuss representation rings of finite groups, but
there is an abstract definition of representation ring given by five axioms, described
in the first part of the talk, and what is described here really only depends on
those axioms. In the first part, we defined an invariant γX(M) of kG-modules,
and investigated its properties. This invariant is introduced again below, but in
terms of spectral radius in a certain Banach ∗-algebra obtained by taking a suitable
quotient of the completion of the representation ring.

Let G be a finite group and k a field of characteristic p. We only consider
finitely generated kG-modules in this talk. The representation ring a(G) has
generators [M ] with M a kG-module, and relations [M ] + [N ] = [M ⊕ N ] and
[M ][N ] = [M ⊗k N ]. Additively, it is the free abelian group on the isomorphism
classes [Mi] of indecomposable kG-modules Mi, with i in a suitable indexing set
I. This ring encodes information about summands of tensor products. There is
an involution on I, i 7→ i∗, given by duality: Mi∗ =M∗

i .
We write aC(G) for the complexified representation ring aC(G) = C ⊗Z a(G).

We put a norm on aC(G) as follows.
∥∥∥∥∥
∑

i∈I

ai[Mi]

∥∥∥∥∥ =
∑

i∈I

|ai| dim(Mi).

We write â(G) for the completion of aC(G) with respect to this norm. This is a
commutative Banach ∗-algebra, where the star operation is defined as follows. If
x =

∑
i ai[Mi] then x

∗ =
∑

i āi[M
∗
i ].

A representation ideal X of a(G) is a proper subset of the indecomposable
modules (or rather, of the indexing set I) such that if we tensor a module in X

with any module, all the summands of the answer are in X. Representation ideals
are automatically closed under the star operation, so the closure of the span of the
[Mi] with i ∈ X forms a Banach ∗-ideal in â(G). We may form the quotient with
respect to this, and obtain a new Banach ∗-algebra âX(G). The quotient norm is
given by

∥∥∥∥∥
∑

i∈I

ai[Mi]

∥∥∥∥∥
X

=
∑

i∈I

|ai| dim coreX(Mi) =
∑

i∈I\X

|ai| dim(Mi).
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In this expression, the X-core of a module M is defined by coreX(M) =M ′, where
we write M = M ′ ⊕M ′′ in such a way that M ′′ is a direct sum of modules in X,
and no summand of M ′ is in X.

If a is an element of a Banach algebra, the spectrum Spec(a) is the set of λ ∈ C
such that a− λ1 is not invertible. The spectral radius of a is supλ∈Spec(a) |λ|. The
spectral radius formula (Gelfand 1941) says that the spectral radius of a is given

by lim
n→∞

n
√
‖an‖. Thus if M is a kG-module then the spectral radius of the image

of [M ] in âX(G) is given by

γX(M) = lim
n→∞

n
√
dim coreX(M⊗n).

A species of the representation ring a(G) is defined to be a ring homomorphism
s : a(G) → C. A species is continuous with respect to the norm on a(G) if and
only if it is dimension bounded, namely if and only if for all kG-modules M we
have |s([M ])| 6 dim(M). A species s descends to a C-algebra homomorphism
s : âX(G)→ C if and only if it is X-core bouded, meaning that for all kG-modules
M we have

|s([M ])| 6 dim coreX(M).

If a is an element of a commutative Banach algebra A then Spec(a) is the set of
values of s(a) as s runs over the C-algebra homomorphisms A→ C. In particular,
the spectral radius of a is equal to sup

s : A→C

|s(a)|. It follows that for a kG-module

M , we have

γX(M) = sup
s : a→C

X-core bounded

|s(x)|.

If A is a commutative Banach algebra, we give the set ∆(A) of algebra homo-
morphisms s : A→ C the weak ∗-topology. This is the coarsest topology for which
the maps given by evaluation s 7→ s(a) are continuous for all a ∈ A. In the case
A = âX(G), we write ∆X(G) for ∆(âX(G)). For example, if G = Z/2 × Z/2 and
k is a field of characteristic two, then ∆proj(G) is a wedge S1 ∨X , where X is the
one point compactification of the discrete set P1(k)× N.

The representation ideal Xmax is the set of i such that Mi ⊗M∗
i does not have

a summand isomorphic to the trivial module. If k is algebraically closed, this is
equivalent to the dimension of Mi being coprime to the characteristic of k. Every
representation ideal is contained in Xmax, so it is the unique maximal one, hence
the notation.

Theorem 1. The quotient âmax(G) of â(G) by the closure of the span of Xmax

is semisimple. Elements of âmax(G) are separated by Xmax-core bounded species
s : âmax(G)→ C.

There is another, slightly bigger, completion of amax(G), which gives rise to a
C∗-algebra. We define the trace map Tr : a(G) → Z via Tr(

∑
i∈I

ai[Mi]) = a0,
where M0 is the trivial module. Then we put an inner product on amax(G) via
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〈x, y〉 = Tr(xy∗), and a Hilbert norm via |x| =
√
〈x, x〉. Thus

∣∣∣∣∣
∑

i∈I

ai[Mi]

∣∣∣∣∣ =
√ ∑

i∈I\Xmax

ni|ai|2

where ni is the multiplicity of the trivial module as a summand of Mi⊗M∗
i . The

completion of amax(G) with respect to this norm is a Hilbert space H(G). The
following theorem is not as easy to prove as it looks.

Theorem 2. For x, y ∈ aC(G) we have |xy| 6 ‖x‖max|y|.

It follows from this theorem that left multiplication by elements of aC(G) is
continuous with respect to the Hilbert norm, and induces a continuous map from
âmax(G) to L (H), the C∗-algebra of continuous mapsH → H . This map preserves
the star operation, and the closure of the image is a C∗-algebra which we denote
C∗

max(G). As an example of an application, we have the following.

Theorem 3. If e ∈ âmax is an idempotent, e 6= 0, 1 then 0 < Tr(e) < 1.

Proof. We have e = e∗ (in fact, this is true for any idempotent in a commutative
C∗-algebra). Tr(e) = Tr(e∗e) = 〈e, e〉 > 0. But 1 − e is also an idempotent, so
Tr(1− e) > 0. �

It follows from this theorem that there are no non-trivial idempotents in amax(G),
since the traces are integers.

One intriguing question which comes out of all this is the following. Is it true
in general that â(G) is a symmetric Banach ∗-algebra? A Banach ∗-algebra A is
said to be symmetric if the spectrum of x∗x always consists of non-negative real
numbers for all x ∈ A. This is equivalent to the statement that for all s : A → C

we have s(x∗) = s(x). So in our case, this would imply that for every dimension

bounded species s : a(G)→ C and every kG-moduleM we have s([M∗]) = s([M ]).
If this were true, it would imply that we always have

γX(M ⊗M
∗) = γX(M)2.

This is an interesting open problem.

Kronecker products and the Saxl conjecture

Christine Bessenrodt

It is a fundamental problem in representation theory to determine the decom-
position of tensor products. Even for the symmetric group Sn and its complex
representations this is unsolved; we report here on new contributions to a conjec-
ture that has arisen in this context.

Let SC(λ) be the Specht module of Sn (over the complex numbers), to a parti-
tion λ of n, and χλ its irreducible character. The Kronecker coefficients g(λ, µ, ν)
are the expansion coefficients of the product

χλ · χµ =
∑

ν⊢n

g(λ, µ, ν)χν .
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It is a wide open problem to give an efficient combinatorial description for the
coefficients g(λ, µ, ν), say akin to the Littlewood–Richardson rule. So far, only
little is known about the Kronecker products, and mostly when the factors are
very special (to hooks or 2-line partitions) or the constituents are special. Also,
products with few constituents have been investigated, in particular simple prod-
ucts, and the classification of multiplicity-free Kronecker products was obtained
recently [1]. Helpful tools are given by a recursion formula involving skew char-
acters, and a monotonicity property of the Kronecker coefficients. Here, two ap-
proaches to proving positivity of Kronecker coefficients are described that come
from unexpected directions and open up new connections.

1. Saxl’s conjecture and spin representations

Inspired by their results on the square of the Steinberg character for simple groups
of Lie type, Heide, Saxl, Tiep and Zalesskii [4] conjectured that for any n 6=
2, 4, 9 there is an irreducible Sn-character whose square contains all irreducible
characters. For triangular numbers, we have more precisely:

Saxl’s Conjecture. Let ρk = (k, k − 1, . . . , 2, 1) be the staircase partition of
n = k(k + 1)/2. Then (χρk)2 contains all characters χν , ν ⊢ n, as constituents,
i.e., g(ρk, ρk, ν) > 0 for all ν.

This conjecture has served as an important benchmark for new results and has
motivated a lot of recent research (see e.g. [5, 6, 7]); notably, Ikenmeyer [5] proved
that g(ρk, ρk, µ) > 0 whenever µ dominates ρk.

Perhaps unexpectedly, results on spin character products for the double covers
of the symmetric groups and of the alternating groups can be applied to obtain
information on Kronecker coefficients in Saxl’s square. This is due to a close link
between the ordinary character and the spin character labelled by the staircase,
given by multiplying the latter with the basic spin character. Using spin character
values on critical conjugacy classes as a crucial tool led to the following strong new
criterion for positivity.

Theorem. [2] Let µ be a partition with χµ(ρk) 6= 0 or χhµ(ρk) 6= 0.
Then g(ρk, ρk, µ) > 0.

The approach via spin characters gives new families of constituents in Saxl’s
square, in particular, all characters to double-hooks are detected [2]; this comprises
several families of constituents found in earlier work, such as those to hooks, 2-line
partitions and special double-hooks [5, 6, 7].

2. Kronecker positivity and decomposition numbers

There is also a surprisingly useful connection between the Kronecker problem and
modular representation theory. It hinges on the fact that the staircase ρk is a
2-core, and thus (χρk )2 decomposes into characters ξν to projective Sn-modules
(at characteristic p = 2), say

(χρk)2 =
∑
aνξ

ν , with aν ∈ N0, ν runs over the 2-regular partitions.
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Thus, for aν > 0, the 2-decomposition number dλν = 〈χλ, ξν〉 is a lower bound
for the Kronecker coefficient g(ρk, ρk, λ). As an immediate consequence all con-
stituents of the projective character ξ(n) appear in the Saxl square, notably all
irreducible characters of odd degree. A projective strengthening of Saxl’s conjec-
ture is the conjecture that all aν above are positive.

This 2-modular approach was investigated in joint work with Chris Bowman
and Louise Sutton [3]. The already mentioned result by Ikenmeyer is particularly
useful here. Generalising the observation on ξ(n) above, if λ is a 2-regular partition
of n such that the 2-modular reduction of the Specht module SC(λ) is simple, then
all constituents of ξλ appear in the Saxl square. As a consequence, using results
from the 2-modular theory we find:

Theorem. [3] All irreducible Sn-characters of 2-height 0 are constituents of (χ
ρk)2.

Unfortunately, determination of the decomposition numbers dµλ is a long-
standing open problem in modular representation theory. But only positive lower
bounds are needed here, and this allows to employ the better understood decom-
position numbers for Hecke algebras of type A.

Pursuing the ideas outlined above led to study the structure of Specht modules
for Hecke algebras. This work resulted in new insights both on decomposition
numbers and on the Kronecker coefficients [3].

For a staircase τ and partitions λ, µ such that ℓ(λ)+µ1 ≤ ℓ(τ),
we let τλµ denote the 2-separated partition obtained by gluing
two copies of λ to the top of τ and two copies of µ to the
bottom of τ . 2

µ

τ 2λ

τλµ

Theorem. [3] The Specht module SC
−1(τ

λ
µ ) of the Hecke algebra HC

−1(n) is
semisimple, and it decomposes as a direct sum of simples as follows:

SC

−1(τ
λ
µ )
∼=

⊕

ν

c(νT , λT , µ)DC

−1(τ
ν
∅ ),

where c(νT , λT , µ) are Littlewood–Richardson coefficients.

In fact, even a graded version of this decomposition holds. Applying our results
on the Hecke algebra decomposition numbers, we obtain the following contribution
to the Saxl conjecture:

Theorem. [3] Let w = k(k+1)/2, n = w(2w+1) and τ = ρ2w−1. Then for λ, µ
any pair such that τλµ is a 2-separated partition, we have:

g(ρ2w, ρ2w, τ
λ
µ ) ≥ c(ρk, λ, µ

T ).

In particular, we find new constituents in Saxl’s square with large multiplicities:

Corollary. [3] With notation as above, we have g(ρ2w, ρ2w, τ
ρ(k−1)
(k−1,1)) ≥ k − 1.
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Alperin’s weight conjecture and Wedderburn components over Qp

Robert Boltje

(joint work with Burkhard Külshammer)

Let p be a prime.

Definition. We call two simple Qp-algebras A1 and A2 equivalent if there exist
positive integers m and n satisfying

0 6≡ m ≡ ±n mod p and Matm(A1) ∼= Matn(A2) .

For a semisimple Qp-algebra C and a simple Qp-algebra A we denote by [C : A]
the number of simple factors of C which are equivalent to A.

We propose the following conjecture of block algebras of finite groups over Qp.

Conjecture 1. Let G be a finite group and let b be a block idempotent of ZpG
of positive defect. Then

∑

σ∈[P(G)/G]

(−1)|σ|
[
Mat|G:Gσ|(QGσbσ)

]
= 0 .

Here, P(G) denotes the set of chains σ = (P0 < P1 < · · · < Pn) of non-trivial
p-subgroups of G, including the empty chain; [P(G)/G] denotes a set of rep-
resentatives of the G-orbits of P(G) under the conjugation action; |σ| := n if
σ = (P0 < · · · < Pn); Gσ denotes the stabilizer of σ in G; and bσ is the sum of
block idempotents of ZpGσ that are in Brauer correspondence to b.

Let G be a finite group, K := Qp(ζ), and O := Zp[ζ], where ζ is a root of

unity of order exp(G) in some algebraic closure Qp of Qp. For any irreducible
character χ of a subgroup H of G the four invariants d(χ), r(χ), Qp(χ) and h(χ)

are defined as follows: Write |H |/χ(1) = pd(χ)r(χ), with p not dividing r(χ), set
Qp(χ) := Qp(χ(h) | h ∈ H), and let h(χ) ∈ Q/Z denote the Hasse invariant of the
central simple Qp(χ)-algebra QpHeχ in the Brauer group Br(Qp(χ)) = Q/Z.
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The following conjecture is a special case of a conjecture stated by Turull in
[1]. In the same paper, Turull proved that the conjecture holds whenever G is a
p-solvable group.

Conjecture 2. Let b be a block idempotent of OG of positive defect. Moreover,
let d be a positive integer, r ∈ {1, . . . , p − 1}, Qp ⊆ L ⊆ K an intermediate field,
and h ∈ Q/Z. Then

∑

σ∈[P(G)/G]

(−1)|σ| |IrrK(Gσ , bσ, d, r, L, h)| = 0 .

Here, IrrK(Gσ , bσ, d, r, L, h) denotes the set of all irreducible characters over K of
Gσ, belonging to a block occurring in the sum of blocks bσ, and satisfying d(χ) = d,
r(χ) ≡ ±r mod p, Qp(χ) = L, and h(χ) = h.

Our main results are the following two theorems.

Theorem A. Let b be a block idempotent of OG of positive defect and let b̃
denote the unique block idempotent of ZpG with bb̃ 6= 0. Then Conjecture 1 holds

for (G, b̃) and all simple Qp-algebras A if and only if Conjecture 2 holds for (G, b)
and all parameters (d, r, L, h).

Theorem B. Conjecture 1 holds for (G, b) and all simple Qp-algebras A, pro-
vided that b has non-trivial cyclic defect groups.

The proof of Theorem B uses the recent result by Kessar and Linckelmann in [2]
that states that Rouquier’s construction of splendid Rickard equivalences between
blocks with cyclic defect groups and their Brauer correspondents are induced by
splendid Rickard equivalences over Zp.
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Simple and projective correspondence functors

Serge Bouc

(joint work with Jacques Thévenaz)

In this long term joint work with Jacques Thévenaz ([1], [3], [2], [5], [4]), we study
the category of finite sets and correspondences, and its linear representations over
some commutative ring k, which we call correspondence functors over k. The
category of correspondence functors over k has various specific properties. For
instance, when k is a field, we show that a finitely generated correspondence functor
F over k has finite length, and this occurs if and only if the dimension of F (X) is
bounded by some exponential of |X |. Moreover such a functor is projective if and
only if it is injective.
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Simple correspondence functors over k are parametrized by triples (E,R,W )
consisting of a finite setE, a partial order relationR onE, and a simple kAut(E,R)-
module W . We answer the question of knowing when the simple functor SE,R,W
is projective (or equivalently, injective):

Theorem 1. Let k be a field and let SE,R,W be the simple correspondence functor
parametrized by a finite set E, an order relation R on E, and a simple kAut(E,R)-
module W . The following conditions are equivalent :

(1) SE,R,W is projective.
(2) The poset (E,R) is a pole poset and W is a projective kAut(E,R)-module.
(3) Either (E,R) is a totally ordered poset or (E,R) is a pole poset and the

characteristic of k is different from 2.

Here by a pole poset, we mean a finite poset obtained by stacking discrete posets
of cardinality one or two, e.g.

•
✠✠ ✺✺

• ✺✺ •
✠✠
•

•

•

•

or

•
❍❍

❍❍ •
✈✈
✈✈

• ✺✺ •
✠✠
•
✠✠ ✺✺

•
❍❍

❍❍ •
✈✈
✈✈

•
❍❍

❍❍ •
✈✈
✈✈

• ✺✺ •
✠✠
•
✠✠ ✺✺

•
❍❍

❍❍ •
✈✈
✈✈

• •

.

The “official” french translation of pole poset is totem.
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Classifying blocks of finite groups

Charles Eaton

Let (K,O, k) be a p-modular system where k = Fp. Donovan’s conjecture states
that, fixing a finite p-group P , there are only finitely many Morita equivalence
classes amongst blocks of finite groups with defect groups D ∼= P . The conjecture
may be stated over k or O. There are two obvious choices for a canonical choice
of O: either the ring of Witt vectors for k or the same with all |D|-th roots of
unity attached. It seems that the former should be suitable. Donovan’s conjecture
defined over k was shown by Kessar to be equivalent to bounding the Cartan
invariants and Morita-Frobenius number of a block in terms of P . The Morita-
Frobenius number is the smallest m such that whenever B is a block of kG for a
finite group G, there is a Morita equivalence between Bσ

m

and B, where σ is the
ring automorphism of kG obtained by raising coefficients of elements of G to their
p-th power. An O-Morita-Forbenius number may also be defined.

With Livesey in [5] we have shown that for P abelian, the k-Donovan conjec-
ture reduces to checking that the Cartan invariants and the O-Morita-Frobenius
number are bounded for quasisimple groups in terms of the defect group. Farrell
and Kessar in [7] bounded the Morita-Frobenius numbers for blocks of quasisimple
groups, so we have the following:

Theorem. If the Cartan invariants of blocks of quasisimple groups with abelian
defect groups are bounded in terms of the defect groups, then the k-Donovan
conjecture holds for abelian p-groups.

With Eisele and Livesey we showed in [3] that, further:

Theorem. If the Cartan invariants of blocks of quasisimple groups with abelian
defect groups are bounded in terms of the defect groups, then the O-Donovan
conjecture holds for abelian p-groups.

This involved in part showing that the O-Donovan conjecture is equivalent to
bounding the Cartan invariants and bounding the O-Morita-Frobenius numbers.

Using work of Eaton, Kessar, Külshammer and Sambale, a consequence is:

Theorem. The O-Donovan conjecture holds for abelan 2-groups.

In cases where Donovan’s conjecture is known, we may attempt to classify
Morita equivalence classes of blocks with a given defect group. Recent classifica-
tions in this direction are O-blocks with defect groups that are abelian 2-groups of
2-rank at most three (by Eaton-Livesey [4] and Wu-Zhang-Zhou [8]), and O-blocks
with defect groups which are elementary abelian of order 16 in [2].

In applying the classification of finite simple groups to the classification of Morita
equivalence classes of blocks, important steps are the comparison of blocks with
those of normal subgroups when the index is prime to p or a power of p. In the
case of normal subgroups of index prime to p, a main tool is the parameterisation
of crossed products of an algebra by a group, as described by Külshammer. The
parameterisation involves the outer automorphism group Out(b) of an algebra b.
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We may embed Out(b) into the Picard group Pic(b). The structure of Picard
groups of O blocks has been studied recently by Boltje, Kessar and Linckelmann
in [1], but limited examples were known. When b is an O-block, in all known
examples Pic(b) is a finite group. With Livesey in [6] we have computed a range
of examples of such Picard groups.

Progress on Donovan’s conjecture and classifications is recorded in the wiki site
https://wiki.manchester.ac.uk/blocks
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Self-equivalences of blocks

Florian Eisele

(joint work with Charles W. Eaton, Michael Livesey)

Let (K,O, k) denote a p-modular system with k = k̄, let G be a finite group and
let B = OGb be a block. We consider the group Out(B) = Aut(B)/Inn(B) of
outer automorphisms of B, and the closely related Picard group

Pic(B) = { invertible B-B-bimodules }

with the tensor product over B as the group operation. This group can be in-
terpreted as the group of Morita self-equivalences of B, and it is well-known that
Out(B) embeds into Pic(B) as a subgroup of finite index.

While the analogous groups for blocks defined over k are usually infinite, it was
recently observed by Boltje, Kessar and Linckelmann that the outer automorphism
group of a block defined over O is finite in all known examples. For instance, one
can show that if the defect group of B is normal in G, then the group of invertible
p-permutation B-B-bimodules is of finite index in Pic(B). Since the former is a
finite group, so is the latter. It is also easy to show that if A is an O-order which is
derived equivalent to B, then Pic(A) is finite if and only if Pic(B) is. In particular,
if one assumes Broué’s abelian defect group conjecture over O, then the Picard
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group of any block of abelian defect should be finite. However, there is, as of yet,
no general explanation for the finiteness of Picard groups of blocks in general.

In this talk I will present a theorem stating that Pic(A) is an affine algebraic
group over k whenever A is an O-order in a separable K-algebra (which covers the
case where A is a block). The proof involves the theory of Witt vectors, as well as
variations of classical theorems of Maranda and Higman stating that lattices and
O-orders are determined up to isomorphism by their reduction modulo some large
power of p, which is determined by the order of the defect group in the case of a
block.

While this does not show finiteness as such, it opens up a different approach
to this problem: compute the Lie algebra of this group we now know is algebraic,
and compare it to the first Hochschild cohomology of A. However, whether this
works (and if so, how this works) is still unclear at the moment.

I will also present a corollary of the aforementioned theorem in which the
structure of an algebraic group (rather than finiteness) is sufficient to obtain the
desired result. Namely, using the theorem, a well-known reduction theorem by
Külshammer (see [3]) can be shown to hold over O. This is used in [2] to re-
duce Donovan’s conjecture for blocks of abelian defect defined over O to the same
statement for blocks of quasi-simple groups.
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Double covers of symmetric groups and Fock spaces

Matthew Fayers

This talk starts with an attempt to further our understanding of the decomposition
numbers for spin representations of symmetric groups in odd characteristic; in
particular, to provide an analogue of Richards’s combinatorial formula [1] for the
decomposition numbers for defect 2 blocks of symmetric groups. By developing
the appropriate combinatorics, I have been able to find an analogue modulo a
mysterious “adjustment matrix”. This is intimately related to the canonical basis

for the q-deformed Fock space in type A
(2)
p−1, via a conjecture of Leclerc–Thibon

[2]. I will talk about how the mysterious adjustment can be explained using the

Fock space in type A
(2)
p and folding of Dynkin diagrams.
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On monomial characters and Sylow p-subgroups of Symmetric Groups

Eugenio Giannelli

In this talk we discuss the relation between the representation theory of the sym-
metric group Sn and that of its Sylow subgroups. The starting point is the fol-
lowing result, obtained in collaboration with Gabriel Navarro [2].

Theorem 1. Let p be a prime, let P ∈ Sylp(Sn) and let χ be an irreducible
character of Sn. Then the restriction χP admits linear constituents.

Theorem 1 naturally raises the following question, which is at the heart of our
recent research.

Problem A: Given χ ∈ Irr(Sn), can we find the linear constituents of χP ?

Let φ be a linear character of P ∈ Sylp(Sn) and let Ωn(φ) be the set of ir-
reducible characters of Sn appearing as irreducible constituents of the monomial
character obtained by induction of φ to Sn. It is clear that Problem A is equivalent
to the determination of the set Ωn(φ), for all linear characters φ.

A first result, obtained in collaboration with Stacey Law [1], describes the
important case where φ = 1P is the trivial character of P .

Theorem 2. Let n ∈ N and let p > 3. Let χ, χ′ be the two irreducible characters
of Sn of degree n− 1. Then

Ωn(1P ) =

{
Irr(Sn)r {χ, χ′} if n = pk for some k ∈ N,

Irr(Sn) otherwise.

LetH be the Hecke algebra corresponding to the triplet (Sn, P, 1P ). A straight-
forward application of Theorem 3 allows us to count the number of irreducible
representations of H. The determination of the dimensions of those representa-
tions remains a mistery. In order to compute them, we would need to understand
the multiplicity 〈χP , 1P 〉 for all χ ∈ Irr(Sn).

In the second part of the talk we will discuss our work on problem A, in full
generality. A first key observation is the following extension to symmetric groups
of a result of Navarro [3], showing that the analogous statement holds for p-solvable
groups.

Theorem 3. Let n ∈ N, let p be a prime and let φ, ψ ∈ Lin(P ). Then φ and ψ
are NSn

(P )-conjugate if and only if φSn = ψSn .
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We conclude by giving a precise description (for odd primes) of the sets Ωn(φ),
for any given linear character φ of P . Our results show that Ωn(φ) contains a
large proportion of irreducible characters of Sn. In particular, letting Ωn be the
intersection of the sets Ωn(φ), we have the following corollary.

Corollary 4. Let p be an odd prime. Then |Ωn|
|Irr(Sn)|

→ 1, for n→∞.
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Understanding and classifying endotrivial modules

Jesper Grodal

In my talk I described a method for calculating endotrivial modules, using methods
from homotopy theory.
The starting point was the following theorem from arXiv:1608.00499

Theorem 1. Let G be a finite group with Sylow p-subgroup S, and k a field of
characteristic p. The Green correspondence induces a bijection

{kG−modules M s.t. M |S ≃ k
s ⊕ (kS)t} ←→ kπ1O

∗
p(G)−modules,

where O∗
p(G) is the orbit category with objects G/P for P a non-trivial p-subgroup

and morphisms G-maps.

I then presented a number of calculations arising from this viewpoint. Taken
together they enable a calculation of the group of endotrivial modules Tk(G) for
all finite simple groups.

On the inductive blockwise Alperin weight condition for F4(q) in
characteristic 3

Gerhard Hiss

(joint work with Jianbei An, Frank Lübeck)

Britta Späth in [4] has reduced the famous Alperin weight conjecture for ℓ-blocks
of finite groups to a statement called inductive blockwise Alperin weight condition.
We present some steps on the way to verify this condition for the simple Chevalley
groups F4(q) for the prime ℓ = 3, where q is a prime power not divisible 3. Major
ingredients are a classification of the semisimple conjugacy classes of F4(q) and
a classification of its radical 3-subgroups (see [2, 1]). The classification of the
3-blocks and their invariants is also essential.

The groups F4(q) arise from simple, self-dual algebraic groups G with trivial,
hence connected center. All proper Levi subgroups of G are of classical type.
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Moreover, the outer automorphism group of F4(q) is cyclic. These facts simplify
our analysis to some extent. On the other hand, 3 is a bad prime for G, and the
Sylow 3-subgroups of F4(q) are non-abelian, facts which complicate our investiga-
tion.

We indicate how the recent result by Bonnafé, Dat and Rouquier [3] can be
used to reduce the problem to isolated 3-blocks. We present our main result for
the principal 3-block. This exhibits a remarkably different behaviour in the two
cases where 9 does or does not divide q2 − 1.
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Categorification of Fourier matrices for Coxeter groups with
automorphism

Abel Lacabanne

In order to classify unipotent characters of a finite Chevalley or Steinberg group,
Lusztig has introduced a non-abelian Fourier transform [Lus79]. It is possible to
understand this transformation in terms of modular categories, which are braided
fusion categories over a field with some extra assumptions. Geck and Malle [GM03]
have constructed similar transform for Suzuki and Ree groups, and we give in this
talk a categorical framework which enable us to recover the matrices of these
Fourier transforms.

Let C be a modular category containing Rep(Z/2Z) as a fusion subcategory.
This gives a grading C = C0 ⊕ C1 and it is possible to recover matrices satisfying
the same properties of the Fourier matrices, by using this grading as a crucial tool.

Moreover, there exists a generalization of these transforms to spetses, in the
sense of Broué-Malle-Michel [BMM99, BMM14]. In the case of dihedral groups
without automorphism, Lusztig defined an exotic Fourier transform and explains
how to categorify it [Lus94]. The case of dihedral groups with automorphism as
well as the Ree group of type 2F4 fit in the categorical framework presented in this
talk and are very interesting examples. We emphasize the fact that the degree 0
of the category gives the Fourier transform for the non-twisted group, whereas the
degree 1 gives the Fourier transform for the twisted group.
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[BMM14] M. Broué, G. Malle and J. Michel – Split spetses for primitive reflection groups,
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On the Lifting of the Dade Group and Consequences

Caroline Lassueur

(joint work with Jacques Thévenaz)

Let p be a prime number and G be a finite group of order divisible by p. Let O
denote a complete discrete valuation ring of characteristic 0 with residue field k :=
O/J(O) of positive characteristic p, and let R ∈ {k,O}.

The Dade group and endo-permutation modules are important invariants of
block theory of finite groups. For instance, they occur in the description of source
algebras of blocks, or as sources of simple modules for p-soluble groups (see [Thé95,
§50]). They also play an important rôle in the description of equivalences between
block algebras, such as derived equivalences in the sense of Rickard or basic Morita
equivalences. The final classification of endo-permutation modules was obtained
by Bouc [Bou06] in 2006, but still some questions about endo-permutation modules
remained open.

1. To begin with, the Dade group is defined for a p-group but its definition
cannot be passed as such to arbitrary groups in general. The main reason being
that transitive permutation modules over p-groups are indecomposable, but this
is no longer the case over arbitrary finite groups. In [Las12, Las13], we proved
that if one replaces endo-permutation modules with the so-called strongly capped
endo-p-permutation modules, i.e. RG-modules, the endomorphism ring of which is
a p-permutation module with a unique trivial direct summand, then one can define
a group structure on this class of modules under the tensor product, generalising
the structure of the Dade group of a p-group. The structure of this generalised
Dade group is further investigated in [Las13].

2. In [LT18], we proved that any endo-p-permutation module is liftable from
positive characteristic p to characteristic zero. Amongst finitely generated kG-
modules very few classes of modules are known to be liftable to OG-lattices.
Projective kG-modules are known to lift uniquely, and more generally, so do p-
permutation kG-modules. In the special case where the group G is a p-group,
Alperin [Alp01] proved that endo-trivial kG-modules are liftable, and Bouc ob-
served that so are endo-permutation kG-modules as a consequence of their clas-
sification [Bou06]. Passing to arbitrary groups, the speaker together with Malle
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and Schulte [LMS16] proved that Alperin’s result extends to endo-trivial modules
over arbitrary groups. It is therefore legitimate to ask whether Bouc’s result may
be extended to arbitrary groups, as well. The class of endo-p-permutation kG-
modules was the natural candidate for such a generalisation. We emphasise that
our proof relies on a non-trivial result, namely the lifting of endo-permutation mod-
ules, which is a consequence of their classification. Moreover, there are two crucial
points to our argument: the first one is the fact that reduction modulo p applied
to the class of endo-p-permutation OG-lattices preserves both indecomposability
and vertices, while the second one relies on properties of the G-algebra structure
of the endomorphism ring of endo-permutation RG-lattices. Finally, we note that
these results also provides us with an alternative proof to the Fong/Swan-Theorem
stating that simple modules for p-soluble groups are liftable.

3. Coming back to p-groups, our work in [LT18] in Part 2. above outlined that
another question about the Dade group had been left open, namely: ”How canoni-
cal is the lifting of endo-permutation modules?” More precisely, given a p-group P ,
reduction modulo p induces a group homomorphism DO(P ) −→ Dk(P ) between
the Dade group DO(P ) of endo-permutation OP -lattices and the Dade group
Dk(P ) of endo-permutation kP -modules. As aforementioned, as a consequence of
Bouc’s final classification [Bou06] this morphism is surjective. In [LT19] we prove
that this reduction homomorphism in fact always admits a section which is again
a group homomorphism. As a consequence the Dade group of endo-permutation
OP -lattices can always be express as a direct product

DO(P ) ∼= XO(P )×Dk(P )

where XO(P ) is the group of one-dimensional OP -lattices. The result is easy and
well-known for p > 3 (see e.g. [Thé95, (29.6)]), whereas in case p = 2 we need to
use the structure of the Dade group described by Bouc [Bou06]. However in all
characteristics it is possible to lift a well-chosen set of generators of Dk(P ) to their
unique lift with trivial determinant in order to obtain a group-theoretic section.
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On the Lie algebra structure of HH1(B)

Markus Linckelmann

1. Background on Hochschild cohomology

Let k be a field and A a finite-dimensional k-algebra. The Hochschild cohomology
of A is the graded Ext-algebra HH∗(A) = Ext∗A⊗kaop(A,A). We have HH0(A) =
EndA⊗kAop(A) ∼= Z(A), and

HH1(A) = Der(A)/IDer(A) ,

where Der(A) is the k-vector space of all k-linear maps f : A → A satisfying the
product rule f(ab) = f(a)b+ af(b) for all a, b ∈ A. Any such linear map is called
a derivation on A. For any c ∈ A, the map [c,−] sending a ∈ A to the additive
commutator [c, a] = ca− ac is a derivation. Any derivation of this form is called
an inner derivation on A, and IDer(A) denotes the subspace of inner derivations
in Der(A).

By results of Gerstenhaber [4], the algebraHH∗(A) is graded-commutative, and
carries a structure of a graded Lie algebra of degree −1, called the Gerstenhaber
bracket. In particular, HH1(A) is a Lie algebra, with bracket induced by [f, g] =
f ◦ g − g ◦ f for any two derivations f , g on A. If char(k) = p > 0, then HH1(A)
is a restricted Lie algebra, with the p-power map induced by f [p] = f ◦ f ◦ · · · ◦ f ,
where f is being composed p times with itself.

By a result of Tradler [19], if A is a symmetric k-algebra (that is, A is isomorphic
to its k-dual A∨ = Homk(A, k) as an A-A-bimodule), then there is a linear degree
−1 operator

∆ : HH∗(A)→ HH∗−1(A)

on HH∗(A) such that ∆ ◦∆ = 0 and such that for homogeneous elements ζ, τ in
HH∗(A) we have

[ζ, τ ] = (−1)|ζ|∆(ζτ) − (−1)|ζ|∆(ζ)τ − ζ∆(τ)

That is, the Gerstenhaber bracket is determined by the cup product in HH∗(A)
and the operator ∆, measuring how far the operator ∆ is from being a derivation
on HH∗(A). In this way, HH∗(A) has a structure of Batalin-Vilkovisky algebra,
or BV-algebra for short. The operator ∆ is called the BV operator on HH∗(A).

2. Functoriality properties of HH∗(A)

An algebra homomorphism does not in general induce a map on Hochschild coho-
mology. If we consider the 2-category of symmetric algebras, with 1-morphisms the
bimodules which are finitely generated projective on either side (and 2-morphisms
the bimodule homomorphisms between any two such bimodules), then HH1(A)
becomes functorial with respect to 1-morhisms. More precisely, by [8], given two
symmetric k-algebras A, B and an A-B-bimodule M which is finitely generated
projective as a left and right module, there is a graded k-linear transfer map

trM : HH∗(B)→ HH∗(A)
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which is functorial in M (that is, compatible with tensor products of bimodules).
The transfer map depends on choices of bimodule isomorphisms between A, B and
their duals, but it is not difficult to determine the effect of different choices on the
transfer maps.

In general, trM preserves neither the cup product, nor the Gerstenhaber bracket
or BV operator, but there is one case where this does happen. Following terminol-
ogy due to Broué, an A-B-bimodule M as above is said to induce a stable equiva-
lence of Morita type if M ⊗B M∨ ∼= A⊕X for some projective A-A-bimodule X
and M∨ ⊗AM ∼= B ⊕ Y for some projective B-B-bimodule Y . (If X = Y = 0,
then M and M∨ induce a Morita equivalence, and by a result of Rickard, if A
and B are derived equivalent, then there exists a stable equivalence of Morita type
between A and B.)

It is easy to see that then trM induces (up to a suitable choice of bimodule
isomorphisms between A, B and their duals) an isomorphism HH∗(B) ∼= HH∗(A)
as graded algebras, except for some adjustments in degree 0, see [8, Remark 2.13].
König, Liu, and Zhou proved in [7] that trM is in that case compatible with the
BV operators, and hence induces an isomorphism as graded Lie algebras (and as
before, with the same adjustments in degree 0). Rubio y Degrassi [15] showed
moreover a compatibility with the p-power map in degree 1 on the subspaces
spanned by the images of integrable derivations.

3. Hochschild cohomology of blocks of group algebras

For G a finite group, it is well-known that there is an additive decomposition

HH∗(kG) ∼= ⊕x H
∗(CG(x); k) ,

where x runs over a set of representatives of the conjugacy classes of G. The
summand for x = 1 yields an injective graded k-algebra homomorphism

H∗(G; k)→ HH∗(kG) .

In general, this decomposition is not an isomorphism as graded algebras. Siegel
and Witherspoon describe in [17] the cup product in HH∗(kG) in terms of this
decomposition and the cup products of the summands. Liu and Zhou describe
in [12] explicitly the BV operator in terms of the standard Hochschild resolution.
As a consequence of results of Menichi [13], the BV operator ∆ on HH∗(kG)
preserves this additive decomposition. In recent joint work with D. Benson and R.
Kessar, we describe the components of the BV operator on the summands of this
decomposition (this is a special case of a more general recipe to construct degree
−1 operators in Ext-algebras).

Theorem 3.1 ([2]). Let G be a finite group and z ∈ Z(G). Let (P, δ) be a projec-
tive resolution of the trivial kG-module k. Multiplication by z − 1 on P is a con-
tractible chain endomorphism of P , so there is a homotopy s : P [1]→ P such that
s◦ δ+ δ ◦s is equal to multiplication by z−1. Then HomkG(s, k) : HomkG(P, k)→
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HomkG(P [1], k) is a cochain homomorphism, and the induced graded map in de-
gree −1 in cohomology is the component ∆z : H∗(G, k) → H∗−1(G; k) of the BV
operator.

In block theory, the Hochschild cohomology HH∗(B) of a block B of a finite
group algebra kG is one of the few global invariants of B with a direct connection
to the local structure of B. The second part of the following result was first
conjectured by Pakianathan and Witherspoon [14]. We assume that k is large
enough and has prime characteristic p.

Theorem 3.2 ([8], [9]). Let G be a finite group, B a block algebra of kG with a
defect group P and fusion systen F on P . Then HH∗(B) has a graded subalge-
bra H∗(B) defined in terms of P and F (as the subalgebra of F-stable elements
in H∗(P ; k)), such that HH∗(B) is finitely generated as a module over H∗(B)
and such that upon taking quotients by nilpotent ideals, the inclusion H∗(B) →
HH∗(B) becomes an isomorphism.

This yields another proof of the well-known fact that the Krull dimension of
HH∗(B) is equal to the rank of P (by which we mean the rank of an elementary
abelian subgroup of P of maximal order). This also implies that for the purpose of
calculating cohomology varieties, we may as well use HH∗(B) instead of H∗(P ; k).

The dimension ofHH0(B) ∼= Z(B) is equal to the number of ordinary irreducible
characters of B. By a theorem of Brauer and Feit, this number is bounded in terms
of a defect group P . The following result shows that the dimension of HHn(B) is
bounded in terms of P for all positive integers n as well.

Theorem 3.3 ([5], [6]). Let B be a block of a finite group algebra with defect group
P . Then the Hilbert series

∑
n≥0 dimk(HH

n(B))tn and the isomorphism class of
P determine each other up to finitely many possibilities.

The proof first bounds the individual dimensions of HHn(B) in terms of P
and then uses Symonds’ proof of Benson’s regularity conjecture, stating that
reg(H∗(G; k)) = 0, to bound the degrees of generators in HH∗(B) in terms of
P . Donovan’s conjecture for P would imply that there are only finitely many iso-
morphism classes of graded algebras arising as HH∗(B) of some block with defect
groups isomorphic to P . This would follow if we could show that the relations of
a set of generators of HH∗(B) involve coefficients which belong to a finite field of
a size bounded in terms of P . This is still an open problem in general.

4. Degree 1 Hochschild cohomology of blocks

We keep the assumption that k is a sufficiently large field of prime characteristic
p. Let B be a block of a finite group algebra kG with a nontrivial defect group
P . It is not known in general whether HH1(B) is necessarily nonzero, but if it is,
then HH1(B) is a restricted Lie algebra. Little is known which Lie algebras arise
in this way. This question has received recently a fair amount of attention; see the
papers [1], [3], [10], [11], [15], and [16], for instance. Simple Lie algebras arising
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from blocks with a single isomorphism class of simple modules can be described
as follows.

Theorem 4.1 ([10]). Let B be a block of a finite group algebra kG with a defect
group P . Suppose that B has a single isomorphism class of simple modules. The
following are equivalent.

(i) The Lie algebra HH1(B) is simple.
(ii) The block B is nilpotent and P is elementary abelian of order at least 3.
(iii) The Lie algebra HH1(B) is isomorphic to the Jacobson-Witt Lie algebra

Der(k[x1, x2, .., xn]/(x
p
1, x

p
2, .., x

p
n)) for some positive integer n such that

pn ≥ 3.

We do not know whether the hypothesis on B having a single isomorphism
class of simple modules is necessary for this theorem. Note that in the situation
of the above theorem, none of the other simple modular Lie algebras can arise.
Extending earlier results of Strametz [18] for monomial algebras, we have the
following sufficient criterion for the solvability of HH1(A).

Theorem 4.2 ([11], [16]). Let A be a finite-dimensional split k-algebra such that
the quiver of A is a simple directed graph. Then HH1(A) is a solvable Lie algebra.

Comprehensive results on the Lie algebra structure of HH1(B) for tame blocks
B have recently been obtained in the papers [3] and [16]. A remarkable conse-
quence of these two papers is that for tame blocks the hypothesis ‘one simple
module’ in Theorem 4.1 is indeed not necessary. This points to the main motiva-
tion for this line of enquiry - namely that a precise knowledge of the Lie algebra
structure of HH1(B) of a block B should contain significant information about
numerical invariants of B. Since the Lie algebra HH1(B) is invariant under stable
equivalences of Morita type, this might lead to some insight as to which numerical
invariants of blocks are invariant under stable equivalences of Morita type - with
the dream scenario of getting hold of special cases of the Auslander-Reiten con-
jecture, predicting that the number of isomorphism classes of simple B-modules
is invariant under stable equivalences of Morita type.
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On Picard groups of blocks with normal defect groups

Michael Livesey

Let p be a prime, (K,O, k) a p-modular system G be a finite group and B a block
of OG.

Definition 1.

Pic(B) := {M a B-B-bimodule|M ⊗B − induces a Morita auto-equivalence of B},

called the Picard group of B.

T (B) := {M ∈ Pic(B)|M has trivial source},

L(B) := {M ∈ Pic(B)|M has linear source},

E(B) := {M ∈ Pic(B)|M has endopermutation source}.

Let N ✁G and b a G-stable block of ON . When investigating the possible Morita
equivalence classes of B it becomes important to understand the elements of Pic(b)
induced by the elements of G (see [5]). So when one is studying Donovan’s con-
jecture or attempting to classify blocks up to Morita equivalence, Picard groups
of blocks are very relevant.
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Theorem 1 (L). Let G be a finite group and B a block of OG with normal abelian
defect group D and abelian inertial quotient, then Pic(B) = L(B).

We note that this improves upon a result of Zhou [7, Theorem 14]. Zhou proves
that if B = O(D⋊E), where D is an abelian p-group and E is an abelian p′-group
then Pic(B) = E(B). We can also compare with a result of Boltje, Linckelmann
and Kessar [2, Proposition 4.3], where it is assumed in addition that [D,E] = D
but the result is that Pic(B) = T (B).

Proof. By [4, Theorem A] we can assume B = O(D⋊E)eϕ, where E is a p′-group,
Z ≤ Z(E) is cyclic, E/Z is abelian and acts faithfully on D and φ is a faithful
irreducible character of Z.

Now D = D1 × D2, where D1 = [D,E] and D2 = CD(E). Let M ∈ Pic(B)
and IM the corresponding permutation of Irr(B). We use perfect isometries to
prove that there exists θ ∈ Irr(D2) such that

IM (χ⊗ 1) 7→ χ′ ⊗ θ,

for all χ ∈ Irr(O(D1 ⋊ E)eφ). We next note that there exists a unique subgroup
D′ ≤ D1 such that χ ∈ Irr(B) reduces to multiple copies of the same ϕ ∈ IBr(B)
if and only if D′ ≤ ker(χ). Using Weiss’ condition [6] this allows us to reduce to
the case where B has a unique simple module.

Finally the one simple module case is dealt with by studying the basic algebra
of B. This builds on work of Benson and Green [1] and Holloway and Kessar [3]
where the basic algebra of k ⊗k B is calculated. �
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Around Brauer’s height zero conjecture

Gunter Malle

We discussed two quite different generalisations of Brauer’s height zero conjecture.
The first is Robinson’s conjecture from 1996 which stipulates that the defect of
every irreducible character χ of a finite group G in a p-block with defect group D
is bounded below by

pdef(χ) ≥ |Z(D)|,

where Z(D) denotes the centre of the defect group, with equality if and only if D
is abelian. In the case when D is abelian this reduces to the proven direction of
Brauer’s height zero conjecture.

In joint work with Z. Feng, C. Li, Y. Liu and J. Zhang we were able to show
this conjecture for all odd primes p. Our proof relies on a reduction by Murai to
the case of quasi-simple groups and then a detailed investigation of the p-blocks of
these groups, using the reduction theorem by Bonnafé and Rouquier and various
results of Cabanes and Enguehard on blocks of finite reductive groups and their
defect groups. The crucial case is the one of isolated blocks at bad primes. We also
showed that Robinson’s conjecture holds for all 2-blocks of quasi-simple groups of
classical Lie type.

The second part of the talk concerned the following conjecture on the principal
p-block Bp(G) of a finite groups G:

Conjecture. Let G be a finite group and p, q two primes. Then G has a Sylow p-
subgroup commuting with a Sylow q-subgroup if and only if all characters in Bp(G)
have degree prime to q, and all characters in Bq(G) have degree prime to p.

Again for p = q this specialises to Brauer’s height zero conjecture for the prin-
cipal block. In joint work with G. Navarro we proved the “only if” direction
of this conjecture, and the “if” direction assuming that the Inductive Alperin–
McKay Condition is satisfied for all quasi-simple groups. The proof starts off by
a reduction to quasi-simple groups, and for those, the result follows by a case-by-
case argument. The most difficult case of alternating groups had previously been
settled in joint work with E. Giannelli and C. Vallejo.

Units in Group Rings, Characters and Blocks

Leo Margolis

(joint work with Mauricio Caicedo)

Since the study of the unit group of integral group rings ZG of a finite group G
began with G. Higman’s thesis in 1940 many conjectures have been put forward
regarding the finite subgroups of units in ZG. The strongest of those, such as
the Isomorphism Problem or the Zassenhaus Conjectures, gave rice to fascinating
mathematics, but turned out to be wrong in general, with counterexamples in the
class of solvable groups. On the other hand the strongest possible expectations one
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can have concerning possible orders of units in ZG are known to hold for solvable
groups.

Namely, call a unit normalized if its coefficients sum up to one. Then the
best possible statement one can hope for regarding orders of normalized units in
ZG is that there is a normalized unit of order n in ZG if and only if there is a
group element of order n in G. The question if this holds for any G is known as
the Spectrum Problem. The weaker form of the question which one obtains by
replacing n by the product of two distinct primes is known as the Prime Graph
Question. The Spectrum Problem is known to have a positive answer for solvable
groups and for the Prime Graph Question also a reduction theorem, to almost
simple groups, has been obtained.

I will present a result which states that if p and q are primes and the Sylow
subgroup of G is cyclic of order p then ZG contains a normalized unit of order pq
if and only if G contains an element of order pq. The main ingredient of the proof
is the description of modules for blocks of defect 1 and their visualisation using
Brauer trees. This directly settles the Prime Graph Question for most sporadic
groups.

This is joint work with M. Caicedo.

Irreducible restrictions of representations of symmetric and
alternating groups

Lucia Morotti

(joint work with Alexander Kleshchev, Pham Huu Tiep)

Let G and H be finite groups with G < H , F be an algebraically closed field and V
be an irreducible FH-module. In general, if V is not 1-dimensional, the restriction
V ↓G is reducible. There are though examples where V is not 1-dimensional and
V ↓G is irreducible. The classification of such irreducible restrictions is relevant
to the the Aschbacher-Scott classification of maximal subgroups of finite classical
groups.

ForH a symmetric or alternating group the problem of classifying irreducible re-
strictions has been solved by Saxl [9] in characteristic 0 and by Brundan-Kleshchev
[1] and Kleshchev-Sheth [6] in characteristic ≥ 5. In characteristics 2 and 3 how-
ever only partial reduction results were known. In [3, 4, 5] we essentially complete
the classification of irreducible restrictions of representations of symmetric and
alternating groups in characteristics 2 and 3.

Let p = char(F ) and Pp(n) be the set of p-regular partitions. It is well known
that the irreducible FSn-modules are indexed by Pp(n). For λ ∈ Pp(n) let Dλ

be the corresponding irreducible FSn-module. We say that λ ∈ Pp(n) is JS if
Dλ↓Sn−1

is irreducible. Such partitions have a nice combinatorial description in

terms of their parts and multiplicities. Define PAp (n) to be the set of partitions

λ ∈ Pp(n) such that Dλ↓An
splits and let Eλ or Eλ± be the irreducible components

of Dλ↓An
. In characteristic 6= 2 there exists a nice description of PAp (n) in term
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of the Mullineux map. Namely in this case λ ∈ PAp (n) if and only if λ = λM, where

λM is defined by DλM ∼= Dλ ⊗ sgn.
If p = 2 we say that Dλ and Eλ(±) are basic spin if λ = (⌈(n+1)/2⌉, ⌊(n−1)/2⌋).

At least for symmetric groups, such modules can always be obtained by reducing
modulo 2 basic spin modules of covering groups of symmetric groups.

When considering irreducible restrictions of representations of symmetric groups
we in particular have the following theorem:

Theorem. [1, 5, 9] Let λ ∈ Pp(n). If G < Sn and Dλ↓G is irreducible, then one
of the following holds:

(i) λ ∈ {(n), (n)M},
(ii) λ is JS and G = Sn−1,
(iii) λ 6∈ PAp (n) and G = An,

(iv) λ 6∈ PAp (n) is JS and G = An−1,

(v) λ ∈ {(n − 1, 1), (n − 1, 1)M} and G is 2-transitive or n ≡ 0 mod p and
G ≤ Sn−1 is 2-transitive,

(vi) p 6= 2, λ ∈ {(n − 2, 12), (n − 2, 12)M}, n = 2m and G = AGLm(2) or
n = 2m + 1 ≡ 0 mod p and G = AGLm(2) ≤ Sn−1,

(vii) p = 2, λ = (n− 1, 1), n ≡ 2 mod 4 and G ≤ Sn/2 ≀ S2,

(viii) p = 2, Dλ is basic spin and G is imprimitive,
(ix) n ≤ 25.

Note that if λ ∈ Pp(n) \ PAp (n) and G < An then Eλ↓G is irreducible if and

only if Dλ↓G is irreducible, so this case is covered by the previous theorem. For
λ ∈ PAp (n) we have the following theorem. Normal nodes of a partition λ ∈ Pp(n)
are certain removable nodes of λ and they can be defined combinatorially based
on the sets of addable and of removable nodes of λ. The residue of a node is an
element of Z/pZ.

Theorem. [5, 6, 9] Let λ ∈ PAp (n). If G < An and Eλ±↓G irreducible, then one of
the following holds:

(a) λ is JS and G = An−1, An−2 or An−2,2,
(b) λ has exactly two normal nodes both of residue different from 0 and G =

An−1,
(c) p = 2, Eλ± is basic spin and G is imprimitive,
(d) n ≤ 13.

About the reverse directions we have the following:

- Cases (i), (ii), (iii), (vi), (a) and (b): the restrictions are always irreducible.
In case (i) this holds since D(n) is the trivial module of Sn.

- Case (iv): Dλ↓An−1
is always irreducible unless p = 2, n ≡ 2 mod 4 and

Dλ is basic spin. In particular if we are not in this case, Dλ↓An−1
is

irreducible if and only if Dλ↓Sn−1
and Dλ↓An

are both irreducible.

- Case (v): it is known for which 2-transitive subgroups of Sn (or Sn−1)
D(n−1,1)↓G is irreducible. This is mainly due to [8].
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- Case (vii): an exact classification of subgroups G ≤ Sn/2 ≀ S2 for which

D(n−1,1)↓G is irreducible can be found in [3]. Further in [5] we prove that
no such subgroup is almost quasi-simple.

- Cases (viii) and (c): we cannot completely classify imprimitive subgroups
to which basic spin modules restrict irreducibly. However in [3, 4, 5] we
completely classify such subgroups, provided they are almost quasi-simple
or maximal imprimitive.

- Cases (ix) and (d): the list of irreducible restrictions for small n can be
found in [1, 5, 6, 9].

In particular in characteristic 3 the classification of irreducible restrictions of
representations of symmetric and alternating groups extends that in characteristic
at least 5 (at least for n ≥ 25). In characteristic 2, for n ≥ 25, the only differences
are the following:

- Case (vi) has no equivalent. Note though that (n− 2, 12) is not 2-regular.
- Case (vii) has no corresponding case in characteristics 6= 2. This is however
the only case where n = ab and dimD(n−1,1) = b dimD(a−1,1).

- Cases (viii) and (c) have no corresponding cases in larger characteristics for
symmetric and alternating groups. There are however similar irreducible
restrictions of basic spin modules of covering groups of symmetric and
alternating groups in characteristics 6= 2, see [2, 7].
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Character counting conjectures for π-separable groups

Benjamin Sambale

Many of the open conjectures in modular representation theory of finite groups
are known to be true for p-solvable groups where p is the relevant prime. Richard
Brauer and others have tried to replace p by a set of prime π. A convincing theory
of π-blocks was eventually developed by Slattery for the family of π-separable
groups. Here a finite group G is called π-separable if every composition factor
of G is a π-group or a π′-group. Moreover, a π-block of G is a minimal non-
empty subset B ⊆ Irr(G) such that B is a union of p-blocks for every p ∈ π.
Note that {p}-separable is p-solvable and a {p}-block is a p-block. As in the
original theory, let k(B) := |B|. Using a variant of the Fong-Reynolds Theorem,
Slattery defined defect groups D of B by induction on |G|. In this framework it is
natural to ask which of the open conjectures still hold for π-blocks. For instance,
Brauer’s Height Zero Conjecture and the Alperin-McKay Conjecture were proved
for B above by Manz–Staszewski and Wolf respectively. In 2017, I verified Brauer’s
k(B)-Conjecture for B (stating that k(B) ≤ |D|) which was put forward previously
by Y. Liu. The proof is reduced to a non-abelian k(GV )-Theorem which answers a
question by Plfy and Pyber. In a second paper, I proved Brauer Problem 21 for π-
blocks which states that there exists a function f : N→ N (independent of π, B or
D) such that |D| ≤ f(k(B)). This extends the corresponding result for p-solvable
groups by Külshammer. It also generalizes the classical theorem of Landau that
there are only finitely many finite groups with a given class number. Finally, in a
joint paper with Gabriel Navarro, we proved in 2018 a version of Alperin’s Weight
Conjecture for π-solvable groups. Here G is called π-solvable if the composition
factors of G are π′-groups or solvable π-groups. Moreover, a π-weight of G is
a pair (P, ψ) where P is a nilpotent π-subgroup of G and ψ ∈ Irr(NG(P )/P )
satisfies ψ(1)π = |NG(P )/P |π. We showed that the number of conjugacy classes
of π-weights of G equals the number of π-regular conjugacy classes of G. As an
interesting and perhaps surprising special case one recovers Carter’s theorem that
every solvable group has exactly one conjugacy class of selfnormalizing nilpotent
subgroups. In my talk I also proposed a (groupwise) version of Dade’s conjecture
which seems to hold for any π-separable group.

Equivariant Galois-McKay Bijections for the Prime 2 and Some
Groups of Lie Type

Mandi A. Schaeffer Fry

Let p be a prime, G a finite group, and P a Sylow p-subgroup of G. The long-
standing McKay conjecture posits that there should exist a bijection between the
set Irrp′(G) of irreducible ordinary characters of G with degree relatively prime to p
and the corresponding set, Irrp′(NG(P )), for the normalizer of P . Sometimes called
the Galois-McKay conjecture, a refinement due to G. Navarro [3] says that not
only should such a bijection exist, but that there should further be such a bijection
which commutes with the action of a certain subgroup H of G := Gal(Qab/Q).
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Namely, H is comprised of the Galois automorphisms that map all p′-roots of
unity to a given p-power of themselves.

The McKay conjecture was reduced in [1] to proving certain “inductive McKay
conditions” for every simple group. In particular, the conditions require that
for quasisimple groups G, there exist some Aut(G)P -stable NG(P ) ≤M < G and
bijections between Irrp′(G) and Irrp′(M) that are Aut(G)P -equivariant and satisfy
several other strong properties. Here at the MFO in 2014, G. Malle and B. Späth
announced the proof of the ordinary McKay conjecture for the prime p = 2, see
[2], in particular yielding the desired Aut(G)P -equivariant bijections in the case
of groups of Lie type when p = 2.

Recently in [4], G. Navarro, B. Späth, and C. Vallejo have announced a reduc-
tion theorem for the Galois-McKay conjecture along the same lines, stating that
the conjecture holds for all finite groups if certain “inductive Galois-McKay con-
ditions” hold for every simple group. Here we require that the bijections between
Irrp′(G) and Irrp′(M) from before are further (Aut(G)P ×H)-equivariant, among
satisfying other strong properties.

In [6], I describe the action of G on the Howlett-Lehrer parameters for characters
of groups with a BN pair in order to complete the proof began in [5, 7] of another
conjecture of Navarro from [3], which would also be a consequence of the Galois-
McKay conjecture for p = 2. In the present talk, I discuss how I have now
extended these techniques to show that for many groups of Lie type defined in
odd characteristic, the Aut(G)P-equivariant bijections for odd-degree characters
constructed by Malle and Späth can be chosen to further beH-equivariant, showing
that they satisfy the first part of the inductive Galois-McKay conditions.

References

[1] I. Martin Isaacs, Gunter Malle, and Gabriel Navarro, A reduction theorem for the McKay
conjecture, Invent. Math. 170(1) 33–101, 2007.

[2] Gunter Malle and Britta Späth, Characters of odd degree, Ann. of Math., 184(3):869–908,
2016.

[3] Gabriel Navarro, The McKay conjecture and Galois automorphisms, Ann. of Math. (2),
160(3), 1129–1140, 2004.
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“Representations” of saturated fusion systems

Jason Semeraro

Let p be a prime number. A saturated fusion system on a finite p-group S is
a category whose objects are the subgroups of S where morphisms are injective
homomorphisms satisfying certain axioms. A finite group G containing S as a
Sylow p-subgroup provides an example, denoted FS(G). The local-global counting
conjectures in modular representation theory typically express an equality between
a global invariant of G (such as the number of representations with a particular
property) and some local integer invariant involving FS(G), or some subcategory
thereof. In an attempt to provide a new perspective on these conjectures we
forget the group G, and consider the behaviour of the local invariants when F
is an arbitrary saturated fusion system. Do they behave like the local-global
conjectures predict they should when F is induced by a group? We state some
conjectures, discuss recent progress and look at examples coming from algebraic
topology.

The Alperin-McKay Conjecture for simple groups of type A

Britta Späth

(joint work with Julian Brough)

The McKay Conjecture and its blockwise version, the Alperin-McKay conjecture,
relate the numbers of certain characters in terms of local subgroups. Let ℓ be a
prime and let Irr0(C) denote the set of height 0 characters in an ℓ-block C. The
Alperin-McKay conjecture states the equality

|Irr0(B)| = |Irr0(b)|,

where B is an ℓ-block B of a finite group G with defect group D, and b the Brauer
correspondent of B, an ℓ-block of NG(D).

A reduction theorem of the Alperin-McKay conjecture from [Spä13a] shows
that this conjecture follows once a stronger version of the conjecture, the so-called
inductive AM condition, has been checked for all (blocks of) quasi-simple groups
and all primes ℓ. It has been verified for simple groups of Lie type, when ℓ is
the defining characteristic, and for alternating groups, when the prime ℓ is odd.
Additionally [Mal14, SF14] have dealt with simple groups of types 2B2,

2G2 and
2F4, while [CS15, KS16b, KS16a] consider particular structures of the defect group
of the block.

The present work is concerned with the inductive AM condition for quasi-simple
groups of type A and primes ℓ different from the defining characteristic with ℓ ≥
5. Note that the condition holds for most blocks in the defining characteristic
according to [Spä13a] and [Spä13b]. In order to verify the inductive Alperin-
McKay condition, we give a new criterion which will have applications to other
series of simple groups. It complements the criterion given in [CS15].
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Theorem 1. Let S be a finite non-abelian simple group and ℓ a prime dividing
|S|. Let G be the universal covering group of S, D a radical ℓ-subgroup of G

and B ⊆ Bl(G | D) a G̃D-stable subset with (G̃E)B ≤ (G̃E)B for every B ∈ B.

Assume we have a semi-direct product G̃ ⋊ E, a Aut(G)B,D-stable subgroup M

with NG(D) ≤M � G and a group M̃ ≤ G̃ with M̃ ≥MNG̃(D) and M = M̃ ∩G
such that the following conditions hold:

(1) • G = [G̃, G̃] and E is abelian,

• CG̃⋊E(G) = Z(G̃) and G̃E/Z(G̃) ∼= Inn(G)Aut(G)D by the natural
map,

• any element of Irr0(B) extends to its stabiliser in G̃,

• any element of Irr0(B′) extends to its stabiliser in M̃ .
(2) Let B′ ⊆ Bl(M) be the set of all Brauer correspondents of the blocks in

B. For G := Irr
(
G̃ | Irr0(B)

)
andM := Irr

(
M̃ | Irr0(B′)

)
there exists an

NG̃E(D)B-equivariant bijection

Ω̃ : G −→M

with

(a) Ω̃
(
G ∩ Irr(G̃ | ν̃)

)
=M∩ Irr(M̃ | ν̃) for all ν̃ ∈ Irr

(
Z(G̃)

)
,

(b) bl
(
Ω̃(χ̃)

)G̃
= bl(χ̃) for all χ̃ ∈ G, and

(c) Ω̃(χ̃µ̃) = Ω̃(χ̃)ResG̃
M̃
(µ̃) for every µ̃ ∈ Irr(G̃ | 1G) and every χ̃ ∈ G.

(3) For every χ̃ ∈ G there exists some χ0 ∈ Irr(G | χ̃) such that

• (G̃⋊ E)χ0
= G̃χ0

⋊ Eχ0
, and

• χ0 extends to G⋊ Eχ0
.

(4) For every ψ̃ ∈M there exists some ψ0 ∈ Irr(M | ψ̃) such that

• O = (G̃ ∩O)⋊ (E ∩O) for O := G(G̃× E)D,ψ0
, and

• ψ0 extends to M(G⋊ E)D,ψ0
.

(5) For any G̃-orbit B in B the group Out(G)B is abelian.

Then the inductive AM condition holds for all ℓ-blocks in B

This leads to the following statement, where we write SLn(−q) for SUn(q) and
GLn(−q) for GUn(q).

Theorem 2. Let ℓ be a prime, q a prime power and ǫ ∈ {±1} with ℓ ∤ 3q(q − ǫ),
G := SLn(Fq), G := SLn(ǫq), B0 an ℓ-block of G with defect group D, and B the
GLn(ǫq)-orbit containing B0. Assume that PSLn(ǫq) is simple, G is its universal
covering group and the stabilizer Out(G)B is abelian.

(1) The inductive AM condition from Definition 7.2 of [Spä13a] holds for B0.
(2) Let d be the order of q in (Z/ℓZ)×. If D is abelian and CG(D) is a d-split

Levi subgroup of G, then the inductive BAW condition from [Spä13b]
holds for B0.
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In our proof a main step is to parameterize the characters of the normalizers of d-
split Levi subgroups which serve as local subgroups in the inductive AM condition.
Essential is to understand the Clifford theory of irreducible characters of a d-split
Levi subgroup L in NG(L). Furthermore, we consider the action of the stabilizer
Aut(G)B,L on the irreducible characters and verify that the corresponding inertia
groups are of a particular structure.

Theorem 3. Let G := SLn(Fq), G̃ := GLn(Fq) , F : G̃ → G̃ a Frobenius
endomorphism defining an Fq-structure, L a d-split Levi subgroup of (G, F ), N0 :=

NGF (L) and Ñ0 := N
G̃F (L).

(1) Every λ ∈ Irr(LF ) extends to its inertia group in N0.

(2) Let E0 ≤ Aut(G̃F ) be the image of E and let ψ ∈ Irr(N0). Then there

exists a Ñ0-conjugate ψ0 of ψ such that

(a) O0 = (G̃F ∩O0)⋊ (E0 ∩O0) for O0 := GF (G̃F ⋊ E0)L,ψ0
, and

(b) ψ0 extends to (GF ⋊ E0)L,ψ0
.

For groups of Lie type with abelian Sylow ℓ-subgroup, bijections implying
the Alperin-McKay conjecture and blockwise Alperin weight were constructed in
[Mal14, Theorem 2.9] assuming the first part of the above statement for analogous
local subgroups. As a consequence, Alperin-McKay conjecture holds via [Mal14,
Theorem 2.9 and Corollary 3.7] for special linear and unitary groups with abelian
Sylow ℓ-subgroup. We then generalize Malle’s approach from [Mal07], where he
constructed a bijection for the inductive McKay condition. By considerations in-
spired by [Spä09, §10] we deduce from this the Alperin-McKay conjecture for all
blocks, using results of Puig and Zhou on the so-called inertial blocks. Note that
for ℓ | q the Alperin-McKay conjecture was proven in [Spä13a] based on earlier
work by Green-Lehrer-Lusztig while for ℓ | (q − ǫ) results of Puig in [Pui94, §5]
imply the conjecture for most ℓ-blocks of SLn(ǫq) with abelian defect.

Theorem 4. Let G = SLn(ǫq). Let ℓ be a prime with ℓ ∤ 3q(q − ǫ).

(1) The Alperin-McKay Conjecture holds for all ℓ-blocks of G.
(2) The Alperin weight Conjecture holds for all ℓ-blocks of G with abelian

defect.

In a forthcoming work, we address the problem of primes dividing q − 1, linear
primes. In [CSFS] we prove a general statement implying the following for finite
symplectic groups.

Theorem 5. The simple groups PSp2n(q) with q odd satisfy the inductive Alperin-
McKay condition for primes ℓ ≥ 5 dividing (q − 1).
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[Spä13a] B. Späth. A reduction theorem for the Alperin-McKay conjecture. J. Reine Angew.
Math., 680:153–189, 2013.
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Rank, Coclass and cohomology

Peter Symonds

The coclass classification of p-groups suggests that the p-groups of a given coclass
should divide up into finitely many coclass families and the groups in a given
family should have a similar structure.

This led Jon Carlson to conjecture that the p-groups of a given coclass should
only have finitely many isomorphism classes of cohomology rings between them
and he gave a proof for p = 2. Here we present a proof for all p. In fact, we prove
that the p-groups of bounded sectional rank have only finitely many cohomology
rings. This implies the original version because a bound on the coclass gives a
bound on the rank.

The idea is to show that a group of bounded rank has a normal subgroup of
bounded index that has the same cohomology as an abelian group and then to
use the fact that the Castelnuove-Mumford regularity must be zero to bound the
degrees and number of the generators and relations.

As a consequence, related to work of Guralnick and Tiep, we can show that if a

p-group is of sectional rank r then dimHi(G) ≤
(
r(⌈log2 r⌉+3+e)+i−1

i

)
, where e = 0

for p odd and e = 1 for p = 2.

References

[1] J.F. Carlson, Coclass and cohomology, J. Pure Applied Algebra 200 (2005), 251–266.
[2] P. Symonds, Rank, coclass and cohomology, arXiv:1902.02888.



Representations of Finite Groups 879

Decomposition Matrices of Unipotent Blocks

Jay Taylor

(joint work with Olivier Brunat and Olivier Dudas)

Assume G is a finite group and Irr(G) is the set of complex-valued irreducible
characters of G. Fix a prime ℓ > 0 and let IBr(G) be the ℓ-modular Brauer
characters of G, which are functions Gℓ′ → C where Gℓ′ ⊆ G is the set of elements
whose order is coprime to ℓ.

If f : G→ C is a function then we denote by f0 := f |Gℓ′
the restriction of f to

the ℓ′-elements of G. It is well known that if χ ∈ Irr(G) then there exist integers
dχ,ϕ > 0 such that

χ0 =
∑

ϕ∈IBr(G)

dχ,ϕϕ.

The resulting matrix (dχ,ϕ) is the (ℓ-)decomposition matrix of G. Obtaining in-
formation about this matrix is a central problem in the representation theory of
finite groups and calculating exactly the entries dχ,ϕ is an extremely challenging
problem in general.

We will consider the case where G = G(k) is a finite reductive group and
ℓ 6= p := char(k), i.e., G is the group of k-points of a connected reductive algebraic
group G defined over a finite field k. We will denote by k̄ an algebraic closure
of k. We then have a corresponding group G(k̄) of k̄-points which contains G as
a subgroup. We will let Cu(G) denote the set of unipotent conjugacy classes of
G(k̄).

After [7, 2, 6] we can associate to each irreducible character χ ∈ Irr(G) a class
Oχ ∈ Cu(G), called the unipotent support of χ. It is a little delicate to define this
class in general but if p is good for G and the centre Z(G(k̄)) is connected then
it is shown in [8] that Oχ is the unique unipotent class satisfying the following
conditions:

• χ(u) 6= 0 for some u ∈ Oχ ∩G 6= ∅
• if v ∈ G is a unipotent element and χ(v) 6= 0 then v ∈ Oχ (the Zariski
closure of Oχ).

Example. If 1G ∈ Irr(G) is the trivial character then O1G is the class of regular
unipotent elements and if StG ∈ Irr(G) is the Steinberg character then OStG is the
trivial unipotent class.

For finite reductive groups one has an important set of characters E(G, 1) ⊆
Irr(G), defined using ℓ-adic cohomology, known as the set of unipotent characters.
These characters are a generic model for all the irreducible characters of G. Using
the unipotent support we obtain a partition of the unipotent characters

E(G, 1) =
⊔

O∈Cu(G)

E(G, 1,O)

where E(G, 1,O) = {χ ∈ E(G, 1) | Oχ = O}. Note this set might be empty in
general and the non-empty such sets are known as families of unipotent characters.
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Example. Assume G = Sp4(k) then Cu(G) = {O(14),O(2,12),O(22),O(4)} where
each class is labelled by the sizes of the Jordan blocks in the Jordan normal form
of an element under the natural representation Sp4(k̄)→ GL4(k̄). It is well known
that |E(G, 1)| = 6 and the sizes of the corresponding sets E(G, 1,O) are

O O(14) O(2,12) O(22) O(4)

|E(G, 1,O)| 1 0 4 1

Here E(G, 1,O(14)) = {StG} and E(G, 1,O(4)) = {1G}.

On the modular side we have a corresponding subset B(G, 1) ⊆ IBr(G) of Brauer
characters, which is the union of the unipotent blocks of G. This set is defined by
a corresponding subset Eℓ(G, 1) ⊆ Irr(G) of irreducible characters, which contains
the set of unipotent characters. This correspondence is such that if χ ∈ Eℓ(G, 1)
and ϕ ∈ IBr(G) then dχ,ϕ 6= 0 implies ϕ ∈ B(G, 1).

In what follows we will be interested in the following part of the decomposition
matrix

D = (dχ,ϕ | χ ∈ Eℓ(G, 1) and ϕ ∈ B(G, 1)).

This matrix is, in general, not square as |Eℓ(G, 1)| > |B(G, 1)|. However, it
has been shown by Geck–Hiß that under some mild assumptions on ℓ we have
|E(G, 1)| = |B(G, 1)|, this holds for instance if ℓ is very good for G. This is known
to be false in general.

Let us recall that we have a natural partial order � on Cu(G) defined by O′ � O
if and only if O′ ⊆ O (the Zariski closure). With this in hand we can state
Geck’s conjecture on the decomposition matrix of G. To avoid introducing more
notation we will work with a stronger assumption on ℓ than is actually stated in
the conjecture. We note that a weak version of this conjecture was first proposed
in Geck’s PhD Thesis [3]. It was then further strengthened by Geck–Hiß [5] and
reached the form we state here in [4].

Geck’s Unitriangularity Conjecture. Assume ℓ is a very good prime for G.
Let SG = {O ∈ Clu(G) | E(G, 1,O) 6= ∅} = {O1, . . . ,Or} where Or 6 · · · 6 O1 is
a total order refining the partial order � on SG. Then there is an ordering of the
Brauer characters in B(G, 1) such that

D =




D1 0 0

⋆ . . . 0

⋆ ⋆ Dr

⋆ ⋆ ⋆




E(G, 1,O1)
...

E(G, 1,Or)

where each Di is the identity matrix with rows labelled by the irreducible charac-
ters in E(G, 1,Oi).

Example. The poset (SG,�) contains a unique maximal element, namely the
class Oreg ∈ SG of regular unipotent elements, because E(G, 1,Oreg) = {1G}. In
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the statement of the conjecture O1 = Oreg and thus we should have 10G is an
irreducible Brauer character, which it certainly is.

Similarly, the poset (SG,�) contains a unique minimal element, namely the
trivial class Otriv ∈ SG, because E(G, 1,Otriv) = {StG}. In the statement of
the conjecture Or = Otriv and St0G could potentially have many irreducible con-
stituents.

Since its inception several people have worked towards obtaining a proof of this
conjecture. The conjecture was shown to be true by Dipper when G = GLn(k)
and Geck when G = GUn(k). A particularly notable milestone in the life of
the conjecture was achieved by Gruber–Hiß who showed the conjecture was true
when G is a classical group and ℓ is a so-called linear prime for G. Together with
O. Brunat and O. Dudas we have established the following.

Theorem (Brunat–Dudas–T.). Assume p is good for G and ℓ is very good for
G. If G has no component of type E8 and q ≡ 1 (mod 4) if G has a component of
type E7 then Geck’s Unitriangularity Conjecture holds.

We are optimistic that our methods will be able to treat the cases of E7 and E8

and thus we hope to establish Geck’s conjecture for all finite reductive groups, with
appropriate assumptions on p and ℓ. As mentioned above the assumption that ℓ
is very good is stronger than the assumption imposed in the original statement of
the conjecture. Our result can be established with an assumption on ℓ matching
that made in [4]. In fact, after work of Denoncin [1], it seems likely that some
version of the unitriangularity can be established assuming only that ℓ is a good
prime for G.
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Character bounds for finite groups of Lie type

Pham Huu Tiep

In this talk, we discuss recent results, obtained in joint work of the speaker with
various collaborators, on the following problem:

Problem. Let G be a finite almost quasisimple group G and let g ∈ G r Z(G).
Find an explicit, and as small as possible, constant 0 < α = α(g) < 1 such that
|χ(g)| ≤ χ(1)α for all χ ∈ Irr(G).

Even partial solutions to this problem have proved to be useful in a number of
applications. The first result on this problem, in the case G = Sn and g = (mn/m)
a product of disjoint cycles of the same length m, was obtained by Fomin and
Lulov in [3]:

|χ(g)| ≤ χ(1)1/m+o(1).

A full, still asymptotic, result for G = Sn was later obtained by Larsen and
Shalev in [8]. We may now focus on the case of finite groups of Lie type, that is,
G = GF for a connected reductive algebraic group G in characteristic p > 0 and
a Steinberg endomorphism F : G → G. Let r denote the rank of the semisimple
subgroup [G,G]. An F -stable Levi subgroup L of G is called split if it is a Levi
subgroup of an F -stable parabolic subgroup of G. For any F -stable Levi subgroup
L, not a maximal torus, define

α(LF ) := max
16=u∈LF , u unipotent

dimuL

dimuG
.

If L is an F -stable maximal torus, let α(LF ) := 0.

Theorem 1. [1] There exists an explicit function f : N → N such that the
following statement holds. Let p be a good prime for G. Suppose that g ∈ GF is
such that CGF (g) ≤ LF for some proper split Levi subgroup L of G. Then

|χ(g)| ≤ f(r)χ(1)α(L
F )

for all χ ∈ Irr(GF ).

In our proof, f is roughly of the magnitude of ((r + 1)!)2 (when r is not too
small). However, examples show that f(r) should be at least of the magnitude of√
(r + 1)!. On the other hand, the α(LF )-exponent in Theorem 1 is best possible

in a number of cases:

Theorem 2. [1] Let G = GLn. There exists a constant C(n) such that the
following statement holds. For any GF = GLn(q) with q ≥ C(n), and for any
proper split Levi subgroup L of G, there exist g ∈ GF with CG(g) = L and a
unipotent irreducible character χ ∈ Irr(GF ) such that

|χ(g)| ≥
1

4
χ(1)α(L

F ).

A key ingredient of the proof of Theorem 1 in [1] is to bound the wave front set
O∗
η of any irreducible constituent of the Lusztig restriction ∗RG

L(χ) of χ ∈ Irr(GF )

by O∗
χ. The existence and uniqueness of O∗

χ for any χ ∈ Irr(GF ) (when p is a good
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prime) was established by Lusztig [11] and Taylor [12], using Kawanaka’s theory
of generalized Gelfand-Graev representations [7].

Can one extend Theorem 1 to the case of non-split Levi subgroups? An answer
to this question for groups with connected center is given in the following theorem:

Theorem 3. [13] There exists an explicit function f : N → N such that the
following statement holds. Let p be a good prime for G and let Z(G) be connected.
Suppose that L is a proper F -stable Levi subgroup of G and g ∈ LF is such that
CG(g)

◦ ≤ L. Then

|χ(g)| ≤ f(r)χ(1)α(L
F )

for all χ ∈ Irr(GF ).

A major part of the proof of Theorem 3 is to establish the aforementioned
bounding result on O∗

η for any irreducible constituent of ∗RG
L(χ) for any proper

F -stable Levi subgroup L, by first proving its geometric analogue for parabolic
induction of character sheaves. Combining the results of [1] and [13], the following
asymptotically optimal character bound has been obtained in [13]:

Theorem 4. [13] There exists an explicit function h : N → N such that the
following statement holds. Let G := GLn(q) or SLn(q), n ≥ 5, and let g ∈
Gr Z(G). Then

|χ(g)| ≤ h(n)χ(1)(n−2)/(n−1)

for all χ ∈ Irr(GF ).

In the case G is simple and not of type A, Theorems 1 and 4 still leave out, for
instance, unipotent elements g ∈ GF . In a number of applications, however, one
usually needs to bound |χ(g)| only when either χ(1) is not too large, of |CGF (g)|
is not too large. Under these conditions, various exponential character bounds for
finite classical groups have been obtained in [4, 5].

Theorem 5. [4, 5] For any ǫ > 0, there exists δ > 0 such that the following
statements hold. For any finite classical group G and for any g ∈ G with |CG(g)| ≤
|G|δ, |χ(g)| ≤ χ(1)ǫ.

In fact, there is also an effective version of Theorem 5 for 4/5 < ǫ < 1 in [4, 5].
For instance, if G = GLn(q) or GUn(q) and ǫ = 8/9, one can take δ = 1/12. The
proof of Theorem 5 relies on the notion of character level, first developed in [4] for
G = GLn(q) and GUn(q).

Can one obtain good character bounds for all elements g ∈ GF and for all
characters χ ∈ Irr(GF ), for G simple not of type A? Such bounds in the case G is
exceptional have been obtained in recent joint work of Liebeck and the speaker.
Further bounds for finite classical groups have also been obtained in recent joint
work of Liebeck, Shalev, and the speaker.

Exponential character bounds recently established lead to significant progress
in a number of applications. We formulate one such result, which is concerned
with mixing time of random walks on finite groups (cf. [2]), which extends the
main result of [6].
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Theorem 6. [13] Let G = SLn(q) and let g ∈ GrZ(G). If q is large enough, then
the mixing time of the random walk on the Cayley graph Γ(G, gG) is at most n.

Further applications, particularly concerning the diameter of the McKay graph
for finite simple groups, are also discussed, see [9, 10].
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Real conjugacy class sizes and orders of real elements

Hung P. Tong-Viet

Let G be a finite group. An element x ∈ G is said to be real if x and its inverse
are conjugate in G. A conjugacy class of G is real if it contains real elements.
Moreover, an element x ∈ G is said to be strongly real if it is inverted by an
involution.

The existence or non-existence of real elements of certain orders is an important
question in finite group theory. Following M. Suzuki, a finite group G is called a
(C)-group if the centralizer of every involution is 2-closed, that is, having a normal
Sylow 2-subgroup. It turns out that a finite group G is a (C)-group if and only
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if G has no real element of order 2m with m > 1 being odd; equivalently, the
order of every real element of G is either a power of 2 or odd (see [2, Proposition
2.7]). These groups have been studied by Suzuki himself in [8] and recently in [2]
for solvable groups. Use these results, we characterize finite (C)-groups having
no real element of order 4 and deduce the following criterion for the solvability of
finite groups with some restriction on the orders of real elements.

Theorem 1. ([11, Theorem A]) Let G be a finite group and let p be a prime.
If every real element of G is an involution or a p-element, then G is solvable.
Moreover, if L = O2′(G) then

(1) L is a 2-group and has no real element of order 4; or
(2) O2(L) = 1 and L has a cyclic Sylow 2-subgroup Q and a normal 2-complement

P which is a p-group with CP (Q) = CP (z), where z is the unique involution
in Q.

Our next result describes the structure of finite groups having at most three
distinct real element orders.

Theorem 2. ([11, Theorem B]) Let G be a finite group and let L = O2′(G). If G
has at most three distinct real element orders, then

(1) L is a 2-group and has no real element of order 8; or
(2) O2(L) = 1 and L has a cyclic Sylow 2-subgroup Q and a normal 2-complement

P which is a p-group for some odd prime p with CP (Q) = CP (z), where z is
the unique involution in Q.

Theorem 2 follows from Theorem 1 together with a result in [4] stating that a
finite group is 2-closed if and only if it has no nontrivial real element of odd order.
Note that the proof of the aforementioned result uses only Baer-Suzuki theorem.
Thus the proof of Theorem 2 does not depend on the classification of finite simple
groups.

It is well-known that the number of real-valued ordinary irreducible characters
and the number of conjugacy classes of real elements of a finite group coincide.
Hence ifG has at most three real-valued ordinary irreducible characters, thenG has
at most three conjugacy classes of real elements. In particular, such groups must
satisfy the hypothesis of Theorem 2. Therefore, Theorem 2 gives a classification-
free proof of the solvability of finite groups with at most three real-valued ordinary
irreducible characters (see Theorem 2.5 of [6]).

Let G be a finite group and let A ≤ S ≤ G. Recall that A is strongly closed
in S with respect to G if whenever a ∈ A, g ∈ G, if ag ∈ S, then ag ∈ A or
equivalently Ag ∩ S ⊆ A for all g ∈ G. Generalizing Glauberman’s Z∗-theorem,
Goldschmidt [5] determines the structure of finite groups possessing an abelian
strongly closed 2-subgroup. It turns out that if S is a Sylow 2-subgroup of a
finite group G and Ω1(S) is abelian, then Ω1(S) is an elementary abelian group
and hence it is strongly closed in S with respect to G. Now we can see that if
a finite group G has no strongly real element of order 4, then all involutions in
S commute, in particular, Ω1(S) is abelian. Hence we can apply Goldschmidt’s
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result to classify all finite non-abelian simple groups having no real element of
order 4. Using this result, we can determine the structure of finite groups having
four real-valued irreducible characters.

Theorem 3. ([11, Theorem 3.3]) Let G be a finite group with exactly four real-

valued irreducible characters. Let L = O2′(G) and Q be a Sylow 2-subgroup of L.
Then one of the following holds.

(1) G has a normal Sylow 2-subgroup.
(2) O2(L) = 1, Q is either cyclic or quaternion of order 8 and L has a normal

2-complement K with CK(Q) = CK(z), where z is the unique involution in
Q.

(3) G has 2-length one and Q is either homocyclic or a Suzuki 2-group.
(4) G ∼= SL3(2)×K, where K is of odd order.

We are able to give classification-free proofs of some results in [3, 7]. (See [11]).
A classical result due to Burnside states that a finite group is of odd order if

and only if the identity element is the only real element. This result has been
generalized by Chillag and Mann [1], where the authors showed that if a finite
group G has only one real class size or equivalently every real element lies in
Z(G), then G is isomorphic to a direct product of a 2-group and a group of odd
order. Extend this result further, we can prove the following.

Theorem 4. ([10, Theorem A]) Let G be a finite group. If G has two real class
sizes, then G is solvable.

This confirms a conjecture due to G. Navarro, L. Sanus and P. Tiep. This result
is best possible in the sense that there are non-solvable groups with exactly three
real class sizes. In fact, the special linear group SL2(q) of degree 2 over a finite
field of size q, where q ≥ 7 is a prime power and is congruent to −1 modulo 4, has
three real class sizes, namely 1, q(q − 1) and q(q + 1) but SL2(q) is non-solvable.

As already noted in [7], any possible proof of Theorem 4 is complicated. Instead
of giving a direct proof of this theorem, we will prove a much stronger result which
implies Theorem 4. For an integer n ≥ 1 and a prime p, the p-part of n, denoted
by np is the largest power of p dividing n.

Theorem 5. ([10, Theorem B]) Let G be a finite group. Suppose that all non-
central real class sizes of G have the same 2-part. Then G is solvable.

In other words, if |xG|2 = 2a for all non-central real elements x ∈ G, where
a ≥ 0 is a fixed integer, then G is solvable. In fact, we can say more about the
structure of these groups.

Theorem 6. ([10, Theorem C]) Let G be a finite group. Suppose that all non-
central real class sizes of G have the same 2-part. Then G has 2-length one.

Recall that a groupG is said to have 2-length one if there exist normal subgroups
N ≤ K ≤ G such thatN andG/K have odd order andK/N is a 2-group. Theorem
6 confirms a conjecture proposed in [9].
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The local invariant of an irreducible character

Alexandre Turull

It is well known that associated with each irreducible character of a finite group is
an element of a Brauer group. Important global/local conjectures in representation
theory of finite groups have been refined over the years. In particular, these
elements of the Brauer group have been incorporated in them as elements in their
refinements by Turull [2]. Turull has proved that these refinements (together with
many other ones) hold true in the case of p-solvable groups for the Alperin-McKay
Conjecture [3] and Dade’s Projective Conjecture [4].

Let p be a prime. We note that for the conjectures above the relevant base fields
are finite extensions of Qp, the field of p-adic numbers. Let K be a finite extension
of Qp. Then it is well known that there exists a uniquely defined isomorphism

inv : Br(K)→ Q/Z

(for example [1]).
In this talk, we show that if p-Brauer characters are defined then we automati-

cally have a uniquely defined collection of maps inv so that, for every finite group
G, we have a function

inv : Irr(G)→ Q/Z,

with excellent compatibility properties.
The strengthened Alperin-McKay conjecture, and the strengthened Dade pro-

jective conjecture can be reformulated to use the local invariants given by inv
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instead of the element of the Brauer group associated to each irreducible charac-
ter.

We note that, for each χ ∈ Irr(G), the denominator of inv(χ) is the p-local
Schur index mp(χ) of χ. We also note that, if ψ is a Galois conjugate of χ, then
inv(χ) and inv(ψ) have the same denominator but might have different numerator.

This immediately suggests the problem of how to explicitly compute inv(χ). In
the talk, we also describe how one can calculate inv(χ) in every case.

For the calculation of inv(χ), we describe a series of reductions that allow us to
explicitly compute inv(χ). There are reductions of a small number of types that
in each case relate inv(χ) to the local invariant of some irreducible character of a
smaller group than G. Applying these repeatedly, we reduce the problem to the
calculation of inv(χ) in the case where these reductions no longer yield smaller
groups. The resulting groups can be classified into a small number of types. For
groups of each of these types, we have an explicit formula that yields inv(χ).
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A simple character formula

Geordie Williamson

(joint work with Simon Riche)

Let G denote a reductive group over an algebraically closed field of characteristic
p > 0. Let T denote a maximal torus, X its character lattice, and X+ the
dominant weights with respect to some choice of positive roots. To any λ ∈ X+

we can associate a simple highest weight module Lλ. The Lλ are pairwise non-
isomorphic and any simple algebraic representation of G is isomoprhic to some Lλ.
We would like to know how big each Lλ is, and what its character is.

For SL2 one can do everything by hand. I’m not sure who first wrote it down.
The answer for SL3 was obtained by Mark (1939) and Braden (1967). In the 70s
Jantzen discovered his sum formula [6]. The sum formula gives a complete answer
for Sp4, SL4 and G2.

How far does one get with Jantzen’s sum formula? Careful calculations of
Jantzen reduce the problem to one undetermined a ∈ {1, 2} for SL5, one undeter-
mined d ∈ {1, 2} for Sp6 and a few undetermined quantities for Spin7. (This does
not mean that there is only one unknown character in each case. Jantzen shows
that there are a few ambiguities in each type, but that these ambiguities are all
connected via the parameters above.) Groups of rank 4 and above presumably
involve many more complications!
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I recalled the periodic form of Lusztig’s character formula [7] from 1980. It is
the statement

(1) [P̂A] =
∑

dB,Â(1)[L̂B]

where we are now working in the principal block of G1T -modules. For a p-alcove

A, we let L̂A denote the simple module of highest weight λ, where λ is the unique

weight in A in the orbit under the p-dilated affine Weyl group, and P̂A denotes its

projective cover. The dB,A are Lusztig’s periodic polynomials [7]. Here A 7→ Â
is the operation on p-alcoves which is uniquely determined by the following two
properties: it is invariant under translations in pX ; on alcoves of the form w0A
with A in the fundamental block, it is given by w0A 7→ A.

Statement (1) implies (via Brauer-Humphreys reciprocity) character formulas
for simple G1T -modues. This in turn provides character formulas for the simple
G-modules. (The key fact is that it is enough to know the character of Lλ for
restricted weights, and these simple modules stay simple for G1T .) Statement (1)
is known to hold for large p above an explicit bound [2, 4]. It is also known that
it is not true for many primes between h and some exponential function of h [8].
Thus it is desirable to have a feasible method of calculating these characters for
small and even “medium sized” primes. For example, it would be nice if we could
tell Jantzen whether a = 1 or 2 for SL5!

The purpose of the lecture was to state the following new formula:

[P̂A] =
∑

pdB,Ã(1)[L̂B]

This formula is valid for p ≥ 2h − 1, where h is the Coxeter number, and has
a chance to hold for all p ≥ h (this would be a theorem if Donkin’s conjecture
is true for p ≥ h). Here the pdB,A are periodic p-polynomials. Lusztig observed
that one may express the canonical basis in the periodic module via Kazhdan-
Lusztig polynomials in the spherical module [7]. Because we know that spherical
p-polynomials are, this allows us to define periodic p-polynomials via Lusztig’s
lemma.

Although the pdB,A are complicated, this formula probably represents the eas-
iest way to calculate the characters of simple G-modules beyond the cases where
Jantzen’s sum formula provides the answer, or where Lusztig’s formula is valid.
For example, Jensen and Scheinmann (work in progress) were able to verify by
hand that a = 1 in the SL5 case above.

The proof has three main ingredients:

(1) for A in the fundamental box, we have

(2) P̂A ∼= (TÂ)|G1T

(proved by Jantzen [5] and Donkin [3]). This is only known to be true
for p ≥ 2h − 1, and explains why we must assume p ≥ 2h − 1 above.
Donkin conjectures that (2) holds for all p. If his conjecture is true then
our formula is valid for p ≥ h.
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(2) A formula for tilting characters recently established by Achar, Makisumi,
Riche and the author [1].

(3) An embedding of the spherical category into the anti-spherical category,
categorifying a well-known embedding.
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